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meiner dortigen Aufenthalte. Dank euch bin ich immer wieder gerne nach München
gefahren.

Schlussendlich danke ich meinen Eltern Helga und Erwin, meiner Schwester
Hanna und meiner Oma Johanna, welche stets an meiner Seite standen.



Zusammenfassung

Intraday Strommärkte bieten die Möglichkeit die Produktions- und Verbrauchs-
prognosen kurz vor Lieferung anzupassen. Deshalb sind diese Märkte besonders
für erneuerbare Energiequellen wichtig, aber auch für unerwartete Ausfälle von
Kraftwerken. Interessanterweise werden in Europa zwei Marktdesigns für Intra-
day Märkte verwendet: Auktionen und kontinuierlicher Handel. Beide Designs ha-
ben Vorteile und Nachteile. Im Europäischen Intraday Markt hat sich jedoch der
kontinuierliche Handel etabliert, mit der Möglichkeit zusätzliche Auktionen hinzu-
zufügen.

Aufsatz 1: Wir analysieren Liquiditätskosten von Intraday Märkten mit einem
cost-of-round-trip Maß, welches sowohl für Auktionen als auch für den kontinuierli-
chen Handel verwendet werden kann. Wir verwenden Daten der italienischen Intra-
day Auktionen und des deutschen kontinuierlichen Intraday Marktes und erstellen
deskriptive Statistiken sowie ein multivariates Regressionsmodell, um einflussreiche
Faktoren auf Liquiditätskosten der beiden Märkte zu finden. Zudem verwenden wir
eine double machine learning Methode, um Störvariablen auszuschließen und den
reinen Einfluss des Marktmodelles auf die Liquidität zu untersuchen. Wir zeigen,
dass Wochentage, die jährliche Saisonalität, die Stromnachfrage und Temperatur
einen Einfluss auf Liquiditätskosten haben. Der Vergleich der beiden Marktmodelle
zeigt, dass Liquiditätskosten grundsätzlich in den italienischen Intraday-Auktionen
geringer sind. Interessanterweise nehmen die Kosten der Auktionen nahe an der
Lieferung zu. Die Liquiditätskosten im kontinuierlichen deutschen Intraday-Markt
hingegen werden gegen Marktschluss immer kleiner und sind kurz vor Stromliefe-
rung geringer als in der entsprechenden italienischen Intraday Auktion.

Aufsatz 2: Wir stellen die erste algorithmische Handelsstrategie für den kon-
tinuierlichen Intraday Markt basierend auf Wettervorhersagen vor. Die Strategie
benötigt dafür kein Portfolio - weder Verbrauch noch Produktion - und generiert
einen Profit mithilfe von aggregierten Produktionsprognosen der wetterabhängigen
erneuerbaren Energiequellen. Dafür stehen mehrere Intraday-Aktualisierungen der
Produktionsprognosen von einem professionellen Anbieter zur Verfügung und wir
werten die Strategie out-of-sample über ein gesamtes Jahr auf der Grundlage der
einzelnen Gebote des deutschen Orderbuchs aus. Unsere Strategie erwirtschaftet
einen Gewinn, wodurch gezeigt wird, dass Intraday Märkte nicht semi-strong ef-
ficient sind. Zudem können die Gewinne mit besseren Produktionsprognosen ge-
steigert werden und deshalb ist die Qualität der Vorhersagen ein wichtiger Faktor
für profitable Handelsstrategien. Das könnte zu einem Wettrüsten für häufigere
und bessere Produktionsprognosen führen, welches die effizient des Marktes, die
Qualität der Preissignale und die Liquidität des Marktes steigern würde.



Aufsatz 3: Der kontinuierliche Handel hat sich mittlerweile als Marktmodell der
europäischen Intraday Märkte etabliert. In diesem Aufsatz schlagen wir hingegen
regelmäßig organisierte Auktionen als Alternative vor. In einer Auktion werden
die Angebote gesammelt und dann erst gecleart. Das führt zu niedrigeren Liqui-
ditätskosten, zuverlässigeren und weniger störende Preissignale, und die längere
verfügbare Berechnungszeit erlaubt es zudem die technischen Einschränkungen
des Stromnetzes besser zu berücksichtigen und die Stromflüsse optimal zu steuern.
Wir verlgeichen in einer empirischen Studie die kontrafaktischen Ergebnisse von re-
gelmäßig organisierte Auktionen mit jenen des kontinuierlichen Marktes. Das Han-
delsvolumen ist beim kontinuierlichen Markt höher, Liquiditätskosten sind jedoch
bei den Auktionen geringer und die Preissignale beinhalten weniger Rauschen.
Zudem diskutieren wir die Verwendung des kontinuierlichen Marktes mit den vor-
handenen Netzwerkbedingungen und technischen Einschränkungen der konventio-
nellen Anlagen. Zusammenfassend zeigen unsere Ergebnisse, dass das Sammeln
von Angeboten in regelmäßig organisierten Auktionen besonders für schwach ge-
handelte Intraday Märkte von Vorteil wäre.



Abstract

Intraday electricity markets offer the possibility to adjust production and demand
forecasts shortly before physical delivery. Hence, these markets are important
to integrate renewable energy sources, but also to balance unforeseen outages of
power plants. Interestingly, two market designs for intraday markets are used in
Europe: auction markets and continuous trading. Both concepts have advantages
and disadvantages. The continuous trading design was chosen for the European
intraday market, with the possibility of optional additional auction markets.

Essay 1: We analyze liquidity costs on continuous and auction-based intra-
day power markets using a cost-of-round-trip measure that works for both market
designs. We use data from the Italian auction-based intraday market and the Ger-
man continuous market and present descriptive statistics as well as multivariate
regression models to analyze determinants of liquidity costs in both markets. To
test for differences in liquidity due to market design, we employ a double machine
learning technique controlling for several confounding variables. We show that
weekly patterns, yearly seasonality, electricity demand, as well as the influence of
temperatures significantly affect liquidity costs. Comparing liquidity costs in both
market, we find that, overall, liquidity costs are lower on the Italian market. How-
ever, Italian costs increase towards later auctions, while the costs on the German
continuous intraday market decrease and reach their low close to physical delivery,
where costs are lower than on the last Italian market trading the corresponding
products.

Essay 2: We propose the first weather-based algorithmic trading strategy on
a continuous intraday power market. The strategy uses neither production as-
sets nor power demand and generates profits purely based on superior information
about aggregate output of weather-dependent renewable production. We use an
optimized parametric policy based on state-of-the-art intraday updates of renew-
able production forecasts and evaluate the resulting decisions out-of-sample for
one year of trading based on detailed order book level data for the German mar-
ket. Our strategies yield significant positive profits, which suggests that intraday
power markets are not semi-strong efficient. Furthermore, sizable additional prof-
its could be made using improved weather forecasts, which implies that the quality
of forecasts is an important factor for profitable trading strategies. This has the
potential to trigger an arms race for more frequent and more accurate forecasts,
which would likely lead to increased market efficiency, more reliable price signals,
and more liquidity.



Essay 3: Continuous trading is currently becoming the standard for intraday
electricity markets. In this paper, we propose frequent auctions as a viable al-
ternative. We argue that batching orders in auctions potentially leads to lower
liquidity cost, more reliable, less noisy price signals, and allows for better align-
ment of market outcomes with the technical realities of the grid. In an empirical
study, we compare the German continuous intraday market with counter-factual
outcomes from frequent auctions. We find that while traded volumes tend to be
higher for continuous trading, liquidity costs are lower and price signals contain
less noise for the auction market. Furthermore, we critically discuss the suitability
of continuous trading in the presence of network constraints and technical restric-
tions of conventional units. Taken together these findings suggest that in sparsely
traded intraday markets, pooling orders in frequent auctions may be beneficial.
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1 Introduction

The share of renewable energy strongly increased in the European power mix dur-
ing the last years. Wind parks, solar farms, biomass plants and hydropower plants
are important technologies to reduce CO2 emissions and help to reach international
climate goals. However, the production of wind parks and solar farms are strongly
dependent on weather conditions and are therefore difficult to integrate into the
complex power grid. Production forecasts of these power plants are continuously
updated based on new available weather forecasts and the predictions are getting
more precise with shorter lead-times. Intraday markets were introduced in Europe
to provide market participants the possibility to trade forecast errors until shortly
before physical delivery. These markets are analysed in this dissertation with the
focus on the German continuous intraday market.

This introduction provides the preliminaries for the three essays of this dis-
sertation. The basic challenges of the electricity sector, which are important to
guarantee a secure power supply, are described in Section 1.1. Section 1.2 de-
scribes the transition of the European energy sector from a monopolistic structure
to a liberalised market. Section 1.3 describes the current European market design
with sequential power markets, which allows to trade long-term contracts, but also
short-term contracts with a finer granularity. The homogeneity of the European
market design and the small differences in the single markets will be discussed in
Section 1.4 by introducing the German and Italian power markets. In Section 1.5
the limit order book of the continuous intraday market is described, while Section
1.6 analyses basic measures of the limit order book. Section 1.7 introduces the no-
tion of liquidity, which is an important property of markets in general. Finally, all
research questions, which are tackled in the three essays, are collected in Section
1.8.

1.1 Challenges of the Electricity Sector

Power can be traded on markets similarly to other commodities like oil, gas or
metals. Nonetheless, there is a huge difference to those other commodities, as
storage of power is cost intensive leading to the strict constraint that production
has to meet consumption at each point in time. A violation of this constraint would
disturb the frequency of the entire grid; the consequence could be a blackout.

One particularity of the electricity sector is the power grid. Power lines are
used to connect customers with power plants and each power line has a maximum
capacity. Customers and power plants form the nodes of the power grid, and
power lines define the vertices. Large power grids were developed during the last
years to transport power over huge distances. Hence, production has to match
consumption at each point in time, but also the constraints of the power grid have

1



1.1 Challenges of the Electricity Sector

to be considered. Therefore, also electricity markets have to be tailored to these
technical realities.

The spot market allows to trade electric power in blocks of 15 or 60 minutes and
these products are also useful to manage the stability of the power grid. Hence,
all controllable power plants are scheduled with a granularity of 15 or 60 minutes
to balance the power grid roughly within each block. Other flexible power plants
are used on-top to balance the power grid at each time within the block.

One could easily solve the linear power flow problem knowing the exact con-
sumption by adjusting the output of each power plant. However, the real problem
is not that simple, because a big challenge in the energy sector is uncertainty.
There are many unexpected events which have to be considered to guarantee a
secure power supply:

• Uncertain demand: Consumers do not have to deliver power schedules
and have free choice in their use of electric power. Power providers have to
schedule the demand of their customers. It is difficult to predict the demand
of one single household, but pooling consumers makes it possible to obtain
good estimates. However, the demand in the whole power system remains
random.

• Unexpected plant failures: On the other side, power plants are scheduled
to meet the predicted demand and the in-feed into the power grid has to be
guaranteed to obtain a balanced system. Despite that, sometimes power
plants have unexpected technical problems and are no longer able to ful-
fill their power schedules. In that case, consumption has to be reduced or
another power plant has to be activated.

• Failures of the power grid: It is not enough to meet demand at each time,
but the power schedules have to consider the constraints of the power grid
with their maximum available power line limits. In the case of a power line
failure, new power schedules are needed to adapt the power flow under the
new available grid constraints. The blackout in 2006 for example was caused
by a planned outage of two power lines which had unexpected consequences.

• Integration of uncertain renewable energy sources: The share of green
energy increased during the last years to reduce CO2 emissions. The disad-
vantage of these power plants is that the production of photovoltaic plants
and wind parks are strongly depending on the weather. Hence, weather
forecasts are used to predict the production of renewables. The precision is
getting better with shorter lead-times, and therefore, we obtain quite good
production forecasts shortly before physical delivery. However, the late in-
formation of the precise production forecasts and the resulting uncertainty

2



1.2 Liberalisation of the European Energy Sector

makes it difficult to integrate renewable energy sources into the power grid.
Moreover, wind parks have periods when they produce a lot of energy, but
there are also calm wind periods where these parks produce less energy. Of
course, another type of power plant has to provide the needed capacity in
these periods. Another important topic is the expansion of the existing power
grid, because wind parks are able to produce huge amounts of energy which
has to be transported to the right place. Due to the lack of missing power
line capacities, some wind parks have to be switched off at windy days to
avoid a blackout.

The four challenges require flexible power which is able to balance power at
each point in time. Conventional plants are mainly used to balance the system,
but also power from gas turbines, pumped storage hydropower, batteries or flexible
consumers is considered. Marginal costs of these sources are usually high and it is
convenient to minimize the usage of balancing power.

1.2 Liberalisation of the European Energy Sector

Interestingly, different market designs were developed around the world to handle
the above-mentioned challenges of the electricity sector. One solution is to intro-
duce a single company which is responsible for the power supply and is organised
as a national or regional monopoly. Another option is a competitive energy sector,
where customers can choose between different power providers.

While a monopolist is able to adjust the production of its own power plants to
meet the demand of customers, a competitive model needs power markets allow-
ing power providers to exchange power. Power markets are able to organize the
scheduling process with price signals, where the higher the prices are getting, the
more power is missing in the system and vice-versa. Europe decided to transform
the monopolistic energy sector into a competitive market.

A few decades ago, before the liberalization of the energy sector started, local
companies were founded to set up regional power supplies in Europe. They started
to build new power grids and power generators, and the amount of provided elec-
tricity was continuously growing. However, these companies were quite small and
had difficulties to guarantee a stable power supply due to missing interconnec-
tions between power grids. Hence, a transition from local companies to a few
quasi-monopolistic companies can be observed. These larger companies were able
to manage, interconnect and extend the separated power grids. These companies
managed the power grid, generation and were responsible to guarantee a secure
power supply, which was important for the growing economy in each country. Each
European country developed its own power system with different rules and par-
ticularities, and customers were forced to sign a contract with the corresponding

3
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regional company.
The UK was a pioneer in liberalizing the power system and introduced three

separated generating companies in 1989. These companies published a uniform
price through the Electricity Pool and the demand side was able to purchase en-
ergy at the offered price. However, three companies were not enough to spark
competition, because they were able to raise the price to increase their profit. In
2001, NETA (New Electricity Trading Arrangements) replaced the Energy Pool
and included the demand side, and market participants were responsible to balance
their position with penalties for imbalances in each settlement period. Transmis-
sion and distribution network operators set standard charges to suppliers for the
use of the networks to allow the entrance of new providers Littlechild [1992].

Norway was another European pioneer and collected important experience for
the liberalisation of the European energy sector, but also for the introduction of
interconnected power markets. They started the liberalisation of the power system
in 1992 and NordPool was established in 1993 as the Norwegian power market. In
1996 Sweden joined the market and formed the first international power market
including cross-border capacities.1

The observed results of the UK with lower energy prices due to competition
provided the European Union with strong arguments to start the liberalisation
of the energy sector. Moreover, the Nordic power market convinced the EU to
implement an interconnected European electricity market with convergent prices
across the EU. The new power market should provide the European economy with
low and transparent energy prices, and the interconnected market should allow to
raise the share of renewable energy sources. As described in the previous section,
the integration of renewable power sources is challenging, but it is easier to handle
renewables in a larger power grid. On one hand, the advantage of different locations
introduce diversification and maybe a wind park in the South is producing while
the one located in the North is not. On the other hand, wind parks work more
efficient in the North while photovoltaic plants are more efficient in the South
with more sunny hours during the year. Summarizing, a large power grid allows
to handle a larger share of renewable energy sources and this allows to reduce CO2

emissions.
The transition to the liberalised market was realised with three main Euro-

pean directives: European Directive 96/92/EC2 in 1996, 2003/54/EC3 in 2003
and 2009/72/EC4 in 2009. The progress started to introduce standardized rules
and the removal of monopolies by the unbundling of generation, transmission,
distribution and retail Pollitt [2019]. The aim was to allow customers to choose

1See https://www.nordpoolgroup.com/About-us/History/
2See https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A31996L0092
3See https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A32003L0054
4See https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=celex%3A32009L0072
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between competitive power providers, but transmission and distribution still re-
mains in the hands of monopolies called Transmission System Operators (TSOs)
and Distribution System Operators (DSOs). The TSO is responsible for the secure
power supply and manages the high-voltage power grid, which is used to transport
power over long distances. The DSOs are responsible for the local power grids in
medium- and low-voltage and distributes power to the final customers.

As already mentioned, countries such as Norway, Sweden and the UK liber-
alised their energy sector already in the early 1990s. Other countries had still
to introduce national laws to unbundle generation, transmission, distribution and
retail, because these components were largely in the hands of monopolists. After
the introduction of the European directives, all countries started to implement
the agreed conventions in their local energy sector and the process of building an
European energy sector started. However, all countries developed slightly different
versions based on their historic energy sector, which provided the initial energy
mix and infrastructures. France for example was dominated by nuclear power,
Germany by coal resources, Norway by hydro power, and the UK, Spain and Italy
by gas plants. Moreover, cross-border trading was controlled between bilateral
monopolists on both sides of the border.

Another important step was the introduction of national power markets which
guarantee transparent prices and allowed the foundation of new power providers,
because they need a platform to trade electric power. The new markets also allow
the foundation of companies which are exclusively specialised on production or
consumption. Finally, the transparent prices can be used directly or as an index
for buying or selling power.

It was already known, that the process towards liberalisation would take years.
The unbundling process needs some time, new power providers have to enter the
market to allow competition and the introduced markets have to be established.
Moreover, new power lines have to be built to increase the cross-border capacities
between countries.

Nowadays, most of the European directives are already implemented. Cus-
tomers can choose between different power providers and the new national power
markets are fast growing and connected to a European market. However, the pro-
cess is not yet completed. There are still plans to couple the remaining markets
to the European market and additional power lines are planned to handle the
changing energy mix with the increased share of renewables. It is already observ-
able, that large companies such as EdF, E.ON, Iberdrola, ENEL and Vattenfall
expanded to other countries in both generation and retail.
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1.3 Sequential Power Market Design

There are different types of power plants which contribute to the energy mix. Some
plants provide huge amounts of inflexible energy at low marginal costs and are
optimal to cover base load. Other plants are flexible enough at moderate prices to
cover peak load. Finally, there are highly flexible power plants with high marginal
costs which are needed to balance the system. Europe decided to implement
sequential power markets which allow to integrate all types of power plants to
cover the expected demand and to integrate renewable energy sources with low
system costs. For that purpose, future markets, the spot market consisting of the
day-ahead market and intraday markets, and balancing markets were introduced.

1.3.1 Future Markets

Futures or derivative markets allow market participants to trade power which will
be supplied in the next few years. The two general types of futures are physi-
cal futures, which require also the physical delivery of energy, and pure financial
futures.

One advantage of future markets is the possibility to limit the price risks of
investment costs. The construction of new power plants is cost intensive and
future markets allow investors to hedge these initial costs. Future contracts are
also suited to hedge fix-costs of primary resources, which are needed for the energy
production.

Each production plant owner and customer on the demand side has to sign
a contract with a power provider to sell or buy power. The price can be linked
on the hourly day-ahead price, on an index or they can agree on a fixed-price.
Some production plant owners tend to sell the production with a fixed-price with
a fixed margin above the generation costs which also simplifies the calculation of
the future cash flow. On the other side, there are also industrial or commercial
customers on the demand side which prefer to buy energy based on a fixed-price.
These contracts cap the component of their production costs which is based on the
resource power. Production plant owners and customers on the demand side can
sign these kind of contracts with trading companies. Hence, the financial risk was
shifted to the trading company which has the possibility to hedge the position on
the future market.

Future markets are important for established players as hedging instruments
allowing them to be protected against future price changes. Established players
usually have many forms of physical options and forward markets can be used as
additional tool for their risk management. Finally, future markets can also be a
pure speculative instrument, as financial products do not require physical delivery
and allow to bet against future price developments ECA [2015]. Financial futures

6



1.3 Sequential Power Market Design

also allow to speculate on price differences in different countries by combining
different products. These financial traders help to increase liquidity of the market.

The EEX (European Energy Exchange) is the largest market for futures in
Europe.5 The available products are years, quarters, months, weeks, weekends
and days with the distinction between base and peak products. The limited cross-
border capacities between countries require to distinguish between products of
different countries. The German Power Futures are the most liquid European
power future. The continuous market design allows market participants to monitor
the current price and to trade the needed quantity immediately during 8 am until
6 pm, but also allows to register trades between market participants. Trading
of a specific product is possible until physical delivery of a product starts. The
day-ahead price determines the realized value of each day and the realized value
of a product can be determined as soon as the day-ahead price of the end date
of the product is available. Afterwards, the financial position between realised
price and cleared future price will be compensated. As an example, consider the
product Y 2021 can be traded until 31/12/2020, when the hourly day-ahead prices
of 01/01/2021 are published. The day-ahead prices of the last day 31/12/2021
are published on 30/12/2021 and the realised price of Y 2021 can be calculated as
the average of all hourly day-ahead prices. Usually, products on EEX are financial
futures, but there is also a physical fulfilment service offered by EEX, which places
the corresponding bids on the day-ahead market to force a physical delivery.

There is also the possibility to trade electricity forwards between companies.
Buyer and seller agree on a bilateral contract and conclude the trade OTC (over-
the-counter). In contrast to future markets, traders are not restricted to standard
contracts, but they can also trade products with individual delivery periods and
hourly or quarter-hourly profiles.

1.3.2 Day-Ahead Markets

The power schedule is getting more concrete a few days before physical delivery.
On the one hand, the demand forecasts are getting better due to the predicted
temperature trend, on the other hand, the accuracy of forecasts of renewable
production increases with better weather forecasts. The day-ahead market allows
to trade the 24-hourly products of the following day and submission of orders is
possible a few days before physical delivery. The market is cleared at 12 am the
day before physical delivery and determines a transparent price for each hourly
product.

The market is organized as an auction market for each hourly product and
the clearing price is the intersection between the supply- and demand-curve. In-

5See https://www.eex.com/en/markets/power-derivatives-market/power-futures
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terestingly, different methods to submit orders were developed in the European
day-ahead markets. Some European markets, such as Italy, accept hourly step
orders which are defined with side (buy or sell), price and volume. They indicate
to trade the provided volume at the given price or a better price, otherwise the
order will not be accepted. Other markets, such as Germany, accept hourly linear
piece-wise orders, which are defined by side, volume, price where the order starts
to be accepted and a second price where the order is fully accepted. Some mar-
kets also allow block orders with different conditions on the execution Committee
[2019].

Standardized national day-ahead markets were important to start the un-
bundling of the energy sector. These markets guarantee a transparent price forma-
tion and offered a marketplace to trade power allowing the entrance of new market
participants. Companies have the possibility to be exclusively on the demand- or
supply side, because the power market offers a platform to exchange power. More-
over, the price of the day-ahead market is used to determine the realised price of
financial futures, but is also used as reference price for contracts with hourly prices
and to define different indexed prices.

The markets in each country grew with the increasing number of trading com-
panies and the traded volume increased with each year. Each country formed their
own bidding zone, which is a geographical area with fixed network constraints and
one clearing price. Some bidding zones are interconnected and they obtain the
same clearing price if the interconnections do not reach their maximum capacity,
otherwise they have different clearing prices. The next step of the liberalisation of
the energy sector was to couple these established bidding zones to increase com-
petition and liquidity further, and to use the full capacity of the existing power
grid and cross-borders.

The Nordic countries were pioneers for coupled power markets. Norway already
introduced a power market in 1993 and Sweden joined the market in 1996 and
rebranded the market to NordPool forming the first international European power
market. Finland and Denmark joined in 1998 and 2000, respectively, and the three
Baltic countries joined in 2010, 2012 and 2014.6

The coupling of day-ahead markets in continental Europe started in parallel
between some neighboring countries. The Trilateral Coupling (TLC) formed a
common day-ahead market and connected the markets of France, Belgium and
the Netherlands in November 2006. In 2007, MIBEL started to couple Spain and
Portugal, and in 2009 the coupling of the power markets of the Czech Republic and
the Slovak Republic started. In 2010 Germany, Austria and Luxembourg joined
the TLC and the Central Western Europe (CWE) market was founded. Moreover,
the Interim Tight Volume Coupling (ITVC) between the CWE region and the

6See https://www.nordpoolgroup.com/About-us/History/
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Nordic region was implemented. In 2011, Italy and Slovenia started their market
coupling.7

In 2014 the new Price Coupling of Regions (PCR) project was launched and
allowed to couple the Nordic regions with the CWE and MIBEL, and was called
North-Western Europe (NWE) price coupling. New markets can be expanded
easily, and Italy and Slovenia were included in 2015. The single price coupling al-
gorithm is called PCR EUPHEMIA (acronym of Pan-European Hybrid Electricity
Market Integration Algorithm) Committee [2019]. It calculates energy allocation,
net positions and electricity prices across Europe, maximizing the overall welfare
and increasing the transparency of the computation of prices and power flows
resulting in net positions.

The clearing algorithm is able to handle all types of offers, which were intro-
duced above, and calculates the clearing price for each bidding area respecting all
given constraints and national particularities. The algorithm starts with a good
first solution and continues to improve and increase the overall social welfare using
a cutting plane optimization algorithm. The stopping criteria is a time limit or if
the full branch and bound tree is explored. Hence, the algorithm takes a maximum
17 minutes to solve the large optimization problem. A large share of the European
consumption is already coupled and 1531 TWh were cleared in 2020. However,
most times, the installed cross-border capacities between European countries lead
to different prices across Europe.

Europe decided to nominate at least one responsible for each bidding area
to manage the coupling of the markets and introduced the so called Nominated
Electricity Market Operators (NEMO). They receive bids from registered market
participants for the day-ahead and intraday market. These bids have to be matched
considering the available cross-border capacities. Finally, the resulting clearing
prices have to be published and the position of each market participant has to
be determined for the settlement. The NEMOs are: BSP, CROPEX, SEMOpx
(EirGrid and SONI), EPEX, EXAA, GME, HEnEx, HUPX, IBEX, Nasdaq, Nord
Pool, OMIE, OKTE, OPCOM, OTE, and TGE.

The European single day-ahead market coupling (SDAC) is still growing and
the following countries are already coupled: Austria, Belgium, Czech Republic,
Croatia, Denmark, Estonia, Finland, France, Germany, Hungary, Italy, Latvia,
Lithuania, Luxembourg, the Netherlands, Norway, Poland, Portugal, Romania,
Slovakia, Slovenia, Spain, Sweden and the UK.

7See https://www.entsoe.eu/network_codes/cacm/implementation/sdac/
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1.3.3 Intraday Markets

Trading volumes of the day-ahead markets increased within the first years, however
the market already closes at 12 am the day before physical delivery. The resulting
lead-time (time from the last possibility to trade until physical delivery) reaches
from 12 hours for product H1 to 36 hours for product H24. During this long lead
time additional information arrives and allows to improve forecasts for production
and demand. Intraday markets allow market participants to adjust the day-ahead
profile until shortly before physical delivery.

Traders with a portfolio of uncontrollable renewable power sources, as photo-
voltaic plants and wind parks, usually sell the production forecast on the day-ahead
market. The production forecast is continuously updated with new weather fore-
casts and real-time production measurements. The accuracy of the forecast is
increasing towards physical delivery and the intraday market allows to trade the
resulting forecast error. Similarly, updated temperature trends and real-time mea-
surements of consumption units allow to update demand forecasts and to trade
them on the intraday market.

Traders have to guarantee the production if the power plant was already sched-
uled in the day-ahead market or on the forward market with physical delivery. The
missing power from unexpected outages can be balanced with other power plants
of the same portfolio or by a purchase on the intraday market.

Another important element of the intraday market are flexible power plants,
which provide the needed power to trade forecast errors. Prices on the intraday
market are usually highly volatile during the trading session which offers the pos-
sibility to earn money with flexible power plants. Highly flexible power plants can
offer their flexibility until shortly before physical delivery and less flexible power
plants can still participate, but have to consider the longer activation time.

The day-ahead market offers exclusively hourly products. However, production
forecasts are getting better a few hours before physical delivery and this also allows
to predict power output with a finer granularity. While Italy exclusively offers
hourly products, German power providers have the possibility to trade half-hourly
and quarter-hourly products to schedule ramps for the increasing production of
photovoltaic plants towards noon and decreasing production towards sunset.

Interestingly, two prevailing systems of intraday markets were developed in Eu-
rope. Most European countries implemented the intraday market as a continuous
market. It allows market participants to submit offers during the trading session
and offers are cleared immediately if the conditions are fulfilled. However, in Italy,
Spain and Portugal sequential intraday auction were introduced to allow market
participants to submit and modify offers, and the market is cleared seven times a
day.

Europe has a strong desire to couple intraday markets, and therefore, they
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decided to use the continuous market design for the SIDC (Single Intra-Day Cou-
pling).8 Most European countries already offer a continuous intraday market and
cross border capacities can be used to compensate power schedules shortly before
physical delivery on a European level. Hence, Italy, Spain and Portugal already in-
troduced a continuous market and reduced their historic intraday auction markets
to three auctions.

The continuous intraday market is a pay-as-bid clearing, where the highest buy-
prices and lowest sell-prices are served first. Each bidding area has its own limit
order book, where submitted orders are collected. The SIDC requires a shared limit
order book (SOB), a capacity module (CMM) and a shipping module (SM). The
capacity module shows if cross-border capacity between countries is available, and
provides the information to build the shared limit order book with orders from
neighboring countries until the available volume. The available capacity in the
CMM is updated if a cross-border clearing shows up and the available orders are
updated in the SOB. All concluded trades are registered in the SM, which provide
TSOs and NEMOs the set of cleared orders to calculate power flows between
countries.

1.3.4 Balancing Markets

Power providers have to balance their position within each period (60 or 15 min-
utes) and the introduced markets can be used to sell or buy missing power. The
last chance to integrate the latest information are intraday markets. The balancing
provider takes over the role shortly before physical delivery to guarantee a secure
power network by activating the needed flexible power to balance the system.

Balancing power has two directions. There are flexible generators which can in-
crease their production and other generators which can reduce production. Power
providers with unbalanced power schedules have to carry these balancing costs
which are usually unfavorable compared to the corresponding costs for balancing
the position on the day-ahead or intraday market. This forces traders to predict
their consumption and production with small forecast errors. Moreover, exact
power schedules are also good for the whole power grid to minimize the use of
balancing power and to keep system costs low.

The European power market decided to harmonise the imbalance settlement
periods of 15 minutes with regulation 2017/21959. Germany already introduced a
granularity of 15 minutes and offers market participants on the intraday market to
trade products of 15 minutes. However, Italy still has an imbalance settlement pe-
riod of 60 minutes. These settlement periods provide a rough structure to balance

8See https://www.entsoe.eu/network_codes/cacm/implementation/sidc/
9https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%

3A02017R2195-20210315
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the market, but balancing providers have to balance it in real time.

The balance of the power grid can be measured through the grid frequency.
Europe decided to set the frequency of the power grid to 50 Hz and the balancing
provider has to regulate balancing power to keep the frequency at a constant level.
A lack of power is expressed as a frequency drop, while an excess of power leads
to a frequency increase in the whole European power grid. The aim of the TSO is
to keep the frequency within a narrow range around 50 Hz.

Balancing providers do not own power plants to balance the system. Owners
of flexible power plants or flexible consumption are able to participate at the bal-
ancing market, offering the TSO their capacity. Flexible power is usually more
expensive and the TSO can reserve balancing power with different levels of flexi-
bility on the market. The balancing provider can accept the power with the lowest
marginal costs in combination with the location of the power plant in the power
grid. There are difference types of balancing power:10

• Primary balancing power is provided by highly flexible power plants.
This flexible power is used to cover periods until 15 minutes and has to be
activated completely within 30 seconds. These power plants are controlled
automatically within the European power grid.

• Secondary balancing power is provided by medium flexible power plants.
The reserved power has to be activated completely within 5 minutes. This
power is managed by the corresponding TSO, which has the possibility to
active the power to balance the corresponding control area.

• Tertiary balancing power is provided by less flexible power plants. Power
has to be activated within 15 minutes and the merit-order-list is used to
decide the order. This power is used to cover periods from 15 minutes up to
several hours.

1.4 European Power Markets

Each country has slightly different power markets, but satisfies the European re-
quirements. In this section, the Italian and German power markets are introduced.
Both countries are interesting for this dissertation, because they developed dif-
ferent designs of intraday markets: Italy used sequential auction markets, while
Germany introduced a continuous market design.

10See https://www.regelleistung.net/ext/static/technical?lang=en
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1.4.1 The Italian Power Market

The company ENEL was responsible for the whole power supply in Italy since
1962, when the Italian energy sector was nationalized, until the liberalization of
the sector. Beside ENEL, there were just a few cities with their own local power
grids and some companies which covered their demand with their own production.
The liberalization of the energy sector in Italy started in 1999 and forced ENEL
to found the two companies Terna and e-distribuzione to launch the unboundling
process. While Terna became the unique TSO of Italy, e-distribuzione became the
largest distribution company in Italy, but ENEL is still the largest Italian power
company with production plants and consumption Jannuzzi [2021].

Natural gas is the most important energy source in Italy. Italy has no huge coal
resources and atomic power is forbidden by law as a result of a referendum after
the Chernobyl disaster in 1986. The share of renewable energy sources increased
during the last years with photovoltaic plants to benefit from the Mediterranean
climate and wind parks in the South. Compared to other European countries, Italy
has low CO2 emissions due to renewable shares and gas plants. As a consequence,
Italy has high prices due to the high marginal costs of power produced by natural
gas and imports additional energy from neighboring countries.

The Italian power market IPEX (Italian Power EXchange) is managed by GME
(Gestore Mercati Energetici) and was launched in April 2004 and is fully opera-
tional since January 2005. Initially, there were two auctions: the day-ahead market
(MGP - Mercato del Giorno Prima) and the MA (Mercato Aggiustamento) fol-
lowed shortly after the MGP closed to allow market participants to adjust their
power schedules. In November 2009, the MA auction was replaced with two auc-
tions named MI1 and MI2 (Mercato Infragiornaliero) with succeeding closing times
allowing market participants to adjust their power schedules. In January 2012, two
additional intraday markets MI3 and MI4 were introduced and allowed trading en-
ergy of the same day. In 2015 the closing of the MGP was set to 12 am to allow the
coupling with the European day-ahead market. The opening times of the intraday
auctions were also adapted to the new closing time and a new session MI5 was
added. In 2017 the intraday market was expanded to a total of 7 auctions called
MI1 - MI7 ARERA [2019]. Due to the historic development, the Italian intraday
market was managed with intraday auctions.

Europe decided to introduce an European continuous intraday market, and
therefore, Italy introduced a continuous market on 21/09/2021 and the seven in-
traday auctions were reduced to three auctions MI-A1, MI-A2 and MI-A3. In the
following, I will describe the market design before this change, because the old
market design is analysed in a part of this thesis.

Italian market operators are able to trade financial power futures on the EEX
and futures with physical fulfillment on the market MTE offered by GME. The
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Figure 1: Auction clearing and Italian market zones.

Italian forward electricity market allows to trade base and peak-load with monthly,
quarterly and yearly delivery periods on a continuous basis.

Italy has a challenging geographic shape to build a power grid, because it
is surrounded by the sea, and therefore, the main power lines have to link the
South with the North. Hence, the Italian power grid consists of six bidding zones
(NORD, CNORD, CSUD, SUD, SICI and SARD) as shown in Figure 1, four poles
of limited production (FOGN, BRNN, ROSN and PRGP) and has connections to
neighbouring countries (France, Switzerland, Austria, Slovenia, Corsica (France),
Malta and Greece). On 01/01/2021 Calabria was added as additional market
zone. Power traders have to balance power of production plants and consumers in
each single bidding zone, and are forced to use the intraday market to compensate
forecast-errors, i.e. they might need to sell power in one zone and buy power in
another zone.

The day-ahead market MPG (Mercato del Giorno Prima), which closes at noon
the day before physical delivery, gives power providers the possibility to exchange
hourly products. The Italian day-ahead market is special, because Italy consists of
different bidding zones and power is sold at the zonal price where the production
plant is located. In contrast, consumption (pumped storage excluded) can buy
power in each zone at one hourly price called PUN (Prezzo Unico Nazionale)
which is the volume weighted price of each zone. This guarantees that no region
has economic advantages.

The seven Italian intraday auctions, called MI (mercato infragiornaliero), have
just two different opening times, namely 12:55 and 17:30. Moreover, we define the
lead-time of a product as the time between the last possibility to trade and the
physical delivery. Table 1 summarizes the characteristics of the Italian markets.
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Market Products From To Results LT in hours

MI1 H1−H24 12:55 (d-1) 15:00 (d-1) 15:30 (d-1) -
MI2 H1−H24 12:55 (d-1) 16:30 (d-1) 17:00 (d-1) 71

2
up to 101

2

MI3 H5−H24 17:30 (d-1) 23:45 (d-1) 00:15 (d) 41
4

up to 71
4

MI4 H9−H24 17:30 (d-1) 3:45 (d) 4:15 (d) 41
4

up to 71
4

MI5 H13−H24 17:30 (d-1) 7:45 (d) 8:15 (d) 41
4

up to 71
4

MI6 H17−H24 17:30 (d-1) 11:15 (d) 11:45 (d) 43
4

up to 73
4

MI7 H21−H24 17:30 (d-1) 15:45 (d) 16:15 (d) 41
4

up to 71
4

Table 1: Operating times of the Italian intraday market, where LT stands for
lead-time.

As can be seen the lead times range from 4.25 to 10.5, which is relatively long and
makes it difficult to include the latest production-updates of renewable energy
sources as solar-plants and wind-parks.

Registered power providers are able to submit offers for their production plants
and consumption units to the Italian power markets. The offers consists of the
side (buy or sell), a quantity and a price. The policy of the Italian power market
is very transparent and all submitted offers are available on the web.

The Italian MI markets are organized as uniform price auctions. Market partic-
ipants submit offers during the market operation time specifying price and quan-
tity. The clearing-algorithm is launched after the market closes. All sell and buy
offers are ordered by their price, and define in combination with the corresponding
cumulative volumes the supply-curve for the sell-offers and the demand-curve for
the buy-offers, which are visualised in Figure 1. The intersection between the two
curves gives the cleared volume and the clearing price of the market session. The
resulting price is the uniform price for all accepted offers and all offers beyond the
clearing price are rejected.

Power line capacities are added as constraints to the clearing-algorithm. If the
transmission limit between two areas reached its maximum, the missing or extra
power in the corresponding zone can not be compensated by another zone and we
obtain different prices in the two areas. This phenomenon often happens in the
Italian intraday markets.

Terna is the responsible TSO for the whole Italian power grid. It has the
possibility to procure the resources on the Dispatching Services Market (MSD),
which are needed to manage and control the system. Terna acts as the central
counter party and can accept offers through pay-as-bid. There is a single sitting
for the six markets, MSD1 - MSD6, where market participants can submit orders.
Market participants are informed sequentially if their bids were accepted after each
market is closed. Moreover, there exists a continuous balancing market, where
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market participants can submit offers until 60 minutes before delivery.11

1.4.2 The German Power Market

The German power grids were managed by a few regional power providers. These
regional providers were responsible for generation, transmission and distribution
of their area and customers were forced to sign a contract with the corresponding
company. The liberalisation of the German electricity sector started in 1998.

In the past, Germany was using mainly coal, gas and atomic power plants to
cover electricity demand. A few years ago, Germany decided to start the transition
form conventional to renewable energy sources, and wind parks already produced
the largest share as single resource in 2020. Recently, Germany planned to decrease
the number of coal and atomic power within the next years. The huge demand
and large share of renewable energy sources led to developed power markets with
high trading volumes.

In 2000 the LPX (Leipzig Power Exchange) was founded in cooperation with
NordPool to introduce a market place for hourly products. Additionally, EEX
(European Energy Exchange) introduced a spot market in 2000 and a market for
forward contracts in 2001. The market area was too small for two power markets,
and therefore, the markets were merged to the EEX in 2002. In September 2008,
the EPEX Spot was founded to merge the power spot markets of the French
Powernext and the EEX. It manages trading in the German-Austria, French and
Swiss market zones since 2009. EEX provides still the forward electricity market
to trade electric power of the following six years ahead. In 2015 the APX Group
(spot markets for electricity in the Netherlands, UK and Belgium) was integrated
into the EPEX Spot and formed a power exchange for Central Western Europe
(CWE) and the UK.12

In January 2009 EPEX Spot introduced the intraday market for hourly prod-
ucts with a continuous market design. In January 2011 the German continuous
market was complemented with additional quarter hourly products. In October
2012 Austria was integrated and formed the German-Austrian intraday market,
which was existing until they were separated in 2018. In December 2014 an ad-
ditional auction for quarter hourly products was introduced in Germany to set a
price-level of quarter hourly products. On 30/03/2017 half hourly products were
introduced.

Nowadays, EPEX Spot offers a platform for hourly, half-hourly and quarter-
hourly products in Germany. The day-ahead market is used exclusively for hourly
products, closes at noon, and is followed by an intraday auction for quarter hourly
products and a continuous intraday market for all three product types.

11See https://www.mercatoelettrico.org/en/mercati/mercatoelettrico/mpe.aspx
12See https://www.eex-group.com/en/about/milestones
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1.4 European Power Markets

Product From To (within Germany) To (control area)

Hour 15:00 (d-1) 30 minutes before delivery 5 minutes before delivery
1
2

hour 15:30 (d-1) 30 minutes before delivery 5 minutes before delivery
1
4

hour 16:00 (d-1) 30 minutes before delivery 5 minutes before delivery

Table 2: Operating times of the German continuous intraday market.

Quarter-hourly products were introduced to compensate ramping-times. Less
flexible power plants need some time to increase or decrease production, but also
the typical production of a photovoltaic plant is increasing towards noon and de-
creasing afterwards. EPEX Spot introduced an auction for quarter-hourly prod-
ucts, which closes at 3 pm. The intraday auction is organised as a uniform price
auction, where market participants submit offers indicating price and quantity, and
the intersection of increasing supply- and decreasing demand-curve determines the
clearing price. This auction allows traders to trade ramping-times and to obtain a
price signal for the following continuous intraday market for quarter hourly prod-
ucts, which opens at 4 pm Neuhoff et al. [2016].

Table 2 summarizes the characteristics of the German continuous intraday mar-
ket. The continuous intraday market for hourly products opens at 3 pm to provide
a further possibility to modify the current production-profile with a hourly resolu-
tion. The continuous intraday market for quarter-hourly products opens at 4 pm
and half-hourly products can be traded from 3:30 pm. The lead-time of the contin-
uous market was reduced from 45 to 30 minutes on 16/06/2015. On 14/06/2017
the lead-time was further reduced to 30 minutes (or 5 minutes within the control
area), which is very useful to integrate fluctuating renewable energy sources.

A submitted order in the continuous market is cleared immediately if the price
is better than the best price of an order in the limit order book, otherwise the
order is stored in the limit order book. All orders are firstly ordered by the price
and secondly by the start validity time, and therefore, the clearing price is the
price of the first entered order and the cleared volume is the minimum volume of
the two orders. Figure 2 shows the best available buy and sell order. A clearing
shows up at each intersection of the two curves.

Due to the historic regional monopolies, the German area is still divided in four
balancing areas managed by four TSOs. The four German TSOs are Amprion,
50Hertz Transmission, TransnetBW and Tennet as shown in the right plot of
Figure 2. However, all German TSOs form a union, where positive and negative
balancing power can be exchanged. There are regular open calls for tenders, where
balancing power can be offered to the four TSOs organised as pay-as-bid.
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Figure 2: Continuous clearing and German control areas.

1.5 Limit Order Book

Limit order books are used by exchanges with a continuous market design to list
the orders for assets like power contracts, stocks and currencies. Traders can
submit limit orders indicating side (buy or sell), price, quantity and validity time
to the limit order book. A new order is immediately cleared if it can be matched
against an existing order of the limit order book. Otherwise, the new order will not
be cleared, but will remain in the limit order book until the end of the provided
validity time or if another new order leads to the clearing.

1.5.1 Functionality and Order Types

The limit order book is empty at the beginning of each trading session. The basic
element of the limit order book is a limit order, which can be submitted to the limit
order book during the trading session. Traders can accept the price of available
limit orders or they can submit a limit order indicating their desired price. I will
describe the basic functionality of the EPEX Spot continuous intraday market
with the following example.

Example 1. The trading session starts at 3 pm with an empty limit order book.
At that moment no trade is possible. However, trader 1 has the intention to sell a
volume V1 MWh of the contract H12 at a fixed price P1 and submits the order to
the limit order book. Now, it would be possible to buy the volume V1 immediately at
the price P1. Trader 2 has the intention to buy the volume V2 MWh of the contract
H12 and can choose to accept the price P1 until the available volume V1 MWh or
to submit a limit order with a lower price P2. Trader 2 decides to submit the limit
order with the lower price P2. Hence, the new situation of the limit order book
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consists of two limit orders providing a price P1 for buying and P2 for selling the
contract H12. If trader 3 would also like to buy a volume V3 MWh of H12 with a
better price P3 than P2, but lower than P1, she has to submit an additional limit
order. The resulting situation allows to buy the product H12 at P1 and sell at P3.

As described in the example, the limit order book is growing with additional
sell- and buy-limit orders. Trades show up if a new limit order with a better price
than the best available limit order will be submitted. The cleared limit order
from the limit order book defines the clearing price. Hence, the situation of the
limit order book is continuously changing with the submission of new limit orders,
clearings or cancelling of valid limit orders. Both sides have to be sorted at each
modification of the limit order book to determine the best sell- and buy-price.

Submitted limit orders remain in the limit order book until the end-validity
time is reached or they are cleared. However, market participants have the pos-
sibility to deactivate submitted orders and re-activate them later. Deactivated
orders are no longer considered by the clearing algorithm. Market participants
can also modify the price of a limit order, or they can cancel an order before the
end-validity time is reached.

One special feature of the continuous market design is the continuous monitor-
ing of the best prices, allowing traders to make decisions based on this information.
Some markets show exclusively the best prices with the corresponding volumes and
other show the best n limit orders of each side. Hence, the continuous market de-
sign is transparent and allows to trade immediately - in contrast to the auction
market, where traders submit their orders without seeing the other submitted
orders and the market is cleared at the closing time.

Market participants can also decide to place a market order indicating a fixed
volume and the side, which will be matched against the best available order of
the limit order book. Market orders can be interpreted as limit orders with the
maximum price. These orders are immediately executed, but traders have to be
aware that they accept the resulting market price.

One can distinguish between passive and active traders. Passive traders prefer
to submit limit orders to the limit order book and wait until their order will be
cleared. Obviously, there is the risk that the order will not be cleared. In contrast,
active traders submit orders with an immediate clearing and accept the current
market price. Hence, they submit market orders or limit orders with a price at or
beyond the best price.

Beside limit orders and market orders, the EPEX Spot Continuous intraday
market allows additional order types Martin and Otterson [2018]:

• IOC (Immediate Or Cancel): order is immediately executed or cancelled
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• Market Sweep Orders: user-defined block orders with the execution restric-
tion IOC (Immediate Or Cancel) are executed immediately and, as far as
possible, against respective single-contract orders

• Iceberg or Hidden-Quantity Orders: are large volume orders and are entered
sequentially piece-by-piece in the order book

• FOK (Fill Or Kill): immediately entirely executed or entirely cancelled

• AON (All Or Non): order is executed completely or not at all

Another important product type for power markets are block orders, which
allow to trade blocks of products, where all or none of the single products are
accepted or rejected. Block orders are special for power markets and are important
for less flexible power plants, which can not be switched on or off just for one single
product.

The continuous intraday market consists of many limit order books, because
there is one limit order book for each product. Hence, at each day, there are 24
limit order books for hourly products, 48 for half-hourly products, 96 for quarter-
hourly products, but also for block-orders.

1.5.2 Description of the Data

The limit order book of the German continuous intraday market is not publicly
available and has to be purchased at EPEX. The company offers limit order books
for each country and the German limit order books of the years 2015 - 2018 were
available for this research.

The purchased data-set consists of all submitted orders to the German bidding
area. In a part of our available period, Austria, Luxembourg and Germany formed
a unique bidding area, but the limit order book contains exclusively orders submit-
ted to the German bidding area. If a German order was matched for example with
an Austrian order, just one of the two cleared orders is contained in the purchased
data.

The limit order books consist of a few gigabyte of data and the amount of
submitted orders increased with each year, because activity increased on the con-
tinuous intraday market, but also half hourly products were introduced and the
lead-time decreased from 45 minutes to 5 minutes before physical delivery. More-
over, the XBID project was successfully launched and algorithmic trading is getting
a powerfull tool for traders, which increased activity further.

The limit order book is available as csv-files and each row of the order book
describes a new, modified or executed order containing information about:

• Instrument Type: hour, half hour or quarter hour
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• Delivery Instrument: specific product

• Delivery Date: fixed day

• Start Validity Date: offer is valid from this time, which is precise up to
milliseconds

• End Validity Date: offer is valid until this time, which is precise up to
milliseconds. This time will be replaced by the time of an eventual cancelling,
execution or partially execution event.

• Cancelling Date: a trader is able to cancel an offer before the initially given
validity date is reached or after the offer was partially executed.

• Is Executed: not, fully or partially executed

• Status: active or not active

• Side: sell or buy

• Price: the price ranges from −9999€/MWh to 9999€/MWh with a granu-
larity of 0.01€/MWh

• Executed Price: matched price

• Volume: total volume, which is precise up to one decimal point

• Executed Volume: matched volume

• Order ID: ID to identify each order

• Initial ID: ID which was assigned to the order when it was entered for the
very first time

• Parent ID: order number of the previously modified order

Moreover, observed clearings are also contained in the data as logs showing
the exact clearing time, the cleared volume and clearing price. This information
is provided by the additional column Is Executed and allows to extract all trades
with the exact trading time. The transaction data shows the same clearings, but
also the matched counterpart even if it was an order from abroad. This data can
be used to analyse trading volumes, trading activities and the distinction between
buy- and sell-orders.
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1.5.3 Basic Technical Concepts

At each time, all buy-orders have to be sorted by their increasing price and all
sell-orders have to sorted by their decreasing price. The start validity time is
considered as second order criterion if offers have the same price. The third order
criterion is the submission-time of the limit order. The two sorted sides are called
order-stacks, where the best sell-order is called best ask and the best buy-order is
called best bid. Clearings follow exactly the order of the specific order-stack and
guarantee the best available price.

More formally, all buy- and sell-orders of the limit order book are sorted at
each time t by their price · · · < P t

−2 < P t
−1 < P t

−0 < P t
0 < P t

1 < P t
2 < · · · , where

P t
−0 is best bid-price and P t

0 is the best ask-price. Hence, the set

S(t) = {(P t
0, V

t
0 ), (P t

1, V
t
1 ), · · · , (P t

NS
, V t

NS
)}

is the sell-stack with NS orders and

B(t) = {(P t
−0, V

t
−0), (P

t
−1, V

t
−1), · · · , (P t

−NB
, V t
−NB

)}

is the corresponding buy-stack of the limit order book at time t with NB orders.
An important quantity in the analysis of the limit order book is the bid-ask-

spread. It can be defined at each time t by the best bid price P t
−0 and the best ask

price P t
0:

BAS(t) = P t
0 − P t

−0.

If traders would like to buy a fixed quantity smaller than the minimum of the two
best orders and sell it immediately after, the trader has to pay the bid-ask spread
times the traded volume. Moreover, an active trader has to pay the additional
bid-ask spread compared to a passive trader. The bid-ask-spread from the limit
order book situation in the left plot of Figure 3 can be calculated as follows:

BAS = 30.5€/MWh− 27.5€/MWh = 3€/MWh.

The bid-ask spread just considers the prices of the best offers and ignores the
corresponding volumes. The price of each available limit order just covers the
provided volume, and clearing larger volumes requires to accept limit orders with
prices beyond the best price. I will describe this concept in the following example.

Example 2. The left plot of Figure 3 shows the situation of the order book of the
contract H12 and delivery date 20/02/2015 at the fixed time 19/02/2015 16:21:
51.293. The four best offers of the buy-stack are shown in red and the sell-stack
in blue. The best bid is a order with 2.8 MWh for 27.5 €/MWh and the best ask
is the order with 2 MWh for 30.5€/MWh. The best offers of each order stack are
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(a) Order book situation at a fixed time. (b) Temporal development of the sell-
stack.

Figure 3: Situation of the limit order book.

also visible to traders in real time. Traders can trade the corresponding volume at
the provided price, but they have to be aware that trading larger volumes lead to
worse prices. If for example a trader would like to buy 4MWh, the first 2MWh can
be bought at 30.5€/MWh and the second 2MWh can be bought at 31.2€/MWh and
this leads to an average price of 30.85€/MWh.

The example shows that the bid-ask spread can be misleading if the volume of
the best offers is small. Trading larger volumes causes larger price impacts, and
therefore, the liquidity spread for a volume V at time t can be defined as follows:

BAS(t, V ) =

∑NS

i=0 P
t
i V̄

t
i

V
−
∑NB

i=0 P
t
−iV̄

t
−i

V
,

where V̄ t
i = max(0,min(Vi −

∑i−1
k=0 Vi)) and Vi is the corresponding volume to Pi

of all sorted orders of the sell-side, and analogously for the buy-side. The liquidity
spread of 4 MWh of the limit order book situation in the left plot of Figure 3 can
be calculated as follows:

BAS(t, 4) =
2MWh× 30.5€/MWh+ 2MWh× 31.2€/MWh

4MWh
−

− 2.8MWh× 27.5€/MWh+ 1.2MWh× 26€/MWh

4MWh
=

= 30.85€/MWh− 27.05€/MWh = 3.8€/MWh.

The volume of a market order has a strong impact on the final cost, because
the liquidity spread for 2 MWh (3.8€/MWh) is much higher than the basic bid-
ask-spread (3€/MWh) at the fixed market situation. Hence, one has always to
check the orders beyond the best limit order.
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(a) Sell-Side & Buy-Side. (b) Bid Ask.

Figure 4: Interaction of the two objects.

Another important property of a market is the depth of the sell- and buy-stack
at each time t. The depth shows the maximum available volume of each side. The
two quantities in MWh can be defined as follows

DS(t) =

NS∑
i=0

V t
i and DB(t) =

NB∑
i=0

V t
−i.

The left plot of Figure 3 shows the situation of the limit order book at a fixed
time. However, the limit order book changes with each new order submission or
if an end-validity time of an active order is reached. The sorting of the two order
stacks has to be launched at each modification of the limit order book and the
depth changes. The left plot of Figure 3 shows the full sorted sell order stack
along trading time. The best sell-offers are located on the bottom. The spikes on
the bottom are limit orders with very low prices to enforce a clearing with a limit
order of the buy-stack and these orders are immediately cleared and cancelled from
the sell-stack. The height of the surface shows the depth of the sell-stack.

The buy-side can be visualised analogously and the left plot in Figure 4 shows
the two surfaces. There are a few peaks which lead to clearings, but the two
surfaces are separated beside these punctual intersections. Since all orders are
sorted, the two surfaces are increasing and trading larger volumes leads to worse
prices.

The right plot of Figure 4 shows the same surface as the plot on the left, but as
projection from above. The plot shows the prices for selling and buying power at
each moment along trading time. The horizontal length of the white space along
trading time indicates the bid-ask-spread at each time, while the length of each
surface indicates the depth of each side of the limit order book.
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1.5.4 Implemented Clearing Algorithms

The clearing algorithm of the European intraday market is slightly more complex
than a clearing algorithm for continuous traded financial assets due to block or-
ders and cross-border trading. The limit order books of different countries are
separated, but the shared limit order book of one specific country considers cross-
border capacities and shows the best orders of the neighboring countries until the
available cross-border capacity. This allows traders to match an order from abroad.

Unfortunately, limit orders from neighboring countries are not contained in the
available limit order book. Nevertheless, these orders are needed to recalculate the
observed clearings. I implemented an algorithm which matches buy- and sell-orders
of executed trades. The algorithm adds a new order if there is a missing counter
part, because these missing orders can be identified as missing orders from abroad.
Unfortunately, the exact information of the validity time and the full volume is
not available, but the identified order was for sure available in the limit order book
at the clearing time.

Order types are not indicated in the purchased limit order book. However,
there is a possibility to identify iceberg-orders by analysing the log information
of observed clearings. Each limit order can be identified by the order ID. A limit
order can be classified as iceberg-order if the order is fully cleared and afterwards
appears again in the limit order book with the initial volume. This method allows
to classify cleared volumes of iceberg-orders, but other order types as IOC or FOK
can not be identified.

This dissertations analyses the purchased limit order book in different manners.
I implemented one code to analyse the available data at each modification of the
limit order book. The second code is a replication of the clearing algorithm and
allows to evaluate trading strategies, where the impact of additional submitted
orders is considered. Both implemented codes use the data of the limit order book
and sort the buy- and sell-orders at each modification of the limit order book to
provide the buy- and sell-stack at each time of the trading session. The order ID
is an additional sorting criterion if multiple orders have the same price and start
validity time.

The code to analyse the limit order book is implemented in matlab. The script
allowed me to analyse properties of the market as the cleared volume, the exact
clearing times of observed trades, the distribution of entered offers and clearings
along trading time, the bid-ask-spread, and the offers beyond the bid-ask-spread.
The buy- and sell-stacks are obtained by considering all active limit orders at each
modification of the limit order book.

The second code is able to test trading strategies and was implemented in
java. Java has the TreeMap object, which is efficient to handle the ordering of
the order stacks after each modification of the limit order book. The implemented
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code is able to recalculate the observed clearings. The buy- and sell-stack are
updated at the start and end-validity times of the submitted limit orders and logs
of observed clearings are ignored. Hence, this algorithm allows to add additional
clearings, which have an impact on the current buy- and sell-stack, but also affects
the future evolution of the limit order book.

I also implemented the clearing algorithm of the Italian intraday auction and
recalculated all observed clearings using the public available orders. Moreover, I
expanded the implemented java code of the continuous clearing to simulate an
auction clearing using the data from the limit order book.

There are several problems with the purchased limit order book. The data is
suited to recalculate all observed clearings, but the initial end-validity time of the
submitted offers are overwritten if the order was cleared or partially cleared. Hence,
this information is misleading, because it is not possible to distinguish between
an overwritten end-validity time and a real one. Moreover, the restriction to one
specific country becomes a problem with increasing cross-border trades, because
one would have to purchase all limit order books to understand the interactions
between countries.

1.6 Analysis of the Limit Order Book

The public available data of the EPEX Spot Continuous Intraday market are re-
duced to 9 statistics for each product (Low, High, Last, Weight. Avg., Index,
ID3-Price, ID1-Price, Buy Vol and Sell Vol). Data containing more details has
to be purchases from EPEX. Most published studies were based on the public
available data of the continuous intraday market and made analyses of the pub-
lished statistics Hagemann and Weber [2015], Hagemann [2013]. Other studies as
Janke and Steinke [2019], Hagemann and Weber [2013] used the transaction data
to include the distribution of the clearings along trading time. However, just a
few studies Balardy [2022], Martin and Otterson [2018], Kath and Ziel [2020], Glas
et al. [2020], Kiesel and Paraschiv [2017] used the whole limit order book for their
analysis as it is done in this dissertation.

1.6.1 Along the Trading Session

The data of the limit order book can be used to analyse the order book situation
at each time. All registered clearings, the best bid and best ask of a fixed product
along trading time are plotted in Figure 5. The bid-ask spread is very large at
the beginning of the session, but decreases towards the end of the trading session.
This plot just considers the best orders and ignores orders beyond the best bid and
best ask. On this level, activity at the beginning of the trading session is rather
low as can be observed by the constant price levels on both sides for a few hours.
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However, activity on the market increases towards the end of the trading session
with more clearings.
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Figure 5: Clearings.

The continuous market opens just 3 hours after the day-ahead market closes
and traders might place limit orders of flexible power plants, which were not ac-
cepted on the day-ahead market. Moreover, traders of renewable energy sources
obtain updates of the production forecast, but there is no significant update a
few hours after the day-ahead market closes. Physical delivery is still far away
and there is a lot of uncertainty in the power forecasts, which decrease towards
physical delivery. Hence, the strategy of traders of renewable energy sources is to
wait until the accuracy of the power forecast increases to avoid buying and selling
a quantity multiple times.

Most stock markets also use the continuous market design to trade shares and
developed methods can be applied on the power market. However, the markets are
slightly different. Financial markets have limited trading times, while the power
market is open 24/7. Another difference are the traded products, because products
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of the financial market remain the same at each trading day, while products on
the power market expire shortly before physical delivery and new contracts of the
following day are tradable starting from the next trading day.

1.6.2 Market Properties

The markets for hourly products open at 3 pm and close 5 minutes before physical
delivery. I define the activity of the market by the amount of inserted limit orders
in a 15 minutes interval. In the upper heat-map of Figure 6, the activity of hourly
products of the German LOB between 16/07/2015 and 31/12/2015 is evaluated.
At the beginning of the trading session a few orders are submitted. This initial
phase is followed by a period with low activity until a few hours before physical
delivery. About 5 − 6 hourly before the closing of the market, activity starts to
increase and reaches the maximum around the closing of the market.

In the lower heat-map of Figure 6, the observed trading volumes within each
15 minutes intervals are shown. In contrast to the activity, just a small volume
is cleared at the opening of the market. However, similar as the activity, trading
volumes increase towards the end of the trading session. Hence, there is no much
interest in the continuous intraday market after the market opens, but activity
and the intention to trade power starts around 5 − 6 hours before the market
closes. This can probably be explained with the increasing accuracy of production
forecasts of renewable energy sources and the intention to be balanced to avoid
balancing costs.

Another interesting property of the limit order book is the depth, which indi-
cates the available volume of each side. I calculated the mean available volume for
each interval of 15 minutes over the period 17/06/2015 - 31/12/2015 for each prod-
uct and plotted the mean in Figure 7. The available volume is strongly increasing
after the market opens and reaches its maximum a few hours before physical de-
livery. At the same time trading volumes start to increase leading to a weakly
decreasing limit order book depth towards the end of the trading session.

1.7 Liquidity

Liquidity is an important market property for power markets, but also for financial
markets in general. Put simply, liquidity describes the possibility to quickly buy
or sell an asset without affecting the market price. However, it is challenging
to analyse liquidity quantitatively, because it is multidimensional. Kyle [1985]
determined the following four dimensions:
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Figure 6: Activity in the limit order book of hourly products.
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Figure 7: Depth.

• Tightness: trading costs for small quantities are small (bid-ask spreads).

• Depth: trading costs for large quantities should also be small.

• Resiliency: any deviation of the market price, which might come from market
orders flow, should return quickly to the initial price-level.

• Immediacy: the ability to execute a transaction immediately at the prevailing
price.

No single measure can be found in the literature to describe all dimensions of
liquidity. Hence, a combination of many quantitative measures is considered to
determine the liquidity of a market.

A basic analysis of liquidity can be done with summary statistics of the market.
These statistics usually provide the overall traded volume on the buy- and sell-side,
and statistics of prices, i.e., minimum, maximum, volume-weighted price, and last
price. A market with large trading volumes and a small variance of prices can
be classified as a liquid market. Hagemann and Weber [2015] analysed trading
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volumes of European intraday markets, which is still used in reports of EPEX to
show growing liquidity of their intraday markets during the last years.

The transaction data consists of all cleared orders with the exact trading time,
side, volume and price. This data-set can be used to produce more detailed anal-
ysis. Moreover, it allows to analyse prices and trading volumes along with the
trading session and to analyse liquidity with a temporal behaviour. It is possi-
ble to determine the passive order and the corresponding price, which allows to
reconstruct the price level of the two sides at observed clearings. Hagemann and
Weber [2013] used the transaction data to analyse liquidity with more details. All
clearing prices of the transaction data were classified as prices of the best-bid or
best-ask. This method does not allow to estimate the bid-ask-spread for periods
with no transactions, but during periods with many trades it is possible to obtain
good estimates of the bid-ask spread.

The limit order book is needed to analyse the market’s liquidity with all details.
All submitted orders allow determining the depth of each side at each moment.
Moreover, it allows to calculate the exact bid-ask spread at each time, but also
orders beyond the bid-ask spread can be considered to evaluate hypothetical trad-
ing costs of larger volumes. Detailed data became available recently and Balardy
[2022] was the first one to calculate the exact bid-ask spread.

1.8 Research Questions and Methodology

This dissertation analyses European intraday markets considering detailed order
data from the Italian and German markets. The main sub-project of this disser-
tation was to implement the continuous clearing algorithm and the mechanism
of the auction clearing. As input for the two algorithms, all submitted orders
to the Italian intraday auction and the German continuous intraday market for
the years 2015–2018 were available. The implemented environment allows to re-
produce observed clearing prices but also to manipulate the market by adding
additional orders or cancelling submitted orders. Most of the existing literature
used transaction data to analyse intraday markets, but the implemented environ-
ment allows for a more detailed market analysis. The implemented algorithms
allowed to answer the following three research questions:

RQ1: How to compare liquidity of the German EPEX Spot Continuous
intraday market and the Italian intraday auctions?

Liquidity is an important property for intraday power markets and market
operators of the continuous intraday market praise the liquidity of their market.
They use the trading volume as an indicator for liquidity, which strongly increased
during the last years. However, liquidity is multidimensional, and more indicators
should be analysed. This was not possible in the past due to missing data because
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the limit order book data became available just a few years ago. The implemented
environment allows to analyse more dimensions of liquidity considering the buy-
and sell-stack at each moment during trading time. Moreover, liquidity can be
analysed along trading time. Another interesting topic is to compare liquidity
of the two prevailing market designs for intraday markets considering all offers
submitted to the Italian and German intraday market for hourly products.

RQ2: Is it possible to develop a speculative trading strategy for the
German EPEX Spot Continuous intraday market?

High-frequency trading is an interesting topic in financial markets. These
strategies are purely speculative and trades can be triggered by signals from the
limit order book or news from outside. These trading strategies take advantage of
speed for being the first ones that use the newly available information and close
the opened position later when the signal was absorbed by the market leading
to the expected price change. The implemented environment made it possible to
backtest these types of trading strategies with all its details considering liquidity
costs, trading fees, and the impact of additional orders on the future development
of the limit order book.

RQ3: How could liquidity of the EPEX Spot Continuous intraday mar-
ket be increased by introducing a new market design?

There are two prevailing market designs in Europe and each design has advan-
tages and disadvantages. While the continuous intraday market suffers from low
liquidity at the opening of the market, the auction market has a long lead-time
making it difficult to integrate renewable energy sources. The detailed submitted
orders of the German continuous intraday market were used to analyse the results
of a newly proposed market design and the resulting clearings were compared with
the current continuous trading outputs.

This dissertation is based on three main sections, where each section discusses
one of the three introduced research questions. The last section summarizes the
results and provides ideas for future research.
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2 Liquidity Costs on Intraday Power Markets:

Continuous Trading Versus Auctions

... written in cooperation with Prof. Dr. David Wozabal and published in Energy
Policy.

We analyze liquidity costs on continuous and auction-based intraday power
markets using a cost-of-round-trip measure that works for both market designs.
We use data from the Italian auction-based intraday market and the German con-
tinuous market and present descriptive statistics as well as multivariate regression
models to analyze determinants of liquidity costs in both markets. To test for
differences in liquidity due to market design, we employ a double machine learn-
ing technique controlling for several confounding variables. We show that weekly
patterns, yearly seasonality, electricity demand, as well as the influence of tem-
peratures significantly affect liquidity costs. Comparing liquidity costs in both
market, we find that, overall, liquidity costs are lower on the Italian market. How-
ever, Italian costs increase towards later auctions, while the costs on the German
continuous intraday market decrease and reach their low close to physical delivery,
where costs are lower than on the last Italian market trading the corresponding
products.

2.1 Introduction

In the last two decades electricity markets world-wide have moved from being
dominated by highly vertically integrated monopolies to competitive markets pop-
ulated by many diverse players. To satisfy these companies’ requirements, elec-
tricity trading takes place in multi-settlement markets that allow trading products
with different temporal granularities and with different times to maturity. In
particular, the growing share of variable renewable production led to the rising
importance of spot markets, making it possible to adapt traded positions until
close to delivery as new information arrives.

While in the US the day-ahead market is immediately followed by the real-
time balancing market [Ela et al., 2014], European market designs feature a spot
market that is split into a day-ahead market and an intraday market where power
can be traded until shortly before physical delivery. Currently, there are two
prevailing designs of intraday markets in Europe. While most European countries
use continuous trading, Italy, Spain, and Portugal mainly use staggered intraday
market auctions.

Clearly, the benefits of intraday trading are closely tied to the liquidity of the
market, i.e., the ability of firms to trade while experiencing only minimal adverse

33



2.1 Introduction

price effects. Furthermore, liquid markets are less prone to market manipulation
and gaming by pivotal players.

However, liquidity in most European intraday markets remains rather low.
Weber [2010] finds that markets in Germany and several other European countries
are not sufficiently liquid. Garnier and Madlener [2015] conclude that due to
this illiquidity, current intraday markets are of limited use in balancing short-
term forecast errors in demand and variable renewable production. It is therefore
interesting to policy makers and industry professionals alike to identify factors
that drive liquidity in the two market designs and understand how the designs
themselves influence liquidity.

Consequently, the issue of liquidity in intraday markets has recently attracted
some attention in the academic literature. Weber [2010] analyzes the integra-
tion of wind energy considering different European market designs and finds that
the intraday auctions in Spain are the most attractive in terms of trading vol-
ume. Based on transaction data from the German intraday market, Hagemann
and Weber [2013] investigate liquidity in intraday power markets using established
measures from financial markets. Neuhoff et al. [2016] find that the additional auc-
tions for 15 minutes contracts in the German intraday markets increased liquidity
and market depth while reducing price volatility.

Balardy [2022] is one of the first, who uses the German limit order book (LOB)
data to analyze liquidity in terms of bid-ask-spreads and market depths. The au-
thor finds a positive relation between bid-ask spreads and risk as well as a negative
relation between bid-ask spread and adjustment needs, activity, and competition
in the market. von Luckner et al. [2017] use the LOB to find an optimal mar-
ket maker pricing and analyze the market order intensity and the bid-ask spread.
Hagemann and Weber [2015] analyze intraday trading volumes on auction-based
and continuous intraday markets, and observe higher volumes on the auction-based
intraday markets. The authors conclude that this difference is not due to the dif-
ference in market design but rather due to idiosyncratic factors affecting the two
markets.

The literature on electricity forecasting is in many ways related to our paper.
Most models for price forecasts are time-series models using exogenous variables,
some of which we also use in our models. For example, as in Narajewski and Ziel
[2020b] and Uniejewski and Weron [2018], we use time dummies for Saturday, Sun-
day and Monday, and the day-ahead forecast for load, solar production and wind
power as covariates in our regression models. Marcjasz et al. [2020] use dummies
for each weekday, forecasts for load, solar production and wind production and its
forecast errors, and balancing volumes. Janke and Steinke [2019] use the forecasts
of demand and renewable production, and hourly dummies for each hour.

Despite the importance of the topic, the literature analyzing liquidity costs in
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intraday power markets remains scarce. To the best of our knowledge, this is the
first paper to compare liquidity costs of the two markets in a statistically sound
way using the complete order book data of the continuous intraday market and all
submitted orders of the intraday auction.

In this paper, we contribute to the discussion by the first analysis of intraday
electricity market liquidity that is based on a cost-of-round-trip (CRT) measure
which captures all quantitative aspects of liquidity both in auction markets as well
as for continuous trading. We provide a univariate analysis of the CRT which is
complemented by regression models that explore possible drivers of liquidity costs
on the German and Italian market. We find that, depending on the market, liq-
uidity cost are driven by weekly patterns, yearly seasonalities, electricity demand,
as well as temperatures.

To directly compare the cost of liquidity and thus measure the impact of market
design, we use a state-of-the-art double machine learning method proposed in
Chernozhukov et al. [2018] controlling for possible confounding factors identified
in the analysis for the CRT for the two markets. Comparing the two markets, by
and large the Italian auction-based market exhibits lower CRTs. We observe this
result in a univariate analysis and confirm it in a multivariate analysis controlling
for the confounding factors identified above. However, this effect gets progressively
weaker for larger traded volumes and as trading time approaches physical delivery.
In particular, it can be observed that the German continuous intraday market
consistently exhibits lower costs for high volumes close to delivery.

Our findings suggest that a combination of several auction-based intraday mar-
kets with continuous trading might be able to leverage the benefits of both systems.
In particular, auctions can be used to increase liquidity and therefore decrease
trading costs by pooling orders for products which are far from delivery. These
auctions could be complemented by continuous trading close to delivery, where
market participants have the opportunity to trade the forecast errors for demand
and variable renewable production at a point in time when accurate forecasts are
available [see Ocker and Jaenisch, 2020, for a similar proposal]. In fact, Spain al-
ready implemented such a hybrid system when it joined the cross-border intraday
market project XBID in June 2018. This proposal is close to the literature on
optimal implementations of the European target model for a single coupled intra-
day market as laid out in the European Commission Regulation (EU) 2015/1222.
Bellenbaum et al. [2014] discuss different intraday market designs meeting these
requirements and come to the conclusion, that a hybrid between continuous trad-
ing and auctions potentially combines the advantages of both designs. Similarly,
Ehrenmann et al. [2019] propose to add additional auction markets to the existing
continuous market, as auction markets are more suitable for small market partici-
pants. The authors see a clear advantage of this setting, but the question remains
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2.2 Background: Market Designs in Germany and Italy

at which time of the day to introduce auction markets and how many. A possible
solution that leverages the advantages of both continuous trading and auctions is
to have a large number of frequent auctions as proposed in Budish et al. [2015]
for financial markets and in Deutsche Börse Group [2018] for the intraday power
market. Such a design would alleviate some of the problems of continuous trading
while still providing market participants with ample opportunities to trade.

The paper is organized as follows. In Section 2.2, we briefly describe the Italian
and German intraday markets. Section 2.3 describes the market data and our set of
explanatory variables. In Section 2.4, we introduce the cost-of-roundtrip measure
and specify the econometric models used to determine the factors driving liquidity
costs in both markets as well as the application of double machine learning, which
we use to determine the effect of market design on liquidity costs. Section 2.5
discusses the empirical results. Finally, Section 2.6 concludes, discusses limitations
and policy implications.

2.2 Background: Market Designs in Germany and Italy

In this short section, we discuss the relevant facts about the Italian auction-based
intraday market and then proceed to discuss the German continuous intraday
market. We collect key characteristics of the two markets for the year 2018 from
ENTSO-E [2019], GME [2019], Burger [2019] in Table 3, and calculated the Italian
weighted prices based on the national price. Note that the traded volumes of
the day-ahead market and the intraday market of hourly products of the two
markets are comparable. Consumption and production of renewables are higher
in Germany, and Italy is a net importer of electricity while Germany generates
high volumes for export, since it has significant overcapacities in cheap base-load
production. As a result, average spot market prices in Germany are lower than in
Italy.

2.2.1 The Italian IPEX

The Italian spot market offers a platform to trade electricity for delivery in hourly
granularity. The day-ahead market in Italy closes at noon on the day before
delivery and is followed by seven intraday auction markets, called MI (mercato
infragiornaliero). Bid prices are constrained between €0 and €3000 while bid
quantities are restricted to multiples of 1 kWh. For more details see GME [2016].

The Italian power grid consists of the six market zones NORD, CNORD, CSUD,
SUD, SICI, and SARD. The MI markets are organized as uniform price auctions
that aggregate the bids of all zones. The left plot in Figure 8 shows the cleared
volume and the clearing price of an exemplary market session. If the resulting
national market outcome is physically infeasible due to lack of transmission line
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Quantity Italy Germany

Consumption (TWh) 322.2 538.1
PV infeed (TWh) 22.9 41.2
Wind infeed (TWh) 17.3 107.2
Imports (TWh) 47.1 31.5
Exports (TWh) 3.3 82.7
Day-ahead trading volume (TWh) 212.9 234.5
Intraday trading volume (TWh) 25.4 37.8
Volume weighted day-ahead price (€/MWh) 62.22 43.26
Volume weighted intraday price (€/MWh) 61.05 46.6

Table 3: Summary of annual key characteristics of the two markets for 2018.
The German day-ahead volume includes Austria and Luxembourg and the trading
volume for the German continuous market is restricted to hourly products

.

capacities between the zones, the result is made feasible by altering the market
outcome resulting in different zonal prices for the different Italian market zones.
For our analysis, we disregard this complication, by only considering the national
price, which considers all submitted offers without taking into account the effects
of transmission limits between zones.

Table 4 summarizes the characteristics of the Italian intraday market. The
lead-time, defined as the time between the last possibility to trade the specific
product and its physical delivery, range from 4.25 to 10.5 hours. Since wind power
forecasts significantly improve approaching delivery [e.g., Hannele Holttinen, 2013],
this relatively long lead-time make it hard to incorporate the last and therefore
most precise production forecasts.

2.2.2 The German EPEX Spot Market

The German day-ahead market closes at noon of the previous day and is followed
by an auction for quarter-hours of the next day at 3 p.m. and a continuous intraday
market. For a detailed description we refer to the operational rules in EPEX [2019]
and to Table 4 for a summary of trading times.

In contrast to the Italian MI markets, the German intraday market is based
on continuous trading with a limit order book (LOB) much like in financial mar-
kets. Next to hourly products 1/2-hour and 1/4-hour products are traded. We do
not include these products in our analysis, since shorter deliveries serve different
purposes than hourly products. In particular, firms use sub-hourly products to
model the ramps of their production or consumption, which is possible only to a
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Market Products Opening Closing Results Last Update Lead-Time (h)

Italian Markets
MI1 H1−H24 12:55 (d-1) 15:00 (d-1) 15:30 (d-1) - -
MI2 H1−H24 12:55 (d-1) 16:30 (d-1) 17:00 (d-1) H1−H4 7 1

2
up to 10 1

2
MI3 H5−H24 17:30 (d-1) 23:45 (d-1) 00:15 (d) H5−H8 4 1

4
up to 7 1

4
MI4 H9−H24 17:30 (d-1) 3:45 (d) 4:15 (d) H9−H12 4 1

4
up to 7 1

4
MI5 H13−H24 17:30 (d-1) 7:45 (d) 8:15 (d) H13−H16 4 1

4
up to 7 1

4
MI6 H17−H24 17:30 (d-1) 11:15 (d) 11:45 (d) H17−H20 4 3

4
up to 7 3

4
MI7 H21−H24 17:30 (d-1) 15:45 (d) 16:15 (d) H21−H24 4 1

4
up to 7 1

4

German Markets
Auction QH1−QH96 d-45 15:00 (d-1) 15:10 (d-1) - -
Cont. H H1−H24 15:00 (d-1) D-5’ - H1−H24 5

60
Cont. QH QH1−QH96 16:00 (d-1) D-5’ - QH1−QH96 5

60
Cont. HH HH1−HH48 15:30 (d-1) D-5’ - HH1−HH48 5

60

Table 4: Operating times of the German and the Italian intraday markets. The
table reports the traded products, the opening and closing times of the markets
(d-1 indicating a time on the day before delivery), the time when the results are
announced, the list of products that are traded the last time on the respective
market, as well as the lead time for the products that are traded the last time. H
indicates a hourly product, HH stands for half-hour and QH for a quarter-hourly
product while D signifies the time of delivery.

small extent with hourly products. To be comparable to the Italian market, isolate
the effect of market design on liquidity, and avoid diluting our analysis by mixing
in different aspects, we therefore only consider hourly products in our analysis.
The market for a specific product closes 30 minutes (or 5 minutes within the con-
trol area) before delivery, which facilitates trading forecast errors of fluctuating
renewable energy sources.

Market participants can submit buy and sell offers for prices ranging between
−9999.9€/MWh and 9999.9€/MWh, with a minimum bid size of 0.1MWh, and
several specified order types [Martin and Otterson, 2018]. A submitted bid/offer
is cleared immediately if the price is better than the best price of an offer/bid in
the LOB. If there is no such matching order, the new order is stored in the LOB
and matched with orders arriving at a later point in time. The right plot in Figure
8 shows the best available bid and ask price over time with each tick representing
a match between a newly placed order and an order in the order book generating
a trade.

2.3 Data

In Section 2.3.1, we discuss the market data which we use for the Italian and
German intraday market. In Section 2.3.2, we introduce variables which we use
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Figure 8: Clearing of the Italian MI3 intraday auction (left) and German contin-
uous trading for the 13th hour on the 15.04.2018. The yellow marker on the left
signifies the uniform clearing price of the auction. The markers on the right rep-
resent price ticks, i.e., instances when orders were cleared in the German market.

in Section 2.4 and Section 2.5 as controls in our comparison of the two market
designs.

2.3.1 Market Data

All offers submitted to the Italian intraday market are available on the website of
the Italian Power Exchange (IPEX). The offers contain information about the side
(sell or buy), product/hour, intraday market (MI1-MI7), zone, price and volume
and can be used to calculate the national price.

The LOB of the German continuous intraday market can be purchased from
EPEX SPOT SE. The data-set includes information about the side (sell or buy),
product/hour, validity period, control area, as well as the price and volume of
every submitted bid/offer. We note that the EPEX allows for the submission of so
called iceberg orders, for which the bid quantity is only gradually revealed as parts
of the order get executed. We only consider those parts of iceberg orders that were
actually executed in our analysis. For more information about the LOB-data we
refer to Martin and Otterson [2018].

The German intraday trading system was subject to frequent changes in the
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Variable Frequency Unit Source

RS,I
t Italian solar production hourly MWh https://transparency.entsoe.eu

FS,I
t Italian solar forecast hourly MWh https://transparency.entsoe.eu

RW,I
t Italian wind production hourly MWh https://transparency.entsoe.eu

FW,I
t Italian wind forecast hourly MWh https://transparency.entsoe.eu

RD,I
t Italian demand hourly MWh https://transparency.entsoe.eu

FD,I
t Italian demand forecast hourly MWh https://transparency.entsoe.eu

RS,G
t German solar production 1

4 -hourly MWh https://transparency.entsoe.eu

FS,G
t German solar forecast 1

4 -hourly MWh https://transparency.entsoe.eu

RW,G
t German wind production 1

4 -hourly MWh https://transparency.entsoe.eu

FW,G
t German wind forecast 1

4 -hourly MWh https://transparency.entsoe.eu

RD,G
t German demand 1

4 -hourly MWh https://transparency.entsoe.eu

FD,G
t German demand forecast 1

4 -hourly MWh https://transparency.entsoe.eu

Dt Daylight of Munich daily days https://galupki.de

T I
t Temperature of Milan hourly ◦C www.arpalombardia.it

TG
t Temperature of Berlin hourly ◦C www.dwd.de

Wt Weekends daily Boolean -

Table 5: Overview of data used in the analysis.

recent years with effects on market liquidity, especially shortly before delivery. In
order to have a dataset with consistent market rules, we restrict our analysis of
both markets to the time from 20.11.2017, a few days after the trading system
M7 (version 6.0) was launched to the 15.06.2018, when the XBID project was
introduced.

2.3.2 Explanatory Variables

Table 5 provides an overview of the variables which potentially have an impact
on the CRT and which we control in our comparison of the two market designs in
Section 2.5.

Motivated by Goodarzi et al. [2019], Kulakov and Ziel [2020] who show that
forecast errors in renewable production influence intraday prices and by Balardy
[2022] who observes an impact of renewable energy sources on bid-ask spreads,
we include data on forecasts and actual production of variable renewables in both
countries. Since we exclusively analyse hourly products, we consider the average
over the four quarter-hourly quantities to obtain hourly values. We use the day-
ahead forecasts for renewable production as published by ENTSO-E. While the
forecasts used by individual market participants for trading might be different, we
think that the chosen forecast captures the overall sentiment of the market well.

Temperature influences power markets, because power is used for temperature
regulation of buildings. Hence, we introduce a heating- and a cooling-function
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2.4 Methodology

as described in Fan and Hyndman [2012] for Italy and Germany. The cooling
function of Italy CI

t and Germany CG
t are defined as max(Tt − 19.5◦C, 0), where

Tt is the hourly temperature at time t in Italy (Milan) or Germany (Berlin).
Analogously, we introduce the heating function for Italy HI

t and Germany HG
t as

min(Tt−17.5◦C, 0). The choice of the two cities as temperature proxies is motivated
by the fact that Milan is the leading industrial city in Italy and Berlin is the largest
German city. A more detailed modeling of the influence of temperatures could be
based on weighted temperatures from several areas in Germany and Italy as was
for example done in Graf and Wozabal [2013], Kovacevic and Wozabal [2014], Pape
et al. [2016]. However, for the purpose of this paper we stick to the abovementioned
simple approach.

Prices on power markets follow a seasonal and weekly pattern. Hence, as in
Kovacevic and Wozabal [2014] and Graf and Wozabal [2013], we use a variable
containing the length of daylight Dt in units of days to capture annual seasonality
of the observations. As these quantities are similar for both countries, we use the
day-length of Munich located in the south of Germany for both markets. Moreover,
as in Narajewski and Ziel [2020b] and Uniejewski and Weron [2018] we introduce
dummy variables Wt = (WMon

t ,W Sat
t ,W Sun

t ) for Monday, Saturday, and Sunday
for weekends Wt to model weekly price patterns.

To capture the overall market size and therefore the scarcity of supply in a given
period t, we use the forecast as well as the actual demand for Italy and Germany.
An alternative way to capture the scarcity in an electricity system would be the so
called load-supply-ratio (LSR) as defined by Pape et al. [2016]. The LSR takes into
account detailed modeling of supply and demand and is a more accurate measure
of scarcity than mere electricity demand. However, the demand is easier to include
in our analysis, since it requires much less detailed data.

2.4 Methodology

In this section, we first detail how we measure liquidity costs in the two markets
by a cost-of-round-trip measure in Section 2.4.1. In Section 2.4.2, we introduce a
multivariate regression model to analyse the impact of possible confounding factors
in the comparison of the two market designs. Finally, in Section 2.4.3, we discuss
a double machine learning method in order to measure whether the continuous
markets in Germany or the auction markets in Italy lead to higher CRTs.

2.4.1 Liquidity Measures

Market liquidity describes the possibility to quickly buy or sell an asset without
affecting the market price. This rather vague definition of liquidity does not lend
itself to a quantitative analysis of the phenomenon. In fact, there is no single
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established quantitative measure of liquidity in the literature that captures all
aspects of market liquidity.

Hagemann and Weber [2013] introduced six dimensions of liquidity for contin-
uous energy markets using established measures from the literature on financial
markets. The first dimension is tightness and is measured using bid-ask spreads
defined as the difference between the best bid and best ask price. The second
dimension is resiliency describing the market’s ability to bounce back to an equi-
librium price after a temporary distortion. The third dimension is price impact or
market depth and describes the impact of large orders which might require sev-
eral offers beyond the best price to be cleared. The fourth dimension is known
as short-run price volatility. The fifth dimension captures delay and search costs
describing the propensity of traders to delay trades to obtain better prices. The
sixth dimension describes trading activity in the form of traded volume, number
of trades, and number of active traders.

Irvine et al. [2000] introduced a CRT-measure as the per dollar cost of roundtrip
trade of D dollars. In particular, the number of shares that corresponds to the
dollar amount D are calculated based on the best-bid and best-ask, and afterwards
the LOB is used to calculate the resulting cost of buying and selling the determined
number of shares. Since the interpretation in terms of quantities is more natural
in power markets, we modify this definition by proposing a CRT measure which
depends on volume V instead of the amount of money and captures all aforemen-
tioned cost related dimensions of liquidity. Moreover, we modify the measure to
be applicable to both continuous trading as well as auction markets.

Conceptually, the CRT is the per unit cost incurred by buying a certain quan-
tity V of power and then immediately selling it again. Note that in a liquid market
CRT is close to zero. Choosing a small V yields measurements close to the bid-ask
spread while larger volumes increasingly measure the depth of the order book plus
all additional costs.

More formally, we define a volume oriented measure by sorting the buy- and
sell side of the LOB at each point in time t by price to obtain · · · < P t

−2 < P t
−1 <

P t
−0 < P t

0 < P t
1 < P t

2 < · · · , where P t
−0 is the highest bid-price and P t

0 is the lowest
ask-price. We denote the corresponding bid quantities by Qt

i. For a given quantity
V in MWh, we define how much of an order i would be cleared when placing a
market order of size V by

Q̄t
i(V ) = min

(
max

(
V −

i−1∑
k=0

Qt
k, 0

)
, Qt

i

)
, Q̄t

−i(V ) =

= min

(
max

(
V −

−0∑
k=−i+1

Qt
k, 0

)
, Qt
−i

)
.
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We then define the cost-of-round-trip measure for a fixed value V as

CRTt(V ) =
1

V

∑
k

P t
kQ̄

t
k(V )︸ ︷︷ ︸

average cost

− 1

V

∑
k

P t
−kQ̄

t
−k(V )︸ ︷︷ ︸

average revenue

. (1)

In a continuous market it is possible to execute the buy and sell decisions that
are used to define the CRT, making equation (1) directly applicable. However, we
note that, in principle, a trader in a continuous market has the option to spread
her trades over a longer period of time, waiting for more orders on the other side
of the market to arrive. In this way, some of the liquidity costs measured by the
CRT can be avoided at the cost of the risk of adversely changing prices during
the extended time of bidding. The CRT on the continuous intraday market can
therefore be seen as an overestimation that accurately reflects liquidity costs only
for an impatient trader placing market orders.

To use the CRT in an auction market, we add a market order for buying V
units to the existing orders and record the marginal price instead of per unit cost
when clearing the auction modified in this way. We then subtract the hypothetical
sell price of V units which we calculate adding a market order of size V on the sell
side instead and divide the result by V .

The resulting CRT-measure of the auction market consists of one value for
each market and volume. In contrast, the CRT-measure of a certain product
in a continuous market is a function of time and potentially changes with each
modification of the LOB. As is illustrated in the right panel of Figure 8 large market
orders might lead to temporary extreme values of the CRT-measure distorting our
measurement. We therefore use the mean over 15 minutes instead of CRTt(V ) at
any fixed time t. To this end, we consider a discrete form of the continuous time
varying CRT-measure by considering averages over 15 minute intervals before time
τ

CRTτ (V ) =
1

15

∫ τ

τ−15
CRTt(V ) dt =

1

15

N∑
k=2

CRTtk(V ) + CRTtk−1
(V )

2
(tk − tk−1),

where t1, . . . , tN are the N points in time where the LOB changes in the 15-minute
time interval [τ − 15, τ ]. In the following, we use the index τ in CRTτ to refer to
a 15-minute average and CRTt to refer to an instantaneous CRT at time t. The
computed average thus reflects the expected CRT a trader would have to pay, if
she picks a random trading time in the given time interval.

The Italian intraday market has seven fixed times when the market is cleared.
We use clearing times of MI2 to MI7 to analyze the two markets, i.e., measure the
CRT for the German markets at the times when the Italian markets are cleared.
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The reason for the exclusion of MI1 is that the German intraday auction closes
nearly at the same time as MI1, which results in less liquidity on the continuous
market at this point in time and thus a distortion. We compare the CRT of the re-
maining Italian intraday auctions with the mean German CRT over the 15 minutes
before the closing of the Italian intraday auction. To this end, we define DIh as the
closing times of the Italian intraday markets, where the hourly product h is traded.
For example, DI1 = {16: 30} while DI24 = {16: 30, 23: 45, 3: 45, 7: 45, 11: 15, 15: 45},
where the first two time stamps are from the day before delivery.

The German continuous intraday market allows participants to trade until 30
minutes before physical delivery on a national market. Hence, we will also compare
the first two 15-minute CRT-means within the last hour of the German continuous
intraday market with the CRT-measure of the last available market of the Italian
intraday auction for the corresponding product. Correspondingly, the points in
time which we consider for the German market are DGh = DIh ∪ {h− 60, h− 45}.

We generate observations corresponding to V = 0.1MWh, which is the smallest
value that can be traded on the German intraday markets as well as for V =
5MWh, 10MWh, 15MWh and 50MWh. On some days the order book does not
contain orders of combined size V on either the bid or the ask side at a time
ti ∈ [τ − 15, τ ]. For our analysis, we calculate over 313 million clearings for the
German market. In 0.0466% of these cases at least one side of the limit order book
is empty and we exclude these timestamps in our calculation of the 15-minute
intervals. In further 0.0804% of the cases not the whole quantity V is available
on at least one side of the market. To define CRT for these cases, we use the last
available price to clear the remaining quantity in order to calculate a CRT.

2.4.2 Analysis of the CRT

In this section, we analyze the impact of the variables described in Section 2.3.2
on the CRTs of the two markets. To this end, we define an index J = (V, h, τ) for
every volume V , product h = 1, . . . , 24, and time to delivery τ ∈ DGh or τ ∈ DIh
and construct the following linear regression models for Italy and Germany

CRTGJ = XG
J β

G
J + εGJ and CRT IJ = XI

Jβ
I
J + εIJ , (2)

where

XG
J = (XJ , C

G
J , H

G
J , R

W,G
J , FW,G

J , RS,G
J , F S,G

J , RD,G
J , FD,G

J )

XI
J = (XJ , C

I
J , H

I
J , R

W,I
J , FW,I

J , RS,I
J , F S,I

J , RD,I
J , FD,I

J ),

XJ = (1,WJ , DJ ) are the regressors that are market independent, and CRTGJ
and CRT IJ are the CRTs of the German and Italian market, respectively. All
regressors are standardized by subtracting the mean and dividing by the standard
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2.4 Methodology

deviation. The standardization helps to simplify the interpretation of the effects
of covariates with different scales.

We estimate the models in equation (2) separately, for every index J . This
yields 420 models for the Italian intraday auction market, and 660 models for
the German continuous intraday market, because we additionally analyze the two
15-minutes intervals shortly before physical delivery for the German market. For
example, for h = 1, we compare the liquidity cost on the two 15-minute intervals
that start 60 minutes and 45 minutes before physical delivery on the German
market with the latest available intraday market in DI1, i.e., MI2.

2.4.3 Double/Debiased Machine Learning

In this section, we describe how we compare the impact of the two market designs
on the CRT while controlling for the impact of confounding variables. In particular,
we directly compare the CRT in the two markets while controlling for linear and
non-linear effects of the regressors introduced in Section 2.3.2. For this purpose,
for every volume V , product h, and every trading time τ ∈ DGh , we combine the
data on CRTGJ and CRT IJ into a combined CRTCJ by stacking the two vectors on
top of each other. For τ ∈ DGh \ DIh, we use the CRTs of the corresponding last
market where the hour was traded on an Italian intraday market.

We then define a sparse matrix

XC
J =

(
XJ XG

J 0
XJ 0 XI

J

)
by padding market specific observations with zeros. We compute all quadratic
interactions to capture non-linear effects obtaining(

Y F
J

Y G
J 0
0 Y I

J

)
,

where Y G
J and Y I

J consist of interactions that contain a market specific variable
for Germany and Italy, respectively, while Y F

J contains interactions of variables in
XJ . Next, we delete all columns with fewer than 10 observations different from
zero.

We then replace the zeros of the sparse submatrices with the corresponding
mean to obtain (

Y F
J

Y G
J Ȳ I

J
Ȳ G
J Y I

J

)
. (3)

We standardize (3) by subtracting the mean and dividing by the standard deviation
and denote the resulting matrix by Y C

J .
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2.5 Results and Discussion

Note that replacing the zeros by the respective means in (3) ensures that there
is no variable in Y C

J , which has a different mean for the subset for Italian and
German observations. We introduce a dummy variable G that takes the value 1
for CRT values from the German market and 0 for data from the Italian market.
Using these regressors, we specify a combined linear model

CRTCJ = αJGJ + Y C
J β

C
J + εJ , (4)

which is able to control for interactions between the variables and non-linear effects.
Moreover, all regressors have mean zero and the introduced dummy variable GJ is
the only available variable to describe the systematic differences in CRTs between
the two countries.

Our aim is to obtain consistent estimates of the effect of the market design
αJ as well as confidence intervals. Equation (4) has many regressors and we
are no longer able to apply OLS due to overfitting. Hence, we would have to
select a subset of regressors using a model selection mechanism and then estimate
the coefficient α from the reduced model. However, as pointed out by Leeb and
Pötscher [2005], model selection distorts inference and especially small parameters
cannot be estimated consistently. Additionally, the same data set would be used
twice: the first time for model selection and the second time to estimate αJ and
its p-value in the resulting regression. Another naive method would be to estimate
the model (4) using a LASSO regression and directly analyze αJ . However, the
resulting estimates are biased due to the L1-regularization term introduced in
LASSO.

In order to avoid biased estimates for αJ , we use a double machine learning
procedure by Chernozhukov et al. [2018] as implemented in STATA. The method
uses Neyman-orthogonal moments/scores to eliminate the regularization bias and
cross-fitting to eliminate the bias resulting from over-fitting of nuisance functions.
In particular, we use LASSO regression for model selection in (4) where the penalty
parameter is chosen using 10-fold cross validation. We resample 10 times for the
calculation of an unbiased estimate α̃J for the parameter αJ in the selected models.
We refer to StataCorpLLC [2019] for a detailed exposition of the method.

2.5 Results and Discussion

In this section, we first consider a descriptive analysis of CRT in Section 2.5.1.
In Section 2.5.2, we construct two linear regression models to analyze the impact
of confounding variables on the liquidity costs of the two markets. Finally, we
analyze the difference of the two market designs using double-machine learning in
Section 2.5.3.
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Subset N mean std min 25% 50% 75% max

Average CRTs at DIh and DGh
GER, 0.1MWh 27453 5.85 6.27 0.10 2.40 4.50 7.50 137.70
GER, 5MWh 27453 6.25 6.67 0.10 2.81 4.90 7.95 147.50
GER, 10MWh 27453 6.69 7.00 0.10 3.00 5.02 8.33 162.75
GER, 15MWh 27453 7.18 7.34 0.10 3.40 5.62 8.93 168.50
GER, 50MWh 27453 10.66 10.24 0.10 5.65 8.51 12.85 198.55
ITA, 0.1MWh 17471 1.26 1.72 0.01 0.25 0.72 1.59 27.63
ITA, 5MWh 17471 2.13 2.68 0.01 0.50 1.22 2.82 38.08
ITA, 10MWh 17471 2.74 3.29 0.01 0.67 1.72 3.60 46.79
ITA, 15MWh 17471 3.33 3.88 0.01 0.92 2.11 4.34 50.45
ITA, 50MWh 17471 6.45 6.65 0.01 2.18 4.50 8.26 63.47

Trading Volume Weighted CRTs
GER, 0.1MWh 4991 1.99 1.23 0.55 1.24 1.64 2.34 14.32
GER, 5MWh 4991 2.20 1.33 0.62 1.40 1.83 2.60 24.31
GER, 10MWh 4991 2.38 1.42 0.72 1.54 1.99 2.79 35.52
GER, 15MWh 4991 2.56 1.49 0.81 1.69 2.17 3.00 39.55
GER, 50MWh 4991 3.90 2.09 1.32 2.67 3.37 4.52 58.61
ITA, 0.1MWh 4991 0.84 0.62 0.01 0.43 0.70 1.07 5.98
ITA, 5MWh 4991 1.36 0.93 0.01 0.73 1.15 1.75 8.29
ITA, 10MWh 4991 1.71 1.13 0.01 0.95 1.46 2.18 9.49
ITA, 15MWh 4991 2.05 1.32 0.01 1.15 1.73 2.63 12.10
ITA, 50MWh 4991 3.84 2.35 0.01 2.21 3.32 4.84 21.25

Table 6: Descriptive statistics of CRT-measures and traded-volumes CRT-
measures from 17.11.2017 to 15.06.2018.

2.5.1 Univariate and Bivariate Analysis of CRT

The descriptive statistics of the CRT-measures are summarized in Table 6. The
first panel reports the average CRTs as measured at the points in time DIh and DGh
which we use in our comparisons between the markets. However, since trading in
the German continuous intraday market occurs mostly within the last three hours
before delivery, we also define a trading volume weighted CRT, which allows us to
compare CRTs of a specific product over longer periods of time as

CRTV,h =
∑
τ

CRTV,h,τQh,τ∑
τ Qh,τ

,

where Qh,τ is the traded volume for product h and time to delivery τ . The above
sum is over all quarter hours τ where a specific product h is traded. Similarly,
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Figure 9: Boxplots of CRTs grouped by trading time and volume.

when computing CRTV,h for the Italian markets, the cleared volumes for each
auction market and the corresponding calculated CRTs are used. The results of
these computations are reported in the lower panel of Table 6.

The analysis reveals that the CRT for all volumes is higher for the German
market on average for both ways of measurement. Comparing the maxima of the
distributions, we observe that the corresponding CRTs for the German market far
exceed the maximal CRTs observed in the Italian markets. However, the results
for the averages are not entirely driven by the right tail of the distribution as the
analysis of the other quantiles reveals. Another interesting observation is that while
the CRT for the Italian market increases sharply with V , this effect is much less
pronounced on the German market, where costs are high even for small volumes
due to the bid-ask spread on the German market.

The univariate analysis along the dimension volume does not capture changes
with the time to delivery. Hence, we show the dependence of the results on the
time to delivery in the boxplots in Figure 9 for the CRTs calculated at DIh and
DGh . We note that liquidity costs on the Italian market are low during the first
two auction markets, and are relatively high for the MI4 and MI7. The German
CRTs decrease towards one hour before physical delivery and increase afterwards
– this L-shape was also observed in Balardy [2022].

48



2.5 Results and Discussion

CI (64)

-2 0 2 4 6

0

5

10

15
D (57)

-5 0 5

0

2

4

6

8

10

12
WSun (55)

-20 -10 0 10 20

0

5

10

15
RD,I (40)

-10 -5 0 5

0

1

2

3

4

5

6

D (371)

-10 -5 0 5

0

20

40

60

80
FD,G (244)

-15 -10 -5 0 5

0

5

10

15

20

25

30
WSun (243)

-20 -10 0 10

0

10

20

30

40
WSat (239)

-15 -10 -5 0 5

0

10

20

30

40

Figure 10: Distribution of the top 4 significant estimates of the selected controls of
Italy (above) and Germany (below). The x-axis of the plots represents the values
of the estimated coefficients.

2.5.2 Effects in the Individual Markets

In this section, we analyze the effect of the explanatory variables XI and XG as
introduced in Section 2.4.2 on the CRT in the respective markets. In order to do so,
we fit the linear regression models (2) using the fitlm function as implemented in
MATLAB R2017a. We consider the same data-set as used in the previous section
grouped by volume, product, and time to delivery.

We consider a regressor to be significant in a regression, if its p-value is smaller
than 0.05 and order the regressors according to the number of models that they
are significant in. The upper row of plots in Figure 10 shows the distribution of
coefficients of the four regressors which are most often significant in the estimated
models for the Italian market. The lower four plots repeat this analysis for the
German market.

For Germany, the most important regressor is the seasonality Dt modeled as
the length of daylight, which has a significant positive impact in 371 out of 660
models. As the estimated coefficients are unambiguously negative, this implies
lower liquidity costs in summers.

The next most significant regressor is the forecast demand FD,G, which is
significant in 244 models and has also a clearly negative coefficient implying that
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higher (forecast) demands lead to more trading, which in turn decreases liquidity
costs.

The last two depicted regressors are the dummies for Sundays and Saturdays
which are significant in 243 and 239 models, respectively. On a first glance, the
negative signs of the estimated regressors might seem surprising, since there is less
trading on the weekend lowering liquidity costs. However, this effect is already
captured by the regressor FD,G so that the weekend dummies only measure the
weekly patterns which do not directly depend on demand. The dummies for Sat-
urday and Sunday, thus allow for a more moderate increase in liquidity costs on
these days as would be modeled by the effect of lower demand alone.

By and large the German market shows clear effects and the corresponding
regressors are significant in many of the considered models, which underlines the
importance of considering these variables as controls when we measure the effect
of market design on liquidity costs in Section 2.4.3.

The situation for the Italian models is not nearly as clear cut. Generally
speaking, the proposed regressors are significant much less often and the signs are
more ambiguous making easy explanations of the results harder. This is in line
with Hagemann and Weber [2015], who find that the trading volume on the Italian
auction market cannot be explained very well by fundamental variables.

The most important regressor for the Italian market is cooling CI which sig-
nificantly affects liquidity in 64 out of 420 models for the Italian market with
a mostly positive sign implying that the increased demand by air-conditioning,
which is widely used in Italy, leads to a positive impact on liquidity cost on hot
days.

The length of daylight DI , which is significant in 57 models is the second
most important regressor in Italy. As the figure shows, the estimated coefficients
are mostly positive indicating a positive impact of the length of daylight on the
CRT. This implies a seasonal effect with higher liquidity cost in summers. This is
in contrast to the German situation, where the effect on the seasonal variable is
reversed.

The Sunday dummy is significant in 55 models. The sign of the regressor is
rather ambiguous and hard to interpret, since, similar to the German market, there
is an interaction with the realized demand, which is also contained among the top
4 regressors.

Lastly, the realized demand RD,I
t affects the CRT on the Italian market signif-

icantly in 40 models, where it mostly has a negative effect on the CRT.

2.5.3 Comparison of Market Designs

Our aim in this section is to analyze the difference of the CRTs of the two markets
controlling the effect of confounding variables. For that purpose, we use the func-
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tion xporegress of STATA StataCorpLLC [2019] to estimate the models presented
in Section 2.4.3.

The output of our analysis is an estimate, a valid confidence interval, and the
corresponding p-value for the parameter α in model (4). Table 7 summarizes the
results in form of a heatmap showing estimates and p-values. The columns indicate
different hourly products, while the rows indicate time to delivery. To distinguish
between the different quantities V , we divide the table into five panels.

We compare CRTs for products with the same time to delivery, and the CRTs
for the two 15 minutes intervals on the German continuous intraday market before
delivery of a specific product with the last auction market in Italy where the
corresponding product is traded. Cells marked grey indicate products that can
not be compared, since they are no longer traded on the Italian market. A cell is
colored red if the estimate for αJ in the corresponding model is positive, i.e., the
CRT in the Italian market is lower than in the German market. Analogously, cells
are colored blue if αJ is negative. The intensity of the color reflects the magnitude
of the p-value with more intense coloring for lower p-values, i.e., more significant
results as indicated in the color map in the last row of the table.

As expected from the univariate results in Section 2.5.1, the majority of cells
are red indicating higher cost of liquidity on the German market. Comparing the
overall results of the five different panels, this effect weakens for higher volumes
V , indicating that the German market is relatively less affected by large volume
bids as can also be seen in Figure 9.

Observing the first rows of the five panels, it becomes clear that there is a strong
influence of the time to delivery on the estimated parameter αJ . In particular, the
Italian market has clearly lower liquidity cost at the time of clearing of the first two
Italian intraday markets for all volumes V . However, looking at single columns
corresponding to products h = 1, . . . , 24, this effect weakens as trading times move
closer to delivery. These results are consistent with the analysis in Figure 9 and
the fact that traded volumes tend to decrease for later Italian auction markets,
while the German market is most active close to delivery.

The last two rows of every panel compare the first two 15-minutes intervals in
the last hours before delivery in the German market with the last Italian auction
market where the respective hour can be traded. In these 15-minute intervals
the German market reaches its highest liquidity and exhibits significantly lower
liquidity cost as the Italian markets, except for small volumes.

In summary, the German market gets relatively more liquid towards physical
delivery, with higher liquidity in the German market close to delivery and for
larger volumes V . This is also supported by looking at single rows where we
mostly observe increasing estimates for αJ with increasing products h = 1, . . . , 24.

Looking at the first non-gray blocks in every row corresponding to MI3-MI7,
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

V=0.1MWh
16:30 d-1 10.49 10.85 10.83 11.01 11.76 11.85 12.07 11.96 12.13 13.32 13.39 13.38 13.85 14.09 13.94 14.37 14.28 14.44 14.35 14.49 14.59 14.65 14.48 14.56
23:45 d-1 0.47 1.27 2.23 3.25 4.09 4.72 5.62 6.31 6.88 7.50 6.89 7.40 7.31 7.04 6.63 7.39 7.40 7.63 7.05 7.69
3:45 d -0.90 0.22 1.69 2.37 5.27 5.77 4.94 5.59 5.44 6.02 5.28 6.45 6.40 6.26 6.04 6.75
7:45 d 0.17 0.46 1.17 1.78 3.51 4.53 3.50 4.02 4.94 5.77 5.23 5.54
11:15 d -0.01 0.42 0.46 0.86 1.38 1.91 2.23 2.43
15:45 d -0.86 -0.31 -0.01 0.44
D-60 0.69 0.80 0.49 0.78 0.56 0.74 0.61 0.89 -1.46 -1.80 -1.60 -1.52 -0.41 -0.50 -0.57 -0.25 0.18 0.42 0.38 0.39 -0.37 0.07 0.17 0.67
D-45 0.91 1.00 0.85 0.97 0.90 0.91 1.00 1.04 -1.36 -1.57 -1.28 -1.22 -0.09 -0.24 -0.18 0.02 0.54 0.71 0.85 0.77 0.07 0.46 0.80 0.99

V=5MWh
16:30 d-1 10.58 11.31 11.24 11.54 12.40 12.60 12.68 12.35 12.62 13.92 13.84 14.16 14.78 14.89 14.80 14.98 14.76 14.91 15.00 14.97 14.94 15.43 15.23 15.57
23:45 d-1 -0.58 0.28 1.63 2.39 3.72 4.69 6.29 7.20 7.83 8.39 7.84 8.15 7.97 8.10 7.94 8.15 8.44 8.45 8.33 9.01
3:45 d -3.70 -2.09 -0.39 1.14 5.41 6.26 5.64 6.07 6.02 6.42 5.88 6.67 7.30 6.76 7.09 7.83
7:45 d -0.94 -0.52 0.20 0.92 3.32 4.62 3.58 3.73 4.94 5.86 5.82 6.17
11:15 d -0.78 -0.23 -0.25 0.27 0.92 1.85 2.00 2.41
15:45 d -2.82 -1.43 -1.01 -0.62
D-60 0.16 0.46 0.09 0.35 -0.42 -0.19 -0.11 -0.22 -4.21 -4.23 -4.10 -3.48 -1.49 -1.51 -1.63 -1.26 -0.59 -0.19 -0.31 -0.29 -2.22 -0.98 -0.71 -0.33
D-45 0.76 0.81 0.59 0.71 0.08 0.16 0.53 0.03 -4.01 -3.88 -3.65 -3.08 -1.05 -1.16 -1.14 -0.89 -0.09 0.24 0.25 0.21 -1.62 -0.41 0.14 0.21

V=10MWh
16:30 d-1 10.71 11.41 11.35 11.52 12.68 12.88 12.94 12.65 12.89 14.09 14.09 14.66 15.24 15.29 15.26 15.35 15.05 15.27 15.40 15.08 15.05 15.81 15.54 16.00
23:45 d-1 -1.17 -0.13 1.17 2.02 3.42 4.79 6.36 7.46 8.20 8.94 8.23 8.66 8.49 8.81 8.53 8.76 8.89 9.04 9.10 9.64
3:45 d -5.39 -3.25 -1.38 0.62 5.26 6.43 5.70 6.17 6.25 6.39 5.91 6.90 7.04 7.04 7.46 8.27
7:45 d -1.46 -1.15 -0.28 0.33 3.06 4.69 3.59 3.33 4.85 5.81 6.04 6.53
11:15 d -1.12 -0.75 -0.77 -0.15 0.68 1.55 1.99 2.45
15:45 d -4.23 -2.25 -1.64 -0.75
D-60 -0.07 0.21 -0.18 -0.01 -1.04 -0.65 -0.65 -0.73 -5.91 -5.52 -5.41 -4.43 -2.04 -2.17 -2.20 -2.04 -0.94 -0.71 -0.88 -0.82 -3.60 -1.77 -1.43 -1.02
D-45 0.75 0.58 0.36 0.36 -0.50 -0.27 0.05 -0.48 -5.69 -5.13 -4.90 -3.98 -1.55 -1.80 -1.67 -1.62 -0.41 -0.24 -0.28 -0.29 -2.96 -1.03 -0.51 -0.40

V=15MWh
16:30 d-1 10.80 11.68 11.56 11.68 12.90 12.98 13.10 12.82 13.12 14.37 14.47 14.99 15.69 15.72 15.60 15.68 15.41 15.52 15.66 15.04 15.30 16.18 15.98 16.41
23:45 d-1 -1.80 -0.52 0.80 1.49 2.89 4.61 6.33 7.65 8.49 9.38 8.55 9.20 8.77 9.04 8.81 8.97 9.16 9.44 9.58 10.10
3:45 d -7.12 -4.95 -2.36 -0.23 5.03 6.39 5.43 5.88 6.39 6.60 5.98 6.79 6.61 6.68 7.58 8.44
7:45 d -1.80 -1.46 -0.73 -0.21 2.82 4.51 3.54 3.03 4.68 5.53 6.16 6.85
11:15 d -1.43 -1.20 -1.27 -0.58 0.26 1.37 2.01 2.57
15:45 d -5.66 -2.93 -2.17 -0.72
D-60 -0.29 0.11 -0.29 -0.29 -1.67 -1.07 -1.10 -1.32 -7.67 -7.36 -6.60 -5.61 -2.39 -2.52 -2.72 -2.74 -1.31 -1.17 -1.42 -1.28 -5.09 -2.38 -1.97 -1.43
D-45 0.62 0.50 0.29 0.08 -1.10 -0.68 -0.38 -1.07 -7.45 -6.92 -6.05 -5.11 -1.87 -2.12 -2.15 -2.30 -0.74 -0.67 -0.76 -0.70 -4.39 -1.71 -1.03 -0.78

V=50MWh
16:30 d-1 12.62 13.54 13.64 13.09 15.04 14.95 15.21 14.73 14.20 15.86 16.76 17.47 18.02 18.19 17.85 17.71 17.54 17.53 17.26 16.37 16.88 18.29 18.36 19.06
23:45 d-1 -4.14 -2.48 -0.35 -0.72 1.67 3.88 6.90 8.68 10.60 11.71 10.58 11.17 11.08 10.58 10.20 9.86 9.72 11.21 12.09 12.89
3:45 d -13.59 -10.58 -6.47 -2.86 4.52 6.98 5.65 6.24 6.88 6.62 5.72 5.43 4.97 6.92 9.21 10.39
7:45 d -3.48 -3.15 -2.95 -2.06 1.98 3.64 2.65 1.71 2.60 5.38 7.29 8.70
11:15 d -3.54 -3.01 -3.29 -3.39 -2.01 0.69 2.37 3.52
15:45 d -10.28 -6.90 -4.38 -0.78
D-60 -0.49 -0.09 -0.72 -0.84 -3.87 -3.08 -2.46 -4.01 -14.33 -14.14 -12.49 -10.63 -4.22 -4.62 -5.35 -5.37 -3.50 -3.11 -3.69 -4.24 -10.53 -6.12 -4.10 -2.23
D-45 0.91 0.51 0.22 -0.46 -3.08 -2.43 -1.47 -3.72 -14.27 -13.38 -11.64 -9.81 -3.49 -3.98 -4.51 -4.77 -2.67 -2.36 -2.68 -3.28 -9.48 -4.97 -2.74 -0.93

Legend
NaN 5e-07 1e-06 5e-06 1e-05 5e-05 1e-04 5e-04 1e-03 5e-03 1e-02 5e-02 1e-01 5e-02 1e-02 5e-03 1e-03 5e-04 1e-04 5e-05 1e-05 5e-06 1e-06 5e-07

Table 7: Results in €/MWh using all possible combinations until quadratic terms
with standardized regressors and re-sampling (10).
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i.e., the hours that can be traded the last time on an Italian market, we observe
that liquidity cost on the Italian market is higher than on the German market.
These markets are the last possibility to trade forecast updates of renewable en-
ergy sources in the corresponding hours and trading volumes are correspondingly
relatively high. Apparently, the high CRTs are thus a consequence of tight mar-
ket situations caused by either large demands or large free production capacities
flooding the market for low prices.

2.6 Conclusions and Policy Implications

This article explores liquidity costs of the German continuous intraday market
and the Italian auction-based intraday market. For that purpose, we introduce
a cost-of-round-trip measure to analyze liquidity costs. Grouping the data of
each market by volume and trading time, we compare cost of liquidity in the two
markets using descriptive statistics. Secondly, we analyze the impact of several
explanatory variables on the two markets separately. Thirdly, we compare the two
market designs by controlling the impact of the confounding variables.

We find that liquidity costs are generally lower in the Italian auction market,
whereby the difference tends to decrease with the traded quantity of power and as
trading gets closer to physical delivery. The latter finding is consistent with the
L-shape of the German bid-ask spread observed by Balardy [2022].

Our results show that the cost of liquidity in both countries is influenced by
weekly and yearly seasonalities, temperatures via cooling demand, and the overall
demand for electricity.

Our study has some limitations. Firstly, the German market provides the pos-
sibility to place iceberg orders, i.e., orders where the full volume is not visible but
gets revealed gradually as parts of the order are cleared. The existence of a signif-
icant amount of these invisible orders might lead us to underestimate the liquidity
and correspondingly overestimate the CRT on the German market. Secondly, the
CRT on the Italian intraday auction markets might be higher due to zonal prices
in Italy in auctions where there is congestion of transmission lines between market
zones.

Our analysis suggests that a hybrid system might leverage the advantages of
both market designs and decrease liquidity costs on intraday markets [Bellenbaum
et al., 2014, Ehrenmann et al., 2019, Ocker and Jaenisch, 2020]. In particular,
auction markets for hours far from delivery might help to increase liquidity by
pooling orders, while continuous intraday markets starting close to delivery would
be an optimal tool to integrate forecast errors for the output from variable renew-
ables shortly before physical delivery. A similar design was recently introduced
for the Spanish intraday market and it is planned for the Italian market as well.
Alternatively, one could use a system of frequent batch auctions as proposed in
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Budish et al. [2015], Deutsche Börse Group [2018] to combine the advantages of
continuous trading and auctions.
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3 Intraday Power Trading: Towards an Arms

Race in Weather Forecasting?

... written in cooperation with Prof. Dr. David Wozabal, submitted, but not yet
published.

We propose the first weather-based algorithmic trading strategy on a continu-
ous intraday power market. The strategy uses neither production assets nor power
demand and generates profits purely based on superior information about aggre-
gate output of weather-dependent renewable production. We use an optimized
parametric policy based on state-of-the-art intraday updates of renewable pro-
duction forecasts and evaluate the resulting decisions out-of-sample for one year
of trading based on detailed order book level data for the German market. Our
strategies yield significant positive profits, which suggests that intraday power mar-
kets are not semi-strong efficient. Furthermore, sizable additional profits could be
made using improved weather forecasts, which implies that the quality of forecasts
is an important factor for profitable trading strategies. This has the potential to
trigger an arms race for more frequent and more accurate forecasts, which would
likely lead to increased market efficiency, more reliable price signals, and more
liquidity.

3.1 Introduction

In the last decades, the electricity industry in many countries has seen rapid
changes. One driver of these developments was the transition from a highly ver-
tically integrated, state controlled sector of the economy to a largely competitive
and decoupled industry Pollitt [2019]. Another reason is the climate crisis and the
increasing efforts to transition to a carbon neutral society. The electricity sector
is the key to sustainable energy systems changing the nature of energy supply
by sharply increasing production from variable renewable energy sources (VRES)
such as wind and photovoltaics.

In the majority of industrialized countries electricity is traded on a range of
future markets whose products differ in their time to maturity. Recently, the
weather-dependent and unpredictable nature of VRES production has increasingly
shifted the focus to markets with a high temporal resolution that trade close to
delivery when production forecasts are reasonably accurate.

Short-term trading is mostly organized in real-time markets or continuous in-
traday markets. While the former is the prevailing design in the US [Milligan
et al., 2016], the latter is, for example, used in Europe. These volatile markets
are attractive for firms that can quickly adapt their demand or production profiles
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and can thus sell their flexibility to other market participants with balancing needs
driven by, for example, forecast errors in VRES production. Short-term trading
thus provides incentives to invest in flexible energy sources such as gas turbines
and storage, which are required to balance the intermittent production from ever
growing VRES capacities.

Apart from flexibility providers, short-term markets are increasingly interesting
for speculative traders who neither own production assets nor trade their own
electricity demand. In this paper, we propose a trading strategy for speculative
trading on continuous intraday markets. Our approach is motivated by algorithmic
trading strategies in continuous financial markets that are triggered by signals
indicating a change in the fundamental value of an asset. Since, as discussed above,
VRES production is an important driver of short-term electricity trading, we use
forecast errors of aggregate VRES production as signals for our strategies. The
rationale for this choice is that if forecasts for VRES production are inaccurate,
producers have to correct their positions taken on the day-ahead market, which, if
the errors are large enough, causes a shift in intraday prices [Kiesel and Paraschiv,
2017, Kremer et al., 2020a,b].

While the literature on asset backed trading on intraday power markets is
extensive [see for example Boomsma et al., 2014, Kumbartzky et al., 2017, Séguin
et al., 2017, Bertrand and Papavasiliou, 2019, Wozabal and Rameseder, 2020,
Rintamäki et al., 2020], there is virtually no research on optimal bidding strategies
for speculative traders that have no assets of their own.

In the following, we review those papers that come closest to our trading strate-
gies. Kath and Ziel [2018] introduce a forecast for the volume weighted continuous
intraday price for 15-minutes contracts and develop a strategy to choose between
trading on the day-ahead auction market and the continuous intraday market.
Monteiro et al. [2020] evaluate future trading strategies on the Spanish Mibel
market based on long-term electricity futures. Maciejowska et al. [2019] study the
problem of a small VRES producer that trades on the day-ahead and the intraday
market. Wozabal and Rameseder [2020] study trading strategies for a storage that
arbitrages between Spanish day-ahead and intraday markets. Furthermore, Kath
and Ziel [2020] explore optimal order execution strategies with the aim to mini-
mize liquidity cost and Glas et al. [2020] explore optimal VRES trading strategies
on the intraday market in an optimal control setting. Bertrand and Papavasiliou
[2019] use reinforcement learning to optimize a Markovian strategy for an electric-
ity storage on the German intraday market for power.

We contribute to the literature in the following ways:

1. While there is a growing literature investigating the impact of VRES pro-
duction forecast errors on intraday prices [e.g., Garnier and Madlener, 2015,
Kiesel and Paraschiv, 2017, Kremer et al., 2020a,b, Kulakov and Ziel, 2020],
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we are the first to propose a demonstrably profitable trading strategy based
on this observation. We take great care to accurately model market mecha-
nisms, the exact clearing algorithm, and the sequence of information. To the
best of our knowledge Martin and Otterson [2018], Bertrand and Papavasil-
iou [2019], Kuppelwieser and Wozabal [2021] are the only other papers that
capture the realities of continuous trading in similar detail. In particular,
apart from Bertrand and Papavasiliou [2019], this is the first paper that
evaluates a trading strategy based on detailed order book data, which is dif-
ferent from the extant literature that discretizes the trading to 1 minute or
15 minute brackets to be able to deal with the shear amount of order data
[e.g. Glas et al., 2020, Kath and Ziel, 2020].

The resulting trading problem is characterized by substantial uncertainties
about the future state of the continuous market and a high frequency of
arrival of new order information, necessitating a large number of decisions
which have to be taken at random points in time. Consequently, given the
complex information structure of the problem and the number of decisions
to be taken, finding optimal decisions is clearly computationally intractable
[Bertrand and Papavasiliou, 2019]. We therefore propose a non-anticipative
parametric policy that yields significant positive profits in controlled out-of-
sample experiments and uses the forecast errors of renewable production as
trading signals.

2. Our results show that intraday power markets are far from efficient. In partic-
ular, it is possible to capitalize on information on day-ahead forecast errors of
VRES output. This fact suggests that the market disseminates information
slowly and in an imperfect manner: While recent results found evidence that
intraday electricity markets are weak-form efficient [e.g. Oksuz and Ugurlu,
2019, Narajewski and Ziel, 2020a], our results illustrate that they violate the
more restrictive semi-strong version of the efficient market hypothesis, which
states that it is impossible to consistently generate abnormal returns using
publicly available data Malkiel and Fama [1970].

3. Next to demonstrating that strategies based on current state-of-the-art weather
forecasting are profitable, we quantify the value of a perfect weather forecast
and conclude that there is potential for substantially increased profits from
weather-based strategies. This finding suggests that in the future the indus-
try might see an an arms race in weather forecasting, similar to the arms
race for speed observed in the financial markets [e.g., Budish et al., 2015].

In our numerical case study, we consider the German intraday power market.
We first examine the insample performance of our policy for 18 months of trading to
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identify sensible ranges for our parameters and for the timing of trading decisions.
We find a trade-off between the quality of the signal that is required to trigger the
strategy and the size of the traded position. Generally speaking, profits per trade
rise in the quality of the signal. However, if trading is restricted to only those
products with high quality signals, trading occurs infrequently reducing overall
profits. A similar trade-off can be observed for the size of the position: while
profits initially rise with larger positions, the marginal profit per additional traded
MWh is diminishing due to liquidity costs that increase in order size.

Furthermore, we find that one of the most important aspect of the trading
strategy is how it deals with the lack of liquidity that plagues intraday power
markets. In particular, a trader that seeks to capitalize on informational advan-
tages in weather forecasting would ideally want to trade as early as possible on
this information. However, since there is usually very little trading activity until
2-3 hours before gate closure, such a strategy is running the risk of being unprof-
itable due to high transaction costs. We show how patient strategies based on
a sequence of limit orders can significantly reduce liquidity costs and outperform
simpler impatient strategies based on market orders.

In an out-of-sample study, we evaluate our strategies for one year of trading.
The results show that the proposed policies yield significant positive profits for
both hourly and quarter-hourly products, where the former is characterized by
larger volumes, higher profits, and more volatile profits per product, while the
latter yields lower profits and also trades less volumes. This differences can mostly
be explained by the higher liquidity of hourly products.

We show that the potential additional earnings for a strategy which is based on
a perfect intraday forecast of VRES production are significant, increasing profits
by one order of magnitude. Hence, there is a strong incentive to invest in better
weather forecasts and more frequent updates during the day – a situation which has
the potential to trigger an arms race in short-term weather forecasting. As opposed
to the arms race for speed observed in the share market [e.g. Budish et al., 2015],
this development has the potential to increase market liquidity in early hours of
intraday trading, the accuracy of price discovery, and therefore ultimately welfare.

The rest of the paper is organized as follows: In Section 3.2, we describe the
relevant features of intraday power markets and discuss liquidity and the impact
of VRES. Section 3.3 is dedicated to our trading policy. Section 3.4 describes the
setting of our case study, while Section 3.5 discusses its results. Finally, Section
3.6 concludes the paper and discusses implications as well as avenues for further
research.
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3.2 Intraday Markets

In this section, we first describe the typical market design of continuous intra-
day power markets in Section 3.2.1, focusing on the German continuous intraday
market as one of the most liquid markets. Secondly, we discuss the influence of
renewable generation on prices in Section 3.2.2. Finally, we investigate market
liquidity and its dependency on time to delivery in Section 3.2.3.

3.2.1 Market Design

Most spot markets for power consist of a day-ahead market that allows market
participants to trade electricity one day ahead of delivery and a short-term market,
which gives participants the possibility to adjust their positions until shortly before
physical delivery. Short-term markets are usually either organized as real-time
markets or as intraday markets. Prominent examples for the former include most
US power markets, while European short-term markets are examples of the latter
category.

In Europe, there are currently two competing types of intraday trading sys-
tems: auction markets and continuous intraday trading. In 2015, the EU decided
on the long-term goal to couple all European intraday markets in a large contin-
uous market in order to facilitate a secure energy supply, competitiveness, and
fair prices [European Commission, 2015]. While most European countries already
transitioned to continuous intraday markets that are compatible with the joint Eu-
ropean design, some countries such as Italy, Spain, and Portugal still use auction
markets. In this paper, we are interested in continuous intraday markets and for
the ease of exposition focus on the European market design and its implementa-
tion in Germany hosted by the EPEX, the largest power exchange in Europe [see
Viehmann, 2017, for a detailed description]. However, we note that other markets
are very similar in the features crucial for the analysis in this paper.

With the build up of capacities in intermittent and unpredictable production,
short-term trading on intraday markets is increasingly gaining traction [EPEX,
2020]. As a result, liquidity of the German intraday market has been improving
in the last years with growing trading volumes, but also an increased prevalence
of automated trading EPEX [2020]. In particular, due to the short-term nature of
the continuous intraday market, marketing of flexible power sources and electricity
storage as well as position closing is often relegated to trading algorithms.

On the German intraday market power can be traded on a national market until
30 minutes before physical delivery and until 5 minutes before physical delivery
within the four control areas. The market opens shortly after the clearing of
the day-ahead market and allows to trade hourly, half-hourly, and quarter-hourly
products. Market participants submit orders to the limit order book which are
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cleared continually. If for a market participant the combined orders from spot
and future markets deviate from the actual physical production or consumption
at gate closure of the intraday market, the residual quantities are settled on the
balancing market. The price charged or paid for these deviations is the so-called
symmetric reBAP [Bundesnetzagentur, 2012].

Each buy and sell order on the intraday market for a given product contains
basic information about quantity, limit price, and validity time. A market order
is cleared immediately against the best available order in the limit order book
(LOB), while a limit order is only executed with matching orders on the other side
of the market up to a certain price (the limit). If this is not possible, the order is
kept in the limit order book until its end validity date to be cleared with future
orders. If the quantities of two matched orders do not agree, the order with the
higher order quantity is only partially cleared and remains in the order book with
a correspondingly reduced quantity.

Market participants can add the usual order qualifiers such as all-or-nothing,
immediate-or-cancel, or fill-or-kill [EPEX, 2019]. Additionally, iceberg orders are
allowed for which only a fraction of the order quantity is visible to other market
participants. As soon as the visible quantity is cleared, the next part of the order
is automatically placed in the limit order book.

The state of the LOB changes with the placement of a new order, with the
modification of an order, and at the end-validity-time of an active order. The
limit price of the order with the lowest sell price is called best-ask, while the order
with the highest buy price defines the best-bid, and the difference between the two
prices is the bid-ask-spread.

3.2.2 The Influence of Renewable Generation

Because electricity is bought by most consumers for a price that is only infrequently
updated, short-term consumption is inelastic. Furthermore, due to limited storage,
supply and demand have to be matched instantaneously. Consequently, supply and
demand shocks can lead to massive shifts in short-term prices [Weron, 2014].

One frequent source of supply shocks is the deviation of produced wind and
solar power from its forecast levels. Typically, owners of VRES sell electricity on
the day-ahead market one day before delivery based on forecasts of wind speeds
and solar irradiation. If those forecasts turn out to be incorrect, the residual
quantities have to be traded on the intraday market or resolved on the balancing
markets. Since the latter is typically more expensive, VRES producers have an
incentive to balance forecast errors on the intraday market as best as they can.

In particular, if a trader sold too much energy on the day-ahead market she
will try to buy back missing energy on the continuous intraday market as soon as
more accurate forecasts become available and the error becomes apparent thereby
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increasing demand. An analogous situation occurs if too little energy was sold,
which induces an increased supply leading to downward pressure on the intraday
prices. Due to the rapid expansion of VRES capacities in many countries and the
high correlation of forecast errors for VRES production within a market zone, large
unexpected aggregate deviations from production forecast are frequently observed
and significantly influence the intraday price [Kiesel and Paraschiv, 2017, Kulakov
and Ziel, 2020].

Traditionally weather forecasts are based on large computationally expensive
models that depend on satellite images and high altitude measurements of planes
and weather balloons, which are only collected every couple of hours. These fore-
casts are therefore updated too infrequently to be used as inputs for algorithmic
trading strategies on the intraday market.

However, recently, several providers specialized in combining these traditional
global weather forecasts with real-time production data and local weather models
to offer frequent updates of forecasts for renewable production of single plants.
Currently, there are many providers such as Enfor, ConWX, Meteologica, Gnarum,
enercast, weathernews, or windsim that compete to provide more accurate VRES
power production forecasts and more frequent updates.

3.2.3 The Role of Liquidity

Liquid markets are necessary for the successful implementation of the trading
strategies considered in this paper. The observations in this section therefore
informs the discussions in the later sections. For a more comprehensive treatment
of the liquidity of the German intraday market, we refer to Kuppelwieser and
Wozabal [2021].

Liquid markets allow trading for fair prices at low transaction costs and with
little scope for price manipulation by dominant players. While traded volumes on
the German continuous intraday market have been continuously increasing in the
last years, the liquidity of the market is still rather limited at times. Most orders
are placed shortly before the market closes and consequently, liquidity is typically
low at the beginning of the trading session, increases towards physical delivery,
and decreases again shortly before the market closes.

As can be seen by comparing panel 1 with panel 2 and 3 of Figure 11, the
liquidity of the intraday power market is significantly worse than that of financial
markets. The comparison reveals that, relative to the price, the bid-ask-spread for
a share of a large company is roughly 50 times smaller than the bid-ask spread of
the continuous power market during its most liquid period. Inspecting the lower
two plots depicting bid and ask prices on the German intraday market for a typical
trading session of an hourly product, we recognize the characteristic L-shape in
the bid-ask spread with large differences between the two prices which suddenly
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Figure 11: Financial markets vs EPEX SPOT: The three plots show the best-
bid and the best-ask of one trading session. The upper plot shows the Amazon
share (AMZN) traded on Nasdaq, the middle plot shows prices for the product
H12 which delivers power from 11:00 to 12:00 on the 12.12.2018 as traded on
EPEX and the lower plot shows the same product one year after to highlight the
increase of trading activity. The data on the Amazon share has been obtained
from LobsterData (https://lobsterdata.com/).

falls to a low value close to delivery as also observed by Balardy [2022]. We note
that the market for half-hourly and quarter-hourly products is even thinner than
that for hourly products [e.g. Narajewski and Ziel, 2020a]. The comparison of the
two plots in panel 2 and 3 reveals evidence for an increase in liquidity between the
years 2017 and 2018. Finally, the high volatility of the intraday price during the
trading session, makes the market attractive for speculative trading.

3.3 Trading Strategy

Our trading strategy rests on the assumption that a large number of VRES plants
sell their forecast production on the day-ahead market and use the intraday market
to re-balance their positions so as to take into account updated production forecasts
on the day of delivery. The idea behind the strategies discussed in this section is
to capitalize on early intraday updates of aggregate VRES production forecasts
for the whole of Germany by anticipating the direction of the correction in prices.
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To get an accurate measurement of profits, we evaluate the proposed strategy
based on detailed limit order book data. In particular, we do not merely rely on
tick data or discretized version of the market as for example in Glas et al. [2020],
Kath and Ziel [2020], but take into account the exact rules of continuous intraday
market clearing as well as detailed data on orders by other market participants to
calculate the price at which we buy and sell electricity.

We are interested in trading strategies that work without physical assets or
electricity demand, implying that every product has to be traded separately and
positions have to be closed before gate closure. We base our algorithms for the
product that delivers electricity in period t on the updates in the forecast of re-
newable production s hours before delivery

εst = fDAt − f st , (5)

where fDAt is the day-ahead forecast of renewable production in t while f st is the
updated forecast at time t − s. The quantity εst is thus the best estimate of the
forecast error in aggregate VRES production at time t which is available at time
t − s. We adopt the convention that f 0

t is the actual production, making ε0t the
true forecast error of the day-ahead forecast.

Our algorithm takes the form of a classic algorithmic trading strategy on fi-
nancial markets and uses εst as a signal that can be used to infer a change in the
fundamental value of the product, i.e., electricity to be delivered in period t. This
is based on the assumption that traders that first become aware of the errors in
forecasts can capitalize on this knowledge by trading accordingly. For example,
as a result of a positive εst , a trader would buy electricity on the intraday mar-
ket anticipating a rise in prices once the rest of the market becomes aware of the
shortage.

However, unlike signals in financial markets like earning announcements or
prices of other assets, which can be regarded as public information as soon as
they are revealed, information on VRES forecast errors is gradually improved
as increasingly better forecasts become available. In particular, the notion of a
trader reacting first makes much less sense than for signals typically used for high
frequency trading on shares markets, since orders cannot be placed as soon as
information arrives and the decision when to act on updated forecasts becomes
important. Traders thus face a trade-off between the reliability of the signal and
the speed of the reaction.

To define our strategy, we specify a traded quantity, a price for which we place
orders, as well as the timing of orders. We depict the sequence of events in Figure
12. The strategy is triggered by the arrival of a new forecast for VRES production
at time t1, which is a pre-defined length of time s before delivery of a product t,
i.e., t1 = t − s. If the forecast error εst is large enough, we build up a position
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Figure 12: Schematic depiction of the sequence of events of the proposed trading
strategy for the case where energy is bought.

in the time interval [t1, t2]. Subsequently, we hold the position until t3 > t2 and
finally unwind the position in the time interval [t3, t4], where t4 is close to gate
closure. Note that since we assume that the trader does not have a physical asset,
we require the position to be closed at the end of trading to avoid open positions
on the balancing market.

More specifically, we open a position of size V ± > 0 if the signal εst observed at
time t1 exceeds a threshold ∆± depending on the sign of the deviation. We thus
define the traded quantity at time t1 as

xt1 =


V +, if εst > ∆+

−V −, if εst < −∆−

0, otherwise,

(6)

where positive quantities correspond to buying of electricity, i.e., we buy V + MWh
of electricity if forecasts are corrected downward by more than a threshold ∆+.

Apart from the traded quantity V ±, we also need to specify a price to place an
order. We investigate two strategies: an impatient strategy using market orders and
a patient strategy based on limit orders. If market orders are used, the price is set
to the ±9 999€/MWh which is the maximum/minimum price the trading system
allows, i.e., the quantity xt1 is always immediately cleared at time t1 regardless of
the price, provided the order book on the opposing side of the market is not too
small to cover the full quantity xt1 . If a market order cannot be (fully) cleared due
to a lack of market depth, it is removed from the order book and the second trading
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phase operates with the correspondingly smaller position. Similarly, at time t4 the
position is closed using market orders. Choosing this impatient strategy thus
makes sure that a position is opened as soon as possible and closed at the last
possible moment. The downside is that if market depth is insufficient, trading
might happen at unfavorable prices.

In contrast, the patient strategy places limit orders and accepts a delay in order
execution in exchange for potentially more favorable prices. The strategy places
an order that outbids the other orders in the system by a small margin δ > 0. For
example, if εst > ∆+, i.e., we are seeking to buy, we set the price to be the best
bid plus δ€. If an order with a higher price is added to the order stack at time t′

with t1 < t′ < t2 by another party, we update the price of our order to ensure that
we outbid the best bid by δ€. We continue in this fashion until either the whole
quantity is traded or time t2 > t1 comes at which point we remove the order from
the system.

We start closing the position at t3 by again setting the price such that the order
is on top of the respective side of the order book and update prices as new orders
arrive. Finally, if the position is not closed at time t4 > t3, we place a market
order to close the position. If the order cannot be fully cleared against orders in
the LOB at t4, the rest of the order is cancelled and the residual quantity is cleared
on the balancing market.

Note that opposed to the patient strategy the impatient strategy incurs the
full bid-ask spread. For example, if the intention is to buy, then an order on the
ask side of the market is accepted instead of placing orders on the bid side as it is
done when using limit orders. Similarly, when closing the position with a market
order an existing bid is accepted instead of placing an ask order in the system.
Hence, loosely speaking the patient strategy avoids the bid-ask spread for the price
of delayed order execution.

In order to calculate the resulting profit, we denote by T1 the set of time points
at which the LOB changes in the period [t1, t2], by T2 the set of time points when
the LOB changes after t3 until the end of trading of the product at t4, and by Vτ as
the quantity traded as consequence of order stack changes at times τ ∈ T := T1∪T2.
Further, for τ ∈ T , we denote by Pτ as the volume weighted average per MWh
price for which the quantity at time τ is traded.

The profit and loss of the strategy in period t can thus be calculated as follows

Πt =
∑
τ∈T

VτPτ +Rt

∑
τ∈T

Vτ − F
∑
τ∈T

|Vτ |, (7)

where Rt is the symmetric balancing market price for period t and F is the per
MWh trading fee. Note that fees on the EPEX are exclusively payable for cleared
volumes while modifications of limit orders are not charged. However, we note
that the number of modifications is limited to avoid an overload of the trading
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system. For this purpose, the order-to-trade ratio (OTR), defined by the number
of order changes divided by the number of placed orders, is limited to 100 by the
EPEX.

3.4 Case Study: Setup & Data

In this section, we discuss the LOB data and the weather reports that we use in
the case study in Section 3.4.1 and Section 3.4.2, respectively. In Section 3.4.3, we
discuss how we use the data to calibrate the parameters of our strategy.

3.4.1 Limit Order Book Data

We use German LOB-data for the years 2017 and 2018 as input for the clearing
algorithm. The data consists of all submitted orders including information on
order changes with timestamps in milliseconds resolution. To test our strategies,
we implement the exact EPEX clearing algorithm in JAVA. To enable a concise
discussion of results, we limit our attention to hourly and quarter-hourly products
and do not consider half-hourly products.

Since intraday markets in Europe are increasingly interconnected, some orders
in our observation period are cleared against orders from neighboring countries at
times when transmission capacities permit cross-border trading. We use the same
idea as Martin and Otterson [2018] to deal with this issue by reconstructing the
corresponding foreign orders using the clearing logs included with the limit order
book data. In particular, we check for a counterpart for each executed order in
the German LOB. If such a counterpart cannot be found, we add an order with
the corresponding price and quantity to the German order book as described in
Martin and Otterson [2018], making sure that we can reconstruct published prices
with our clearing algorithm. In the considered period there are 47 000 560 orders
for hourly products, 1 405 055 (2.9%) of which were cleared against foreign orders.
For quarter-hourly products there are 139 169 564 orders with 1 495 763 (1.06%) of
orders cleared against orders from other markets.

We identify orders for which order quantities are updated immediately after
the volume was fully cleared as iceberg orders. These orders are treated as iceberg
in our algorithm with the overall quantity that is seen in cleared trades.

The algorithm calculates a clearing at each modification of the limit order book,
i.e., if a new order is added, an active order is updated, or an order reaches its
end-validity-time. If multiple orders with the same price arrive simultaneously,
orders with lower ids are cleared first.

Similar to the results in Martin and Otterson [2018], the prices and cleared
quantities computed by our clearing algorithm show a good match with the his-
torical transaction data published by the EPEX. We thus are able to accurately
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Hourly Contracts Quarter Hourly Contracts

s = 8 s = 5 s = 3 s = 8 s = 5 s = 3

|εst | % Hits % Hits % Hits % Hits % Hits % Hits

>0 100.0 71.2 100.0 74.5 100.0 77.9 100.0 71.1 100.0 74.2 100.0 77.4
>100 87.6 73.8 90.3 76.8 91.5 80.0 87.6 73.6 90.3 76.4 91.7 79.7
>200 76.4 76.3 80.8 79.0 83.4 82.1 76.3 75.8 80.8 78.7 83.5 81.7
>300 66.3 77.9 72.0 81.0 75.5 83.8 66.5 77.6 72.2 80.6 75.8 83.4
>400 58.3 79.6 64.0 82.7 68.5 85.4 58.1 79.3 64.2 82.3 68.5 85.1
>500 50.4 81.2 56.8 84.2 61.9 87.0 50.7 80.7 57.2 83.8 62.0 86.5
>1000 25.7 89.0 31.6 90.2 36.1 92.4 26.0 88.5 31.7 89.9 36.4 92.0
>1500 13.6 93.9 17.5 94.3 20.8 96.1 13.8 93.1 17.7 94.1 21.0 95.5
>2000 7.3 97.2 9.7 97.1 12.1 97.8 7.5 96.9 9.9 96.4 12.3 97.6

Table 8: Distribution of the size of absolute forecast errors (in MWh) in intervals
(%) and fraction of correct predictions (hits) of the sign of the forecast error ε0t
based on the magnitude of the signals εst .

evaluate how the market would have cleared additional orders added to the LOB
by our trading strategies, which enables us to conduct a historical backtesting.

3.4.2 Weather Forecasts

In order to execute our strategies, we require the signals εst defined in (5), which are
defined based on aggregated historical forecasts of solar and wind power production
in Germany kindly provided by Meteologica 13. Our data consists of day-ahead
forecasts available at 11 a.m. the day before delivery, the latest available intraday
forecast before gate closure, and intraday forecasts with an offset of 8, 5, and 3
hours before the delivery of a product from July 2017 until December 2018.

To assess the forecast errors, we use data on realized production of solar plants
and wind parks for the four German control areas as provided by ENTSOE.14 Box
plots of the forecast errors are provided in Figure 13. We observe an increasing
accuracy with smaller offsets as better weather forecasts and measurements of
realized production become available.

Our strategy is based on the expectation that errors in day-ahead forecasts are
predominantly traded on the intraday market and therefore have the potential to
change intraday prices for power, i.e., can be used as valid signal for changes in
the true fundamental value of the product. Consequently, for our strategy, the
most important aspect of weather forecasts is whether the sign of the error of the
day-ahead VRES forecast can be predicted from the updated intraday forecasts.

We investigate this aspect in Table 8, which displays how often the sign of
the forecast error ε0t is correctly predicted by εst depending on the magnitude of

13http://www.meteologica.com/
14https://transparency.entsoe.eu/
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Figure 13: Forecast errors of intraday forecasts for hourly and quarter-hourly
products traded on the German intraday power market between July 2017 and
December 2018. The best forecast refers to the last forecast before delivery whose
exact timing slightly varies with the product.

the signal, i.e., |εst |. In line with expectations and the results in Figure 13, the
precision of the forecast increases as the data is restricted to products with higher
absolute values of εst for all s and both types of products. It can also be observed
that shorter time to gate closure yields a consistently higher hit rate. However,
the increase in accuracy is only moderate. Hence, it seems that earlier signals are
not much worse while at the same time give the trader more time to react to the
signal. Finally, comparing hourly with quarter-hourly products, we observe that
the latter yield worse forecasts of the sign of ε0t in most cases, but the differences
are minute.

3.4.3 Calibration and Evaluation of the Policy

We generate counterfactual profits for our strategies in an as-if valuation of market
clearing based on the available LOB data. To that end, we inject orders generated
by the trading strategy introduced in Section 3.3 into the order book and then clear
the market according to the rules of continuous trading. Note that this introduces
changes relative to the historically observed traded quantities and prices and yields
the profits that could have been made, if the strategy was used. Of course, a
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limitation of these experiments is that, by the very nature of our analysis and the
available data, we cannot take into account the effect that the orders placed by
the strategy would have had on the behavior of other market participants.

As discussed in the previous subsection, we use data on intraday updates of
day-ahead forecasts for VRES production as signals for our strategy. Based on
a preliminary analysis of trading profits and in order to facilitate the discussion
of results, we only use the forecast 8 hours before delivery for our policies, i.e.,
consider ε8t as signal. This is also supported by the results in Section 3.4.2, which
show only a moderate improvement of the hit rate for later forecasts.

Furthermore, the choice ε8t has two advantages: Firstly, it allows the policy to
start trading relatively early on the updated information before most other traders
update their expectations on renewable production. Secondly, the long period from
the arrival of the forecast until gate closure gives the strategy ample time to build
up the position and thereby avoid excessive liquidity costs.

We thus fix the time t1 to start the algorithm at 8 hours before delivery and
set t2 such that the policy has 5 hours to build up the position. After that, the
policy waits for 115 minutes and then starts closing the position at t3, 65 minutes
before delivery. If the position is not closed at t4, 35 minutes before delivery, we
place a market order to close the remaining position. Note that since the liquidity
shortly before gate closure is markedly better than in the early hours of trading, we
are able to choose the interval [t3, t4] relatively short in comparison to [t1, t2].The
choice of timing and the 8 hour forecast as signal remains constant for all hourly
and quarter-hourly products and all variants of the strategy.

Having fixed t1, . . . , t4, we optimize our strategies by choosing the remain-
ing parameters ∆± = (∆+,∆−) and V ± = (V +, V −) to maximize profits using
historical training data on days d ∈ D1. In particular, we define a set of pos-
sible thresholds L = {100 · i : 0 ≤ i ≤ 20} ⊆ N and a set of volumes to
be traded V = {1, 5} ∪ {10 · i : 1 ≤ i ≤ 30} ⊆ N for hourly products and
V = {1, 2, 3, 4}∪{5 · i : 1 ≤ i ≤ 6} ⊆ N for quarter-hourly products. We then use
a simple grid search separately for hourly and quarter-hourly products to solve

(∆̄±, V̄ ±) ∈ arg max

{∑
d∈D1

Πd(∆
±, V ±) : V ± ∈ V × V , ∆± ∈ L × L

}
, (8)

where Πd(∆
±, V ±) is the sum of profits Πt as defined in (7) for all products t that go

into delivery on day d using the parameters V ± and ∆±. For the calculation, we set
the trading fees to 0.125€/MWh [EPEX, 2019] and use the quarter-hourly reBAP
prices available from https://www.regelleistung.net/ as balancing prices.

We note that the choice of ∆± determines whether the algorithm acts on a
relatively weak signals, i.e., for small values of εst , or whether a strong signal, i.e.,
a large forecast error, is required to open a position at t1. Clearly, for small ∆±
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the strategy trades products for which the forecast error might only have a small
effect on prices, resulting in a high chance that prices move in the opposite direction
due to the influence of other factors such as plant outages or changes in demand.
Furthermore, for small estimates of the forecast error εst , the probability that the
actual forecast error ε0t has the opposing sign is significantly greater than for larger
forecast errors as illustrated in the discussion in Section 3.4.2. For example, if ε8t
takes a small positive value 8 hours before delivery, forecasting that there will
be shortage in production, the actual day-ahead forecast error ε0t might still be
negative, i.e., VRES producers might be long.

In contrast, larger values on ∆± make the strategy react only to strong signals
increasing the chance that forecast errors ε0t have the same sign as ε8t and are
driving prices in the anticipated direction in the time window [t3, t4]. However, if
∆± is chosen too large, then the strategy will rarely open a position decreasing
overall profits. The optimization in (8) thus seeks to navigate this trade-off by
choosing optimal parameters ∆±.

The second set of parameter chosen in (8) are the traded volumes V ±. Large
volumes will generate large profits if signals are reliable and the price response
is moderate, while small orders that incur less transaction costs are preferable if
markets are illiquid. Note that due to the rules for building up a position, it might
be that even though V ± is large only smaller quantities are actually traded in some
hours, where the market is illiquid.

In the next section, we will investigate profits obtained from applying our
policy calibrated using a set of training days D1 to some (possibly) different set
of days D2, which are used as test data. If D1 = D2, then the measured profits
are insample profits, i.e., the policy is calibrated using the same data that is used
to evaluate profits. If D1 ∩ D2 = ∅, the profits for the days D2 are out-of-sample
profits.

3.5 Results and Discussion

In this section, we first present the results of a case study using 1.5 years of German
LOB data from the 01.07.2017 until the 31.12.2018. In Section 3.5.1, we explore the
in-sample profits made by optimally parameterized patient and impatient policies
for hourly and quarter-hourly contracts using both the actual forecast error ε0t as
well as ε8t . In Section 3.5.2, we focus on the more profitable patient strategies and
partition the data in calibration and test sets optimizing implementable policies,
which we evaluate out-of-sample for the year 2018.

We consider exclusively products where the day-ahead forecast, the 8-hour
ahead forecast, as well as the actual production of renewables are available. Fur-
thermore, we exclude the third hour on the 29.10.2017 and 28.10.2018 due to data
problems connected with day-light saving and the whole of the 27.10.2018 due to
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missing LOB data. Additionally, we exclude 69 hourly and 190 quarter-hourly
products due to an empty LOB shortly before the market closes. This leaves
us with 12 492 hourly and 50 055 quarter-hourly products for the period between
01.07.2017 to 31.12.2018, excluding in total 5% of hourly products and 4.85% of
quarter-hourly products.

3.5.1 Insample Results

In this section, we analyze the optimal parameter choice for V ± and ∆± as well
as optimal profits, setting both the training data, D1, and the test data, D2, to
the period ranging from 01.07.2017 to 31.12.2018. Since we use the same data
to calibrate the parameters and calculate the profits, the resulting optimal policy
violates non-anticipativity and is therefore not practically implementable. In par-
ticular, in reality, a trader is forced to choose a trading strategy ex-ante, without
knowing market outcomes in the trading period. The results in this section can
therefore be regarded as a in-sample evaluation of optimal profits.

As discussed in the previous section, we start building up a position 8 hours
before delivery for every hourly and quarter-hourly product in the observation
period and optimize both the patient and impatient trading strategy. To that end,
we evaluate the profit separately for products with positive and negative forecast
error for the 21× 32 = 672 (for hourly products) and 21× 10 = 210 (for quarter-
hourly products) parameter combinations in L×V . The parameters of the policy
are kept constant for all products in the observation period.

We start by analyzing the patient strategies based on actual forecast errors ε0t .
Figure 14 shows how the choice of parameters influence the profits for the patient
strategy with the red triangles marking the maximum profit. Observing results
for fixed thresholds ∆±, it can be seen that, as expected, higher volumes lead to
higher overall profits but due to limited liquidity, the increase is not linear and
from a certain threshold on, there is even an decrease in profits for increasing V ±.
Similarly, there is a sweet-spot for the required strength of the signal: Profits are
initially rising in the threshold ∆± and then start to fall again illustrating the
trade off between frequent trading on weaker signals and infrequent trading on
stronger signals.

The profits and the optimal parameter choices for the considered policies are
listed in the first panel of Table 9. The results show that, at least in-sample, a
trading strategy that is based on a hypothetical 100% accurate intraday update of
the day-ahead weather forecast yields significant positive profits for both hourly
and quarter hourly products.

Looking at the profits in detail, two observations can be made. Firstly, hourly
contracts are one order of magnitude more profitable than quarter-hourly contracts
although there are 4 times more products of the latter. Looking at the optimal
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Figure 14: Optimal profits of the patient trader for real forecast errors for hourly
products (above) and quarter-hourly products (below).

parameter choices and in particular at the low quantities traded for quarter hourly
products, it becomes clear that this is mostly due to missing liquidity for quarter-
hourly products, which start to affect profits already for much lower volumes than
this is the case for hourly trading. Secondly, we can observe that the patient trad-
ing strategy based on limit orders performs significantly better than the impatient
strategy which places market orders. In particular, the results suggest that the
impatient strategy does not work at all for quarter hourly products and only pro-
duces moderate profits for hourly products. Again, this is due to the high liquidity
costs in the market which has to be fully born by the impatient strategy.

Next, we analyze the policy for the more realistic case that the signal is based
on an updated forecast instead of the actual production, i.e., we use ε8t instead of ε0t
as a signal. We again plot the relationship of the parameters of the patient strategy
and the profit in Figure 15. The plot exhibits many of the same characteristics
as Figure 14 with the difference that higher volumes V ± lead more quickly to less
profits, i.e., optimal volumes tend to be smaller. This is due to the lower quality
of the signal which in many cases leads to a lower than expected forecast error
causing losses for policies that bid too aggressively based on ε8t .

Turning to the value of the strategy in panel 2 of Table 9, we observe that,
compared to the strategy based on ε0t , profits are significantly lower for the patient
trader and stagnate at low levels for the impatient trader. Again, as for ε0t , the
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Positive Negative Overall

Profit V + ∆+ Profit V − ∆− Profit

A
ct

u
al

(ε
0 t
) Patient QH 192 659 10 700 214 774 10 300 407 433

H 1 686 492 300 1 100 1 560 323 270 1 000 3 246 816

Impatient QH -48 892 1 2 000 -17 350 1 2 000 -66 242
H 65 167 20 2 000 3 684 1 1 600 68 852

F
or

ec
as

t
(ε

8 t
) Patient QH 48438 4 200 52 589 4 0 101 027

H 157 222 200 1 200 331 196 270 1 000 488 418

Impatient QH -30 937 1 2 000 -3 766 1 2 000 -34 703
H 168 1 1 600 5 607 20 2 000 5 775

Table 9: Profits of insample strategies in € for hourly contracts (H) and quarter-
hourly contracts (QH).

hourly strategies yield higher profits but the relative gap is smaller than for the
perfect forecast. Although the signal is of a lower quality, surprisingly, the optimal
parameters are rather similar to those found for ε0t , although optimal volumes tend
to be slightly lower, explaining parts of the lower profits.

The difference between the profits of the strategies based on ε0t and ε8t can
be interpreted as a lower bound on the monetary potential of improved weather
forecasting, which is substantial for the patient trader.

To put the profits in perspective to the required capital, we evaluate daily
capital requirements as the sum of the cost of opening the positions for all products
traded on a day, netting out positive and negative costs. The results are displayed
in Table 10 and indicate that, on average, the strategy requires a negative amount
of capital with low positive maximal values. The profits displayed in Table 9 can
therefore be realized with a small amount of risk capital and offer a high return
on investment.

3.5.2 Out-of-Sample Results

In this section, we evaluate strategies out-of-sample in the time period from 01.01.2018
until 31.12.2018. More specifically, we study non-anticipative strategies, i.e., make
sure that decisions at any point in time only depend on information available at
that time Shapiro et al. [2009]. Since the impatient strategy performs poorly in-
sample, we exclusively focus on the patient strategy for the experiments in this
section.

We use a rolling window setting for the out-of-sample evaluation of our strat-
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Figure 15: Optimal profits of the patient trader for forecast errors with an offset
of 8 hours for hourly products (above) and quarter-hourly products (below).

egy and re-optimize the parameters ∆± and V ± every day using the last six
months of data for the calibration. More specifically, we start our evaluation
on the 01.01.2018 using 180 days of training data spanning the period from the
04.07.2017 until 30.12.2017 to calibrate ∆± and V ± by grid search as in (8). We
then evaluate the profits of the resulting strategy on the 01.01.2018 and proceed
to the 02.01.2020 by including the 31.12.2017 in the training sample while remov-
ing the 04.07.2017 and retrain our policy to obtain out-of-sample profits for the
02.01.2020. In this manner, we build up out-of-sample profits for every product
traded in the year 2018.

Figure 16 shows the results of our experiment for hourly products. The first
panel displays the development of cumulative profits of the strategy based on the
signal ε8t and ε0t . Looking at the graph for ε8t , it becomes clear that while profits
over one year of trading are significantly positive and close to €200,000, there are
single days with large losses and extended time periods where the strategy did not
generate profits. Comparing with the profits of the strategy that uses ε0t , we see
that, as in the insample results, a perfect intraday update of the weather forecast
increases the profits by one order of magnitude. Furthermore, the strategy that
is based on ε0t exhibits a much smoother increase in cumulative profits with fewer
losses. This suggests that the losses for ε8t are mainly due to inaccurate forecasts
and suggests that better forecasts can not only increase the profits of the strategy
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Mean Max Min Std

H
o
u
r Patient

ε8t -22 163 5798 -210 712 40 655

ε0t -57 795 117 889 -38 7446 75 280

Impatient
ε8t -68 0 -1015 159

ε0t -2 246 5277 -23 798 4 015

Q
u
a
rt

e
r

H
o
u
r

Patient
ε8t 404 21 450 -24 865 6 256

ε0t 1 597 49 375 -33 657 10 711

Impatient
ε8t -141 2 613 -19 710 1 047

ε0t -276 4 069 -10 835 1 424

Table 10: Amount of net capital invested per day for the different trading strate-
gies.

but also reduce the variance of daily profits and therefore the inherent risk of
trading.

Turning our attention to panel 2 and 3 of Figure 16, which display the size and
the value of the open position after time t2 for the strategy based on ε8t , we see that
the strategy takes long and short positions of up to 200 MWh with a roughly equal
share of long and short positions. The position values suggest that the capital at
risk for single products does not exceed €20,000. It can also be observed that there
is a change in the strategy within the observation period: in the first few months
the algorithm triggers frequently and short positions tend to be smaller than long
positions. In the summer months, there is generally less trading activity, possibly
due to lower wind production which lead to smaller forecast errors.

Finally, the last panel of Figure 16 displays netted daily payments from balanc-
ing for products for which the position cannot be closed until gate closure. As can
be seen, there are only 7 days with a requirement for balancing. In most of these
instances the payment is negative, i.e., the trader has to pay to the grid operator
for balancing. However, as balancing is rare and none of the single payments to
the balancing market exceed €5,000, we conclude that balancing fees are not a
major driver of profits for the chosen strategies.

Figure 17 presents an analogous analysis for trading of quarter-hourly products.
The plot of the cumulative profits of the strategy reveals that, consistent with the
insample results, the strategy is less profitable for quarter-hourly products than for
hourly products. As with the insample results and the results on hourly products,
the strategy based on perfect forecast is one order of magnitude more profitable
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Figure 16: Cumulative profit of the optimal insample and out-of-sample strategy
for hourly products in the first panel. Panels 2 and 3 display the opened volume
and the financial value of the positions held by the out-of-sample strategy. Panel
4 shows daily payments on the balancing market for the out-of-sample strategy.

than the strategy based on ε8t and at the same time is less volatile.

A closer look at the cumulative profits over time reveals that, although the
trading of quarter-hourly products yields only roughly one fourth of the profits that
can be earned with hourly products, individual earnings for each product fluctuate
much less than in the case for hourly products. This is due to the generally smaller
positions taken by the optimal strategies which lead to less exposure to market
risk as evidenced by panels 2 and 3 of Figure 17. Observing these plots also reveals
that there are less seasonal trends in the traded quantities for the quarter-hourly
strategy. Finally, the last panel of the figure documents that, similar to the case for
hourly products, balancing occurs infrequently and therefore only plays a minor
role.

Table 11 provides detailed figures for overall profits, balancing costs, and sum-
mary statistics for profits per product for both hourly and quarter-hourly trading.
Looking at the summary statistics of profits per product confirms that trading
quarter-hourly products yields profits with a lower dispersion and therefore lower
capital requirement. Furthermore, conducting t-tests, we see that all average per-
product profits are significantly greater than zero at least at the 0.05% level and,
due to their lower standard deviation, the significance is greatly increased for
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Figure 17: Cumulative profits, traded volumes, value of traded positions, and daily
balancing payments for quarter-hourly products (see Figure 16 for a more detailed
description of panels).

quarter-hourly products.

We observe that the number of traded products is nearly twice as high for the
strategies based on ε0t as opposed to ε8t . Furthermore, due to the lower thresholds
for trading, the relative amount of traded products is larger for the quarter-hourly
products. Despite this and the fact that there are more quarter-hourly products,
the number of single trades that get cleared as result of our strategy is nearly as
high for hourly products as for quarter-hourly products. This is due to the larger
quantities traded for the hourly products which often cannot be cleared at once
but require trades with a large number of counter-parties dispersed over a larger
span of time.

3.6 Conclusion & Outlook

In this paper, we propose a simple parametric trading strategy for continuous
intraday trading on power markets based on intraday updates of forecast VRES
production. Our strategy generates significant out-of-sample profits for one year
of trading by an arbitrage trader that owns no production assets, has no own
demand, and operates on the German intraday market.

Our results show that one of the most important factors to consider when

77



3.6 Conclusion & Outlook

Hour Quarter Hour

ε8t ε0t ε8t ε0t

Profit 194 385 2 087 823 62 724 297 656
Balancing Costs -9 865 31 202 4 214 8 055

Mean 22.29 239.43 1.8 8.52
Standard Deviation 968 2 110 44 99
p-value of t-test 0.0316 0.0000 0.0000 0.0000

Minimum -21 220 -93 030 -1 731 -2 717
1% quantile -2 814 -3 740 -98 -246
10% quantile -394 -929 -22 -30
Median 0 0 0 0
90% quantile 522 1824 28 69
99% quantile 3 137 5 600 118 300
Maximum 15 908 32 174 1 836 3 518

Number of products 8 288 8 288 33 189 33 187
Number of traded products 2 853 4 732 21 425 21 044
Number of individual trades 136 863 311 802 223 593 367 719

Table 11: Descriptive statistics for the profits of different strategies and the number
of traded products and trades.

trading on the intraday markets is the lack of liquidity and the resulting transaction
costs. In particular, any algorithmic trading strategy has to cope with the limited
liquidity of the market, which on the one hand side drives price variability and
thereby may favorably influence profits but on the other side makes it harder to
capitalize on informational advantages, as any speculative trading strategy has to
overcome the bid-ask spread.

We mitigate these problems by designing a patient trading strategy that uses
limit orders instead of market orders and allows for an extended time to trade
waiting for favorable orders to arrive on the respective other side of the market.
We show that this patience is key to making profits and that the impatient strat-
egy incurs substantial liquidity costs that absorb most of the profit that can be
generated with weather related information.

Additionally, our results demonstrate that the German intraday market for
power is not semi-strong efficient, since publicly available data on weather forecasts
can be used to define a trading strategy that generates significant profits while
requiring a relatively small amount of risk capital. Furthermore, there would be a
substantial potential for even more profitable trading, if weather forecasts were to
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further improve.

This implies that trading strategies similar to the one presented in this paper,
could be a driver for continued innovations in short-term forecasting of VRES
production as traders compete in the accuracy of their forecasts. This might
trigger an arms race in weather forecasting with market participants trying to
capitalize on ever improving forecasts. Algorithmic traders would consequently
help the market to process information more efficiently thereby generating price
signals of a higher quality and at the same time improve market liquidity.

Additional market liquidity would in turn make weather-based trading easier
and more profitable as is demonstrated by, for example, the higher profits generated
by our algorithm for the more liquid hourly products as opposed to the less liquid
quarter-hourly products. Hence, such a trend could, at least for a while, feed itself
and therefore has the potential to lead to a much more responsive intraday market.
Therefore, as opposed to the arguably adverse welfare effects of the arms race for
speed that characterizes algorithmic trading on financial markets [Budish et al.,
2015], this development would likely unlock positive welfare effects.

In our study, we take great care to evaluate the proposed trading strategy as
realistically as possible. To that end, we use detailed limit order book data on
submitted orders to calculate profits based on an exact implementation of the
EPEX clearing algorithm. Furthermore, we make sure that all our policies are
non-anticipative, enforcing a strict separation of training and test data.

However, there are still some limitations in our study. Most importantly, we
work with historical order data to compute counterfactual profits of our strategy
in an as-if fashion. This analysis by design cannot take into account the reac-
tion of other market participants to our trading strategy. A completely different
experimental design would be required to overcome this shortcoming.

Another shortcoming of our analysis concerns the quality of the order book
data. In particular, we only use German orders even if a small amount of orders
is cleared against order from other countries. Although we reconstruct the foreign
orders that were historically cleared against German orders, we cannot completely
capture the influence that orders from order books of other countries would have
had on our results if we had executed our trading strategy. However, due to
transmission line restriction, the fraction of German orders cleared with orders
from other countries is rather small (below 5%) and we therefore think that our
results are robust with respect to this influence.

Furthermore, the order book data supplied by the EPEX is imperfect in many
ways impeding a fully accurate what-if analysis. In particular, the end validity
date of cleared orders is overwritten with the clearing time which makes it impos-
sible to reconstruct the actual end-validity dates of cleared orders. Additionally,
it is hard to correctly identify iceberg orders and market orders from the data.
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However, since, apart from very few exceptions, our implementation of the clear-
ing algorithm correctly reconstructs historically observed prices, we are confident
that the cumulative impact of these issues on our results is negligible.

Our research opens some avenues for further research in weather-based auto-
mated trading algorithms on intraday power markets. In particular, it is easy to
conceive improvements in the proposed trading strategies. One obvious example is
the inclusion of maximum and minimum prices to build up a position as additional
parameters of the strategy, preventing trades at unfavorably high or low prices.

This and other possible refinements would lead to a larger number of param-
eters of the strategy and would therefore necessitate a more sophisticated opti-
mization of the strategy. Possible improvements in this direction could be based
on machine learning techniques such as artificial neural networks or reinforcement
learning [e.g. Bertrand and Papavasiliou, 2019]. Alternatively, one could employ
state-of-the art black box solvers such as CMAES [see Hansen et al., 2010] to find
optimal parameters.

Another large area of improvement is in the use of data. Firstly, it is con-
ceivable that the quality of the order book data will improve in the coming years
making more accurate analysis of the profits possible and mitigate most of the
data related problems described above. Furthermore, as more data becomes avail-
able the training of strategies will become more easy and the results more reliable.
Secondly, a more careful selection of training data might benefit the performance
of the algorithm. For the present paper, we simply use the last 180 days of data
to train our strategy for all products. This implies that data from different times
of the day, weekdays, and seasons is used indiscriminately to train the strategy
for all products in the test data. Making sure that the training data matches the
test data more closely and thus enabling different strategies for different weekdays,
seasons, and products has the potential to increase trading profits.
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4.1 Introduction

In the last decades, electricity markets in most countries have seen fundamental
changes due to the transition of the electricity sector from a vertically integrated,
state controlled sector of the economy to a competitive industry. In addition, the
electricity sector is the key to sustainable energy systems, facilitating a substantial
increase in the use of renewable energy and consequently the phase-out of fossil
fuels.

Electricity markets are typically organized as a sequence of future markets that
trade products with ever shorter maturity and temporal resolution. Most market
designs feature a day-ahead market that allows to trade electricity one day ahead
of delivery and a market that gives firms the possibility to adjust their positions
until shortly before physical delivery.

The latter markets — organized either as real-time or intraday markets — are of
increasing importance because of the growing short-term uncertainty in production
from renewable energy sources. Prominent examples for real-time markets include
most US electricity markets [Milligan et al., 2016], while European short-term
markets are organized as intraday markets.

In this paper, we focus on intraday markets. There are currently two prevailing
designs for intraday trading [Ocker and Jaenisch, 2020]: continuous markets and
repeated auctions. Both designs have their strengths and weaknesses: Auction
based markets impose low entry barriers for participating firms and facilitate rel-
atively high liquidity by pooling demand and supply. However, existing auction
markets suffer from long lead-times making it difficult to trade the production of
renewable energy sources and to quickly react to new information [Hannele Holt-
tinen, 2013], mostly because there are only a handful of auctions with the last one
closing several hours before delivery.

In contrast, continuous trading ensures a high level of immediacy as traders
can instantaneously act on new information. Furthermore, since a trader can,
in theory, accept orders for different products with known prices simultaneously,
the continuous market makes it easier to trade complex profiles in asset backed
trading. The main downsides of continuous trading are the higher complexity of
trading, the lower liquidity [Kuppelwieser and Wozabal, 2021], which leads to low
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quality price signals that are often dominated by noise, and the incompatibility of
order-book based trading with the physical realities of the electrical grid. Despite
these downsides the recent trend is to discontinue auction based designs in favor
of continuous trading [Ocker and Jaenisch, 2020].

Consequently, continuous intraday markets have recently attracted some at-
tention in the academic literature. Weber [2010] analyzes the integration of wind
energy considering different European market designs and finds that the intraday
auctions in Spain are the most attractive in terms of trading volume. Balardy
[2022] analyzes liquidity in terms of bid-ask-spreads and market depths. Baule
and Naumann [2021] study the volatility of intraday markets as well as the drivers
of price fluctuations on the German intraday market. Furthermore, there is a
large literature on forecasting models and the identification of suitable covariates
for intraday prices [e.g., Kiesel and Paraschiv, 2017, Uniejewski and Weron, 2018,
Janke and Steinke, 2019, Narajewski and Ziel, 2020b, Marcjasz et al., 2020].

In this paper, we investigate a market design, which we believe is well suited
to deal with the idiosyncrasies of electricity markets and represents a compromise
between the extremes of continuous trading and infrequent auctions. In particular,
we propose that orders should be batched in frequent auctions which are repeat-
edly conducted for every traded product until briefly before physical delivery of
electricity starts. Since the intervals between auctions would be small, the pro-
posed market format can be considered a hybrid between auctions and continuous
trading. We argue that a frequency of 15 minutes to an hour strikes a good bal-
ance between immediacy and liquidity and thus yields lower transaction costs and
more reliable price signals. Ideally, such a market has the potential to combine
the advantages of both designs while avoiding most of the disadvantages.

Our proposal is motivated by general results in the finance literature and spe-
cific findings pertaining to the electricity markets. In the finance literature, which
is reviewed in more detail in Section 4.3.1, there is a large body of literature that ar-
gues that the quality of price discovery benefits from either trading financial assets
in auctions or at least complementing continuous trading by auctions [Schwartz,
2012]. Furthermore, there is evidence that, in particular thinly traded stocks with
comparably less volume, benefit from the shift to auction based trading [e.g., Hu
and Chan, 2005, Hu, 2006]. This provides an argument for the use of auctions
in intraday electricity markets, which are characterized by rather low trading ac-
tivity at times. Furthermore, in an independent stream of research Budish et al.
[2015], Aquilina et al. [2021] argue that a switch to frequent auctions eliminates
the excesses of high frequency trading and thereby increase welfare.

Additionally, there are several authors that discuss the specific advantages of
auctions for electricity intraday markets. Neuhoff et al. [2016] studies the impact of
the intraday auction in the German market that clears one day before delivery and
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find that the auction has a higher liquidity and lower volatility than continuous
trading. Furthermore, the authors argue that auctions are better suited for smaller
players that do not have the capacity to take part in a continuous intraday market.

Similarly to the market design proposed in this paper, Deutsche Börse Group
[2018] proposes a model for frequent intraday auctions that takes into account
transmission infrastructure to explicitly price scarce interconnector capacities, al-
lows for more complex order types, and increases liquidity. The authors argue that
these goals can be achieved in auctions, due to the increased time for clearing and
the possibility to take into account orders at different locations across the network.

Ocker and Jaenisch [2020] discuss continuous trading and auction based intra-
day markets in the European context and identify liquidity, the resilience against
the exercise of market power, and efficiency of the use of transmission capacity as
the main advantages of auctions over continuous trading.

To get an idea how frequent auctions could impact market outcomes, we con-
duct a case study for the German market by creating a counter-factual for auction
outcomes based on detailed order-book level data submitted to the EPEX contin-
uous intraday market for the German market zone in the years 2017 and 2018.
To this end, we construct hypothetical auction outcomes for a single auction per
product as well as auctions with hourly and quarter-hourly frequencies. Our re-
sults show that the distribution of volume weighted prices remains virtually iden-
tical when switching to any of the proposed auction formats. When examining
the traded volume, we are able to show theoretically that under certain condi-
tions auctions clear less orders and therefore lead to lower traded volumes than
continuous trading. This theoretical result is largely confirmed in our numerical
experiments.

Despite the results on traded quantities, liquidity costs measured as costs of
round trip trades as in Kuppelwieser and Wozabal [2021] are lower for auction
based trading than for continuous trading. Based on these results, we argue that
even though auctions tend to clear less volume, they are preferable in terms of
liquidity cost.

Finally, we use a kernel regression based approach to investigate the signal to
noise ratio of the price signals generated by the two market designs. We find that
prices generated by frequent auctions are significantly less noisy than the prices
resulting from continuous trading and are therefore expected to produce more
reliable price signals that are more closely tied to changes in the fundamental
value of the traded product.

The rest of the paper is organized as follows: In Section 4.2, we review the
current European market design with a special emphasis on the German market,
which we use in our case study. In Section 4.3, we review the trade-off between
continuous trading and auctions as it is discussed in the finance literature and
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argue that frequent auctions have the potentials to combine the advantages of
both designs. Section 4.4 details the computation of the counter-factual based
on the order book data for the German market, while Section 4.5 discusses the
numerical outcomes of the comparison between continuous trading and frequent
auctions. Section 4.6 summarizes and concludes the paper.

4.2 The German Electricity Market Design

In this section, we review the current German design for short-term electricity
markets. We first give a broad overview of all the markets and their integration in
the larger European context in Section 4.2.1 and then discuss the specific market
rules for intraday trading in Section 4.2.2.

4.2.1 Overview of German Short-Term Electricity Markets

The German short-term market for electricity is embedded in the wider zonal Eu-
ropean market design, which is organized as a cascade of forward markets with the
day-ahead market being especially important. Specifically, the day-ahead market
determines schedules for European cross-border flows via the European single day-
ahead coupling and consists of several bidding zones in which Germany represents
a single zone.15 Trading with other zones is defined through “flow-based” market
coupling.16 The market is organized as a double auction that yields locational
marginal prices and trades products for delivery in every hour of the following
day.

The main philosophy of the German market design is that market participants
should deliver on their day-ahead promises in real-time at the firm level [Cram-
ton, 2017]. However, because demand and non-dispatchable supply are uncertain,
market participants have the opportunity to minimize their real-time imbalances
at the intraday market that opens shortly after the day-ahead market has cleared.

In Europe, there are currently two competing types of intraday trading systems:
auction markets and continuous intraday trading. In 2015, the EU committed to
the long-term goal to couple all European intraday markets in a large continuous
market in order to facilitate a secure energy supply, competitiveness, and fair
prices [European Commission, 2015]. In Germany the intraday market is hosted
by the EPEX, the largest electricity exchange in Europe [see Viehmann, 2017, for
a detailed description] and is organized as a continuous trading market.

15See https://www.entsoe.eu/network_codes/cacm/implementation/sdac.
16Because the European day-ahead market is a zonal market and not a nodal market as it is

the case in the United States, the flow-based market coupling intends to approximate trade flows
between zones according to the impedance of the network.
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Similar to day-ahead markets, German intraday markets are also coupled with
other intraday markets across Europe via the single intraday coupling (SIDC).
Orders of each bidding zone are collected in local limit order books, and cross-
border capacities are used to build shared limit order books that are used to match
orders from different zones.17 As of today, cross-border flows in SIDC are agnostic
towards Kirchhoff’s and Ohm’s laws and are computed according to shortest paths
between nodes of the network.18 Consequently, the power flows computed in SIDC
might not match actual physical flows leading to potentially costly re-dispatch by
the transmission system operator (TSO).

Unlike the electricity markets in the United States, the German market design
can be described as trader-centric, because day-ahead and intraday market offer-
ings are not tied to physical units but to traders. In a separate process market
participants with dispatchable units communicate with the TSO about which units
at which locations are scheduled. More generally, the European take on electricity
market design aims to decouple the trading reality from the physical reality. Be-
cause the latter has to be taken care of in order to avoid system failure, complex,
spatially heterogeneous, and partially intransparent processes are operated to en-
sure that electricity supply can be maintained even under circumstances where the
trading decisions produce physically infeasible market results.

Germany requires market participants to firmly report schedules at 2:30 pm
one day ahead of delivery.19 These schedules must be within the range of the
maximum physical withdrawal or injection capacity which limits arbitrage trading
between the day-ahead and intraday markets. Furthermore, this framework effec-
tively bans speculative traders that do not have a natural short or long position
from participating in the day-ahead market. Nevertheless, the price differences
between day-ahead market and intraday-market is typically small on average. If
for a market participant the combined orders from spot and future markets de-
viate from the actual physical production or consumption at gate closure of the
intraday market, the residual quantities are settled on the balancing market. The
price-spread between the day-ahead market and the balancing market is often sig-
nificant. Balancing prices are determined by distributing costs of reserve call offs
to those market participants that caused the imbalance. The German regulatory
framework forbids to arbitrage between the day-ahead or the intraday market and
the balancing market by creating imbalances on purpose.20 In practice, this is
less strictly enforced for producers of renewable electricity and the demand side

17See https://www.entsoe.eu/network_codes/cacm/implementation/sidc/.
18See https://www.nemo-committee.eu/assets/files/public-description-of-the-continues-trading-matching-algorithm-.

pdf for a more detailed description of the matching algorithm.
19See Stromnetzzugangsverordnung (StromNZV), §5(1), https://www.

gesetze-im-internet.de/stromnzv/__5.html.
20See https://www.amprion.net/Strommarkt/Bilanzkreise/Bilanzkreisvertrag/.
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because of the difficulties in precisely predicting production and load.
Capacity for reserve call offs is procured in separate auctions which are held

every day for the respective next day before the day-ahead market is cleared.
TSOs then call off positive or negative reserve energy in real time to ensure that
planned power flows are physically feasible. The revenue stream of a supplier
eligible to participate in the balancing market thus consists of (i) selling energy in
the day-ahead and intraday markets, (ii) arbitraging between day-ahead market
and intraday market, and (iii) providing the flexibility to adjust prior schedule
commitments in real-time that are needed to balance the system if other market
participants are not able to stick to their commitments. Therefore all these markets
are implicitly coupled with each other.

Although in the day-ahead market transmission constraints are not explicitly
accounted for within Germany, these can still be relevant and the TSO might
have to intervene by redisaptching some power plants to ensure feasible flows
within the German zone. This invites what is called the INC/DEC game [Graf
et al., 2020], where market participants with dispatchable capacity may be able to
profit from the discrepancy between the clearing result from, for example, the day-
ahead market and the actual real-time demand for their supply units.21 Using this
strategy market participants can endogenously create a demand for re-dispatch
by submitting — from a system perspective — unfavourable schedules. To limit
the profitability and therefore the attractiveness of this strategy, Germany uses a
cost-based re-dispatch [Hirth and Schlecht, 2019].

4.2.2 The German Continuous Intraday Market for Electricity

The German continuous intraday market opens shortly after the clearing of the
day-ahead market and is organized as an order book based continuous trading
market that features hourly, half-hourly, 15-min, as well as block products. The
intraday market remains open until 5 minutes before the delivery of the respective
product starts. However, the German market zone is split up into four zones, one
per TSO, 25 minutes before gate closure, even if no actual congestion is present.

Each buy and sell order on the intraday market for a given product contains
basic information about quantity, limit price, and validity time. A market order
is cleared immediately against the best available order in the limit order book
(LOB), while a limit order is only executed with matching orders on the other side
of the market up to a certain price (the limit). If this is not possible, the order

21INC stands for incremental energy and DEC for decremental energy. The game is played
by market participants that choose to schedule their units in the day-ahead market such that
their re-dispatch revenues are maximized. Because markets closer to real-time are typically less
competitive, especially if they are local, this can be a profitable strategy and is possible if relevant
constraints that matter in real-time are ignored in the day-ahead market-clearing.
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Figure 18: Example of the state of the order book at T = 1 in the left panel.
Clearing of a new bid in the right panel.

is kept in the LOB until its end validity date to be cleared with future orders.
If the quantities of two matched orders do not agree, the order with the higher
order quantity is only partially cleared and remains in the order book with the
remaining quantity.

Market participants can add the usual order qualifiers such as immediate-or-
cancel (IOC) or fill-or-kill (FOK) [EPEX, 2019].22 Additionally, iceberg orders are
allowed for which only a fraction of the order quantity is visible to other market
participants. As soon as the visible quantity is cleared, the next part of the order
is automatically placed in the limit order book.

The basic mechanism of continuous trading is illustrated in Figure 18 by a
concrete example: In the left panel, the state of the order book at T = 1 is
displayed with the orders sorted according to their limit price. The state of the
LOB changes with the placement of a new order, with the modification of an order,
and at the end-validity-time of an active order. The limit price of the order with
the lowest sell price is called best-ask, while the order with the highest buy price
defines the best-bid, and the difference between the two prices is the bid-ask-spread.

The dynamics of the order book are exemplified in the right panel of Figure

22IOC is either executed immediately, or, if the order cannot be matched, deleted with-
out entry in the order book. FOK is either executed immediately and with its full
quantity or, if the order cannot be matched with its entire quantity, deleted without en-
try in the order book. Note that the difference between IOC and FOK is that an
IOC order can be partially cleared. See https://www.nemo-committee.eu/assets/files/

public-description-of-the-continues-trading-matching-algorithm-.pdf.
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18: A bid with a price higher than the lowest ask is added to the book at T = 2
and then cleared against the cheapest possible offers until either the whole order
is fulfilled (as is the case in the figure) or there are no offers with lower prices
left. Note that the clearing is instantaneous, i.e., columns 2 – 3 of the figure are
purely illustrative and do not correspond to market states that can be observed
by traders.

4.3 Frequent Auctions for Intraday Power Markets

In this section, we discuss the literature on the trade-off between continuous and
auction based trading in Section 4.3.1 and then proceed to discuss how the specifics
of the electricity market influences the choice between the two market designs in
Section 4.3.2.

4.3.1 Continuous Trading versus Auctions in the Finance Literature

The finance literature discusses the choice between auction based trading and
continuous markets as a trade-off between liquidity and quality of the price signal
versus the possibility to react quickly to new information. Continuous trading is at
one extreme of this trade-off, offering maximal immediacy. Having a single auction
is the other extreme which would be, by definition, welfare optimal if there is no
information flow in the time the auction market is open.

Although continuous trading is the prevailing market design in all major mar-
kets trading shares, futures, options, and other financial products, there are promi-
nent critical voices in the finance community. Most of these authors advocate to
replace or complement continuous trading by auctions in order to either improve
liquidity and the quality of the price signal [e.g., Schwartz, 2012] or to avoid the
excesses of high frequency trading that effectively imposes a fee on trading and
thereby lead to welfare losses [e.g., Budish et al., 2015].

Kregel [2001] provides an account of the historical roots of continuous trading
and points out that in early stock exchanges trading was organized in auctions.
However, since, without computer technology, auctions had to be performed se-
quentially in order to give every trader the chance to participate in all auctions,
auctioning became impractical as the number of listed companies increased. To
resolve this problem, trading floors where brokers could continuously strike bi-
lateral deals evolved. This form of trading eventually lead to continuous trading
as it is practiced today. Paradoxically, nowadays the use of modern information
technology, whose absence necessitated this development, is to blame for most of
the adverse effects of continuous trading.

One of the advantages of continuous trading is its immediacy, i.e., the ability of
market participants to instantaneously trade on information whenever it arrives.
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Correspondingly, in a classic paper, Brennan and Cao [1996] show that, if the
timing of information is not predictable and specific assumptions on a demand for
immediacy and risk aversion of market participants hold, continuous trading yields
a Pareto efficient equilibrium that is preferable to auctions.

However, in a survey of equity traders Economides and Schwartz [2001] find
that there is no fundamental economic reason to execute trades within seconds or
minutes. Based on these findings, Steil [2001] argues that the demand for immedi-
acy is endogenous to continuous trading and would almost entirely vanish if trading
would take place in auctions. In particular, traders want to react fast to either
profit from being the first to react to new information or to avoid front-running
of other market participants. When trading is organized via auctions, the notion
of being first looses its meaning and front-running cannot occur. Furthermore,
Economides and Schwartz [2001] find that the lack of liquidity in continuous trad-
ing might actually reduce immediacy for larger positions, since traders are forced
to trade patiently over longer time periods to avoid an excessive price response to
their trades.

Recently, Budish et al. [2015], Aquilina et al. [2021] take a slightly different
angle in criticizing continuous trading when study the impact of high frequency
trading on market outcomes. The authors observe that treating time as continuous
in trading systems that serially process orders opens the door for latency arbitrage
where high frequency traders compete on speed to capitalize on new information
that signals a change in the fundamental value of traded assets by sniping stale
orders of other market participants that are slower to react. The authors argue
that the resulting arms race for speed is socially wasteful and effectively introduces
a fee on trading that reduces liquidity.

In particular, Aquilina et al. [2021] find that frequent batch auctions would
reduce the cost of liquidity by 17% and that a remarkably large portion of overall
trading volume (about 20%) can be attributed to latency-arbitrage races. Simi-
larly, Wah and Wellman [2013] find in a simulation study that replacing continuous
markets with periodic call markets eliminates latency arbitrage opportunities and
achieves substantial efficiency gains.

There is a strand of literature that explores the trade offs between continuous
trading and repeated auctions. An early paper in this direction is Garbade and
Silber [1979] who investigate how the frequency of trading influences liquidity risk
and identify two opposing effects: Firstly, longer auction periods help to collect
more participants in an auction and therefore reduce the noise in the price signal
and therefore liquidity risk. Secondly, they identify the drift in the equilibrium
price as driving the volatility risk up as auction intervals become longer and the
shocks in equilibrium prices increase between to consecutive auctions. Hauser
et al. [2001] extend this argument and find that more liquid stocks tend to have
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less return volatility when continuously traded whereas discrete trading with longer
intervals is preferable for thinly traded stocks.

Du and Zhu [2017] propose a model of sequential double auctions, which allows
to capture the trade-off between the welfare increasing ability to react quickly to
information changes and welfare decreasing bid shading both of which increases
in the frequency of trading. In the model, frequent trading reduces liquidity (and
thus welfare) in every single auction, but increases welfare by reducing externally
assumed holding costs of agents.

Complementing this theoretical research, there is a large body of empirical
literature that informs the discussion based on observational data from stock mar-
kets. Pagano and Schwartz [2003] show that complementing continuous trading
with call auctions lowered execution costs and improved price discovery in the
Paris stock exchange. Comerton-Forde et al. [2007] find similar results for the
Singapore stock exchange.

On the other hand, Muscarella and Piwowar [2001] find that for assets traded
on the Paris stock exchange, the traded volume increases when stocks are shifted
from auction based trading to continuous trading and decreases when the shift
goes in the other direction.

Twu and Wang [2018] show in a case study of the Taiwan stock exchange
that decreasing the interval between consecutive auctions improves overall market
quality. Contrary to these findings, Hu and Chan [2005], Hu [2006] find that shorter
intervals correspond to a worse signal-to-noise ratio in prices at the exchange.

Lauterbach [2001] shows that for most stocks on the Tel-Aviv stock exchange
liquidity and the quality of the price signal improved after being shifted to continu-
ous trading but also identifies some exceptions of stocks that are thinly traded and
for which continuous trading does not work well. Finally, Chelley-Steeley [2008,
2009] finds that market quality on the London stock exchange improves with the
introduction of a closing call auction and that this improvements are especially
pronounced for the least actively traded securities.

Overall, the emerging picture is ambiguous. However, it seems fair to conclude
that thinly traded stocks tend to profit from auction based formats. This suggests
that intraday markets for electricity, which, except for a brief period shortly before
delivery, are characterized by rather low activity could profit from an auction based
design.

4.3.2 Auctions versus Continuous Trading in Electricity Markets

In this section, we describe key differences between electricity markets and financial
markets, discuss the applicability of continuous trading in electricity markets, and
highlight where auctions might have advantages or disadvantages.

A continuous market design allows to trade immediately and all current orders
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are visible to each trader (transparency). However, since intraday markets for
electricity are, compared to most financial markets, rather thinly traded and many
market participants do not have the ability to react fast to new information, the
loss in immediacy is likely to be marginal when switching to a market design with
frequent auctions.

In an auction the submission time of orders is irrelevant. Therefore auctions
help to create a level playing field without advantages for those who are able
to act quickly and therefore prevent front-running and other costly excesses of
high frequency trading as they are observed in financial markets. Furthermore,
the technical complications and high fixed cost of operating a trading desk that
participates in continuous trading at competitive speeds might hinder market entry
of some firms. Hence, an auction-based market might facilitate more participation
and ultimately a more liquid market [Ocker and Jaenisch, 2020].

Another difference between the two market designs is price variance and the
quality of the price signal, i.e., the information about fundamental values that is
contained in the price. While an auction based market design with too few auc-
tions disseminates information slowly and might lead to large price shifts between
auctions [see Garbade and Silber, 1979], a design with frequent auctions can be
used to address these issues. Furthermore, by pooling orders in auctions extreme
bids and offers are likely to be infra-marginal and therefore do rarely directly influ-
ence the clearing price. Because individual orders in an auction are not observable
to market participants, the decision on how to trade would likely be more influ-
enced by observable shocks such as changes in forecast for demand or renewable
production than by the actions of other market participants. Taken together this
shifts the focus of traders away from an introspective view on the markets towards
fundamental factors, which potentially reduces trading-induced noise in the price
signal.

One of the advantages of continuous trading is that firms can more easily trade
complex profiles involving more than one product. Consider the example of an
electricity storage that wants to buy electricity in one period, store it, and then
sell it at a later point in time. In continuous trading the storage can accept existing
limit orders for two products at the same time for known prices and thus minimize
the risk that only one leg of the transaction is executed. Contrast this to the same
situation in an auction setting, where it could very well happen that the bids of the
trader are only accepted in some of the auctions leaving the storage with an open
position. This situation can be circumvented by submitting perfectly inelastic
supply or demand functions with the effect that the storage owner may not receive
the arbitrage value she had hoped for [see also the discussion in Löhndorf and
Wozabal, 2022].

Next we discuss to what extent the market design can deal with technical prop-
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erties of the underlying electricity network and how this might affect the choice of
the trading system. In particular, we remark that electricity markets are special
because generators, consumers, and traders interact through a rather unforgiving
physical system whose failure induces significant negative external effects on soci-
eties as a whole [Kirschen, 2021]. That is the reason why effectively all electricity
markets have a transmission system operator as a centralized authority that has
the objective to secure continuous electricity supply for as many customers as
possible.

In electricity markets, network constraints that result from the aforementioned
physical limitations introduce complications in market-clearing because the result-
ing power flows have to be computed for every trade. Flow-based market coupling
reflects congestion in the network and assigns prices to transmission capacities
accordingly and therefore would be the first-best solution. However, the computa-
tional performance of the ensuing calculations depend non-linearly on the size of
the network and can cause latency in continuous trading, which would slow down
trading and decrease the advantage of immediacy. Hence, if power flows would
be accurately computed while clearing the market, this would effectively act as a
speed limit for continuous trading.

These leaves two options to price transmission capacities in continuous trading:
(i) exogenously defined locational markets, which obviously is inefficient because
cross-border trading is restricted even if market conditions would allow for it,
(ii) transmission capacity is allocated for free on a first-come first-served basis
[Ehrenmann et al., 2019]. The latter approach aggravates the potential race for
speed in continuous markets. Summarizing, it is highly unlikely that a sequence
of bilateral trades through continuous trading is able to solve the complementary
goods problems for energy and transmission capacity [Mansur and White, 2012,
Ehrenmann et al., 2019].

In contrast, flow based market-coupling can easily be accounted for in an auc-
tion that centrally maximizes welfare subject to transmission constraints. In this
setting, locational prices can be easily constructed from the duals of the energy
balance constraint and the duals of the transmission constraints [see, e.g., Graf
and Wolak, 2020]. The advantage is that the price of congestion will be defined
endogenously based on orders. At this point it is important to highlight that in
meshed electricity networks with loops, transferring 1 MW of electricity from one
node to another affects every single flow in the network. Consequently, clearing
the market jointly with many different offers and bids at different locations will
increase the efficiency of the market outcome [Ehrenmann et al., 2019]. Even more
important in terms of computational complexity are constraints that link several
time instances [Neuhoff et al., 2016]. Both attributes favor auctions because com-
putation time is less critical compared to continuous trading markets [see also
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Deutsche Börse Group, 2018].
We also want to emphasize that because bids and offers are cleared sequentially

in continuous trading, liquidity is critical when blocks of energy are traded. More
precisely, in continuous trading a block-offer will only be sold conditional on the
presence of a market participant willing to buy a given block bid. In practice this
constraint can lead to severe liquidity crunches. In contrast, in auctions block-
offers can easily be traded against multiple simple demand bids, if auctions for
several products are cleared simultaneously [Ehrenmann et al., 2019].

Finally, we remark that with continuous trading dispatchable units that partici-
pate in the reserve markets may use schedule changes ordered by the transmission
system operators to front-run the continuous intraday market. In particular, if
market operators with dispatchable units obtain the information that one of their
units’ output will be changed only a fraction of a second before the public, this
information can be monetized on the continuous intraday market. If an auction
would take place, e.g., every five minutes, the timing of when the information of
a schedule change will be released is less critical and all market participants are
in the same position to react to this information update. Hirth and Mühlenpfordt
[2021] empirically study this aspects for the German intraday market where bal-
ancing orders are not published in real-time. The authors find a statistically robust
correlation between reserve call offs and intraday price changes.

4.4 Counter-Factual Frequent Auction Design

To assess how a transition to frequent auctions affects intraday electricity prices, we
construct counter-factual market results based on observed order book data from
the German continuous market. We conduct a ceterus paribus analysis where the
market design changes, but the orders of the market participants stay the same,
i.e., we use the historical orders submitted to the continuous market as hypothetical
auction bids. For the purpose of this paper, we consider hourly and quarter-hourly
products traded at the EPEX and disregard the half-hourly products in order to
keep our numerical study manageable.

In Figure 19, we visualize a stylized sequential auction design for one product
in a single-zone market. The main idea is that a uniform price auction is run
repeatedly with the last auction shortly before delivery and the first auction several
hours before that. Auctions should be frequent enough to allow for a timely
reaction to new information but leave enough time between auction clearings in
order to ensure sufficient participation – and thereby liquidity – in every single
auction. We therefore envision hourly or quarter-hourly auctions that are run
simultaneously for all traded products. We believe that the flow of fundamental
information pertaining to electricity supply and demand is such that this design
does not represent a relevant limitation of immediacy in trading. For the sake of

93



4.4 Counter-Factual Frequent Auction Design

P (Q)

e
/M

W
h

Q

MWh

. . .

T0 + 2∆

T0 +∆

T0

Figure 19: Stylized Sequential Batch Auctions for one Product

simplicity, we propose the auctions to be evenly-spaced in time. After an auction
clears, the next one immediately opens and bids and offers are collected by the
market operator until gate closure, which is the time the auction is cleared.

To construct auctions, we fix a product, i.e., a specific hour or quarter-hour in
which electricity is delivered and an auction interval ∆ ∈ {15, 60}. An order is
characterized by the vector (q, p, t0, t1)

> consisting of a quantity q ∈ R+, a limit
price p, a start validity date t0, and an end-validity date t1. For ∆ = 15 the first
auction opens at T0 = 16:00 for quarter-hourly products and at T0 = 15:00 for
hourly products while for ∆ = 60 , the first auction opens in such a way that we
obtain the last clearing 30 minutes before delivery.23 For every auction k, we then
collect all offers Ok and bids Bk that are submitted to the continuous market and
are valid in the period (T0 + (k− 1)∆, T0 + k∆], i.e., whose end of validity date is
larger than (T0 +(k−1)∆) and which have not been cleared in a previous auction.
For the sake of simplicity, we exclude block orders from the analysis.

For every auction k, the cleared quantity is defined as the maximizer q∗ of the
following welfare optimization problem

max
q

∫ q

0

D−1k (x)− S−1k (x) dx, (9)

23We note that in a practical implementation it would be desirable to trade even closer to
delivery, say 5 minutes. However, since 30 minutes before delivery the Germany wide order book
is replaced by 4 order books for smaller zones, we stick to 30 minutes in our experiment.
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where D−1k and S−1k are the inverse demand and supply functions. If D−1k and
S−1k would be continuous and strictly monotonously decreasing and increasing,
respectively, q∗ would be uniquely defined as the point where the two functions
intersect, i.e., S−1k (q∗) = D−1k (q∗).

In the single zone case and with no product dependencies the market-clearing
thus simply involves constructing D−1k and S−1k by sorting offers in ascending or-
der and bids in descending orders and finding their intersection which yields the
market-clearing price as well as market-clearing quantities. To this end, we define
the following step functions as bid and offer curves

D−1k (q) = max

{
p : B ⊆ Bk with pb ≥ p, ∀b = (qb, pb, tb0, t

b
1) ∈ B,

∑
b∈B

qb ≥ q

}
(10)

S−1k (q) = min

{
p : O ⊆ Ok with po ≤ p, ∀o = (qo, po, to0, t

o
1) ∈ O,

∑
o∈O

qo ≥ q

}
.

(11)

When dealing with these piecewise constant functions, there is some ambiguity
about the clearing price as defined in (9) and, in some cases, also the cleared
quantity that maximizes welfare. We resolve this ambiguity in the same way, as it
is done in the current design of the Italian intraday auctions [Caramanis and Inc.,
2002, Graf and Wolak, 2020].

In particular, if the piece-wise constant functions (10) and (11) intersect either
at one point q∗ or on a vertical segment, then the cleared quantity is uniquely
defined. In both cases the price is a function of the price of the last bids and offers
that are cleared, i.e., the highest bid and lowest offer price. In the former case, we
choose the price of the order (either bid or offer) that is not fully cleared and in
the latter case the price is defined as the price of the last accepted offer.

In case that the functions intersect at a horizontal part of the functions D−1k
and S−1k , the price is uniquely defined and the quantity is chosen maximally, i.e.,
such that the smaller of the last orders is fully executed. We denote the resulting
prices and quantities for the k-th auction for given product by pAk and qAk .

In case an offer or bid is not cleared or only partially cleared but has an end
validity date that extends into the next auction period, we place the remaining
quantity as an order in the next auction. In particular, for the k-th auction,
we include orders with an end-validity date after T0 + (k − 1)∆ as active orders.
Orders with longer validity times can therefore be considered in more auctions
until their available volume is fully cleared. We furthermore propose that market
participants should be able to cancel or modify their offers or bids until shortly
before the auction is cleared and accordingly match the order changes observed in
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continuous trading in our hypothetical auctions.
Clearly, while the obtained prices mimic the results of a hypothetical frequent

auction market, the analysis has several limitations, which are discussed in the
following:

1. The experiment suffers from the issue that we use orders that were submitted
to a continuous market to construct counter-factual auction results. This is
of course suboptimal, since it can be expected that market participants would
change their bidding behavior if the market design would change to frequent
auctions.

However, under the assumption that limit orders in the continuous market
reflect the marginal willingness to pay/sell and the same holds true for the
auction, the difference in bidding behaviour is limited to differences caused
by technical rules of trading. Hence, in an efficient and competitive market
where players do not have the possibility to bid strategically and game the
system, bidding behavior should largely be the same.

2. There are several data imperfections in the limit order book data as supplied
by the EPEX:

(a) A subset of orders in the order book for 2017 and 2018 is cleared via
XBID with orders from other countries. Although we do not have access
to the order books for other European countries, we can identify the
orders in question. To be able to reproduce the historical clearings,
we add virtual orders of the size of the cleared German orders on the
respective other market side. We set the limit price to the price of
the observed clearing, the quantity to the cleared quantity, and the
end-validity date to the date of the clearing with the foreign order.
We also use these orders when constructing the counter-factual auction
outcomes.

However, since this process of order book completion is clearly not per-
fect and we might be additionally missing orders from abroad which are
not cleared in continuous trading, cross border trading has the potential
to distort our results.

(b) In the data provided by the EPEX, the end-validity time of cleared
orders is overwritten with the clearing time in case an order is cleared.
As a result, information is lost and some of the orders we consider would
have been valid for longer than is visible in the available data.

(c) Market orders are not explicitly identified and limit prices for these
orders are not set to the maximum/minimum possible price of EUR
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±9, 999/MWh, but to the last bid/ask price the order is executed
against.

3. Furthermore, we ignore block-orders. Considering these orders would intro-
duce a dependence between auctions for different products and complicate
our experiment. While this is very much possible in an auction based frame-
work, which is much less sensitive to increased computation times resulting
from the ensuing complications than continuous trading, we avoid coupling
auctions to keep the discussion simple.

4.5 Numerical Results

In this section, we discuss the comparison of the outcomes for the continuous
market with the counter-factual auctions. We consider quarter-hourly and hourly
products with auctions being cleared every 15min and 60min and in one single
auction, which clears all the observed orders for a product at once. The latter
results are thought of as an extreme opposite of continuous trading and serve as a
reference.

In our experiments, we consider the full German order book of 2017 and 2018
containing roughly 71 mio orders for the hourly products and 157 mio orders for
the quarter-hourly products. All computations, except visualizations, including
the clearing algorithms for both market regimes and the computation of liquidity
costs are implemented in JAVA.

4.5.1 Prices

In this section, we compare the distribution of prices generated by the two clear-
ing methods. To that end, we define the volume-weighted price of a product in
continuous trading as

p̄C =

∑
t∈T p

C
t q

C
t∑

t∈T q
C
t

, (12)

where T are the time points where quantity qCt > 0 of the product is cleared. Anal-
ogously, we define the volume-weighted price of the same product in the auction
based clearing

p̄A =

∑
k p

A
k q

A
k∑

k q
A
k

, (13)

where pAk q
A
k are the prices and quantities in auction k, respectively.

Statistics for the volume weighted prices across all hourly and quarter hourly
products for continuous trading and the three auction formats are reported in
Table 12. As can be seen, the distributions of the volume weighted prices are
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Method Mean Min Max Median Std 1% 5% 95% 99%
H

ou
rl

y

S 39.56 -112.00 232.80 38.60 19.26 -3.86 10.00 70.60 88.80
H 39.50 -106.40 206.34 38.54 19.34 -4.43 9.90 70.55 89.15
QH 39.45 -103.57 203.90 38.49 19.33 -4.74 9.69 70.59 88.83
C 39.45 -116.68 204.16 38.48 19.43 -5.30 9.58 70.65 89.30

Q
H

ou
rl

y S 39.37 -200.60 278.00 39.00 21.49 -14.92 6.10 72.30 92.92
H 39.29 -190.19 352.16 38.91 21.60 -14.69 5.99 72.31 93.21
QH 39.24 -184.80 355.63 38.88 21.68 -15.08 6.00 72.45 93.66
C 39.20 -192.94 330.84 38.81 21.84 -16.15 5.70 72.41 93.90

Table 12: Comparison of the volume weighted price across all products. S, H,
and QH represent the single auction, auctioning every 60 minutes, and auctioning
every 15 minutes, respectively, while the rows starting with C contain the results
for continuous trading. The upper panel compares results for hourly products
while the lower panel reports results for quarter-hourly products.

quite similar, which implies that no fundamental disruptions in price levels are
to be expected when transitioning from continuous trading to frequent intraday
auctions. The fact that not only the average volume weighted prices but also the
1%, 5%, 95%, and 99% quantiles are practically identical is quite surprising and
indicates that, averaged over products, not even the most extreme prices change
substantially with the introduction of frequent auctions.

We conclude that the effect of a transition to frequent auction on average
price levels and distributions are negligible for both product types and across all
proposed methods of clearing.

4.5.2 Traded Volume

Next we analyze the cleared volumes for both market designs. Since auctions have
the reputation to produce more reliable price signals and lower liquidity cost for
participants, on a first glance, it seems intuitive that the quantity cleared in an
auction would exceed the quantity cleared in continuous trading [see also Deutsche
Börse Group, 2018].

However, ceterus paribus, this intuition turns out to be wrong as we show
below. To give an idea why this is the case, consider the following small example.
Suppose for a certain product, the following orders are recorded in the limit order
book:
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Order Number Start Validity Direction Limit

1 1 buy 50
2 2 sell 50
3 3 buy 100
4 4 sell 75

where all orders have an end-validity date of 4 and a size of 1 MWh.
Clearly, in continuous trading, order 1 would be cleared with order 2 and order

3 with order 4, leading to an overall traded quantity of 2 MWh. If instead the
orders would be cleared in a single auction at time t = 4, the clearing price could
be anywhere between 50 and 100 and only orders 2 and 3 would be cleared, which
leads to a cleared quantity of only 1 MWh. However, note that the auction, by
design, achieves the maximum welfare gain of 50, while the welfare gain from
continuous trading is only 25. This example shows that even if all orders are
collected in a single auction the volume that is cleared in continuous trading may
be larger.

Note that the situation in the above example is not at all pathological or
exceptional but rather the rule in a situation where continuous trading is replaced
with a single auction at the end of the trading window. In fact, we can show the
following proposition.

Proposition 1. Given a set of limit orders in an order book posted in the time
interval [t, t] with end-validity date t. If the orders are cleared according to the
rules of continuous trading, the cleared quantity is always greater than the quantity
cleared if the orders where bids in a uniform price double auction.

Proof. Assume without loss of generality that the size of all orders equals the
minimum order quantity. Note that any sequence in which orders arrive will always
lead to a state of the order book where either all bids or all offers that are cleared
in the auction are also cleared in continuous trading. If this was not the case, at
least one bid and one offer which would have been cleared in the auction would
remain in the book. By definition the price of the offer is smaller than or equal
the auction price and the price of the bid is larger. Hence, the orders should have
been cleared in continuous trading, which leads to a contradiction, establishing
the claim.

Observe that continuous trading yields the same outcome as the auction if the
orders arrive in pairs sorted according to the marginal welfare gain of matching
them, i.e., at t the highest bid and the lowest ask are added to the order book,
then a little while later the second highest bid and the second lowest ask and so
on. In summary, one could say that the fact that the auction leads to a welfare
optimal clearing in many cases forces outcomes with less cleared volume.
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Figure 20: Comparison of total clearing volumes. The upper heatmap compares
results for hourly products, while the lower panel shows the results for the quarter-
hourly products.

Figure 20 displays heatmaps showing the aggregate traded volumes for all
hourly and quarter-hourly products throughout the investigated period and for
all market designs. As expected, the figure shows a clear pattern with less trad-
ing in the night and morning hours and a volume peak in the afternoon. While
Proposition 1 does not do justice to the complexity of repeated auctions, the de-
scribed effect remains valid and dominates in the numerical examples for hourly
products: continuous trading clears slightly more volume than even the single
auction, especially in the early afternoon, and significantly more volume than the
more frequent auctions. This is all the more the case, since the orders we use to
compute counter-factual auction outcomes are generated for continuous trading
and consequently the limit prices for many orders are chosen such that they are
adapted to the price level at the time of submission and therefore are more or
less immediately executed in continuous trading. An analysis for the number of
cleared orders instead of the cleared volumes yields similar results.

For quarter-hourly products the situation is less clear and the effect discussed
in Proposition 1 is offset by the fact that we extend the end-validity date of the
orders to the end of the auction period and thereby artificially increase the number
of active orders relative to continuous trading. Also note that for quarter-hourly
products the liquidity is generally lower, which leads to a rather wide bid-ask
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spread and volatile best-bid and best-ask prices, which in turn results in many
order that are cleared in auctions but not in continuous trading.

Clearly, the effect of the extended end-validity date plays a larger role for the
single and the hourly auctions than for the quarter-hourly auctions as is also visible
from the results in Figure 20, which demonstrate that the two former auctions
clear more volume than continuous trading while the latter clears less. However,
since the described effect is an artefact of how we compute counter-factual auction
results, we conclude that by and large volumes in continuous trading tend to be
higher than in auctions.

Hence, if the goal of a market design is to generate trading volume, then con-
tinuous trading can be considered superior to auctions. However, traded volume
is usually not viewed as an end in itself but rather a means to decrease liquidity
costs and produce more reliable price discovery.

We will show in the following sections that a transition from continuous trad-
ing to frequent auctions would likely positively impact these aspects, even if less
volume is cleared. For this reason and since auction trading is easier to han-
dle, especially for smaller market participants who might be overburdened by the
complications of a continuous market, we expect that participation and there-
fore traded volumes would increase relative to our benchmark if an auction based
trading would be established.

4.5.3 Liquidity Costs

Liquidity is typically a vague term as, e.g., argued in Schwartz et al. [2020]. In
order to compare liquidity costs between auctions and continuous trading, we use
an approach proposed in Kuppelwieser and Wozabal [2021] who employ a cost of a
round-trip (CRT) measure as a surrogate for liquidity cost. The CRT is calculated
as the hypothetical cost of buying and immediately selling a certain quantity of
electricity and can be calculated for auctions as well as for continuous trading.

In particular, for the continuous market, the buy and sell sides of the LOB are
sorted at each point in time t by price to obtain · · · < P t

−2 < P t
−1 < P t

−0 < P t
0 <

P t
1 < P t

2 < · · · , where P t
−0 is the highest bid-price and P t

0 is the lowest ask-price.
The corresponding order quantities are denoted by Qt

i. For a fixed V ∈ R+, we
define how much of order i would be cleared when placing a market order of size
V MWh by

Q̄t
i(V ) = min

(
max

(
V −

i−1∑
k=0

Qt
k, 0

)
, Qt

i

)
, Q̄t

−i(V ) = min

(
max

(
V −

−0∑
k=−i+1

Qt
k, 0

)
, Qt
−i

)
.
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This allows us to define the CRT measure at time t for a volume V as

CRTt(V ) =
1

V

∑
k

P t
kQ̄

t
k(V )︸ ︷︷ ︸

average cost

− 1

V

∑
k

P t
−kQ̄

t
−k(V )︸ ︷︷ ︸

average revenue

. (14)

In order to deal with spikes in the continuous CRT, we transform CRTt into a
discrete measure as proposed in Kuppelwieser and Wozabal [2021]. In particular,
we define CRTτ at a time point τ by averaging over 15 minutes of CRTt before τ ,
i.e.,

CRTτ (V ) =
1

15

∫ τ

τ−15
CRTt(V ) dt =

1

15

N∑
i=2

CRTti(V ) + CRTti−1
(V )

2
(ti − ti−1),

where t1, . . . , tN are the N points in time where the LOB changes in the 15-minute
time interval [τ −15min, τ ]. The value CRTτ (V ) thus captures the average CRT a
trader has to pay for selling or buying a fixed quantity V during the time interval
[τ − 15min, τ ].

Trading in the German continuous intraday market mostly occurs a few hours
before physical delivery. Therefore CRTs of early time periods with little trading
are rather high. In order to avoid an upwards distortion of computed CRTs for
continuous trading we therefore consider the trading volume weighted CRT as
defined in Kuppelwieser and Wozabal [2021]

CRTCV,h =
∑
τ

CRTV,h,τQh,τ∑
τ Qh,τ

,

where Qh,τ is the traded volume for product h in the time period [τ − 15min, τ ]
and index τ runs over a grid of time points with 15 minute spacing. By taking a
weighted average and using traded volumes as weights, we avoid the statistic to
be dominated by outliers.

In order to calculate the CRT for auctions, we add a bid of size V as a market
order to the orders of a specific auction k trading a product h and then clear the
market obtaining a price PB

V,h,k. We then repeat this process using an offer of size
V , which yields a price P S

V,h,k. Finally, we calculate the cost-of-round-trip measure
for a fixed value V for the auction market k as

CRTAV,h,k(V ) = PB
V,h,k − P S

V,h,k.

Similar to the CRT for continuous trading, we use cleared volumes as weights in
order to calculate the cost of roundtrip CRTAV,h for the auctions by taking a volume
weighted average over all CRTs in auctions that trade product h.
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4.5 Numerical Results

Figure 21: CRT-costs for selected hourly products for all market designs. The
labels on the x-axis signify the number of the hourly product, i.e., 1 corresponds
to delivery between 0:00 and 1:00, 4 to delivery between 3:00 and 4:00 and so on.

The results of the comparison between auctions and continuous clearing are
shown in Figure 21 for hourly products and in Figure 22 for quarter hourly prod-
ucts for selected products (the results for the rest of the products are structurally
identical and are therefore not displayed to keep the presentation tractable). The
results demonstrate that CRT costs of continuous trading are significantly higher
than that of auctions for hourly products. The analysis shows that especially for
∆ = 60, liquidity costs decrease dramatically to levels very close to the bench-
mark of a single auction. This is true uniformly for all the volumes and analyzed
hours. The liquidity costs for 50MWh in continuous trading on average amount
to 5.33€/MWh, while the same figure for auction trading is only 0.97€/MWh
for quarter hourly auctions and 0.5€/MWh for hourly auctions. For quarter-
hourly products the effect is even more pronounced with average liquidity costs of
41.23€/MWh for 15MWh in continuous trading versus 19.84€/MWh for quarter
hourly auctions and 5.26€/MWh for hourly auctions.

The lower liquidity cost for auctions based trading would likely increase market
participation and traded volumes and therefore further decrease liquidity costs.
Hence, lower liquidity cost can be considered one of the main advantages of auction
based trading. Especially for products which are less traded such as quarter hourly
products.
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4.5 Numerical Results

Figure 22: CRT-costs for selected quarter-hourly products for all market designs.
The numbers on the x-axis signify the number of the quarter hourly product, with
product one delivering between 0:00 and 0:15, product 4 between 0:45 and 1:00
and so on.

4.5.4 Noise versus Signal

The intra-product price path, that is, the price process for a single product between
gate-opening and gate-closure during each trading session, can be volatile. Price
changes during this period either occur due to arrival of new information, changing
the fundamental value of the traded product, or due to noise induced by the trading
process itself. While the former is a desirable feature of information processing by
the market, the latter distorts this information. Hence, any good market design
has to navigate the trade-off between these effects with the aim to maximize the
information contained in prices while keeping noise as low as possible.

In order to study this issue for intraday markets prices, we propose to disen-
tangle the price curve into signal and noise. While the constructed signal aims
to capture the real underlying values of the product, the noise is defined as the
transient deviation of the prices from these values.

To this end, we employ a locally linear regression framework [see, e.g., Hollander
et al., 2014] with a normal kernel to decompose intra-product price paths into signal
and noise. The principal idea of this framework is to perform linear regression
locally at x weighting observations less, the further they are away from x. We
focus on the price processes between gate closure and five hours before gate-closure
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4.5 Numerical Results

because trading activity in more distant hours from gate closure is typically very
low. We round the transaction times of the continuous market as well as the
counter-factual market-clearing prices onto a minute by minute grid with N = 300
ticks for the considered five hour period. If there is more than one transaction
in a given minute before gate-closure, we compute the quantity weighted average
price and if there is no transaction, we fill the missing values with data from the
previous minute.

The derived price path serves as input to the local linear regressions that we
perform for each product. More precisely, for a vector of prices y = [y1, . . . , y300]
and a vector of standardized time steps x = [1, . . . , 300], we compute the estimator

[
β̂0(x)

β̂(x)

]
= argmin

β0,β

N∑
i=1

Kh(x− xi)(yi − β0 − (x− xi)′β)2, (15)

where Kh(x) := e−x
2/2h is the Gaussian kernel with bandwidth parameter h. The

kernel is used as a weighting function which controls the amount of smoothing
with larger values of h resulting in smoother functions. For our experiments we
use h = 5 and identify the prediction from the regression (15) as the signal and
the residuals as the noise.

The approach is visualized in Figure 23. At the top panel, we display bid
and ask values, executed transactions, as well as counter-factual auction market-
clearing prices for the product with delivery between 11:00 and 12:00 on the 2018-
10-11. The solid red line and solid blue line at the panel in the center show the
prices for continuous trading and frequent auctions. At the panel in the middle in
Figure 23, the dashed red line and dashed blue line represent the extracted signal.
At the bottom panel, the noise defined as the difference between the solid and the
dashed line is depicted.

In order to compare the signal-noise trade-off of frequent auctions with con-
tinuous trading, we compute the sum of the absolute deviations between price
and signal on the grid for all products. The fan charts in Figure 24 summarize
the results comparing different market designs for the hourly market (left column)
and the quarter-hourly market (right column). We find that for both product
categories, the noise is the largest for continuous trading (60-min product average
noise: 86.24, 15-min product average noise: 142.22), followed by auction-clearing
every 15 minutes (60-min product average noise: 40.76, 15-min product average
noise: 78.11) and auction-clearing every hour (60-min product average noise: 16.07,
15-min product average noise: 34.48).

The qualitative interpretation of the results, i.e., that signal quality is lower for
continuous trading and that continuous trading thus leads to noisier price paths
compared to auctions, remains unchanged for bandwidths of h = 10 or h = 15.
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Figure 23: Decomposing Price Paths into signal and noise for the hourly product
from 11:00 to 12:00 on the 2018-10-11.

The above results are also robust to replacing the locally weighted linear regres-
sion estimator by the classic locally constant Nadaraya-Watson kernel regression
estimator.

Interpreting the results in the classical framework by Garbade and Silber [1979],
we conclude that the chosen auction design decreases the noise from continuous
trading while at the same time avoiding high price shocks induced by overly long
auction intervals.

4.6 Conclusion & Policy Implications

In this paper, we investigate the use of frequent auctions for intraday electricity
markets. The proposed design can be seen as a compromise between continuous
trading, the de-facto standard in European intraday markets, and infrequent auc-
tions as they have been used for some time in countries such as Spain, Italy, or
Greece. Ideally, frequent auctions decrease liquidity costs and improve the quality
of the price signal relative to continuous trading, while improving the ability of
electricity traders to react quickly to new information over infrequent auctions.

We construct counter-factual auction outcomes from historical limit orders sub-
mitted to the German continuous market to investigate how prices, traded quanti-
ties, liquidity costs, and the signal to noise ratio of the price process would change
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Figure 24: Fan chart of the noise with extreme percentiles of 1% and 99%.

if the market design was to transition to frequent auctions. We summarize the
results of the resulting numerical comparison Figure 25.

While average and volume weighted prices do not significantly differ between
the two market designs, the same does not hold true for traded quantities for
which the outcomes are ambiguous with uniformly lower volumes in auctions for
hourly products and higher volumes for most auctions of quarter-hourly products.
However, the latter effect is an artefact of how we construct the counter-factual
auction outcomes so that we conclude that overall auctions lead to less traded
volume, which is also supported by theoretical considerations in Proposition 1.

Despite the decreased volumes, the cost-of-roundtrip markedly decreases for all
considered auctions, i.e., liquidity costs are higher for continuous trading. Finally,
looking at the measurement of noise in the price signal, we observe that auction
based trading produces more robust and reliable price signals that are less affected
by transient short-term shocks that are not connected to fundamental changes of
the value of the traded product.

Overall and in accordance with Deutsche Börse Group [2018] and Ehrenmann
et al. [2019], Ocker and Jaenisch [2020], we conclude that the proposed auction
design to a large extend captures the advantages of both continuous trading and
auctions. In particular, the fact the auctions are frequent and the last auction takes
place close to delivery mitigates the disadvantages of previously existing auction
systems which had only few auctions with the last one closing several hours before
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Figure 25: Overview of the results for prices, traded quantities, noise, and liquidity
costs for both hourly and quarter-hourly products.

physical delivery.
Furthermore, auctions give the clearing authority the possibility to account for

the realities of the restrictions imposed by the physical properties of electricity
grids: An auction based intraday market design would allow for more time to
clear the market, making it possible to price cross-border capacities implicitly and
making it easier to integrate block orders. Overall, if the market design is chosen
carefully, we thus believe that prices would more accurately reflect true scarcity
rents and would thus be more closely connected to prices on the balancing market.

Lastly, on an administrative level, auctions are simpler allowing more partic-
ipants to take part in trading. This is especially true, since day-ahead markets,
which most electricity firms are familiar with, are also organized as auctions. Fur-
thermore, since orders are batched over longer time periods, there are no speed
advantages for advanced traders and therefore no possibility for latency arbitrage
in an auction based market.
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5 Conclusion

In this dissertation, I used detailed order-book data to analyse liquidity costs of
European intraday markets and found a profitable passive trading strategy using
updated weather forecasts. Finally, a new market design as a combination of
continuous and auction markets is proposed.

5.1 Results and Contribution to the Field

A new liquidity measure that captures multiple dimensions of the continuous and
auction intraday markets was defined. This method allows to estimate the cost per
MWh of a fixed volume for a round-trip, i.e. buying and selling the fixed amount
virtually at the same time. Previous work used the bid-ask-spread Balardy [2022]
or trading volumes Hagemann and Weber [2013] to measure the liquidity of the
German intraday market. In this dissertation, I introduced the cost of round-trip
(CRT) measure, which comes with the advantage of quantifying the cost of the
bid-ask-spread and the cost for trading larger volumes both at the same time. The
calculation of this measure is only possible if the whole order-book is available.

The analysis of the cost per round-trip shows a different liquidity distribution
along trading time when comparing the Italian intraday auction with the German
continuous intraday market. Auction markets are more liquid than continuous
trading shortly after the day-ahead marked closes, and liquidity of the continuous
trading is higher shortly before physical delivery. However, the big advantage of the
continuous market is the shorter lead-time, allowing market participants to trade
forecast-updates of renewables until five minutes before physical delivery. This
allows for integrating the latest production forecasts into the power schedule, which
are more precise including real-time measurements. Intraday auction markets close
a few hours before physical delivery and do not allow to trade these latest forecast-
updates. Although, the big advantage of the auction market is the pooling of
orders, which decreases liquidity costs.

As a second step, a trading strategy for the German continuous intraday market
was developed. The key of the strategy was to use forecast errors in combination
with a passive trading strategy that avoids the enhanced bid-ask-spread at position
opening and closing. This strategy is based on the information of updated-forecasts
for photovoltaic and wind production, which is available at the opening of the
market. However, liquidity of the continuous intraday market is relatively low at
that time and a market order would lead to large trading costs due to the large
bid-ask-spread. As a solution, I placed a limit order on the top of the order-stack
as passive order and updated the price to remain the best available order until an
active trader picks the order. A limit order is also used to close the position before
the market closes. If the placed order was not executed, a market order is placed
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5.2 Further Research Prospects

shortly before the market closes to avoid balancing costs. Possible balancing costs
are also considered in the analysis.

This trading strategy is implemented by setting the following parameters: (i)
maximum volume to open risking to suffer from liquidity costs, (ii) decision to use
the first available forecast-update or to wait for a better one risking that other
traders take advantage of the new information, and (iii) timing for opening and
closing the position, and the time to close the market order risking to close at
unfavorable prices. A grid-search method was used to find a trading strategy on
an insample set, which was then evaluated on an outsample set. The developed
strategies are profitable, with larger profits when replacing the latest intraday
forecast with the exact production. Hence, accurate and early available produc-
tion forecasts would allow for larger profits, leading to an arms race in weather
forecasting.

Finally, a new design for the European intraday market was proposed. This
design combines the advantages of both prevailing market designs and consists of
sequential batch auctions with intervals of 15 or 60 minutes. As a consequence,
this allows to trade until 30 minutes before physical delivery. The design would
increase liquidity by pooling all orders between two clearings and allowing to inte-
grate renewables with a short lead-time. The auction clearing of the new market
design was implemented using submitted orders of the German continuous intraday
market. A selection of the realized outcomes of the continuous market was used
to analyze the counter-factual outcomes of the batch auctions. The new market
design shows higher liquidity and less extreme prices, but lower trading volumes
compared to the operative continuous intraday market.

5.2 Further Research Prospects

European institutions decided to use the continuous market design for the intra-
day market, which offers the possibility to add auction markets. Historically, the
intraday markets in Spain, Portugal and Italy were exclusively managed via auc-
tions. In recent times, these countries have introduced a continuous market, which
currently exists alongside with a reduced amount of auction markets.

Exploring the impact of introducing a continuous market in these three coun-
tries could be an interesting question for further research. In these countries,
trading on auction markets is the common practice. Therefore, it might be inter-
esting to investigate whether traders continue to trade on the remaining auction
markets or whether they accept the introduced continuous market.

An analysis of the impact on liquidity assuming the hybrid market scenario
in Spain, Portugal and Italy could also be a valuable idea for further research.
To this end, the impact of the remaining auction markets on continuous market
liquidity could be investigated. Also, the behaviour of liquidity before and after
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5.2 Further Research Prospects

auctions could be an interesting research question to address.
The European power market consists of sequential power markets and they are

all interconnected. Exploring the potential of novel trading strategies operating
in the intraday, day-ahead, and balancing markets could therefore be a possible
avenue for future research. Also, future investigation of trades between the four
quarter-hourly products and the corresponding hourly product would also be in-
teresting.

The limit order books of the years 2015–2018 were available for this dissertation
and one can observe an enhanced development of the market. The lead-time
decreased in this period from 45 to 30 minutes (5 minutes within the same control
area) before physical delivery. Also, 30 minutes products were introduced. The
market is strongly growing and liquidity shows a continuously increasing trend.
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