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1 Introduction

The high volatility of price movements in the financial markets is rare, but very important.
The stock market crashes that have taken places over the past few decades brought
about considerable attention to market risk management researchers, practitioners as
well as regulators. More precisely, this attention has been manifested by the Basel II
accord (Jiménez-Martín et al., 2009) which has published recommendations on banking
regulations. These recommendations are generally enforced by the member countries
which include the G20 countries in addition to others. Basel II explicitly recognizes the
Value-at-Risk(VaR) as a market risk measure that must be implemented by banks and
financial institutes to determine their risk exposure and the amount of capital that is
subject to regulation. Therefore, VaR has been adopted to be the main risk management
measures in the field of Risk Management.

In this thesis, we are interested in estimating the VaR of a portfolio of financial assets. More
precisely, we are interested in applying copula based models estimating the VaR of large
portfolios that are too complicated and computationally expensive to work with using
conventional multivariate models (McAleer, 2009). Our approach is based on utilizing
univariate ARMA-GARCH models to capture the trend and volatility of each component
of the portfolio while using vine copula models to capture the cross dependence structure
among the different components.

In the following, Section 2 will give a theoretical background on financial time series
modelling, ARMA-GARCH models, vine copula models, VaR estimation, and backtesting
VaR. Section 3.1 illustrate our method in utilizing ARMA-GARCH models with vine copula
based dependence structure in estimating the VaR for a single day. Section 3.2 extends the
single day model to estimate the VaR for an interval of days which can be used to backtest
the model. Finally, Section 4 shows an example of using VaRVine, an R-package that we
have developed to implement our approach.
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2 Background

2.1 Asset Returns

Let Pt be the closing price of an asset on day t, then we can define two types of asset
returns.

Simple Returns

By holding an asset from day t− 1 to day t, then the simple return over this 1 day period
is defined as:

Rt =
Pt − Pt−1

Pt−1

In our analysis, we consider the continuously compounded returns (or log returns) which

are defined next.

Continuously Compounded Returns (Log Returns)

For illustration, assume that a bank pays 10% annual interest on a deposit of $1000.
If the bank pays interest once a year, then the net value of the deposit in one year is
$1000(1 + 0.1) = $1100. However, if the bank pays interest twice a year, each being
10%

2 = 5%, then the net value after one year is $1000(1 + 0.05)2 = 1102.5. More generally, if
the bank pays interest m times a year, then the net value after one year is $1000(1 + 0.1

m )m.
So, if the initial investment is P and the interest rate r is payed m times a year, then the

net value of the investment after one year A can be calculated as

A = P
(

1 +
r
m

)m
.

Following the same reasoning we can derive the continuous compounding net value of an
asset with price P over a period t:

A = lim
m→∞

P
(

1 +
r
m

)mt

= P lim
m→∞

exp
(
mt ln(1 +

r
m
)
)

≈ P exp(rt). (1)

Where t can be in days, months, years, etc. In our analysis will consider t to be in days
since we are interested in daily returns.

From Equation (1), we can derive the daily log returns:
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Pt = Pt−1 exp(r) =⇒

r = ln
Pt

Pt−1

We usually use rt instead of r to denote the daily return on a certain day t.

2.2 Stationarity

Before explaining modelling asset returns, we need to define the concept of weak stationarity.
We say that a time series {rt} is weakly stationary if:

label=() The unconditional mean E(rt) = µ is time invariant.

lbbel=() The covariance between cov(rt, rt−`) = γ` depends only on the lag `.

In practice, assume we have T observations {rt, t = 1, . . . , T}, then weak stationarity
implies that the time plot of {rt} should oscillate with a constant variation around a fixed
point which is the mean as shown in Figure 1.

In the literature, it is often assumed that the return series of an asset is weakly stationary
(Tsay, 2010, p. 29) , and we will make the same assumption in the following sections.

Figure 1: An example of a weakly stationary time series

2.3 Modelling Returns

Let {rt} be a time series representing the log returns of an asset. Then, we model {rt} as
the following:

rt = µt + εt, t = 1, . . . , T (2)
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and we consider the following conditional mean and conditional variance equations:

µt = E(rt|Ft−1)

σ2
t = Var(rt|Ft−1) = E((rt − µt)

2|Ft−1) = E(ε2
t |Ft−1),

(3)

where Ft−1 denotes the information set available at time t− 1.

In the following, we discuss two time series models. Namely, The autoregressive moving
average (ARMA) model (Tsay, 2010, p. 64), and the generalized autoregressive conditional
heteroskedasticity (GARCH) model (Tsay, 2010, p. 142). The former assumes that the time
series exhibits a constant variance across time. It is mainly used to model the conditional
mean {µt}. On the other hand, the GARCH model assumes that the variance changes with
time, and hence, it is mainly used to model the conditional variance {σ2

t } . Furthermore,
we discuss combining the two model into an ARMA-GARCH, model which we use to
model {rt} assuming a non-constant variance.

First, we describe the ARMA model by explaining its two components, the Autoregressive
(AR) model and the Moving Average (MA) mode:

2.4 AR Model

In an AR(p) (Autoregressive model of order p), Equation (2) becomes:

rt = φ0 +
p

∑
i=1

φirt−i + εt,

where the shocks (or innovations) {εt} are assumed to be independent and identically
distributed (i.i.d) with zero mean and constant variance σ2.

For simplicity, we will only consider the case of AR(1) with normally distributed innova-
tions:

rt = φ0 + φ1rt−1 + εt, (4)

where εt ∼ N (0, σ2). However, all the results stated can be easily generalized to describe
an AR(p) with different assumption on the distribution of εt.

2.4.1 Properties of AR Models

Comparing Equations (4) and (3), we can write the equations for the conditional mean and
conditional variance of an AR(1) model:
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E(rt|Ft−1) = φ0 + φ1rt−1

Var(rt|Ft−1) = E(ε2
t |Ft−1) = Var(εt|Ft−1) = σ2.

The unconditional mean can be calculated by taking the expectation of Equation (4):

E(rt) = φ0 + φ1E(rt−1).

Assuming weak stationarity, E(rt) = E(rt−1) = µ, then

E(rt) = µ =
φ0

1− φ1
.

Using φ0 = (1− φ1)µ, we can rewrite Equation (4) as:

rt − µ = φ1(rt−1 − µ) + εt. (5)

The unconditional variance can be calculated by taking the expectation of the square of
Equation (5)

Var(rt) = E
[
(rt − µ)2]

= E
[
φ2

1(rt−1 − µ)2 + ε2
t + 2φ1(rt−1 − µ)εt

]
= E

[
φ1(rt−1 − µ)2 + ε2

t
]

= φ2
1Var(rt−1) + Var(εt)

= φ2
1Var(rt−1) + σ2,

where in the second step, we used that E[(rt−1− µ)εt] = 0 which can be seen from the fact
that εt does not depend on past events, in particular εt does not depend on rt−1 and hence
cov(rt−1, εt) = 0 = E[(rt−1 − µ)(εt − 0)].

Once again, assuming weak stationarity, Var(rt) = Var(rt−1), then

Var(rt) =
σ2

1− φ2
1

.
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2.4.2 Parameter Estimation

For an AR(1) model described by Equation (4), the conditional-maximum likelihood esti-
mation method that starts with the 2nd observation can be used to estimate the parameters
φ0, φ1, and σ.

Assume we have T observations of {rt}, then the conditional-likelihood function can be
expressed as:

L(α|r2, . . . , rT; F1) = f (r2, . . . , rT|α, F1)

= f (r3, . . . , rT|α, F2) f (r2|α, F1)

= f (r4, . . . , rT|α, F3) f (r3|α, F2) f (r2|α, F1)

...

=
T

∏
t=2

f (rt|α, Ft−1),

where α = (φ0, φ1, σ)t is a vector of the parameters to be estimated and Ft is as defined in
Equation (3).

Now, assuming that εt ∼ N (0, σ2) for some unknown parameter σ that need to be
estimated, then we can write using Equation (4):

εt ∼ N (0, σ2) ⇐⇒
rt|Ft−1 ∼ N (φ0 + φ1rt−1, σ2).

Using the above we can rewrite the conditional-likelihood function:

L(α|r2, . . . , rT; F1) =
T

∏
t=2

1√
2πσ2

exp− (rt − (φ0 + φ1rt−1))
2

2σ2 , (6)

where φ0 + φ1rt−1 is the conditional mean of rt (see Equation (3)).

We want to maximize (6) with respect to α, which is usually done by maximizing its
logarithm:

`(α|r2, . . . , rT; F1) = lnL(α|r2, . . . , rT; F1)

=
T

∑
t=2

[
− 1

2
ln 2π − 1

2
ln σ2 − 1

2

(
rt − (φ0 + φ1rt−1)

)2

σ2

]
.

We maximize the expression above to get an estimate α̂ = (φ̂0, φ̂1, σ̂). i.e

α̂ = max
α

`(α|r2, . . . , rT; F1).
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2.4.3 Forecasting

The forecasts of an AR(1) model can be obtained using Equation (4). Assuming that we
have fitted an AR(1) model and obtained the fitted parameters α̂, then the 1-step ahead
forecast of rt assuming we are at time t = h is:

r̂h(1) = φ̂0 + φ̂1rh.

Similarly, the ` step ahead forecast can be calculated recursively:

r̂h(`) = φ̂0 + φ̂1r̂h(`− 1),

where ` ≥ 2.

2.5 MA Model

The Moving Average (MA) model is the second component of the ARMA model.

The equation MA(q) (Moving average model of order q) model for a time series {rt} is:

rt = c0 + εt −
q

∑
t=i

θiεt−i,

where c0, θi; i ∈ {1, . . . , q} represent the parameters of the model, and once again the
innovation series {εt} is assumed to be i.i.d with zero mean and constant variance σ2.

Similar to the AR model, we will limit the discussion to the MA(1) model.

rt = c0 + εt − θ1εt−1, (7)

where we assume that εt ∼ N (0, σ2). Again, all the results stated can be easily generalized
to describe an MA(q) model.

2.5.1 Properties of MA Models

The conditional mean and conditional variance of MA(1) model:

E(rt|Ft−1) = c0 − θ1εt−1

Var(rt|Ft−1) = Var(εt) = σ2.

The unconditional mean can be calculated by taking the expectation of Equation (7):

E[rt] = c0.
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The unconditional variance can be calculated by taking the variance of Equation (7):

Var(rt) = σ2 + θ2
1σ2 = (1 + θ2

1)σ
2.

where we used the assumption that εt and εt−1 are not correlated.

2.5.2 Parameter Estimation

Similar to Section 2.4.2, we can write the conditional-likelihood function:

L(α|r2, . . . , rT; F1) =
T

∏
t=2

f (rt|α, Ft−1), (8)

where α = (c0, θ1, σ)t is a vector of the parameters to be estimated, and Ft, as mentioned
above, denotes the information available at time t.

Using the assumption that εt ∼ N (0, σ2), we can rewrite Equation (8):

L(α|r2, . . . , rT; F1) =
T

∏
t=2

1√
2πσ2

exp− (rt − (c0 − θ1εt−1))
2

2σ2 ,

where c0 − θ1εt−1 is the conditional mean and εt can be expressed recursively as follows:

1. Assume ε0 = 0.

2. ε1 = r1 − c1.

3. εt = rt − (ct − θtεt−1) for t ≥ 2.

Again, we usually maximize the log likelihood rather than the likelihood:

`(α|r2, . . . , rT; F1) = lnL(α|r2, . . . , rT; F1)

=
T

∑
t=2

[
− 1

2
ln 2π − 1

2
ln σ2 − 1

2

(
rt − (c0 − θ1εt−1)

)2

σ2

]
.

2.5.3 Forecasting

The forecasts of an MA(1) model can be obtained using Equation (7). Assuming that we
have fitted an MA(1) model and obtained the fitted parameters α̂, then the 1-step ahead
forecast of rt assuming that we are at time t = h is:

r̂h(1) = E[rh+1|Fh] = ĉ0 − θ̂1ε̂h.
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For ` ≥ 2, the `-ahead step forecast is:

r̂h(`) = E[rh+`|Fh] = ĉ0,

where we have used the fact that E[εt|Ft−2] = 0.

2.6 ARMA Model

Now we can combine the Autoregressive model with the Moving Average model to get
the Autoregressive Moving Average (ARMA) model, which is defined as:

rt = φ0 +
p

∑
t=1

φirt−i −
q

∑
t=1

θiεt−i + εt. (9)

Equation (9) describes an ARMA(p, q) model where we assume that {εt} is i.i.d with mean
zero and variance σ2.

Once again, we will only consider the case of ARMA(1, 1) model:

rt = φ0 + φ1rt−1 − θ1εt−1 + εt.

The properties, estimation process, and forecasting of an ARMA(1, 1) model can be directly
deduced from Sections 2.4, and 2.5 and therefore, will be omitted.

2.7 ARCH Model

Let {rt} be the log return series of a an asset. The idea behind volatility modeling is that
{rt} is either serially uncorrelated or with minor lower order serial correlation; however, it
is dependent.

To measure serial correlation in a time series, we use the autocorrelation function (ACF)
which indicates, as a function of `, the correlation coefficient between rt and rt−`. More
precisely:

ACF` = ρ` =
Cov(rt, rt−`)√

Var(rt)Var(rt−`)

=
Cov(rt, rt−`)

Var(rt)
,

where in the last step, we used Var(rt) = Var(rt−`) under the weak stationarity assumption.
We say that a time series is serially uncorrelated if ρ` = 0 for all ` > 0 as shown in the left
panel of Figure 2.
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Figure 2 shows the monthly log returns of IBM between January of 1974 and December of
2008. Figure 23 (a) shows the ACF plot of the log returns and Figure 23 (b) shows the ACF
plot of the squared log returns. It can be seen from the left panel that the monthly log
returns are not serially correlated. However, the second panel indicates that there exists a
higher order dependence in the return sequence that could be captured in a higher order
model like ARCH and GARCH models as will be illustrated in the following (Tsay, 2010,
p. 111).

Figure 2: Monthly log returns of IBM from 1974-01-01 to 2008-12-31

The idea behind ARCH models is the following:

1. The shock (or innovation) εt of an asset return is serially uncorrelated but dependent.

2. This dependence can be described by a quadratic function of its lagged values

More specifically, an ARCH(m) model assumes that:

εt = σtZt

σ2
t = α0 +

m

∑
i=1

αiε
2
t−i,

(10)
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(a) (b)

Figure 3: Sample ACF of IBM montly log returns from January 1974 to December 2008: (a)
ACF of the log returns, (b) ACF of the squared log returns

where Zt is an i.i.d sequence of random variables with mean zero and variance one.

In the following, we will only focus on the ARCH(1) model, with normally distributed
standardized innovations (i.e. Zt ∼ N (0, 1)).

εt = σtZt

σ2
t = α0 + α1ε2

t−1.
(11)

However, all the results stated can be easily generalized to describe an ARCH(m) model.

2.7.1 Properties of ARCH Models

The conditional mean of an ARCH(1) model can be derived from Equation (11):

E(εt|Ft−1) = E(σtZt|Ft−1) = E(
√

α0 + α1ε2
t−1Zt|Ft−1) = 0,

where we used the fact that εt−1|Ft−1 is known.

Similarly, the conditional variance of an ARCH(1) model can be derived as following:
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Var(εt|Ft−1) = E(ε2
t |Ft−1)

= E(σ2
t Z2

t |Ft−1)

= E
(
(α0 + α1ε2

t−1)Z2
t
∣∣Ft−1)

= (α0 + α1ε2
t−1)E(Z2

t |Ft−1)

= σ2
t (1)

= σ2
t , (12)

where in the forth step, we again used the fact that εt−1|Ft−1 is known.

The unconditional mean of εt is zero.

E(εt) = E[E(εt|Ft−1)] = E[σtE(zt)] = 0.

The unconditional variance of εt can be calculated as:

Var(εt) = E(ε2
t )

= E[E(ε2
t |Ft−1)]

= E[Var(εt|Ft−1)]

= E[σ2
t ] (Using Equation (12))

= E[α0 + α1ε2
t−1] (Using Equation (11))

= α0 + α1E(ε2
t−1)

Assuming εt is weakly stationary , then Var(εt) = Var(εt−1) = E(ε2
t−1), thus we get

Var(εt) =
α0

1− α1
.

2.7.2 Parameter Estimation

The derivation of the conditional-likelihood function of an ARCH(1) model is identical to
that of an AR(1) model (see Section 2.4.2).

L(α|ε2, . . . , εT; F1) =
T

∏
t=2

f (εt|α, Ft−1). (13)

where α = (α0, α1, σt)t represents the model parameters.

The above equation depends on the distribution assumption of zt. Following our assump-
tion that zt ∼ N (0, 1), then we have:
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εt|εt−1 ∼ N (0, σ2
t )

= N (0, α0 + α1ε2
t−1).

(14)

And hence we can rewrite the conditional-likelihood equation:

L(α|ε2, . . . , εT; F1) =
T

∏
t=2

1√
2πσ2

exp
(
− ε2

t

2σ2
t

)
.

Once again we consider maximizing the conditional log-likelihood function:

`(α|ε1, . . . εT) =
T

∑
t=2

(
− 1

2
ln 2π − 1

2
ln σ2

t −
1
2

ε2
t

σ2
t

)
. (15)

2.7.3 Model Checking

For a fitted ARCH model based on observations {ε1, . . . , εT}, the standardized residuals
can be calculated as

ẑt =
εt

σ̂t
,

for t = 1, . . . , T, where σ̂t can be estimated recursively using Equation (11):

1. σ̂2 = α̂0 + α̂1ε1.

2. σ̂3 = α̂0 + α̂1ε2.

3. Similarly for t > 3, σ̂t = α̂0 + α̂1εt−1.

If the ARCH model is fitted properly, then {ẑt} form an approximate i.i.d sequence. So to
test if the model adequately captures the volatility, we verify that the sequence {ẑ2

t } is not
serially correlated which can be tested using the Ljung-Box test (see Section 2.9).

2.7.4 Forecasting

The forecasts of an ARCH(1) model can be obtained recursively using Equation (11).
Assume that we are at time t = h, then the 1-step ahead forecast of σ̂2

h+1 is

σ̂2
h (1) = α0 + α1σ̂2

h .

Similarly the ` step forecast is

σ̂2
h (`) = α0 + α1σ̂2

h (`− 1) (` ≥ 2).
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2.8 GARCH Model

The GARCH model (or Generalized ARCH) is a generalization of the ARCH model by
modifying Equation (10):

εt = σtzt

σ2
t = α0 +

m

∑
i=1

αiε
2
t−i +

s

∑
i=1

βiσ
2
t−i.

This gives the equation of a GARCH(m, s) model. This generalization is due to the fact
that an ARCH(m) model often requires a large order m to model the volatility in the return
series while, on the other hand, the GARCH(m, s) model requires lower values of m and s
to fit well (Tsay, 2010, p. 131).

As before, in the following we will only consider the case of a GARCH(1, 1) model which
can be easily generalized to a GARCH(m, s) model:

εt = σtzt

σ2
t = α0 + α1ε2

t−1 + β1σ2
t−1.

2.8.1 Parameter Estimation

The estimation of a GARCH(1, 1) model is very similar to an ARCH(1) model. Now
Equation (14) looks like:

εt|εt−1, σt−1 ∼ N (0, σ2
t )

= N (0, α0 + α1ε2
t−1 + β1σ2

t−1).

And the conditional-likelihood function is identical to that in Equation (13) and (15). The
only difference is now we calculate σ2

t recursively as follows:

1. Assume we are at a certain iteration in the optimization process where we have
intermediate values of (α̂0, α̂1, β̂1).

2. Initialize σ̂1 to be the sample standard deviation of the observed sequence {εt}.

3. Using Equation (2.8) we estimate σ2
2 by σ̂2

2 = α̂0 + α̂1ε2
1 + β̂1σ̂2

1

4. Similar to step 3, we can estimate σ2
t by σ̂2

t = α̂0 + α̂1ε2
t−1 + β̂1σ̂2

t−1 for t ∈ {3, . . . T}.

2.8.2 Model Checking

Model checking is identical to Section 2.7.3
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2.8.3 Forecasting

Similar to Section 2.7.4 the 1-step ahead forecast of σ2
h+1 assuming we are at time t = h is

σ̂2
h (1) = α̂0 + α̂1ε2

h + β̂1σ̂2
h .

For the 2-step ahead forecast, we use εt = σtzt and rewrite the volatility equation

σ2
h+2 = α0 + α1σ2

h+1z2
h+1 + β1σ2

h+1

= α0 + (α1 + β1)σ
2
h+1 + α1σ2

h+1(zh+1 − 1).

Notice that E(z2
h+1 − 1|Fh) = 0, then the 2-step ahead forecast is

σ̂2
h (2) = α̂0 + (α̂1 + β̂1)σ̂

2
h (1).

And in general for ` > 1 the `-step ahead forecast is

σ̂2
h (`) = α̂0 + (α̂1 + β̂1)σ̂

2
h (`− 1).

2.9 The Ljung-Box Test

The Ljung-Box test can be used to test for the existence of auto-correlations in a time
series. In our case, it is used to test the adequacy of the mean equation by testing for the
existence of auto correlations in the residuals sequence {ẑt}. In addition, it is used to test
the adequacy of the volatility equation by testing for the existence of auto-correlations in
the squared residuals sequence {ẑ2

t }.

More precisely, we can state the null and alternative hypotheses for a random sequence
{Xt}, t = 1, . . . , T for some chosen number of lags m:

1. H0: The random sequence {Xt} does not exhibit any serial correlations (i.e. ρ1 =

ρ2 = · · · = ρm = 0).

2. Ha: {Xt} exhibit serial correlation.

Here ρk is the auto-correlation at lag k:

ρk = cor(Xt, Xt+k).

The test statistic based on the observed sequence {xt, t = 1, . . . , T} is:

Q(m) = T(T + 2)
m

∑
k=1

ρ̂2
k

T − k
,
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where ρ̂k is the empirical auto-correlation at lag k and is given by:

ρ̂k =
∑n−k

i=1 (xt − x)(xt+k − x)
∑n

i=1(xt − x)2 .

Under the null hypothesis, Q(m) follows a χ2
(m) distribution (Tsay, 2010), and hence we

reject H0 at the significance level of α if Q > χ2
1−α,m. Here χ2

β,m denotes the β-quantile of
χ2
(m).

2.10 Estimation of ARMA-GARCH models

Again, we will consider the simplest case of an ARMA(p, q)-GARCH(m, s) model, namely
the ARMA(1, 1)-GARCH(1, 1) model. Assume we have the log return series rt, then an
ARMA(1, 1)-GARCH(1, 1) model assumes the following:

rt = φ0 + φ1rt−1 − θ1εt−1 + εt (16a)

εt = σtzt (16b)

σ2
t = α0 + α1ε2

t−1 + β1σ2
t−1 (16c)

Where φ0, φ1, θ1 are the parameters of the mean equation (16a), while α0, α1, β1 are the
parameter of the volatility equation (16c). We can estimate those parameters using the
following two approaches.

2.10.1 A Two-pass estimation method

This method will first estimate the mean equation without any ARCH effects. (i.e. assuming
constant variance). Then we use the residuals of the fitted mean model {ε̂t = rt −
(φ̂0 + φ̂1rt−1 − θ̂1ε̂t−1)} as an observation sequence to fit the GARCH model specified in
Equations (16b) & (16c) as described in Sections 2.7.2 and 2.8.1. Note that the GARCH
estimation in this case is only an approximation; however, it is often found to be a good
approximation to the true parameters, when the sample size is large (Tsay, 2010, p. 140).

2.10.2 Joint estimation

Another approach is to estimate the parameters of the mean and volatility equations jointly.
From Equation (16), we can show that

εt|Ft−1 ∼ N (0, σ2
t )

which implies that
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rt|Ft−1 ∼ N (φ0 + φ1rt−1 − θ1εt−1, σ2
t )

Then similar to Equation (13), we can write the the conditional-likelihood function:

L(α|r2, . . . , rT; F1) =
T

∏
t=2

f (rt|α, Ft−1)

=
T

∏
t=2

1√
(2πσ2

t )
exp

(
− εt

2σ2
t

)
=

T

∏
t=2

1√
(2πσ2

t )
exp

(
−
(
rt − (φ0 + φ1rt−1 − θ1εt−1)

)2

2(α0 + α1ε2
t−1 + β1σ2

t−1)

)
,

where α = (φ0, φ1, θ1, α0, α1, β1) are the model parameters to be estimated. Here εt and σt

are estimated recursively as follows:

1. Initialize σ̂1 to be the sample standard deviation of the observed sequence {rt}.

2. Initialize ε̂1 = 0.

3. Assume we are at a certain iteration in the optimization process where we have
intermediate values of (φ̂0, φ̂1, θ̂1, α̂0, α̂1, β1).

4. Using Equation (16c), we estimate σ2
2 by σ̂2

2 = α̂0 + α̂1ε̂2
1 + β̂1σ̂2

1 .

5. Using Equation (16a), we estimate ε2 by ε̂2 = r2 − (φ̂0 + φ̂1r1 − θ̂1ε̂1).

6. Similarly, we estimate σ2
t by σ̂2

t = α̂0 + α̂1ε̂2
t−1 + β̂1σ̂2

t−1 for t ∈ {3, . . . , T}.

7. Likewise, we estimate εt by ε̂t = rt − (φ̂0 + φ̂1rt−1 − θ̂1ε̂t−1) for t ∈ {3, . . . , T}.

2.11 Copulas

Copulas are used to model the dependence structure among random variables separate
from the univariate margins. Specifically, a copula C of dimension d is a multivariate
cumulative distribution function on the hypercube [0, 1]d with uniformly distributed
margins. Sklar’s theorem (Czado, 2019, p. 13) describes copulas in more precise terms:

Theorem. Let X be a d-dimensional random vector with joint distribution function F and marginal
distribution functions Fi, i = 1, . . . , d, then the joint distribution function can be expressed as:

F(x1, . . . , xd) = C
(

F1(x1), . . . , Fd(xd)
)
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with associated density function:

f (x1, . . . , xd) = c
(

F1(x1), ..., Fd(xd)
)

f1(x1), . . . , fd(xd). (17)

Here c denotes the associated density to the distribution function C.

We will only consider the case of bivariate copulas (i.e. d = 2) since they are the building
blocks of vine copulas which will be explained in the next section.

2.11.1 Conditioning

From Sklar’s theorem we can write the conditional density f1|2 and conditional distribution
function F1|2:

f1|2(x1|x2) = c12
(

F1(x1), F2(x2)
)

f2(x2) (18)

F1|2(x1|x2) =
∂

∂F2(x2)
C12
(

F1(x1), F2(x2)
)
.

2.11.2 Dependence Measure

Kendall’s τ, or Spearman’s ρ are usually used to measure the dependence of the copula
variables. Both of them are invariant to marginal transformations which is why they are
used rather than Pearson’s correlation.

The dependence measure Kendall’s τ between two random variables X1 and X2 is defined
as:

τ(X1, X2) = P
(
(X11 − X21)(X12 − X22) > 0

)
− P

(
(X11 − X21)(X12 − X22) < 0

)
,

where (X11, X12)
t, (X21, X22)t are independent and identically distributed copies of (X1, X2)t.

On the other hand, Spearman’s correlation is defined as:

ρs(X1, X2) = cor(F1(X1), F2(X2)),

where "cor" refers to Pearson’s correlation which is given by:

cor(X1, X2) =
Cov(X1, X2)

Var(X1)Var(X2)
.
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2.11.3 Copula Families

There are many bivariate copula families which differ in their dependence properties.
Some of the common ones include the Gaussian copula, the Student t copula, the Gumbel
copula, and the Clayton copula. In order to visualize the differences among the different
families, it is useful to define 3 scales:

label=() The original scale (X1, X2).

lbbel=() The copula scale (or U-scale) (U1, U2) =
(

F1(X1), F2(X2)
)
.

lcbel=() The z-scale (Z1, Z2) =
(
Φ−1(U1), Φ−1(U2)

)
.

where Φ is the distribution of a N (0, 1) random variable.

Figure 4 shows the contours of the associated bivariate density of (Z1, Z2) for different
copula families.

Figure 4: Normalized contour plots of some bivariate copula families: (1) Gumbel with
τ = 0.7, (2) Gaussian with τ = 0.7, (3) Student t with 4 degrees of freedom and τ = −0.2,
(4) Clayton with τ = 0.7 (Czado, 2019, p. 60–61).

2.11.4 Estimation

Given i.i.d data (xi1, xi2) for i = 1, . . . , n, we want to fit a bivariate copula to the data. To
do that we first need to transform the data from the original scale to the copula scale. In
particular, the pseudo copula data is given by:

(ui1, ui2) =
(

F̂1(xi1), F̂2(xi2)
)

where F̂j, j ∈ {1, 2} is the estimated marginal distribution of Xj based on the observations
(x1j, . . . , xnj).
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Assuming that a parametric model has been used to estimate F1 and F2, then we use
inference for margins (IFM) method for estimating the copula parameters (Joe, 2005). More
precisely, we maximize the likelihood function:

`(θ; u) =
n

∏
i=1

c(ui1, ui2; θ),

where θ is the copula parameter to be estimated.

2.12 Vine Copulas

The idea behind vine copulas is to construct a multivariate copula by only using bivariate
copulas as building blocks. In the following, we will show how to construct a multivariate
copula of dimension d = 3 using bivariate copulas. Using Bayes rule we can write
f (x1, x2, x3) as:

f (x1, x2, x3) = f3|12(x3|x1, x2) f2|1(x2|x1) f (x1) (19)

where f j|D denotes the conditional density function of Xj given XD = xD.

Now we want to express each term in terms of bivariate copulas. First let’s consider
f3|12(x3|x1, x2):

f3|12(x3|x1, x2) =
f13|2(x1, x3|x2)

f1|2(x1|x2)
(Bayes rule)

=
c13;2

(
F1|2(x1|x2), F3|2(x3|x2)

)
f1|2(x1|x2) f3|2(x3|x2)

f1|2(x1|x2)

= c13;2
(

F1|2(x1|x2), F3|2(x3|x2)
)

f3|2(x3|x2) (20)

where in Step 2, we used Sklar’s theorem (Equation (17)). Fj|D is the conditional distribution
function of Xj given XD, and cij;k is the copula density corresponding to the conditional
distribution of (Xi, Xj) given Xk = xk.

Using Equation (18), we can write:

f2|1(x2|x1) = c12
(

F1(x1), F2(x2)
)

f2(x2) (21)

f3|2(x2|x3) = c23
(

F2(x2), F3(x3)
)

f3(x3) (22)

Substituting (20), (21), and (22) into (19):
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f (x1, x2, x3) = c13;2
(

F1|2(x1|x2), F3|2(x3|x2); x2
)
c12
(

F1(x1), F2(x2)
)

c23
(

F2(x2), F3(x3)
)

f (x1) f2(x2) f3(x3)
(23)

which describe the joint density of the three variables using only bivariate copulas and the
marginal densities.

2.12.1 Regular Vine Copulas

Equation (23) does not uniquely represent the joint density of X1, X2, and X3. Namely, we
could have alternatively wrote the following equivalent expressions:

f (x1, x2, x3) = c13;2
(

F1|2(x1|x2), F3|2(x3|x2); x2
)
c12
(

F1(x1), F2(x2)
)

c23
(

F2(x2), F3(x3)
)

f (x1) f2(x2) f3(x3)

= c12;3
(

F1|3(x1|x3), F2|3(x2|x3); x3
)
c13
(

F1(x1), F3(x3)
)

c23
(

F2(x2), F3(x3)
)

f1(x1) f2(x2) f3(x3)

= c23;1
(

F2|1(x2|x1), F3|1(x3|x1); x1
)
c12
(

F1(x1), F2(x2)
)

c13
(

F1(x1), F3(x3)
)

f1(x1) f2(x2) f3(x3)

So as we can see, the construction of the joint density using bivariate copulas is not unique
and depends on the conditioning order. Here comes the role of regular vines that allows for
arbitrary dimensions as well as for general conditioning orders. More precisely, a regular
vine on d variables is defined by a sequence of trees {Tj = (Vj, Ej)}, j = 1, . . . , d− 1 where
Vj represents the vertex set of Tj, while Ej represents the edge set of Tj. This sequence
represents a valid regular vine, if it satisfies the following conditions:

1. The vertex set of T1 is V1 = 1, . . . , d.

2. For j ≥ 2, Vj = Ej−1.

3. Proximity condition: if edge (a, b) ∈ Ej, then |a ∩ b| = 1 for j = 2, . . . , d− 1.

The last condition (proximity condition) ensures that for an edge to be part of a tree Tj,
then the corresponding edges in tree Tj−1 share a node.

In a vine distribution model, each edge of Tj, j ∈ {1, . . . , d} represents a bivariate copula.
To illustrate, consider an example of 5 random variables X1, X2, X3, X4, X5, then a regular
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(a) (b)

(c) (d)

Figure 5: Example of a regular vine tree sequence of dimension 5

vine tree structure for F(X1, X2, X3, X4, X5) is shown in Figure 5, where an edge i, j; D
corresponds to the bivariate copula:

C
(

Fi|D(xi|xD), Fj|D(xj|xD)
)
,

with the corresponding copula density:
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c
(

Fi|D(xi|xD), Fj|D(xj|xD)
)
,

such that the conditional bivariate distribution of Xi, Xj given XD = xD is given by:

F(xi, xj|xD) = C
(

Fi|D(xi|xD), Fj|D(xj|xD)
)

For example, the edge (1, 5; 3) in tree (b) of Figure 5 indicates the bivariate copula

C
(

F1|3(x1|x3), F5|3(x5|x3)
)
.

Notice that the joint density function f (x1, x2, x3, x4, x5) can be fully expressed by only
using the bivariate copulas corresponding to the edges of Figure 5 alongside the marginal
densities. The joint density can be derived similar to how we derived Equation (23). See
(Czado, 2019, p. 105) for an example.

Finally, as a remark, a regular vine distribution is considered a regular vine copula if all
the margins follow a uniform distribution on [0, 1].

2.13 Value-at-Risk (VaR)

Given a single asset A with log-return series {rA
t }, t = 1, . . . , T, we can define the VaR of

A, on day t, at a certain level α ∈ (0, 1), by the largest number r∗ such that the probability
of rA

t falling below r∗ is not larger that α. More formally:

VaRA,t
α = sup{r∗ ∈ R : P(rA

t < r∗) ≤ α} = sup{r∗ : FrA
t
(r∗) ≤ α}.

Thus VaRA,t
α is the α-quantile of the rA

t distribution as shown in Figure 6

The above approach can be easily extended to define the VaR of a portfolio. A portfolio is
a weighted collection of assets. As an example, consider a certain portfolio Ω that is built
using 3 assets A, B, C with weights wA, wB, wC respectively such that wA + wB + wc = 1,
and 0 < wi < 1, i ∈ {A, B, C}. In addition, assume that the log return series for each of
the assets are given by {rA

t }, {rB
t }, {rC

t }, t = 1, . . . , T. Then we define the log return of the
portfolio Ω on day t as 1:

rΩ
t := wArA

t + wBrB
t + wCrC

t , t = 1, . . . , T. (24)

We can use rΩ
t to define the VaR for the portfolio:

VaRΩ,t
α = sup{r∗ ∈ R : P(rΩ

t < r∗) ≤ α} = sup{r∗ : FrΩ
t
(r∗) ≤ α}.

1Equation (24) is only an approximation for the log-returns of a portfolio; however, in practice, it is often
used (Tsay, 2010, p. 5).
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Figure 6: The distribution of the returns of an asset on day t. Shows the VaR at level α

.

2.13.1 Estimating the VaR

There are several methods to evaluate the VaR. However, in our analysis we will focus on
the Monte Carlo method.

To illustrate the Monte Carlo method for estimating the VaR, consider the case of a
single asset A with log return series {rA

t }. Now, assume that we know the the distribution
of rA

t0
on a specific day t0, then using the Monte Carlo method, we simulate a random

sample from the distribution of rA
t0

and then we take the empirical α-quantile of the sample
to be our estimate of VaRA,t0

α .

Now, we give a more practical example, on how to estimate the VaR of a single asset using
an ARMA-GARCH model to fit the return series, while using the aforementioned Monte
Carlo method to forecast the VaR. Let the asset of interest be A with its log return series
{rA

t }, t = 1, . . . , T. We are interested in estimating the VaR of A on day T + 1 for level α

(i.e. VaRA,T+1
α ):

1. Fit an ARMA(1, 1)-GARCH(1, 1) model on {rA
t }, t = 1, . . . , T as described in Sec-

tion 2.10.

2. Forecast the mean µ̂A
T+1 (see Sections 2.4, and 2.5).

3. Forecast the volatility σ̂A
T+1 as described in Section 2.8.3.

4. Assuming the standardized residuals of the fitted ARMA-GARCH model follow

26



a N (0, 1), then we generate a sample ẑ1, . . . , ẑk from N (0, 1) for some large k (e.g.
k = 1000).

5. ẑ1, . . . , ẑk can be used to get an approximate sample of the returns on day T +

1{r̂A,1
T+1, . . . , r̂A,k

T+1} using r̂A,i
T+1 = µ̂A

T+1 + σ̂A
T+1ẑi for i = 1, . . . , k.

6. Then, the empirical α-quantile of the sample {r̂A,1
T+1, . . . , r̂A,k

T+1} is an estimate of
VaRA,T+1

α .

In Section 3, we will extend the above approach to estimate the VaR of a portfolio of assets
by using a separate ARMA-GARCH model to fit each asset returns, while utilizing a vine
copula model to capture the cross-sectional dependence among the different components
of the portfolio.

2.14 Backtesting Value-at-Risk

Assume we have a model that is used to predict the VaR, then the idea behind backtesting
is to diagnose if the model is correctly fitted by comparing its output to historical data.

Many backtesting methods are based on the concept of what is called a violation process
which is explained in the following.

Consider an asset A with log return series {rA
t }, then as described in the previous section,

VaRA,t
α could be interpreted such that the probability of rA

t falling below VaRA,t
α on a given

day t is α. More formally:

P(rA
t < VaRA,t

α ) = α.

Thus, we can define the violation process on a given day t at level α:

It(α) = 1{rA
t <VaRA,t

α }, (25)

where 1 is the indicator function which evaluates to 1 when the condition inside the curly
brackets is true and evaluates to 0 otherwise.

Now assume we have the return sequence {rt} t ∈ {1, . . . , T, . . . , T + m}; such that we fit
a VaR forecast model using {rt} t ∈ {1, . . . , T}, while we use {rT+1, . . . , rT+m} to backtest
the fitted model. To that end, we need to build the sequence {It(α)}T+m

t=T+1. We build this
sequence by comparing the observed sequence against the predicted VaR for each day
t ∈ {T + 1, . . . , T + m} as shown in Equation (25). Now if our model is fitted correctly, we
would expect that:
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P(It(α) = 1) = α

P(It(α) = 0) = 1− α.

Following this reasoning, we can distinguish between two types of coverage tests:

2.14.1 Unconditional Coverage Tests

We say that a VaRα model has a correct unconditional coverage if

P(It(α) = 1) = E[It(α)] = α.

This basically suggested that unconditional coverage indicates that the proportion of losses
exceeding the VaR predictions is not significantly different than α. More formally, the null
hypothesis for an unconditional coverage test is:

H0 : E[It(α)] = α.

Using this assumption, it is enough to verify that the number of violations x follows a
binomial distribution with success probability α:

f (x) =
(

m
x

)
αx(1− α)(m−x),

where x = 0, . . . , m.

As the number of observations increase, we can approximate the binomial distribution
with a normal distribution, so for testing the null hypothesis, we can use:

x− αm√
α(1− α)m

≈ N (0, 1),

where αm is the expected number of violation and
√

α(1− α)m is its variance.

The Kupiec Test

One of the commonly used unconditional coverage tests is the Kupiec test (Roccioletti,
2015, p. 49) with the null hypothesis defined as:

H0 : α =
x
m

.
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The idea behind it is to find out if there is a significant discrepancy between the observed
proportion of violations x

m and the theoretical one α. The test statistic used is the likelihood
ratio between the observed and the theoretical proportions:

LRx
uc = −2 ln

( αx(1− α)m−x

( x
m )x(1− x

m )m−x

)
,

where the numerator is the likelihood under the null hypothesis using the theoretical
violation factor α, while the denominator is the likelihood using the observed proportion
x
m .

Under the null hypothesis (the assumption of a correct model) LRx
uc is asymptotically χ2

1
distribution with one degree of freedom (Roccioletti, 2015, p. 49). So, we reject the null
hypothesis if the value of LRx

uc is greater than the critical value of χ2
1 and the model is

considered incorrect.

2.14.2 Conditional Coverage Tests

As discussed in Section 2.7, the volatility of daily returns is time varying. So, if a VaR
forecast model fails to detect the time varying aspect of volatility, then the VaR forecasts
will exhibit a delay in adapting to the changing market conditions and violations will
appear to be clustered. Therefore, we need to address the independence of violations
problem: In a correct VaR forecast model, the violations on day t should not depend on weather or
not a violation has occurred on day t− 1.

In the following, we discuss the Christoffersen’s test (Roccioletti, 2015, p. 51) which along
with testing for the correct violation proportion, it also tests for the independence of the
violations.

Christoffersen’s Interval Forecast Test

One of the commonly used conditional coverage tests is the Christoffersen’s Interval
Forecast Test. Christoffersen’s test assumes that the dependence structure of the sequence
of violations {It} can be described as a first order Markov chain with 2 states and the
following transition matrix:

A1 =

[
1− π01 π01

1− π11 π11

]
,

where we interpret the matrix elements as follows:

• π01 is the probability of a violation following a non-violation.

• π11 is the probability of a violation following a violation.
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• 1− π01 is the probability of a non-violation following a non-violation.

• 1− π11 is the probability of a non-violation following a violation.

Given the sample of observation {IT+1, . . . , IT+m}, we can write the likelihood function of
the first order Markov process as:

L(A1) = (1− π01)
N00 πN01

01 (1− π11)
N10 πN11

11 ,

where Nij is the number of consecutive observations with j following i for i, j = 1, 2. More
formally:

Nij =
T+m

∑
k=T+2

1{Ik−1=i∧Ik=j}

To maximize the likelihood, we take the first derivative of the likelihood function with
respect to π01 and π11 and set it to zero. We get the following:

π̂01 =
N00

N00 + N01

π̂11 =
N11

N10 + N11

To test the independence of violations, we are interested in finding out whether π̂01 is
statistically different than π̂11. More specifically, we are interested in the case of π̂11 being
significantly larger than π̂01 as this would imply that it is more likely to have 2 consecutive
violations than having a violation following a non-violation. We define the independence
null hypothesis:

H0 : π01 = π11,

which is tested using the likelihood ratio test:

LRind = −2 ln
( (1− π)N00+N10 πN01 N11

(1− π01)N00 πN01
01 (1− π11)N10 πN11

11

)
,

where π = N01+N11
N00+N01+N10+N11

, and LRind follows a χ2
1 with one degree of freedom (Roccioletti,

2015, p. 52).

Finally the Christoffersen’s coverage test simultaneously tests for both properties: a good
violation rate plus the independence of violations:

LRcc = LRuc + LRind,

where LRcc ∼ χ2
2 with 2 degrees of freedom.
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2.14.3 Pinball Loss

One common method to asses the accuracy of a quantile forecast is to use the pinball loss
(or quantile loss). So, it is appropriate to use it to measure the accuracy of a VaR forecast
model since VaRA,t

α is the α-quantile of the return series of asset A on day t as described in
Section 2.13.

The pinball loss of a VaR forecast for an asset A on day t is defined as:

Lα(rA
t , VaRA,t

α ) =

{
(rA

t −VaRA,t
α )α rA

t ≥ VaRA,t
α

(VaRA,t
α − rA

t )(1− α) rA
t < VaRA,t

α ,
(26)

where the first case corresponds to under-predicting, while the second case corresponds to
over-predicting. It is worth noting that when α is small (which is usually the case for VaR
models), over-predicting is penalized more than under-predicting since (1− α) is large.
This means that a violation with distance d from the VaR forecast is penalized more than a
non-violation with the same distance d as shown in Figure 7.

~

Figure 7: Shows a violation r
′
t and a non-violation rt, both having the same distance d from

the VaR forecast. For small α, the r
′
t contributes more than rt to the pinball loss

.

The above gave a definition for the pinball loss of a single forecast. To define the overall
pinball loss of the model, assume that we have fitted a VaRα model on the return series
{rA

t }, t = 1, . . . , T of an asset A. In addition, we have used the model to get the VaR
forecasts of days T + 1, . . . , T + m, namely, we forecasted VaRA,T+1

α , . . . , VaRA,T+m
α , then

from Equation (26), we can define the overall pinball loss of the model:

Lα(rA, VaRA
α ) =

1
m

T+m

∑
t=T+1

Lα(rA
t , VaRA,t

α ),

where it can be shown that a model with lower Lα(rA, VaRA
α ) implies a more accurate

model (Koenker and Hallock, 2001).
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3 A Vine Copula based ARMA-GARCH Model

Now we turn to our main problem: Given a portfolio Ω consisting of d assets A1, . . . , Ad
with weights w1, . . . , wd and log returns rAi

t , t = 1, . . . , T, i = 1, . . . , d, we are interested in
developing a model that forecast the VaR of Ω.

The next two sections address this problem. The first section describes a model for
forecasting the VaR on day T + 1, i.e. estimating VaRΩ,T+1

α . On the other hand, the second
section tackles backtesting the model by describing a rolling window based method for
forecasting the a multi-period VaR rather than a single day forecast.

3.1 Single day VaR

The following steps are an extension of the method for estimating the VaR for a single asset
which is described in Section 2.13.1. It generalizes it for a portfolio of assets by utilising a
vine copula model.

1. Modeling the margins

First, we use each of the observed return series {rAi
t }T

t=1, i = 1, . . . , d, to fit an ARMA(1,
1)-GARCH(1, 1) model 2 as described in Sections 2.10. Hence, we get d models M1, . . . , Md
as shown in Figure 8.

rA1
1 . . . rA1

T
→ M1

...

rAd
1 . . . rAd

T
→ Md

Figure 8: Using d different return series to fit d ARMA(1, 1)-GARCH(1, 1) models.

2We could have chosen here a general ARMA(p, q)-GARCH(m, s) model, and the subsequent steps would
have been very similar to the ones described.
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2. Forecasting the conditional mean and conditional variance

We use M1, . . . , Md to forecast:

1. The conditional mean on day T + 1 for each return series: µ̂A1
T+1, . . . , µ̂Ad

T+1 as described
in Sections 2.4 and 2.5.

2. The conditional volatility on day T + 1 for each return series: σ̂A1
T+1, . . . , σ̂Ad

T+1 as
described in Section 2.8.3,

as shown in Figure 9

M1 → (µ̂A1
T+1, σ̂A1

T+1)

...

Md → (µ̂Ad
T+1, σ̂Ad

T+1)

Figure 9: Using each of the d fitted ARMA-GARCH models to forecast the conditional
mean and conditional volatility.

3. Calculating the standardized residuals

Next we calculate the standardized ẑAi
t for t = 1, . . . , T, i = 1 . . . , d using:

ẑAi
t =

rAi
t − µ̂Ai

t

σ̂Ai
t

, (27)

where µ̂Ai
t , σAi

t are estimated as described in Section 2.10.
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M1 → ẑA1
1 , . . . , ẑA1

T

...

Md → ẑAd
1 , . . . , ẑAd

T

Figure 10: Extracting the standardized residuals for the fitted ARMA-GARCH models.

4. Fitting a vine copula model

We want to use the standardized residuals that we got in the previous step to capture
the cross-sectional dependence among the d assets. As described in Section 2.10, we
assume that the standardized innovations {zAi

t }T
t=1 is an i.i.d sequence that follow some

pre-selected distribution Fi with mean 0 and variance 1. Therefore, if our marginal models
have been fitted correctly in Step 1, then for each i = 1, . . . , d, {ẑAi

t }T
t=1 is an approximate

i.i.d sequence that follows Fi.

Now we want to utilize a regular vine copula model to capture the dependence among
the standardized residuals. As described in Section 2.11.4, we first need to transform the
residuals to the copula scale, in particular, we want to calculate uAi

t as follows:

uAi
i = Fi(ẑ

Ai
t ), (28)

for t = 1, . . . , T and i = 1, . . . , d. Then we can use the transformed residuals as pseudo
multivariate observations to fit a regular vine copula model V as shown in Figure 13

ẑA1
1 . . . ẑAd

1
...

. . .
ẑA1

T . . . ẑAd
T

 Fi(ẑ
Ai
t )

−−−→

uA1
1 . . . uAd

1
...

. . .
uA1

T . . . uAd
T

 → V

Figure 11: Shows the workflow of fitting the regular vine copula model V using the
standardized residuals of the fitted ARMA-GARCH models.
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5. Simulating returns on day T + 1

Next we use the fitted vine model V to simulate a multivariate sample of copula data
with sample size k large enough (e.g. k ≥ 1000). In particular, we simulate ûi =

(ûA1
i , . . . , ûAd

i )t, i = 1, . . . , k. Then we transform the simulated data to the original scale:

z′
Aj
i = F−1

j (û
Aj
i ), (29)

for i = 1, . . . , k, and j = 1, . . . , d.

We use the simulated data on the original scale to get a sample of the returns on day T + 1
using:

r̂
Aj,i
T+1 = µ̂

Aj
T+1 + σ̂

Aj
T+1z′

Aj
i , (30)

where i = 1, . . . , k, j = 1, . . . , d, and µ̂
Aj
T+1, σ̂

Aj
T+1 were estimated in Step 2.

V →

ûA1
1 . . . ûAd

1
...

. . .
ûA1

k . . . ûAd
k

 Eqn. (29)−−−−→

z′A1
1 . . . z′Ad

1
...

. . .
z′A1

k . . . z′Ad
k

 Eqn. (30)−−−−→

r̂A1,1
T+1 . . . r̂Ad,1

T+1
...

. . .
r̂A1,k

T+1 . . . r̂Ad,k
T+1



Figure 12: Shows the workflow of simulating a sample of returns on day T + 1 using the
simulated data from the vine copula model V

6. Estimating the VaR on day T + 1

Now that we have an approximate sample of returns on day T + 1 for the different assets,
we can get an approximate sample of the portfolio returns on day T + 1. In particular we
want to calculate:

r̂Ω,i
T+1 =

d

∑
j=1

wjr̂
Aj,i
T+1,

where i = 1, . . . , k, and w1, . . . , wd are the weights of the assets as defined before.

Finally, the VaR estimate of the portfolio on day T + 1 at level α is the empirical α-quantile
of the sample {r̂Ω,1

T+1, . . . , r̂Ω,k
T+1}.
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r̂A1,1
T+1 . . . r̂Ad,1

T+1
...

. . .
r̂A1,k

T+1 . . . r̂Ad,k
T+1

 ∑d
j=1 wj r̂

Aj ,i
T+1−−−−−−→

r̂Ω,1
T+1
...

r̂Ω,k
T+1

 →

Figure 13: Shows the process of estimating VaRΩ,T+1
α using the approximate sample of

returns of the d assets.

3.2 Backtesting the model

To tackle backtesting the model described in the previous section, we consider the same
portfolio Ω; however, we express the return series as rAi

1 , . . . , rAi
Γ , . . . , rAi

T , i = 1, . . . , d where
Γ < T ∈ N. We are interested in using a one day ahead forecast model to forecast
the VaR for an interval rather that just a single day. In particular, we want to forecast
VaRΩ,Γ+1

α , . . . , VaRΩ,T
α which will be used to backtest the model as described in Section 2.14.

It is worth noting that the model described in the previous section can be used directly to
forecast the VaR for the interval of interest as follows:

1. Fit the model on the observations rAi
1 , . . . , rAi

Γ , i = 1, . . . , d and use the model to
forecast VaRΩ,Γ+1

α .

2. Fit the model on the observations rAi
2 , . . . , rAi

Γ+1, i = 1, . . . , d and use the model to
forecast VaRΩ,Γ+2

α .

3. Repeat until we have the observations rAi
T−Γ, . . . , rT−1 which we use to fit the model

which is used to forecast VaRΩ,T
α .
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Figure 14: Fitting the model introduced in Section 3.1 (T − Γ) times.

As d gets larger, the above method becomes computationally very expensive. This is why
we are interested in modifying it in such away that avoids refitting the marginal models as
well as the vine copula model for each point forecast which will be described next.

A rolling window forecast method

First we define some parameters that will control the frequency of refitting the marginal
models as well as the vine copula model.

• Γ < T ∈N: (mentioned above) used to define the number of observations used to
for fitting the marginal models (i.e. the ARMA-GARCH models). Note that T − Γ is
the length of the forecasted sequence which will be used for backtesting.

• γ ≤ (T− Γ) ∈N: used to define the length of the marginal forecast for each window.
Equivalently, can be defined as the frequency of refitting the marginal models.

• Ψ ≤ Γ ∈N): used to define the number of standardized residuals of the marginal
models to use for fitting the vine copula model. In particular, ẑAi

Γ−Ψ+1, . . . , ẑAi
Γ , i =

1, . . . , d will be used for fitting the vine copula model.

• κ ≤ γ ∈ N: used to define the length of the forecast sequence of the vine copula
model. Equivalently, can be defined as the frequency of refitting the vine copula
model.
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Figure 15: Example of the rolling window parameters.

In the following, we discuss the steps of the rolling window forecast method:

1. Marginal models

This step is similar to Step 1 and 2 of the method described in Section 3.1. We basically do
the following:

1. Fit an ARMA(1, 1)-GARCH(1, 1) for each return series rAi
1 , . . . , rAi

Γ , i = 1, . . . , d.

2. Use the fitted models to forecast the conditional means and variances for the interval
Γ + 1, . . . , Γ + γ using the following procedure:

(a) Forecast µ̂A1
Γ+1, . . . , µ̂Ad

Γ+1 as described in Sections 2.4 and 2.5. More precisely, we
use the following equation:

µ̂Ai
Γ+1 = φ̂0 + φ̂1rAi

Γ − θε̂Γ,

for i = 1, . . . , d.

(b) Forecast σ̂A1
T+1, . . . , σ̂Ad

T+1 as described in Section 2.8.3. More precisely, we use the
following equation:

σ̂2Ai
Γ+1 = α̂0 + α̂1ε̂Γ + β̂1σ̂2Ai

Γ ,

for i = 1, . . . , d.

(c) For Γ + 2 ≤ t ≤ Γ + γ, use the following:

µ̂Ai
t = φ̂0 + φ̂1rAi

t−1 − θε̂Ai
t−1

σ̂2Ai
t = α̂0 + α̂1ε̂Ai

t−1 + β̂1σ̂2Ai
t−1,

for i = 1, . . . , d. Here, ε̂Ai
t are the forecasted residuals which can be calculated

as:
ε̂t = rAi

t − µ̂Ai
t ,

where µ̂Ai
t are the forecasted residuals that are calculated in Step (a).
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→


µ̂Ai

Γ+1 σ̂Ai
Γ+1

...
µ̂Ai

Γ+γ σ̂Ai
Γ+γ



Figure 16: Fitting the marginal models and forecasting the conditional means and
variances.

2. Fitting a vine copula model

In this step we use the fitted marginal models from the previous step to fit a vine copula
model. As we did in Steps 3 of Section 3.1, we first calculate the standardized residuals of
the fitted ARMA-GARCH models. In particular we calculate ẑAi

Γ−Ψ+1, . . . , ẑAi
Γ , i = 1, . . . , d

which are used to fit a regular vine copula model.

→

ẑA1
Γ−Ψ+1 . . . ẑAd

Γ−Ψ+1
...

. . .
ẑA1

Γ . . . ẑAd
Γ



Figure 17: Calculating the standardized residuals from the fitted marginal models.

Now similar to what we did in Step 4 of Section 3.1, we use the standardized residuals
to fit a regular vine copula model V. Once, again we first transform the residuals to the
copula scale using Equation (28).
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ẑA1
Γ−Ψ+1 . . . ẑAd

Γ−Ψ+1
...

. . .
ẑA1

Γ . . . ẑAd
Γ

 Fi(ẑ
Ai
t )

−−−→

uA1
Γ−Ψ+1 . . . uAd

Γ−Ψ+1
...

. . .
uA1

Γ . . . ûAd
Γ

 → V

Figure 18: Shows the workflow of fitting the regular vine copula model V using the
standardized residuals of the fitted marginal models.

3. Simulating returns

Next we simulate the a sample of the returns following a similar procedure to that of
Step 5 of Section 3.1; however, here we are interested in simulating a sample for each day
in the set {Γ + 1, . . . , Γ + κ} rather than just one day which is done as follows:

1. Simulate a random sample ûi = (ûA1
i , . . . , ûAd

i )t, i = 1, . . . , k for some constant k large
enough (e.g. k ≥ 1000).

2. Transform the simulated data to the original scale using Equation (29):

z′
Aj
i = F−1

j (û
Aj
i ),

for i = 1, . . . , k, and j = 1, . . . , d.

3. Use z′
Aj
i to get a sample of returns on days {Γ + 1, . . . , Γ + κ} using Equation (30):

r̂
Aj,i
t = µ̂

Aj
t + σ̂

Aj
t z′

Aj
i ,

for i = 1, . . . , k, j = 1, . . . , d, t = Γ + 1, . . . , Γ + κ.

V →

ûA1
1 . . . ûAd

1
...

. . .
ûA1

k . . . ûAd
k

 Eqn. (29)−−−−→

z′A1
1 . . . z′Ad

1
...

. . .
z′A1

k . . . z′Ad
k

 Eqn. (30)−−−−→

Figure 19: Shows the workflow of simulating a sample of returns for each day in the set
{Γ + 1, . . . , Γ + κ} using the simulated data from the vine copula model V
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4. Estimating the VaR

Now that we have an approximate sample of returns for each day in the set {Γ + 1, . . . , Γ +

κ}, we can get an approximate sample of the portfolio returns on those days which can
be used to estimate the VaR similar to how we did it in Step 6 of Section 3.1 as shown in
Figure 20.

r̂A1,1
Γ+1 . . . r̂Ad,1

Γ+1
...

. . .
r̂A1,k

Γ+1 . . . r̂Ad,k
Γ+1

 ∑d
j=1 wj r̂

Aj ,i
Γ+1−−−−−−→

r̂Ω,1
Γ+1
...

r̂Ω,k
Γ+1

 →

...


r̂A1,1

Γ+γ . . . r̂Ad,1
Γ+γ

...
. . .

r̂A1,k
Γ+γ . . . r̂Ad,k

Γ+γ

 ∑d
j=1 wj r̂

Aj ,i
Γ+γ−−−−−−→


r̂Ω,1

Γ+γ
...

r̂Ω,k
Γ+γ

 →

Figure 20: Shows the process of estimating VaRΩ,Γ+1
α , . . . , VaRΩ,Γ+γ

α using the approximate
sample of returns of the d assets.

5. Rolling the vine window

In Step 4, we estimated the VaRΩ,Γ+1
α , . . . , VaRΩ,Γ+κ

α . Now we are interested in refitting the
vine copula model to forecast the next κ values. To do that we roll the vine window by κ as
shown in Figure 21.
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Figure 21: Rolling the vine window.

Therefore, to forecast VaRΩ,Γ+κ+1
α , . . . , VaRΩ,Γ+2κ

α , we repeat Steps 2, 3, and 4 using the
shifted standardized residuals ẑAi

Γ−Ψ+κ+1, . . . , ẑAi
Γ+κ, i = 1, . . . , d. However, it is worth men-

tioning that we distinguish 2 cases while calculating the standardized residuals:

• Case 1: t ≤ Γ, then ẑAi
t is calculated as before using Equation (27).

• Case 2: t > γ, then ẑAi
t is in fact a forecasted residuals which is calculated using:

ẑAi
t =

rAi
t − µ̂Ai

t

σ̂Ai
t

,

for i = 1, . . . , d. Where µ̂Ai
t , σ̂Ai

t refer to the forecasted mean and the forecasted
volatility which are calculated in Step 1 (a) and (b).

Next, we keep repeating this step by rolling the vine window κ steps at a time until we
have γ VaR forecasts. Namely, VaRΩ,Γ+1

α , . . . , VaRΩ,Γ+γ
α which conclude the first GARCH

window.

6. Rolling the GARCH window

Now that we have forecasted the first γ values, namely, VaRΩ,Γ+1
α , . . . , VaRΩ,Γ+γ

α , we are
interested in repeating the steps above to forecast the next γ values. In particular, we are
interested in repeating Steps 1-5 by rolling the GARCH window γ observations. More
precisely, we use the observations rAi

γ+1, . . . , rAi
γ+Γ, i = 1, . . . , d to fit the marginal models, and

then we proceed following the steps described above to forecast VaRΩ,Γ+γ+1
α , . . . , VaRΩ,Γ+2γ

α .
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Figure 22: Rolling the GARCH window.

Next, we keep repeating this step by rolling the GARCH window γ steps at a time
until we have forecasted all the values of interest. N amely, until we have estimated
VaRΩ,Γ+1

α , . . . , VaRΩ,T
α which then can be used to backtest the model using the different

methods described in Section 2.14.

4 R-package

In the following, we will show an example of the rolling forecast method described above
using the R package VaRVine which was developed for this purpose.

Data

Our portfolio consists of 30 assets which are equally weighted from different sectors as
shown in Table 1. The return series are between 2012-01-11 and 2016-01-01. More precisely,
we have exactly 1000 observations, and we are interested in estimating the VaR for the last
250 days for levels α = (0.01, 0.05).
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Asset Sector Asset Sector Asset Sector
AAPL IT APD Materials GS Financials
ABT Health Care ATVI Communication Services J Industrials
ADBE IT BA Industrials LNT Utilities
AES Utilities BLK Financials LVS Consumer Discretionary
AFL Financials CE Materials MMM Industrials
AGCO Industrials CMI Industrials MOS Materials
AKAM IT CVS Health Care NOV Energy
ALL Financials GE Industrials NVDA IT
AMD IT GME Retail OMI Health Care
AMZN Consumer Discretionary GOOG IT TEX Manufacturing

Table 1: List of the stock tickers used in the example with their corresponding sectors.

Model settings for testing period Jan 2015-Jan 2016

We use the following settings for our model:

– Γ = 750 (marginal models training period)

– γ = 50 (marginal models refitting frequency)

– Ψ = 250 (vine model training period)

– κ = 25 (vine model refitting frequency)

This implies that we have 5 GARCH windows in total with 2 vine windows in each
GARCH window ( 50

25 = 2) and therefore, we have 10 vine windows in total.

Code

library(VaRVine)
head(data)

. AAPL ABT ADBE . . .
2012-01-11 −0.00163 −0.01237 0.00410 . . .
2012-01-12 −0.00275 −0.00470 −0.00307 . . .
2012-01-13 −0.00376 0.00488 −0.00893 . . .
2012-01-17 0.01158 0.00504 0.01303 . . .
2012-01-18 0.01033 −0.00630 0.01823 . . .
2012-01-19 −0.00317 0.00126 0.01164 . . .

# Here Γ is ‘train.size‘, and γ is ‘refit.every‘.
garch.setting <- garch_settings(train.size = 750, refit.every = 50)

# Here Ψ is ‘train.size‘, and κ is ‘refit.every‘.
vine.setting <- vine_settings(train.size = 250, refit.every = 25,
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family.set = ’all’)

# This method performs the rolling window forecast.
roll <- garchvineroll(data, garch.setting, vine.setting)

Fitting garch models: AAPL ABT ADBE AES AFL AGCO AKAM
ALL AMD AMZN APD ATVI BA BLK CE CMI CVS GE GME GOOG
GS J LNT LVS MMM MOS NOV NVDA OMI TEX

Window 1 :..
Window 2 :..
Window 3 :..
Window 4 :..
Window 5 :..

.

# Computation time using MacBook pro with
# Intel Core i7 2.6 GHz processor and 16 GB of RAM.
roll@time.taken
>> 29.33719 mins

# Accessing the VaR forecasts.
roll@VaR.forecast

. date alpha_0.01 alpha_0.05 realized
1 01/06/2015 00:00:00 −0.02382 −0.01486 −0.01386
2 01/07/2015 00:00:00 −0.02430 −0.01513 0.00519
3 01/08/2015 00:00:00 −0.02395 −0.01498 0.01811
4 01/09/2015 00:00:00 −0.02451 −0.01541 −0.01370
5 01/12/2015 00:00:00 −0.02419 −0.01501 −0.00715
6 01/13/2015 00:00:00 −0.02420 −0.01519 −0.00337

# Plotting the VaR forecasts and highlighting
# the violations.
VaRVine::plot(roll, alpha=0.01)
VaRVine::plot(roll, alpha=0.05)

# Unconditional and conditional backtests for α = 0.05
VarVine::backtest(roll, alpha = 0.05)
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(a) (b)

Figure 23: VaR plots for the testing period Jan 2015-Jan 2016. Left plot corresponds to
α = 0.01

, while right plot corresponds to α = 0.05. The violations are highlighted in red.

Unconditional Test

– expected.exceed: 12.

– actual.exceed: 13.

– uc.H0:
Correct Exceedances.

– uc.LRstat: 0.02079.

– uc.critical: 3.84146.

– uc.LRp: 0.88535.

– uc.Decision: Fail to Reject
H0.

Conditional Test

– expected.exceed: 12.

– actual.exceed: 13.

– cc.H0:
Correct Exceedances & Independent.

– cc.LRstat: 2.0029.

– cc.critical: 5.9914.

– cc.LRp: 0.3673.

– cc.Decision: Fail to Reject
H0.

Evolution of the vine model over time

As mentioned above, we have 10 vine windows in total where each vine window has its
own vine copula model. As described in Section 2.12.1, the structure of a vine copula model
is represented by a sequence of trees where each edge corresponding to a bivariate copula.
Figures 24, 25, and 26 show how the vine structure changes with time. In particular it
shows plots of the vine structure of the first tree for the first, fifth, and tenth vine windows.
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(a)

Edge Copulal family (|τ|) Edge Copulal family (|τ|)
{AMD, NVDA} gumbel(0.3) {NVDA, CE} frank(0.36)

{CE, CMI} gaussian(0.43) {CMI, LVS } t(0.32)
{CMI, TEX} bb1(0.48) {TEX, AGCO } frank(0.39)
{TEX, NOV} gumbel(0.37) {CMI, MMM } gumbel(0.46)
{MMM, GE} gaussian(0.47) {GE, AAPL } bb8(0.27)

{MMM, AFL} bb1(0.42) {MMM, ABT } t(0.36)
{MMM, J} t(0.4) {MMM, BLK } gumbel(0.47)

{BLK, ATVI} bb8(0.34) {BLK, APD } gumbel(0.43)
{APD, MOS} gumbel(0.34) {CVS, APD } gumbel(0.34)
{CVS, LNT} gumbel(0.29) {LNT, AES } bb1(0.37)
{BLK, BA} gaussian(0.38) {BLK, OMI } bb8(0.34)

{OMI, GME} bb8(0.2) {BLK, AKAM } t(0.41)
{AKAM, ADBE} bb8(0.41) {AKAM, GOOG } gumbel(0.36)
{GOOG, AMZN} t(0.43) {BLK, GS } t(0.48)

{GS, ALL} gumbel(0.38)

(b)

Figure 24: (a) Shows the vine structure first tree of the first vine window for testing period
Jan 2015-Jan 2016. (b) Shows the copula family and the magnitude of Kendall’s τ for the

bivariate copulas which correspond to the edges of the vine tree structure.



(a)

Edge Copulal family (|τ|) Edge Copulal family (|τ|)
{AGCO, TEX} frank(0.42) {TEX, CMI} t(0.45)

{J, TEX} frank(0.44) {J, GE} frank(0.44)
{GE, CE} gumbel(0.35) {CE, NOV} t(0.36)

{GE, MMM} gumbel(0.41) {MMM, APD} bb8(0.46)
{APD, MOS} gumbel(0.34) {MMM, ABT} frank(0.46)
{MMM, BA} frank(0.46) {MMM, OMI} frank(0.39)

{MMM, CVS} frank(0.43) {CVS, LNT} gumbel(0.31)
{LNT, AES} t(0.41) {CVS, AAPL} t(0.32)

{MMM, BKJ} bb8(0.51) {BLK, LVS} frank(0.3)
{BLK, AFL} t(0.49) {AFL, ALL} t(0.45)

{BLK, AKAM} bb8(0.44) {AKAM, GOOG} t(0.39)
{GOOG, AMZN} gaussian(0.45) {BLK, ADBE} t(0.39)

{BLK, NVDA} bb8(0.38) {NVDA, AMD} t(0.26)
{BLK, ATVI} bb8(0.4) {ATVI, GME} gumbel(0.24)

{BLK, GS} gumbel(0.51)

(b)

Figure 25: (a) Shows the vine structure first tree of the fifth vine window for testing period
Jan 2015-Jan 2016. (b) Shows the copula family and the magnitude of Kendall’s τ for the

bivariate copulas which correspond to the edges of the vine tree structure.



(a)

Edge Copulal family (|τ|) Edge Copulal family (|τ|)
{AGCO, TEX} frank(0.42) {TEX, NOV} frank(0.39)

{TEX, J} bb8(0.46) {J, CMI} t(0.42)
{CMI, AAPL} gaussian(0.37) {MMM, CMI} t(0.41)
{MMM, APD} bb8(0.46) {APD, CE} bb8(0.38)

{CE, MOS} bb8(0.38) {APD, AKAM} t(0.41)
{APD, NVDA} t(0.35) {NVDA, AMD} t(0.27)

{MMM, GE} gumbel(0.42) {MMM, BA} frank(0.5)
{MMM, ABT} frank(0.49) {MMM, BLK} bb8(0.51)
{MMM, CVS} frank(0.46) {MMM, LNT} frank(0.34)
{LNT, AES} frank(0.34) {BLK, OMI} t(0.4)
{BLK, AFL} t(0.51) {AFL, ALL} frank(0.52)
{BLK, GS} gumbel(0.5) {BLK, LVS} frank(0.36)

{LVS, GME} frank(0.31) {BLK, GOOG} gumbel(0.37)
{GOOG, AMZN} t(0.5) {AMZN, ADBE} gumbel(0.34)

{BLK, ATVI} bb8(0.39)

(b)

Figure 26: (a) Shows the vine structure first tree of the tenth (final) vine window for testing
period Jan 2015-Jan 2016. (b) Shows the copula family and the magnitude of Kendall’s τ

for the bivariate copulas which correspond to the edges of the vine tree structure.



Comparing two models in the crises period July 2008-July 2009

During normal market conditions, changing the model settings has a little effect on the
accuracy of the model. However, during crises times, we have found that changing some
of the parameters has a considerable effect on the model performance. As an example,
consider the the same list of stocks used above, but this time, we forecast the VaR for the
financial crises of 2008. Namely, we forecast the VaR between July of 2008 and July of 2009.
First, we fit a base model with settings similar to the ones used in the previous example.
Namely:

– Γ = 750 (marginal models training period)

– γ = 50 (marginal models refitting frequency)

– Ψ = 250 (vine model training period)

– κ = 25 (vine model refitting frequency)

Once again, we have 5 GARCH windows, and 10 vine windows where each GARCH
window contains 2 vine windows.

Figures 27, 28, 29 show the evolution of the vine structure with time of our base model
similar to what we did in the previous example.
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(a)

Edge Copulal family (|τ|) Edge Copulal family (|τ|)
{NVDA, GOOG} gumbel(0.31) {GOOG, AMZN} bb1(0.38)
{GOOG, AAPL} t(0.43) {GOOG, CMI} t(0.33)

{CMI, TEX} bb1(0.45) {TEX, AGCO} gumbel(0.41)
{TEX, BA} bb8(0.3) {TEX, APD} t(0.43)

{APD, NOV} gaussian(0.38) {APD, J} t(0.44)
{J, MOS} gaussian(0.36) {J, AKAM} bb8(0.35)

{APD, CE} t(0.36) {APD, AES} bb8(0.37)
{AES, LNT} gumbel(0.35) {APD, GE} gaussian(0.43)
{GE, MMM} t(0.48) {MMM, ADBE} gumbel(0.28)
{GE, AFL} t(0.43) {AFL, CVS} frank(0.32)

{AFL, OMI} gumbel(0.27) {GE, ABT} gaussian(0.33)
{GE, GS} bb1(0.4) {GS, LVS} frank(0.28)

{GS, ATVI} frank(0.26) {GS, AMD} gumbel(0.27)
{GS, GME} gumbel(0.3) {GS, ALL} bb1(0.41)
{GS, BLK} bb1(0.38)

(b)

Figure 27: (a) Shows the vine structure first tree of the first vine window for testing period
July 2008-July 2009. (b) Shows the copula family and the magnitude of Kendall’s τ for the

bivariate copulas which correspond to the edges of the vine tree structure.



(a)

Edge Copulal family (|τ|) Edge Copulal family (|τ|)
{AAPL, GOOG} t(0.45) {GOOG, AMZN} t(0.42)
{AMZN, ADBE} bb7(0.36) {AMZN, MMM} t(0.36)

{MMM, BA} bb1(0.35) {BA, OMI} frank(0.29)
{MMM, GE} t(0.53) {GE, CVS} gaussian(0.35)
{GE, ALL} frank(0.45) {ALL, GS} bb1(0.43)

{ALL, BLK} bb1(0.4) {BLK, GME} bb1(0.31)
{ALL, AFL} gaussian(0.46) {AFL, ABT} bb8(0.32)

{MMM, LNT} bb1(0.33) {LNT, AES} gumbel(0.37)
{MMM, TEX} bb1(0.39) {TEX, LVS} bb8(0.3)
{TEX, CMI} t(0.47) {TEX, AMD} bb1(0.28)

{TEX, AGCO} bb8(0.45) {TEX, J} gumbel(0.44)
{J, ATVI} bb1(0.27) {J, AKAM} t(0.41)

{AKAM, NVDA} gumbel(0.38) {J, NOV} gumbel(0.43)
{NOV, MOS} t(0.42) {J, APD} t(0.47)
{APD, CE} bb1(0.4)

(b)

Figure 28: (a) Shows the vine structure first tree of the fifth vine window for testing period
July 2008-July 2009. (b) Shows the copula family and the magnitude of Kendall’s τ for the

bivariate copulas which correspond to the edges of the vine tree structure.



(a)

Edge Copulal family (|τ|) Edge Copulal family (|τ|)
{OMI, AFL} gumbel(0.28) {AFL, ABT} frank(0.32)
{AFL, ALL} t(0.48) {ALL, GS} t(0.36)

{ALL, MMM} t(0.44) {,MMM, GE} t(0.48)
{MMM, BA} t(0.45) {MMM, CVS} bb1(0.36)
{ALL, BLK} t(0.47) {BLK, ADBE} t(0.44)

{ADBE, GME} t(0.38) {ADBE, AMZN} frank(0.45)
{AMZN, GOOG} t(0.47) {GOOG, AAPL} t(0.5)

{GOOG, TEX} frank(0.49) {TEX, LVS} bb8(0.38)
{TEX, AMD} bb8(0.36) {TEX, CMI} bb8(0.57)

{CMI, AGCO} t(0.51) {CMI, J} t(0.51)
{J, APD} gaussian(0.48) {J, NOV} gaussian(0.51)

{NOV, MOS} bb8(0.48) {NOV, AES} gumbel(0.37)
{AES, LNT} gumbel(0.37) {TEX, CE} t(0.46)
{TEX, ATVI} frank(0.39) {TEX, AKAM} bb8(0.48)

{AKAM, NVDA} frank(0.5)

(b)

Figure 29: (a) Shows the vine structure first tree of the tenth (final) vine window for testing
period July 2008-July 2009. (b) Shows the copula family and the magnitude of Kendall’s τ

for the bivariate copulas which correspond to the edges of the vine tree structure.



To study the effect of the vine training period Ψ, we have fitted another model which has
the same settings as our base model described above; however, in this model we used a
vine training period Ψ = 750 instead of 250. Plotting the pinball loss shows that the base
model outperforms this model as displayed in Figure 30.

Figure 30: Shows the pinball for two models with different vine training period Ψ for
testing period July 2008-July 2009.

To study the effect of the marginal training period Γ, this time we have fitted another
model with identical model settings to our base model except for Γ = 500. Figure 31 shows
that once again the base model outperforms this alternative model.

Computation time

The running time of the rolling window method depends primarily on the running time
of fitting the vine copula model. Therefore, it exhibit varying computation times based
on the size of the portfolio, and the different model settings which determine the number
of times a vine copula model is fitted. To get a better sense of the computation time, we
executed the rolling window method using different portfolio sizes and different model
settings on the period of Jan 2012-Jan 2016 which are shown in Table 2.
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Figure 31: Shows the pinball for two models with different marginal training period Γ for
testing period July 2008-July 2009.

Portfolio Size Γ γ Ψ κ Allowed Copula Families Computation Time
3 750 50 250 25 all 1.5 mins
10 750 50 250 25 all 4.4 mins
10 500 50 250 50 all 5.5 mins
10 500 50 250 25 all 8.5 mins
10 750 50 250 50 all 3 mins
10 750 50 250 50 Student t & Gaussian 1.8 mins
20 750 50 250 25 all 15.6 mins
30 750 50 250 25 all 29.3 mins

Table 2: Shows the computation time of the rolling window model corresponding to
different portfolio sizes and model settings.
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5 Conclusion

In this thesis, we have tackled the problem of assessing the market risk of a portfolio of
investments. In particular, large portfolios that are too complicated to work with using
traditional methods. We took advantage of vine copula models which are powerful tools
that allowed us to capture the dependence among the portfolio components in an efficient
way, and by that simplifying our problem considerably.

In addition to giving the theoretical background behind the methods and models used,
we have described a model that uses a vine copula model alongside a group of ARMA-
GARCH models for forecasting the VaR for a single day. In addition, we have explained
how to backtest this model by describing a method for multi-day VaR forecast, which was
implemented in an efficient rolling window fashion, that avoids refitting the models used
too frequently.

Finally, we gave two examples of using the rolling window method for forecasting the VaR
of a portfolio consisting of 30 assets. Furthermore, we show cased the R package VaRVine,
which we have developed to tackle the problem addressed in this thesis.
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