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Abstract

In the near future, upcoming megaconstellations will drastically increase the number of
operating satellites in low Earth orbit. They will operate in an environment with a large
amount of space debris and increase the already existing chance of collisions. The simulation
software LADDS aims to predict the evolution of space debris in order to assess risks
associated with operations such as the insertion of constellations. The purpose of this work
is to add constellations into the simulation LADDS. This is done by firstly implementing
a component which generates constellation data from orbital shell parameters. Then, a
component is implemented to insert the generated constellation input into the simulation
over time. This enables the inclusion of constellation insertion scenarios in the simulation.
An 11.5-year simulation run with the implemented functionality and a realistic constellation
insertion scenario of about 50,000 satellites brought results in which constellations were
involved in over 60% of all conjunctions. A second simulation run demonstrated that the
altitude in which a constellation operates significantly influences the collision risk.
With the ability to include the upcoming megaconstellations and with the future integration
of a breakup model, LADDS will be capable of predicting the evolution of the space debris
environment more realistically.
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Zusammenfassung

Bereits in absehbarer Zeit werden geplante Megakonstellationen die Anzahl an eingesetzten
Satelliten innerhalb der niedrigen Erdumlaufbahn drastisch erhöhen. In einer Umgebung mit
Unmengen von Weltraumschrott werden sie das Risiko von Kollisionen weiter erhöhen. Die
entstehende Simulationssoftware LADDS nimmt sich vor, die Entwicklung des Bestandes von
Weltraumschrott vorherzusagen, damit die Einschätzung der Folgen von Unternehmungen,
wie der Einsatz von Satellitenkonstellationen, gestützt werden kann. Der Zweck dieser Ausar-
beitung besteht darin, Konstellationen in die Simulation LADDS zu integrieren. Dazu wird
zuerst eine Komponente implementiert, die von der Simulation verarbeitbare Daten anhand
geeigneter Eingangsparameter generiert. Anschließend wird eine Komponente implementiert,
welche Konstellationen anhand der generierten Daten zeitüberdauernd in die Simulation
einsetzt. Dies ermöglicht die Simulation von Szenarien möglicher Zeitpläne zum schrittweisen
Einsetzen der Konstellationen. Ein Programmdurchlauf mit der neuen Komponente, der
elfeinhalb Jahre simuliert und Konstellationen im Umfang von 50.000 Satelliten nach einem
realistischen Zeitplan hinzufügt, ergab, dass 60% der nahen Begegnungen von Objekten in
der niedrigen Erdumlaufbahn Konstellationssatelliten involvieren. Ein weiterer Durchlauf
zeigte, dass die Höhe, in der Konstellationen eingesetzt werden das Kollisionsrisiko erheblich
beeinflussen.
Mit der nun implementierten Funktionalität die geplanten Megakonstellationen mitzusimulieren
und der kommenden Integration einer Komponente, die kollidierende Objekte realitätsgetreu
in Fragmente zerteilt, wird LADDS dazu fähig sein, die Entwicklung des Bestandes von
Weltraumschrott realistischer einzuschätzen.
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Introduction and Background
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1. Introduction

On November the 11th, 2019, the first satellites that are part of a megaconstellation were
launched by the company SpaceX1. SpaceX as well as OneWeb, Amazon and several other
companies are set to deploy their megaconstellations in order to provide telecommunication
services such as internet connection. The term ”megaconstellations” is used due to the
amount of satellites within such a constellation. With 12,000 satellites, SpaceX’s Starlink
constellation alone significantly outnumbers all already present satellites, which counted
about 2000 in 20182. This drastic increase of satellites in the low Earth orbit (LEO) worsens
concerns over the space debris population, which have existed even prior to megaconstellations.
As possible collisions involving space debris can create substantially more space debris, which
again increases the chance of further collisions, a scenario of exponential growth in the density
of fragments becomes imaginable. In this scenario known as the Kessler syndrome [KJLM10],
the feasibility of space flight and the operation of satellites would be impaired significantly.
This problem is being addressed in various ways. Space debris mitigation measures such
as the removal of space debris, or guidelines to minimize the production of debris during
and after space missions aim to lower the overall risk of collisions and prevent the Kessler
syndrome3.
Another important task related to this problem is to assess the risks associated with our use
of the near Earth environment by modeling its future space debris population. Approaches
to simulate the space debris environment have been realized by several simulations such
as LEGEND [LHKO04] developed by NASA and DELTA [Vir16] developed by ESA. In
that manner, ESA’s annual space environment report of 20214 utilized DELTA to predict
the amount of collisions and of resulting objects in LEO shown in Figure 1.1. Over the
long term, the results project an exponential growth in catastrophic collisions and a drastic
increase of objects in space if the same measures and launch rate of recent years are applied
in the future.
LEGEND, DELTA and other simulation tools utilize Monte Carlo methods for stochastic
conjunction tracking in order to avoid small time steps, which comes at the cost of reduced
accuracy. In order to tackle this problem, the simulation ”Large-scale Deterministic Debris
Simulation” (LADDS), which relies on deterministic conjunction tracking, is being developed5.
LADDS is a project in the context of an ARIADNA study of ESA’s Space Debris Office,
ESA’s Advanced Concepts Team, and the SCCS chair of the Technical University Munich. In
the context of LADDS, this work is concerned with modeling the future megaconstellations
and with their insertion into the simulation in order to study their effects on the space debris
environment.
The first part of this work introduces necessary theoretical background and information
about the planned megaconstellations, before describing the interface of LADDS and the
additions of this work. As for the second part of the text, an implementation for the
generation of constellations as well as the implementation that integrates constellations into
the simulation are detailed. In order to assess the threat associated with the upcoming
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megaconstellations, a long-term simulation run with a realistic timetable of constellation
launches as well as a second run for enabling the comparison of constellations are conducted.
Their results are subsequently presented and analyzed.

(a) Graph depicting amount of objects in LEO. (b) This graph depicts the amount of catastrophic
collisions over time.

Figure 1.1.: Graphs depict the results of 100 Monte Carlo simulations for both scenarios. The
”Extrapolation” scenario assumes mitigation measures and spacecraft launching
patterns of the previous three years. The ”No further launches” scenario assumes
no launch to take place in the future. Marked in darker color is the average of
all the scenario’s simulations.
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2. Theoretical Background

2.1. Orbital Elements

Orbital elements are parameters that can be used as a mathematical model for describing
the position of objects orbiting a central body at a given time. These objects can either
be natural satellites like moons or planets, human made artificial satellites, or space debris.
What is essential for modeling this instance of a so called two-body problem is a difference
in mass that is large enough to assume negligible movement by the heavier body as a result
of the lighter body’s exercised force. A satellite orbits a central body, for example a planet,
in the form of an elliptical trajectory. The ellipsis exists in a three-dimensional Cartesian
coordinate system that describes the central bodies environment by placing the origin at the
center of mass and by defining conventional direction vectors. These are the only necessary
points of reference, as the central body’s rotation is not considered when modeling the
ellipsis. When the Earth takes the place of the central object, the system is called ”geocentric
equatorial coordinate system”. [Wal18]
Before the semantics of each orbital element are explained according to [Wal18], a few terms
and definitions are introduced.

Figure 2.1.: Sketch illustrating some of the orbital elements: inclination i, longitude of the
ascending node Ω, argument of periapsis ω, true anomaly θ

For the sake of conventionality and simplicity, a reference plane, that is ideally spanned
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2.1. Orbital Elements

by two of the system’s axes, is defined, as depicted in Figure 2.1. Pointing from the origin to
an arbitrary point of the reference plane is the reference direction. Its value is also chosen
to follow conventionality and usually points to the vernal point [Wal18]. Within the orbital
plane exists the ellipsis that is the satellite’s trajectory. Like any ellipsis, it is defined by
two focal points F1, F2 as well as a constant sum of distances to the shape’s focal points
that every point on the ellipsis has. It has to be noted that the central body, in case of an
elliptical orbit, is not at the center of the ellipsis, but on one of the focal points [Wal18].
Because of this, two more points are relevant when analyzing orbits: The periapsis, which
is the point with the least distance to the central body and its counterpart, the apoapsis,
which is the point with the biggest distance to the central body.

Modeling the Ellipsis’ Shape

The first two parameters, the semi-major axis a and eccentricity e, are sufficient to determine
the exact shape of the ellipsis. The semi-major axis a is defined as the length of the line
connecting periapsis and apoapsis divided by two (see Equation 2.1), while the eccentricity
parameter quantifies the distance between the two focal points according to Equation 2.2.
It can be observed that the lower the eccentricity is, the more circular the ellipsis becomes.
In the special case e = 0, the ellipsis resembles a circle and the two focal points are at the
same point in space.

a =
1

2
(rapo + rper) (2.1)

e =
rapo − rper
rapo + rper

(2.2)

Figure 2.2.: An ellipsis and its landmarks relative to a focal point F1: the apoapsis marked
by A, the periapsis marked by P , and their respective distances to F1: rapo and
rper. The semimajor axis a equals half of the line connecting the apsides.

Most constellation satellites in LEO orbit the Earth in an approximately circular trajectory6

and the parameters e, a are therefore set to 0 and to the radius respectively. This will hold
for all constellation satellites modeled in this work.
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2. Theoretical Background

Modeling the Ellipsis’ Orientation

In order to define how the ellipsis is oriented w.r.t. the origin, the three parameters inclination
i, longitude of the ascending node Ω, and the argument of periapsis ω must be specified.
The inclination i determines the angle between the reference plane and the plane of the
trajectory. The inclination of a satellite orbiting the Earth is automatically the maximum
value of latitude the satellite reaches during orbit, assuming the Earth’s equatorial plane
serves as the reference plane. For instance, a satellite with i = 55◦ alternates between 55°
latitude on the northern hemisphere and the southern hemisphere.
By assigning an angular value to the longitude of the ascending node Ω, the ellipsis is
rotated around the reference plane’s normal vector on the origin by the set value. This
determines the location of the ascending node, which is the point where the ellipsis intersects
the reference plane and where the satellite ascends w.r.t. the reference frame.
The final element for creating the trajectory, the argument of periapsis ω, represents the
angle between the periapsis and the ascending node on the orbital plane and thereby enables
moving the apses of the ellipsis. This parameter does not change the geometry of circular
trajectories that are characterized by e = 0 since every point on the trajectory could
potentially be the periapsis. What does change for circular orbits is the starting position for
the true anomaly θ.

Positioning the satellite on the ellipsis

Since the process of orbiting is a repeating process and the satellite will revisit the same
position periodically, the true anomaly θ can be seen as a temporal parameter as much as it
can be viewed as a spatial parameter. In that sense, the true anomaly describes the phase
of the satellite at a given point in time, and enables placing the satellite onto any point of
the trajectory. It does so by determining the angle between the satellite and the periapsis
relative to the origin on the orbital plane. The mean anomaly M , an alternative means of
determining the location of the satellite, is based on passed time rather than a pure angle,
but both are equivalent for circular orbits. For the rest of this work, the shape of satellite
trajectories is assumed circular.

2.2. Satellite Constellation Design

Proper satellite constellation design is concerned with optimizing various factors. In the
case of the upcoming megaconstellations that provide telecommunication services, two
important goals are to comprehensively cover surface area of the Earth and to minimize
the risk of collisions with catastrophic impact. A common approach that is used to create
constellations for communication purposes is to apply the Walker Pattern [GXG+20]. A
Walker constellation is a set of so-called orbital shells which each consist of orbital planes.
An orbital plane is again a set of satellites that move in the same trajectory. For the satellites
within a plane, which are only different by their mean anomaly value M , as well as the
planes within a shell, which only differ in their longitude of the ascending node Ω, it applies
that their respective orbital elements are evenly distributed within the range of 0° to 360°.
This is visualized in the Figures 2.5, 2.6 and expressed mathematically in the Equations 2.3
and 2.4 with p,s being the indices and P , S being the total number of planes and satellites
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2.2. Satellite Constellation Design

respectively [GXG+20].

Ωp =
2π

P
(p− 1) , p ∈ {1, ..., P} (2.3)

Ms =
2π

S
(s− 1) , s ∈ {1, ..., S} (2.4)

Another property of Walker constellations is that the satellites share a common value
for the semi-major axis a, eccentricity e, the inclination i, and the argument of periapsis
ω [GXG+20]. Walker constellations are separated into two categories: A Walker Delta
constellation refers to constellations made up of satellites with an inclination value that is
noticeably smaller than 90°, whereas Walker Star constellations consist of satellites with
an inclination close to 90° [LCY21]. Examples of both constellation designs are shown in
Figure 2.3. Coverage of the Earth’s surface by satellites is maximized by utilizing the Walker
Star pattern which makes all satellites reach the poles, whereas Walker Delta constellations
concentrate their satellites on a smaller area. The area covered is also dependent on both the
amount of satellites and the operating altitude of each satellite. The covered area decreases
with a lower altitude as demonstrated in Figure 2.4. Many satellites are therefore needed for
constellations in low altitudes [GXG+20] which can also be observed in Chapter 3, where
orbital shells with low altitudes tend to have more satellites, and thus, a higher contribution
to the LEO population.

Figure 2.3.: Shells of the Starlink constel-
lation containing both Walker
Delta shells that do not reach
the poles and Walker Star shells
that cover all of the Earth’s sur-
face
Source: [APSODG21]

Figure 2.4.: The figure shows the Earth’s sur-
face area covered by satellites in
different altitudes.
Source: [GXG+20]

Another parameter of Walker constellations, the phasing parameter F , is concerned with
the collision risk, which is the most relevant factor for satellite constellation design. It
determines the relative phasing between neighboring planes which describes an offset that
is added to the mean anomaly and accumulates with every new plane. The introduction
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2. Theoretical Background

of relative phasing extends the mean anomaly Equation of a satellite s in a plane p from
Equation 2.4 to Equation 2.5.

Msp =
2π

S
(s− 1) +

2π

T
F (p− 1) , s ∈ {1, ..., S}, p ∈ {1, ..., P}, F ∈ {0, ..., P − 1} (2.5)

T = P · S stands for the total number of satellites in the shell and the property of F
to be an integer between 0 and P − 1 ensures the same relative phasing to hold between
satellites in the planes P and 1. As it can be seen in Equation 2.5 as well as in Figure 2.6,
the relative phasing between satellites in neighboring planes depends on the plane index p,
while the spacing between satellites in the same plane depends on the satellite index s.

Figure 2.5.: A cutout of four planes of an
orbital shell. The planes orien-
tation only differs in their lon-
gitude of the ascending node Ω
and planes always have the same
angular distance to their neigh-
boring planes. The F parameter
of this shell is set to 0.

Figure 2.6.: Marks the two step sizes that de-
termine the mean anomaly M of
a satellite: the relative phasing
step in lighter red, and the step
between satellites in the same
plane in darker red. Marked dis-
tances should be understood as
angular distances between the
points w.r.t. the center of mass.

According to [LCY21], the phasing parameter F determines the minimum distance between
satellites of a constellation. Determining an optimal parameter F , which can be done by
simulating the orbital shell for each possible value of F, can drastically increase the minimum
distance between satellites. It is therefore an essential parameter to be considered for Walker
constellations, which are denoted by the expression i: T/P/F.
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3. Upcoming Megaconstellations

In this chapter, satellite megaconstellations are presented by describing their orbital shell
parameters and by discussing their general launching conditions. While the launches of all
presented constellations are planned, the exact execution of their plans is differently certain
for each constellation. OneWeb and SpaceX’s Starlink have already launched parts of their
constellation, while constellations of other companies, which include Telesat and Amazon, are
expected to launch in the near future. For most constellations, the Federal Communications
Commission (FCC) plays a key role, as the constellations need to be FCC approved in order
to launch. The FCC is an American commission that regulates interstate and international
communications and distributes the frequency bands necessary for the constellation’s service.
All previously mentioned companies have parts of their proposed constellation approved by
the FCC [PdPCC21]. For Astra’s constellations, that are also included in this space debris
environment simulation, an FCC request has been filed7, but has not been authorized as
of January 2022. The constellation GuoWang planned by the Chinese government8 is not
dependent on FCC approval. Since some information of constellation parameters are only
partially available, one of the sources used for constellation information [BHGE21] creates
representative shell parameters based on the incomplete data. Nevertheless, the following
presented data is used for creating a possible and representative future scenario that is
simulated and then analyzed in Chapter 6.
SpaceX intends to deploy two constellations in LEO. About 1900 satellites of the first
constellation with a total of nearly 12,000 satellites, are in operation as of January 20229.
4408 of them inhabit altitudes between 540 to 570 kilometers and about 7500 are planned to
inhabit low altitudes between 336 and 346 kilometers, as shown in Table 3.1. All satellites
of the constellation have been approved by the FCC10 and the constellation is the biggest
approved constellation yet in terms of the number of satellites. A large number of 30,000
further satellites is planned to operate as part of the Starlink Generation 2, which will
also be considered in Chapter 6, although it is not a part of the 11.5-year simulation
scenario [BHGE21]. Its parameters are listed in Table 3.3.
OneWeb, the other company to start their constellation launch early, also plans to operate
two constellations. Both the first as well as the second constellation will operate in a
1200 kilometer altitude. Most of the first constellation’s 716 satellites orbit the Earth
in polar planes with an inclination of 87.9°. All 716 satellites are approved by the FCC.
OneWeb’s second set of satellites comprise 6372 more satellites [PdPCC21]. The orbital
shell parameters are listed in Table 3.1.
Telesat’s constellation, which is announced to launch in early 202311, comprises two orbital
shells, one polar shell of 351 satellites in 1015 kilometer altitude and another shell of 1320
satellites in a high altitude of 1325 [PdPCC21]. The Kuiper constellation by the company
Amazon is fully approved by the FCC and is expected to start with its constellation
deployment in late 202212. It comprises 3236 satellites that will be placed in altitudes
between 590 and 630 kilometers [BHGE21]. The parameters of both Telesat and Kuiper are
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3. Upcoming Megaconstellations

shown in Table 3.2.
Astra plans to launch up to three constellations depending on their customers demand 13.
The first constellation of 40 satellites is a single equatorial plane with an inclination of 0° at
an altitude of 700km and the second constellation of about 2300 satellites will be deployed
at the same altitude. Their third constellation is over 11,000 satellites large and would be
located within 380-400 kilometer altitudes14. All constellations with their parameters are
shown in Table 3.2.
Lastly, the GuoWang constellation includes about 13,000 satellites in three discernible
altitude regions: 3600 satellites in a 508km altitude, about 2500 in altitudes of 590km and
600km, and four shells worth about 6900 satellites in 1145km altitudes [BHGE21]. The
exact shell parameters are shown in Table 3.3.

Altitude (km) i (°) Planes Satellites per plane N

Starlink 1 540 53.2 72 22 1584

550 53.0 72 22 1584

560 97.6 6 58 348

560 97.6 4 43 172

570 70.0 36 20 720

346 53.0 42* 60* 2547

341 48.0 42* 60* 2478

336 42.0 42* 60* 2493

OneWeb 1 1200 87.9 12 49 588

1200 55.0 8 16 128

OneWeb 2 1200 87.9 36 49 1764

1200 55.0 32 72 2304

1200 40.0 32 72 2304

Table 3.1.: Orbital shell parameters of Starlink Generation 1, OneWeb’s first and sec-
ond constellation. Numbers marked with (*) are estimates according to the
source [BHGE21] that roughly amount to the known total count of satellites.
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Altitude (km) i (°) Planes Satellites per plane N

Telesat 1015 98.98 27 13 351

1325 50.88 40 33 1320

Kuiper 590 33.0 28 28 784

610 42.0 36 36 1296

630 51.9 34 34 1156

Astra 1 700 0 1 40 40

Astra 2 690 98.0 14 36 504

700 55.0 56 32 1792

Astra 3 380 97.0 20 112 2240

390 30.0 51 96 4896

400 55.0 61 68 4148

Table 3.2.: Orbital shell parameters of Telesat, Kuiper and Astra’s constellations

Altitude (km) i (°) Planes Satellites per plane N

GuoWang 590 85.0 8 60 480

600 50.0 40 50 2000

508 55.0 60 60 3600

1145 30.0 27 64 1728

1145 40.0 27 64 1728

1145 50.0 27 64 1728

1145 60.0 27 64 1728

Starlink 2 328 30.0 7178 1 7178

334 40.0 7178 1 7178

345 53.0 7178 1 7178

360 96.9 40 50 2000

373 75.0 1998 1 1998

499 53.0 4000 1 4000

604 148.0 12 12 144

614 115.7 18 18 324

Table 3.3.: Orbital shell parameters of GuoWang and Starlink Generation 2
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4. Implementation Context

The objective of this chapter is to describe LADDS15, the overarching simulation software for
this work, and how it interfaces with the addition of constellations that will be implemented.
At first, the general methodology of the simulation is presented, before the structure of
the simulation’s code is introduced by describing the simulation cycle and the involved
components. Following that is an overview over how the constellation component is related
to the simulation, before the component’s actual implementation is presented in Chapter 5.

4.1. Simulation Approach

LADDS is a collaboration between the Chair of Scientific Computing in Computer Science
of the Technical University Munich, ESA’s Space Debris Office as well as ESA’s Advanced
Concepts Team. It aims to create the first deterministic space debris environment simulation,
in contrast to approaches that use Monte Carlo methods for finding collisions. The simulation
currently simulates objects tracked by Celestrak16 that inhabit the lower Earth orbit between
200 and 2000 kilometers above the Earth’s surface, while the inclusion of future constellation
satellites is the matter of this thesis.

4.2. Simulation Structure

In order to create a simulation for making a prediction of the future space debris environment,
certain procedures have to be performed continuously. One task is to propagate the objects
based on the effective laws of physics. Secondly, the interactions between the objects, which
are collisions or close encounters in more general terms, have to be considered and finally be
communicated by creating output. The component of this simulation that propagates the
objects, applies leapfrog integration based on various accumulated forces [Bö21]. Detecting
the collisions is based on AutoPas [GSBN21], a library for N-Body simulations that provides
containers for the simulated objects. These objects, in this case satellites and debris,
are modeled by particles, which are points in space without shape. AutoPas containers
utilize efficient data structures, parallelization, and dynamic auto-tuning17 for the pairwise
iteration of particles serving as a base for particle interactions. In LADDS, the concrete
simulation cycle is realized as depicted in Figure 4.1. The first part of the simulation
cycle integrate() is performed by the integrator component that updates the position
and velocity values of every particle. updateConstellation() is a function that will be
inserted to follow the integrate() function and is explained later in this work. As the
positions of particles change due to the integration step and particles are potentially added
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4.3. Integrating Constellations

in updateConstellations(), AutoPas must update internal structures. This requires the
invocation of the updateContainer() function.

Figure 4.1.: This figure shows the simplified cycle of code executed. Marked in orange is the
function to be added in this thesis.

While the collision detection is based on AutoPas, the component to call the necessary
function collisionDetection() is a dedicated functor implementing the detection of col-
lisions. This functor, the CollisionFunctor, utilizes an AutoPas function to iterate over
pairs of particles efficiently, while performing the operation on these handed pairs. The
distance of particle encounters is not computed by calculating the distance between the
two particles at one time step, but by linearly interpolating the trajectories of each particle
by sampling their positions at the current and the previous time step, before calculating
their minimum distance. This allows for a bigger time step that increases the simulation
speed, while adding a negligible error value to the measured distance. At the very end of
the iteration, the detected collisions are printed into a HDF5 output file and serve as the
main information for the results analysis in Chapter 6. Further output includes snapshots of
the simulation state, which is also relevant for analyzing the simulation result, as well as
visualization output files (e.g. .vtu). These output operations can be, and often should be,
performed not at every single iteration, but in intervals, as outputting the simulation state
in each iteration consumes a lot of memory.

4.3. Integrating Constellations

Between the integration step and the container update, the functionality to insert satellites of
constellations into the simulation can be implemented. This is done by implementing a func-
tion updateConstellations() that adds satellites from objects of a class Constellation
to the simulation’s particle container. Among other attributes, the Constellation objects
contain attributes that allow scheduled insertion, all of which is discussed further in Sec-
tion 5.2.
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4. Implementation Context

Figure 4.2.: Overview over how this work is related to the space debris environment simula-
tion. Orange rectangles mark additions to the simulation. The generation of
constellation input data is discussed in section Section 5.1, the addition of the
constellation input in Section 5.2, and produced simulation data is presented
and analyzed in Chapter 6.

A configuration file serves to configure the simulation by setting the parameters which
include the number of iterations, the simulated time step between each iteration, etc. (see
Figure 4.2). In addition to the already included particles originating from data of tracked
satellites18 and debris presently in orbit, constellation data is fed into the simulation to
initialize the Constellation objects. The generation of the input data is also a part of
this work and is done separately by a Python program described in Section 5.1. It creates
directories with the constellation data that is distributed in three files: Two .csv files, each
containing one of the two state vectors, the position and the velocity, for every satellite and
a .yaml file with the constellation parameters. Both the constellations and the other objects
in space are fed into the simulation by specifying their file paths in the configuration file.
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5. Implementation

5.1. Generation of Constellations

The following implementation enables a user to create orbital shells by specifying the altitude
above the Earth’s surface, the inclination, the number of planes within the shell, and the
number of satellites in each plane. These orbital shell parameters are commonly used in
literature to characterize shells [PdPCC21] [BHGE21], as it is also done in Chapter 3. Further
parameters, that are rather secondary but nevertheless necessary in some circumstances, are
addressed later in Subsection 5.1.2. This implementation of the constellation generation
utilizes the libraries numpy (np) and pykep (pk), a ”scientific library to provide basic tools
for astrodynamics research.”19

5.1.1. Creation of Shells from Parameters

Since constellations are a set of shells, the program needs to read in and process one 4-tuple
(altitude , inclination , nPlanes , nSatellites) at a time. The first objective is to
convert this tuple into a list of orbital elements for all satellites in the shell, which is achieved
by the code in Listing 5.1. At first, variables representing the orbital elements are initialized,
which includes the semi-major axis a, eccentricity e, inclination i, longitude of the ascending
node W, argument of periapsis w, and mean anomaly M.

1 a = a l t i t u d e ∗ 1000 + 6371000
2 e = 0
3 i = i n c l i n a t i o n ∗ pk .DEG2RAD
4 W = 0
5 w = 0
6 M = 0
7
8 pStep = 2 ∗ math . p i / nPlanes
9 sStep = 2 ∗ math . p i / n S a t e l l i t e s
10
11 for x in range ( nPlanes ) :
12 for y in range ( n S a t e l l i t e s ) :
13 e l em e n t s l i s t . append ( [ a , e , i ,W,w,M] )
14 M = M + sStep
15 W = W + pStep
16 M = 0
17 s h e l l l i s t . append ( ( a l t i t ude , i n c l i n a t i o n , nPlanes , n S a t e l l i t e s ) )
18 nShe l l s += 1

Listing 5.1: Python 3 code for generating a shell given parameters altitude, inclination,
nPlanes, nSatellites and initialized empty lists elements list, shell list

Apart from the variables W and M, the orbital elements remain unchanged for all satellites of
the shell. As the satellites are placed w.r.t. the center of Earth, the Earth’s radius of 6371
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kilometers is added. After the step sizes for the variable orbital elements W, M are accordingly
assigned, the orbital elements of every satellite have to be stored in a list. Increasing M by
its step size sStep for each new satellite in a plane and increasing W by its step size pStep
for each new plane places the satellites to form a Walker constellation. In order to store
the shell information, which is necessary data for the insertion of constellations discussed in
Section 5.2, the parameters are stored in shell list. The previous steps must be executed
for every shell, before the accumulated list of orbital element sets is converted into the state
vectors by the library function pk.par2ic():

s a t e l l i t e s = [ ]
for e lements in e l em e n t s l i s t :

pos , v = pk . pa r2 i c ( elements , pk .MUEARTH)
pos = np . asar ray ( pos ) / 1000 .0
v = np . asar ray (v ) / 1000 .0
s a t e l l i t e s . append ( ( pos , v ) )

The constant pk.MU EARTH describes the Earth’s gravity parameter and must be passed
to ensure that the satellites orbit the Earth. Conversely, the function pk.ic2par() would
create orbital elements from state vectors.

5.1.2. Setting Further Parameters

Four further parameters are added to account for arising problems and to increase the
accuracy of some constellation models. In order to be able to generate any circular Walker
constellation, relative phasing is added as the variable offsetM, which determines the
phase difference between neighboring planes. The phase difference between the last and
the first plane is only the same as the other differences if offsetM is assigned a value
F*2*math.pi/(nPlanes*nSats) according to the second summand of Equation 2.5. In the
implementation, multiples of offsetM based on the plane index have to be added to the
total mean anomaly M of each orbital element set.
Another parameter startW is needed when multiple shells overlap20 due to similar altitude
and inclination, which is the case for shells in Starlink’s first constellation listed in Table 3.1
and other presented constellations. The problem is solved, if an offset is added to the
longitude of ascending node W. Assigning the value of the following equation to this offset
causes that no overlapping occurs for N shells that would overlap otherwise:

startW =
360◦

G
· i

N
, i ∈ {0, ..., N − 1} (5.1)

G denotes the smallest common multiple of the shells’ nPlanes values and every shell must
have a unique index i. The idea behind this equation can be explained by using the example
of two Starlink shells listed in Table 3.1, which have identical altitude and inclination values.
When W values are distributed to each plane using the same offset 0, both shells have planes
at W = 0 and W = 180, which overlap entirely. In order to prevent the overlapping, both
shells are first assumed to have the same number of planes G, which is 12 in this example.
The resulting step size 30◦, which is the evaluated left fraction of Equation 5.1, is the angle
between two planes in each 12-plane shell. By multiplying with the right fraction, the offsets
0◦ and 15◦ are created in order to maximize the distances between planes from the different
shells. Because both original shells of 4 and 6 planes are each a subset of the extended shell
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with 12 planes, the application of different offsets according to Equation 5.1 also prevents
overlapping between planes of the original shells.
The third parameter W area enables shells to span a different angle than the usual range
of 360°. This is implemented by replacing the numerator of line 8 in Listing 5.1 with the
radians value of W area.
Finally, the parameter argPeriapsis corresponds to the argument of periapsis variable w.
Modifying argPeriapsis practically determines the phase of the entire shell, which can be
done in order to prevent overlapping satellites at the simultaneous insertion of constellations.

5.1.3. State Vector and Metadata Output

Creating the constellation input for the simulation requires the data gathered in the lists
satellites and shell list to be written into files. Firstly, a directory is created to contain
the data of the files. The .csv file for the positions and the .csv file for the velocities are
created by extracting the respective vector list stored in satellites. Writing the .yaml file
that contains the constellation’s meta information, such as used parameters and the time of
launch and its insertion duration, requires the import of the yaml package. .yaml files are
structured similarly to python dictionaries and can be set up by creating a dictionary. In
order to produce the desired output format depicted in Listing 5.2, the dictionary entries
are implemented as shown in Listing 5.3.

c o n s t e l l a t i o n :
name : OneWebPhase1
startTime : 2020/02/06
durat ion : 1057d
nShe l l s : 2

s h e l l 1 :
a l t i t u d e : 1190
i n c l i n a t i o n : 87 .9
nPlanes : 12
nSats : 49

s h e l l 2 :
a l t i t u d e : 1200
i n c l i n a t i o n : 55 .0
nPlanes : 8
nSats : 16

Listing 5.2: Example of the de-
sired file structure

c o n s t e l l a t i o n c f g = {
” c o n s t e l l a t i o n ” : {

”name” : cons t e l l a t i on name ,
” startTime ” : startTime ,
” durat ion ” : durat ion ,
” nShe l l s ” : nShe l l s

}
}
for i in range ( nShe l l s ) :

c o n s t e l l a t i o n c f g [ ” s h e l l ” + s t r ( i +1) ] = {
” a l t i t u d e ” : s h e l l l i s t [ i ] [ 0 ] ,
” i n c l i n a t i o n ” : s h e l l l i s t [ i ] [ 1 ] ,
” nPlanes ” : s h e l l l i s t [ i ] [ 2 ] ,
” nSats ” : s h e l l l i s t [ i ] [ 3 ]

}
with open ( sh e l l s p a th , ”w” ) as fh :

yaml . dump( c o n s t e l l a t i o n c f g , fh , s o r t k ey s=
False )

fh . c l o s e ( )

Listing 5.3: Python 3 code for the creation of output
formatted according to Listing 5.2

For the reason of tracing back the parameters needed to generate the state vectors, the values
of the additional parameters can be included in the .yaml file analogously to the orbital
shell parameters. They are however not needed for the implementation of the insertion into
the simulation.
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5.2. Integration of Constellations into the Simulation

5.2. Integration of Constellations into the Simulation

In this approach, the integration of constellations into the simulation consists of three parts:
the implementation of a class Constellation, a method initConstellations() in the
Simulation class invoking the constructor for each Constellation instance during the
initialization, and the updateConstellations() method that updates each Constellation

instance in the simulation loop.

Figure 5.1.: A simplified UML diagram that depicts the Constellation class and its relation
to the Simulation class.

As it can be seen in Figure 5.1, the interface of Constellation objects consists of a single
method tick(), apart from the constructor. This method is called in the simulation loop
in order to retrieve particles from the constellations according to a schedule. The schedule
partially depends on a time of launch startTime and a duration duration, which are
parameters from the constellation’s .yaml file. Each constellation object is on the one hand
constructed with information about simulation parameters contained in the config object
and by the constellationConfig object with constellation data on the other hand. These
objects are YAML::Node objects that read the .yaml files that have been depicted in Figure 4.2.

5.2.1. Initialization of Constellations

Initializing the constellations in the Simulation class is done by the member function
initConstellations(). It creates a vector of Constellation objects by reading a con-
figuration parameter containing the names of the constellations chosen to be included.
After finding the .yaml file for each constellation based on the name, the corresponding
YAML::Node is passed to the constructor call.
By using the passed configuration information, the constructor sets the attributes deltaT,
the time simulated in one iteration, and interval, the number of iterations between two
invocations of updateConstellations(). These members are necessary for tracking the
simulation time and for converting the launch schedule information from calendar time into
simulation time measured in iterations. This conversion sets the two parameters startTime
and duration and is explained in Subsection 5.2.2.
The actual element of the constellation, the satellites that are modeled as Particle objects,
are loaded from the .csv files containing the state vectors and then stored in a std::deque.
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Determining the .csv files’ paths is based on the YAML-attribute constellationName, which
is used as a key to differentiate between the files associated with different constellations.
Metadata for each shell of the constellation is included in its configuration file and is needed
for the particle insertion algorithm. They are read and stored in a vector of 4-tuples shells.
Unique ID values have to be distributed to all the simulated particles in order to identify
the particles involved in a collision. As it is convenient for analyzing the collision data,
constellations are each allocated their own range of integers. A way to additionally achieve
visual discernibility is by allocating each constellation a range as big as a power of ten
that safely exceeds any constellation size. Additionally, the non-constellation input, which
consists of the tracked satellites and debris objects in orbit, is also allocated a range that
safely exceeds their count of objects. For that matter, a static variable can be used in
the Constellation class, that is initialized out of line with the value 10,000,000 and added
1,000,000 at the end of every Constellation constructor execution.

5.2.2. Launch Schedule Computation

Before the particles of Constellation objects are inserted to the simulation, the launch
schedule of each object needs to be calculated. First, the constellation’s YAML-parameter,
that describes the time of launch as a date string, must be converted into the simulation’s
unit of time: the iteration. This involves a series of conversions between five descriptions of
time depicted in Table 5.1.

date string struct tm standard reference simulation reference iteration

2022/07/22 {0,0,0,22,6,2022} 1658448000s 17452800s 1745280

Table 5.1.: Example of a conversion from calendar time to iteration time

In order to get a time in units of a second, the date string is firstly parsed and assigned
to a C++ struct tm21, before std::mktime() is called with the created struct tm as the
parameter in order to return a time in seconds of the type time t. As the time reference of
the product is not related to the reference time of the simulation at iteration zero, another
conversion must be performed. A subtraction with a time t value describing the reference
time of the simulation returns the time difference between the constellation launch and
the simulation start. In the last step of the conversion series, the iteration of launch is
obtained through division by deltaT. The duration YAML-parameter value is interpreted
as a number of days and the conversion only requires a conversion to seconds and a division
by deltaT.
If the startTime string of the configuration file is not formatted as a date, but as a plain
integer and if the duration string is not concluded by the ’d’ character, they can just be
interpreted as iteration values from the start.

After the two temporal attributes startTime and duration have been set, the launch
schedule, which is used by the tick() method, can be calculated and stored in a two-
dimensional vector schedule. At each slot with the indices i, j the launch time of plane j
in shell i is assigned in the unit of iterations. Inserting the constellation particles plane-wise
and linearly at the same time requires a certain strategy considering the different amount of
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planes per shell and particles per plane. To achieve linearity on a higher level, the shells are
allocated time spans in proportion to their total size, as shown in Figure 5.2. On a lower
level, that is for each shell, the planes are added in identical time steps, as the size of each
plane is the same.

Figure 5.2.: Example of an insertion scenario and the associated schedule. A plane’s time of
insertion is indicated by a colored bar. d is a symbol for the duration parameter.
d1 and d2 are symbols for the partitions allocated to each shell.

5.2.3. Particle Insertion Algorithm

During the main simulation loop, the Simulationmember method updateConstellations()
calls the method tick(simulationTime) on every constellation object in fixed intervals.
The method employs different behavior depending on its state stored in the member vari-
able status. Possible states are inactive, meaning the simulation time has not reached
the constellation’s startTime yet, active, meaning the simulation time is larger or equals
startTime, and deployed, which signals that the constellation is fully inserted. In the ”inac-
tive” state, the status variable is set to ”active” when simulationTime passes startTime.
Additionally, the object starts keeping track of the time internally using a counter variable
timeActive that begins its count at startTime.
Once the constellation is active, the algorithm demonstrated in Figure 5.3 is employed that
determines the particles to be inserted into the simulation. The variables currentShell
and planesDeployed keep track of the insertion progress by pointing to the timestamp of
the next plane in the schedule variable. Once timeActive passes this timestamp, particles
of an amount according to the plane size are included in the set of particles returned and
the indices are updated to point to the next timestamp. The particles are inserted into the
AutoPas particle container in the same order as they have been generated. After all particles
have been inserted, the state of the constellation is set to ”deployed”. In all following calls
of the tick() method, it performs a no-operation while returning an empty vector.
Since it is possible that new particles are inserted close to other particles, conjunctions could
instantly be triggered. This can be prevented by inserting such particles with a delay. The
particle container AutoPas provides a region iterator that iterates over all particles in a
defined region. It can be used to detect whether other particles are within a critical range of
the particle that should be inserted. If that is the case, the particle is placed in a vector and
the insertion is attempted in the next iteration.
As the generated particles are inserted statically over a duration that is unrelated to the
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1 particles ← {}
2 while timeActive > schedule[currentShell][planesDeployed] do
3 for i ← 0 to planeSizes[currentShell] do
4 particles.push back(pop front(satellites))

5 planesDeployed++
6 if planesDeployed == nPlanes[currentShell] then
7 currentShellIndex++
8 planesDeployed ← 0
9 if currentShell == nShells then

10 status ← deployed
11 break

12 timeActive ← timeActive + interval
13 return particles

Figure 5.3.: Code executed when tick() is called and the status is set to active.

phase of neighboring planes, the constellation only reliably retains its relative phasing
property when inserted within one iteration. In order to be able to model constellations
with a minimized chance of intra-constellation collisions22, the implementation would need
to retain the relative phasing. This is one reason why intra-constellation collisions are not
considered in the next chapter.
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Now that constellations can be generated and included in the simulation, it is possible to
start simulation runs that support assessing the collision risk of upcoming megaconstellations.
By utilizing AutoPas and by running the simulation on a computing cluster23 node with 28
cores, it is possible to simulate years with time steps of 10 seconds in a matter of a few days.
In this chapter, the results of simulation runs with constellations and input data consisting
of tracked objects that are already in space24 are presented. At first, the methodology for
running the simulation in order to obtain the results is described. Throughout this chapter,
the term ”tracked objects” only refers to the non-constellation input data.

6.1. Methodology

The simulation output consists of periodic snapshots of the state vectors associated with
object IDs and a log of all close encounters registered by the pairwise collision detection. Close
encounters, which are also referred to as conjunctions, are defined by a conjunction threshold
determining the maximum distance for registered conjunctions. In the conducted simulations,
conjunctions of up to 250 meters were tracked. Furthermore, the only conjunctions taken
into account are those where at least one of the particles is a tracked non-constellation object.
Non-constellation objects are inserted at simulation start and no further tracked objects are
added afterwards. All objects were propagated by the same component, meaning they were
subjected to the same Keplerian motion and perturbations. These perturbations include
the J2-, the C22-, and the S22-component, the solar radiation pressure, and atmospheric
drag. Only objects in the LEO region from 200-2000km altitudes above the Earth’s surface
are included in the simulation. Objects with a 10,000km distance from the Earth’s center
are deleted. Factors that are not yet accounted for are satellite station-keeping25, evasive
maneuvers performed by active satellites, and the generation of space debris following a
collision. Determining whether conjunctions result in collisions are not of primary importance
in the analysis for these reasons and, because breakups that generate further debris are not
yet implemented.
In the first of two simulation runs, 11.5 years were simulated with estimated times of
constellation insertions according to Figure 6.1. Most estimates regarding insertion duration
are based on the FCC’s general rule that companies can only launch their constellation
within nine years after the approval has been given26. Approximate, or accurate starting
times for launch were available for Starlink Generation 1, OneWeb’s first constellation,
Kuiper and Telesat, while times of launch for Astra, GuoWang and OneWeb 2 are not based
on concrete supporting information. For OneWeb’s first constellation, the choice of the
insertion speed is based on the current speed of insertion. As described in the previous
chapter, satellites are assumed to launch linearly over time. Shells are inserted in the same
order as listed in Chapter 3.
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Figure 6.1.: This figure shows the insertion times of each constellation included in the first
simulation from 2022/01/01 until 2033/07/01. The amount of satellites at each
point in time is shown in Figure 6.2

Figure 6.2.: Graph describing the amount of objects in the simulation over the simulated time.
The number of non-constellation objects equals 15,975 and at the simulation
start the object size equals 19,693 due to already inserted Starlink and OneWeb
satellites.

In the second run, which is a one year run, all constellations including Starlink Generation
2 are fully inserted at Iteration 0. Here, the full constellations can be compared directly and
a shorter time span that is more tangible can be looked at.
Before the results are analyzed, information about the tracked input data and the constella-
tions is presented in order to be able to better assess the general collision risk of constellation
satellites according to their operating altitude. Figure 6.3 and Figure 6.4 show the altitude
distributions of the non-constellation objects and the constellation satellites respectively.
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Figure 6.3.: Histogram of non-constellation
objects based on their altitude.

Figure 6.4.: Histogram of constellation satel-
lites based on their altitude. The
contribution of each constellation
is marked by a labeled color.

6.2. Holistic Conjunction Analysis

In the simulated scenario of eleven and a half years, the cumulative amount of conjunctions
depending on the conjunction threshold are shown in Figure 6.5. Samples of values are to
be found in Table A.2 in the appendix. Over the simulated time, 317,668 encounters within
250m and 50,812 encounters within 100m have been tracked. When the first thousand days
are compared to the last thousand days, the amount of 250m-conjunctions as well as the
100m-conjunctions double27. This shows that conjunctions of this class occur more than
daily, even in the early stage of the constellation insertion.

Figure 6.5.: Graphs showing the amount of conjunctions over time depending on the set
threshold. The axis counting the counjunctions is logarithmic in order to depict
various orders in magnitude.
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The graph also shows the drastic decrease in the chance of a conjunction occurring when
the conjunction threshold is decreased. For instance, 10m-conjunctions, which count 528
at the end of the simulation, are nearly 100 times less likely than a 100m-conjunction.
2m-conjunctions, which are comparatively rare, have a very high chance of collision if no
avoidance maneuvers are performed. The cuboid satellites of Starlink and OneWeb, for
example, have a maximum side length of 3.2m and 1.0m respectively as well as attached
solar arrays [APSODG21]. 13 of these and 138 5m-conjunctions occurred throughout the
simulation. Figure 6.6a shows the close encounters in more detail by mapping all conjunction
threshold values between 0 and 10m to a count of total conjunctions. The shown relationship
has the characteristic of a polynomial function, which is also indicated by Figure 6.6b. This
characteristic is expected, as the number of satellites within a sphere, which grows in a cubic
manner for an increasing conjunction threshold, is counted to determine the conjunctions.

(a) Short range (b) Long range

Figure 6.6.: Continuous graphs describing the relation of the amount of conjunctions and
the threshold for the low range [0m,10m] and the wide range [0m,250m]. Graph
samples are listed in Table A.4

Since the figures previously shown additionally consider collisions between two tracked
objects, it is relevant to know the ratio of these conjunctions. Over all thresholds roughly
38.5% out of all conjunctions did not involve constellations (see Table A.3). This means
that conjunctions involving constellations amount to 62.5% of all conjunctions and they
occurred about 1.62 times more often.

6.3. Conjunction Analysis by Constellations

In this section, results are presented w.r.t. individual constellations. At first, results from
the 11.5-year scenario are analyzed, before each constellations’ relation to the occurred con-
junctions are analyzed in a scenario that allows comparison of fully deployed constellations.
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The total amount of close 20m-conjunctions involving one constellation satellite and one
tracked object are shown in Figure 6.7. Additionally, the contribution of each constella-
tion is highlighted by color. Out of the total 1291 conjunctions, Starlink’s constellation,
which was also deployed long before the other large contributors, has the highest share
of conjunctions equaling 424. The GuoWang constellation, which has the second highest
conjunction count, conributed 273 conjunctions, even though it was inserted late in the
scenario. Despite the fact that the Astra 3 constellation is the single largest constellation
with a comparable size to Starlink and GuoWang, its number of conjunctions equals only 148.

Figure 6.7.: This figure shows the accumulated amount of 20m-conjunctions between con-
stellation satellites and non-constellation objects. The contribution of each
constellation is indicated by a labeled color. Value samples are listed in Ta-
ble A.5

Besides the similar number of satellites, the constellations GuoWang and Starlink are
comparable in their altitude distribution, as they respectively have 6080 and 4408 satellites
deployed in the altitude region between 500-600km, which has a high density in tracked
objects. Furthermore, the majority of each constellation’s satellites are in altitude regions
with low object densities. This indicates that the different amount of conjunctions is caused
by the fact that Starlink has been inserted earlier. The low amount of conjunctions in the
Astra 3 constellation is explained by the fact that the whole constellation is deployed within
altitudes of 380-400km with a low density of objects.
OneWeb 1, OneWeb 2 and the Telesat constellation are similarly deployed in altitudes with
comparatively low object densities and score a low amount of conjunctions compared to its
size, with 12, 67 and 30 conjunctions respectively. Astra’s small first constellation consisting
of 40 satellites in equatorial orbits caused one conjunction in total.
Lastly, the Kuiper constellation and Astra 2, which inhabit altitude regions with compara-
tively high object densities, contributed 147 and 189 conjunctions respectively.
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1-Year Simulation Results for Constellation Comparison

In the second simulation of one year, the constellations are fully inserted at Iteration 0,
which enables comparison that is independent from projected times of deployment. The
constellations are compared based on the their accumulated count of 100m-conjunctions
at the end of the simulation. Picking the conjunction threshold of 100m aims to make the
comparison more statistically reliable, as more conjunctions are tracked.
Out of all conjunctions involving constellations, the share of each constellation is depicted
in Figure 6.8. The GuoWang constellation is involved in 25.7% of the conjunctions and
has the highest share of all the constellations, even though the Starlink 2 constellation
has more than twice the number of satellites. Starlink’s second constellation has only
the second highest share, which remarkably shows how much influence the choice of the
satellites’ operating altitudes has on collision risk, or the amount of evasive maneuvers that
would have to be performed to prevent a collision. Aside from 4468 Starlink 2 satellites
in higher density altitudes, compared to the already mentioned 6080 GuoWang satellites
in similar altitudes, the spare 25,532 satellites operate in low density altitudes (see Table 3.3).

Figure 6.8.: This pie chart shows the contribution of conjunctions for every constellation.

This is also shown by the 7088 OneWeb satellites that are involved in about 4.8% of
conjunctions, while the 2336 Astra satellites deployed in 690-700km altitudes claim a higher
percentage of 8.2%. The Telesat, the Astra 3, and the OneWeb constellations behave highly
similar. All other constellations contain shells in higher density altitudes and have an
accordingly higher amount of conjunctions.
While making up 80,577 simulation objects, the constellation satellites are involved in 75.9%
out of all recorded 100m-conjunctions, as opposed to the 15,975 tracked objects making
up 24.1%. This means that on average 0.0662 conjunctions occurred per constellation
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satellite, while 0.106 of conjunctions occur for every tracked object. In other words, a
tracked non-constellation object has higher chances of close encounters with other tracked
objects than a constellation satellite.
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7. Conclusion

As a result of this work, constellations can be generated as well as inserted into the space
debris environment simulation LADDS. Resulting data from simulation runs that include
upcoming megaconstellations show, how the insertion of constellations in lower Earth orbit
affects the frequency of conjunctions and how the choice of the orbital shell’s altitude
significantly influences the overall risk of collision. The quality of the modeled constellations
can be increased by conserving relative phasing within orbital shells when they are added
over time. Furthermore, the addition of individual constellation satellite properties such as
mass and size can be implemented and set according to the constellation.
In order to be able to better estimate the future space debris population in lower Earth
orbit, breakup events triggered by collisions will be integrated into the simulation.
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Part III.

Appendix
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A. Graph Samples

Time in days 0 1000 2000 3000 3199 4000 4199

19693 29580 45307 59781 61750 66550 66550

Table A.1.: Samples of graph in Figure 6.2. The Values are object counts.

Threshold/Days 1000 2000 3000 4000 4199

2m 2 6 9 12 13

5m 27 59 89 126 138

10m 92 200 334 498 528

20m 314 707 1275 1950 2059

50m 1983 4471 7853 11876 12673

100m 7943 17916 31692 47577 50812

250m 49179 112880 199081 297641 317668

Table A.2.: Samples of graphs in Figure 6.5. Values describe counts of conjunction

Threshold 2m 5m 10m 20m 50m 100m 250m

0.4615 0.3985 0.3977 0.3729 0.3840 0.3840 0.3856

Table A.3.: Ratio of conjunctions not involving constellations in all conjunctions. Values
describe counts of conjunctions

Threshold 2m 4m 6m 8m 10m

13 89 194 353 528

Table A.4.: Samples of graph in Figure 6.6a. Values describe counts of conjunctions
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Constellation/Days 1001 2003 3004 4005 4199

Astra1 1 1 1 1 1

Astra2 33 83 129 181 189

Astra3 0 17 58 139 148

OneWeb1 2 5 9 12 12

OneWeb2 1 15 29 61 67

Starlink1 89 190 289 406 424

Kuiper 9 31 81 138 147

Telesat 2 9 15 28 30

GuoWang 0 6 111 246 273

Table A.5.: Samples of graph in Figure 6.7. Values describe counts of conjunctions.
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B. Footnotes

Notes
1Accessed 2022/02/08: https://en.wikipedia.org/wiki/List_of_Starlink_launches
2Accessed 2022/02/08: https://www.statista.com/statistics/897719/number-of-active-satellites-

by-year/
3Accessed 2022/02/08: https://www.esa.int/Safety_Security/Space_Debris/Mitigating_space_debris_

generation
4Accessed 2022/02/08: https://www.sdo.esoc.esa.int/environment_report/Space_Environment_Report_

latest.pdf
5Accessed 2022/02/08: https://www.esa.int/gsp/ACT/projects/debris_hpc/
6https://celestrak.com/
7Accessed 2022/02/06: http://www.parabolicarc.com/2021/11/05/astra-space-applies-to-launch-

more-than-13000-satellites-proposed-broadband-constellations-exceed-79000-spacecraft/
8Accessed 2022/02/06: https://spacenews.com/china-is-developing-plans-for-a-13000-satellite-

communications-megaconstellation/
9https://celestrak.com/

10Accessed 2022/02/13: https://spacenews.com/spacex-submits-paperwork-for-30000-more-starlink-
satellites/

11Accessed 2022/02/06: https://www.reuters.com/technology/canadas-telesat-takes-musk-bezos-

space-race-provide-fast-broadband-2021-04-11/
12Accessed 2022/02/06: http://www.parabolicarc.com/2021/11/05/astra-space-applies-to-launch-

more-than-13000-satellites-proposed-broadband-constellations-exceed-79000-spacecraft/
13Accessed 2022-02-06: https://spacenews.com/astra-says-focus-is-on-launch-as-it-files-application-

for-satellite-constellation/
14Accessed 2022/02/06: http://www.parabolicarc.com/2021/11/05/astra-space-applies-to-launch-

more-than-13000-satellites-proposed-broadband-constellations-exceed-79000-spacecraft/
15Accessed 2022/02/08: https://www.esa.int/gsp/ACT/projects/debris_hpc/
16https://celestrak.com/
17Here, auto-tuning refers to the automatic configuration of optimal algorithms and other strategies based

on the simulation state [GSBN21]
18Already launched constellation satellites are excluded from the set to avoid redundancy
19Accessed 2022/02/12: https://esa.github.io/pykep/
20Shells contain planes with identical orbital elements
21struct tm is defined to code the month as a number from 0 to 11
22Collisions between satellites of the same constellation
23The simulation was run on CoolMUC-2: https://doku.lrz.de/display/PUBLIC/CoolMUC-2, Accessed

2022/02/12
24Constellation satellites that have been launched at this time are excluded from the input set as well as

docked satellites
25The term refers to satellites that counteract perturbations to remain in a stable orbit
26Accessed 2022/02/07: https://spacenews.com/oneweb-asks-fcc-to-authorize-1200-more-satellites/
27The factors describing the increase equal 2.03 and 2.05 respectively
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[Bö21] Oliver Bösing. Efficient trajectory modelling for space debris evolution.
Bachelor’s thesis, Technical University of Munich, 9 2021.

[GSBN21] Fabio Alexander Gratl, Steffen Seckler, Hans-Joachim Bungartz, and Philipp
Neumann. N ways to simulate short-range particle systems: Automated
algorithm selection with the node-level library autopas. Computer Physics
Communications, 273:108262, 2021.

[GXG+20] Meiqian Guan, Tianhe Xu, Fan Gao, Wenfeng Nie, and Honglei Yang. Optimal
walker constellation design of leo-based global navigation and augmentation
system. Remote Sensing, 12(11):1845, 2020.

[KJLM10] Donald J Kessler, Nicholas L Johnson, JC Liou, and Mark Matney. The
kessler syndrome: implications to future space operations. Advances in the
Astronautical Sciences, 137(8):2010, 2010.

[LCY21] Jintao Liang, Aizaz U Chaudhry, and Halim Yanikomeroglu. Phasing parame-
ter analysis for satellite collision avoidance in starlink and kuiper constellations.
In 2021 IEEE 4th 5G World Forum (5GWF), pages 493–498. IEEE, 2021.

[LHKO04] J.-C Liou, D.T Hall, P.H Krisko, and J.N Opiela. Legend – a three-dimensional
leo-to-geo debris evolutionary model. Advances in Space Research, 34(5):981–
986, 2004. Space Debris.

[PdPCC21] Nils Pachler, Inigo del Portillo, Edward F. Crawley, and Bruce G. Cameron.
An updated comparison of four low earth orbit satellite constellation systems
to provide global broadband. In 2021 IEEE International Conference on
Communications Workshops (ICC Workshops), pages 1–7, 2021.

[Vir16] B Bastida Virgili. Delta debris environment long-term analysis. In Proceedings
of the 6th International Conference on Astrodynamics Tools and Techniques
(ICATT), 2016.

[Wal18] Ulrich Walter. Astronautics: The Physics of Space Flight, Third Edition.
Springer, 2018.

37


	Acknowledgements
	Abstract
	Zusammenfassung
	Introduction and Background
	Introduction
	Theoretical Background
	Orbital Elements
	Satellite Constellation Design

	Upcoming Megaconstellations
	Implementation Context
	Simulation Approach
	Simulation Structure
	Integrating Constellations


	Implementation and Results
	Implementation
	Generation of Constellations
	Creation of Shells from Parameters
	Setting Further Parameters
	State Vector and Metadata Output

	Integration of Constellations into the Simulation
	Initialization of Constellations
	Launch Schedule Computation
	Particle Insertion Algorithm


	Simulation Results
	Methodology
	Holistic Conjunction Analysis
	Conjunction Analysis by Constellations

	Conclusion

	Appendix
	Graph Samples
	Footnotes
	Bibliography


