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Abstract
Nowadays, traffic is organized by rules for driving safety and social conventions to achieve fairness
among traffic participants and increased traffic efficiency. Drivers are expected to not behave
egoistically or blindly obey the traffic rules but cooperatively resolve a situation while still pursuing
an individual goal.

This thesis transfers cooperative driving practice into behavior and motion planning algorithms
for autonomous vehicles. Such vehicles shall, by cooperative planning, considerately enforce their
own goal in potentially ambiguous driving situations to pave the path towards a social acceptance
of autonomous driving by not acting overly passive or aggressive. Current autonomous driving
prototypes barely show cooperative behavior. However, not only the interaction with human-driven
vehicles is essential. With an expected growth in the importance of inter-vehicle communication,
also connected automated vehicles have to work together cooperatively to maintain the positive
effects on traffic drivers achieve by cooperation.
This work formalizes the cooperative planning problem in a game-theoretic framework, for-

mulates a multi-agent optimization problem, and solves it using mixed-integer programming.
Constraints ensure valid vehicle kinematics and dynamics and a collision-free motion within the
road environment among all agents and obstacles. The objective function leverages the interests of
all interacting agents by introducing a cooperation factor to scale between altruistic and aggressive
behavior seamlessly. Two scenario-agnostic algorithms are presented, using either discrete or
continuous actions. Both apply robustness measures against errors in the perception and prediction
of other agents. The performance is assessed in simulation. Also, test drives with a prototype
autonomous vehicle are performed by embedding one algorithm into the open-source autonomous
driving stack Apollo to prove the applicability in a full-size setup. This thesis describes the
adaptions of the driving stack for the vehicle, including the methodology, implementation, and
lessons learned for interfacing the behavior planner.

The real-road driving experiments show the applicability of the planner and the overall software
stack, the performance, and the real-time capability of the implementation. A simulation-based
complexity analysis further assesses the real-time capability of mixed-integer optimization-based
planning and states practical restrictions. Besides three on-road driving experiments demonstrating
real-time applicability with multiple obstacles present, various simulated scenarios demonstrate
the effectiveness of the cooperative planning approach. These include a low-speed urban road, an
intersection, and a highway scenario with varying settings, cooperation levels, and communication
assumptions. The algorithms not only show passive but proactive and truly cooperative behavior
producing trajectories directly trackable by a vehicle controller. The presented adaption of Apollo
to a German autonomous driving prototype vehicle and interface to a mixed-integer optimization-
based planner is published as open-source software and shall accelerate other research groups to
validate behavior and motion planning algorithms.
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Zusammenfassung
Im Straßenverkehr gelten neben den Verkehrsregeln zur Gewährleistung der Sicherheit auch soziale
Konventionen. Diese sollen Fairness zwischen den Verkehrsteilnehmern sicherstellen, tragen aber
auch zu einem effizienten Verkehrsgeschehen bei. Von Fahrern wird erwartet, dass sie sich zielorien-
tiert und trotzdem kooperativ mit anderen Verkehrsteilnehmern verhalten und Verkehrssituationen
nicht durch rein egoistisches Verhalten oder dem sturem Folgen der Verkehrsregeln auflösen.
Diese Arbeit überträgt kooperatives Fahrverhalten menschlicher Fahrer in Verhaltens- und

Bewegungsplanungsalgorithmen für autonome Fahrzeuge. Durch kooperative Planung sollen diese
Fahrzeuge situationsbewusst und rücksichtsvoll ihr eigenes Ziel in unklaren Verkehrssituationen
erreichen, was aktuelle Prototypen autonomer Fahrzeuge nicht tun. Dabei soll ein Fahrzeug weder
zu aggressiv noch zu passiv agieren, um im Straßenverkehr sozial akzeptiert zu werden. Neben der
Interaktion mit Fahrern ist zusätzlich die Interaktion mit vernetzen Fahrzeugen notwendig, deren
Bedeutung stetig wächst. Auch vernetze autonome Fahrzeug müssen zusammenarbeiten um die
positiven Eigenschaften der Kooperation zwischen menschlichen Fahrern beizubehalten.
In dieser Arbeit wird die Problemstellung der kooperativen Planung zuerst in einem spieltheo-

retischen Ansatz formalisiert, dann als multi-Agenten Optimierungsproblem formuliert und mittels
gemischt-ganzzahliger Programmierung gelöst. Nebenbedingungen stellen dabei die korrekte
Abbildung der Kinematik und Dynamik eines Fahrzeugs und die Kollisionsfreiheit der Agenten
untereinander, zu Hindernissen, und mit der Straßenumgebung sicher. Die Zielfunktion balanciert
die Interessen aller interagierenden Agenten aus. Dafür wird ein Kooperationsfaktor eingeführt,
durch den nahtlos zwischen altruistischem und aggressivem Verhalten skaliert werden kann. Zwei
Szenario-agnostische Algorithmen werden vorgestellt, einmal wird ein diskreter und einmal ein
kontinuierlichem Aktionsraum verwendet. Beide Absätze sind robust gegenüber Fehlern in der
Wahrnehmung und Prädiktion anderer Agenten. Die Ergebnisse werden simulativ gezeigt. Zusät-
zlich werden Testfahren mit einem autonomen Forschungsfahrzeug durchgeführt. Dafür wird einer
der Algorithmen in den quelloffenen Software-Stack Apollo integriert und die Anwendbarkeit
im Gesamtsystem gezeigt. Diese Arbeit beschreibt auch die nötigen Anpassungen an Apollo für
den verwendeten Forschungsdemonstrator, insbesondere die Methodik, Implementierungen und
Erfahrungen bei der Anbindung der Planungskomponente.

Die Fahrversuche auf öffentlicher Straße zeigen nicht nur reale Anwendbarkeit des Planers und
des Gesamtsystems, sondern auch die Leistungsfähigkeit und die Echtzeitfähigkeit der Imple-
mentierung. Eine simulationsbasierte Komplexitätsanalyse bewertet zusätzlich strukturiert die
Echtzeitfähigkeit der auf gemischt-ganzzahliger Optimierung basierenden Planungsalgorithmen und
zeigt praktische Einschränkungen auf. Drei Fahrversuche auf öffentlicher Straße demonstrieren die
Anwendbarkeit in Echtzeit mit mehreren Hindernissen. Ebenso zeigt diese Arbeit die Möglichkeiten
und Effektivität der kooperativen Planung in mehreren simulierten Fahrszenarien, wie einem
Autobahnszenario, ein Kreuzungsszenario oder einem Szenario auf einer innerstädtischen Straße
mit niedrigen Geschwindigkeiten. Es werden unterschiedliche Einstellungen, Grad der Kooperation
und Kommunikationsmöglichkeiten analysiert. Die entwickelten Planungsalgorithmen zeigen dabei
nicht ausschließlich passives, sondern proaktives und wirklich kooperatives Fahrverhalten. Die
Fahrtrajektorien können direkt von einem Fahrzeugregler verwendet werden. Die in dieser Arbeit
beschriebenen Anpassungen an Apollo zur Ansteuerung eines deutschen Prototypenfahrzeugs und
zur Einbindung einer Planungskomponente basierend auf gemischt-ganzzahliger Optimierung sind
unter offener Lizenz verfügbar und sollen andere Forschungsgruppen dabei unterstützen eigene
Arbeiten zur Verhaltens- und Bewegungsplanung in realen Umgebungen zu validieren.
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1 Introduction
For a fully autonomous vehicle, generating behavior that is aware of other traffic participants such
as human-driven vehicles, Connected Autonomous Vehicles (CAVs), or other objects on the road is
one essential ingredient to release production-grade autonomous driving functions on public roads.
This thesis will develop cooperative behavior and motion planning algorithms in generic, on-road
scenarios using Mixed-Integer Progamming (MIP) and demonstrate these in simulation and using
a prototype autonomous vehicle.

1.1 Motivation
By cooperation human drivers achieve fairness, trust, and efficiency in ambiguous driving scenarios,
where many behaviors are legal. They rely on nonverbal communication and the interpretation
of intentions to cooperatively resolve unclear situations, besides following the traffic rules for
safety. When sharing the road with human drivers, autonomous vehicles will also have to show
cooperative behavior to be accepted by society and to fit safely into nowadays traffic scenarios
while still asserting their own goals [Mer+20]. In dense traffic, where space is limited, the reactions
of others must be anticipated, and an autonomous vehicle must model the uncertain interaction
with the other traffic participants by planning a joint action for the ego vehicle and the surrounding
vehicles. Game-theoretic approaches are capable of modeling the interaction between multiple
traffic participants elegantly [SAR18]. With the transition from manual to automated driving, the
beneficial features of cooperation shall be kept and transferred into algorithms. Technically, a
vehicle acts cooperatively if the intents of other traffic participants influence its behavior plan and
if it aims to optimize others’ behavior alongside.
Figure 1.1 sketches an everyday driving scene that is easily solved using cooperation: Both

vehicles can pass the obstacles without coming to a complete stop with slight deviations from
the desired steering and velocity, the optimal solution in this case. Still, several other reasonable
driving options are possible. Even in this straightforward situation, state-of-the-art planning
algorithms often fail to find the optimal solution as the strategic decision on the behavior is mostly
separated from the motion planning layer. However, strategy and motion are closely intertwined in
dense scenarios. Since each vehicle’s action potentially interferes with all other traffic participants,
the computational complexity grows with the number of participants. Still, for a comprehensive,
interaction-aware plan, the behavior of each interacting traffic participant has to be included.
Solution algorithms often rely on a random sampling of the solution space or lack guarantees of
convergence and thus pose open questions towards certification of such systems. For data-driven
approaches, it is hard to prove deterministic behavior and generalization to unseen situations.
For general applicability, a planning approach has to be scenario-agnostic and should not only

be fine-tuned for one specific use case. Otherwise, switching between algorithms is necessary,
introducing additional complexity into an already highly complicated system. Also, the engineering
and certification effort increases with more algorithms in place. The first autonomous vehicles
have to interact with potentially non-cooperative human-driven vehicles, especially in ambiguous
and conflict situations, without relying on Vehicle-to-Vehicle (V2V) communication. Nevertheless,
the importance of connectivity will rise soon with a higher penetration rate of automated driving
functions and road traffic digitization such as real-time digital twins of highways [Krä+22].
Autonomous driving systems developed now should already be designed to utilize such information
or even coordinate entire groups of CAVs. Explicit communication among connected vehicles

1



1 Introduction

Figure 1.1: Illustrative example traffic scene with multiple behavior options: With a cooperative behavior
plan, neither the white nor the black vehicle must come to a complete stop (visualized by a
dot) to let the other pass. Several reasonable behavior options are possible, and the action of
either vehicle influences the possibilities of the other vehicle.

will significantly enhance the overall performance of the traffic system [Ulb+15] by planning a
coordinated behavior for a group of vehicles. Algorithms developed now should already address all
these varieties of application scenarios.
To prove the applicability of research algorithms, the evaluation using an experimental vehicle

platform in real-world scenarios is essential. Often the performance of behavior and motion
planning research algorithms is only shown in simulation rather than using a prototype vehicle
(in Europe); notable exceptions are, e.g., [Zie+14a; Gra+21; Wan+21]. Reasons are, for example,
the technical and organizational complexity to setup and maintain a complete software stack
for autonomous driving, the limited availability of research vehicles and test areas, and legal
aspects when operating an experimental vehicle on public roads. Hence, various published planning
algorithms exist that rely on restrictive assumptions or simplification where it is questionable if
these can be transferred to reality. Without showing on-road experiments, even for algorithms
demonstrated in advanced simulators, still, a reality gap exists. Algorithms from demonstration
by automotive companies, on the other hand, are often not available to the research community
and hence cannot be compared to state-of-the-art research approaches.

1.2 Research Gap and Contributions
To facilitate fully autonomous driving, a unified behavior coordination approach operating in
various locations and scenarios that can deal with all possible constellations of human-driven, fully
automated, communicating, or non-communicating vehicles, cooperative or egoistic behavior of
others has to be implemented. Also, the layers for motion planning (smooth and collision-free
trajectories) and behavior planning (tactic decisions, rule-compliance) have to be integrated and
not treated separately for high performance in generic scenarios. MIP-based planning algorithms
have been proposed to tackle these challenges. However, most proposed methods only generate
valid results on a small subset of scenarios, namely straight roads, and become invalid in any other
environment (roundabouts, intersections), or even during obstacle avoidance at low speeds, as the

2



1.2 Research Gap and Contributions

valid scope of the model formulation is limited. With the contributions and gaps from previous
research in mind, this thesis addresses the following research questions.

1. How can an existing open-source autonomous driving software stack be trans-
ferred to an experimental vehicle for behavior and motion planning research? A
fully autonomous vehicle is a highly complex and complicated system, and production-grade
vehicles will probably be among the most advanced machines that will be released to non-
expert users. Prototype vehicles share this complexity. The majority of complexity is tackled
by software. This thesis aims to develop and apply the planning software component in a
realistic vehicle setup and therefore needs a hardware platform and a practical software setup
for other software functionalities. Open-source autonomous driving stacks [Bai17; Kat+18]
offer these software functionalities but research software then has to be integrated into the
stack. Research algorithms also pose requirements on the generic software stack that might
not be fulfilled. Also, the stack has to be interfaced with the vehicle platform. This thesis
will elaborate on the choice of Apollo [Bai17] as a platform, whether the engineering effort of
integrating it was valuable, and what results can be expected.

2. Can we develop a scenario-agnostic, unified cooperative planning approach inte-
grating behavior and trajectory planning? Behavior and motion planning algorithms
are an integrative component in each autonomous driving stack and ideally do not pose
requirements on the driving scenario. For systems with a limited operational design domain,
such as a traffic jam pilot, tuning the functionality to a specific use case is valuable. However,
this methodology will not scale for fully autonomous driving. Switching the planning algo-
rithm raises the additional complexity of deciding when or where to switch and to interpret
the scenario at hand correctly. Also, with an algorithmic break between high-level behavior
planning and low-level motion planning, the risk is introduced that a high-level, long-term
decision cannot be executed with respect to the current vehicle kinematics and dynamics or
the traffic state within the next second. Furthermore, interacting agents can be of a different
type, such as human-driven vehicles, CAVs, or vulnerable road users. This thesis takes the
interactivity of traffic participants into account to plan an executable motion in alignment
with all strategic goals.

3. How can autonomous vehicles plan cooperative behavior, like human drivers,
while still achieving their own goals? Most human drivers try to leverage their own and
others driving interests besides blindly following the traffic rules or acting purely egoistically.
Examples are letting other vehicles merge when entering freeways or waiving their own
right of way at narrow intersections. Automated functions shall show the same behavior to
be accepted by human drivers but also to not lose these beneficial social conventions. On
the other hand, autonomous vehicles must not react too passively to achieve their driving
goals. They also have to be able to cope with human drivers that behave egoistically and
do not show cooperation or even break traffic rules. By multi-agent planning, this thesis
does not only model the own driving intent but also the estimated intent of other vehicles to
coordinate an optimal solution of the traffic scenario.

4. Can MIP be applied for real-time planning and, if so, which restrictions apply?
Mathematical optimization is one approach to behavior and motion planning of autonomous
vehicles, MIP being one subdomain. It offers benefits such as optimality with respect to the
model formulation and the optimization of continuous and discrete states alongside. However,
it also poses restrictions on the model formulation, and the problem formulation is usually
NP-complete with an exponential worst-case runtime. Still, the planning in a vehicle has to
be executed in real-time. In this thesis, we develop planning algorithms based on MIP and
will evaluate in which scenarios these can leverage the benefits and where the scaling of the
complexity is too high for real-time application.
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1 Introduction

Parts of this dissertation are based on and have already been published in the following papers.

1. Kessler and Knoll [KK17]: “Multi Vehicle Trajectory Coordination for Automated Parking”
proposes a motion coordination approach for maneuvering scenarios using pre-calculated
paths and an optimal assignment based on MIP.

2. Kessler and Knoll [KK19]: “Cooperative Multi-Vehicle Behavior Coordination for Autonomous
Driving” proposes a planning approach for cooperative multi-vehicle scenarios based on
the generation of a option graph and selecting the best option using Mixed-Integer Linear
Programming (MILP).

3. Kessler, Bernhard, Buechel, Esterle, Hart, Malovetz, Truong Le, Diehl, Brunner, and Knoll
[Kes+19]: “Bridging the Gap between Open Source Software and Vehicle Hardware for
Autonomous Driving” proposes a strategy to setup an open-source software stack for fully
autonomous driving on a prototype vehicle and introduces the research vehicle used in this
research.

4. Esterle, Kessler, and Knoll [EKK20]: “Optimal Behavior Planning for Autonomous Driving:
A Generic Mixed-Integer Formulation” proposes an approach to formulate the vehicle motion
planning problem as Mixed-Integer Quadratic Programming (MIQP) and a methodology to
derive the necessary linear constraints.

5. Kessler, Esterle, and Knoll [KEK20]: “Linear Differential Games for Cooperative Behavior
Planning of Autonomous Vehicles Using Mixed-Integer Programming” extends [EKK20] to a
multi-agent behavior planning problem with a joint cost function.

6. Kessler, Esterle, and Knoll [KEK22]: “Mixed-Integer Motion Planning on German Roads
within the Apollo Driving Stack” shows how to integrate [EKK20; KEK20] in an open-source
driving stack and and evaluates on-road driving experiments. © 2022 IEEE. Reprinted, with
permission, from [KEK22].

While this thesis evolved, this work’s author also authored or co-authored the following papers
that share ideas with this thesis but are not a core contribution in this work.

1. Lenz, Kessler, and Knoll [LKK15]: “Stochastic Model Predictive Controller with Chance
Constraints for Comfortable and Safe Driving Behavior of Autonomous Vehicles” proposes a
Model-Predictive Control (MPC) controller achieving a smooth motion that is safe by design.

2. Minnerup, Lenz, Kessler, and Knoll [Min+16]: “Debugging Autonomous Driving Systems
Using Serialized Software Components” proposes a method to debug errors found in test
drives a posteriori.

3. Kessler, Minnerup, Lenz, and Knoll [Kes+17]: “Systematically comparing control approaches
in the presence of actuator errors” shows how to asses the performance of the vehicle control
layer in the presence of sensor and actuator errors.

4. Kessler, Minnerup, Esterle, Feist, Mickler, Roth, and Knoll [Kes+18]: “Roadgraph Generation
and Free-Space Estimation in Unknown Structured Environments for Autonomous Vehicle
Motion Planning” generate a static environment representation only from (lidar) sensor data.

5. Buechel, Schellmann, Rosier, Kessler, and Knoll [Bue+19]: “Fortuna: Presenting the 5G-
connected automated vehicle prototype of the project PROVIDENTIA” introduces the research
vehicle used here and the criteria that led to the selection of the hardware components.

6. Bernhard, Esterle, Hart, and Kessler [Ber+20]: “BARK: Open Behavior Benchmarking in
Multi-Agent Environments” proposes the behavior benchmarking tool BARK to assess the
quality of different planning algorithms.
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1.3 Outline of this Thesis
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6 The Software Stack
for a Behavior Planning
Research Vehicle

Figure 1.2: Structural overview of this thesis summarizing the chapters and their relations

1.3 Outline of this Thesis
This thesis is structured in seven chapters, that are set in relation in Figure 1.2. After the
introduction in this chapter, Chapter 2 will then introduce a game-theoretic problem formulation
of the multi-agent behavior planning problem used in the following chapters. The chapter also
briefly introduces the technology of MIP and give an overview on how the planning component
integrates into a full autonomous driving stack. Chapter 3 gives an overview on the state of the
art in the motion and behavior planning research field with a focus on cooperative and mixed-
integer optimization approaches. The chapter also presents the Apollo driving stack alongside
with an overview of hard- and software for autonomous driving. Chapter 4 will first introduce
the Autonomous Car Coordination (ACCORD) planning approach, then analyze the algorithm
regarding real-time capability, followed by a demonstration in simulation. The second planner
developed in this thesis, the Mixed Integer Interactive Planning (MINIVAN) planning approach, will
then be introduced in Chapter 5, which follows a similar structure. Besides both behavior planning
algorithms, and extensive simulations studies to analyze their capabilities and shortcomings, the
adaption of the Apollo driving stack to our prototype autonomous vehicle is a major contribution
of this work. The methodology and findings when integrating a MIP-based planner into Apollo
and applying the modified stack in a car is elaborated in Chapter 6 alongside with the analysis of
on-road test drives. Also, a the complete hard- and software setup of the demonstration platform
is described. Chapter 7 compares the developed planning approaches, states further open research
questions, summarizes and concludes this work.
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2 Preliminaries
This chapter introduces fundamental information required for this thesis. The general terms and
notations will be introduced in Section 2.1, followed by an overview of how the behavior and
motion planning functionality is embedded in a complete autonomous driving stack and illustrates
the general interfaces of a planning component in Section 2.2. Section 2.3 gives an overview of the
different application areas the algorithms developed in this work are used for. This chapter will
further formally introduce the multi-agent planning problem using a game-theoretic framework in
Section 2.4 and introduce Mixed-Integer Progamming (MIP) as a solution strategy in Section 2.5.

2.1 Terms and Definitions
This section will introduce the general notation used in this work to describe problems and
scenarios.

Agent An agent is a decision-making entity in the current scene. This can be the autonomous ego
vehicle, another communicating or non-communicating vehicle. Each agent has a time-independent
goal that is a state or a set of states it wants to reach. This can, e.g., be a desired final vehicle
pose. State denotes the tuple of agent’s position, orientation, velocity, and further kinematic and
dynamic properties. Each agent tries to reach its goal with a specific intention. Intention in this
work denotes the strategic plan of an agent in the current traffic scene such as, e.g., ”perform a
lane change to drive faster”. Technically, this narrows down to the current reference path of the
agent leading to its goal plus a desired speed and acceleration.

Behavior and Trajectory An agent’s intention plus a tangible, time-dependent, physically
feasible motion forms its behavior. Motion generally refers to path or trajectory. A path is a
time-independent sequence of kinematic states, such as 𝑥, 𝑦 pose coordinates. A trajectory is a
path with timing information resulting in a sequence of dynamic states, including, e.g., the velocity
and acceleration values. When specifying a motion for a standard road vehicle, the motion is
non-holonomic: The vehicle cannot turn at its point and can only rotate with a certain turning
radius. Mathematically, the states of the system are described by nonlinear differential equations.

Interactive Behavior Planning This work aims at planning behaviors in multi-agent systems.
Motion planning is the task of generating a path or trajectory as a sequence of states from a given
initial state of the system along a time horizon into the future with respect to given constraints,
such as collision avoidance. A behavior plan is then a trajectory plan that follows the given
intentions. This can be performed in a setting with one or more agents. In such a multi-agent
context, goals can be conflicting and the planning problem is finding an optimal behavior plan
for all agents, that is free of conflicts and collisions. A behavior plan is denoted as interactive, if
all agents in the multi-agent systems are viewed as decision making entities and the ego vehicle
planner not only operates on a fixed predicted motion of the other agents.

Communication Agents can be communicating or non-communicating. Our model of commu-
nication in this work is basic and only refers to the explicit exchange of states, trajectories, goal,
or intentions. If other agent states are not known from communication, they have to be estimated
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Behavior and motion planning

Low-level trajectory planner
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Figure 2.1: Overview of the components interacting with the behavior coordination system and the
exchanged information (graphic from [KK19], ©2019 IEEE)

from the ego vehicle’s sensor information. The future motion is then predicted based on current
and historic states. This work does not account for delays, jitter, security aspects, or faults in the
communication.

Cooperation Cooperation in this work denotes the endeavor of an agent to not only achieve its
own goal but to consider the intention of other agents into the behavior plan to find an interactive
plan where all agents reach their goal. The level of cooperation can be very different. From purely
altruistic (such as letting an emergency vehicle pass by while temporarily giving up on the own
goal) to balanced (such as changing a lane on a highway to allow others to merge from an entry
ramp) to purely egoistic (such as preventing being overtaken in a racing scenario). Every scenario
requires the cooperation and interaction of more than one agent.

Coordination In general, the ego agent plans a behavior for itself, including the intention of
other agents. Only the behavior for the ego agent will be executed in the end. If one agent, a
group of agents, or a traffic controller plans the behavior for all agents in the scene, and all agents
then execute the joint behavior plan, this is referred to as coordination. Uncontrolled agents, such
as human-driven vehicles, are not expected to obey the assigned behavior fully, but this work
implements measures to be robust against these prediction errors. Behavior coordination is also
referred to as fully cooperative behavior.

Real-Time Applicability To be able to use a planning approach in autonomous driving, the
approach has to be real-time capable. Here only a weak definition of real-time applicability is
applied: At any time, a sufficient horizon of the behavior and motion plan has to be available which
means that the end of a trajectory is never reached if not on an intentional stopping point. The
computation is assumed hardware powerful enough to achieve this but in this work no guarantees
from hard- or software are required.

Optimality Optimal solution denotes the globally optimal solution of the planning problem (if
it exists). A global optimum does not have to be unique. The problem can have several local
optima, that are optimal in a local neighborhood and which local optimal solution an algorithm
finds is dependent on the initial solution. Completeness describes the property of an algorithm to
guarantee convergence to a valid solution if one exists.

2.2 Planning System Overview
The behavior planning outputs a future trajectory for each participant that is modeled as an
individual agent in the traffic scene. This property makes our approach particularly suited in a
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cooperative setup where each vehicle follows its calculated motion. For all other agents, the output
trajectory represents the predicted motion and intention. Four components serve as main inputs of
the behavior planning component. Figure 2.1 shows the main interfaces, that are briefly discussed
in the following.

Static Environment The static environment is a map representation containing road and lane
reference lines including possible connections (e.g., at an intersection). Also, it represents the road
boundaries and known static obstacles in a polygonal way. This component will be referred to as
static environment model. Perfect perception and localization of the ego vehicle on the map is
assumed in this work.

Dynamic Environment Planning algorithms also rely on a dynamic environment model. It
contains the current states (such as pose, orientation, velocity) of all traffic participants in the
scene. The source can be the output of a sensor data fusion pipeline or received data from a Vehicle-
to-Vehicle (V2V) or Vehicle-to-Everything (V2X) communication unit. Also, shape and size of the
traffic participant is assumed to be available. By design this work handles communication-enabled
vehicles equivalent to non-communicating (human driven) vehicles. The only difference is how the
motion and strategic intention of the vehicle is gathered. In the communicating case, it is assumed
that the other vehicle aims to find a cooperative solution and communicates its exact intention.
In case of a non-communicating vehicle the intention has to be observed and quantified and this
vehicle might not behave as estimated. From an architectural point of view, all types of agents are
handled alike, this also applies to the ego agent. Each object in the dynamic environment can be
viewed as an agent, a decision-making entity who’s actions can change based on the ego actions or
as a dynamic obstacle, who’s behavior is regarded as fixed and independent of the ego actions.

Localization The third data source is the vehicle’s localization component. It provides the ego
vehicle states (pose, orientation, velocity) and the localization on the static map.

Navigation A navigation entity provides a goal position, resulting in a reference track within
the static environment map. Most of the considered scenarios are on-road driving scenarios, where
each agent wants to follow a given time-independent reference line (e.g., a lane) with a desired
speed. This reference line can change over time (e.g., when re-routing) and does not have to be
collision-free or trackable by the non-holonomic kinematics of a vehicle. In combination with a
reference speed, a reference trajectory is derived. With a reference speed of zero at a point on the
reference track the special case of stopping at a point is realized.

Low-Level Trajectory Planner For the ego vehicle, a low-level trajectory planner with a
subsequent controller is assumed to possibly subsample, track the computed trajectory as close as
possible, and react to safety-critical events occurring in the discretization interval of the behavior
planner.

2.3 Application Areas of Multi-Agent Behavior Planning
An automated vehicle should operate safely in a wide range of environments and conditions. This
work focuses on three different use cases, as sketched in Figure 2.2:

• Reactive behavior,

• Proactive behavior, and

• Coordinated behavior.
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CAV Coordination

Proactive in Mixed Traffic

Reactive to Prediction
ACCORD Chapter 4

MINIVAN Chapter 5

Figure 2.2: The behavior planners developed in this work shall operate in different applications areas.
ACCORD is mainly a CAV coordination approach, MINIVAN a proactive, multi-agent planner.
Both planners inherently handle all three use cases, including reactive behavior to a prediction.

These three classes cannot be strictly separated but are overlapping. Ideally, the same planning
system handles all three classes. This will not only increase the applicability and robustness but
also ensures that the implementation is applicable with changing traffic situations, such as an
increasing penetration of Connected Autonomous Vehicles (CAVs).
In this thesis, two behavior-aware planning approaches are developed:

• Autonomous Car Coordination (ACCORD) and

• Mixed Integer Interactive Planning (MINIVAN).

Both operate in all three use cases but have different strengths. ACCORD was developed as
a coordination approach among CAVs that is also capable of interacting with human-driven
vehicles. MINIVAN was mainly developed as a multi-agent planner interacting with human-driven
(uncontrolled) agents.

A general assumption here is that other agents do not behave destructively, e.g., do not aim
for collisions. Each agent has an individual goal that can be conflicting with other goals, but no
adversarial behavior is shown. The algorithms explicitly model that not all agents are interested
in cooperation but can show egoistic yet reasonable behavior. This assumption is a distinction
to air traffic scenarios, where either perfect cooperation is given or in military use-cases hostile
agents are modeled. Our solution algorithm aims for a solution close to the global optimum. This
global optimum will often result in a sub-optimal motion of an individual vehicle, e.g., waiting
for another vehicle to pass. A non-cooperating vehicle cannot be forced to follow this individual
sub-optimal plan and might take egoistic actions but does not behave entirely destructive.

Reactive Behavior with Respect to a Given Prediction

In structured road environments, where the solution space is not limited or conflicting, such as
highways or roads with fixed lane assignments, it is often sufficient to be reactive to a motion
prediction or a communicated motion of other road users. In this case, the algorithm does not aim
to influence the other traffic participants with the ego planning; may these be fellow autonomous
vehicles or human-driven vehicles. It is sufficient not to plan an interactive joint behavior for all
vehicles but to follow the ego plan and react to the predicted motion of other traffic participants.

Example scenarios are tracking a single lane with a desired speed while avoiding collision with a
vehicle in front. Also, in loose highway traffic without oncoming vehicles, for overtaking a slower
vehicle, it is sufficient to know the speed deviations between the involved vehicles and plan the
own motion accordingly. Furthermore, at signalized intersections with known state transitions
of the traffic light, barely dense interaction with other traffic participants is necessary, and a
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passive reaction to the prediction of prioritized traffic participant’s motion is sufficient to handle
the scenario.

Coordination of Connected Automated Vehicles

Autonomous vehicles also need to operate safely in scenarios in scenarios only having autonomous
vehicles. In this case, it is valid to assume that these are also communicating to agree on a common
plan, which is a coordination problem among CAVs. Here, the algorithm needs to plan a joint
behavior where the selected ego behavior also influences the behavior of all other vehicles.
Coordination can yield enormous benefits in various scenarios. Platooning can help to safely

improve the throughput on highways while saving energy. Also, with an automated intersection
management system the efficiency of an intersection can be improved by coordinated motion of
agents. Another use case is fully automated valet parking where a higher density and throughput
than in classic parking lots is achieved by orchestrating the maneuvering vehicles.

Proactive Behavior in Mixed-Traffic Scenarios

This work also examines interactive mixed-traffic scenarios where one or more autonomous vehicles
are interacting with one or more human-driven vehicles. The algorithm plans a joint behavior for
all vehicles with the behavior of the uncontrolled vehicles serving as prediction of the agents. Here,
explicitly non-cooperating and selfish agents that do not aim for a globally optimal solution of the
traffic scene are addressed. The ego agent has to follow a proactive behavior plan to achieve its
own goals in the traffic scene while still operating safely.
As an example, this work considers (dense) merging scenarios, where the ego agent has to

potentially first create a gap before it can successfully merge into another lane. Here it is not
sufficient to just rely on a prediction of other traffic participants as this would yield a very passive
behavior not achieving the own goal. Another scenario is negotiating a solution in unclear situations,
e.g., at a blocked road, where the traffic rules are ambiguous which agent has priority.

2.4 Game-Theoretic Problem Formulation
This work uses a game-theoretic notation to formulate the behavior and motion planning problem.
Specifically, the planning problem in this work is formulated as a multi-agent dynamic game.
Another common formulation is sequential game. A differential game is a dynamic game with
continuous time. Following LaValle [LaV06] and Başar and Olsder [BO98], a differential game is
defined by the following properties:

1. A set of 𝑛 agents1 𝐴 ∈ 𝒜. Each agent 𝐴𝑖 operates on a continuous state space X𝑖.

2. Each agent 𝐴𝑖 has a finite, nonempty set of actions 𝑈 𝑖, called action space of 𝐴𝑖. The action
space can either be discrete or continuous.

3. The game is non-zero sum. The cost function 𝐽 ∶ 𝑈1 ×X1 ×⋯×𝑈𝑛 ×X𝑛 → R takes into
account each agent (joint cost function). The cost function is used to control the level of
cooperation.

4. The game can either be cooperative or noncooperative.

5. For each agent 𝐴𝑖, a deterministic and known state transition function exists 𝑓 ∶ X𝑖 ×𝑈 𝑖 →
X𝑖.

1In game theory literature, agents are also referred to as players.
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6. The states of all agents are known. For the ego agent, the state is received from a localization
component. For all other agents either a suitable perception and data fusion pipeline exists
or the states are transmitted via explicit communication.

7. The environment2 prohibits certain states of the agents and therefore interferes with the
game. Prohibited states are states that are either colliding, physically not admissible, or
prohibited as, e.g., leaving the road. Also, static and dynamic obstacles can be part of the
environment.

Using this formulation, multiple decision makers are present, referred to as agents. If the environ-
ment contains dynamically moving obstacles, formally also the environment can take decisions.
The scene then consists of all individual states, the road geometry, and obstacle information. Each
planning instance is formulated over time as one step of the game. Solving the steps of the game
over time with knowledge from the previous steps can then be viewed as a receding horizon solution
strategy. This work discretizes the time horizon of one planning iteration into 𝑁 steps with a time
interval Δ𝑡. The discrete timestep is denoted by 𝑘 and the interval of 𝑁 steps by 𝒦. The goal
is thus to find a sequence of actions for the ego vehicle that minimizes its costs while following
the constraints of the game such as avoiding collisions with the environment. A special form of
differential games are linear differential games. Here, a linear function exists translating states and
actions from one timestep to the next

𝑑
𝑑𝑡

⎛⎜
⎝

𝑥1
⋮
𝑥𝑛

⎞⎟
⎠
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⋮
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⎞⎟
⎠
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𝑢1
⋮
𝑢𝑛

⎞⎟
⎠

(2.1)

for states 𝑥𝑖 ∈ X𝑖 and actions 𝑢𝑖 ∈ 𝑈 and constant matrices 𝔄 and 𝔅.
The continuous action formulation in Chapter 5 is expressed as a linear differential game due

to the linear property of constraints in the model. The discretized actions in Chapter 4 form a
differential game, as an arbitrary (nonlinear) function can be used to map states from one timestep
to the next. Note that in some definitions a differential game also requires continuous actions,
which is not the case in Chapter 4. Also, the system dynamics are in this work not described by a
pure set of ordinary differential equations but differential equations with continuous and integer
constraints on the states. Some differential game definitions require ordinary differential equations.

2.5 Mixed-Integer Programming as Solution Approach
This thesis uses MIP as a solution strategy for the formulated (differential) game. MIP is an
optimization strategy that optimizes discrete and continuous decision variables alongside with the
ability to converge to the global optimum. In this section, we will briefly introduce the theory.
Various books and resources are devoted to this topic, e.g., [CBD11; SS15; Int21a].

Basics of Mixed-Integer Progamming (MIP)

A mixed-integer program is a linear program where a subset of decision variables 𝑥 can only take
integer values. Formally, this can be written as

minimize 𝑓(𝑥) (2.2a)
subject to 𝐴eq𝑥 = 𝑏eq (2.2b)

𝐴iq𝑥 ≤ 𝑏iq (2.2c)
𝑙lb ≤ 𝑥 ≤ 𝑙ub (2.2d)

2In game theory literature, environment is also referred to as nature.
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with appropriate matrices 𝐴eq, 𝐴iq and vectors 𝑏eq, 𝑏iq, 𝑙lb, 𝑙ub. The subset 𝑥int ⊆ 𝑥 of all decision
variables 𝑥 ∈ R𝑛 can only take integer values 𝑥int ∈ Z𝑛. If the objective function 𝑓 (2.2a) is
a linear function of decision variables 𝑓(𝑥) = 𝑞𝑥 the problem at hand is called a Mixed-Integer
Linear Programming (MILP). If the objective function is quadratic 𝑓(𝑥) = 𝑥𝑇𝑄𝑥 in the decision
variables, the problem is referred to as a Mixed-Integer Quadratic Programming (MIQP), with
an appropriate vector 𝑞 or matrix 𝑄. All constraints (2.2b) and (2.2c) are linear and form a set
of equality and inequality constraints. (2.2d) bounds the decision variables between an upper
and lower limit – theoretically these limits can be infinite. Geometrically spoken, without integer
constraints, the set of constraints forms a convex polyhedron in a 𝑛-dimensional space that is
constrained by hyperplanes. A corner of this polyhedron is the optimal solution of this so-called
LP-relaxation of the MIP. With active integer constraints, only a set of integer points inside the
polyhedron are valid solutions of the optimization problem (2.2). LP-relaxations play an important
role in some efficient solution algorithms. Mixed-integer programs can be infeasible (the constraints
do not form a valid polyhedron), infinite (the polyhedron is open), have exactly on optimal solution,
or have multiple or infinite optimal solutions.

Solution Algorithms for Mixed-Integer Progamming (MIP)

Most mixed-integer programs are NP-hard and therefore only algorithms exist that solve the
problem in exponential time in the worst case. In practice, with efficient modern solution algorithms
the optimal solution can be found fast. MIP was first defined in the 1940s, since the 1970s early
computer algorithms exist to solve medium-scale problems. Beginning from the 1990s, modern
solution algorithms and efficient implementations to solve MIP exist. Since then, mature commercial
solvers have evolved, and an enormous speedup in solution time can be observed [Bix12].
Two classes of solution algorithm exist, heuristic and exact algorithms. For exact algorithms

a proof is available, that the optimal solution is found or that the problem is infeasible or
unbounded, given infinite solution time for the algorithm. Popular algorithms are Cutting Planes,
Branch-and-Bound or the combination to Branch-and-Cut.

The Cutting Plane algorithm first computes the LP-relaxed solution using the Simplex Algorithm.
This yields a dual (upper) bound on the solution. Then iteratively new inequalities are added,
that exclude the LP-relaxed optimum but do not exclude integer points, a so-called cutting plane.
If an integer solution is found, this is the optimal solution of the mixed-integer program.

The Branch-and-Bound algorithm in its general form tries to enumerate all integer solutions of
the problem in a tree structure. The root of the tree is the LP-relaxed solution of the problem.
The algorithm then branches by splitting the range of values for one decision variable into several
sub-problems, and iteratively again solve LP-relaxations and branch until the optimal integer
solution has been found. Using the dual bound available after solving one node in the tree, branches
of the tree can be cut off (bounded), as these cannot lead to the optimal solution. The combination
of Cutting Planes and Branch-and-Bound is called Branch-and-Cut. This algorithm has proven to
be very efficient and is used in most modern solvers.

An integer-feasible solution, that is not necessarily optimal is referred to as primal solution. This
yields a lower bound on the optimal solution. Using primal and dual solutions, the optimality gap
can be computed as the distance of primal and dual without knowing the exact optimum. With
this gap, the possible improvements of a primal solution can be quantified and algorithmically
proven that an integer solution is optimal.

Heuristic solution methods cannot offer these theoretical guarantees but are in general very fast
to apply. Often, the performance of specific heuristics is highly dependend on the problem at hand.
An example of a heuristic is exploring the neighborhood around a known integer solution to find
more, potentially better solutions. Integrated into a Branch-and-Cut algorithm, heuristics can
find primal or dual solutions faster than pure cutting and as the solutions are integrated into the
Branch-and-Cut tree the proof of optimality is still possible.
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Modern solvers are general-purpose solvers, but often, as we will see in this work, the problem
formulation and solver parameterization are of high relevance for a good performance in practice.

Behavior and Motion Planning Based on Mixed-Integer Progamming (MIP)

We in this work develop two different MIP formulations for the multi-agent behavior planning
problem, each providing specific benefits in specific use cases. In Chapter 4, a discrete action space
is used, meaning that the optimizer chooses from a discrete set of actions to translate from one
time instance to the next. This discretization highly narrows the solution space and by appropriate
selection of the possible actions the optimization can be guided. This approach has the downside
that every discrete action has to be enumerated and if the true optimal action is not among the
enumerated action set, it cannot be chosen by the subsequent optimization. Chapter 5 introduces a
continuous action space formulation for the multi-agent planning problem, where the optimizer may
choose an action on a continuous scale. This comes at the price of a far more complex optimization
problem to solve, but the solver will theoretically find the global optimal solution for the given
scenario.
Generally, trajectory planning for multiple agents in the presence of holonomy and differential

constraints is considered NP-hard, or even PSPACE-hard [VJ16; Yu16; SA20; Pad+16]. Even the
underlying, optimal solution of the single-agent constrained path planning problem is known to
be PSPACE-hard [Rei79]. With assumptions on the problem formulation, for the path planning
problem polynomial-time algorithms are known. For the optimal solution of the single-agent
trajectory planning problem no such formulations are known [Pad+16], which also translates to
the multi-agent case. This work aims to find an efficient formulation for the multi-agent behavior
and motion planning problem alongside with an effective optimal solution algorithm that solves
generic multi-agent planning scenarios in tractable time.
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3 State of the Art
This chapter will discuss related research activities, first in the field of planning, second regarding
hard- and software for autonomous driving research vehicles. This chapter will discuss, that
there are already several cooperative behavior planners, also based on Mixed-Integer Progamming
(MIP), available in the literature. However, most are developed and tuned for one specific traffic
scenario and conceptional or technical limitation prevent the approaches from general applicability.
Deploying these algorithms to prototype vehicles to assess if the plans are dynamically feasible
and executable is hardly done in literature, especially not for MIP-based planners.
In Section 3.1, an overview of different behavior and motion planning algorithms is given,

approaches focusing on cooperative planning are discussed in Section 3.2. As the algorithms
developed in this work are based on MIP, Section 3.3 is devoted to related approaches based
on MIP and their restrictions. Parts of this summary of the state of the art have already been
published by the author [KK17; KK19; EKK20; KEK20].

The second part of the chapter starts with the discussion on the hardware setup of autonomous
driving prototype vehicles and how the setup changed over the years in Section 3.4. Section 3.5
concentrates on full-fledged open-source software solutions for autonomous driving, mainly Apollo
[Bai17] and Autoware [Aut21a]. As we chose to integrate Apollo in our research vehicle, Section 3.6
reviews Apollo with a special focus on the integrated planning and control system. Parts of this
review of the related work have already been published by the author [Kes+19; KEK22].

3.1 Behavior and Motion Planning
The software component to plan the motion is an integral part of each autonomous vehicle. Recent
reviews on planning and decision making [Gon+16; Pad+16; Pen+17; SAR18; Yur+20; Cla+20]
give an overview of different technologies and planning system architectures.

This sections follows the categorization of Schwarting et al. [SAR18], grouping approaches into
three categories: sequential planning, behavior-aware planning, and end-to-end driving. Figure 3.1
outlines the three categories and the embedding of the different components into a sense-plan-act
framework, that is widely used within the robotics community. The algorithms developed in this
work fall into the group of behavior-aware planners.

Sequential Planning

Classical planning architectures follow a component-based hierarchical, sequential structure of
decoupling high-level planning, prediction, and motion planning. They operates on a world repre-
sentation received from a perception pipeline and potentially also from a Vehicle-to-Everything
(V2X) communication component. The winning teams in the Defense Advanced Research Projects
Agency (DARPA) Urban Challenge [Mon+09; Urm+08; Rei+09] all applied a three-level hier-
archical planning architecture. The prediction of other vehicles’ motions is decoupled from the
ego-motion planning, which makes the planning process non-interactive.

On a high level, a global navigation route is planned within a road network. This step is followed
by a strategic planner that takes local, tactical driving decisions, such as selecting a lane. Here, also
other road users are taken into account. A subsequent motion planner generates a comfortable and
collision-free trajectory from the strategic plan. This separation of tasks works well in structured,
mainly static environments with a limited number of other road users. [SAR18; Gon+16]
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Figure 3.1: Overview of three different paradigms for planning and decision-making: sequential planning,
behavior-aware planning, and end-to-end driving.

Navigation Mostly, the navigation (mission planning) is done on a graph representation of the
road environment. Classical graph search algorithms are well-suited for small- and medium-scale
problems but get impractical for big road networks. [Bas+16] give an overview on practical route
planning in transportation networks, not limited to the navigation of vehicles. This work does not
evaluate navigation approaches but assume a suitable navigation component.

Strategic Planning The strategy planner is expected to track the reference line at a target speed
with respect to the road environment and to account for other road users. In the DARPA Urban
Challenge, most teams relied on hand-crafted finite state machines [Mon+09; Urm+08; Rei+09]
interpreting the current traffic scenario and trigger transitions based on simple measures such as,
e.g., time to collision, individual traffic rules, or distance to a stop line. However, this approach
cannot account for complex situations. Modern approaches account, e.g., for the uncertainty in
other vehicle’s motions using Partially-observable Markov Decision Processes (POMDP) [UM13]
or use deep neural networks [Len+17]. Strategic planning heavily relies on the accuracy of the
motion and intention prediction. Lefèvre et al. [LVL14] present a survey.

Motion Planning Motion planning for mobile robotic systems has been around since decades.
Early approaches split path and velocity planning [KZ86], but such approaches require over-
approximations and simplifications to work well in dynamically changing environments and hence
do not efficiently use the solution space. Classical trajectory planners can be divided in four groups:
Graph-search, sampling-based, curve interpolation, and optimal control-based planners.

Prominent examples of graph-search planners are state lattice planners [WZT10], that generate
discrete trajectory alternatives in a local (Frenet) frame as polynomial functions, rate them
according to some optimization criterion, and map those back to the global frame again. Also, the
A* algorithm [Dol+08] and its variants are based on graph search, enhanced by heuristics.

A prominent example of a sampling-based planner is the RRT* algorithm [KF11]. The runtime
of sampling-based planners is extremely dependent on the chosen discretization. Sampling-based
planners can be very fast even in high-dimensional configuration spaces but yield suboptimal, non-
smooth solutions due to the (randomly) sampled exploration of the configuration space. Gammell
and Strub [GS21] present an overview on (asymptotically) optimal sampling-based path planning.
The review states properties, restrictions, and assumptions of state-of-the-art algorithms.

Curve interpolation planners rely on a series of waypoints and fit a smooth function, such as a
Bézier curve or a cubic spline to theses points. While producing smooth results, the trajectories
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rely on the quality of the input points and can become costly when avoiding an obstacle intersecting
the waypoints.

Optimal control methods incorporate a model of the kinematics, which is propagated for a given
planning time horizon, and usually formulate constraints to account for feasibility and safety while
constructing a cost function to account for comfort and other desired aspects. Optimal control
provides deterministic solution algorithms converging to an optimum and has been successfully
applied to safety-critical systems. Local numerical optimization also operates on a series of
waypoints as a reference. At every timestep an optimization problem is solved that generates a
smooth and kinematically feasible motion along the reference and takes the road and obstacles
into account. Most optimization formulations require a convex problem formulation for fast
convergence. Therefore, in real-world scenarios often heuristics are applied to generate a (set of)
convex subproblem [Ben+15; AD18; Est+18]. Such algorithms have proven to operate safely under
real-time conditions [Gut+16; Zie+14a; Zie+14b]. Recently, also deep learning comes up as a
technology for motion planning [HRK19].

Behavior-Aware Planning

Behavior-aware planning approaches are often referred to as interactive planning. Here, the
behavior prediction of other traffic participants is coupled with the decision making and motion
planning of the ego vehicle. Time-invariant decisions, such as a navigation goal on a map, is
often assumed to be an input to the behavior planner. Game-theoretic approaches, learning-based
approaches, and probabilistic approaches are popular in the literature. In Table 3.1, we set a
selection of different approaches in contrast that are discussed in this and the following sections. It is
easily observed, that the algorithms vary in terms of the suitability for specific traffic scenarios, the
usage of communication and the presence of non-communicating agents, and the applied solution
methods. Cooperative approaches, see Section 3.2, are one approach to plan a behavior-aware
motion.

Game-Theoretic Approaches Game-theoretic formulations can be employed to model col-
laboration, often realized by a decision tree. The game is often solved using iterative algorithms
operating on a discretized action or state space. Even if converging to a Nash equilibrium, the
result will often be only sub-optimal. Monte Carlo Tree Search (MCTS) can be used to plan
collaborative behavior, effectively solving a multi-agent, non-zero-sum dynamic game [LKK16]. A
cooperation factor serves as a tuning parameter in the ego agents’ cost function. The formulation
is highly flexible and can incorporate any transition function for modeling the environment. An
extensive-form game is formulated in [Bah+16], where the other traffic participants are modeled as
part of the environment. While the framework is highly flexible and has proven to work in a real
car under real-time requirements, the approach does not ensure convergence to an optimal solution.
A two-player dynamic, non-zero-sum game is formulated as a bimatrix game in [LL20], which
allows for an efficient calculation of the Nash equilibrium. Schwarting et al. [Sch+21] use iterative
dynamic programming to solve a multi-agent dynamic, non-zero-sum game. They explicitly model
partial observability of the intention of others. The proposed believe-space variant of the iterative
Linear Quadratic Gaussian (iLQG) algorithm can be executed in real-time. Exact costs and
dynamics of other agents are assumed to be known, and the algorithm converges to a potentially
sub-optimal Nash equilibrium. Constraints are often treated by introducing high penalties in
the cost function and therefore there is no guarantee for convergence. Multi-vehicle driving as a
potential game is formulated in [FG20] and solved using Mixed-Integer Quadratic Programming
(MIQP). The potential function allows the authors to compute a 𝜖-mixed-integer Nash equilibrium,
a driving strategy, that is almost individually optimal with respect to constraints. However, the
discrete lateral action and state space complicate applying this approach in reality. They use a
double integrator model in longitudinal direction and discrete actions in lateral direction, e.g., for
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Table 3.1: Overview of a selection of related approaches for interactive planning illustrating different
strategies to incorporate interaction and solution algorithms. We distinguish the demonstrated
scenario, how interaction is handled, if explicit communication is involved, and the main solution
algorithm.

Reference Scenario Interactiveness V2X Solution approach

Schwarting and
Pascheka [SP14]

Highway Conflict detection and recur-
sive resolution

no Behavior prediction using
motion primitives

Bahram et al.
[Bah+16]

Highway Two-player dynamic game no Alpha-beta pruning

Liniger and Lygeros
[LL20]

Racing Multi-agent dynamic game,
non-zero-sum

no DP solving Nash equilibrium

Schwarting et al.
[Sch+21]

Racing Multi-agent dynamic game,
non-zero-sum

no Iterative DP solving Nash
equilibrium

Fabiani and Gram-
matico [FG20]

Highway Potential game no Iterative Nash equilibrium
solved via MIQP

M. Wang et al.
[Wan+19]

Racing zero-sum two-player game no Iterative best response

Eilbrecht and Sturs-
berg [ES17]

Overtaking Global cooperative costs,
shared plans

no MIQP with iterative conflict
resolution

Manzinger and Al-
thoff [MA18]

Several Centralized planning, shared
plans

no Reachability analysis with
auction-based conflict reso-
lution

Frese and Beyerer
[FB11]

Several Global cooperative costs,
centralized

no MILP

Kurzer et al.
[KEZ18; KZZ18]

Highway Cooperative planning no MCTS, reinforcement learn-
ing

Hubmann et al.
[Hub+17; Hub+18]

Highway,
Intersection

Intention prediction with un-
certainty

no POMDP

Rodrigues de Cam-
pos et al. [RFS13;
Rod+17]

Intersection Control scheduling periodiza-
tion rule

yes Decentralized sequential lo-
cal optimization

Murgovski et al.
[MCS15]

Intersection Centralized resolution of con-
flict space

yes Spatial optimal control for
all crossing sequences

Shen et al. [She+15] Highway Distribution motion coordi-
nation

yes Graph search

Düring and
Pascheka [DP14]

Highway Decentralized decision mak-
ing

yes Maneuver precalculation, re-
duction, combination

Peng and Akella
[PA05]

Unstructured Collision segments identifica-
tion and scheduling

yes Centralized MINLP

Rewald and Sturs-
berg [RS16]

Intersection Negotiation of driving plans yes High level auction-based con-
trol, low level MPC

Lehmann et al.
[LGW18]

Several Conflict detection and ma-
neuver negotiation

yes Right of way, communication
of desire and plan

Burger and Lauer
[BL18]

Highway Centralized optimization
with joint cost function

yes MIQP
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lane changes where collision freeness of the lateral action cannot be guaranteed. It operates on
straight roads but the model assumptions will not hold for arbitrary road geometries. M. Wang
et al. [Wan+19] define a two-player, zero-sum game to solve competitive racing scenarios. In
Le Cleac’h et al. [LSM21] the authors propose a real-time capable solver for constrained dynamic
games with multiple densely interacting agents based on the Augmented Lagrangian Method.
The planner computes a joint motion for multiple agents and converges to a Nash equilibrium.
Initializing a Model-Predictive Control (MPC) approach with the open-loop strategies based on
the game provides a fast update rate with dense states and mitigates the assumption that the cost
function of each agent is known. However, global convergence to a Nash equilibrium cannot be
guaranteed for nonlinear and nonconvex constraints (such as collision and dynamics constraints).

Probabilistic Approaches Wei et al. [WDL13] model ramp-merging scenarios as a Markov
decision process of high-level actions. The multi-step method first estimates the probability of
an agent to perform a certain action, then generates future scenarios, and rates them according
to a cost functional. The simplistic Bayes model to predict the future motion of other agents is
not transferable to arbitrary scenarios. Bernhard et al. [BPK19] address the problem of uncertain
intents of other agents by introducing a risk-sensitive behavior planning. The two-step method
first uses deep distributional reinforcement learning in a simulation training environment to learn
risk-sensitive actions offline. At runtime, a risk-assessment, using standard metrics, is performed
and the respective optimal risk-sensitive action is selected. A popular approach when formulating
agent interactions in a probabilistic fashion is a Partially Observable Markov Decision Process
(POMDP) where other agents’ intentions cannot be observed directly. The approach of Hubmann
et al. [Hub+17] assigns an optimal acceleration for vehicles moving on pre-defined paths in
conflicting scenarios at unsignalized intersections. Integrating an A* heuristic in combination with
Monte-Carlo sampling, also combined longitudinal-lateral maneuvers can be achieved [Hub+18].
For different scenarios different action spaces are chosen to fulfill real-time requirements.

Learning-Based Approaches Furthermore, various learning-based approaches exist to achieve
behavior-aware planning. Learning-based methods can generate real-world behavior from data.
Besides end-to-end driving, where the agent’s future actions are learned based on sensor readings
and the behavior and motion planning is completely implicit, also a behavior plan (or trajectory)
can be learned based on an environmental model. Generally, learning based approaches have
shown superior results over classical handcrafted models to represent human behavior [Bha+20;
Len+17; HCL19]. Correlations and dependencies between two human-driven vehicles in the data
are accounted for implicitly. Most learning-based planning approaches still separate decision making
and motion planning. Also the output trajectories or actions often suffer from nondeterminism and
limited explainability. Furthermore, the generalization to during training unseen situations is an
open research question [SAR18]. Vallon et al. [Val+17] apply support vector machines to decide on
lane changes, Lenz et al. [Len+17] use Gaussian Mixture Models. Inverse reinforcement learning
aims to capture the human decision making process by learning the unknown reward function
from data [Fer+21], which is a major advantage to manually designed functions. Driggs-Campbell
et al. [DGB17] target the challenge for an autonomous vehicle to integrate into mixed traffic by
acquiring a model of how human drivers drove in the scenario at hand from highway trajectory
data and mimic this behavior in the trajectory planning.

End-to-End Driving

End-to-end driving approaches do not follow a sense-plan-act structure. They do not explicitly
create a world model and a trajectory but usually rely one deep learning technologies to generate
vehicle control inputs directly from sensor data. Data is either gathered from (manual) drives
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[Cal+18] or from simulation [Wol+17]. Some demonstrations on real roads exist [Ken+19; Wan+21],
but safety and generalization, including verification is still an unsolved issue.

3.2 Cooperative Planning and Coordination
Cooperative planning and the coordination of multiple agents is a special case of behavior-
aware planning. Cooperation does not necessarily have to involve explicit communication, but
communication among Connected Autonomous Vehicles (CAVs) rules out most of the uncertainty
in other vehicles’ behavior. Vehicle-to-Vehicle (V2V) communication and V2X communication
offers new possibilities and potentially enables an improved traffic flow. We follow the distinction
of Ulbrich et al. [Ulb+15] dividing cooperative driving into explicit inter-vehicle communication
and cooperation in the form of collaboration. Mertens et al. [Mer+20] distinguish into active
and passive cooperation. This work gives an overview of various, also non-technical aspects of
cooperation and communication.

3.2.1 Cooperative Planning Among CAVs
Aramrattana et al. [Ara+15] structure cooperative driving along three axis: the number of involved
agents, the complexity of the driving task, and if the goals of the agents are within a limited
(local) or broad (global) scope. Also, L. Chen and Englund [CE16] review intersection management
including motion planning strategies without accounting for human-driven vehicles. All papers
stress the opportunities of cooperative driving, such as improving traffic safety and efficiency,
but also identify challenges. These are, among others, the penetration of V2X communication
infrastructure or the limited capabilities of perception frameworks to estimate the intent of a
human driver in complex situations. Most algorithms are limited to vehicles with the same level of
automation and connectivity, which is limiting in the expected mixed-traffic scenarios. Also, often
resolution algorithms are specific to a class of scenarios without the possibility to transfer to generic
situations. Rios-Torres and Malikopoulos [RM17] give an overview of coordination approaches for
CAVs in merging and intersection scenarios. Human-driven vehicles are not considered here. The
Grand Cooperative Driving Challenges [Nun+12; Ara+18] proved that with a very heterogeneous
vehicle setup, cooperative behavior could be achieved relying on standardized communication
protocols. As well, platooning and intersection scenarios have been studied.

A scenario-independent conflict resolution strategy among CAVs is proposed by Lehmann et al.
[LGW18]. Each vehicle communicates its planned trajectory along with a potentially different
desired trajectory. Based on these, other vehicles can adapt their plans without explicit negotiation
or acknowledgments. The coordination is computed on a trajectory level in a local Frenet coordinate
system without assumptions how these are computed. A cooperative maneuver is executed in
three phases: A detection phase followed by a negotiation phase and an execution phase. Rewald
and Stursberg [RS16] also propose a hierarchical approach to negotiate driving plans among
connected vehicles using an auction-based negotiation scheme, followed by a MPC. In the auction
step, the vehicles bid on the precedence over another vehicle. Bids are the increase in costs for
a vehicle if it accepts the precedence of another vehicle. The auction approach then minimizes
the overall increase in costs resolving all conflicts. The bids are tuned to incentivize cooperation
by adding additional cost from previously lost auctions. The possible high-level maneuvers are
encoded in a state automaton. The approach does not account for human-driven vehicles. Z. Wang
et al. [Wan+18] formulate the coordination of CAVs as centralized optimization and rephrase it
as consensus optimization. By decomposition, convexification, and parallelization, a specialized
solver computes the solution fast even for a high number of vehicles. Düring and Pascheka
[DP14] base the coordination of CAVs on a set of possible maneuvers represented as motion
primitives with associated costs. Based on the exchange of these sets, each vehicle individually
selects a cooperative maneuver combination. Merging scenarios are evaluated, also in combination
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with non-communicating vehicles. Rodrigues de Campos et al. [RFS13] present a coordination
algorithm for automated vehicles at uncontrolled intersections. The proposed control strategy is
fully decentralized with positions and velocities to be exchanged among the vehicles. The exact
paths of the vehicles are assumed to be controllable. The velocities on these paths are optimized
for all vehicles minimizing the deviation to a desired speed with respect to vehicle dynamics and
safety constraints. The optimization is performed in a sequential way. The vehicles are ordered
and each vehicle adapts its control strategy to the higher-ordered vehicles. As a prioritization
strategy the authors use the vehicle’s distance to the set of states leading the vehicle into the
shared space of the intersection.

3.2.2 Cooperative Planning Including Non-communicating Vehicles

Kurzer et al. [KZZ18] take into account non-communicating vehicles. Here, maneuver primitives
are used to compute a coordinated motion of vehicles without communication using MCTS. The
interaction is modeled using a joint reward function with scaling factors for egoistic or cooperative
behavior. The authors also extended their work to continuous state spaces [KEZ18]. The ego
vehicles’ prediction of the other vehicles cooperating influences the cooperative character of the
solution. However, the algorithm is only applicable to a limited set of scenarios. Schwarting
and Pascheka [SP14] propose to first plan egoistic maneuvers neglecting other vehicles’ interests,
afterwards possible conflicts are detected and recursively resolved, starting from the furthest
vehicle. The basic driving strategies are assembled from motion primitives. In a structured
environment, like the investigated highway scenarios, these primitives cover the most likely vehicle
actions and shrink the planning space. By predicting the intention of other vehicles the need for
inter-vehicle communication is avoided. Evaluating a cost function the best possible conflict-free
maneuver combination is selected. The conflict resolution algorithm is proven to be real-time
capable and demonstrated in a real-world highway scenario. However, the approach cannot be
directly transferred to arbitrary scenarios and the ordering of vehicles to resolve conflicts can
yield sub-optimal results. Eilbrecht and Stursberg [ES17] formulate a two-layered approach of
iterative conflict resolution using a cooperative cost function. The underlying behavior of each
agent is generated through an optimal control problem using MIQP for each agent while ensuring
obstacle avoidance to the (known) plan of the other agents. However, their approach is only
valid for straight driving on straight roads, and the iterative conflict resolution does not offer
any guarantees to converge to a global optimum. Manzinger and Althoff [MA18] use reachability
analysis to compute conflicting space-time cells, which might be occupied by multiple vehicles.
An auction algorithm then solves for those conflicts. Their approach requires a discretization
of the state space. Viana et al. [Via+21] model the uncertain willingness of a human-driven
vehicle to cooperate as POMDP, where the cooperativeness is a non-observable state. MCTS is
used as a solution method. The driver and vehicle models are parameterized using observations
and an additional yielding classifier is introduced to model the probability that a human-driven
vehicle will cooperate (yield) to the autonomous vehicle. Within a dataset and from closed-loop
simulations the cooperativeness is demonstrated in lane-merging scenarios with three agents. The
used car-following models are parameterized highly usecase-specific and plan no lateral motion,
which prohibits the usage in arbitrary scenarios. Toghi et al. [Tog+21] use end-to-end learning
instead of explicit driver models to implicitly account for the willingness of a human driver to
cooperate in the behavior planning. A multi-agent reinforcement learning strategy, the synchronous
Advantage Actor-Critic algorithm is trained on a discrete high-level action space. The effectiveness
is demonstrated on a simulated highway environment with human-driven vehicles modeled using
classical car following and lane-change models. Therefore, the learned behavior is not based on
human behavior but rather model parameterization. The authors claim that the methodology is
transferable. In the evaluated scenarios introducing cooperation in the behavior planning process
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greatly increased the success rate and decreased failures (such as collisions) compared to purely
leaning to drive egoistically on the highway.

3.3 Planning Using Mixed-Integer Programming
Several competing technologies exist to in the end compute a interactive and cooperative behavior,
one is optimal control. Complex situations with densely interacting agents cannot be solved
to optimality using decomposition techniques from sequential planning and often handcrafted,
scenario-specific solutions are applied. One possibility to overcome these limitations is MIP, that
offers multiple benefits that are favorable for optimal behavior planning such as convergence to a
global optimal solution and the alongside optimization of discrete and continuous variables. The
work relies on MIP to solve the behavior-aware planning problem. Besides for motion planning
(e.g., [Qia+16]) and behavior planning (e.g., [ES17]), MIP-based strategies are also applied for
traffic management (e.g., [LR17]).

Motion and Behavior Planning

Schouwenaars et al. [Sch+01] model the multi-vehicle trajectory planning problem with obstacles
as Mixed-Integer Linear Programming (MILP). All vehicles are assumed to be cooperative. The
vehicle dynamics are incorporated into the optimization problem in a linear and discrete fashion.
This indicates, that the applied vehicle model is only valid for holonomic motions. Safety distance
constraints between pairs of vehicles are formulated separately in 𝑥- and 𝑦-direction, which will
lead to infeasible problems in arbitrary on-road settings. Incorporating uncertain measurements,
actuator disturbances and model uncertainties a MILP approach to optimize the trajectory of
one vehicle in the presence of obstacles is formulated by Blackmore et al. [BOW11]. A chance
constrained framework keeps the failure probability below a threshold. With bounds on the collision
probability the chance constrained non-convex problem is converted into a linear convex one. Frese
and Beyerer [FB11] propose a double integrator-based MILP formulation, with constraints ensuring
a collision free motion inside the road boundaries. All vehicles are assumed to be cooperative. In
the observed crossing and overtaking scenarios solving the MILP takes varying computation time,
so the real-time applicability is questionable. Nevertheless the algorithm shows good results in
terms of planning success, but tends to become infeasible due to conflicting constraints for more
than three vehicles. The non-holonomy is assured by bounding an approximation of the lateral
acceleration. However, that is only valid for small yaw angles, and yields a lot of invalid solutions
[Fre12]. The collision checks are modeled with an arbitrary road polygon using a disjunctive
collision check with convex polygons. They also propose to check for collision using rectangle-
based vehicle-approximation of consecutive states, with each variant introducing a lot of invalid
trajectories [Fre12]. Qian et al. [Qia+16] apply the double integrator to MIQP. Similar to Nilsson
et al. [Nil+16], they model the non-holonomy by bounding the lateral velocity, which is only valid
for straight roads and if the vehicle is road-oriented. Even when avoiding an obstacle, the yaw angle
may exceed 20 degrees, which can yield bends in the optimized trajectories that cannot be executed
with a real vehicle. The work is thus limited to straight roads and straight driving, whereas
turning at intersections is not possible. With the quadratic cost function of a MIQP, differences to
longitudinal or lateral values (such as acceleration) are only possible if the reference signal is zero
(such as for acceleration). Thus, deviations from the absolute velocity cannot be expressed. Burger
and Lauer [BL18] extend the work of Qian et al. [Qia+16] to the cooperative setting by extending
the state space to multiple agents. A joint cost function is optimized using mixed-integer quadratic
programming and avoids collision on a vehicle motion level. However, also the limitations of the
formulation are inherited. Nilsson et al. [Nil+16] introduce two Quadratic Programmings (QPs)
for longitudinal and lateral control based on a linear double-integrator model. To account for
non-holonomy, the authors use a linear inequality constraint that couples lateral and longitudinal
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Table 3.2: Comparison of MIP model approaches. We express linear functionals using 1 , quadratic
using 2 , and nonlinear functionals using n . The counterparts 1 , 2 , and n express
functionals that are not (and cannot be) implemented. We compare cost functionals that we
assume to be desirable, with cost terms 𝑗�, curvature 𝜅, velocity 𝑣, and acceleration 𝑎.

Source Ziegler et al.
[Zie+14a]

Gutjahr et al.
[Gut+16]

Nilsson et al.
[Nil+16]

Qian et al.
[Qia+16]

Frese and Bey-
erer [FB11]

Problem
formulation

SQP QP for long, lat
each

QP for long, lat
each

MIQP MILP

Model Triple integra-
tor

Frenet bicycle
model

Double integra-
tor

Double integra-
tor

Double integra-
tor

Reference
frame

Cartesian,
fixed

Frenet, street-
wise

Cartesian,
fixed

Cartesian,
fixed

Cartesian,
fixed

Non-
Holonomy
Constraint

𝜅, n 𝜅, 1 𝑣𝑥, 𝑣𝑦 are cou-
pled, 1

𝑣𝑥, 𝑣𝑦 are cou-
pled, 1

𝑎𝑙𝑎𝑡, 1

Acceleration
Constraint
|𝑎|

2 1 n n approximated,
1

Collision
Shape

circles circles road-aligned
rectangle

road-aligned
rectangle

road-aligned
rectangle

Collision
Check to

everything everything road-aligned
rectangle

road-aligned
convex polygon

non-convex
road polygon

Collision
Constraint

n 1 1 1 1

𝑗velocity n 2 n n n
𝑗acceleration 2 2 2 2 1 , 2
𝑗jerk 2 2 2 2 , [BL18] 2
𝑗yawrate n 2 using �̇� n n n
𝑗reference n 2 n n n
Validity any road / orientation straight road, aligned with road (orientation-wise)
Multi-Agent no no no yes, [BL18] yes

velocity. However, this is only valid for small yaw angles and will yield non-drivable trajectories
at intersections and roundabouts for example, since the road curvature is not taken into account.
Gutjahr et al. [Gut+16] introduce two longitudinal and lateral QP in the Frenet frame based on the
bicycle model. The model yields good results for driving in static environments. Similar to Ziegler
et al. [Zie+14a], this approach relies on a maneuver selection, as shown by Esterle et al. [Est+18].
However, the transformation of all obstacles (static environment and dynamic obstacles) to local
coordinates is costly and with an increasing number of obstacles outweighs the benefits of the fast
QP. Miller et al. [MPA18] base their work on [Gut+16] and formulate two consecutive longitudinal
and lateral programs using MIQP similar to [Nil+16], but in local street-wise coordinates instead.
However, the approach cannot account for any model-based prediction or multi-agent planning.
Also separating longitudinal and lateral control yields sub-optimal solutions and limits the solution
space. Reiter et al. [Rei+21] extend the motion planning problem by not only avoiding obstacles
but also introducing reward regions to guide the optimization into certain states. As, e.g., Esterle
et al. [Est+18], in a first step the horizon is split into homotopy classes representing different
high-level maneuvers. A MILP is formulated to find the optimal homotopy with respect to the
specified rewards. Inside this homotopy, a nonlinear optimization problem minimizing the deviation
to the reference and jerk is formulated and solved using Sequential Quadratic Programming (SQP).
The effectiveness is demonstrated in an autonomous racing scenario.

Problem Linearization for MIP

A major drawback of MIP is, that only linear constraints can be expressed as mixed-integer
nonlinear programming problems with general constraints and cost functions cannot be solved
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in real-time. Therefore, all constraints have to be expressed as a linear function which poses
high requirements on the constraint formulation. Ziegler et al. [Zie+14a] propose a nonlinear
optimal control problem, where they apply the cost functionals and constraints shown in Table
3.2. It analyzes the formulations in terms of linear functionals 1 , quadratic 2 , and nonlinear
functionals n . We consider these as as desirable and compare other problem formulation based
on QP and MIP with respect to the order of the constraint and cost functions. Ziegler et al.
[Zie+14a] use a triple integrator as vehicle model, while bounding the curvature to account for
non-holonomy. The Bertha-Benz drive showed the applicability of the triple integrator model if
correctly constrained. Their approach yields a nonlinear optimization problem, which is solved
using SQP but only finds a local optimum. Motivated by that, approaches for maneuver planning
[Ben+15; AD18] have focused on finding the correct maneuver in a preliminary step. However,
these approaches usually rely on a geometric partitioning of the workspace and thus scale poorly,
and cannot be extended to account for any interactive or cooperative planning.

Traffic Management

Besides planning the behavior for a subset of vehicles on a road stretch, MILP is further applied
successfully to optimize an overall traffic scenario taking into account every vehicle in a dedicated
area. Considering a traffic scenario as a cooperative multi-agent system, the global optimum is
optimal traffic flow, e.g., maximizing the throughput or avoiding deadlocks [Pap+03]. Usually
these traffic management strategies provide too coarse or not kinematically invalid trajectories to
be directly used as a behavior or motion plan but serve more as a reference trajectory planner.

Examining the global traffic network Lin et al. [Lin+10] reformulate a model predictive control
problem of an urban traffic network as MILP and demonstrate the applied solution using a
macroscopic traffic model. Levin and Rey [LR17] introduce an intersection manager that assigns
reservations to each vehicle based on a MILP. The system is based on pre-computed conflict
points and the mixed-integer optimizer coordinating the spatial trajectories of the vehicles to be
collision free. The policy is in a receding horizon fashion. Ashtiani et al. [AFV18] extend the
work of Fayazi et al. [FVL17] on optimal vehicle arrivals at intersections to networks of connected
intersections. The applied MILP approach does not account for lateral motion and only uses the
arrival time of a vehicle at an intersection as a vehicle-dependent decision variable and the vehicle
dynamics are highly simplified. Highway scenarios are addressed in [RD12] trying to maximize the
total traveled distance with subject to correct acceleration and overtaking behavior. An optimal
vehicle to parking space assignment in a huge network is tackled by Geng and Cassandras [GC13]
minimizing each driver’s cost function and the proximity to the driver’s destination. It is assumed
that parking spaces can be supervised and reserved.

3.4 Automated Driving Vehicle Hardware
Despite the rich history of past research vehicles starting in the early nineties, the source code
or system specification has rarely been made open-source. Apart from a collaborative approach
by Levinson et al. [Lev+11] to summarize lessons learned on the algorithm side, only sparse
knowledge has flown back to the community regarding how to build up an architecture including
the inevitable pitfalls one will face. To display the different development stages of hard- and
software, this section will compare the setup of several selected autonomous driving prototypes
We chose to include the vehicles of the two winning teams of the DARPA Urban Challenge and
the Grand Cooperative Driving Challenge (GCDC), respectively, as these competitions presented
two milestones in autonomous driving research. Additionally, we added selected other vehicles,
such as VaMP [TD96] or Bertha [Zie+14b]. Further experimental platforms are also discussed in
[Bue+19]. An overview of historic and ongoing research programs is also given by Aramrattana
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Table 3.3: Hardware comparison of selected research vehicles from an early demonstrator, vehicles from
the DARPA challenges, and the Apollo reference vehicle. We use � to indicate an existing
component, ♦ to indicate its nonexistence and ? if such information is not public.

VaMP Junior Boss Bertha RACE Halmstad Bertha Apollo Fortuna
[TD96] [Mon+09] [Urm+08] [Zie+14b] [Bue+15] [Ara+18] [Tas+18] [Bai17] [Kes+19]
1994 2007 2007 2013 2015 2016 2016 2018 2019

Camera front&rear ♦ front stereo front ♦ stereo/360∘ front 360∘

Lidar ♦ � 64L � ♦ � 4L ♦ � 4L � 64L � 32L
Radar ♦ � � � � � series � � �
GPS ♦ � � � � � rtk � rtk � rtk � rtk
INS � � � ? � � � � �
RT comp. � ? ♦ ? � � � ♦ �
PC � � � ? � � � � �
GPU ♦ ♦ ♦ ? ♦ ♦ � � �

et al. [Ara+18]. Table 3.3 depicts the hardware evolution of research prototypes in the past 15
years.
VaMP, developed by Thomanek and Dickmanns [TD96] in the 1990s, was limited to Adaptive

Cruise Control (ACC) and lane change applications on highways due to reduced sensor capabilities
with only four cameras and computation hardware of approximately 50 processing units. Fifteen
years later, a successful choice for teams in the DARPA Urban Challenge was a fusion of high-end
lidar and radar sensor data. However, back then, perception systems could not rely on GPU-
based acceleration and deep neural networks. Since then, radar and lidar sensors for detection
and camera-based systems for classification have been used in urban environments. Recent
advances in multi-sensor data fusion using machine learning methods have encouraged to use
more advanced sensors and setups. With the Apollo reference vehicle [Bai17], various scenarios
have been demonstrated using different sensor setups. The DARPA Urban Challenge established
high-precision Global Navigation Satellite System (GNSS) as a standard. Since 2016, systems with
Real-Time Kinematic (RTK) have benefited from increased localization accuracy.
Before 2016, research platforms did not focus on inter-vehicle cooperation or communication

devices. The first GCDC [Nun+12] in 2016 confronted researchers with cooperative ACC scenarios
and introduced a V2V communication protocol. This challenge made appropriate communication
devices necessary in the participating platforms. As fusing self-perceived sensor data and V2V
data proved to be challenging, Nunen et al. [Nun+12] selected to use the communication interface
and a Radar, whereas Tas et al. [Tas+18] selected to use the V2X inputs only. Similar competitors
participated in the second GCDC [Ara+18], which also included lateral maneuvers with the need
for communication and cooperation.

3.5 Open-Source Software Stacks for Automated Driving
Most research vehicles run a proprietary, individual and customized software stack and a decent
comparison is impossible. Still, the setups share some software design properties, as we outline
in Table 3.4. Considerations of functional safety are commonly neglected with research vehicles.
Nevertheless, watchdogs and sanity checks usually handle algorithm and system errors. Only
recently, open-source driving stacks got attention, potentially enabling research groups around
the world to solve real-world problems. Driving stack generally denotes the set of all software
components that are necessary for fully autonomous driving. A prominent example is Apollo, an
open-source project funded and operated by Baidu [Bai17]. A joint project of various Japanese
universities has initiated the open-source stack Autoware [Kat+18], that claims similar capabilities
as Apollo. The company Apax.ai is working towards the industrialization of Autoware. Both
projects expect deployment on a specific exclusive set of supported hardware architectures. To the
best of our knowledge only these two comprehensive open-source software stacks with a sufficiently
large community are available.
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Table 3.4: Software stack characteristics of the discussed vehicle platforms.
VaMP
[TD96]

Junior
[Mon+09]

Boss
[Urm+08]

Bertha
[Zie+14b]

RACE
[Bue+15]

Halmstad
[Ara+18]

Bertha
[Tas+18]

Apollo
[Bai17]

Applica-
tion

German
Highway

DARPA Urban
Challenge

German
Rural

Parking Cooperative Driving
Challenge

Various

Licensing proprietary partly open proprietary proprietary proprietary proprietary proprietary open
Middle-
ware

? publish/
subscribe

publish/
subscribe

? RACE
RTE

LCM ROS Cyber RT

OS on PC ? Linux ? ? PikeOS Linux Linux Linux
Functional
Safety

None Watchdog
module

Error Re-
covery

? Supporting
ASIL D

Trust Sys-
tem

? System
Health
Monitor

Controller
on

? PC ? ? RACE
DDC

MicroAuto-
box

Real-time
comp.

PC

Apollo Baidu’s Apollo [Bai17] is an open-source autonomous driving stack with its own cus-
tomized middleware. The framework has been adapted or used in various works. X. Wang et al.
[WRA20] connected Apollo to the motion planning benchmark tool Commonroad [AKM17]. Fre-
mont et al. [Fre+20] used Apollo to demonstrate the simulation to reality gap for a scenario-based
testing approach. In Section 3.6, we will in detail describe the Apollo driving stack with a special
focus on its motion planning capacities. Apollo has already been applied for various driving
experiments in the US and China where algorithms or methodologies have been made publicly
available, e.g., [Wan+20; Xu+19; Xu+20; He+21].

Autoware Autoware.AI (formally known as Autoware [Kat+18; Aut21a]) is an open-source soft-
ware stack for autonomous driving based on ROS. It contains modules for localization, perception,
prediction and planning. The localization is based on a High Definition Map (HD-Map), SLAM,
and GNSS/Inertial Measurement Unit (IMU) sensors. The perception fuses data from camera and
lidar. The planning is based on probabilistic robotics and rule-based systems and offers modules
for open space (e.g., parking) and lane following.
Autoware.Auto [Aut21b] is a recent re-implementation based on ROS2 of Autoware.AI [Aut21a]

with well-defined interfaces and an additional focus on functional safety. It is developed under the
Autoware Foundation. Currently, the new stack supports valet parking but no on-lane driving.
With Apax.Autonomy, Apax.ai develops a commercial fork of Autoware.Auto supporting real-time
execution and offering production-grade software quality.
Autoware.IO aims to provide a unified interface layer between Autoware and third party

software components and hardware-dependent software, such as device drivers. Also, reference
implementations and platforms are provided including a test framework.

Apollo and Autoware in Contrast Apollo and Autoware have a similar scope, as both aim to
provide a framework and ecosystem in conjunction with algorithms such as planning or data fusion.
Raju et al. [RGL19] have compared the functional components between Apollo and Autoware.AI
and state that the functional modules in Apollo are more robust and performant at the cost
of leaving the generic ROS environment. Apex.AI offers a middleware called Apex.OS that
extends ROS2 and promises hard real-time capability. However, studying and comparing potential
advantages of the Autoware products over Apollo regarding hard real-time requirements were out
of scope for this work.

Other Autonomous Driving Stacks Hardly any other publically available open-source com-
prehensive stacks exist. The Junior Driving Stack [Mon+09] from the DARPA Urban Challenge is
available as open-source software, but not actively maintained since then.

Also commercial solutions are available, that is not discussed in detail here as we focus on open-
source frameworks that are available for research. NVIDIA’s DriveWorks [NVI21] is a framework
for developing driving functions. They also provide reference implementations for perception,
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Table 3.5: Comparison of concepts between Cyber RT and ROS2
Cyber RT ROS2 equivalent Description

Component Package modules
Node Node fundamental building block that can read/write messages
Channel Topic publish-subscribe concept
Message Message data unit for data transfer between modules
Task Action asynchronous computation task
Reader/Writer Publisher/Subscriber class within node to send/receive messages
Service Service synchronous communication between nodes
Discovery Discovery finds other service nodes
Coroutines – optimize thread usage and system resource allocation
Launch file Launch file start multiple modules at once
Record file Bag file recorded messages

localization, and planning. However, the stack is not open-source and only supports NVIDIA
hardware such as the NVIDIA Drive platform. Further commercial solutions exist on the market,
some being available for research. For example, EB robinos [Ele21] claims production-grade,
hardware-agnostic implementation of various automated driving components. The Mathworks
Automated Driving Toolbox [The21a] offers a set of software components and tools for autonomous
driving components.

3.6 The Apollo Driving Stack
As we will discuss in Chapter 6, we chose to base the software setup on the Apollo driving stack.
Baidu claims that the stack contains all necessary modules for full autonomy. The stack has a very
modular structure and brings its custom-built middleware (Cyber RT) to exchange information.
The Apollo stack is embedded in a growing open-source community and many companies have
joined the Apollo board.
For a comprehensive description of the Apollo software design and architecture, the reader

is referred to the documentation in the open-source repository [Bai21g]. Section 6.2 will give
an overview how we used the Apollo driving stack in this work and will describe more software
components in detail, such as the perception pipeline. In this section, we will first elaborate on the
Cyber RT middleware in Section 3.6.1 and afterwards describe the capabilities of the planning
(see Section 3.6.2) and control (see Section 3.6.3) components.

3.6.1 The Cyber RT Middleware
Apollo comes with Cyber RT [Bai21d], a customized middleware for autonomous driving. Like
popular robotic middlewares such as ROS or its successor ROS2, it is based on a publish-subscribe
principle to interconnect different software components. Table 3.5 compares relevant concepts of
both and specifies equivalences. It offers easy-to-use C++ and Python Application Programming
Interfaces (APIs) to integrate new components. Similar to ROS2, no central core component has
to be launched; each component is launched as a separate task in the userspace. The system
is fully distributed. Also, a distribution of components among multiple computers is possible.
Cyber RT resolves the components’ data input and output dependencies and correctly links the
components in a directed acyclic graph. It is also possible to exchange data between components
using a service-oriented API rather than the publish-subscribe channels. Components can be
triggered from a callback or run at a predefined frequency. Furthermore, Cyber RT offers APIs for
parameterization, timing, and logging. The messages can be monitored, recorded, and replayed
easily, essentially offering comparable usability to ROS. Each Apollo module runs inside Apollo’s
Docker container. A bridge component enables communication with components outside this
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container. Apollo offers a kernel patch [Bai21b] to Ubuntu to achieve real-time requirements when
running the stack.

The message format of Cyber RT is based on Google Protocol Buffers. Messages and parameters
have to be first specified in the Protocol Buffers format. From this domain-specific language,
an appropriate implementation to access the values is created that is compiled alongside the
component’s source code. This allows creating components in Python, C++ , and other languages.

3.6.2 The Apollo Planning Module
Apollo’s planning module offers several planning algorithms [Bai21a], that we will describe in this
section. They are all based on the same interface and take the vehicle ego state and the predicted
positions or trajectories of obstacles as an input. A new trajectory planning is triggered for each
new prediction message. The code is barely documented but follows modern and understandable
coding patterns.

Public Road Planner

The public road planner is designed as a modular and holistic approach to generate suitable
trajectories for various kinds of distinct driving situations by decoupling the selection of the
current situation from the actual planning algorithm and its parametrization. Based on the
scenario the vehicle is currently in, a predefined set of tasks is executed. This modular and flexible
implementation comes at the downside of various switching and blending layers in the planner.
Four classes of situations can be handled:

1. Lane Following and Overtaking: Track the desired velocity in a particular lane or follow
the vehicle in front. Also, lane changes and overtaking of slow vehicles are possible.

2. Intersections: Handle signalized and unsignalized intersections with or without traffic signs
according to the (United States) traffic rules. When approaching a stop sign or performing
an unprotected turn at a signalized intersection, the vehicle first comes to a complete stop
and then creeps in the intersection to find a safe gap for passing.

3. Parking: Maneuver from a lane into a parking spot or reverse. Here the Open Space Planner
is triggered.

4. Emergency: In case of software or hardware failure, two emergency maneuvers are possible.
Either the Open Space Planner drives the vehicle to the curb or the vehicle stops in the
current lane while preventing rear collisions.

The actual motion planning is done in a path-velocity decomposed setting. First, the vehicle
state is translated into the Frenet frame. For this, a smooth reference line (up to the curvature
derivative) is generated from the reference line using QP. Second, the lane boundaries and static
obstacles in front of the vehicle are converted into the Frenet frame. Selecting a homotopy to
either pass an obstacle on the right or left side is usually a non-trivial task [Est+18]. Apollo
solves the homotopy class selection problem with a heuristic search. Third, a QP for the lateral
deviation from the reference line is defined. The longitudinal interval on the reference line is set
to a fixed resolution. The optimization problem holds constraints to be kinematically feasible,
collision-free, and minimizes lateral reference deviation and lateral movement in a piecewise-jerk
fashion. For longitudinal movement along the reference line, a similar QP is defined. In this step,
moving obstacles are considered by setting an appropriate reference speed for following a vehicle
or merging in. Longitudinal and lateral trajectories are then combined and transformed back from
the Frenet frame to the Cartesian space [Zha+19; Zha+20]. The public road planner has proven
to master various on-road driving scenarios and compute smooth and collision-free results. The
computation time is comparably low on standard hardware, and the algorithms do not require
specific accelerators.
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Open Space Planner

The Open Space Planner is a dedicated module for maneuvering in free-space scenarios without
a lane structure, such as parking. The relevant area for maneuvering and the objects possibly
interfering with the planned trajectory are filtered in a pre-processing step. As a basis, the Hybrid-
A* path planning algorithm is used. In a subsequent step, the curvature of this collision-free
path is smoothed using the Dual-Loop Iterative Anchoring Path Smoothing algorithm [Zho+20].
Afterward, a speed profile along the path is generated, formulating a constraint QP that minimizes
the jerk [He+21; Zho+20]. The planning algorithm shows a fast, reliable performance in both
simulated and real-road scenarios.

State-Lattice Planner

Apollo provides an implementation of a state-lattice planner, that is capable of reference line
tracking and obstacle avoidance. The methodology is similar to, e.g., the approach of Werling et al.
[WZT10]. First, the reference line and the vehicle position is transformed into the Frenet frame
with the origin of the new coordinate system on the nearest point of the reference to the initial
point for planning. Then, longitudinal and lateral trajectory bundles are computed individually.
These one-dimensional motions are then checked for feasibility with respect to the current vehicle
dynamics and then combined to two-dimensional trajectories. These combined trajectories are
then sorted by costs, a linear combination of jerk and acceleration costs. Beginning from the one
with lowest cost, for each of the combined trajectories is checked, if also this two-dimensional
trajectory is within acceleration, jerk, and curvature bounds. If yes, the trajectories are checked
for collision with obstacles. No collision check with the environment is performed; it is assumed,
that appropriate parameterization ensures that the trajectories stay on the lane. This assumption
can yield safety problems and also limits the applicability for lanes with varying geometries.

Limitations of the Apollo Planner

The planning module produces good results in most of the scenarios we tested. Nevertheless, we
identified the following shortcomings of Apollo’s current planning module:

• Lack of interactive or cooperative planning.

• Lack of transferability to arbitrary situations.

• Trajectories are not C3-smooth.

We now discuss them in more depth. The planners have an excellent performance in terms of
evaluation time. A planning frequency of 100ms is easily achieved. Due to this property, the
planner is reactive to dynamic obstacles around the vehicle. However, it is barely interactive as
it avoids the predicted trajectories of dynamic obstacles without the intention to influence or
negotiate with others. The applied path-velocity decomposition in the planner also prevents the
creation of interactive trajectories.
The public road planner is designed for a specific set of driving maneuver classes, such as lane

following or lane changing. For each of those, the detected traffic participants are processed
differently before being fed to the planner. Designing this and tuning the triggering and translating
between those requires significant engineering effort. No template or generic methodology is yet
available to enhance the number of supported maneuver classes.
Apollo’s planning algorithms impose constraints on the controller stabilizing the trajectory.

For example, the trajectories are not guaranteed to be C3-smooth, and therefore, the tracking
controller has to smooth the trajectory to achieve a comfortable driving behavior.

The shortcomings of the Apollo planner motivated the development of replacing it with a more
generic planning implementation that can also plan interactively for multiple agents.

29



3 State of the Art

3.6.3 The Apollo Control Module
Apollo’s control module [Wan+20] generates a steering and throttle/brake command from a
trajectory with respect to the vehicle dynamic status and the localization. It consists of an outer
control loop stabilizing the longitudinal and lateral vehicle dynamics and an inner control loop
compensates the dynamic delay of the by-wire actuation. The longitudinal, lateral, orientation,
and velocity tracking error is used for stabilization.

The outer control decouples longitudinal and lateral control. The longitudinal controller consists
of a feedforward term and a sequence of proportional–integral–derivative (PID) controllers that uses
the reference acceleration as input. A desired acceleration is then stabilized from the tracking errors
and mapped to throttle and brake commands. The steering command is generated using a Linear
Quadratic Regulator (LQR) stabilizing the lateral rotation, lateral translation, and tire-friction
dynamics using a 4th order model. As an input, the desired heading angle change is used, output
of the model is the desired steering angle.
Core of the inner control loop is a Model-Reference-Adaptive-Control (MRAC) algorithm to

account for delays in the application of the steering commands. The controller stabilizes the
steering angle command and change from the outer loop. The MRAC parameters are tuned online.
The chain of controllers relies on state-of-the-art standard approaches with various controller

parameters and gains to be parameterized. Using a learning-based framework, these parameters
can be computed and tuned in simulation or from real-world test drives. This include the dynamic
model parameters of the vehicle (plant) model, the mapping from high level (acceleration) control
commands to low-level (pedal position) commands, and the gains of the PID, LQR, and MRAC
modules. The tuning procedure itself depends on parameters, that have to be selected manually.
The control module also takes care of handling the vehicle state, such as switching between manual
and automatic driving mode.
The framework shows a good performance in simulation without a high-fidelity vehicle model,

but heavily relies on a good performance of the tuning framework. Also, the approach is not
suited to be executed on a hard real-time platform. As we decided to run the trajectory tracking
controller on a real-time device, we did not go through the process of developing a high-fidelity
vehicle model for our experimental platform and generate suitable parameters from the auto-tuning
toolchain. Therefore, this work chooses to implement a different control approach as described in
Section 6.4.
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Executive Summary of this Chapter This chapter introduces the Autonomous Car Coordina-
tion (ACCORD) planning approach, a formulation for the multi-agent behavior planning problem on
a continuous state space using discrete actions forming a decision tree. The resulting optimization
problem is solved using Mixed-Integer Linear Programming (MILP). We target applications where
a coordinated group of Connected Autonomous Vehicles (CAVs) can realize an optimal resolution
of a conflicting traffic scene viewed from a global perspective. We also include, non-communicating
vehicles into the planning process and still achieve optimal behavior. The algorithm is based on the
collaborative assumption, that each traffic participant shows cooperative behavior to some extend
and others’ actions can be influenced with own actions. Still, we plan appropriate behavior if the
collaborative assumption is not fulfilled or the prediction of others’ behavior differs much from the
observed behavior. In a runtime and complexity analysis we show, that with a limited number of
densely interacting agents the approach is real-time capable, but scales exponentially. In various
demonstration scenarios, such as a highway, an intersection, and a negotiation scenario, we show
that ACCORD is scenario-agnostic, handles different kinds of agents, and effectively leverages the
level of cooperation between different agents.

Content and Structure of this Chapter We here introduce a novel approach to coordinate
the behavior of multiple vehicles – CAVs and human-driven vehicles – and plan their cooperative
behavior and motion in generic traffic scenes. Based on the observed situation and an estimated
intention of other participants, their driving behavior is quantified, and an optimized trajectory plan
is calculated. The algorithm is sketched in Section 4.1. Our three-step method generates motion
options as a tree-like graph structure first, neglecting vehicle interactions (cf. Section 4.2). Each
path in the tree corresponds to one possible behavior. Afterward, in Section 4.3, a symmetric MILP
is generated and solved to find the optimally coordinated motion patterns. Suitable constraints
avoid colliding behavior options and an optimal set of behavior motion options according to
previously assigned costs is computed. In a final step, an online re-calibration of cost terms
based on the observed behaviors in reality (cf. Section 4.4) is performed. We do not rely on
a fixed computation order of all agents or other prioritization schemes. Section 4.6 describes
algorithmic modifications to efficiently handle cooperative automated valet parking scenarios.
Several implementation and tuning remarks are given in Section 4.5 together with a decent
complexity analysis of the problem in Section 4.7. We can then show that cooperative behavior
with conflict resolution, as well as egoistic driver intentions, can be handled safely and analyze
the properties of the proposed solution. Section 4.8 presents the evaluation of various simulated
scenarios and Section 4.9 concludes this chapter.

Contributions of this Thesis This chapter is based on two publications, Kessler and Knoll
[KK17] and Kessler and Knoll [KK19]. Here the idea of cooperative optimization on discretized
decision trees is introduced alongside with the generation of the behavior options. [KK17] is
focused on automated parking scenarios, that are treated as a special case here. Alongside with the
evaluation of more driving scenarios, this thesis further contributes several measures to apply the
algorithms in a real-time fashion in an on-road setting. This includes the introduction of a strategy
to ensure a collision-free motion in-between timesteps and the two-stage network flow optimization
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Figure 4.1: Components of the behavior coordination system (graphic from [KK19], ©2019 IEEE)

and iterative collision check solution refinement algorithm. Also, the behavior reflection is described
in detail. Compared to [KK19], the optimization horizons for each vehicle have been chosen to
have equal length, a tree expansion until a given depth in time in stead of a fixed number of steps,
and a simplified cost term calculation. These implementation changes have proven to work more
robust in practice and reduce the parameterization effort.

4.1 Algorithmic Idea and Architectural Overview
We develop a behavior-aware, integrated behavior and trajectory planning component that calcu-
lates a coordinated motion for all vehicles in the current traffic scene. As we already sketched in
Section 2.3, ACCORD was mainly developed as a behavior coordination approach among connected
vehicles that integrates into traffic with human-driven vehicles.

The behavior coordination approach consists of four major components. Their interaction is
visualized in Figure 4.1 and described in detail in the following subsections. First, a decision
tree of reasonable driving options is generated in the behavior option generation step, which is
described in detail in Section 4.2. The result of this step is a tree of possible options, one for
each agent. These trees are then passed to the behavior optimization step, where a cooperative
optimal, collision-free trace for each agent is found as described in Section 4.3. The third and
fourth steps are executed in parallel. For non-cooperating vehicles, a behavior reflection set is
performed, see Section 4.4. Here, the deviation of the optimal trajectory to the observed trajectory
of the vehicles is measured and translated into adapted costs for the optimization. For the ego
vehicle and all other CAVs, the generated trace through the tree is transformed into a trajectory,
smoothed in a post-processing step to ensure minimal jerk, and passed to a trajectory tracking
controller for behavior execution on the vehicle. As our computed trajectories are discretized,
we smooth the trajectories using the nonlinear Model-Predictive Control (MPC) introduced in
Section 6.3.4 as a suitable low-level trajectory planner keeping as close to the original trajectory as
possible. This way, we also minimize the jerk along the trajectory to ensure a comfortable motion.
We execute ACCORD in a receding horizon fashion and, therefore, only execute the first steps
of the optimized trajectory. We then prune the graph and drop all branches leading to past or
unreachable states. The remaining graph is kept as a starting point for the next step. If e.g., all
states in the graph turned invalid due to an emergency maneuver from the vehicle controller, the
whole graph is dropped and re-initialized for the next planning step. Technically, the proposed
algorithm does not distinguish between the ego vehicle and other vehicles. With only one vehicle
present, it optimizes the trajectory choice. With more vehicles, it also resolves possible conflicts.
The main drawback of working in a discrete action space is the curse of dimensionality as the

size of a decision tree grows exponentially with its depth. In Section 4.7 we will discuss how this
property can also translate to exponential growth in runtime and in which situations a better
scaling can be achieved. Also, discrete actions can exclude the true optimal solution that lies in
between two discretization steps.
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Figure 4.2: The example scenario used throughout this section: A two-lane scenario with a roadblock and
two vehicles approaching from different directions with initial speed of 3 m/s, an obstacle (dark
gray) on the right lane, and two reference lines (dashed).

On the other hand, discretization offers several benefits besides the lower implementation
complexity compared to continuous formulations. First, the generative model for the agent
dynamics can be chosen freely. We here chose a nonlinear vehicle model. Also, the infinite space of
actions is manually bounded to a reasonable subset that guides the solution algorithm in a desired
direction. Furthermore, graphs offer an efficient data structure, and parallelization can effectively
be integrated into the algorithms.
As an illustrative example, we throughout this chapter use a two-vehicle roadblock scenario as

depicted in Figure 4.2. The left (blue) ego vehicle 1 has to decide whether to pass the roadblock
before or after an oncoming (red) vehicle 2, if the oncoming vehicle gives way, or if the oncoming
vehicle creates space that both vehicles can pass the roadblock at the same time.

4.2 Behavior Option Generation
For each traffic participant, a tree-like graph structure of possible motions over time is calculated.
Starting from the position of a vehicle at the current time as root state, we generate new future
states by sampling new vehicle motion options. Per timestep, we sample a number of expansions
resulting in new states. One central idea is to not recalculate the whole motion tree at every
time instance but to reuse old information along the horizon. The graphs for each vehicle are
independent.

The result of this step is a directed acyclic graph with vertices representing a possible state of a
vehicle connected by edges representing how the translation between the two states is achieved.
The graph is ”layered” in time, an edge always represents a connection between a state at time 𝑘
to a state at time 𝑘 + 1. The graph is collision-free with the static environment.

Graph Nodes and Edges One node of the graph represents a dynamic state

𝑠 = (𝑥, 𝑦, 𝜃, 𝑣, 𝑘, 𝑐𝑠) (4.1)

with the pose 𝑥, 𝑦, orientation 𝜃 and velocity 𝑣 of the traffic participant. Also, the time 𝑘 and cost
𝑐𝑠 of the state are stored. As root node of the tree, we chose the state closest to the actual vehicle
state at the current time, as our computed states will not match the exact vehicle motions. Each
time we add a new node to the motion tree, all possible motion patterns expanding the new node
are added to an expansion list for future exploration.
These expansion list entries form the edges of the graph and encode how to transfer from one

state to another and can be any physically admissible motion. We rely on a fixed input acceleration
𝑎 and curvature 𝜅 for the time interval of one edge defined as

𝑒 = (𝑎, 𝜅, 𝑐𝑒) (4.2)
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Figure 4.3: Schematic visualization of the state expansion starting in the behavior option generation step
from state 𝑠00 (blue) with different edges corresponding to acceleration 𝑎 and curvature 𝜅 values.
Starting from the initial state 𝑠00 (blue), the states 𝑠1∗ (green) indicate the first expansion step,
𝑠2∗ (light blue) the second expansion step. The vehicle shape circle approximation is visualized.
The states colliding with the static obstacle (gray) 𝑠13 and 𝑠15 (solid red) are dropped from
the graph. (graphic from [KK19], ©2019 IEEE)

with costs 𝑐𝑒. The maximum available amount of curvature 𝜅 along on edge is decreased with
growing velocity.

Graph Expansion Using the Euler discretization of the single track vehicle model,
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(4.3)

we derive motion primitives from these acceleration-curvature pairs with an appropriate stepsize
Δ𝑡.

If two nodes result in the same dynamic state, the states are merged, and only one is kept in the
graph. This process forms a directed acyclic graph. Figure 4.3 schematically shows how the tree is
expanded and Algorithm 4.1 states the implementation of one planning step.

With adding a node to the (initially empty) graph by addNode() (line 14) also a list of possible
next expansions is added by appendNewEdges() (line 15). This expansion list holds pairs of
a state (parent nodes) and an edge definition leading to a possible new node. The function
calculateNextState() computes a new possible node from one entry of the expansion list by
stepping (4.3) forward by the predefined timestep (line 4). Afterward, the new state is checked for
collisions with the static environment by collide() (line 5) and added to the graph if no collision
is found. For the collision check, we approximate the vehicle shape with a set of circles [LKK15].
We used three circles per vehicle. If a similar node is already part of the graph (e.g., reached from
another trace in the graph), checked by stateAlreadyInGraph() (line 6), we do not add the node
again but only add a fitting edge in the graph. Note that the time 𝑘 is part of the dynamic state
which shrinks the search space. Consequently, we speak of a tree-like structure as there might be
more than one path through the (directed acyclic) graph leading to a node following a different
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4.2 Behavior Option Generation

Algorithm 4.1 One step of the behavior option generation algorithm
Input: 𝑇 ▷ Full expansion time
Input: s ▷ Current vehicle state
Input: env ▷ Static environment
Input: t ▷ Motion tree graph
Input: e ▷ Expansion list
1: while time(front(e)) < T do
2: if not empty(t) then
3: nextExpansion ← popFront(e)
4: nextNode ← calculateNextState(nextExpansion)
5: if not collide(nextNode, env) then
6: if not stateAlreadyInGraph(nextNode, t) then
7: addNode(nextNode, t)
8: appendNewEdges(e)
9: removeDeadEnds(e)

10: appendEmergencyStop(e)
11: else
12: addConnections(t)
13: else
14: addNode(s, t)
15: appendNewEdges(e)
16: return t, e

series of edges. If a node does not have any children (a dead end) or yields an immanent collision
(e.g., node 𝑠25 in Figure 4.3), we remove this node from the graph and recursively all completely
explored nodes that only connect to the dead end node by removeDeadEnds() (line 9). To make
sure that for each node, an emergency trajectory is available, we by appendEmergencyStop() (line
10) create a stopping edge that brakes with maximum deceleration until zero velocity while keeping
the current steering angle constant. The costs for this edge are set to a high value to make sure
the optimizer only chooses a state sequence passing this edge if no other solutions are available.
This strategy avoids infeasible optimization problems and increases the operational design domain,
as sharp braking maneuvers are also handled. This algorithm is executed until the graph has
been fully created until a given final maximum time-depth 𝑇. Figure 4.4 shows an example of one
motion tree.

Cost Calculation The costs 𝑐𝑠 of a state 𝑠 calculate to

𝑐𝑠 = 𝜉refdist(𝑠, ⃗𝑠𝑟𝑒𝑓) + 𝜉𝑣abs(𝑣𝑠 − 𝑣𝑟𝑒𝑓) + 𝜉𝜃abs(𝜃𝑠 − 𝜃ref) (4.4)

with scaling factors 𝜉 and appropriate distance function dist(). For each vehicle, we either know the
intention, and therefore the reference track and speed or the intention is estimated. We put positive
cost scaling on the deviation from the reference track ⃗𝑠𝑟𝑒𝑓 and the reference speed 𝑣ref.We chose
the Euclidean distance of 𝑠 to the nearest point of the reference track from the static environment
as the distance function. At this point, we also compute the reference orientation. As the distance
from 𝑠 to the root node we set the distance from the root node to the nearest point along the
reference track.
The costs 𝑐𝑒 of a edge 𝑒 calculate to

𝑐𝑒 = 𝜉𝑎𝑎+ 𝜉𝜅𝜅 (4.5)

with acceleration 𝑎, curvature 𝜅 and scaling factors 𝜉.

Graph Sample Time Choosing the sample time to expand the graph is crucial. It represents
the time distance between two states in the graph. A small sample time is desirable to cover
the true possibilities of actions a vehicle has but results in huge graphs that are computationally
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4 ACCORD: Dynamic Games on a Discrete Action Space

Figure 4.4: Example of one full expansion step: The states’ 𝑥, 𝑦 positions correspond to the vehicle
positions. The color coding refers to the state costs. The gray obstacle is avoided as well as the
solid black road boundaries; the reference track is depicted in dashed gray. Note that the edge
curvatures are omitted as well as the vehicle orientation 𝜃. (modified graphic from [KK19],
©2019 IEEE)

intractable. A larger sample time leaves out possible options but covers the high-level behavior
better.

To avoid collisions in-between two states (either with the environment of with another vehicle),
we subsample between two states and store these subsampled states leading to a new states
alongside with this new, main state. The strategy is further elaborated in Section 4.3.2.

Handling of Dynamic Obstacles If a predicted trajectory for a fellow vehicle is available, the
option generation can easily be adapted to reactively avoid the occupied area by this obstacle. In
this case, we do not generate a set of options along the tree but just generate a single sequence
of actions and states in the needed time discretization. This drastically reduces the problem size
with the price of reactive instead of interactive planning.

4.3 Behavior Optimization
The purpose of this step is to find a conflict- and collision-free set of traces within the combined
motion trees (cf. Section 4.2) of each vehicle minimizing the total costs in a joint cost function.

4.3.1 Graph Connectivity Constraints
Recall that we are calculating this motion tree individually for each vehicle in the scene. The trees
are collision-free regarding the static environment but not regarding other vehicles. We formulate
this search as mixed-integer linear optimization program, specifically as a network flow problem
[CBD11] in terms of graph edges. 𝑛𝑒 denotes the number of edges, 𝑛𝑠 the number of nodes of the
graph. Decision variables are the flows 𝑓 on the edges of the graph

𝑓𝑣
𝑠𝑡 ∈ {0, 1} (4.6)

with the source node 𝑠 and the target node 𝑡 for each vehicle 𝑣. The problem consequently has
𝑛𝑒 decision variables. Using the flow formulation, we ensure that an agent takes a unique trace
through the graph. As nodes represent states in time, we make sure the agent is at exactly one
state at each timestep. The flow conservation constraints are formulated to

∑
Nodes j

𝑓𝑣
𝑖𝑗 − ∑

Nodes j
𝑓𝑣

𝑗𝑖 =
⎧{
⎨{⎩

1 𝑖 source
−1 𝑖 sink
0 otherwise

∀ Nodes 𝑖, Vehicles 𝑣 (4.7)
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4.3 Behavior Optimization

To make sure the optimizer does not get stuck at intermediate nodes, we connect all possible end
nodes to a virtual sink node and force the flow formulation to start at the root node (source)
and end at this sink node that is unique per vehicle. Possible end nodes are all nodes at the
specified final optimization time or nodes with zero velocity. Each fully expanded node has at least
one valid successor node that represents a vehicle state further in time or the agent has reached
its destination. The root node of the graph represents the initial agent position at the current
planning step.

4.3.2 Collision Avoidance Constraints
We implemented two ways to check the inter-vehicle collisions. In the first strategy, we check the
collisions prior to the optimization for each pair of vehicles and store the result in a list, that we
hand over to the optimization problem. The collision avoidance constraint is then formulated as

∑
Nodes k

𝑓𝑣
𝑘,𝑖 + ∑

Nodes k
𝑓𝑤

𝑘,𝑗 ≤ 1 ∀ Nodes 𝑖, 𝑗 collide, Vehicles 𝑣 ≠ 𝑤 (4.8)

before calling the optimization program to constrain the usage of conflicting nodes. The collision
calculation is again done by approximating both vehicle shapes as a series of circles and checking
these for intersections. The naive implementation of looping through every node for all vehicles and
checking the collisions is computationally intractable. Therefore, we first perform an approximate
collision check based on the shape and position of the vehicles to mark definitely non-colliding
states. To further boost the performance, we iterate through the graphs with increasing time and
only compare nodes with the same timestamp. We stop to iterate deeper in the graph if a collision
was found as future states cannot be reached anyway. Also, as the nodes are reused for future
timesteps, the collision information is persisted.

With a large time discretization along the graph, collisions in-between two timesteps can occur.
One obvious possibility is to reduce the time discretization, which is unfavorable. The solution
time rises with a growing graph, and the graph contains too many equal or nearly-equal decision
points. To still avoid collisions in between timesteps, we apply the following strategy: We add
intermediate states along the graph edges connecting two states. These states are a by-product
from the explicit Euler integration (cf. Section 4.2), where intermediate steps are needed anyway
for sufficient numerical performance. As a timestep for these states, we do not set the correct time,
in-between source and target node time, but the steptime or the target node. This implementation
implies that when collision check is executed, not only the circles from each node have to be checked
for intersection but also all circles from the introduced intermediate nodes. As the circle-to-circle
collision check is efficiently implemented, this does not yield a huge overhead while simplifying
the problem a lot. For the graph topology that is relevant for the flow-based optimization, the
intermediate states are irrelevant and are omitted. This strategy comes at the price of introducing
additional conservatism in the collision check. We ensure that time ranges are collision-free instead
of checking each time instance within a range. All possible collisions are still covered, and this
simplification is not a safety issue.
As a second method, we formulate the circle approximation collision checker as constraints

internally within the optimization problem as

(𝑥𝑖 + 𝑙𝑣 cos(𝜃𝑖) − 𝑥𝑗 − 𝑙𝑤 cos(𝜃𝑗))2 + (𝑦𝑖 + 𝑙𝑣 sin(𝜃𝑖) − 𝑦𝑗 − 𝑙𝑤 sin(𝜃𝑗))2

≥(𝑟𝑣 + 𝑟𝑤)2 −𝑀(1− ∑
Nodes k

𝑓𝑣
𝑖,𝑘) −𝑀(1− ∑

Nodes k
𝑓𝑤

𝑗,𝑘) (4.9)

∀ Nodes 𝑖, 𝑗 ∀ Vehicles 𝑣 ≠ 𝑤

for each two nodes 𝑖, 𝑗 with positions 𝑥, 𝑦 and orientation 𝜃 for each pair of vehicles 𝑣, 𝑤. A
vector 𝑙 denotes the positions of the vehicle approximation circle centers, whereas 0 indicates a
circle around the rear axle center point. 𝑟 denotes the radius of these circles. If, for example, each
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Algorithm 4.2 The two-stage network flow optimization and iterative collision check solution
refinement algorithm
1: minimize (4.10) subject to (4.7) ▷ using a network flow solver
2: solutionFound ← false
3: while solutionFound = false do
4: trajectories ← getLastSolution()
5: if colliding(trajectories) then
6: collidingNodes ← getCollidingPairOfNodes(trajectories)
7: addCollisionConstraints(collidingNodes)
8: Solve (4.12) ▷ using a dual simplex solver
9: else

10: solutionFound ← true
11: return trajectories

vehicle is approximated by three circles (4.9) resolves to nine constraints. We use the well-known
Big-M method with a sufficiently large number 𝑀.

Our experiments showed a better overall runtime performance using external collision constraints.
We therefore rely on this strategy in the following.

4.3.3 Objective Function
The objective function minimizes the total costs along the combined graph traces which is equivalent
to finding the minimal flow in the connected graphs. It calculates to

∑
Vehicles 𝑣

𝜆𝑣 ∑
Nodes 𝑖,𝑗

𝑓𝑣
𝑖𝑗(𝑐𝑖𝑗 + 𝑐𝑖) (4.10)

with the respective edge costs 𝑐𝑖𝑗 and the node costs 𝑐𝑖. We further introduce a vehicle scaling
factor 𝜆 ∈ [0, 1] to adjust the level of cooperation for each specific vehicle. All scaling factors shall
sum up to one:

∑
Vehicles 𝑣

𝜆𝑣 = 1 (4.11)

Using these factors alongside with an appropriate adaption of the cost terms (cf. Section 4.4), we
force the optimization problem to generate egoistic, symmetric, or altruistic solutions. For each
agent 𝐴𝑖, we define a scaling factor 𝜆𝑖 with the following properties.

4.3.4 Optimization Problem and Solution Algorithm
The optimization problem is consequently formulated as

minimize (4.10) (4.12)
subject to (4.7), (4.8).

This formulation has the drawback that a relatively large number of collision constraints are
calculated without a real need as the optimal flow through the graph does not interfere with
these constraints at all. Also, as we will see in Section 4.7, the collision checks are a significant
contribution to the overall runtime.
We therefore split the optimization problem (4.12) into two stages. First, we solve the flow

problem without collision constraints using a specialized solver and afterward successively add the
collision constraints as Algorithm 4.2 describes.
We first optimize the optimization problem without any collision constraints (line 1). We

here chose a specialized solver that is efficient for network flow problems. Here the solver first
extracts the network structure from the linear constraints definition solves the network with a
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4.4 Behavior Reflection and Mixed-Traffic Integration

Figure 4.5: Example of two (blue, red) optimized trajectories (thick lines) in the motion trees avoiding
the gray obstacle and staying within the road boundaries. Note that the edge curvatures are
omitted as well as the vehicle orientation 𝜃. (modified graphic from [KK19], ©2019 IEEE)

structure-adapted strategy to create a feasible starting base for the linear problem. The resulting
linear problem is then solved using a simplex optimizer. We then obtain trajectories from the
solution and check if these are collision-free (line 5). If yes, we have already found the optimum
and return it. If not, we add collision constraints (lines 6, 7). Naively we could now only add a
constraint for the colliding nodes. We found by empirical experiments that if two nodes collide, the
optimizer in the next step tends to find trajectories using very similar nodes that also collide. This
procedure yields an unnecessarily high number of optimization runs. Therefore we decide that if
two nodes collide, we also check each node for collision with all nodes from the other agent at the
respective time. This strategy is still an enormous speedup as not every node from every graph has
to be checked against each other, but only one node from one graph against a subset of nodes from
one other graph. The found collisions are then formulated as constraints and added to the problem.
The problem structure is no longer a pure network flow, and we use the dual simplex algorithm
to solve it (line 8) but with the base from the previous optimization run as a starting point. We
iterate this procedure until the resulting trajectories are collision-free or the optimization fails
if the problem is not feasible (omitted in Algorithm 4.2). The result of the optimization is an
optimal edge sequence for each vehicle referring to a trajectory as depicted in Figure 4.5.

4.4 Behavior Reflection and Mixed-Traffic Integration
Besides coordinating connected vehicles, we also take non-cooperating vehicles into account by
predicting and estimating their future motion and strategic plans. In the behavior reflection step,
the cost scaling factors 𝜉 are tuned to fit the individual vehicle intents and observations. Also, the
intention of each non-communicating vehicle is re-estimated. Hence, the used reference track and
reference speed can change.

CAV Setting In the case of a fully connected and cooperative scenario, cost terms and reference
track and velocity are known for each vehicle. As each vehicle follows the optimized trajectory,
there is only a need for adoption if the intention changes. Here, we assume these changing values
to be explicitly exchanged among the vehicles to be easily adopted in the parameter settings. We
do not consider adversarial communicating agents here.

Non-Communicating Settings For a non-communicating vehicle, we observe the deviation
of the observed vehicle motion and the optimized vehicle motion. Based on this, the intention is
estimated in terms of the reference track and the cost factors.

Algorithm 4.3 describes the procedure in pseudo-code. It is executed for each non-communicating
agent independently. With the observed state sobserved of each agent, we check if any state in
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Algorithm 4.3 The behavior reflection algorithm
1: Input: sobserved ▷ Observed state of the agent
2: Parameter: MaxDist� ▷ Maximum allowed distance between state in graph and observed state
3: sgraph ← getNearestStateInGraph(sobserved)
4: if distance(sobserved, sgraph) > MaxDiststate then
5: resetGraph(sobserved)
6: else
7: splanned ← getPlannedState()
8: if speedDistance(sobserved, splanned) > MaxDistspeed or speedDistance(sobserved, desired velocity) >

MaxDistspeed then
9: UpdateDesiredVelocity(sobserved)

10: UpdateVelocityAcclerationCosts()
11: if positionDistance(sobserved, splanned) > MaxDistposition or positionDistance(sobserved, reference line) >

MaxDistposition then
12: CheckAndUpdateReference(sobserved)
13: UpdateDistanceCosts()
14: if orientationDistance(sobserved, splanned) > MaxDistorientation or orientationDistance(sobserved, reference

line orientation) > MaxDistposition then
15: UpdateOrientationCosts()

Figure 4.6: Example of how the behavior reflection modifies a graph, each node is one dot. The state costs
of both graphs are subtracted and the difference is color-coded in the figure. The optimal
trajectory before reflection (black, dashed) significantly differs from the optimal trajectory
after reflection (black, dotted).

the graph matches this observed state (line 4). If not, the graph and the actual agent state have
differed too much, and we cannot reuse the graph. It is, therefore, re-initialized at the observed
position. If a matching state can be found, we perform three different checks. All use the optimized
state for the agent splanned. First, we check if the observed and planned speed deviates. Also, we
check if the observed speed and the estimated reference speed deviate (line 8). If yes, we update
the estimated desired velocity using the observed velocity of the agent (line 9). Also, we update
the cost terms for velocity and acceleration costs (line 10). Second, we check the position difference
of the observed state to the planned state and the reference line (line 12). If the thresholds are
violated, we again update the respective cost term and check if another available reference line
would fit the observed behavior better. For this calculation, we not only take the input state
into account but also information collected from the prior motion of the agent (line 13). Third,
a similar process is computed for the agent orientation. Often, observing the deviation of the
orientation changes can be recognized prior to position changes.

Figure 4.6 displays the result of the reflection process. We subtract the state costs before and
after the reflection step and color-code each state with this difference. In the example, it can
clearly be observed that the costs for driving straight did not change, whereas the costs for steering
maneuvers increased. Therefore, the optimal resulting trajectory also changed from performing a
S-shaped curve to a straight line.
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4.5 Real-Time Implementation

4.5 Real-Time Implementation
For a planning component to be executed in a real-world setting, it has to be ensured that a valid
solution is always found before the end of the previous trajectory. Also, the planned motion has to
be collision-free and kinematically feasible.

Solver Settings The optimization of the Mixed-Integer Progamming (MIP) is relatively fast, as
we set up the problem in an efficient structure. Still, too many solver iterations have to be avoided
to meet real-time requirements. As described in Section 4.3, the optimization problem is solved
in a two-stage manner: In the first step, the problem is solved without collision constraints, and
the solver is parameterized to solve the network flow problem efficiently. In the second stage with
active collision constraints, a dual simplex solver is selected that is warmstarted with the solution
from the previous step.

Before solving the linear program, the solver by default performs multiple presolve steps. This
presolve tries to reduce the number of variables and constraints by substitution. Also, redundancies
in the model are eliminated. Our model barely contains redundancies as we avoid adding redundant
collision constraints, and we rarely include variables that can be substituted in the flow formulation.
Still, there is room for model simplification, e.g., if a node has exactly one input and one output
edge. Applying one presolving step proved to be beneficial for the overall runtime. More presolving
steps, as the solver by default tries, are not expedient. We, therefore, limit the number of presolve
steps to one.

Agent-to-Agent Collision Checks Regarding runtime, the collision check between two agents
is most crucial. In the worst case, it scales exponentially if every node of every agent has to be
checked for collision. In Section 4.3.2, we describe strategies to avoid this exponential scaling.
Making use of the graph structures to avoid unnecessary collision checks and only performing
collision checks just in time if needed effectively avoids exponential scaling, as we will discuss in
Section 4.7. Checking two graph nodes for collision effectively reduces to the computation of the
minimal distance of two pointsets. This calculation is performed with linearithmic complexity
(O(𝑛 log(𝑛)))1.

Efficient Implementation The graph structure provides an efficient way to handle the receding
horizon planning problem naturally. Persisting the graph and only pruning historic states reduces
the computational time to build up the graph, and the information persisted in the nodes from
scratch each timestep.
It is desirable to keep the graph as small as possible and avoid unnecessary states, such as

duplicates. Therefore we make sure while inserting that the graph does not hold duplication if two
traces through the graph are possible to reach one node. Also, we remove branches that do not
lead to any reasonable states, such as only colliding with the environment or deadlocks. Whenever
possible, we iterate through the graph structure instead of looping over all states to efficiently use
the topology.
We use parallelization to distribute some of the heavy computations over multiple CPU cores.

Every algorithm part that operates independently on the graphs of each agent is executed in a
separate parallel task (such as the option generation and the reflection steps). Also, the collision
checking between pairs of agents is parallelized. The solver also parallelizes the solution of the
MILP over multiple threads.

Implementation Remarks and Software Design We implemented our approach in C++.
The graph structures are represented using the boost graph library [SLL21] and the geometric

1https://www.boost.org/doc/libs/1_72_0/libs/geometry/doc/html/geometry/reference/algorithms/
distance/distance_2.html

41

https://www.boost.org/doc/libs/1_72_0/libs/geometry/doc/html/geometry/reference/algorithms/distance/distance_2.html
https://www.boost.org/doc/libs/1_72_0/libs/geometry/doc/html/geometry/reference/algorithms/distance/distance_2.html


4 ACCORD: Dynamic Games on a Discrete Action Space

computations use the boost geometry library [Geh+21]. The optimization problem is formulated
and solved using the commercial solver IBM ILOG CPLEX Optimization Studio [Int21b]. Option
generation, collision checking, and reflection are parallelized using OpenMP [Ope21].
The graph of options for each agent is stored in a separate instance of the StrategyGraph

class, which takes care of maintaining and expanding the graph, managing the list of future
expansions, performing environment collision checks and executing the reflection. The class
OptimizationVehicleCoordination combines multiple of these graphs and triggers the graph
extension, generates and executes the optimization, including the agent-to-agent collision check,
and triggers the reflection. It furthermore offers the high-level Application Programming Interfaces
(APIs) for a simulator or the autonomous driving software stack.

Theoretic Limitations of the Approach The action space is discretized by design, which
comes with two significant drawbacks. First, using discrete actions, not all nuances of motion can
be achieved, and the true optimal action might not be part of the action space. So the resulting
behavior can be suboptimal. Second, discretization suffers from the curse of dimensionality:
Starting from one possible state at time 0, with 𝑛 possible explorations, at time 1, 𝑛 states are
available, 𝑛2 at time 2 and so on. Standard graph-based planning algorithms use heuristics to
efficiently only explore the most relevant states [LaV06]. We, in our work, do not rely on heuristics
but process only a subset of nodes in one step and leave the rest for the next receding horizon
instance. Also, solely generating new states is not computationally expensive. It is the checking of
states for collision and the selection of appropriate states. These two steps have to be implemented
in a smart and performant manner, see Section 4.3.
When large actuation or perception errors occur, the problem exists that the current state of

one agent does not match any state in the graph sampled in the past. Then the graph has to be
deleted and computed from the current new agent position. While theoretically, this is not an
issue, it requires an undesired additional amount of computation time.

4.6 ACCORD-P: Extending ACCORD to Valet Parking

ACCORD has been developed to coordinate vehicles on reference lines and not to navigate a
vehicle to a specific point, such as a parking spot. In Kessler and Knoll [KK17], we discuss the
special case of cooperative maneuvering multiple agents in a parking lot in a static environment
with cooperating and non-cooperating agents present. It is based on the observation that for
maneuvering on parking lots, only a limited set of standard strategies/trajectories is needed to
cope with every specific spot. The proposed strategy – Autonomous Car Coordination for Valet
Parking (ACCORD-P) – is a special case of ACCORD described above.

In contrast to ACCORD, we sample predefined trajectories including direction changes instead
of actions and do not form a motion tree. This comes with the benefit that the final pose can be
reached more accurately. Also, ACCORD is capable of including reverse driving segments, but the
graph then grows significantly faster, resulting in slower runtimes. We use MIP to optimize the
assignment of trajectories and agents.
In a highly structured environment, the set of possible actions and the set of goal poses are

limited, and the options each vehicle can take are limited. In the parking case, a vehicle is either
looking for a suitable parking spot, maneuvering into/out of a parking spot, or leaving the parking
site. The trajectory a vehicle will take is among the set of pre-calculated ones or at least close.
Most coordination approaches assume fixed goal positions for each vehicle. Here, the exact goal is
a degree of freedom, and the goal choice is optimized as from an estimated vehicle intention, a set
of possible goal positions is computed.
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4.6 ACCORD-P: Extending ACCORD to Valet Parking

Table 4.1: Properties calculated for each trajectory of ACCORD-P
Name Property Scaling Description

distance to end 𝑝𝑑𝑒 𝜑𝑑𝑒 Distance from trajectory end to the chosen goal
driven distance 𝑝𝑑𝑑 𝜑𝑑𝑑 Traveled distance on this trajectory if driven completely

ends at goal 𝑝𝑝𝑙 𝜑𝑝𝑙 1 if the trajectory’s goal is reached
acceleration amount 𝑝𝑎𝑎 𝜑𝑎𝑎 Total amount of acceleration required

steering amount 𝑝𝑠𝑎 𝜑𝑠𝑎 Total amount of steering required
direction changes 𝑝𝑑𝑐 𝜑𝑑𝑐 Penalize paths changes the direction often

speed difference 𝑝𝑠𝑑 𝜑𝑠𝑑 Deviation of desired and chosen vehicle speed

Trajectory Sampling

No effort was put into the generation of the vehicle trajectories. Following the implementation of
Reed-Shepps curves [LaV06], a path drivable by a non-holonomic vehicle is generated and enriched
with a linear velocity profile. Using multiple maximum speeds along the path, we generate a set of
trajectories along the paths. The paths underlying the trajectories lead from the current vehicle
position to a goal pose, such as a parking spot. The resulting trajectories track this path for a
defined time interval with the given velocity profile.
For each pre-computed trajectory, we compute a set of characteristics as quantified properties.

Each agent puts a different weight on the properties according to its high-level intention. With
ideal knowledge of a vehicle’s intention, the trajectory it is willing to choose could be matched
exactly. However, the estimation of the intentions of non-communicating agents is a non-trivial task
and will not be accurate. This results in the prediction of a wrong trajectory and a sub-optimal
result. All properties and weights are zero or positive. Any value that can be computed from a
trajectory can serve as property. We use the following set:

• Spatial distance to the targeted goal,

• traveled distance on this trajectory if it is driven from start to goal,

• flag if the trajectory reaches its goal in the current timestep,

• amount of acceleration needed to follow the trajectory as a rough measure for energy
consumption,

• amount of steering input needed to follow the trajectory as a rough measure for comfort,

• number of direction changes of the trajectory,

• deviation from the desired top speed.

According to the intention, the weight set is biased towards (e.g.) minimum travel time, max-
imum smoothness, or low consumption. The properties are summarized in Table 4.1. For
non-communicating agents, based on the observed actions of a vehicle, weights are extracted that
fit the observed behavior most, as we described in Section 4.4. Interacting with other autonomous
vehicles, weights are exchanged via Vehicle-to-Vehicle (V2V) communication. The weights will
directly influence the cost function of the optimization. Weights of different magnitude will force
the optimization to stronger incorporate the intentions of the corresponding vehicle and property.
We perform a pair-wise collision check for each of the sampled trajectories and store the results for
later use in the optimization.

Trajectory Assignment as Optimization Problem

We use MILP to assign a trajectory to each vehicle and to optimize the assignment due to given
criteria. The problem is formulated symmetrically in the sense that no distinction is made between
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4 ACCORD: Dynamic Games on a Discrete Action Space

the ego and other vehicles. To find an optimal assignment each trajectory is enhanced with
properties, denoted by 𝑝, and each vehicle can set weights, denoted by 𝜑, on these properties, cf.
Table 4.1. Defining the decision variables 𝑥 with 𝑥(𝑣, 𝑡) = 1 if vehicle 𝑣 takes trajectory 𝑡 and 0
otherwise the objective function aiming to minimize the total costs can be written as

∑
𝑡∈T

∑
𝑣∈V

𝑥(𝑣, 𝑡)(
𝑁
∑
𝑖=1

𝑝𝑖(𝑡)𝜑𝑖(𝑣)) (4.13)

with the set of vehicles V with a unique start pose and possibly several goal poses and set of
trajectories T from vehicle start to goal poses. By G we denote the set of possible goal poses. By
the constraints

𝑥(𝑣, 𝑡) ∈ [0, 1] ∀ 𝑡 ∈ T, 𝑣 ∈ V (4.14a)

∑
𝑡∈T

𝑥(𝑣, 𝑡) = 1 ∀ 𝑣 ∈ V (4.14b)

we ensure each vehicle out of V is assigned exactly one trajectory out of T. With the pre-calculated
collision matrix 𝐶(𝑡1, 𝑡2) that indicates if trajectory 𝑡1 and 𝑡2 collide (2 if no collision, 1 if collision)
we exclude colliding trajectory combinations by

∑
𝑣1∈V

𝑥(𝑣1, 𝑡1) + ∑
𝑣2∈V

𝑥(𝑣2, 𝑡2) ≤ 𝐶(𝑡1, 𝑡2) ∀ 𝑡1 ∈ T, 𝑡2 ∈ T. (4.15)

We further define an assignment matrix 𝐴 ensuring a vehicle 𝑣 can take trajectory 𝑡 as start and
goal poses match (1 if possible, 0 if not) and a corresponding constraint

𝑥(𝑣, 𝑡) ≤ 𝐴(𝑣, 𝑡) ∀ 𝑣 ∈ V, 𝑡 ∈ T. (4.16)

The matrix 𝐴 is easily set up while computing the trajectories.
The resulting optimization problem computes an optimal vehicle/trajectory assignment for one

step avoiding collisions and balancing individual interests is formulated as

minimize (4.13)
subject to (4.14𝑎), (4.14𝑏), (4.15), (4.16).

The constraint functions 4.14a and 4.14b ensure that each vehicle out of V is assigned exactly
one trajectory out of T. The collision avoidance constraint 4.15 relies on a precomputed collision
matrix 𝐶 to exclude colliding trajectory combinations. The objective function 4.13 aims to find
the cheapest assignment of vehicles and trajectories. Valid assignments are ensured by (4.16). For
each vehicle/trajectory pair the cost regarding the trajectory properties and corresponding vehicle
scaling factors is computed.

4.7 Complexity Analysis
In this section, we will analyze how the problem complexity and overall runtime of ACCORD
scales when increasing critical parameters such as the number of sampling steps. The experiments
are all performed on the same machine with an Intel Core i7-9850H 2.60GHz CPU with 12 cores
and 32GB of memory.

We will perform quantitative experiments in Section 4.7.2 in four environment settings. First an
empty environment where the environment does not constrain the motion. The reference paths are
chosen as parallel straight lines. Second, a two-lane road with oncoming directions with reference
lines as the centerlines of each lane, third a wide one-lane road, and fourth narrow one-lane road.
In Section 4.7.1, we motivate this section with a qualitative analysis of the road block scenario, we
used as an illustrative example throughout this chapter.
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Figure 4.7: Distribution of the overall solution time over the algorithm stages if collision checks are only
performed if needed using the iterative algorithm Algorithm 4.2. The less dense the interaction
is, the faster is the solution. The non-cooperative case requires significantly more iterations
leading to a higher runtime.
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Figure 4.8: Distribution of the overall solution time over the algorithm stages when checking all nodes for
collision before starting the optimization.

4.7.1 Runtime Analysis of the Example Scenario
With two different scenario settings, one where the right (red) vehicle makes room for the left
(blue) vehicle and both can pass the roadblock at the same time, see Figure 4.18, we observe a
typical distribution of the runtime over the different stages of the cooperation algorithm. The
more tight the interaction is, the higher the runtime. Also in an uncooperative setting, where the
right (red) vehicle stays on the reference line and the (blue) ego vehicle has to stop and wait, see
Figure 4.20, a similar timing pattern can be observed.

Contribution of the Different Algorithm Stages

Figure 4.7 shows that collision checking is one main runtime factor. The time for the optimization
also scales with the necessary number of collision checks, as more optimization problems have to
be solved. The time for creating the behavior options in the graph is compared to the other stages
constant and non-time-consuming as expected. The time for behavior reflection is not significant.

In comparison to Figure 4.7, Figure 4.8 shows the distribution of the overall solution time if the
collision checks are all carried out prior to optimization and solving only one optimization program
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Figure 4.9: Histogram of the evaluation time one collision check takes.

instead of several. We observe several drawbacks when not iteratively solving the problem and
performing the collision checks. First, more collision checks take more time, and therefore the
overall solution time is generally higher. Second, when the initial solution is already conflict-free,
a possibly large number of collision checks are still performed (such as in step 5 of the cooperative
scenario). Third, the MIP is bigger and more complicated and therefore takes more time to solve.
Nevertheless, as we can observe in the first steps non-cooperative scenario, a priori computing all
collision checks can also be faster. The reason is that we have a lower overhead for creating and
solving a multitude of small optimization problems.

Single Agent-to-Agent Collision Check Duration

One collision check of two-vehicle states in these scenarios takes at mean 5.1944 × 10−4s with a
variance of 2.2032× 10−7s averaged from 22306 runs. This number cannot be extrapolated linearly
due to the use of parallelization in the collision checker and the different constellations of circle
sets. The parallelization approach works most efficiently if the colliding nodes are decoupled into
separate batches, which is a property of the specific situation. Figure 4.9 shows the histogram of
the evaluation time of these collision checks. The duration of 90% of the checks takes below 1ms.

4.7.2 Quantitative Runtime Analysis
We analyze the effects on the overall runtime of the horizon length, the newly expanded nodes per
node, and the collision check strategy.

Effect of Horizon Length

In Figure 4.10, we analyze how a longer horizon affects the time needed for behavior option
generation. A longer horizon is equivalent to a growing number of sampling steps, resulting in a
deeper graph. We expand ten new edges leading to new nodes at each graph node and analyze one
receding horizon instance sampled into the future with a varying number of steps. Recall that new
nodes are dropped if colliding with the environment. Therefore, the number of graph nodes varies
in different environments and initial conditions.

Figure 4.10a displays the number of graph nodes and the time needed to sample these nodes with
respect to the number of steps that are sampled into the future. The more open the environment
is, the more nodes can be sampled, resulting in a bigger behavior graph. On a very narrow lane,
nearly no steering options are valid. Therefore, the graph is comparably small. The maximum
number of ten new edges per node can be observed easily in the graph. Also, the time for expanding
a further timestep grows exponentially, cf. Figure 4.10b. The decreasing expansion time from

46



4.7 Complexity Analysis

1 2 3 4 5 6 7101

102

103

104

105

106

107

Steps [-]

N
um

be
r

of
no

de
s

[-
]

Empty
Two lane
One lane
Narrow lane

(a) Number of graph nodes

1 2 3 4 5 6 710−3

10−2

10−1

100

101

102

Steps [-]
E

xp
an

si
on

ti
m

e
[s

]

Empty
Two lane
One lane
Narrow lane

(b) Expansion time

2 3 4 5 6 710−2

10−1

100

101

Steps [-]

O
pt

im
iz

at
io

n
ti

m
e

[s
]

Empty
Two lane
One lane
Narrow lane

(c) Optimization time

Figure 4.10: Analysis of the effect of a growing horizon time/number of sampling steps.
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Figure 4.11: Analysis of the effect of a growing number of decision options per step.

one to three nodes corresponds to the overhead of code optimization and parallelization and is
of minor practical relevance. Furthermore, the time for finding the optimal trace through the
graph increases with the number of nodes, as we see in Figure 4.10c. From these experiments, we
conclude that for real-time applicability expanding ten edges, sampling six steps into the future is
a reasonable upper limit.

Effect of Decision Options per Step

Figure 4.11 depicts the effect of a growing number of decision options per horizon step. The
experiment ranges from two options (keep the current acceleration/steering profile and emergency
maneuver) to ten options. We observe an exponential growth in the number of nodes if the
environment is not tightly constrained, which is expected. Also, for the expansion time, we observe
exponential growth. The optimization time is relatively constant until five decision options. With
more options, we observe exponential growth but with a moderate time increase. We from this
experiment conclude that to not end up in exponential growth in the computation time, either the
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(b) Three agents

Figure 4.12: Effect of different collision checking strategies in a scenario with barely conflicts.

environmental conditions have to be limiting or the possible next motion options at each horizon
step have to be selected reasonably.

Effect of the Different Agent-to-Agent Collision Check Strategies

Let us now analyze the effect of different inter-agent collision checking strategies with respect to
the number of horizon steps. We simulate three variants:

1. The two-stage network flow optimization and iterative collision check solution refinement
algorithm as introduced in Algorithm 4.2,

2. pre-calculating all collision constraints (cf. (4.8)) recursively along the graphs, and

3. modeling collision avoidance as constraints internally in the optimization problem as formu-
lated in (4.9).

All experiments are performed in an empty environment to not bias the result with an (un-)favorable
start position of an agent. We expand five new edges at each node. We simulate two types of
scenarios; first, a setting without dense interaction of all agents as the goals are barely conflicting.
We place all agents on non-conflicting reference lines. Second, dense interaction is necessary as all
agents are placed on the reference line of another agent, and the positions have to be swapped.
We show the results of scenarios with two and three agents. The trend continues for more agents,
and the exact results depend more on the initial configuration. Generally, the evaluation time
mainly scales with the number of steps than with the number of agents. Starting from five steps,
the optimization-internal collision constraints get computationally intractable.

In the first case without conflicts, the two-stage network flow optimization and iterative collision
check solution refinement algorithm clearly outperforms all others. This is expected, as few collision
check computations have to be performed on the optimal traces through the graph. Until six
horizon steps also the pre-calculation of all constraints is computationally tractable. With more
horizon steps, the exponential growth of makes real-time application critical. These effects can be
observed in Figure 4.12.
In Figure 4.13 we depict the scenario with conflicts. For a few horizon steps, the two-stage

network flow optimization and iterative collision check solution refinement algorithm is faster or
comparably fast than checking all collision a priori. With more horizon steps, this effect vanishes
as the overhead of modification and re-optimization of the optimization problem is slower than
computing all collision checks a priori using the graph structure and parallel computing.
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Figure 4.13: Effect of different collision checking strategies in a scenario with dense interactions.
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Figure 4.14: Development of the optimization time per step of the two-stage network flow optimization
and iterative collision check solution refinement algorithm. The different curves represent
trajectories with a different number of steps. The plots show how long one algorithm evaluation
took with a growing number of iterations.

From these experiments, we conclude that with a high number of horizon steps, a pre-calculation
of all possible collisions can be desirable in very interactive scenarios, whereas otherwise, the
two-stage network flow optimization and iterative collision check solution refinement algorithm is
preferable.

Effect of Increasing Number of Iterations

To understand why the two-stage network flow optimization and iterative collision check solution
refinement algorithm can take longer in situations where agents densely interact, we analyze
how many iterations the algorithm needs and how long one interaction of this algorithm takes
in Figure 4.14. The more receding horizon steps are also needed, the longer the solution of one
step takes and the solution time per step only grows. For the first few algorithm iterations, the
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Figure 4.15: Total runtime in seconds with varying number of goals and vehicles in the same environment.
White patches indicate infeasible combinations. (graphic from [KK17], ©2017 IEEE)

runtime does not significantly grow. For a few receding horizon steps, only a few algorithm steps
are needed. For a bigger number of steps, we observe exponential scaling.

4.7.3 Runtime Analysis of ACCORD-P
In Section 4.6, we presented Autonomous Car Coordination for Valet Parking (ACCORD-P), a
specialized implementation for automated valet parking scenarios. Recall that the algorithm here
coordinates the selection of complete, precomputed trajectories instead of finding an optimal trace
through a tree of agent states. This algorithm scales differently in complexity and runtime, which
we present in the section at hand. The experiments are executed on a standard PC with Intel
Xeon 3.7GHz CPU with 4 cores and 32GB of memory.

The main runtime contributions are the trajectory generation and the optimization step. The
number of generated trajectories is bounded by |T| = |V| × |G| × |S|, where |S| denotes the
set of desired trajectory top speeds. The number of decision variables is bounded by |T| × |V|.
The trajectory generation time and the optimization runtime scale linearly with the number of
trajectories. Collision checking of all trajectories is the most computationally expensive part of
the trajectory generation. It scales quadratically with the number of trajectories. A quantitative
analysis shows that the optimization step scales quadratically with the number of vehicles and
goals. The trajectory generation step scales linearly in the number of vehicles. For few goals
(≤ 10), this step scales quadratically but exponentially for a higher number of goals.

No effort has been devoted towards improving the absolute runtime; the implementation is, e.g.,
single-threaded. The illustrative two-vehicle example (see Section 4.8.5) with 2 vehicles and 6 goals
has a maximum step time of 0.51 s. In the four vehicle example, the maximum cycle time is 2.02 s.
In a benchmark scenario with a varying number of vehicles and goals, the total runtime of one
iteration is displayed in Figure 4.15. The solver parameters are chosen to iterate to the optimum,
which can be time-consuming, but a feasible, non-optimal solution is often found fast.

We conclude with the observed scaling effects that the proposed algorithm can be applied in
real-time in scenarios with a moderate number of vehicles and goals. For a higher number of
vehicles, heuristics have to be applied, which choose a subset of vehicles that shall be considered
for interactions. This selection can lead to suboptimal solutions viewed from a global perspective.

If applied as an overall coordination approach in a fully autonomous parking garage, the algorithm
can be executed on a dedicated server instead of a vehicle, which mitigates runtime effects. In
such a use-case also longer trajectories can be optimized, and the cycle time can be chosen lower.
Furthermore, a global infrastructure can easily choose reasonable splits of the overall optimization
problem, e.g., location-based.
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Figure 4.16: Schematic sketches of the five evaluation scenarios using ACCORD

4.8 Demonstration of Benefits and Effectiveness in
Simulated Scenarios

In this section, we will assess the performance of ACCORD in various simulated scenarios to
demonstrate the universal applicability of the approach. Figure 4.16 sketches five different
experiments, each demonstrating the capabilities of ACCORD or ACCORD-P. Table 4.2 gives an
overview. By coordinated we denote a connected setting with CAVs that follow a global optimal
plan. By reactive or proactive we denote the integration into a mixed-traffic scenario with the ego
vehicle either showing passive behavior or actively enforcing own goals.

All parameters are set individually per vehicle. In the shown evaluations, we choose the same
parameters for simplicity. Each vehicle’s reference tracks and velocities are predefined but may
change in a reflection step. With different cost terms, different behaviors are realized, as shown in
the subsequent sections. The cost scaling parameters 𝜉 were chosen to demonstrate the capabilities
of the algorithm. We chose a discretized timestep 𝛿𝑡 of 2 s with a subsampling of 0.5 s and a
horizon length of 6 s. Per node, we expand three acceleration and three steering options.
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Table 4.2: Overview of the five different evaluation scenarios used in this section to showcase the capabilities
of ACCORD and ACCORD-P. ♦ denotes not applicable, � denotes applicable.

Section 4.8.1 4.8.2 4.8.3 4.8.4 4.8.5
Scenario Levels of

cooperation
Bottleneck

passing
Highway
merging

Intersection
management

Valet parking

Schematic figure 4.16a 4.16b 4.16c 4.16d 4.16e
Number of agents 2 2 4 3… 4 2… 4

Coordinated � � � � ♦
Proactive ♦ � ♦ ♦ ♦
Reactive ♦ � � ♦ �

Receding horizon ♦ � � � �
Speed low low high medium low

Planner ACCORD ACCORD ACCORD ACCORD ACCORD-P
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(a) Cooperative solution for 𝜆2 = 0.2
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(b) Cooperative solution for 𝜆2 = 0.5

Figure 4.17: A scenario with conflicting references. The optimized solution is leveraged with the cooperation
factor 𝜆.

4.8.1 Levels of Cooperation in a Negotiation Scenario

We evaluate the effect of the cooperation factor 𝜆 in a negotiation scenario with two agents 𝐴1 and
𝐴2, the same scenario as we discuss in Section 5.21a. The scenario is fully symmetric with two
vehicles placed on a two-lane road in oncoming direction with road boundaries. Both reference
lines do not track the lane centers but the road center. This yields conflicting goals (Figure 5.21a).
The solution can be balanced to favor one or the other agent. The vehicle trajectories change as 𝜆
changes (Figure 4.17a and Figure 4.17b). As costs, we only set the squared euclidean distance to
the reference. Therefore the overall costs per agent are equivalent to the overall distance of the
trajectory from the reference times 𝜆.
In Table 4.3, we qualitatively show the effect of varying 𝜆. We analyze a single run of the

algorithm. The column Idx 𝐴� indicates at which time index the respective agent has reached
the reference trajectory. We also state the contribution of each agent to the global cost function,
denoted by Cost 𝐴�. Both metrics show the same trend; by varying 𝜆�, the respective agent is
favored. We observe that for 𝜆� ≈ 0.5 all metrics are balanced, but also with a strong favor of one
agent still, valid solutions are computed. Due to the chosen discretization, fewer scenario variants
occur compared to the continuous formulation. Small changes in 𝜆�, like from 0.2 to 0.3, do not
yield a difference in the computed optimal maneuver as the same discrete motion primitives are
chosen.

From this experiment, we conclude that the cooperation factor effectively favors one or the other
agent. However, with a continuous scaling of 𝜆, the discretization in the option graph still limits
the number of possible solutions to a discrete set.

4.8.2 Cooperative Solutions of Two-Vehicle Scenario with Conflicts

We demonstrate the capabilities of ACCORD in a scenario with two vehicles and a roadblock that
we already used as an illustrative example, see Figure 4.2. In a variety of different settings, a
reasonable behavior is always achieved. In the following, we discuss three different examples. We
consider the blue vehicle 1 on the left as the ego vehicle. Recall that ACCORD always assumes
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Table 4.3: Quantitative evaluation of the negotiation scenario. We compare the time the reference is
reached and the contributions to the cost function of each agent.

𝜆2 Idx 𝐴1 Idx 𝐴2 Cost 𝐴1 Cost 𝐴2

0 - 8 0.0 222.05
0.1 12 8 38.46 199.85
0.2 12 8 76.93 177.64
0.3 12 8 115.39 155.44
0.4 12 8 153.86 133.23
0.5 11 11 150.63 150.62
0.6 8 12 133.25 153.85
0.7 8 12 155.46 115.39
0.8 8 12 177.67 76.92
0.9 8 12 199.88 38.46
1 8 - 222.09 0.0
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(a) Initial plan at t=0 s
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(b) Start of the evasive maneuver at t=2 s

0 5 10 15 20 25 30 35 40
x [m]

−2.5

0.0

2.5

y
[m

]

(c) Evasive maneuver at t=4 s
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(d) Both agents meet while passing the obstacle at t=6 s

Figure 4.18: Evolution of a two vehicle scenario with cooperative evasive behavior on a Cartesian plot.
The lane of vehicle 1 in blue is blocked and vehicle 2 in red makes enough space to safely
overtake. Dark to light colors depict increasing time. The trajectories start at the current
vehicle positions. The reference lines are dashed gray.

collaboration of all agents but in the reflection step can also counteract egoistic behavior and
prediction errors.

Coordinated Evasive Maneuver

Figure 4.18 shows the evaluation of the traffic scene over time at selected time instances, including
the currently planned trajectories and occupied spaces. In this behavior coordination scenario,
the optimal solution for vehicle 2 is to perform an evasive maneuver so both vehicles can pass the
obstacle at the same time. With constant acceleration control inputs per timestep, the motion is
continuous but jerky due to the linear velocity profiles.Vehicle 1 also deviates from the reference
speed to pass each other at an optimal space-time location.

Coordinated Speed-change Maneuver

By adapting the parameters, different cooperative solutions can be enforced. With a lower focus on
the reference speed tracking and a higher focus on keeping the reference track, vehicle 2 accelerates,
and vehicle 1 does not have to stop in front of the obstacle but can accelerate while vehicle 1 is
passing the obstacle. The evolution of this scenario is depicted in Figure 4.19. In contrast to the
uncooperative case, neither vehicle has to come to a complete stop. As both vehicles have agreed
on the cooperative motion plan, vehicle 1 can start the overtaking maneuver earlier.
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(a) Initial plans at t=0 s
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(b) The red vehicle accelerates at t=2 s.
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(c) The blue vehicle decelerates but does not stop com-
pletely at t=4 s.
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(d) The blue vehicle passes the obstacle after the red
vehicle at t=6 s.

Figure 4.19: Evolution of a two vehicle scenario with cooperative velocity change behavior on a Cartesian
plot. Dark to light colors depict increasing time. Vehicle 2 accelerates to let vehicle 1 pass the
obstacle earlier without stopping. At t=6 s, vehicle 2 does not interfere with the ego vehicle 1
any more and is therefore omitted.
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(a) Initial plans at t=0 s; the blue vehicle already decel-
erates.
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(b) The red vehicle keeps its velocity and the blue vehicle
decelerates at t=2 s.
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(c) The blue vehicle creeps forward to eventually come
to a complete stop at t=4 s.
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(d) The blue vehicle stops at the obstacle to first let the
red vehicle pass at t=6 s.

Figure 4.20: Evolution of a two vehicle scenario with the oncoming vehicle 2 keeping constant velocity on
a Cartesian plot. Dark to light colors depict increasing time. As the behavior of vehicle 2 is
unclear a feasible solution is chosen if vehicle 2 accelerates or not. The evasive maneuver is
started after vehicle 2 has passed the obstacle.

Uncooperative Behavior

In case the oncoming vehicle 2 is not cooperating and keeps a constant speed of 4m/s, vehicle 1
has to stop and pass the obstacle after the oncoming vehicle 2. The evolution of this scenario is
depicted in Figure 4.20. Vehicle 1 decelerates and awaits if vehicle 2 gives way. As vehicle 2 does
not show cooperative behavior, vehicle 1 brakes and continues at low speed until vehicle 2 has
passed the obstacle after t=10 s. Note that for vehicle 2 we show the planned, and not the actual
trajectory here, the deviations from the true speed of vehicle 2 of 4m/s reflects the prediction
error in the unknown true motion. We observe that also in the presence of a non-cooperating
vehicle, our approach yields a safe solution.

Aggressive Ego Behavior

Giving vehicle 1 a more aggressive parameterization, it accelerates into the gap even with vehicle
2 approaching. In this experiment, visualized in Figure 4.21 we model vehicle 2 to stay on the
reference line and decelerate once its trajectory intersects with the constant velocity and steering
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(a) Initial plans at t=0 s; the trajectories do not overlap
yet.
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(b) The blue vehicle intends to enter the narrow passage
at t=2 s.
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(c) The red vehicle creeps forward to eventually come to
a complete stop at t=4 s.

0 5 10 15 20 25 30 35 40
x [m]

−2.5

0.0

2.5

y
[m

]

(d) The blue vehicle passes the narrow passage and makes
room for the red vehicle at t=6 s.

Figure 4.21: Evolution of a two vehicle scenario with with aggressive parameterization of the ego vehicle
1 on a Cartesian plot. Dark to light colors depict increasing time. As vehicle 1 proactively
enters the narrow passage with its desired velocity, vehicle 2 is forced to stop in front of the
passage and wait for vehicle 1 to pass.

Table 4.4: Time needed for both vehicles to finish the scenario.
Vehicle 1 Vehicle 2

Cooperative evasive 12 s 10 s
Cooperative speedchange 14 s 12 s

Uncooperative other 22 s 9 s
Aggressive ego 11 s 16 s
Vehicle 1 only 11 s -
Vehicle 2 only - 9 s

prediction of the state of another vehicle, resulting in passive behavior. While at t=0 s, the solution
appears balanced as the trajectories do not overlap yet, starting from t=2 s vehicle 2 brakes and
vehicle 1 can enter the passage first, achieving its own goal to not deviate from the reference speed.

Discussion

The time to pass the obstacle can serve as a measure of cooperation. Table 4.4 states the time it
takes for both to pass the obstacle and to travel with the targeted speed on the respective reference
line again in the three discussed scenarios. As a baseline, we simulate the scenario for each vehicle
individually. By cooperation, clearly, a balanced behavior is achieved.
To quantify how cooperative a maneuver has been performed, we evaluate the normalized

contribution of both vehicles to the total costs [DP14]. The lower the absolute cost values are
for a vehicle, the more desirable is the solution for the respected vehicle. Figure 4.22 shows the
individual cost contributions of vehicle 1 divided by the cost contributions of vehicle 2 per step.
Cooperative solutions should be close to the ideal value of 1.0 as no vehicle is favored according
to the cost function. Deviations from 1.0 indicate favor towards one vehicle. In our example, for
the uncooperative case the cost contribution of vehicle 1 is significantly higher than for vehicle 2.
Hence the behavior of vehicle 2 can clearly be classified as egoistic. For the cooperative solution,
the absolute cost values per vehicle are close, and parameter adaptions can leverage a slight
favor towards one vehicle. This example illustrates how we distinguish between cooperative and
uncooperative behavior and that we can generate a safe behavior in either setting.
Summing up, we observed in this scenario that using a modified parameterization, different

reasonable, cooperative behaviors can be achieved. Also, if an agent does not show cooperation,
our algorithm still finds a safe solution.
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Figure 4.22: Relative contributions of both vehicles to the total costs in the different settings in the
two-vehicle scenario. 1.0 is an ideal symmetric cost contribution of each vehicle, greater values
indicate high cost contribution of vehicle 1, lower values indicate high cost contribution of
vehicle 2. Once both vehicles do not influence each other any more we stop the evaluation
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(a) The blue vehicle plans a merging trajectory and the green vehicle allows this merge by decelerating at t=0 s.
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(b) The blue vehicle can successfully merge at t=2 s without stopping the green vehicle.

Figure 4.23: Evolution of a cooperative highway scenario. The ego vehicle (blue) on the ramp needs to
merge into the mainline. The rear vehicle (green) decelerates to let the ego vehicle merge.
Dark to light colors depict increasing time. The trajectories start at the current vehicle
positions. The reference lines on the two lanes are shown in dashed gray.

4.8.3 Cooperative Planning in Highway Traffic

In this experiment, we will show the performance of the algorithm in a highway scenario where
the ego vehicle has to merge from a ramp on the mainline into moving traffic. The scenario is
defined in a way that if all vehicles greedily follow their desired velocity on the optimal reference
track, collisions would occur or the ego vehicle would have to come to a complete stop. To avoid
collisions at high speeds, the subsampling stepsize is set to 0.25 s.

Solutions with Coordination

First, we show two settings where all agent cooperate. According to the parameterization different
reasonable cooperative behaviors can be achieved. In the first setting (Figure 4.23) we chose the
cost terms and the cooperation factor 𝜆 that the green vehicle behind the blue ego vehicle slows
down to let the ego vehicle merge safely after the red vehicle has passed. By putting less weight
on tracking a specific lane, the green vehicle behind the blue ego vehicle performs a lane change
on the left lane after the cyan vehicle on this lane has passed to let the ego vehicle merge. The
evolution of the scenario is depicted in Figure 4.24.
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(a) The blue and the green vehicle plan a coordinated lane change at t=0 s.
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(b) The coordinated lane change is safely executed at t=2 s.

Figure 4.24: Evolution of a cooperative highway scenario. The ego vehicle (blue) on the ramp needs to
merge into the main line. The rear vehicle (green) performs a lane change to the left lane
taking into account the cyan vehicle there to let the ego vehicle merge. Dark to light colors
depict increasing time. The trajectories start at the current vehicle positions. The reference
lines on the two lanes are shown in dashed gray.

0 20 40 60 80 100 120 140 160

x [m]

0

10

y
[m

]

(a) The blue vehicle plans an initial merging trajectory at t=0 s.
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(b) The blue vehicle awaits cooperation from the green vehicle to perform the lane change later at t=2 s.
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(c) The blue vehicle decelerates to merge after the green vehicle at t=4 s.

Figure 4.25: Evolution of a non-cooperative highway scenario. The ego vehicle (blue) on the ramp needs
to merge into the main line but neither the rear (green) nor the front (red) vehicle shows
cooperation. The ego vehicle therefore decelerates and merges after the rear vehicle has
passed. Dark to light colors depict increasing time. The trajectories start at the current
vehicle positions. The reference lines on the two lanes are shown in dashed gray.

Non-cooperative Solution

Second, we show a non-cooperative setting in Figure 4.25. Here the three vehicles on the mainline
keep their constant velocity. Still, the (blue) ego vehicle awaits cooperation. After the first timestep
t=0 s, the reflection adapted the cost terms that the ego vehicle merges after the green vehicle.

Safe Behavior with Limited Sensor Sight

As a third experiment, we model an insufficient sensor sight of the (blue) ego vehicle to the rear.
The approaching vehicle on the right lane is not visible at t=0 s, only if it approached closer
than 50m, it is observed and included in the planning. This approaching vehicle does not show
cooperation. In Figure 4.26 we observe that first, the ego vehicle initiates a lane change on the
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(a) The blue vehicle plans a lane change without being aware of the green vehicle in the back at t=0 s.
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(b) At t=1 s, a new, fast vehicle (green) is perceived behind the blue vehicle.
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(c) The lane change is aborted and the blue vehicle decelerates heavily at t=3 s. Still, the behavior is safe.

Figure 4.26: Evolution of a highway scenario with limited sensor sight. The ego vehicle (blue) on the
ramp needs to merge into the main line but is unaware of the approaching vehicle from rear
(green) at time t=0 s. After having initiated the lane merge trajectory, the vehicle from rear
is observed and the maneuver is aborted by braking and steering back on the ramp. Dark
to light colors depict increasing time. The trajectories start at the current vehicle positions.
The reference lines on the two lanes are shown in dashed gray.

mainline that it aborts once the additional vehicle is perceived. By decelerating and staying on
the ramp, the ego vehicle can still achieve safe behavior. While this behavior is not desired, it is
still necessary for a planner to also cope with such situations. When the in-vehicle sensors are
not sufficient to observe the situation precisely could be resolved by infrastructure sensors and
Vehicle-to-Everything (V2X) communication [Krä+22].

Discussion

These experiments exemplarily show several benefits of ACCORD: Due to the collision checking
strategy in-between decision states, it can operate safely at high speeds without introducing over-
conservative behavior. Also, it can cope with unexpected situations and low-quality estimations of
other traffic participants. Most importantly, we observe that our approach creates cooperative
behavior like human drivers do today. Changing a lane on a highway to let vehicles merge from
a ramp is, for example, a common driving strategy. So we have transferred human cooperation
strategies to algorithms making the agents safely exchangeable.

4.8.4 Cooperative Intersection Management
This example demonstrates how traffic at an unsignalized intersection can be coordinated safely
using cooperative behavior. All vehicles communicate and coordinate their behavior. Ignoring
classical right-of-way rules, the algorithm generates a solution such that each vehicle tracks its
reference speed as close as possible and reaches its desired destination as fast as possible without
collisions. Note that collisions occur if all vehicles keep a constant reference speed on their reference
tracks, or vehicles would have to brake harshly. The intersection in this example is asymmetric as
in the east-west road, vehicles have to take a slight S-curve and is located near Munich [KA17;
AKM17].

We generate a conflicting situation by placing four vehicles with the same initial speed on each
road leading to the intersection with the same distance from the intersection center. Figure 4.27
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(a) At t=0 s, four vehicles are approaching the inter-
section with equal speeds from different directions.
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(b) The trajectories of the four vehicles meet in the
intersection at t=4 s.
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(c) The North/South driving vehicles (green and cyan)
decelerate at t=6 s.
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(d) The East/West driving vehicles (red, blue) pass the
intersection and the others accelerate at t=12 s.

Figure 4.27: Evolution of a cooperative intersection scenario with four vehicles with equal priority ap-
proaching an intersection. Dark to light colors depict increasing time.

shows the scenario. We choose an equal cooperation factor 𝜆 and equal cost terms for each vehicle.
Due to the slight asymmetry of the intersection, the optimizer favors letting the vehicles moving
on the east-west road pass first. Both vehicles on the north-south road decelerate to let the other
vehicles pass.

When varying the cooperation factor 𝜆 and the initial states of the vehicles, the evolution of the
scenario varies. We here show an extreme case in a three-vehicle scenario with 𝜆 = [0.01, 0.01, 0.98].
An application could be to assign high priority to an emergency vehicle. In the example in
Figure 4.28, a faster, high-priority vehicle approaches the intersection from the northern direction,
and both vehicles on the east-west road brake to let the high priority vehicle pass. As the motion
is globally coordinated, both low priority vehicles do not have to brake to a standstill until the
high priority vehicle has passed but can pass the intersection right after it has been cleared.
As a slight modification of the scenario, we consider a four-way stop as it is common, e.g., in

the USA. The (US) legal rules that the vehicles cross the intersection in the order of arrival at
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(a) The trajectories of all vehicles meet on the inter-
section at t=4 s.
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(b) The green vehicle accelerates and the red and blue

vehicle decelerate at t=6 s.

Figure 4.28: Evolution of a cooperative intersection scenario with three vehicles approaching an intersection,
one (green, north) having higher priority. Both other vehicles give way so the high priority
vehicle can pass first. Dark to light colors depict increasing time.
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(a) The north/south direction goes first, but in parallel
at t=2 s.
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(b) The red and blue vehicle creep towards the inter-
section at t=4 s and await the other vehicle to pass.

Figure 4.29: Evolution of a cooperative intersection scenario with four vehicles at a four-way stop in-
tersection. The coordination algorithm finds an optimal order for the vehicles to pass the
intersection. Dark to light colors depict increasing time.

the intersection are not efficient in terms of throughput. In Germany, the right before left rule
results in similar efficiency drawbacks and leaves ambitiousness with four vehicles at an intersection.
Cooperative driving offers the possibility to resolve such situations fairly. With equal cooperation
factors, 𝜆 the asymmetry in the scenario decides on the most efficient resolution. On the one hand,
this takes up the driver’s behavior to let the vehicle go first, which is considered the most effective.
On the other hand, the enhanced knowledge from communication can be used for a more efficient
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resolution, as non-conflicting vehicles can go in parallel regardless of right-of-way rules. Figure 4.29
depicts an exemplary scene.

Summing up, even at a fairly simple intersection, cooperative behavior can help to reduce waiting
times and therefore increase throughput. The balance between the intents of the different vehicles
is achieved by appropriately setting the cooperation factor 𝜆. If each vehicle communicates and
cooperates, no infrastructure or fixed traffic rule set is needed.

4.8.5 Cooperative Valet Parking
In Section 4.6, we introduced a trajectory coordination approach adapted for the specific needs
of automated valet parking in the presence of non-autonomous vehicles. We will, in this section,
show the performance of the algorithm in two examples. Each trajectory has a horizon length
of 10 s. The chosen parameterization rewards choosing short and fast trajectories and penalize
direction changes. This section only shows two settings without connected vehicles. As we work
with pre-calculated paths in a connected setting, the optimal setting is easily reached if all vehicles
follow the optimized plan.

Performance Measures

As a ground truth and performance benchmark, we resolve the scene with all vehicles following the
optimized plan. We further compare the solution of the coordination algorithm to the scenario as if
each participating vehicle would be alone in the scene. Non-cooperating vehicles follow a predefined
motion without taking others’ behavior into account. In the case of such a non-cooperating vehicle,
we a posteriori compute the costs of this potentially aggressive and globally sub-optimal behavior.
Most natural evaluation factors are already part of the optimization’s objective function and hence
can be leveraged with appropriate parameterization. Therefore, these may not serve as evaluation
criteria; we instead define the following: By 𝐽(𝑣, 𝑖) we denote the cost function value contributed
by vehicle 𝑣 in cycle 𝑖 that was computed in the optimization. ̂𝐽 (𝑣, 𝑖) is defined as the actual
cost contribution of vehicle 𝑣 in cycle 𝑖 that is calculated a posteriori from the taken trajectory’s
properties and the estimated intentions. We define the fraction of both as 𝜄 = 𝐽/ ̂𝐽. An overline
denotes the respective mean. We choose the following performance measures:

• The time 𝑇 until a set of trajectories is found so that each vehicle reaches its desired position
without conflicts,

• the total ∑ ̂𝐽 and average ̂𝐽 cost function values giving a performance measure of the
coordination algorithm in relation to the reference scenarios, and

• the ratio of observed costs to optimized costs 𝜄 as an indicator how accurate the intention
has been and how aggressive/defensive non-cooperative vehicles behave in relation to the
ego-vehicle.

An Illustrative Two-vehicle Example

We consider an easy coordination situation with two vehicles on a parking lot (see Figure 4.30).
The autonomous ego vehicle 1 (blue) wants to park and vehicle 2 (red) has the fixed but unknown
intention to park at its right. Both vehicles have various reasonable driving options. Note that in
contrast to the scenarios above, reverse driving is allowed.

From the cost function values presented in Table 4.5, we observe that the global optimal solution
leverages the interests of both vehicles. In the non-cooperative case, the total optimization costs
are roughly the costs of both vehicles if they were alone in the scene. This is expected, as the
optimal solution is straightforward after the first iteration. ∑𝑣,𝑖 𝜄(𝑣, 𝑖) = 0.96 and 𝜄(2, 𝑖) = 0.79
indicate that with a non-cooperative vehicle present a worse solution is found compared to the
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(a) Initial plans with a wrong estimated inten-
tion of the red vehicle at t=0 s.
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(b) Updated plan with corrected intention of
the red vehicle at t=2 s.

Figure 4.30: Evaluation of a two-vehicles parking lot maneuvering scenario. The free parking spaces and
goal poses are depicted as gray patches, the reference lines along the lane centerlines as dashed
gray. The autonomous left ego vehicle 1 is colored blue and the non-communicating right
vehicle 2 is colored red. In blue and red the respective planned trajectories are shown, in gray
the (unknown) trajectory vehicle 2 is going to take. Already traveled trajectories are dashed.
(modified graphic from [KK17], ©2017 IEEE)

Table 4.5: Cost and time evaluation of the illustrative two-vehicle example.
𝑇 ∑𝑣,𝑖

̂𝐽(𝑣, 𝑖) ̂𝐽(𝑣, 𝑖)
Vehicle 1 alone 8 s 421.8 105.5
Vehicle 2 alone, cooperative traj. 8 s 296.5 74.1
Vehicle 2 alone, non-cooperative traj. 10 s 635.4 127.1
Global Optimum 8 s 716.1 69.5
Non-Cooperative 10 s 1178.9 117.9

global optimum. The qualitative evolution of the scene is depicted in Figure 4.30. Comparable
results are achieved if vehicle 2 has the intention to go straight instead of choosing a parking spot.

Safe Maneuvering Into a Parking Spot With Inaccurate Initial Knowledge

As a second example scene, we consider a parking lot scenario with 3 free parking spaces to the left
and 3 to the right of a two-lane road. These are the possible goal positions. Vehicle 1 (leftmost,
blue) is the autonomous ego vehicle under test. All other vehicles 2-4 act non-cooperative. All four
vehicles want to park. The evolution of the scenario is depicted in Figure 4.31. We observe that
the ego vehicle first (until t=4 s) targets a parking spot that is then occupied by another vehicle
and the ego vehicle has to maneuver to navigate into a neighboring parking spot. Also, initially,
the estimations on the vehicle intentions are incorrect. The initial scene is depicted in Figure 4.31a
including the vehicle plans in the first step (colored) and the unknown actual plans (gray). The
evolution of the scene is depicted in Figure 4.31, this solution is compared to the references in
Table 4.6. The higher total costs in the non-cooperative scenario are mainly due to the higher
number of iterations to finish the scenario. The mean values have a comparable magnitude. The
mean cost function values ̂𝐽 of the vehicles 2-4 in the optimized and egoistic cases indicate that
the estimations on the trajectories differ from the actually taken trajectories. As these egoistic
trajectories also may have non-optimal goals, more iterations and higher costs occur. Regarding
the cost function ratios 𝜄, a deviation of optimized and non-cooperative value of ∑𝑣,𝑖 𝜄(𝑣, 𝑖) = 0.9
is obtained. The mean values per vehicle 𝑣𝑗, (𝜄(𝑣𝑗, 𝑖)) vary between 0.84 and 0.97 depending on
how much the optimized and the predefined egoistic trajectories deviate. Regarding the evolution
of the costs over iterations, both the egoistic and the optimal trajectories show similar trends.
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(d) t=6 s

Figure 4.31: Evaluation of a parking lot scenario where three non-cooperative vehicles maneuvering into a
parking spot without showing reaction to the ego vehicle. The blue (leftmost) vehicle 1 is the
ego vehicle, all others are non-communicating vehicles. The respectively colored trajectories
are the optimized ones, the dark gray ones the (unknown) trajectories the vehicles are going
to take. The history trajectories are dashed. The available parking spots and the reference
lines are depicted in light gray. In the subsequent steps, the ego vehicle maneuvers into the
spot between the green and the magenta vehicle. The ego vehicle reactively lets the other
vehicles chose a parking spot first and plans a non-conflicting behavior moving towards a
non-occupied parking spot. (modified graphic from [KK17], ©2017 IEEE)

Table 4.6: Cost and time evaluation of the parking lot maneuvering scenario.
#It ∑𝑣,𝑖 Φ̂(𝑣, 𝑖) Φ̂(𝑣, 𝑖)

Vehicle 1 alone 8 s 658.4 164.6
Vehicle 2 alone, optimal traj. 8 s 338.2 84.6
Vehicle 2 alone, non-cooperative traj. 6 s 322.7 107.6
Vehicle 3 alone, optimal traj. 6 s 335.2 111.7
Vehicle 3 alone, non-cooperative traj. 8 s 259.2 64.8
Vehicle 4 alone, optimal traj. 10 s 582.7 116.5
Vehicle 4 alone, non-cooperative traj. 8 s 513.4 128.4
Global Optimum 10 s 1852.9 118.8
Non-Cooperative 14 s 2105.6 117.0

We conclude that safe maneuvering into a parking spot is possible, even with inaccurate initial
estimations of the other agents’ intentions and motions.

4.9 Conclusion

We, in this chapter, introduced the ACCORD approach, which solves the multi-agent behavior
planning problem by spanning a tree of possible, discrete actions of each agent and finding an
optimal trace through these trees using MILP. By taking into account the leveraged interest of
each agent in the optimization, the approach is inherently cooperative and aims to coordinate
the motion of each agent in a global optimal fashion. To account for non-optimal behavior of
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non-autonomous agents, we, in each receding horizon step, adapt the weights of the optimization
to fit the observations best.
By leveraging own and others’ interests, the coordination approach generates driving behavior

inspired by current traffic. For example, small changes in the ego vehicle behavior can result in
significant benefits for other agents. An example is performing a lane change on a highway to
let others merge from a ramp. Also, unbalanced situations can be handled cooperatively, such as
letting an emergency vehicle pass. Nevertheless, the behavior is not human-like: Often, cooperative
behaviors evolve that make optimal use of the available space without accounting for traffic rules of
conventions, which is necessary to include in the constraints. The approach is scenario-agnostic, as
demonstrated in a low-speed negotiation scene, a high-speed highway scenario, and an intersection
scenario. For parking scenarios, we presented the adapted ACCORD-P algorithm with fewer
degrees of freedom. It reflects the observation that the variety of possible behaviors on parking
lots is limited and produces optimally coordinated motions, also with non-cooperating vehicles
present. We showed that the worst-case runtime scales exponentially with densely interacting
agents, mainly as all agents have to be checked for collision pairwise. This effect is critical for
real-time applications. With two or three agents in interactive scenarios, the runtime is tractable
in the number of possible decisions per step, and the optimization steps are limited.
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Continuous Action Space

Executive Summary of this Chapter This chapter introduces the planning algorithm Mixed
Integer Interactive Planning (MINIVAN), solving the continuous-time formulation of the multi-
agent planning problem to optimality using Mixed-Integer Quadratic Programming (MIQP), based
on a linear differential game definition. This requires a problem formulation with only linear
constraints that will be derived here. We introduce a generic, globally valid linearization approach
with correct, non-holonomic vehicle dynamics and show the approximation error introduced is
velocity-dependent with positional errors up to 0.3m at low velocities decreasing to less than
0.1m at higher velocities, depending on the parameterization. Most state-of-the-art Mixed-
Integer Progamming (MIP)-based planning algorithms lack this global validity. We introduce the
methodology to compute all model parameters by linear least-square fits. Comparing the proposed
method to a nonlinear reference implementation, we study the feasibility of the proposed model.
We further introduce linear, over-approximating collision constraints for road boundaries, static
and dynamic obstacles, and fellow (vehicle) agents and show that these effectively avoid collisions.
Introducing soft constraints for collision avoidance handles inaccurate models, perception, and
prediction of agents and obstacles. To introduce cooperation into the approach, we formulate a
joint cost function, leveraging the interests of each agent using a cooperation factor and show that
it effectively scales the computed behavior between egoistic, cooperative, and altruistic. MINIVAN
can hence safely interact with other agents while still achieving its own goals.

Besides showing the validity of the computed trajectories and evaluating the effectiveness of the
planner, we also show the real-time capability of the approach. We elaborate which restrictions
apply based on the analysis of test drives and a thorough complexity analysis. We show that
providing a warmstart solution to the solver is essential for real-time operation, as it lowers the
runtime by 30% to 50% on average. By choosing a parameterization fitting problem structure
and solution requirements, again 15% to 30% of the runtime can be saved on average. These
numbers are even increased when choosing a scenario-specific parameterization. We further show
that a realistically high number of static and dynamic obstacles can be handled in real-time, and
the combination of our performance improvements effectively stops the (theoretically expected)
exponential growth in runtime with respect to the number of obstacles, horizon length, or further
properties increasing the model size and complexity. In a multi-agent setting, however, we cannot
avoid the exponential growth, and therefore three interacting agents are an upper limit for real-time
application. In environments where the solution of the single-agent MIQP already requires a
majority of the available solution time, such as narrow, sharp curves, the computation time of
a multi-agent MIQP is not tractable. In various demonstration scenarios, such as overtaking,
intersection handling, and competitive racing, we show that MINIVAN effectively leverages the
level of cooperation between different agents being robust against perception and prediction errors.

Content and Structure of this Chapter MIP has the ability to solve the multi-agent behavior
problem to optimality, but requires a linear (vehicle) model. Based on a triple integrator model
formulation, we compute the orientation of the vehicle and model it in a disjunctive manner for
arbitrary vehicle states and orientations. That allows us to formulate linear constraints to account
for the non-holonomy and collision avoidance. These constraints are approximations, for which we
introduce the theory in Section 5.1 and Section 5.2.
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We further formulate the optimization program to compute trajectories for multiple agents. By
taking into account the intent of every agent, the ego agent can incorporate future interactions
with human-driven vehicles into its planning. In Section 5.3 we define the MIQP-formulation,
based on the definition of a linear differential game and solve this problem to optimality. We then
define a joint cost function, where a cooperation factor can adapt between altruistic, cooperative,
and egoistic behavior.
Section 5.4 shows, that the formulated linear model produces curvature-correct trajectories.

These can be tracked by a non-holonomic vehicle model without causing collisions. As the real-
time applicability of MIP-based planning algorithms is challenging, Section 5.5 elaborates on the
measures we implemented to meet real-time requirements. We assess how these strategies help
to lower the runtime in simulated and real-road driving scenarios. The complexity analysis in
Section 5.6 analyzes how the solution time of the program scales with an increased number of
horizon steps, objects, or agents present.

Section 5.7 shows how MINIVAN can resolve straight forward driving situations such as highway
driving including overtaking, as well as more complex applications such as negotiating limited
spaces or dense merging. Section 5.8 concludes this chapter.

Contributions of this Thesis The models and results of this chapter are based on the joint
work with Klemens Esterle [EKK20; KEK20]. The model formulation in a single-agent context
is introduced in [EKK20] and the extension to a multi-agent setting in [KEK20]. The main
contribution of this chapter is to elaborate on the strategy to make the model applicable in
real-time and evaluate the effect of different measures. We further extend the publications by a
complexity analysis of the problem formulation, a broader variety of simulated scenarios including
the evaluation of the solution quality and a detailed assessment on the introduced approximation
errors.

5.1 Region-Based Linearization Approach

Following Qian et al. [Qia+16], we model the vehicle as a third-order point-mass system with
positions 𝑝𝑥(𝑡), 𝑝𝑦(𝑡), velocities 𝑣𝑦(𝑡), 𝑣𝑦(𝑡), and accelerations 𝑎𝑥(𝑡), 𝑎𝑦(𝑡) as states. Jerk in both
Cartesian coordinates 𝑗𝑥(𝑡) and 𝑗𝑦(𝑡) are inputs of the model. As we aim to formulate the vehicle
model as linear constraints, all nonlinearities have to be eliminated. In the following, we will
introduce how we guarantee the validity of the model for all orientations and perform collision
checks.

5.1.1 Discretized and Disjunctive Modeling of the Orientation

Although the vehicle’s orientation 𝜃 is not part of the state space, we will need it for a sufficient
collision check in Cartesian coordinates within the optimization problem. We assume perfect
traction and therefore neglect vehicle and tire slip. It can be calculated using 𝜃 = atan(𝑣𝑦/𝑣𝑥).
However, this equation is nonlinear, as are the trigonometric operations

sin(𝜃) = sin(atan(𝑣𝑦/𝑣𝑥)) (5.1a)
cos(𝜃) = cos(atan(𝑣𝑦/𝑣𝑥)) (5.1b)

are necessary to calculate the front axle position. To formulate collision constraints, we thus
need to linearize (5.1). For our model to be valid for orientations 𝜃 ∈ [0, 2𝜋], we discretize the
orientation by introducing regions in the (𝑣𝑥, 𝑣𝑦) plane, see Figure 5.1. The regions are defined by
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Figure 5.1: Construction of region 𝑖 described through two lines (0, 0) − (𝛼, 𝛽) and (0, 0) − (𝛾, 𝛿) following
(5.2). (graphic from [EKK20], ©2020 IEEE)

Table 5.1: Parameters from fitting or preprocessing used throughout this work. Region dependency is
denoted by �𝑟.

Parameter Description
𝛼𝑟 𝑥 value of region 𝑟 lower region borderline
𝛽𝑟 𝑦 value of region 𝑟 lower region borderline
𝛾𝑟 𝑥 value of region 𝑟 upper region borderline
𝛿𝑟 𝑦 value of region 𝑟 upper region borderline

𝒫𝑟
cos Polynome linear in 𝑣𝑥, 𝑣𝑦 upper-bounding cos(𝜃)

𝒫𝑟
cos Polynome linear in 𝑣𝑥, 𝑣𝑦 lower-bounding cos(𝜃)

𝒫𝑟
sin Polynome linear in 𝑣𝑥, 𝑣𝑦 upper-bounding sin(𝜃)

𝒫𝑟
sin Polynome linear in 𝑣𝑥, 𝑣𝑦 lower-bounding sin(𝜃)
𝒫𝑟

𝜅 Polynome linear in 𝑣𝑥, 𝑣𝑦 lower-bounding the 𝜅
𝒫𝑟

𝜅 Polynome linear in 𝑣𝑥, 𝑣𝑦 upper-bounding the 𝜅
𝑢𝑟

𝑥, 𝑢𝑟
𝑥 Lower and upper jerk limit in direction 𝑥

𝑢𝑟
𝑦, 𝑢𝑟

𝑦 Lower and upper jerk limit in direction 𝑦
𝑎𝑟

𝑥, 𝑎𝑟
𝑥 Lower and upper acceleration limit in direction 𝑥

𝑎𝑟
𝑦, 𝑎𝑟

𝑦 Lower and upper acceleration limit in direction 𝑦
𝜚𝑟 Region that 𝑟 is allowed for the current scenario

the area between two line segments starting at the origin. Consequently, for every (𝑣𝑥, 𝑣𝑦) point
within a region 𝑖, the following inequalities hold with region-dependent line parameters:

𝛼𝑣𝑦 ≥ 𝛽𝑣𝑥 (5.2a)
𝛾𝑣𝑦 ≤ 𝛿𝑣𝑥 (5.2b)

Having done this, we will subsequently formulate model equations that are valid in each region
with different parameters. These are listed in Table 5.1.

For driving comfort reasons, most motion planners limit the maximum longitudinal and lateral
acceleration, deceleration, and jerk. From these desired values in the driving direction of the
vehicle, we compute region-specific bounds in global 𝑥, 𝑦 coordinates. This is done by rotating the
original longitudinal and lateral limits along with the vehicle orientation. As the orientation angle,
we chose the mean angle of the respective region. This ensures that we comply with the original
bounds in driving direction in terms of absolute values and directions.
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Region 2

Region 3

Region 4

𝜃

𝑓(𝜃)

Figure 5.2: Exemplary nonlinear function and the respective piecewise linear upper (blue) and lower (red)
bounds (graphic from [EKK20], ©2020 IEEE)

5.1.2 Over-Approximating the Collision Shape

If the orientation is known, a common strategy to approximate the vehicle shape is by using
three circles with radius 𝑟 for the rear axle, middle position, and front axle similar to [Zie+14a],
as this allows for efficient collision checking to arbitrary polygons. We aim for a linear vehicle
model, so the true (highly nonlinear) orientation is unknown. As we only have an approximated
orientation but do not want to underestimate any collisions, we choose to compute the upper and
lower bound of the sine and cosine of the orientation. Figure 5.2 illustrates this idea. With that
and the vehicle’s wheelbase 𝑙, we then calculate upper and lower bounds for the 𝑥 and 𝑦 position
of the front axle.
In practice, we in the fitting process increase the true wheelbase by some centimeters which

introduces an additional safety margin at the front left and front right corner of the vehicle.

𝑓𝑥 ∶= 𝑝𝑥 + 𝑙 cos(𝜃) (5.3a)
𝑓𝑥 ∶= 𝑝𝑥 + 𝑙 cos(𝜃) (5.3b)

𝑓𝑦 ∶= 𝑝𝑦 + 𝑙 sin(𝜃) (5.3c)
𝑓𝑦 ∶= 𝑝𝑦 + 𝑙 sin(𝜃) (5.3d)

Permuting 𝑓𝑥, 𝑓𝑥 with 𝑓𝑦, 𝑓𝑦 yields four circles for the front axle, which represent an over-
approximation of the true front axle circle, as shown in Figure 5.3. For now, we chose to not model
the middle point of the vehicle, as this increases the complexity of the model. However, a similar
approach can be applied to the mid axle. We now present two methods for obtaining bounds for
the sine and cosine.

Constant Approximation

We propose a constant approximation of the sine using the maximum and minimum orientation
for each region.

sin(𝜃)=̃max[sin(atan(𝛿𝑟/𝛾𝑟)), sin(atan(𝛽𝑟/𝛼𝑟))] (5.4a)
sin(𝜃)=̃min[sin(atan(𝛿𝑟/𝛾𝑟)), sin(atan(𝛽𝑟/𝛼𝑟))]. (5.4b)

The cosine is calculated accordingly. With a higher number of regions, the error for this type of
approximation will decrease. Note that this is only valid as long as a region is not defined over
multiple quadrants, since sine and cosine are only monotonic functions within a quadrant.
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Figure 5.3: Vehicle model with wheelbase 𝑙 and circle-based collision-shape (cyan) of radius 𝑟. The variables
in red are unavailable in the MIQP model formulation. The orientation 𝜃 is defined clockwise.
(graphic from [EKK20], ©2020 IEEE)

Velocity-Dependent Approximation

To preserve the linearity of the constraints, only a linear combination of the state variables can be
computed. We chose to upper bound the sin(𝜃) term by a first order polynomial depending on
region 𝑟 with three parameters 𝑝�

sin(𝜃)=̃𝑝00 + 𝑝10𝑣𝑥 + 𝑝01𝑣𝑦 ∶= 𝒫𝑟
sin(𝑣𝑥, 𝑣𝑦) (5.5)

and analogously fit such linear polynomials for the lower bound of the sinus 𝒫𝑟
sin function and the

bounds of the cosine 𝒫𝑟
cos and 𝒫𝑟

cos. The methodology how we compute these parameters 𝑝� is
introduced in Section 5.2. This approximation will lead to a front axle position that depends on
the respective velocity terms. However, that is not the case if the orientation can be calculated
analytically and leads to high errors for low velocities. The constant approximation is thus intended
to be a complementary to the velocity-dependent approximation. Note that in this region the
maximum errors differ where on the 𝑣𝑥, 𝑣𝑦 grid the bounds are evaluated and the upper bound is
much tighter for higher velocities than close to zero velocities.

5.1.3 Modeling the Non-Holonomics

Previous MIQP formulations [Qia+16; ES17; BL18] have approximated the non-holonomics by
bounding acceleration in 𝑥 and 𝑦 direction and by coupling the velocities via

𝑣𝑦 ∈ [𝑣𝑥 tan(𝜃min), 𝑣𝑥 tan(𝜃max)], (5.6)

with 𝜃min and 𝜃max being the valid orientation range of that model. However, decoupled acceleration
bounds cannot yield a non-holonomic behavior. Ziegler et al. [Zie+14a] calculate the curvature
using

𝜅 =
𝑣𝑥𝑎𝑦 − 𝑣𝑦𝑎𝑥

3√𝑣2
𝑥 + 𝑣2

𝑦

(5.7)
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Figure 5.4: Plot of sin(𝜃) = sin(atan(𝑣𝑦/𝑣𝑥)) with respect to 𝑣𝑥 and 𝑣𝑦. The function is obviously highly
nonlinear but can be approximated in a piecewise linear fashion. (graphic from [EKK20], ©2020
IEEE)

and formulate the bound constraints 𝜅 ∈ [𝜅𝑚𝑖𝑛, 𝜅𝑚𝑎𝑥]. However, (5.7) is highly nonlinear and thus
curvature constraints cannot be expressed as a linear constraint for MIQP. To obtain constraints
dependent on 𝑎𝑥, 𝑎𝑦, we transform 𝜅𝑚𝑎𝑥, 𝜅𝑚𝑖𝑛 using (5.7) to

𝜅𝑚𝑎𝑥
𝑣𝑥

3√𝑣2
𝑥 + 𝑣2

𝑦 +
𝑣𝑦

𝑣𝑥
𝑎𝑥 ⪖ 𝑎𝑦 (5.8a)

𝜅𝑚𝑖𝑛
𝑣𝑥

3√𝑣2
𝑥 + 𝑣2

𝑦 +
𝑣𝑦

𝑣𝑥
𝑎𝑥 ⪕ 𝑎𝑦. (5.8b)

We can then apply the concept of region-wise linearization described in Section 5.1.1 to obtain
linear constraints and fit two linear polynomials for upper 𝒫𝑟

𝜅 and lower 𝒫𝑟
𝜅 bounding the curvature

as shown in Section 5.2.

5.2 Fitting Method
In this section, we will briefly describe how we fit the parameters in 5.1.2 and 5.1.3. All fits are
done on a region-wise basis and yield polynomials of the form of (5.5).

Fitting the Front Axle Position

In Section 5.1.2, we motivated the need to linearize the trigonometric functions (5.1a) and (5.1b),
which depend on 𝑣𝑥 and 𝑣𝑦. Both sine and cosine are highly nonlinear, in Figure 5.4 we show the
sine function. We formulate the problem to find a piecewise upper bound to a two-dimensional
nonlinear function of 𝑣𝑥 and 𝑣𝑦 as a linear least-squares problem with linear constraints.
To avoid infeasible fits or overconservative bounds, we do not chose the fitting support points

beginning from 0 s but from a low speed 𝑉. This significantly improves the quality of the bounds
but yields infeasible optimization problems if the vehicle velocity drops below this speed. In
Section 5.3.3 we elaborate how we cope with that issue. Also, the maximum velocity has an
influence on the tightness of the bounds. We therefore chose a fit with a suitable speed range for
the scenarios we evaluate. Adaptive selection and blending between different fitting velocities is
possible but was not evaluated in this context.
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5.3 Mixed-Integer Formulation of the Planning Problem

Table 5.2: Decision variables used throughout this work, with discrete time dependency 𝑘, region dependency
𝑟, environment dependency 𝜆, and obstacle dependency 𝑜

Variable Description Range
𝑝𝑥(𝑘), 𝑝𝑦(𝑘) Vehicle rear axle center position free
𝑣𝑥(𝑘), 𝑣𝑦(𝑘) Vehicle velocity in 𝑥, 𝑦 direction [𝑣, 𝑣]
𝑎𝑥(𝑘), 𝑎𝑦(𝑘) Vehicle acceleration in 𝑥, 𝑦 direction [𝑎, 𝑎]
𝑢𝑥(𝑘), 𝑢𝑦(𝑘) Vehicle jerk in 𝑥, 𝑦 direction [𝑢, 𝑢]
𝑓𝑥(𝑘), 𝑓𝑦(𝑘) Upper bound of the vehicle front axle center position free
𝑓𝑥(𝑘), 𝑓𝑦(𝑘) Lower bound of the vehicle front axle center position free
𝜌(𝑘, 𝑟) Region 𝑟 the vehicle is in at time 𝑘 binary
Ψ+

𝑥 (𝑘) No region change allowed helper variable: true if 𝑣𝑥 ≤ 𝑉 binary
Ψ−

𝑥 (𝑘) No region change allowed helper variable: true if 𝑣𝑥 ≥ 𝑉 binary
Ψ+

𝑦 (𝑘) No region change allowed helper variable: true if 𝑣𝑦 ≤ 𝑉 binary
Ψ−

𝑦 (𝑘) No region change allowed helper variable: true if 𝑣𝑦 ≥ 𝑉 binary
Ψ(𝑘) No region change allowed binary
𝑒(𝑘, 𝜆) Vehicle is not inside the environment sub-polygon 𝜆 at time 𝑡 binary
𝑜𝑝(𝑘, 𝑜) Vehicle does not collide with obstacle 𝑜 at time 𝑡 at the reference point 𝑝 binary
𝑜𝑓𝑓, 𝑜𝑓𝑓,𝑜𝑓𝑓,𝑜𝑓𝑓 Vehicle does not collide with obstacle 𝑜 at time 𝑡 at the respective front

upper and lower bounds 𝑓, 𝑓
binary

𝜉𝑥, 𝜉𝑦 Slack variables for agent-to-agent collisions [0, 𝐷(𝑘)]
𝜉𝑜 Slack variables for dynamic obstacles avoidance binary
𝜃(𝑘) True (unknown) vehicle orientation [0, 2𝜋]
𝑓𝑥(𝑘), 𝑓𝑦(𝑘) True (unknown) vehicle front axle center position free

Fitting the Curvature

As we discussed in Section 5.1.3, we approximate the curvature constraints by (5.8). We choose to
fit the polynomials 𝒫𝑟

𝜅 on

𝜅max
𝑣𝑥

3√𝑣2
𝑥 + 𝑣2

𝑦 ≡ 𝒫𝑟
𝜅 ≥ 𝑎𝑦 −

𝑣𝑦

𝑣𝑥
𝑎𝑥 (5.9a)

𝜅min
𝑣𝑥

3√𝑣2
𝑥 + 𝑣2

𝑦 ≡ 𝒫𝑟
𝜅 ≤ 𝑎𝑦 −

𝑣𝑦

𝑣𝑥
𝑎𝑥 (5.9b)

and use these polynomials in inequality constraints bounding 𝑎𝑥 and 𝑎𝑦 as (5.9) indicates. We
approximate the term 𝑣𝑦

𝑣𝑥
in the MIQP formulation by the mean orientation within the respective

region, using the region boundaries, see (5.2). The larger the regions (the fewer number of regions),
the higher the error will be. We then solve two unconstrained linear least-square problems by
minimizing the error to (5.9a), yielding the linear polynomial 𝒫𝑟

𝜅, and (5.9b), yielding 𝒫𝑟
𝜅.

5.3 Mixed-Integer Formulation of the Planning Problem
This section introduces the optimization problem formulation as a quadratic minimization problem
subject to a set of linear equality and inequality constraints.

5.3.1 Notation
We model the planning problem as MIQP without restricting the validity scope of the model.
The vehicle motion model is formulated as discrete linear constraints. Using binary variables, we
ensure collision-freeness and a correct non-holonomic motion of the vehicle. A quadratic objective
function keeps the solution close to the reference.
Subsequently, we use the nomenclature for the decision variables introduced in Table 5.2 and

Table 5.3 states the parameters of the model. The subscript �ref denotes the respective reference.
We optimize a discrete time range from 𝑘2 to 𝑘𝑁 with Δ𝑡 increment. By 𝒦, we denote the time
interval [𝑘1,… , 𝑘𝑁]. All decision variables are initialized with the current state of the vehicle
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Table 5.3: Time- and region-independent parameters used throughout this work
Parameter Description

𝑞𝑝 Objective gain position
𝑞𝑣 Objective gain velocity
𝑞𝑎 Objective gain acceleration
𝑞𝑢 Objective gain jerk
𝑞𝜉 Objective gain agent slack
𝑞𝑜 Objective gain obstacle slack
𝑁 Number of states
Δ𝑡 Time increment
𝒦 Time interval: [𝑘1, … , 𝑘𝑁]
l Vehicle wheel base

M Big-M constant
r collision circle radius
𝑉 Minimum speed to change a region
𝑅 Number of regions
ℛ Set of regions

𝑣, 𝑣 Region, time, and direction independent lower/upper velocity limit
𝑎, 𝑎 Region, time, and direction independent lower/upper acceleration limit
𝑢, 𝑢 Region, time, and direction independent lower/upper jerk limit

Λ Set of convex, polygonal environments
𝜆 Set of lines representing a convex polygonal sub-environment
𝒪 Set of obstacles
𝐷 Maximum slack safety distance

at 𝑘1. We bound the speed by the minimal and maximal values 𝑣 and 𝑣 from the fitting, as
our approximations are only valid there. The following constraints are applied, if not indicated
differently, to each agent individually. We omit the agent-dependency for each variable when not
leading to ambiguousness.

5.3.2 Formulating the Vehicle Model as Constraints

The vehicle dynamics are defined by:

𝑝𝑥(𝑘𝑖+1) = 𝑝𝑥(𝑘𝑖) +Δ𝑡𝑣𝑥(𝑘𝑖) +
Δ𝑡2𝑎𝑥(𝑘𝑖)

2
+ Δ𝑡3𝑢𝑥(𝑘𝑖)

6
(5.10a)

𝑣𝑥(𝑘𝑖+1) = 𝑣𝑥(𝑘𝑖) +Δ𝑡𝑎𝑥(𝑘𝑖) +
Δ𝑡2𝑢𝑥(𝑘𝑖)

2
(5.10b)

𝑎𝑥(𝑘𝑖+1) = 𝑎𝑥(𝑘𝑖) +Δ𝑡𝑢𝑥(𝑘𝑖) (5.10c)

𝑝𝑦(𝑘𝑖+1) = 𝑝𝑦(𝑘𝑖) +Δ𝑡𝑣𝑦(𝑘𝑖) +
Δ𝑡2𝑎𝑦(𝑘𝑖)

2
+

Δ𝑡3𝑢𝑦(𝑘𝑖)
6

(5.10d)

𝑣𝑦(𝑘𝑖+1) = 𝑣𝑦(𝑘𝑖) +Δ𝑡𝑎𝑦(𝑘𝑖) +
Δ𝑡2𝑢𝑦(𝑘𝑖)

2
(5.10e)

𝑎𝑦(𝑘𝑖+1) = 𝑎𝑦(𝑘𝑖) +Δ𝑡𝑢𝑦(𝑘𝑖) (5.10f)
∀𝑘𝑖 ∈ [𝑘1,… , 𝑘𝑁−1]

With this linear model correct non-holonomic motion as well as correct acceleration and steering
angle limits are only valid around a small reference orientation. We overcome this property by
introducing validity regions, see Section 5.1.1. The set of regions covering the full orientation of
360 degrees is denoted by ℛ. By the superscript �𝑟, we denote region-dependent parameters in
the following. All region-dependent parameters are summarized in Table 5.1.
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We set the binary decision variable 𝜌(𝑘, 𝑟) defining in which region 𝑟 the vehicle is in at time 𝑘
according to the two lines defining the region, cf. (5.2). We force the solution to lie in exactly one
region.

∑
𝑟∈ℛ

𝜌(𝑘, 𝑟) = 1 ∀𝑘 ∈ 𝒦 (5.11)

Since with an increasing number of regions, the evaluation time of the model increases as well, we
a-priori restrict the optimization to only use a set of allowed regions and pre-compute a parameter
𝜚𝑟 accordingly. Non-allowed regions are those that cannot physically be reached within the planning
horizon. To implement logical constraints, we use the technique of introducing a big constant 𝑀
to switch inequalities. The intuitive explanation of the now often used term 𝑀(1− 𝜌(𝑘, 𝑟)) is ”this
equation is active if and only if region 𝑟 is active at time-step 𝑘”. At low velocities, switching off
the constraints enforcing the region is necessary as we forbid changing the region at these low
velocities. This is achieved by the helper decision variable Ψ, that will be introduced in (5.17).
Due to transformation errors from the absolute velocity to velocities separated in 𝑥 and 𝑦 direction
and small changes in the input values could change the region the model can get infeasible if the
regions are enforced. At low velocities, it is not that crucial that a non-holonomic motion occurs as
acceleration and jerk are still bounded. The active region is set by the following set of constraints:

𝛼𝑟𝑣𝑦(𝑘) ≥ 𝛽𝑟𝑣𝑥(𝑘) −𝑀(1− 𝜌(𝑘, 𝑟)) −𝑀Ψ(𝑘) (5.12a)
𝛾𝑟𝑣𝑦(𝑘) ≤ 𝛿𝑟𝑣𝑥(𝑘) +𝑀(1− 𝜌(𝑘, 𝑟)) +𝑀Ψ(𝑘) (5.12b)

∀𝑘 ∈ 𝒦, ∀𝑟 ∈ ℛ, if 𝜚𝑟(𝑟) = 1

Regions marked as non-possible by 𝜚𝑟 may not be selected. With this implementation, the model
formulation is generic for all scenarios.

𝜌(𝑘, 𝑟) = 0 ∀𝑘 ∈ 𝒦, ∀𝑟 ∈ ℛ, if 𝜚𝑟 = 0 (5.13)

We impose region-dependent limits on acceleration and jerk to make sure we always meet the
correct absolute possible acceleration and jerk. As acceleration 𝑎𝑥, 𝑎𝑦 and jerk 𝑢𝑥, 𝑢𝑦 are defined
in a global system, the limits are rotated with the regions. Note that the speeds are naturally
bounded correctly by (5.12).

𝑎𝑥(𝑘) ≤ 𝑎𝑟
𝑥 +𝑀(1− 𝜌(𝑘, 𝑟)) (5.14a)

𝑎𝑥(𝑘) ≥ 𝑎𝑟
𝑥 −𝑀(1− 𝜌(𝑘, 𝑟)) (5.14b)

𝑎𝑦(𝑘) ≤ 𝑎𝑟
𝑦 +𝑀(1− 𝜌(𝑘, 𝑟)) (5.14c)

𝑎𝑦(𝑘) ≥ 𝑎𝑟
𝑦 −𝑀(1− 𝜌(𝑘, 𝑟)) (5.14d)

𝑢𝑥(𝑘) ≤ 𝑢𝑟
𝑥 +𝑀(1− 𝜌(𝑘, 𝑟)) (5.14e)

𝑢𝑥(𝑘) ≥ 𝑢𝑟
𝑥 −𝑀(1− 𝜌(𝑘, 𝑟)) (5.14f)

𝑢𝑦(𝑘) ≤ 𝑢𝑟
𝑦 +𝑀(1− 𝜌(𝑘, 𝑟)) (5.14g)

𝑢𝑦(𝑘) ≥ 𝑢𝑟
𝑦 −𝑀(1− 𝜌(𝑘, 𝑟)) (5.14h)

∀𝑘 ∈ 𝒦, ∀𝑟 ∈ ℛ, if 𝜚𝑟 = 1

5.3.3 Modeling the Non-Holonomy as Constraints
To ensure a correct non-holonomic movement of the vehicle, we limit the lateral acceleration using
the maximal available curvature per region as motivated in Section 5.1.3. We fit lower and upper
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linear approximation polynomials 𝒫𝑟
𝜅 and 𝒫𝑟

𝜅 dependent on 𝑣𝑥, 𝑣𝑦, and the region 𝑟. The following
constraints model the inequalities bounding the curvature 𝜅 as stated in (5.8).

𝑎𝑦(𝑘) −
𝛽𝑟 + 𝛿𝑟

𝛼𝑟 +𝛾𝑟 𝑎𝑥(𝑘) ≤ 𝒫𝑟
𝜅(𝑣𝑥(𝑘), 𝑣𝑦(𝑘)) +𝑀(1− 𝜌(𝑘, 𝑟)) +𝑀Ψ(𝑘) (5.15a)

𝑎𝑦(𝑘) −
𝛽𝑟 + 𝛿𝑟

𝛼𝑟 +𝛾𝑟 𝑎𝑥(𝑘) ≥ 𝒫𝑟
𝜅(𝑣𝑥(𝑘), 𝑣𝑦(𝑘)) +𝑀(1− 𝜌(𝑘, 𝑟)) +𝑀Ψ(𝑘) (5.15b)

∀𝑘 ∈ 𝒦, ∀𝑟 ∈ ℛ, if 𝜚𝑟 = 1

At very low vehicle speeds, too tight curvature constraints limit the acceleration so that other
accelerations than zero are not possible. In contrast, too loose curvature constraints will violate the
non-holonomy. We therefore introduce a minimum speed limit. If both |𝑣𝑥| and |𝑣𝑦| are below that
limit, regions changes are not allowed, which we indicate by setting the binary helper variable Ψ
to true. We model this by a set of four helper variables Ψ+

𝑥 , Ψ−
𝑥 , Ψ+

𝑦 , Ψ−
𝑦 indicating if the velocity

𝑣𝑥 or 𝑣𝑦 exceeds or falls below the range defined by 𝑉.

𝑣𝑥(𝑘𝑖) − 𝑉 ≥ −𝑀Ψ+
𝑥 (𝑘𝑖) (5.16a)

𝑣𝑥(𝑘𝑖) − 𝑉 ≤ 𝑀(1−Ψ+
𝑥 (𝑘𝑖)) (5.16b)

−𝑣𝑥(𝑘𝑖) − 𝑉 ≥ 𝑀(1−Ψ−
𝑥 (𝑘𝑖)) (5.16c)

−𝑣𝑥(𝑘𝑖) − 𝑉 ≤ −𝑀Ψ−
𝑥 (𝑘𝑖) (5.16d)

𝑣𝑦(𝑘𝑖) − 𝑉 ≥ −𝑀Ψ+
𝑦 (𝑘𝑖) (5.16e)

𝑣𝑦(𝑘𝑖) − 𝑉 ≤ 𝑀(1−Ψ+
𝑦 (𝑘𝑖)) (5.16f)

−𝑣𝑦(𝑘𝑖) − 𝑉 ≥ 𝑀(1−Ψ−
𝑦 (𝑘𝑖)) (5.16g)

−𝑣𝑦(𝑘𝑖) − 𝑉 ≤ −𝑀Ψ−
𝑦 (𝑘𝑖) (5.16h)

∀𝑘𝑖 ∈ [𝑘2,… , 𝑘𝑁]

If all four helper variables evaluate to true, we set Ψ to true:

Ψ(𝑘𝑖) ≤ Ψ+
𝑥 (𝑘𝑖) (5.17a)

Ψ(𝑘𝑖) ≤ Ψ−
𝑥 (𝑘𝑖) (5.17b)

Ψ(𝑘𝑖) ≤ Ψ+
𝑦 (𝑘𝑖) (5.17c)

Ψ(𝑘𝑖) ≤ Ψ−
𝑦 (𝑘𝑖) (5.17d)

Ψ(𝑘𝑖) ≥ Ψ+
𝑥 (𝑘𝑖) +Ψ−

𝑥 (𝑘𝑖) +Ψ+
𝑦 (𝑘𝑖) +Ψ−

𝑦 (𝑘𝑖) − 3 (5.17e)
∀𝑘𝑖 ∈ [𝑘2,… , 𝑘𝑁]

If both 𝑣𝑥 and 𝑣𝑦 are within the 𝑉 range, the combined decision variable Ψ is set true. In this case
we set the current region equal to the region in the last optimization step assuming that region
changes are not necessary at low velocities.

𝜌(𝑘𝑖, 𝑟) − 𝜌(𝑘𝑖−1, 𝑟) ≤ 1−Ψ(𝑘𝑖) (5.18a)
𝜌(𝑘𝑖, 𝑟) − 𝜌(𝑘𝑖−1, 𝑟) ≥ −1+Ψ(𝑘𝑖) (5.18b)

∀𝑘𝑖 ∈ [𝑘2,… , 𝑘𝑁], ∀𝑟 ∈ ℛ

5.3.4 Approximating the Front Axle Position as Constraints
In Section 5.1.2 we introduced the concept of how to approximate lower and upper bounds for the
position of the front axle of the vehicle. Using this idea, we formulate constraints performing an
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𝑟

𝜆1

𝜆2 𝜆3

𝜆4

𝑟

𝑜1

Λ

Figure 5.5: Schematic sketch showing how the environment polygon Λ is shrinked by the collision circle
radius 𝑟 and split into several convex polygons 𝜆� (gray). Obstacles 𝑜� (red) are inflated with
𝑟. (graphic from [EKK20], ©2020 IEEE)

(over-)approximative collision check for the front axle instead of computing the intersection or
distance of the actual vehicle shape with obstacles or the environment. We calculate the lower
bounds 𝑓𝑥, 𝑓𝑦 and upper bounds 𝑓𝑥, 𝑓𝑦 of the true, unknown, front position (𝑓𝑥, 𝑓𝑦) with respect
to the current region 𝑟 where 𝑙 denotes the wheelbase of the vehicle.

𝑀(𝜌(𝑘, 𝑟)−1) ≤ 𝑓𝑥(𝑘) − 𝑝𝑥(𝑘) − 𝑙𝒫𝑟
cos(𝑣𝑥(𝑘), 𝑣𝑦(𝑘)) (5.19a)

𝑀(1−𝜌(𝑘, 𝑟)) ≥ 𝑓𝑥(𝑘) − 𝑝𝑥(𝑘) − 𝑙𝒫𝑟
cos(𝑣𝑥(𝑘), 𝑣𝑦(𝑘)) (5.19b)

−𝑀(1− 𝜌(𝑘, 𝑟)) ≤ 𝑓𝑥(𝑘) − 𝑝𝑥(𝑘) − 𝑙𝒫𝑟
cos(𝑣𝑥(𝑘), 𝑣𝑦(𝑘)) (5.19c)

𝑀(1− 𝜌(𝑘, 𝑟)) ≥ 𝑓𝑥(𝑘) − 𝑝𝑥(𝑘) − 𝑙𝒫𝑟
cos(𝑣𝑥(𝑘), 𝑣𝑦(𝑘)) (5.19d)

𝑀(𝜌(𝑘, 𝑟)−1) ≤ 𝑓𝑦(𝑘) − 𝑝𝑦(𝑘) − 𝑙𝒫𝑟
sin(𝑣𝑥(𝑘), 𝑣𝑦(𝑘)) (5.19e)

𝑀(1−𝜌(𝑘, 𝑟)) ≥ 𝑓𝑦(𝑘) − 𝑝𝑦(𝑘) − 𝑙𝒫𝑟
sin(𝑣𝑥(𝑘), 𝑣𝑦(𝑘)) (5.19f)

−𝑀(1− 𝜌(𝑘, 𝑟)) ≤ 𝑓𝑦(𝑘) − 𝑝𝑦(𝑘) − 𝑙𝒫𝑟
sin(𝑣𝑥(𝑘), 𝑣𝑦(𝑘)) (5.19g)

𝑀(1− 𝜌(𝑘, 𝑟)) ≥ 𝑓𝑦(𝑘) − 𝑝𝑦(𝑘) − 𝑙𝒫𝑟
sin(𝑣𝑥(𝑘), 𝑣𝑦(𝑘)) (5.19h)

∀𝑘𝑖 ∈ 𝒦, ∀𝑟 ∈ ℛ, if 𝜚𝑟(𝑟) = 1

5.3.5 Constraints Limiting the Model to Stay on the Road

This section introduces how we enforce the vehicle to stay within an environment modeled as
an arbitrary, potentially non-convex closed polygon Λ [FB11]. The environment is deflated with
the radius of the collision circles, see Figure 5.5. Non-convex environment polygons are split
into several convex sub-polygons 𝜆. We enforce the vehicle to be in at least one of these convex
sub-polygons. These sub-polygons are represented by a set of line segments, denoted by 𝑙, between
two points 𝑎𝑙 and 𝑏𝑙. With this strategy, the polygon-to-polygon collision check narrows down to a
point-to-polygon check.

We enforce the rear axle position (𝑝𝑥, 𝑝𝑦) and the lower and upper bounds of the front axle
position, namely the four points (𝑓𝑥, 𝑓𝑦), (𝑓𝑥, 𝑓𝑦), (𝑓𝑥, 𝑓𝑦), and (𝑓𝑥, 𝑓𝑦), to be within the environment
polygon. Each set of constraints is formulated in a similar manner. The decision variable 𝑒 models
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that all five points do not collide with the environment sub-polygon 𝜆 at time 𝑘. By 𝑙�, we here
denote 𝑏𝑙

� −𝑎𝑙
� for 𝑥 and 𝑦 respectively.

𝑙𝑥(𝑝𝑦(𝑘) − 𝑎𝑙
𝑦) − 𝑙𝑦(𝑝𝑥(𝑘) − 𝑎𝑙

𝑥) ≤ −𝑀𝑒(𝑘, 𝜆) (5.20a)
𝑙𝑥(𝑓𝑦(𝑘) − 𝑎𝑙

𝑦) − 𝑙𝑦(𝑓𝑥(𝑘) − 𝑎𝑙
𝑥) ≤ −𝑀𝑒(𝑘, 𝜆) (5.20b)

𝑙𝑥(𝑓𝑦(𝑘) − 𝑎𝑙
𝑦) − 𝑙𝑦(𝑓𝑥(𝑘) − 𝑎𝑙

𝑥) ≤ −𝑀𝑒(𝑘, 𝜆) (5.20c)

𝑙𝑥(𝑓𝑦(𝑘) − 𝑎𝑙
𝑦) − 𝑙𝑦(𝑓𝑥(𝑘) − 𝑎𝑙

𝑥) ≤ −𝑀𝑒(𝑘, 𝜆) (5.20d)

𝑙𝑥(𝑓𝑦(𝑘) − 𝑎𝑙
𝑦) − 𝑙𝑦(𝑓𝑥(𝑘) − 𝑎𝑙

𝑥) ≤ −𝑀𝑒(𝑘, 𝜆) (5.20e)
∀𝑘 ∈ 𝒦, ∀𝑙 ∈ 𝜆, ∀𝜆 ∈ Λ

To ensure that all vehicle points are at least within one of the environment polygons, we set

∑
𝜆∈Λ

𝑒(𝑘, 𝜆) ≤ |Λ| − 1 ∀𝑘 ∈ 𝒦, (5.21)

where |Λ| denotes the number of convex sub-environments.

5.3.6 Formulating Obstacle Collision Avoidance as Constraints

We enforce the vehicle to not collide with an arbitrary number of static or dynamic convex obstacle
polygons 𝒪. Non-convex obstacle shapes as described in Section 5.3.5 split into several convex ones.
The obstacles are inflated with the radius of the collision circles, cf. Figure 5.5. Note that with
the following formulation as well static obstacles as dynamically moving obstacles are avoided.

𝑙 again denotes one line segment of one obstacle 𝑜 within the set of obstacles 𝒪 with startpoint
𝑎𝑙 and endpoint 𝑏𝑙. We enforce the vehicle rear axle position (𝑝𝑥, 𝑝𝑦) and the four permutations
of the front axle bounds to be collision-free. In contrast to the environment, which we assume
as constant over time, the obstacle polygons may vary their position and shape over time, but
preserve the polygon topology. By decision variables 𝑜�, we indicate whether none of the five
points collide with the obstacle 𝑜. (5.22) states the inequalities for the point (𝑝𝑥, 𝑝𝑦) constraining
𝑜𝑝 and respective decision variables for the front axis lower and upper bounds. The four points
representing the collision shape approximation of the front axle (𝑓𝑥, 𝑓𝑦) are each taken into account
by four more sets of similar decision variables 𝑜� and sets of inequalities.

𝑙𝑥(𝑝𝑦(𝑘) − 𝑎𝑙
𝑦) − 𝑙𝑦(𝑝𝑥(𝑘) − 𝑎𝑙

𝑥) ≤ 𝑀𝑜𝑝(𝑘, 𝑙) (5.22a)
𝑙𝑥(𝑓𝑦(𝑘) − 𝑎𝑙

𝑦) − 𝑙𝑦(𝑓𝑥(𝑘) − 𝑎𝑙
𝑥) ≤ 𝑀𝑜𝑓𝑓(𝑘, 𝑙) (5.22b)

𝑙𝑥(𝑓𝑦(𝑘) − 𝑎𝑙
𝑦) − 𝑙𝑦(𝑓𝑥(𝑘) − 𝑎𝑙

𝑥) ≤ 𝑀𝑜𝑓𝑓(𝑘, 𝑙) (5.22c)

𝑙𝑥(𝑓𝑦(𝑘) − 𝑎𝑙
𝑦) − 𝑙𝑦(𝑓𝑥(𝑘) − 𝑎𝑙

𝑥) ≤ 𝑀𝑜𝑓𝑓(𝑘, 𝑙) (5.22d)

𝑙𝑥(𝑓𝑦(𝑘) − 𝑎𝑙
𝑦) − 𝑙𝑦(𝑓𝑥(𝑘) − 𝑎𝑙

𝑥) ≤ 𝑀𝑜𝑓𝑓(𝑘, 𝑙) (5.22e)

∀𝑘 ∈ 𝒦, ∀𝑙 ∈ 𝑜, ∀𝑜 ∈ 𝒪
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Denoting the number of line segments in a sub-polygon by |𝑜|, we enforce each of the five points
to not lie within an obstacle.

∑
𝑙∈𝑜

𝑜𝑝(𝑘, 𝑙) ≤ |𝑜| − 1 (5.23a)

∑
𝑙∈𝑜

𝑜𝑓𝑓(𝑘, 𝑙) ≤ |𝑜| − 1 (5.23b)

∑
𝑙∈𝑜

𝑜𝑓𝑓(𝑘, 𝑙) ≤ |𝑜| − 1 (5.23c)

∑
𝑙∈𝑜

𝑜𝑓𝑓(𝑘, 𝑙) ≤ |𝑜| − 1 (5.23d)

∑
𝑙∈𝑜

𝑜𝑓𝑓(𝑘, 𝑙) ≤ |𝑜| − 1 (5.23e)

∀𝑘 ∈ 𝒦, ∀𝑜 ∈ 𝒪

With the object collision avoidance constraints as formulated in (5.23) the exact shape of an
obstacle is used for collision avoidance. If the object is a dynamically moving obstacle, such as
a fellow car, the exact position and size is only know with some uncertainty due to the errors
introduced from the perception and prediction components. Also, coping with human traffic
participants, the predicted trajectory will only be true to a certain extent. Wrong perception and
prediction can make the optimization problem infeasible. To avoid such situations, we soften the
set of constraints (5.23) for dynamic obstacles by introducing slack variables 𝜉𝑜 ∈ {0, 1} that also
will influence the objective function. These slack variables disable the respective inequality and
allow the optimizer to violate the respective constraint. We modify the constraint set (5.23) for
dynamic obstacles to

∑
𝑙∈𝑜

𝑜𝑝(𝑘, 𝑙) − 𝜉1
𝑜 ≤ |𝑜| − 1 (5.24a)

∑
𝑙∈𝑜

𝑜𝑓𝑓(𝑘, 𝑙) − 𝜉2
𝑜 ≤ |𝑜| − 1 (5.24b)

∑
𝑙∈𝑜

𝑜𝑓𝑓(𝑘, 𝑙) − 𝜉3
𝑜 ≤ |𝑜| − 1 (5.24c)

∑
𝑙∈𝑜

𝑜𝑓𝑓(𝑘, 𝑙) − 𝜉4
𝑜 ≤ |𝑜| − 1 (5.24d)

∑
𝑙∈𝑜

𝑜𝑓𝑓(𝑘, 𝑙) − 𝜉5
𝑜 ≤ |𝑜| − 1 (5.24e)

∀𝑘 ∈ 𝒦, ∀𝑜 ∈ 𝒪

This formulation in practice has the consequence, that all dynamic obstacles are duplicated. A
hard constraint avoids collision with the estimated position of the obstacles and a soft constraint
formulation makes sure a sufficient safety distance is kept to robustly account for perception and
prediction errors.

5.3.7 Multi-Agent Collision Constraints
We approximate the shape of each vehicle to formulate an agent-to-agent collision constraint. In
our linear model, the actual orientation of the vehicle is not available, but with the region-based
formulation, we can compute a lower- and upper-bounding rectangle for the center of the front
axle.

In the following, the superscript �𝑖 refers to the respective variable of the agent 𝑖. For collision
avoidance, we approximate the vehicle shape by circles with radius 𝑅𝑖, one around the rear axle
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𝑓𝑥

𝑓𝑦

𝑓𝑦

𝑓𝑥 𝑥

𝑦

𝑝𝑦

𝑝𝑥

Figure 5.6: Approximation of the vehicle shape to formulate the agent-to-agent collision check based on
the rectangles of the respective agents. The black area indicates a collision. (graphic from
[KEK20], ©2020 IEEE)

center, and four for the front axle approximation. To avoid agent-to-agent collisions, we choose
to over-approximate these circles with axis-aligned squares again, as sketched in Figure 5.6. A
better approximation of the circles, for example, with two rectangles, yields more constraints and
binary variables, lowering the runtime without providing a huge benefit. We formulate four sets of
constraints, the first prevents collisions between the rear parts of two agents, the second prevents
collisions between the rear part of the first and the front part of the second agent, the third vice
versa, and the fourth prevents collisions between the front parts of both agents for each pair of
agents.

The rear part-to-rear part collision constraint of two agents 𝐴𝑖 and 𝐴𝑗 is based on the following
logical formula. We define the sum of both radii 𝑅𝑖+𝑗 ∶= 𝑅𝑖 +𝑅𝑗. A collision occurs at one
timestep 𝑘 if and only if

𝑝𝑖
𝑥(𝑘) ≥ 𝑝𝑗

𝑥(𝑘) −𝑅𝑖+𝑗 ∧ 𝑝𝑖
𝑥(𝑘) ≤ 𝑝𝑗

𝑥(𝑘) +𝑅𝑖+𝑗

∧ 𝑝𝑖
𝑦(𝑘) ≥ 𝑝𝑗

𝑦(𝑘) −𝑅𝑖+𝑗 ∧ 𝑝𝑖
𝑦(𝑘) ≤ 𝑝𝑗

𝑦(𝑘) +𝑅𝑖+𝑗. (5.25)

Intuitively, (5.25) states that a collision occurs if both the absolute distance in 𝑥-direction
|𝑝𝑖

𝑥(𝑘) − 𝑝𝑗
𝑥(𝑘)| and 𝑦-direction |𝑝𝑖

𝑦(𝑘) − 𝑝𝑗
𝑦(𝑘)| is smaller 𝑅𝑖+𝑗. Logical negation yields that two

agents do not collide at timestep 𝑘 if and only if

𝑝𝑖
𝑥(𝑘) ≤ 𝑝𝑗

𝑥(𝑘) −𝑅𝑖+𝑗 ∨ 𝑝𝑖
𝑥(𝑘) ≥ 𝑝𝑗

𝑥(𝑘) +𝑅𝑖+𝑗

∨𝑝𝑖
𝑦(𝑘) ≤ 𝑝𝑗

𝑦(𝑘) −𝑅𝑖+𝑗 ∨ 𝑝𝑖
𝑦(𝑘) ≥ 𝑝𝑗

𝑦(𝑘) +𝑅𝑖+𝑗. (5.26)

We formulate this as linear constraints using a set of four decision variables 𝛼𝑖𝑗
� , one for each

inequality and an appropriately chosen big constant 𝑀.

𝑝𝑖
𝑥(𝑘) ≤ 𝑝𝑗

𝑥(𝑘) −𝑅𝑖+𝑗 +𝑀𝛼𝑖𝑗
1 (𝑘) (5.27a)

𝑝𝑖
𝑥(𝑘) ≥ 𝑝𝑗

𝑥(𝑘) +𝑅𝑖+𝑗 −𝑀𝛼𝑖𝑗
2 (𝑘) (5.27b)

𝑝𝑖
𝑦(𝑘) ≤ 𝑝𝑗

𝑦(𝑘) −𝑅𝑖+𝑗 +𝑀𝛼𝑖𝑗
3 (𝑘) (5.27c)

𝑝𝑖
𝑦(𝑘) ≥ 𝑝𝑗

𝑦(𝑘) +𝑅𝑖+𝑗 −𝑀𝛼𝑖𝑗
4 (𝑘) (5.27d)

3 ≥
4

∑
𝑎=1

𝛼𝑖𝑗
𝑎 (𝑘) ∀ 𝑘 ∈ 𝒦. (5.27e)

(5.27e) represents the logical formulas (5.26) by coupling the four constraints (5.27a) - (5.27d)
and makes sure no more than three are active, and hence no rear part-to-rear part collision occurs.
As we aim to cope with agents that are not controlled by our algorithm (e.g., human-driven

vehicles), the computed motion will not exactly match the reality. This yields prediction errors
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for the uncontrolled agents, which then can lead to infeasible optimization problems or imminent
collisions. To account for these prediction errors, we introduce an additional safety distance for the
ego agent to all uncontrolled agents as a soft constraint. Inspired by the formulation in [GGW17],
we introduce slack variables 𝜉 to the agent-to-agent collision constraints. With the desired safety
distance of both agents 𝐷(𝑘) and a set of slack variables 𝜉𝑥(𝑘), 𝜉𝑦(𝑘) ∈ [0, 𝐷(𝑘)], we modify (5.27)
to

𝑝𝑖
𝑥(𝑘) ≤ 𝑝𝑗

𝑥(𝑘) −𝑅𝑖+𝑗 −𝐷(𝑘) + 𝜉𝑖𝑗
𝑥 (𝑘) +𝑀𝛼𝑖𝑗

1 (𝑘) (5.28a)

𝑝𝑖
𝑥(𝑘) ≥ 𝑝𝑗

𝑥(𝑘) +𝑅𝑖+𝑗 +𝐷(𝑘) − 𝜉𝑖𝑗
𝑥 (𝑘) −𝑀𝛼𝑖𝑗

2 (𝑘) (5.28b)

𝑝𝑖
𝑦(𝑘) ≤ 𝑝𝑗

𝑦(𝑘) −𝑅𝑖+𝑗 −𝐷(𝑘) + 𝜉𝑖𝑗
𝑦 (𝑘) +𝑀𝛼𝑖𝑗

3 (𝑘) (5.28c)

𝑝𝑖
𝑦(𝑘) ≥ 𝑝𝑗

𝑦(𝑘) +𝑅𝑖+𝑗 +𝐷(𝑘) − 𝜉𝑖𝑗
𝑦 (𝑘) −𝑀𝛼𝑖𝑗

4 (𝑘) (5.28d)
𝜉𝑥(𝑘) ≤ 𝐷(𝑘) (5.28e)
𝜉𝑦(𝑘) ≤ 𝐷(𝑘) (5.28f)

3 ≥
4

∑
𝑎=1

𝛼𝑖𝑗
𝑎 (𝑘) ∀ 𝑘 ∈ 𝒦. (5.28g)

The slack variables will be included in the cost function (see Section 5.3.8). The optimizer will
then seek to keep the slack variables as small as possible. Consequently, in (5.28), the additional
safety distance 𝐷 will be as high as possible. With this concept, fatal prediction errors (immanent
collisions) are mitigated. Note that adding a hard safety margin only leads to more conservative
behavior and does not avoid infeasible optimization problems.

To prevent collisions between the rear part of agent 𝐴𝑖 and the front part of agent 𝐴𝑗, we again
formulate logical constraints that a collision occurs at 𝑘 if and only if

𝑝𝑖
𝑥(𝑘) ≥ 𝑓𝑥

𝑗(𝑘) −𝑅𝑖+𝑗 ∧ 𝑝𝑖
𝑥(𝑘) ≤ 𝑓𝑥

𝑗(𝑘) +𝑅𝑖+𝑗

∧ 𝑝𝑖
𝑦(𝑘) ≥ 𝑓𝑦

𝑗(𝑘) −𝑅𝑖+𝑗 ∧ 𝑝𝑖
𝑦(𝑘) ≤ 𝑓𝑥

𝑗(𝑘) +𝑅𝑖+𝑗. (5.29)

Here we force the point (𝑝𝑖
𝑥, 𝑝𝑖

𝑦) to be outside the front axle approximation rectangle enlarged
by the sum of the collision circle radii. The set of constraints is formulated as described for the
rear part-to-rear part collision case. This can again be formulated as a set of five constraints with
appropriate decision variables:

𝑝𝑖
𝑥(𝑘) ≤ 𝑓𝑥

𝑗(𝑘) −𝑅𝑖+𝑗 +𝑀𝛼𝑖𝑗
1 (𝑘) (5.30a)

𝑝𝑖
𝑥(𝑘) ≥ 𝑓𝑥

𝑗(𝑘) +𝑅𝑖+𝑗 −𝑀𝛼𝑖𝑗
2 (𝑘) (5.30b)

𝑝𝑖
𝑦(𝑘) ≤ 𝑓𝑦

𝑗(𝑘) −𝑅𝑖+𝑗 +𝑀𝛼𝑖𝑗
3 (𝑘) (5.30c)

𝑝𝑖
𝑦(𝑘) ≥ 𝑓𝑦

𝑗(𝑘) +𝑅𝑖+𝑗 −𝑀𝛼𝑖𝑗
4 (𝑘) (5.30d)

3 ≥
4

∑
𝑎=1

𝛼𝑖𝑗
𝑎 ∀ 𝑘 ∈ 𝒦 (5.30e)

Another analog set of constraints prevents collisions between the rear part of 𝐴𝑗 and the front
part of 𝐴𝑖. Both front-to-rear collision checks are not softened with slack variables as this only
showed a minor effect on the performance with increased runtime.
We avoid collisions between the fronts of agents 𝐴𝑖 and 𝐴𝑗 applying the same strategy but

forcing the center point of the front axle approximation rectangle of 𝐴𝑗 to retain sufficient distance
to the front axle approximation rectangle of 𝐴𝑖. Concretely, we define the sufficient distance as
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𝑅𝑖+𝑗 plus the size of the approximation rectangle of agent 𝐴𝑗. Hence, no front part-to-front part
collision occurs at timestep 𝑘 if and only if

1
2
(𝑓𝑥

𝑗(𝑘) + 𝑓𝑥
𝑗(𝑘)) ≤ 𝑓𝑥

𝑖(𝑘) −𝑅𝑖+𝑗 − 1
2
(𝑓𝑥

𝑗(𝑘) − 𝑓𝑥
𝑗(𝑘))∨

1
2
(𝑓𝑥

𝑗(𝑘) + 𝑓𝑥
𝑗(𝑘)) ≥ 𝑓𝑥

𝑖(𝑘) +𝑅𝑖+𝑗 + 1
2
(𝑓𝑥

𝑗(𝑘) − 𝑓𝑥
𝑗(𝑘))∨

1
2
(𝑓𝑦

𝑗(𝑘) + 𝑓𝑦
𝑗(𝑘)) ≤ 𝑓𝑦

𝑖(𝑘) −𝑅𝑖+𝑗 − 1
2
(𝑓𝑦

𝑗(𝑘) − 𝑓𝑦
𝑗(𝑘))∨

1
2
(𝑓𝑦

𝑗(𝑘) + 𝑓𝑦
𝑗(𝑘)) ≥ 𝑓𝑦

𝑖(𝑘) +𝑅𝑖+𝑗 + 1
2
(𝑓𝑦

𝑗(𝑘) − 𝑓𝑦
𝑗(𝑘)). (5.31)

The set of constraints then calculates to

0 ≤ 𝑓𝑥
𝑖(𝑘) − 𝑓𝑥

𝑗(𝑘) −𝑅𝑖+𝑗 + 𝜉𝑖𝑗
𝑥 (𝑘) +𝑀𝛼𝑖𝑗

1 (𝑘) (5.32a)

0 ≥ 𝑓𝑥
𝑖(𝑘) − 𝑓𝑥

𝑗(𝑘) +𝑅𝑖+𝑗 − 𝜉𝑖𝑗
𝑥 (𝑘) −𝑀𝛼𝑖𝑗

2 (𝑘) (5.32b)

0 ≤ 𝑓𝑦
𝑖(𝑘) − 𝑓𝑦

𝑗(𝑘) −𝑅𝑖+𝑗 + 𝜉𝑖𝑗
𝑦 (𝑘) +𝑀𝛼𝑖𝑗

1 (𝑘) (5.32c)

0 ≥ 𝑓𝑦
𝑖(𝑘) − 𝑓𝑦

𝑗(𝑘) +𝑅𝑖+𝑗 − 𝜉𝑖𝑗
𝑦 (𝑘) −𝑀𝛼𝑖𝑗

2 (𝑘) (5.32d)

3 ≥
4

∑
𝑎=1

𝛼𝑖𝑗
𝑎 (𝑘) ∀ 𝑘 ∈ 𝒦 (5.32e)

including an appropriate set of slack variables 𝜉 and decision variables 𝛼.
As an alternative, we also formulated tighter front part-to-front part collision constraints by

excluding the interval overlap of [𝑓𝑥
𝑖 −𝑅𝑖, 𝑓𝑥

𝑖 +𝑅𝑖] with [𝑓𝑥
𝑗 −𝑅𝑗, 𝑓𝑥

𝑗 +𝑅𝑗] and in 𝑦-direction vice
versa. This formulation is slower as it needs more binary decision variables and does not provide
huge benefits. In dense and coupled scenarios, (5.31) can lead to harsh braking or acceleration in
front of narrow but still drivable passages due to the over-conservative approximation.

5.3.8 Joint Cost Function
As the objective of the optimization problem, we chose to minimize a weighted sum of individual
cost functions per agent. This approach if referred to centralized planning in a model predictive
control setting.

Formulating Reference Tracking as Objective Function We formulate the individual cost
function term of agent 𝐴𝑖 as a weighted sum of position and velocity distance to the reference.
For acceleration and jerk, we aim to minimize the squared values to avoid changes. Suitable cost
terms 𝑞� balance the solution.

𝐽 𝑖 = ∑
𝑘∈𝒦

(𝑞𝑖
𝑝(𝑝𝑖

𝑥(𝑘) − 𝑝𝑖
𝑥,𝑟𝑒𝑓(𝑘))2 + 𝑞𝑖

𝑝(𝑝𝑖
𝑦(𝑘) − 𝑝𝑖

𝑦,𝑟𝑒𝑓(𝑘))2

+ 𝑞𝑖
𝑣(𝑣𝑖

𝑥(𝑘) − 𝑣𝑖
𝑥,𝑟𝑒𝑓(𝑘))2 + 𝑞𝑖

𝑣(𝑣𝑖
𝑦(𝑘) − 𝑣𝑖

𝑦,𝑟𝑒𝑓(𝑘))2

+ 𝑞𝑖
𝑎𝑎𝑖

𝑥(𝑘)2 + 𝑞𝑖
𝑎𝑎𝑖

𝑦(𝑘)2 + 𝑞𝑖
𝑢𝑢𝑖

𝑥(𝑘)2 + 𝑞𝑖
𝑢𝑢𝑖

𝑦(𝑘)2) (5.33)

To formulate a MIQP problem, the objective function has to be a sum of squared or linear terms.
Due to the separation of 𝑥- and 𝑦-directions, absolute terms, such as a reference path, cannot be
included directly in the cost function. As we still consider it desirable to track a reference speed
along a reference path, we compute the trajectory reference, a sequence of 𝑥 and 𝑦 coordinates
along the discrete time 𝑘, from path and speed reference values in a pre-processing step. Also, we
cannot use the absolute velocity (or acceleration) in the objective, since with |𝑣| = √(𝑣2

𝑥 + 𝑣2
𝑦),
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the term (|𝑣|2 − |𝑣𝑟𝑒𝑓|2)2 is not quadratic. Similarly, costs on the angular velocity would result
in non-quadratic terms. Furthermore, as we do not calculate a distance to objects in the model,
we cannot use these distance terms in the cost function. If the problem is formulated in a fully
nonlinear way such terms are possible in the objective function [Zie+14a]. Note that with this
formulation of the objective function we track a reference trajectory and not a reference path.

Combination Into a Joint Cost Function To leverage the interests of the agents, we introduce
scaling factors 𝜆 ∈ [0, 1] in the overall cost function. With these, we can push the optimization
problem to generate egoistic, symmetric, or altruistic solutions. For each agent 𝐴𝑖, we define a
scaling factor 𝜆𝑖 with the following properties. All scaling factors shall sum up to one

∑
𝑖∈𝒜

𝜆𝑖 = 1. (5.34)

The scaling factor of the ego agent 𝜆ego is chosen freely within the interval [0, 1]. We then set

𝜆𝑖 = 1− 𝜆ego

|𝒜| − 1
∀ 𝑖 ≠ ego. (5.35)

The intuitive explanation of (5.35) is that high values for 𝜆ego will lead to egoistic ego behavior,
all values equal a symmetric solution, and for small values of 𝜆ego the ego agent will not enforce
its own goals, only trying to fulfill the constraints.
The overall cost function is then defined as

𝐽 = ∑
𝑖∈𝒜

𝜆𝑖𝐽 𝑖 + 𝑞𝜉 ∑
𝑘∈𝒦

∑
𝑖∈𝒜, 𝑗∈𝒜𝑖

(𝜉𝑖𝑗
𝑥 (𝑘) + 𝜉𝑖𝑗

𝑦 (𝑘))2 + 𝑞𝑜 ∑
𝑜∈𝒪

4
∑
𝑖=1

(𝜉𝑖
𝑜)

2 (5.36)

with the second term penalizing high values of the slack variables and a weighting factor 𝑞𝜉.

5.3.9 Optimization Problem
Collecting all constraints from above, the final optimization problem can be written as

minimize (5.36)
subject to (5.10), (5.11), (5.12), (5.13), (5.14), (5.15), (5.16), (5.17), (5.19), (5.37)

(5.18), (5.20), (5.21), (5.22), (5.23), (5.24), (5.28), (5.30), (5.32).

The formulation (5.37) is a standard MIQP model that can be solved with an off-the-shelf solver.
For a faster optimization solution, we additionally bound acceleration 𝑎𝑥, 𝑎𝑦 and jerk 𝑢𝑥, 𝑢𝑦 with
constant values 𝑎, 𝑎 and 𝑢, 𝑢 respectively. We chose these values as minima and maxima of the
region-dependent limits 𝑎𝑟

𝑥, 𝑎𝑟
𝑦, 𝑎𝑟

𝑥, 𝑎𝑟
𝑦 and respectively for the jerk. For the velocities 𝑣𝑥, 𝑣𝑦 we

bound the the values by the upper and lower bound of the fit 𝑣 and 𝑣 increased by a small 𝜖 to
avoid numerical difficulties at the boundaries.
We execute the algorithm in a receding horizon fashion and, therefore, only execute the first

steps of the optimized trajectory. As initial conditions, we set the states of each agent and the
current region of each agent. Adding the latter helps to avoid infeasible problems on the region
boundaries. Selecting this region correctly is crucial, as otherwise the constraints are violated at
the first step.

5.4 Validation of the Model
As the model formulation for MINIVAN introduces linearizations and approximations, we in this
section show that the model generates valid trajectories.
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5.4.1 Reference Implementations
MINIVAN uses a linearized vehicle model and constraints assuring a correct non-holonomic motion.
To assert that the planned motion is indeed correct, we implemented two nonlinear optimization
problems of a vehicle model to compare the MINIVAN solution against. We use Sequential
Quadratic Programming (SQP) to solve the problem. The model only computes the agent’s motion
over a given horizon without checking for collision with the environment, obstacles, or other agents.
We perform a post-optimization collision check afterwards to filter out invalid solutions. The
model formulation contains no binary or integer variables. It was also not tuned for performance,
therefore we omit evaluations on the computation time but focus on the quality of the solution. The
objective function and the vehicle model are implemented following the the solution of MINIVAN
as much as possible.

The comparison of the MIQP solution and the SQP solution shall answer the following questions:

• Is the MIQP solution correct in terms of holonomy so that a nonlinear bicycle model produces
a comparable result? For this, we use the solution trajectory from the MIQP model as
reference for the SQP optimization and monitor the deviations.

• Is the linearized curvature constraint of the MIQP model correctly overapproximating the
true curvature? For this, we optimize a triple integrator model with nonlinear curvature
constraint using the SQP optimizer.

Third Order Integrator With Nonlinear Coupling

We use the same vehicle dynamics constraints as the MIQP model, namely (5.10). To ensure that
we compute a non-holonomic motion, we couple longitudinal and lateral values using the side slip
angle

𝜅min ≤
𝑣𝑥(𝑘)𝑎𝑦(𝑘) − 𝑎𝑥(𝑘)𝑣𝑦(𝑘)
(𝑣𝑥(𝑘)2 + 𝑣𝑦(𝑘)2)3/2 ≤ 𝜅max ∀ 𝑘 ∈ 𝒦 (5.38)

We further bound the absolute acceleration and jerk by

𝑎min ≤ √𝑎2
𝑥(𝑘) + 𝑎𝑦(𝑘)2 ≤ 𝑎max ∀ 𝑘 ∈ 𝒦 (5.39a)

𝑢𝑥(𝑘)2 +𝑢𝑦(𝑘)2 ≤ 𝑢2
max ∀ 𝑘 ∈ 𝒦 (5.39b)

As an objective function, we chose the same as for an MIQP model with only one agent (5.33).
The resulting nonlinear optimization problem can then be written as

minimize (5.33) (5.40)
subject to (5.10), (5.38), (5.39)

Bicycle Model

We implement a bicycle model integrated with forward Euler integration with steering angle 𝛿 and
acceleration 𝑎 as input and the coordinates 𝑝𝑥, 𝑝𝑦, orientation 𝜃 and velocity 𝑣 as state.

𝑝𝑥(𝑘𝑖+1) = 𝑝𝑥(𝑘𝑖) +Δ𝑡𝑣(𝑘𝑖) cos(𝜃(𝑘𝑖)) (5.41a)
𝑝𝑦(𝑘𝑖+1) = 𝑝𝑦(𝑘𝑖) +Δ𝑡𝑣(𝑘𝑖) sin(𝜃(𝑘𝑖)) (5.41b)
𝜃(𝑘𝑖+1) = 𝜃(𝑘𝑖) +Δ𝑡𝑣(𝑘𝑖) tan(𝛿(𝑘𝑖)/𝑙) (5.41c)
𝑣(𝑘𝑖+1) = 𝑣(𝑘𝑖) +Δ𝑡𝑎(𝑘𝑖) (5.41d)

∀𝑘𝑖 ∈ [𝑘1,… , 𝑘𝑁−1]
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Figure 5.7: MINIVAN stays within the curvature bounds (lower plot) and shows valid trajectory tracking
behavior as the reference implementations using a SQP optimizer does (upper left plot). The
true front axle position is always within the lower/upper bound approximation rectangles of
the front axle (upper right plot). All three optimization solutions cannot track the reference
despite operating at maximum curvature for an infeasible reference. (graphic from [EKK20],
©2020 IEEE)

We further limit the model inputs by

𝑎min ≤ 𝑎(𝑘𝑖) ≤ 𝑎max (5.42a)
𝛿min ≤ 𝛿(𝑘𝑖) ≤ 𝛿max (5.42b)
∀𝑘𝑖 ∈ [𝑘1,… , 𝑘𝑁].

As a cost function we implement a pure reference path tracking by

𝐽 = ∑
𝑘∈𝒦

((𝑝𝑥(𝑘) − 𝑝𝑥,𝑟𝑒𝑓(𝑘))2 + (𝑝𝑦(𝑘) − 𝑝𝑦,𝑟𝑒𝑓(𝑘))2). (5.43)

The resulting nonlinear optimization problem can then be written as

minimize (5.43) (5.44)
subject to (5.41), (5.42).

5.4.2 Preserving the Non-holonomy via Region-Based Constraints
This section will discuss that the region-based linearization approach produces dynamically feasible
trajectories without introducing over-conservatism. As exemplary driving scenes, we pick a simple
ideal circle and the racetrack from the competitive autonomous racing scenario, which will be
further discussed in Section 5.7.5.

Obeying Curvature Limits

To show the effectiveness of the constraints guaranteeing non-holonomic motions, we optimize
two different reference trajectories, both forming a circle to perform a 90 deg turn. While it is
preferable to only generate reference trajectories with only valid curvatures, this example clearly
shows that our model preserves the non-holonomy. The same property is also necessary for obstacle
avoidance.

Figure 5.7a shows the results for a turning radius that the vehicle model is able to follow. Our
optimization yields a trajectory that closely follows the reference. However, the second reference
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Figure 5.8: Acceleration in 𝑥 and 𝑦 direction of one exemplary planning instance at the hairpin corner of
the racetrack at x=150 m, y=0 m. In 𝑥-direction, the motion is not restricted, in 𝑦-direction
the acceleration is in the first half restricted by the acceleration constraints and in the second
half by the curvature constraints.

in Figure 5.7b models a turning radius that is too small (the curvature of the reference exceeding
the limits). As desired, our model does not follow the reference and yields a trajectory that stays
within the curvature bounds. As we fit the curvature approximation polygons in the mean of each
region (see Section 5.2), we can slightly exceed the curvature bound at region boundaries. This
can easily be mitigated using a safety margin.

Effect of Acceleration and Curvature Constraints

One advantage of our region-based concept is the validity scope of the model of 360 degrees. As
correct non-holonomic motion is achieved using a curvature constraint, the (region-dependent)
constraints on acceleration in the longitudinal and lateral direction can purely be parameterized
with respect to the vehicle capabilities or comfort limitations. These absolute longitudinal and
lateral limitations form boundaries in 𝑥 and 𝑦 directions that are rotated with the regions. This
rotation ensures that the appropriate fraction of longitudinal/lateral limits are correctly translated
into constraints in 𝑥 and 𝑦 direction. Correct non-holonomics are enforced by the constraints
(5.15). Depending on the driving situation, one or the other set of constraints forms the tighter
bound. In a challenging situation of passing a hairpin corner on a racetrack with high speeds, we
can observe that the vehicle is in a state near the physical limits. One instance is exemplarily
depicted in Figure 5.8. In 𝑥 direction, the acceleration does not need to be constrained. In 𝑦
direction, in the first 2 s the acceleration constraints form the tighter bound, and the vehicle is
moving at its physical limit. In the timespan from 2 s to 4 s, the curvature constraints are limiting
tighter and force the planner to generate a correct non-holonomic motion. Dropping the curvature
constraints will, in such a situation, result in the generation of a motion that is still valid in terms
of acceleration bounds but fails to guarantee correct non-holonomics.

Performance Degradation Without the Concept of Regions

Without the concept of regions, a correct holonomic motion of the vehicle is achieved by limiting
the lateral velocity with respect to the longitudinal velocity, such as in [Qia+16; BL18]. In scenarios
with high demands on correct vehicle kinematics, such as the racetrack scenario we discuss in
Section 5.7.5, this constraint is too restrictive. With a parameterization where 𝑣𝑦 is limited with
respect to 𝑣𝑥 ensuring correct non-holonomy and not switching to an appropriate region, the
vehicle is significantly slower on the racetrack. It cannot track the ideal line with high velocity
anymore but has to decelerate in the curves to maintain correct non-holonomic behavior and not
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Figure 5.9: Errors of the piecewise linear fitting using 32 regions and 𝑣 = 20 m/s of upper �𝑈𝐵 and lower
bounds �𝐿𝐵 trigonometric functions. (graphic from [EKK20], ©2020 IEEE)

collide with the track boundaries. This degraded performance leads to a lap time of 105.7 s, which
is significantly higher than MINIVAN.

5.4.3 Discussion of the Introduced Approximation Errors
The chosen linearizations and over-approximations introduce errors in the model, that we will
discuss in the following.

Fitting Errors

The fitting method introduced in Section 5.2 introduces errors as the front axis position cannot
be computed to be at an exact value but only to lie within a range of upper and lower bounds
in 𝑥 and 𝑦 direction. An immediate consequence of this is that the algorithm reserves too much
space within the drivable area and might fail to find a solution if space is too limited, even if the
available area is sufficient.

Figure 5.9 shows the errors we obtain from the fitting in one exemplary setting. For the upper
and lower bounds of the sine and cosine function the orientation error is always below 0.16 rad.
Due to

sin(𝑣𝑥 = 0, 𝑣𝑦 → ±0) = ±∞ (5.45a)
cos(𝑣𝑥 → ±0, 𝑣𝑦 = 0) = ±∞, (5.45b)

we get the highest error close to the origin. For higher velocities, the errors are significantly
smaller due to a better approximation of the nonlinear function.
Table 5.4 shows the positional error of the front axle for a range of orientations in the first

quadrant in comparison to the constant approximation (denoted by const.). We observe that the
upper and lower bound always have different signs, which means that the actual axle position is
always within the bounds. This shows the validity of the over-approximation of the front axle. As
expected, the error becomes smaller with an increasing number of regions, as we are using smaller
linear pieces to approximate the nonlinear functions. In general, the error of the velocity-dependent
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approximation is smaller than for the constant approximation. Only for velocities ⪅0.1m/s, a
constant approximation yields smaller errors, as motivated by (5.45). Also comparing the maximum
velocity that was used to fit 𝑣 we observe that the quality of the fit significantly improves, as the
lower and upper bound can be chosen more tightly. This effect cannot only be observed for the
highest velocity of the fit (which is expectable) but also for medium velocities from 1m/s to 5m/s.
Note that due to the symmetry of the sine and cosine function, the errors are also rotated, see the
30 deg and 120 deg columns.

Convex Approximations of Obstacles

The introduced constraints for obstacle avoidance and the constraints enforcing the vehicle to stay
within the road boundaries need all geometry polygons to be convex. Therefore non-convex shapes
have to be split into several convex ones. While theoretically, an arbitrary number of (small)
obstacle and environment polygons are possible, many small polygons can significantly increase
the runtime. Therefore, we always use the convex hull of the obstacle shape for obstacles, which
introduces additional conservatism.

Convex Approximations of the Environment

The convex approximation of the environment shape is explained in Section 6.3.3. This convexifi-
cation can introduce a non-overapproximating error, as the drivable area can be increased, e.g., in
a curve. To avoid too many small fragments of convex sub-polygons, the geometries are simplified
by dropping points. This has the negative side effect that the overall drivable area increases
virtually. With a suitable parameterization, a reasonable trade-off between the accuracy of the
approximation and the number of sub-polygons can be found.

Agent Shape Approximation

Furthermore, the shape of agent models are approximated using a series of circles. This approxi-
mation introduces additional conservatism. For collision avoidance, the whole agent shape should
be covered by circles. As a trade-off between conservatism, safety, and performance, we do not
cover the middle part of the vehicle by circles. It is very unlikely that a collision occurs here,
especially with a rather too over-conservative approximation of the front part of the vehicle. The
approximation is also illustrated in Figure 5.3.

5.4.4 Limitations of the Model Formulation

The main drawback of the proposed MIP formulation is the handling of very slow velocities. At
zero velocity, the model is invalid due to the needed transformation into velocities distributed
into 𝑥 and 𝑦 direction using the arctan function and the computation of the orientation from 𝑣𝑥
and 𝑣𝑦. Also, these transformations are not stable for low velocities, and the resulting trajectory
shows non-holonomic properties. Experimental results show that a stable and valid performance of
MINIVAN is achieved for velocities higher than 0.7m/s. We also elaborate on this in Section 6.3
and show how we post-process the solution to obtain valid results. This effect leads to restrictions
in multi-agent settings as no valid joint maneuvers can be planned where one agent has to come to
a complete stop. Here the trajectory leading to this point is very likely to be invalid.
Also, due to the conservative approximation of the true shape of an agent, obstacle, and

environment, we can ensure a collision-free motion. However, in very narrow scenarios, we could
exclude the optimal solution or even all valid solutions. This effect can be mitigated by increasing
the number of regions.
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Table 5.4: Absolute positional errors (𝑓𝑥 − [𝑓𝑥, 𝑓𝑥]) and (𝑓𝑦 − [𝑓𝑦, 𝑓𝑦]) for the approximation of the front
rear axle in meters. The maximum velocity used to fit is indicated by 𝑣.

𝜃 𝑣 16 regions 16 regions 32 regions 32 regions 64 regions 128 regions
𝑣 = 10 𝑚

𝑠 𝑣 = 20 𝑚
𝑠 𝑣 = 10 𝑚

𝑠 𝑣 = 20 𝑚
𝑠 𝑣 = 20 𝑚

𝑠 𝑣 = 20 𝑚
𝑠

0°

const. x 0.21, 0.00 0.21, 0.00 0.05, 0.00 0.05, 0.00 0.01, 0.00 0.00, 0.00
y 0.00, -1.07 0.00, -1.07 0.00, -0.55 0.00, -0.55 0.00, -0.27 0.00, -0.14

1 𝑚
𝑠

x 0.17, -0.01 0.20, -0.02 0.05, -0.00 0.06, -0.01 0.01, -0.01 0.01, -0.01
y 0.00, -0.87 0.01, -0.93 0.00, -0.46 0.01, -0.50 0.01, -0.09 0.01, -0.01

5 𝑚
𝑠

x 0.10, -0.03 0.16, -0.03 0.03, -0.01 0.05, -0.02 0.01, -0.01 0.01, -0.01
y 0.00, -0.48 0.01, -0.74 0.00, -0.25 0.01, -0.40 0.01, -0.07 0.01, -0.01

10 𝑚
𝑠

x 0.00, -0.07 0.11, -0.05 0.00, -0.02 0.04, -0.02 0.01, -0.01 0.01, -0.01
y 0.00, -0.00 0.01, -0.49 0.00, -0.00 0.01, -0.27 0.01, -0.05 0.01, -0.01

20 𝑚
𝑠

x 0.01, -0.08 0.01, -0.03 0.01, -0.01 0.01, -0.01
y 0.01, -0.01 0.01, -0.01 0.01, -0.01 0.01, -0.01

30°

const. x 0.44, -0.16 0.44, -0.16 0.10, -0.16 0.10, -0.16 0.10, -0.04 0.02, -0.04
y 0.33, -0.58 0.33, -0.58 0.33, -0.16 0.33, -0.16 0.08, -0.16 0.08, -0.04

1 𝑚
𝑠

x 0.41, -0.15 0.44, -0.17 0.09, -0.15 0.10, -0.18 0.11, -0.02 0.04, -0.03
y 0.29, -0.52 0.31, -0.56 0.32, -0.13 0.36, -0.15 0.02, -0.16 0.04, -0.05

5 𝑚
𝑠

x 0.26, -0.10 0.37, -0.14 0.06, -0.10 0.09, -0.15 0.09, -0.02 0.03, -0.03
y 0.26, -0.33 0.29, -0.46 0.21, -0.09 0.30, -0.13 0.03, -0.13 0.04, -0.05

10 𝑚
𝑠

x 0.07, -0.05 0.27, -0.12 0.03, -0.03 0.07, -0.11 0.07, -0.02 0.03, -0.03
y 0.23, -0.08 0.28, -0.34 0.07, -0.03 0.22, -0.10 0.03, -0.10 0.03, -0.04

20 𝑚
𝑠

x 0.09, -0.06 0.04, -0.04 0.03, -0.03 0.02, -0.02
y 0.24, -0.09 0.08, -0.04 0.04, -0.03 0.03, -0.02

60°

const. x 0.33, -0.58 0.33, -0.58 0.33, -0.16 0.33, -0.16 0.08, -0.16 0.08, -0.04
y 0.44, -0.16 0.44, -0.16 0.10, -0.16 0.10, -0.16 0.10, -0.04 0.02, -0.04

1 𝑚
𝑠

x 0.29, -0.52 0.31, -0.56 0.32, -0.13 0.36, -0.15 0.02, -0.16 0.04, -0.05
y 0.41, -0.15 0.44, -0.17 0.09, -0.15 0.10, -0.18 0.11, -0.02 0.04, -0.03

5 𝑚
𝑠

x 0.26, -0.33 0.29, -0.46 0.21, -0.09 0.30, -0.13 0.03, -0.13 0.04, -0.05
y 0.26, -0.10 0.37, -0.14 0.06, -0.10 0.09, -0.15 0.09, -0.02 0.03, -0.03

10 𝑚
𝑠

x 0.23, -0.08 0.28, -0.34 0.07, -0.03 0.22, -0.10 0.03, -0.10 0.03, -0.04
y 0.07, -0.05 0.27, -0.12 0.03, -0.03 0.07, -0.11 0.07, -0.02 0.03, -0.03

20 𝑚
𝑠

x 0.24, -0.09 0.08, -0.04 0.04, -0.03 0.03, -0.02
y 0.09, -0.06 0.04, -0.04 0.03, -0.03 0.02, -0.02

90°

const. x 0.00, -1.07 0.00, -1.07 0.00, -0.55 0.00, -0.55 0.00, -0.27 0.00, -0.14
y 0.21, 0.00 0.21, 0.00 0.05, 0.00 0.05, 0.00 0.01, 0.00 0.00, 0.00

1 𝑚
𝑠

x 0.00, -0.87 0.01, -0.93 0.00, -0.46 0.01, -0.51 0.01, -0.09 0.01, -0.01
y 0.17, -0.00 0.20, -0.01 0.05, -0.00 0.06, -0.01 0.01, -0.01 0.01, -0.01

5 𝑚
𝑠

x 0.00, -0.48 0.01, -0.74 0.00, -0.26 0.01, -0.40 0.01, -0.08 0.01, -0.01
y 0.10, -0.03 0.16, -0.03 0.03, -0.01 0.05, -0.02 0.01, -0.01 0.01, -0.01

10 𝑚
𝑠

x 0.00, -0.00 0.01, -0.50 0.00, -0.00 0.01, -0.27 0.01, -0.06 0.01, -0.01
y 0.00, -0.07 0.11, -0.05 0.00, -0.02 0.04, -0.02 0.01, -0.01 0.01, -0.01

20 𝑚
𝑠

x 0.01, -0.01 0.01, -0.01 0.01, -0.01 0.01, -0.01
y 0.01, -0.08 0.01, -0.03 0.01, -0.01 0.01, -0.01

120°

const. x 0.58, -0.33 0.58, -0.33 0.16, -0.33 0.16, -0.33 0.16, -0.08 0.04, -0.08
y 0.44, -0.16 0.44, -0.16 0.10, -0.16 0.10, -0.16 0.10, -0.04 0.02, -0.04

1 𝑚
𝑠

x 0.52, -0.29 0.56, -0.31 0.13, -0.32 0.15, -0.36 0.16, -0.02 0.05, -0.04
y 0.41, -0.15 0.44, -0.17 0.09, -0.15 0.10, -0.18 0.11, -0.02 0.04, -0.03

5 𝑚
𝑠

x 0.33, -0.26 0.46, -0.29 0.09, -0.21 0.13, -0.30 0.13, -0.03 0.05, -0.04
y 0.26, -0.10 0.37, -0.14 0.06, -0.10 0.09, -0.15 0.09, -0.02 0.03, -0.03

10 𝑚
𝑠

x 0.08, -0.23 0.34, -0.28 0.03, -0.07 0.10, -0.22 0.10, -0.03 0.04, -0.03
y 0.07, -0.05 0.27, -0.12 0.03, -0.03 0.07, -0.11 0.07, -0.02 0.03, -0.03

20 𝑚
𝑠

x 0.09, -0.24 0.04, -0.08 0.03, -0.04 0.02, -0.03
y 0.09, -0.06 0.04, -0.04 0.03, -0.03 0.02, -0.02

87



5 MINIVAN: Dynamic Games on a Continuous Action Space

5.5 Real-Time Implementation
Two properties are essential to execute any planning component in a real-world setting. First,
it has to be ensured that a solution is found under real-time conditions so that before the end
of the current trajectory a new trajectory has been generated. Second, the solution can be sub-
optimal, but the generated motion has to be kinematically feasible by the vehicle. The following
section describes the necessary adaptions to the off-the-shelf solvers to achieve these two properties
simultaneously.

5.5.1 Solver Settings
We used several parameters and custom implementations to tweak the solver to find a suitable
solution fast. In Section 5.6 we show the effect of the tuned parameter set in an exemplary scenario.
Note that tuning the following parameters helps to find a good solution fast, but there is no
guarantee or proof that this parameter setting is optimal. In the following list, we describe the
most effective settings.

• Relative MIP gap tolerance: The solver is stopped if the current best integer solution
and the current best (non-integer) bound divided by the best integer solution falls below this
threshold. Usually chosen as 𝜖, we use a relatively high value of 0.1 as very low deviations in
the objective do not have a significant influence on the resulting trajectory. By this, we also
accept feasible integer solutions that are potentially far away from the global optimum.

• Parallelization: We use parallel search on multiple CPU cores to find the optimum in the
branching tree. This introduces a slight non-determinism in the solution if the solver is
terminated before the optimal solution is reached.

• MIP emphasis: We instruct the solver to sacrifice time to prove the optimality of a solution
but find integer-feasible solutions fast. Due to timing and gap tolerance constraints, it is
desirable to chose the best from several integer solutions. Also in our problem formulation
usually several feasible solution often lie close to the global optimum, each resulting in a
comparable trajectory.

• Relative objective difference cutoff: The optimization is forced to ignore new integer
solutions that are not at least better by a certain amount than a previous solution. By this,
the number of nodes to be expanded is limited, with the drawback that the true optimum
can be missed.

• Frequency to try to repair infeasible MIP start: We instruct the solver to try repair
heuristics often if one or more of the supplied warmstart solutions are not feasible. As we, cf.
Section 5.5.2, use all integer feasible solutions from the last instance to warmstart the current
instance of the optimization, some of these solutions are invalid but close to a feasible one.

• Relaxation induced neighborhood search (RINS) heuristic frequency: This heuris-
tic tries to improve the current best solution. With the warmstarting strategy and other
parameterization, we aim to find feasible solutions fast. Based on these, we instruct the
solver here to try to improve these feasible solutions.

• Defining special ordered sets (SOS): A SOS is a set of variables where at most one
variable is nonzero. Defining a SOS the solver uses specialized branching strategies that
exploit the special topology of the problem. The region variables 𝜌 form a SOS for each
agent. The variables have to be ordered to assign the branching priority. We put a high
weight on variables encoding the initial region and order the weight from early to late in the
horizon as early decisions on the region influence the solution more.
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• Priority branching: We instruct the solver to branch early on variables that heavily
influence the solution topology. We assign priorities to two groups of variables. First, the
variables defining the region 𝜌. If the region is marked available by 𝜚𝑟, we increase the
priority. We also increase the priority for the variables deciding if the rear axle center lies
within one environment polygon 𝑒.

5.5.2 Warmstarting the Solution
In MIP, as in other optimization strategies, an initial solution can be provided to aid the solver
in finding a solution faster. Warmstarting works best if the solution is already primal feasible (a
valid but non-optimal integer solution), but also non-feasible or incomplete solutions can serve as
a warmstart. With a solution available at the start of the branch and cut process, non-optimal
parts of the branch-and-cut tree can be eliminated, and a lower solution bound exists. Also, with
heuristics available from the solver that further improve an integer-valid solution, the convergence
to the global optimal solution can be highly improved. However, the effectiveness of the warmstart
is influenced mainly by the solution quality of the warmstart solution, which is unknown.
To speed up the solution computation and to enforce finding consistent solutions close to the

solution of the previous planning step, we warmstart the MIQP solver using the solution from
the previous receding horizon instance similar to [MT21]. From this previous solution, we use the
decision variables from the start time onwards and perform a simple extrapolation to initialize the
variables at the last timestep, which introduces only a neglectable overhead regarding computation
time.
The solver can be warmstarted from several solutions. Therefore, we reuse all integer-feasible

solutions from the last receding horizon instance as warmstarts. We input these solutions without
modifications, such as shifting from the last timestep to the current timestep. Using this strategy,
we have the previous optimal solution available for warmstarting and the non-optimal but integer-
feasible solutions that might lead to the current optimal solution faster as the integer decision
variables are initialized better.

The less the topology of the problem has changed, the more significant is the effect of the
warmstart. Suppose environment sub-polygons, agents, or obstacles are added to the problem. In
that case, the decision variables for those cannot be taken from the previous solution, which lowers
the efficiency of the warmstart. Also, if the problem drastically changes, an old solution can guide
the solver in the wrong direction. Especially the second approach of reusing all integer solutions as
warmstart for the next planning cycle in practice had a huge effect on the runtime, which is why
we chose to use this approach further in the following. In Section 5.6 and Section 5.5.4, we show
the speedup from warmstarting.

5.5.3 Implementation Remarks
The optimization problem is modeled and solved using the commercial solver IBM ILOG CPLEX
Optimization Studio [Int21b]. For development and visualization, we implemented a gateway from
MATLAB [The21b] using the command line interface of CPLEX. The main focus of the Matlab
implementation is providing a higher level Application Programming Interface (API) including
the ability to easily run the optimization repeatedly in the receding horizon setup and debug
visualizations.

For production usage, we implemented a C++ gateway to our CPLEX model using the C++ API
of CPLEX. As the most inner part, the CplexWrapper class holds and handles the optimizer object
from the CPLEX API. It also mirrors all parameters from the CPLEX model into a C-struct to ease
the read and write access, specifically done in the ModelInputDataSource class. The same applies
to the decision variables. Furthermore, the CplexWrapper maintains the warmstart solution(s),
statistics on the problem and the solution, and advanced solver settings such as branching priorities.
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Figure 5.10: Parameter analysis in a lane tracking scenario in a curve

To provide the user with a higher level API that does not expose the technical parameters of the
CPLEX implementation but provides high-level service methods, we implemented the MiqpPlanner
class. It holds a representation of the optimization problem and offers high-level service methods to
add, update, or remove an agent or an obstacle. Also, it delegates to the necessary convexification
methods for non-convex environments or obstacle polygons. Furthermore, the reference line is
subsampled and prepared to be used as a reference trajectory using an intended acceleration profile
and a target speed. In an initial step, we load or compute the parameters of the optimization
model that are constant over time, such as the fitting polynomials.
This high-level API is wrapped and can be called by an agent in the open-source behavior

simulation platform BARK [Ber+20] or the trajectory planner in the open-source driving stack
Apollo, as described in Chapter 6. In BARK, MINIVAN is available as a dedicated agent
implementation. Besides the conversion of data for the different APIs, comparable steps are needed
as in the Apollo integration. As BARK is focused on multi-agent interactions, the integration
of the behavior of other agents is essential. As MINIVAN needs a reference trajectory for the
fellow agent, we generate these references using an existing behavior model in BARK to mimic a
prediction component.

5.5.4 Analysis of Parameterization Effects

Parameterization and Branching Customization Effects We analyzed the effectiveness
or the solver parameterization in different scenarios, such as a lane merging scenario and a lane
tracking scenario with a sharp turn (see Figure 5.22). As all scenarios yield comparable results, we
do not discuss them individually here. The results of the lane tracking scenario are depicted in
Figure 5.10. We compare the following settings:
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• The tuned parameter set, balanced between solution speed and solution quality, also including
custom branching rules (tuned),

• the effect of the warmstart (warmstart),

• letting the solver decide for the parameters (auto), and

• stopping the optimization after the second integer-valid solution (two solutions).

We set the maximum available time for the solver to 10 s to observe the effect of the different
parameterizations and analyze the total runtime of the solver alongside the objective value and
the optimality gap as a measure for the solution quality. We always find an optimal solution
within the given tolerances. When stopping after the first valid solution, we observed that this
solution is often not suited in terms of solution quality and unsuited in the current driving situation.
Therefore, in this experiment, we consider the second integer-valid solution.

We can observe the effect of the warmstart. In most situations, the solution with a warmstart
is significantly faster than without a warmstart. However, situations exist where a warmstart
yields a higher runtime. These are mostly situations where the problem topology changed, e.g., a
new environment polygon has been added, and the previous solution is misleading. The tuned
parameter set yields slightly worse solutions compared to the default solver settings with much
lower optimality thresholds. In non-trivial situations, the objective value of the tuned parameter
set is higher but still in the same order of magnitude. Stopping the solver after the second integer
solution does not bring huge benefits in terms of runtime. Worse solutions for the warmstart are
available, and often the solution is worse in terms of objective value and optimality gap.

Parameter Analysis of Real-Road Test Drives In simulation scenarios, we have already
shown that choosing a suitable parameter set can greatly influence the solver’s performance. Also,
providing a valid warmstart solution has a great effect on the solution speed of the MIP. In the
following, we will show that this does not only apply to simulation benchmark scenarios but also
in real-road test drives. In Section 6.6 we will describe the scenarios in detail, specifically

• Static vehicle avoidance: avoiding a static vehicle on the right side, see Figure 6.10.

• Vehicle following: approaching a slower preceding vehicle, eventually slowing down and
accelerating again once the preceding vehicle accelerates, see Figure 6.11.

• Pedestrian avoidance: avoiding a static pedestrian standing on the road, see Figure 6.12.

Choosing the suitable parameter set is difficult and crucial. Depending on the situation, different
sets of parameters are optimal regarding runtime and solution quality. Often, the ideal parameter
set can only be determined a posteriori. We used a tuned parameter set for our experiments that
shows a good performance on average but can be improved for specific scenarios. Generally, the
tuned parameter set shows better performance than defaulting all parameters, as we insert more
knowledge into the system. Strategies for adapting the parameters to the current driving scenario
have not been developed in this work.

To assess the performance of the tuned parameter set, we serialize all input data (including the
warmstart information) for each planning instance while driving. We then rerun these optimization
problems offline in four different settings:

• Default solver settings without any parameter modifications, especially no limitation of the
available solution time (Default solver settings),

• tuned parameter setting: Modification of the in-vehicle parameter set to the specific properties
of the scenario (Tuned solver settings),

• parameter settings as in the vehicle but without warmstart (Without warmstart), and
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Figure 5.11: Parameter analysis in a vehicle following scenario comparing the default solver settings to a
tuned general purpose parameter set and a posteriori tuned parameter set for this scenario.
The effect of warmstarting is shown.

• same settings as in the vehicle: To ensure comparable results, we execute the same setting as
in the vehicle on the test machine (Settings as in the car).

We analyze three test scenarios (see Section 6.6), vehicle following, pedestrian avoidance, static
vehicle avoidance. The traces of the solution time and the objective function values are depicted
separated for the three scenarios in Figure 5.11, Figure 5.12, and Figure 5.13.
We observe the significant effect of providing a warmstart solution for real-time execution in

all scenarios. In these practical experiments, we barely see negative effects of the warmstart. In
the vehicle avoidance and following scenario, instances exist where warmstarting has no or even a
negative effect on the runtime.
As expected, the default solver settings yield a higher runtime than both tuned parameter

sets. This effect is clearly visible in the vehicle following scenario. No clear conclusion can be
drawn which parameter setting reduces the number of peaks in the runtime. Peaks occur if the
solution of one receding horizon instance yields a more complicated optimization problem. This
can have several reasons, such as unfavorable initial conditions of the ego vehicle, perception or
prediction errors of obstacles, or a changed road geometry with many additional environment
polygons. These peaks are extremely critical in real-time evaluation and should be avoided as
much as possible. While the tuned parameter set avoided such peaks in simulation studies, this
effect cannot be clearly shown in on-road driving scenarios. Generally, it can be observed that
with a good warmstart solution, the evaluation time with default and the tuned parameter set are
mostly very close. This is easily seen in the fully static vehicle avoidance scenario. In a situation
where more adaptions to the initial solution are necessary, such as in the second half of the vehicle
following scenario, the tuned parameter set is significantly faster. Table 5.5 summarizes the mean
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Figure 5.12: Parameter analysis in a vehicle avoidance scenario comparing the default solver settings to a
tuned general purpose parameter set and a posteriori tuned parameter set for this scenario.
The effect of warmstarting is shown.

Table 5.5: Runtime improvement in percent between 0 and 1, compared to the default parameter setting.
Scenario Tuned Without warmstart In car

Vehicle avoidance 0.17098 -0.38412 0.17567
Vehicle following 0.29339 -0.33518 0.21956

Pedestrian avoidance 0.25172 -0.44545 0.12529

runtime improvements over all instances of one scenario compared to the default setting in percent.
Note that without a warmstart, the runtime increases, and therefore the number is negative. It
can clearly be observed that the parameters used for the test drives can further be improved.

The default parameter setting always performs best in terms of the objective value. This effect
is expected, as we specified higher gap tolerances and integer solution steps in the tuned parameter
settings. Recall that the objective function is a squared sum of the deviation from the reference
trajectory plus the slack terms. Therefore the deviation in the objective function between the
tuned and the default parameter set can be interpreted as the deviation of the tuned solution from
the true optimum. In most instances, this deviation is small and close to zero. This indicates
that the solution we compute is close to the global optimal solution, even if the solver was not
parameterized to effectively find this global optimum. We lack the proof of this optimality with our
chosen parameterization. However, for example, at the beginning of the vehicle following scenario,
this deviation is big, which indicates that the trajectory computed in the car was significantly
different from the true optimal trajectory.

In the posterior analysis, we then tweaked the in-vehicle parameter set specifically to the given
scenario. We observed in all scenarios that with the optimized parameter setting, the peaks in the
solution time can significantly be lowered compared to the chosen in-vehicle parameter setting
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Figure 5.13: Parameter analysis in a pedestrian avoidance scenario comparing the default solver settings to
a tuned general purpose parameter set and a posteriori tuned parameter set for this scenario.
The effect of warmstarting is shown.

without changes in the objective function. If this effect generalizes to a broader set of scenarios
and how an automated adaption of parameters can be achieved is left for future research.

Conclusion In various simulated benchmark scenarios, we showed that inserting knowledge into
the problem topology and exceptions on the solution could reduce the solution time while still
achieving qualitatively good results. This was done by parameterization and custom branching
rules. In scenarios that are easy to solve, parameter tuning only showed a minor effect. It helps to
reduce high runtimes in complicated situations, which is essential for real-time application.

These findings from simulation studies also transfer to real scenarios. In three on-road benchmark
scenarios, we showed that using custom-tuned solver parameters can further improve the solution
speed, in most cases with equivalent solution quality. A selection of parameters specific to one
scenario can speed up the solution more and especially reduce critical peaks in the runtime. By
far, the most significant effect on the solution time is achieved by providing a warmstart solution.

5.6 Complexity Analysis
In this section, we will analyze the evaluation time and the size of the MIQP with growing
complexity of the optimization problem, such as more obstacles. The experiments are all performed
on the same machine with an Intel Core i7-9850H 2.60GHz CPU with 12 cores and 32GB of
memory. We analyze the following for each scenario:

• The solution time of the MIQP with and without warmstarting the problem.
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• The number of iterations needed for the solver to generate the result as a rough measure for
the problem complexity with and without warmstarting the problem.

• The number of constraints, float variables, and binary variables as a measure for the problem
size. This number can also be derived directly from the problem definition, we depict the
statistics from the solver here. The shape of the curves in all cases reflect the exceptions
from theoretical considerations. We generally observe, that the number of float variables is
the same for a varying number of regions, which is expected.

The scenarios are randomly generated with a fixed random seed within their specifications. 100
variants of the same scenario with varying initial configurations are simulated, and the results are
averaged to avoid randomness and runtime non-determinism on the machine. We set the maximum
available time for the solver to a high value (30 s) to highlight that also, in complicated scenarios,
a solution can be found. We filter out all failed optimizations as these correspond to unsolvable
scenarios, e.g., an obstacle placed randomly just in front of the vehicle. Note that if we compare a
different number of regions, the available orientation interval for each agent is the same.

Scaling with the Number of Points Here we analyze how the problem scales with a growing
number of trajectory points that are optimized. As a scenario, the ego agent drives on a straight
line inside one environment polygon and has to avoid one static obstacle blocking the reference
line. For trajectories with 5 points or less, the optimization plans a braking trajectory and stops
in front of the objects. With more points, a lateral avoidance is planned. Therefore, the times
up to 5 points are roughly identical. Figure 5.14 shows the comparison for a growing number of
points with a varying number of regions and warmstart activation.
We observe that with an existing warmstart solution, the solution time barely scales with the

number of steps. Without a warmstart solution, the runtime significantly rises with the number of
steps. For 10 points and below, the evaluation time is constantly less than one second for 16, 32, and
64 regions. For 10 to 20 points, we observe moderate runtimes below 2 s for 16 regions and below
3.5 s for 32 regions, but a strong increase in runtime until 15 s for 64 regions. For more than 20
points, the runtime rises exponentially and becomes untractable. As there is no randomness in the
scenarios, the error bars only reflect the nondeterministic execution time. Without warmstarting,
the number of iterations rises to 105 for all regions. Oscillating numbers of iterations are needed
with an available warmstart. For less than 6 points, a significantly lower number of iterations of
up to 100 is needed. Correlating with the problem size, we observe an increase slightly higher than
linear. Note that the number of float variables is equal for any number of regions.

Static Obstacles Scaling As a scenario, we randomly place static obstacles around a straight
reference line the planner shall track with a constant speed. The varying initial configurations of
the obstacles are drawn from a bounded equal distribution in 𝑥-direction within a range of −5m to
30m and in 𝑦-direction within a range of ±4m around the ego vehicle center. The more obstacles
are placed on the reference, the more evasive trajectories have to be planned. Due to the random
placement of obstacles, some easy scenarios exist with obstacles only relatively far from the vehicle
and complex ones with only obstacles close to the vehicle. To see an effect of placing an additional
obstacle, the area for obstacle placement is relatively small and has to be near to the ego agent.
Therefore, for more than 18 obstacles, most optimization problems become infeasible. This effect
is expected and intentional to have comparable scenarios for fewer obstacles. The variance in the
runtime reflects the scenario complexity. Figure 5.15 shows the analysis.

We observe no significant scaling effects with an increased number of regions. Below 10 obstacles,
we observe a linear scaling with the number of obstacles without a warmstart. With an available
warmstart, only a marginal scaling effect is visible. At around 10 obstacles, we observe a very
high increase in runtime, also with worst-case runtimes up to 30 s. Starting from 10 obstacles, the
solution time variance significantly increases. This observation is expected to some extent, as easy
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and hard settings exist in the randomized scenarios. For 64 regions, this effect occurs earlier. The
number of iterations reflects the runtime analysis; we observe a growth in the number of iterations
needed until 10 obstacles. Afterward, the number of iterations stabilizes. With a valid warmstart,
significantly fewer iterations are needed. Correlating with the problem size, we observe a linear
increase. Note that the number of float variables is equal for any number of regions. If we place
all obstacles very far away from the reference, we observe that the evaluation time of the planner
does not scale with the number of obstacles.

Moving Objects Scaling As a scenario, we randomly place objects close to the ego vehicle
and let them drive in the same direction as the ego vehicle with a randomly assigned speed within
a ±20% range of the ego vehicle. These objects can either be modeled as dynamic obstacles that
need to be avoided or as agents for which the model plans an interactive trajectory. The varying
initial configurations of the obstacles are drawn from a bounded equal distribution in 𝑥-direction
within a range of ±30m and in 𝑦-direction within a range of ±5m around the ego vehicle center.
Figure 5.16 and Figure 5.17 show the analysis separately depicting the analysis with and without
warmstart for figure clarity.

If other objects are modeled as moving obstacles, we observe a good performance with up to 9
obstacles. For 16 regions, the effect of warmstarting is not significant. Generally, warmstarting
helps to lower the variance in the solution time. Again, the random placement of other objects
yields easy and hard-to-solve scenarios, which explains the high variance. The increase of iterations
and solution time with the number of regions is as expected.
Our analysis shows that the problem becomes intractable for more than two other objects if

modeled as interacting agents. This effect is also visible in the exponential growth in the problem
size. Beginning with seven other dynamic agents (and 16 regions), the solver cannot find a solution
in the given time in most scenarios. We, therefore, show the evaluation until six other dynamic
agents. With more agents, the runtime bound is reached in a majority of cases non-trivial cases,
which distorts the evaluation. With more regions, this effect is observed for fewer objects. If we
placed all objects modeled as obstacles very far from the reference, we observed that the planner’s
evaluation time did not scale with the number of obstacles. Warmstarting and the number of
regions barely affected the runtime. In contrast, we observed a comparable scaling effect in the
multi-agent case regardless of the object distances.

Environment Polygon Scaling As a scenario, we drive along a straight reference line intersect-
ing with an increasing number of environment polygons. The polygons are hardcoded (to ensure
the reference line passes all environment polygons and none are merged in the preprocessing);
therefore, there is no randomness in the scenario. The variance in the solution time reflects the
indeterministic execution time.

We observe only a moderate scaling effect for the number of environment polygons with a valid
warmstart. Without a warmstart, a growth in runtime is visible. This observation is of high
practical relevance, as while driving it frequently occurs that the environment polygons change,
which results in non-suited or invalid warmstarts for the next iteration yielding longer runtimes.
We do not see an effect with a growing number of regions. Figure 5.18 depicts the runtime, number
of iterations, and problem size. The evaluation time is not affected by environment polygons that
are placed far away from the agent.

Note that we used a straight line as a reference here. In reality, the number of regions especially
grows when driving in a curve, and the geometry of this curve is approximated by several polygons.
In a curve, the number of regions crossed by the trajectory also increases, and the increased usage
of both regions and environment polygons results in higher runtimes. Still, solely using more
environment polygons does not yield exponential runtime scaling.
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Figure 5.14: Scaling of the MIQP with an increasing number of points on the horizon.
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Figure 5.15: Scaling of the MIQP with an increasing number of static obstacles on the horizon.
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(a) Solution time. The error bars show the 5% and 95% quantiles. For the legend see Figure 5.16c.
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(b) Solution time zoomed to 1-10 objects. The error bars show the 5% and 95% quantiles. For the legend see
Figure 5.16c.
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Figure 5.16: Scaling of the MIQP with an increasing number of dynamic objects (as dynamic obstacles
or agents) on the horizon without providing a warmstart solution. (See Figure 5.17c for the
number of constraints and obstacles.)
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(a) Solution time. The error bars show the 5% and 95% quantiles. For the legend see Figure 5.17b.
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(c) Number of binary and float variables and number of constraints.

Figure 5.17: Scaling of the MIQP with an increasing number of dynamic objects (as dynamic obstacles or
agents) on the horizon with a provided warmstart solution.
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Figure 5.18: Scaling of the MIQP with an increasing number of convex environment polygons on the
horizon.
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(a) Dynamic obstacle avoidance, overtaking (b) Levels of cooperation

(c) Environment decomposition

(d) Autonomous racing

Figure 5.19: Schematic sketches of the evaluation scenarios.

Conclusion Summing up, we observe that for real-time applicability, 10 points on the planning
horizon are feasible, even with high requirements on the accuracy of the approximation using 64
regions. 32 regions are a good compromise between solution time scaling and accuracy.

For a low runtime, warmstarting the solver is essential in complex situations. In some situations,
warmstarting can also reduce the variance in the solution time. However, warmstarting does
not fully mitigate the problem of a high solution time variance when the optimization problems
are complicated. This effect is to some extent expected in the setup of this analysis, but the
effect that the evaluation time is unstable remains a serious challenge in real-time application.
Warmstarting can, in certain constellations, also have negative effects on the solution time, and
the question remains open if these scenarios can be distinguished a priori. The solver can handle a
realistically high number of static or dynamic obstacles, but more than three interacting agents
are not tractable in a real-time setting.

5.7 Demonstration of Benefits and Effectiveness in
Simulated Scenarios

We will now evaluate the performance of MINIVAN in five different scenarios. The scenarios are
schematically sketched in Figure 5.19. We in Section 5.4.2 already proved that the result of the
optimization is a drivable trajectory for a non-holonomic vehicle model. Table 5.6 gives an overview
of the application scenarios. By coordinated, we denote a connected setting with Connected
Autonomous Vehicles (CAVs) that follows a global optimal plan. By reactive or proactive, we
denote the integration into a mixed-traffic scenario with the ego vehicle either showing passive
behavior or actively enforcing its own goals.

5.7.1 Avoiding Dynamic Obstacles Within the Road Boundaries
We start with experiments having a single agent in an environment with multiple (static or dynamic)
obstacles present. We here evaluate one receding horizon instance. This example considers a
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Table 5.6: Overview of the five different evaluation scenarios used in this section to showcase the capabilities
of MINIVAN. ♦ denotes not applicable, � denotes applicable.

Section 5.7.1 5.7.2 5.7.3 5.7.4 5.7.5
Scenario Dynamic

obstacle
avoidance

Levels of
cooperation

Environment
decomposition

Overtaking Racing

Schematic figure 5.19a 5.19b 5.19c 5.19a 5.19d
Number of agents 1 2 1 3 2

Coordinated ♦ � ♦ � ♦
Proactive ♦ ♦ ♦ � �
Reactive � ♦ ♦ � �

Receding horizon ♦ ♦ � � �
Speed medium low low high high
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Figure 5.20: An overtaking scenario with oncoming traffic. The upper figure shows the trajectories for
the ego vehicle (blue) along the reference (black, dashed) and the other traffic participants
(red, green) modeled as dynamic obstacles. 𝑎𝑦 of the planned trajectory stays within the
region-dependent acceleration bounds as well as the bounds approximating the curvature
limit. (graphic from [EKK20], ©2020 IEEE)

two-lane road, where the ego vehicle drives at the speed of 8.33m/s and approaches a slower
vehicle traveling at 2.77m/s. There is oncoming traffic in the other lane traveling at 8.33m/s.
Both other vehicles are modeled as dynamic obstacles and not as interacting agents. The reference
trajectory represents the centerline of the right lane traveling at the reference speed. We obtain
deterministic predictions of those two traffic participants and include them as dynamic obstacles
in the optimization. We only apply a cost term on reference position tracking. We use a model
with 32 regions and a velocity-dependent front axle approximation. We simulate one timestep.

Figure 5.20 shows that the optimizer is able to find a trajectory that overtakes the red vehicle in
front and changes back to the right lane to avoid the green, oncoming vehicle. We observe that
the acceleration in the 𝑦-direction stays within the acceleration limits. It is much closer than the
curvature-induced acceleration limit following (5.15), which is reasonable, as the lateral movement
in straight scenarios traveling at moderate or high velocities is constrained by the inertia of the
vehicle, not the non-holonomics. The scenario shows that with a long planning horizon of N = 30
steps, resulting in a 7.25 s long trajectory, a smooth valid avoidance trajectory is generated.

5.7.2 Levels of Cooperation in a Negotiation Scenario
We evaluate the effect of the cooperation factor 𝜆 in a negotiation scenario with two agents 𝐴1

and 𝐴2. The scenario is fully symmetric with two vehicles placed on a two-lane road in oncoming
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Table 5.7: Quantitative evaluation of the negotiation scenario. We compare the overall distance to the
reference, the time the reference is reached, and the contributions to the cost function of each
agent.

𝜆 Dist. 𝐴1 Dist. 𝐴2 Idx 𝐴1 Idx 𝐴2 Cost 𝐴1 Cost 𝐴2

0 54.684 19.645 - 11 3.7452 5006.2
0.1 33.872 20.181 18 11 899.19 4568.5
0.2 30.788 21.362 17 12 1552.6 4183.6
0.3 28.937 22.543 17 14 2114.1 3796.1
0.4 28.383 22.894 17 14 2731.3 3305.4
0.5 22.98 28.297 14 17 2773 3380.1
0.6 22.884 28.383 14 17 3304.4 2731.3
0.7 22.532 28.929 14 17 3795.5 2113.2
0.8 21.364 30.772 12 17 4183.5 1551.5
0.9 20.168 33.865 11 18 4568.3 898.88
1 19.646 54.666 11 - 5006.2 3.699
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(c) Cooperative solution for 𝜆 = 0.6

Figure 5.21: Different solutions in a scenario with conflicting references. The optimized solution is leveraged
with the cooperation factor 𝜆. (graphic from [KEK20], ©2020 IEEE)

direction with road boundaries. Both reference lines do not track the lane centers but the road
center. This yields conflicting goals (Figure 5.21a). The solution can be balanced to favor one over
the other agent. The vehicle trajectories change as 𝜆 changes (Figure 5.21b and Figure 5.21c).
In Table 5.7, we qualitatively show the effect of varying 𝜆. We analyze a single run of the

algorithm. By Dist. 𝐴� we denote the accumulated distance overall 𝑁 timesteps in meters from
the solution trajectory to the reference for the respective agent. The column Idx 𝐴� indicates
at which time index the respective agent has reached the reference trajectory. We also state the
contribution of each agent to the global cost function, denoted by Cost 𝐴�. All three metrics show
the same trend: by varying 𝜆, the respective agent is favored.

We observe that for 𝜆 ≈ 0.5, all metrics are balanced, but also with a strong favor of one agent.
Still, valid solutions are computed. This indicates that the cooperation factor can effectively be
used to realize cooperation on a continuous level.

5.7.3 Environment Decomposition and Driving Smoothness
At a T-intersection located in Munich, we analyze how the road environment is processed for
MINIVAN. From a two-lane road, a curve is planned into a narrow one-lane road. The initial and
target speed is set to 4m/s. Hence the vehicle does not have to decelerate in the curve.

Figure 5.22 shows the evolution of the scenario. The reference line (dashed gray thin) the vehicle
shall track is processed to a reference trajectory (dashed gray bold) at specified points in time.
The non-convex road environment (solid black) is split into several convex polygons (light blue),
starting from one when the vehicle approaches the intersection and ranging up to eight while the
vehicle crosses the intersection. The receding horizon formulation dynamically adds or removes
environment polygons as necessary. As the optimizer chooses to take a slightly wider curve, it
decelerates slightly when entering the curve. It accelerates again after the apex to minimize the
distance to the reference trajectory, a behavior that human drivers also show. We observe that the
vehicle shape always stays within the road boundaries (solid black), as the approximating circles
fully enclose the vehicle shape. The planned trajectory (solid red) is always inside at least one of
the convex environment sub-polygons (light blue). The acceleration change between two steps is
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(a) t=0 s: One environment polygon, straight reference
trajectory
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(b) t=4 s: Three environment polygons, reference trajec-
tory entering the curve
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(c) t=12 s: Eight environment polygons, curved reference
trajectory
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(d) t=17 s: Six environment polygons, reference trajec-
tory existing the curve

Figure 5.22: Processing of reference line and road environment along the planning horizon. The reference
line is depicted in thin gray, the reference trajectory in thick gray, the planned trajectory in
red, and the environment sub-polygons in blue.

in a range of −0.076m/s2 to 0.118m/s2 and the steering angle change in a range of −0.062 rad to
0.096 rad resulting in a smooth a comfortable motion without hard changes. This indicates that
the agent follows a consistent plan over the time instances in the first points of the trajectory.

From this scenario, we conclude the following: MINIVAN can also operate in more complicated
environments, such as sharp curves and narrow passages without violating the environment bounds.
Also, the close and smooth tracking of a non-holonomic reference trajectory is possible. Referring
to the other multi-agent scenarios demonstrated in this section, we with this experiment motivated
that deviations from the reference are necessary to generate a valid multi-agent plan and are not
the default behavior of the model.

5.7.4 Cooperative Overtaking with Robustness to Prediction Errors
We consider the ego vehicle overtaking a slower vehicle with oncoming traffic in this scenario.
Due to the parameterized speed differences, the overtaking maneuver is distributed over multiple
optimizations runs along the horizon. The two fellow cars are traveling on their respective lane
with a constant speed of 3m/s. The time window for overtaking is chosen relatively small. The ego
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(a) Initial configuration at t=5 s
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(b) Overtaking initialization at t=13 s
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(c) Overtaking scene with all trajectories densely inter-
acting at t=18 s
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(d) At t=24 s, the overtaking is finished and all agents
are very close.

Figure 5.23: Evolution of an overtaking scenario with oncoming traffic with exact prediction models and a
multi-agent formulation. The ego agent (blue) follows the trajectory computed by MINIVAN,
the fellow agents (red, green) follow a fixed trajectory

vehicle has a desired speed of 8m/s. We chose a horizon length of 𝑁 = 10 points with a timestep
of 0.5 s. We consider two settings in this experiment. First, the two other cars are modeled as
dynamic obstacles, second, as interacting agents.

Robustness to Prediction Errors

In both settings, we vary the quality of the prediction. The current and future velocity of other
vehicles can only be estimated with uncertainty. We model this speed estimation error by predicting
both vehicles x% slower or faster than their actual speed. This prediction error is compensated by
the slack terms that soften either the obstacle avoidance or the agent-to-agent collision constraints
and can be interpreted as an additional, soft safety distance. With only hard constraints, even
small prediction errors can yield crashes or infeasible optimization problems when the other vehicles
behave very differently than planned.
If the velocity of the other vehicles is estimated too fast, the slack variables can compensate

for this effect. The ego vehicle has to accelerate less than expected to catch up with the previous
vehicle. Also, using up the slack, the ego vehicle can maneuver into the gap to overtake, and the
gap closes slower than estimated. The other case that the velocity of the other vehicles is estimated

106



5.7 Demonstration of Benefits and Effectiveness in Simulated Scenarios

0 2 4 6 8 10 12 14 16 18 20 22 24

6

8

10

t [s]

v
[m

/s
]

No error
+50% prediction error
-25% prediction error

(a) Velocity 𝑣 in the overtaking scenario.
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(b) Orientation 𝜃 in the overtaking scenario.

Figure 5.24: Velocity and orientation plot over time of the multi-agent setting of the overtaking scenario
with varying prediction errors. The resulting motion differs significantly with prediction errors
present.

as being too slow is a security issue. The ego vehicle starts overtaking in the belief that sufficient
space is available for overtaking, but the gap closes faster than expected.

We comparably parameterize both experiments, the single-agent setting with dynamic obstacles
and the multi-agent setting. Still, the problem formulation differs, e.g., in modeling the agent
shape (set of circles vs. rectangle) or the formulation of the slack terms. Therefore, we do not
show a direct quantitative comparison. Also, we did not tune the cost parameters for maximum
performance in this scenario but chose a generic setting.
In the multi-agent setting, the cooperation factor 𝜆ego has to be chosen small, as the other

vehicles show no reaction to the ego vehicle. A bigger cooperation factor results in scenarios with
immanent collisions as the ego vehicle expects a, to some extent, cooperative reaction from the
other vehicles, which they do not show.

Figure 5.23 shows an exemplary evolution of the scenario with the multi-agent formulation with
an exact prediction without errors. The ego vehicle (blue) intends to overtake the red vehicle with
an oncoming (green) vehicle. The blue ego trajectory shows the behavior and motion plan of the
ego vehicle. The visualized future trajectories for the fellow vehicles are the estimations the ego
vehicle bases its motion on. In the multi-agent setting, MINIVAN is able to find a collision-free
solution in a wide range of prediction errors. Up to 25%, negative error of the speed prediction
can be compensated. With a speed prediction deviating more, the ego agent provokes an imminent
collision when driving into the gap. Predictions faster than the actual vehicle speed can even be
compensated up to speed errors of 50%. If we let the error grow more, the ego vehicle accelerates
too fast when driving on the left lane while overtaking as it expects the oncoming (green) vehicle
to be faster than it is, resulting in an unavoidable collision with one of the other vehicles.

The error range is significantly smaller when both other vehicles are modeled as dynamic agents.
Here the error in the prediction speed may vary between −20% and 25%. If the prediction is
too slow, the ego vehicle enters the gap to overtake but cannot leave it fast enough with the
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(a) Velocity 𝑣 in the overtaking scenario.
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(b) Orientation 𝜃 in the overtaking scenario.

Figure 5.25: Velocity and orientation plot over time in the dynamic obstacles setting of the overtaking
scenario with varying prediction errors. With prediction errors present, a less smooth
overtaking maneuver is executed.

other vehicles approaching faster than expected. If the prediction is too fast, it does not result
in a collision, but a passive behavior of the ego vehicle as the gap is expected to be too small to
overtake. The ego vehicle cannot successfully perform the overtaking maneuver and stays behind
the (red) vehicle on the right lane.

Note that these maximum error bounds change by parameter variation, but the tendency stays
the same. When planning a cooperative multi-agent motion, errors are compensated better, and
even with agents showing non-cooperative behavior, better overall performance is achieved.

Smoothness of the Motion

Also, the continuity of the motion is influenced by the prediction error. In Figure 5.24 and
Figure 5.25, we plot the ego vehicle velocity 𝑣 and orientation 𝜃 over time in the multi-agent and
the dynamic obstacles scenario respectively. The scenario without prediction error and the extreme
cases are shown. In both cases, the velocity and orientation changes are higher with prediction
errors present, as expected. With a too slow velocity estimation, the overtaking maneuver is
started earlier, with a too fast estimation later than at the ideal point in time. Overtaking is
finished at a comparable time. The magnitude of control inputs resulting in speed and orientation
change is significantly higher in the dynamic obstacles scenario. This observation is expected, as
the inaccurate velocity prediction is not compensated by planning a cooperative motion. Even
though initially the distance between the ego vehicle and the other vehicles is high at 𝑡 = 0 s and
the reference lines do not intersect, the other vehicles already influence the planning of the ego
agent, as we can observe in Figure 5.24. From the beginning, steering and acceleration commands
are triggered, a rather undesired side effect of multi-agent planning.
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Figure 5.26: Evaluation time in different settings of the overtaking scenario. The mean runtime (red) stays
below the real-time bound of 0.5 s, when modeling vehicles as dynamics obstacles also the
75th percentile. We observe outliers with a significantly higher solution time.
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(a) The red vehicle steers to the lane center at t=9 s.
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(b) The blue vehicle overtakes on the right at t=10.5 s.

Figure 5.27: Evolution of the overtaking scenario with cooperative vehicles that perform one coordinated
behavior plan. For an initial configuration of the scene see Figure 5.23a.

Runtime Considerations

We did not tune the parameters for real-time execution in this scenario. In Figure 5.26, we provide
an analysis of the overall evaluation time per step, averaged over the whole scenario. We did not
apply an upper time limit for the optimization for this evaluation. The time horizon is chosen
as 5 s with a step size of 0.5 s. We observe that the mean runtime is below 0.5 s but has a high
variance. In the dynamic obstacles scenarios, the 75th percentile is also far below 0.5 s, but with a
significant number of outliers. These outliers are critical for real-time execution but in a tractable
range of at most 2 s. The evaluation time does barely varies with the prediction error. When
modeling the other vehicles as interacting agents, we observe extreme outliers > 5 s in the runtime
where terminating the optimization earlier yields a significantly worse solution. With a mean
runtime lower than 0.5 s, the 75th percentile clearly violates the real-time bound of 0.5 s. This
makes real-time application challenging, and we consider three interacting agents as a maximum.
The effect of the prediction error does not show a clear tendency. We generally observe that in
dense scenarios with various driving options, the evaluation time rises, which is the case when
underestimating the other vehicles’ velocity.
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Figure 5.28: Setup of the racing scenario. The start points of scenes depicted in the other figures are
located on the track. (graphic from [KEK20], ©2020 IEEE)

Coordinated Maneuver

As a concluding experiment, we model the scenario with three coordinated vehicles that follow the
same coordinated behavior plan. We set the cooperation factors 𝜆 equal for all vehicles to generate
a balanced solution. As we depict in Figure 5.27, a different solution is found where two vehicles
perform a slight evasive maneuver to enable an overtaking with moderate acceleration and steering
inputs. In this specific scene, the overtaking is finished 11.5 s after the scenario start, which is less
than 12.5 s to 13.5 s in the previous scenarios without explicit cooperation. We observe that the
motion of the oncoming (green) vehicle is slightly non-smooth. This is an effect of terminating the
solver before reaching the global optimal solution according to the parameter setting for real-time
applicability.

Conclusion

We showed and analyzed the evolution of a dense overtaking scenario in three different simulations:
A multi-agent setting with (1) uncontrolled agents, (2) three coordinated agents, and (3) in a
single-agent setting with the other cars modeled as dynamic obstacles whose trajectories are not
varied by the optimizer. In all three cases, MINIVAN can find feasible trajectories with comparable
performance. The scenario is finished faster with a coordinated solution while keeping comfort and
safety limits. This observation indicates that MINIVAN not just by chance found good solutions.
We conclude that both the multi-agent formulation and the formulation using dynamic obstacles
can solve a dense overtaking scenario by investing more control input to avoid collisions. The
multi-agent formulation is robust to bigger prediction errors. However, it has a significantly higher
variance in the evaluation time that makes real-time applicability questionable for three or more
agents.

5.7.5 Competitive Autonomous Racing

We in this section analyze both the implications of the introduced cooperation factor 𝜆 in the
joint cost function and the agent-to-agent collision constraint, including the soft constraint term
to account for model inaccuracies in two simulated scenarios. We use a racing track by Heilmeier
et al. [Hei+20] with the provided ideal line and track boundaries (Figure 5.28). We define the
finish line after 1177m.
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Scenario Setup

We evaluate our algorithm in an autonomous vehicle racing scenario, in which dense interactions
with other agents usually occur. The goals of each agent are conflicting as each agent wants to win
the race. Besides the observations of other agents, no communication is involved. We assume the
optimal line on the racetrack to be known and equal for all agents. Therefore, each agent competes
to stay on this ideal line, which we use as a reference path. In the curves, we limit the maximum
velocity with respect to the maximum lateral acceleration possible for the vehicle model.

The ego agent 𝐴1 starts with a disadvantage but has a slightly higher top speed of 14m/s than
the other agent 𝐴2 with a top speed of 12m/s, so it can eventually overtake and win the race. The
ego agent 𝐴1 uses MINIVAN to plan its behavior and trajectory. In contrast, the other agent 𝐴2

only tracks the reference line with respect to its kinematic constraints without considering the ego
agent. Reference tracking is favored over driving smoothness. We plan a horizon with 20 steps
and a time interval Δ𝑡 = 0.2 s.

Effect of the Cooperation Factor

In the overtaking scene in Figure 5.29, we show exemplary for 𝜆1 = 0.3 how 𝐴1 finally makes use
of its higher top speed. When not leading to ambitiousness, we will, in this section, for the ease of
reading, drop the agent superscript 1 for the cooperation factor meaning 𝜆 = 𝜆1. We observe, that
even with a very inaccurate model of 𝐴2 (Figure 5.29a), 𝐴1 can safely catch up (Figure 5.29b),
finally overtake (Figure 5.29c), and keep the leading position even though it has to take a wider
curve due to its higher speed (Figure 5.29d, Figure 5.29e).
In Figure 5.30, we analyze how different scaling factors 𝜆 lead to different agent behavior by

tracking the lap time of both agents. As a baseline, we simulate each agent alone on the racetrack.
If 𝐴1 ignores the predicted motion and intention of 𝐴2 (𝜆 > 0.85), it drives too aggressive and
eventually provokes a crash of both vehicles.In the other extreme (𝜆 < 0.1), 𝐴1 ignores its own
goal, which leads to very passive behavior. Even though it could accelerate to a higher top speed,
it cannot successfully overtake. We observe that scaling factors in between depending on the 𝜆, 𝐴1

sooner or later successfully overtakes and wins the race. Hence, with a balanced scaling factor, 𝐴1

can achieve its own goal of driving at a higher top speed, also considering the intent of 𝐴2 to stay
on the ideal line at a lower speed.

Effect of the Soft Collision-Avoidance Constraints

In Figure 5.31, we analyze the effect of the scaling factor 𝜆 on the interaction of the agents and
the safety distance the ego agent 𝐴1 is willing to keep. If 𝐴1 behaves aggressively, it implicitly
models that 𝐴2 will give way, which it will not. This results in a high prediction error for high
values of 𝜆, which is compensated by the slack terms. We observe that more slack is used to
mitigate imminent collisions at the beginning of the planning horizon (Figure 5.31a). At the end
of the horizon, the magnitude of slack used is lower as the optimizer has cheaper alternatives
to avoid collisions (changing position or jerk) even though the absolute errors from a non-ideal
prediction are higher (Figure 5.31c). When both vehicles interact densely, the ego agent uses the
slack to violate the soft safety distance to some extent. As expected, the amount is higher for high
values of 𝜆. We show three different values of 𝜆 representing three different behaviors of 𝐴1; early
overtaking (𝜆 = 0.8, until t=17 s), late overtaking (𝜆 = 0.3, until t=40 s, also see Figure 5.29), and
no overtaking (𝜆 = 0.05). As soon as the overtaking maneuver has been performed successfully,
the slack costs go to zero, as the safety distance can trivially be fulfilled. In the edge case 𝜆 = 0.05,
𝐴1 behaves very passive and always tries to keep the safety distance big. In the other extreme
of 𝜆 = 0.9, 𝐴1 behaves too aggressively, accepts a high prediction error that the slack terms
cannot compensate, and finally provokes a crash. For 𝜆 = 0.8, 𝐴1 performs an aggressive but still
safe overtaking maneuver, whereas for 𝜆 = 0.3, it initiates the overtaking late as more drivable
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(c) Ego performs a successful
overtaking at 𝑡 = 31 s.
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(d) Due to the higher speed, ego has to take w wider curve
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(e) Ego plans the trajectory finally resulting in the leading position at 𝑡 = 37 s.

Figure 5.29: The ego agent 𝐴1 overtaking in the first curve with cooperation factor 𝜆 = 0.3. (modified
graphic from [KEK20], ©2020 IEEE)
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Figure 5.31: The effect of soft constraints coping with prediction errors. At the respective horizon index,
we depict the mean safety distance compensated by the slack variables 𝜉 for different factors
𝜆 for all planning instances. (graphic from [KEK20], ©2020 IEEE)

area is available. Hence, with appropriate parameter selection, our algorithm can cope with not
completely known cost functions of other agents, and the driving style of the ego agent, including
its willingness to take risks can be adopted.

Conclusion

We conclude that even in a purely competitive setting, such as a car race, MINIVAN can, with
appropriate parameterization, find a safe solution while achieving its own goal. It also takes the
intent to stay on the ideal line of the fellow vehicle into account, which shows the cooperative
design of the planner. The cooperation factor 𝜆 effectively leverages the agent behavior at a
local scope (as we showed in Section 5.7.2) and also globally viewed over various receding horizon
steps.

5.8 Conclusion

This chapter introduced the MINIVAN planning approach that solves the multi-agent behavior
planning problem by formulating a MIQP using a continuous state and action space. Using an
orientation-dependent linearization approach, we derive a suitable vehicle model obeying the
non-holonomy of a road vehicle. It also over-approximates the vehicle shape for collision checking
with arbitrary objects and agents. By introducing soft constraints, we ensure robustness against
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perception and prediction errors. A cooperation factor in the joint cost function effectively leverages
the levels of cooperative behavior. We show both in simulated scenarios.
The approach is scenario-agnostic; no theoretical limitations on the environment, obstacle, or

agent configuration applies. With its continuous action formulation, it can even find a solution in
dense and narrow situations, as we demonstrated in a racetrack scenario. It produces kinematically,
and dynamically valid trajectories that inherently follow a coordinated strategy as the intents of
all agents are taken into account in the leveraged global cost optimization. A practical drawback
is the invalidity of the model at low speeds. This impedes the application in interactive scenarios,
where it is for at least one agent necessary to (nearly) come to a complete stop.

The cost function effectively scales the level of cooperation between different agents. As
human drivers, each autonomous agent can balance the own and others’ interests to achieve
different behavior from altruistic to egotistic. Nevertheless, the behavior is not human-like as the
optimization does not take traffic rules and social conventions into account but finds a globally
optimal solution with respect to driving smoothness and deviation from the intended reference
track. Interaction with uncontrolled agents is still possible, either by considering these as dynamic
obstacles whose motion cannot be changed, resulting in reactive ego behavior or by using a soft
constraint agent model formulation that handles inaccuracies in fellow agents’ motion and behavior
prediction.

Naively executing the model with an off-the-shelf solver also in simple scenarios violates real-time
bounds. We showed that using the previous solutions from the receding horizon planning problem
as a warmstart solution, a significant decrease in the runtime is achieved. Also, adapting the solver
setting and constraint evaluations to the model structure improves the runtime. In single-agent
scenarios, a sufficiently high number of (static and dynamic) obstacles can be handled in real-time.
Complicated receding horizon instances where the topology of the optimization problem changes
can yield critical peaks in the runtime that have to be reduced by effective parameterization.
Depending on the overall scenario complexity, multi-agent scenarios can be possible in real-time
with few agents. However, the runtime is significantly higher than in single-agent scenarios with
dynamic agents resulting in runtime peaks that violate real-time conditions.
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6 The Software Stack for a Behavior
Planning Research Vehicle

Executive Summary of this Chapter This chapter will elaborate on how and why we selected
and designed the hard- and software of the experimental platform for fully autonomous test drives
on public roads. We discuss why it is valuable to base the software stack on the existing open-
source solution Apollo to concentrate on the behavior and motion planning research. Besides
parameterization and new device drivers, only a small number of additional components were
necessary to run Apollo on a German experimental vehicle, e.g., developing an adapter to a
standard map format. We, in detail, explain how to integrate Mixed Integer Interactive Planning
(MINIVAN) into the existing software architecture and interfaces of the stack. It required an
efficient convexification algorithm for arbitrary road environments and a Model-Predictive Control
(MPC)-based post-optimization to account for low speeds and efficient subsampling of trajectories.
Due to the modular software structure, these features are also available for other (planning)
modules. The implementation of the trajectory tracking control on a real-time rapid prototyping
control unit provided additional stability, still maintaining the architectural patterns of Apollo.
This chapter further elaborates on the strengths and weaknesses of our hard- and software setup
and the suitability of the Apollo software stack. Apollo provided a good baseline performance of all
functional modules, and especially the core functionalities, such as the communication middleware,
works smooth and stable. It comes at the price of a relatively closed ecosystem and a restricted
C++ development environment. We conclude this chapter by evaluating three on-road, closed-loop
autonomously driven scenarios. In these, we quantitatively demonstrate the real-time capability
and overall performance of the behavior planner operating inside the autonomous driving stack.
The contributed code of this thesis is available as open-source software.

Content and Structure of this Chapter In this chapter, we will first in detail describe the
hardware setup of the experimental platform in Section 6.1. We then describe the software setup
that is based on the open-source platform Apollo in Section 6.2, putting a particular focus on
the changes we introduced in the existing stack. In the third part of the chapter, Section 6.3,
we describe how we integrated MINIVAN into the Apollo stack. Section 6.4 describes how the
trajectory tracking approach we implemented. In Section 6.5, we elaborate on our experience with
this setup in on-road driving experiments, described in Section 6.6. Section 6.7 concludes this
chapter.

Contributions of this Thesis Parts of this chapter have already been published in [Kes+19]
together with further colleges from the research institute fortiss, especially Martin Büchel. This
applies to the hardware setup and an earlier version of the trajectory tracking controller. The
integration of MINIVAN into Apollo, the adaption of the software stack for our research vehicle,
and the driving experiments are based on a joint work together with Klemens Esterle [KEK22].

6.1 Hardware Setup of the Prototype Vehicle Fortuna
This section will describe the hardware setup of the research vehicle Fortuna. To meet the
requirements of rapid prototyping, we chose to modify a production vehicle with non-production-
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Figure 6.1: The Fortuna autonomous driving vehicle experimental platform: a modified VW Passat with
lidar sensors and antennas on the roof rack, additional cameras inside the vehicle and additional
radar sensors integrated in the bumpers. (graphic from [KK19], ©2019 IEEE)

vehicle hardware and provide access to production sensors and actuators. We use a refitted 2018
Volkswagen Passat Variant GTE (see Figure 6.1). This setup leverages the need for innovative,
flexible, and powerful hardware and the need for a standardized and reliable base hardware setup.
We did not aim for a hardware setup of a production vehicle in terms of redundancy or power
consumption.

An architecture overview of Fortuna’s additional hardware is depicted in Figure 6.2. Figure 6.3
provides an impression of the installed setup in the trunk. The modifications include additional
sensors, interfaces to access production vehicle bus networks, and four computers connected via an
industrial gigabit Ethernet switch splitting the traffic into several virtual networks.

• One industry standard real-time rapid-prototyping control unit (a dSpace Micro Autobox II)
with an IBM Power PC 900MHz CPU and 16MB RAM for control algorithms with various
low-latency hardware interfaces (including CAN) running a real-time operating system. We
run the low-level trajectory control on this computer as described in Section 6.4.

• Two Car PCs with Intel i7 3.4GHz quad-core CPU and 32GB RAM for sensor data processing,
motion planning, human-machine interfaces and further software components running Ubuntu
Linux. These PCs run the driving stack as described in Section 6.2.

• One Nvidia Drive PX 2 AutoChauffeur with two Pascal GPUs running Nvidia Drive Works
for accessing camera images.

The hardware setup includes a 12V backup battery with additional power management and a
connection to the high-voltage system of the production vehicle. A prototype cellular 5G interface
realizes Vehicle-to-Everything (V2X) connectivity. Proprietary gateways enable access to the CAN
buses of the production vehicle, which allows reading sensor and vehicle information. Write access
enables automated driving through steer-by-wire. Key switches are installed for safety reasons
and allow to power and enable the reading access measurement system and to enable writing Car
Area Network (CAN) access for longitudinal and lateral control. An emergency shutdown button
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Figure 6.2: Schematic overview of the hardware setup and the interfaces between the components (modified
graphic from [Kes+19], ©2019 IEEE)

allows the safety driver to return to a production vehicle mode. The production vehicle sensor data
include object lists detected by the radar sensors of the Adaptive Cruise Control (ACC) system
and kinematic vehicle state information. Also, raw data from the ultrasonic sensors and camera
images from the Area View surround-view cameras are available. More in detail, the vehicle is
equipped with the following additional sensors, cf. Figure 6.1, allowing a 360∘ Field of View (FOV)
avoiding blind spots.

• Three Velodyne lidars: one VLP-32C with 32 layers in a central horizontal position on the
rooftop and two VLP-16 with 16 layers at each side of the vehicle roof, inclined to scan
the areas at each side of the vehicle. We regard lidar sensors as mandatory for automated
driving. The setup was chosen to provide a sound point cloud density in combination with a
sufficiently broad sensor range for various scenarios.

• Five Sekonix cameras: two front-facing cameras, one with 60∘ FOV, and one with 120∘ FOV,
one camera to each side and one rear camera, all with 120∘ FOV.

• Four Smartmicro UMRR-146 radars: two facing forwards and two backward, integrated into
the bumpers with access to raw sensor data.

• Inertial Navigation System (INS): iMAR iNAT FSSG-1, a fiber optic gyro (FOG) based
INS supporting Real-Time Kinematic (RTK) with integrated Global Navigation Satellite
System (GNSS) receiver offering a localization precision of up to 2cm. The device can
serve as a positioning unit and also as high precision reference localization for algorithm
validation. As we consider a very high and reproducible localization measurement as essential
for benchmarking autonomous driving functions, we decided on this industry-standard but
non-automotive production grade device.
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Figure 6.3: The additional hardware installed in the trunk showing (clockwise) the power supply, the
two car PCs, the Drive PX 2, the iNat FSSG, the Micro Autobox II, the CAN gateways, the
Ethernet switch, and the CAN patch panel.

In contrast to the Apollo reference vehicle [Bai17] or the Bertha vehicle [Tas+18], we chose to
equip the vehicle with more than one computer to separate functionality. This setup comes at
the price of network communication overhead and necessary design decisions on how to connect
sensors and devices. For example, we connect the 360∘ FOV camera setup to the Drive PX
2 hardware via Gigabit Multimedia Serial Link (GMSL). This wiring hinders us from running
image-based perception algorithms directly on either of the PCs. Further details on the hardware
components and the requirements leading to the selection of the components are given by Buechel
et al. [Bue+19].

6.2 Usage and Introduced Adaptions to the Apollo Driving
Stack

We decided to use Apollo as a basic software stack, mainly because when this work started (in the
year 2018), Apollo was more mature than Autoware. Apollo already supported on-road driving and
is based on a standardized map format. We have since updated our system to Apollo v5.5. This
section focuses on the extensions we implemented to run Apollo on our vehicle. Our extensions are
also available as open-source software [EK21]. Apollo provides a variety of prebuilt functionality
and a well-structured codebase. We aimed to introduce minimal changes to the Apollo stack to
maintain the original functionality. We modified the sensor drivers and controller module and
developed several adapters and software components to connect the vehicle hardware with the
Apollo stack. After briefly describing Apollo’s functionality and discussing the changes mentioned
above, we conclude the section by discussing the advantages and shortcomings of Apollo’s stack.

6.2.1 System Overview
Apollo follows a classical sense-plan-act architecture pattern. Each component is started as a
separate process, and the messages are exchanged among the components using Apollo’s custom
publish-subscribe middleware Cyber RT, as we describe in Section 3.6.1. This middleware makes
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the integration of customized components straightforward. We followed Apollo’s architecture
pattern as sketched in Figure 6.4 but replaced some components with custom implementations.
We also reflected the architecture by separating each architectural layer on an individual hardware
computation component. For perception and planning, we used two standard in-vehicle computers.
The most significant architectural change is the separation of the vehicle controller from Apollo,
placing the control layer on a dedicated rapid prototyping real-time control unit, see also Section 6.1.

6.2.2 Perception Pipeline and Obstacle Motion Prediction

Our sensor setup is different from the recommended Apollo hardware setup, which led us to
implement an adapted perception pipeline. As we focus on the planning and control layer, we only
used a minimal set of sensors, mainly the central 32-layer lidar of type Velodyne VLP-32C, and
the differential GNSS system for localization. The radar and vision pipelines are not used in this
work. The sensor data fusion component thus only post-processes the objects detected from lidar.

Ego Localization Since we use different hardware for localization than the Apollo reference
vehicle, we had to develop a customized localization adapter. As the INS/GNSS is supposed to
provide highly accurate and consistent measurements, we decided to feed an already filtered GNSS
position and velocity plus the Inertial Measurement Unit (IMU) data from the same device into
the stack without changing Apollo’s standard messages. Doing so, we did not introduce changes
in the build-in RTK localization module that combines GNSS and IMU messages to a consistent
localization message and provides the dynamic transformation from the world frame to the vehicle
reference frame.

Radar Pipeline From the production vehicle’s ACC system, the radar sensor data input is
available. Production vehicle radars are optimized for ACC and emergency brake scenarios.
Therefore, these radars are parameterized to suppress false positives in order to avoid unmotivated
emergency braking maneuvers and are well suited to reliably detect vehicles around the ego vehicle.
We first read these information from the CAN bus using the adapted Apollo node. We then extract
the relevant objects (if any) from the processed CAN message and translate them into Apollo’s
object list format to be fed into the sensor data fusion component. Note that not every field of
Apollo’s message can be extracted from the data, e.g., the object dimensions. We here chose to
input conservative bound values.
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Lidar Pipeline Apollo provides a pipeline starting from the lidar drivers for the identification
of objects in the pointcloud [Bai21c; Bai21e]. The vehicle’s motion during the point cloud scan is
compensated by comparing the first and last scan point and applying an appropriate translation
and rotation into the ego vehicle frame. A segmentation component creates objects from the point
cloud data. It projects all scan points into the two-dimensional Cartesian plane and quantizes
them into a grid of cells. For each cell, statistical measures (features) such as the number of points
per cell, intensity, or height are computed. This tensor of 2D grid × features is fed into a fully
convolutional neural network that predicts center offset, objectness, positiveness, object height,
and class probability per cell. From this, a directed graph of all cells is generated, and connected
cells are clustered as objects. In a final post-processing step, improbable and small clusters are
removed. These clusters are then wrapped into polygonal objects with a valid orientation. Whereas
the networks’ implementation is provided, the training data for the neural nets are not available
open-source. Our setup relied on the trained network for a 64-layer Velodyne lidar to process the
data of the 32-layer Velodyne lidar, which implies an adaption in the segmentation process that
is hard to verify. A recognition component tracks the segmented obstacles and associates each
obstacle with a track in a subsequent step. The main task is the creation and temporal association
of tracks and the dropping of implausible tracks. The detection-to-track association is reduced to
a bipartite graph matching problem and solved using the Hungarian algorithm. A Kalman filter
with some robustness tweaks is then used to estimate the motion states for each track, such as
position and velocity. The result is a list of objects with kinematic states, shapes, and types per
lidar sensor. We only changed the parameterization of the lidar pipeline but no implementations.

Sensor Data Fusion The fusion component [Bai21c] takes the object lists from each individual
sensor and creates one consistent list of objects in Apollo’s target format. One main sensor is used
to trigger the fusion, in our case, the central lidar scanner. Data from all other channels is cached.
The association problem of individual sensor objects to the set of fused objects is again reduced to
a Bipartite Graph Matching problem and solved using the Hungarian algorithm with the goal of
minimizing the Euclidean distance of the object center points. Once the tracks from the sensors
are matched to fused objects, the association is done using the sensor object ids. An Adaptive
Kalman Filter fuses the motion states and uncertainty information for each sensor object. The
Adaptive Kalman Filter is a strategy to adjust to dynamics that are not modeled in the process
model.

Prediction We also did not introduce implementation changes to the prediction component
[Bai21f]. It takes the objects from the sensor data fusion and generates an estimated future motion
based on the object state and type and the ego-motion. The prediction operates in two scenarios:
driving on a lane (cruise) and junctions. Different algorithms are executed according to the type of
object and its proximity/probability to interact with the ego vehicle. First, an evaluator predicts
path and velocity individually for each object. Second, a predictor generates trajectories for each
object.

For nearby vehicles, the model is based on a convolutional long short-term memory network
with extrapolation to longer trajectories. A deep neural network-based evaluator combined with a
predictor moving the objects along the associated lanes is used for vehicles further away. Cyclists
are predicted to stay driving in their respective lanes. The evaluator for pedestrians is based on
the Social LSTM approach [Ala+16] combined with a free motion predictor. For unknown objects,
an adapted version of the multilayer perceptron evaluator and the lane-keeping predictor is used.
Objects outside any lane may move freely.
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6.2.3 Further and Auxiliary Components
We had to use, change, or extend various components to make Apollo functional on our Passat
GTE. This section will briefly give an overview of these auxiliary modules and specify which
changes we introduced and which components could be used out-of-the-box.

Control We require the trajectory tracking controller to stabilize a given trajectory and output
acceleration, and steering commands passed to the vehicle interfaces. Although Apollo would serve
this need, we chose to replace the controller used by Apollo and run it on a separated real-time
platform instead. This separation facilitates higher safety and reliability in our prototype setup
by separating control tasks in real-time execution for other software applications on different
hardware platforms. Therefore, we developed a bridge communicating between the Apollo stack
and the trajectory tracking controller on the real-time system. We observed that this separation
yields more stable system performance and optimally uses the different benefits of the modular
computing hardware setup. In Section 6.4 we will describe in detail the design and implementation
of the trajectory tracking controller.

Canbus The Canbus module reads and writes data from Apollo messages to CAN messages. It
consists of two parts; a driver reading the raw CAN messages from a CAN hardware device (in our
case a Socket CAN PCI card) and a module parsing the raw CAN messages and translating them
into the appropriate Apollo message in Protobuf format (namely the chassis and chassis_detail
message).

Apollo does not provide parsers to read messages from a Passat GTE but a hook to integrate new
vehicles. We used this software interface to add CAN bus reading functionality and fill necessary
Apollo messages such as motion and steering information. Also, we extended the standard message
with data specific to our vehicle, such as the object information from the production vehicle ACC
radar system. As we do not control our vehicle from a PC running Apollo, we did not implement
writing CAN access for Apollo’s CAN module.

Bridge Each Apollo module runs inside Apollo’s Docker container. The bridge component
makes it possible to communicate with modules running outside the container using Apollo’s
Protobuf-based messages. We use the bridge component to communicate between the PC running
Apollo and the Autobox running the controller. We did not change or extend the bridge component
as we natively decode Apollo’s messages on the Autobox, as we will see in Section 6.4.2.

Routing To select a reference path on the High Definition Map (HD-Map), the map provides a
topology graph of how the lanes are interconnected. The routing component selects the shortest
path on the network using the A* algorithm [LaV06]. We did not introduce changes to this
component. The integration into the HMI is solved conveniently and straightforwardly.

Map Generation and Conversion Apollo heavily relies on an HD-Map, which provides
geometric information and a topology graph of how the lanes are interconnected. This map
is stored in a customized format extending the OpenDrive format [ASA21]. While standard
OpenDrive maps describe the geometric shape of a road and lane using mathematical functions,
Apollo-style maps use linestrings instead, a discretized variant of the functions. We did not modify
Apollo’s map format but had to provide maps from our test area in Munich. We thus developed a
converter that translates standard-conform OpenDrive maps into custom-Apollo OpenDrive maps.
We did not adopt the map functionalities of Apollo itself but had to provide maps from our test
areas in Munich.

The OpenDrive map format is a widely used industry-standardized format initially developed for
simulation purposes. Representing all elements as mathematical functions comes with the benefit
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of an interpretable file. However, for wheel contact point evaluation in simulation tools or other
geometric map queries, most simulators (e.g., [Ber+20; Dos+17]) rely on sampled and discretized
versions of these functions. These discretizations can be performed offline and stored once; online
while evaluating only map lookups are needed then. Alternative map formats, such as Lanelet2
[Pog+18] directly rely on discretized linestrings.

Standard OpenDrive maps define a centerline of each lane as a sequence of functions (either line,
spiral, or arc) along the road longitudinal 𝑠-coordinate. On top, lanes are then defined as functions
defining the lateral 𝑡-offset from the centerline or the previous lane in a street-local 𝑠𝑡-coordinate
system. Each road has a unique ID and, within each road, each lane has a unique ID. The linkage
of roads is achieved by specifying successor and predecessor lanes on other roads. Also, junction
elements can provide more sophisticated linkage information.

In Apollo’s flavor of OpenDrive, each geometric function has to be provided additionally as a set
of discretized points in an appropriate geographic coordinate system. Our converter performs this
discretization into WGS84 (longitude/latitude) points and the respective associations. It resolves
discretization errors at lane boundaries that can occur when transferring from the functional to
a discretized representation as numerical errors in the sampling can lead to a non-continuous
connection of two discretized functions. The converter further iterates through an input map
and first converts the start point of a represented curve from the provided geographic coordinate
system in the file header to WGS84. It then samples the mathematical representation of the curve
using a given, fixed discretization distance. We treat some special cases, such as dropping too
short segments or avoiding overlaps at neighboring segments. We sample the centerline and the
left and right boundary of each lane. Also, lane linkages are implemented slightly different, which
is resolved by the converter. Furthermore, Apollo-specific map content such as the area of an
intersection is generated. After having generated the custom OpenDrive map in XML format,
we use Apollo’s toolchain to translate the map to a Protobuf-based internal map format. In this
format, each lane is specified by its centerline and boundaries and a unique ID. Roads only contain
topology information on how lanes are connected. Alongside, a downsampled version of the map
is generated for visualization purposes and a graph-based representation of the map for routing
purposes. The map converter is written in Python in contrast to the majority of code provided
with this work. For a thorough analysis of the differences of standard OpenDrive and Apollo’s
custom format, we refer to Gran [Gra19].

Relying on OpenDrive maps as a base format is a reasonable choice as in the input format. On
the other hand, the usage of a discretized and less complex data structures is preferable for online
evaluation. Our provided map converter closes the existing gap in Apollo’s map toolchain.

Kessler et al. [Kes+18] propose an alternative approach to generate a roadgraph for navigation
and a polygonal representation of the available free space in unknown structured environments
solely based on (lidar) sensor measurements. In such a scenario, we assemble a polygonal map
representation without prior knowledge of the location. With a HD-Map available, this information
is generally extracted from the map.

Visualization and HMI We use the provided web-based visualization and HMI tool Dreamview
without changes. With the provided parametrization hooks, we introduced our vehicle configuration
and adapted the visualization to our needs. The web-based architecture comes with the flexibility
to view the content on various, also mobile devices.

Transformations Apollo offers the functionality to provide static and dynamic transformations
between different coordinate systems. As a reference point, we chose the vehicle’s rear axle center.
We parameterize (sensor) components to operate in this reference frame whenever possible. For all
others, we use the parameterized transformation chains. The code and usage are similar to the TF
package in the Robot Operating System (ROS).
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6.3 Integration of MINIVAN in Apollo

This section describes how we integrated MINIVAN, introduced in Section 5, into Apollo. Figure 6.5
shows the architectural overview of the software components. Besides its core, solving the Mixed-
Integer Quadratic Programming (MIQP) problem, various other functionalities are involved, e.g.,
in processing the input data, generating the problem in the appropriate coordinate system, and
post-processing the solution. In this section, we describe all of the involved software functionalities.

We do not use MINIVAN in driving situations at very low speeds. As elaborated in Section 5.5,
the main reason for this is the singularity of the arctan function at very low speeds. The arctan
function is needed to translate the absolute vehicle speed to the decomposed speed vectors in 𝑥 and
𝑦 direction. Therefore, MINIVAN cannot start driving from a standstill or to bring the vehicle to a
complete stop. These low-speed tasks are performed by our nonlinear trajectory smoothing module,
as described in Section 6.3.4. We introduced a minimum speed threshold 𝑣miqp,min below which we
do not use MINIVAN. Trajectory points from MINIVAN below this speed and all subsequent ones
are considered invalid. Through empirical experiments, we identified 𝑣miqp,min for MIQP planning
as 0.7m/s and used 1.0m/s as a conservative upper bound.

6.3.1 Planner Interfaces and Apollo Software Integration

We integrated our planner as a native component inside Apollo’s Docker container. We aimed
to reuse as many of the service functionalities already implemented. Therefore, we decided to
derive from Apollo’s LatticePlanner class and integrate our implementation as a new planning
module besides the existing planners. The LatticePlanner follows the approach of Werling et al.
[WZT10] and is capable of reference line tracking and obstacle avoidance but is not used in Apollo’s
production setup.
As the implementation of MINIVAN relies on C++ language and Standard Template Library

features that are not available with the compiler used in Apollo’s Docker container (which is GCC
4.8.5), we did not compile our planner inside Apollo’s Docker environment. Instead, we decided
to compile it into a library that is linked into the Apollo planning module. This approach also
enables us to use third-party dependencies incompatible with Apollo’s third-party dependencies,
such as more recent versions of the Boost and Eigen libraries. With Apollo, we only compile a
wrapper class that calls this library. Furthermore, this wrapper class gathers data, helps assemble
the optimization problem, and post-processes the output.
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The Apollo planning module has four main inputs. As we integrated MINIVAN into Apollo’s
planning component, we do not directly interface with the inputs but with already preprocessed
data.

• A new planning cycle is triggered once a new prediction message arrives. This messages
contains trajectories for moving obstacles and positions for static obstacles. The Apollo
planner gathers these and creates a unified structure in a preprocessing step.

• As a second input, the planner takes the localization message containing the ego vehicle’s
current position. This position is used to estimate a reasonable initial point for the planning.

• The routing request provides the planner with the list of future lane segments on the HD-Map.

• The planner also has access to the HD-Map. Based on the currently active routing request,
that forms a sequence of lanes in the map, a local view on the map is generated containing
necessary information on the vehicle’s driving horizon.

6.3.2 Usage and Modification of Apollo Functionalities
From the routing request, Apollo creates a reference line for planning. This line generally consists
of the stacked centerlines of the lanes on the routing corridor. Also, relevant obstacles are
extracted from the environment model and a local except of the map. We have not changed these
functionalities. Apollo implements a trajectory stitching module to compute a reasonable initial
point for the next planning cycle. Three cases are handled: static, moving without or moving
along a valid trajectory. If the vehicle is static, the initial point is the current position. If the
vehicle is moving, but no old trajectory is available (or the old trajectory is invalid), the trajectory
stitcher extrapolates the current vehicle position into the future with the current speed vector for
an estimated planning cycle duration.
While Apollo’s planner has a rather deterministic low runtime, MINIVAN is terminated at an

upper runtime bound. This bound is usually only reached in complicated planning situations,
where mostly a feasible but sub-optimal solution is already available. In typical situations, this
worst-case threshold is far from the mean runtime. The default behavior of Apollo when moving
along a trajectory is to select the next initial planning point as the point on the existing trajectory
that the vehicle should reach in one planning cycle. We modified the trajectory stitcher to shift
this extrapolation time to our worst-case computation time-bound. This way, we always have
a valid trajectory at the downside of additional inertia into the system. For the duration of
the worst-case evaluation time, the planner cannot react to newly introduced obstacles, as the
trajectory leading to the point at this time is fixed. This modification is, as such, no improvement
of Apollo but a necessity to apply a planning concept with a non-deterministic runtime. Once a
new valid trajectory is computed, it is appended to the old trajectory at the previously computed
initial point. To interpolate the trajectory in the tracking controller, a sufficient backward horizon
consisting of the old trajectories is kept.

We also changed the behavior if the planning module fails and cannot create a valid trajectory.
In this case, Apollo would trigger an error state and compute an error trajectory, e.g., bring the
vehicle to a stop. However, we often observed in experiments that if one planning cycle failed,
e.g., due to an unfavorable prediction of one obstacle, the next planning cycle produces a valuable
result, resulting in unnecessary error trajectories. Therefore, we decided not to trigger the error
state with the first failing planning cycle but at the time instance when the vehicle has reached
the end of the current planning horizon. This planner typically recovers to a normal state in a
couple of planning cycles. We ensure the old trajectory is still safe by checking this old trajectory
for collision with all obstacles. This modification yields more robust and stable overall system
behavior without modifying components the stability issue comes from, which we wanted to avoid.
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Algorithm 6.4 Obstacle Processing
Input: 𝒪Apollo ▷ obstacles
Input: 𝑃roi ▷ region of interest
Input: Cd ▷ convex deflated road cells
Input: 𝑟c ▷ collision radius
Input: 𝑟s ▷ safety margin
Output: 𝒪MINIVAN
1: for each 𝑜 ∈ 𝒪Apollo do
2: if type(𝑜) is static then
3: if BBox(𝑜, 0) ∩Cd ∩ 𝑃roi ≠ ∅ then
4: 𝒪MINIVAN ← Inflate(𝑜, 𝑟c + 𝑟s)
5: else ▷ dynamic obstacle
6: for each 𝑡 ∈ 0...𝑇 do
7: if BBox(𝑜, 𝑡) ∩Cd ∩ 𝑃roi ≠ ∅ then
8: 𝒪MINIVAN ← Inflate(𝑜, 𝑟c + 𝑟s)
9: break

6.3.3 Pre- and Post-Processing the Optimization Problem
We first switch from the coordinate system in the driving direction of the vehicle to the global
Cartesian coordinates

(𝑝𝑥 𝑝𝑦 𝜃 𝑣 𝑎 𝜅) ⟶ (𝑝𝑥 𝑝𝑦 𝑣𝑥 𝑎𝑥 𝑣𝑦 𝑎𝑦) (6.1)

with velocity 𝑣 and acceleration 𝑎 in the direction of the vehicle orientation 𝜃 and curvature 𝜅.
With velocities and acceleration in 𝑥 and 𝑦 direction 𝑣𝑥, 𝑎𝑥 and 𝑣𝑦, 𝑎𝑦 the transformation is then
defined as:

𝑣𝑥 = 𝑣 cos(𝜃), (6.2a)
𝑣𝑦 = 𝑣 sin(𝜃), (6.2b)
𝑎𝑥 = 𝑎 cos(𝜃) − 𝑣2𝜅 sin(𝜃), (6.2c)
𝑎𝑦 = 𝑎 sin(𝜃) + 𝑣2𝜅 cos(𝜃). (6.2d)

The transformation is based on a kinematic single track model [Raj12]. To map the accelerations
(6.2c) and (6.2d), we derive the respective velocities and use the relation of orientation change and
curvature ̇𝜃 = 𝑣 tan(𝛿)/𝑙 = 𝑣𝜅 (with steering angle 𝛿 and wheel base 𝑙).

Obstacle Processing The processing of obstacles is shown in Algorithm 6.4. We first inflate
the shape of each obstacle 𝑜 by the collision circle radius 𝑟c plus an appropriate safety margin
𝑟s. This margin can be selected differently for different object types. We then compute the
minimum bounding rectangle BBox(𝑜, 𝑡) for each object as the shape to check against collision in
the MINIVAN optimization. Theoretically, every convex shape would be possible, but rectangles
have proven to be a reasonable compromise between accuracy, flexibility, and runtime. For dynamic
obstacles, we compute a translated and rotated shape for each point on the predicted trajectory.
Obstacles are only considered if they intersect with the convex deflated road cells Cd and the
region of interest 𝑃roi. For dynamic obstacles, the shape of at least one prediction step has to
intersect with the environment. The Region of Interest (ROI) 𝑃roi is computed as a very simplistic
reachable set of the vehicle forming a square. It filters out obstacles that do not interfere with the
vehicle anyway, such as objects behind the vehicle.

Reference Trajectory Computation and Ego Agent Update We get the reference line for
planning alongside the destination point on this line. We use this line to create a linear reference
velocity profile with a constant acceleration phase up to the target velocity and a constant velocity
phase when the reference velocity is reached. The reference decelerates with a linear speed profile
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Algorithm 6.5 Map Processing
Input: 𝑃road ▷ road polygon
Input: 𝛿s ▷ simplification distance
Input: 𝑟 ▷ circle radius
Input: 𝑛 ▷ number of merging iterations
Output: convex deflated road cells Cd
1: 𝑃s = Simplify(𝑃road, 𝛿s)
2: 𝑃s,d = Deflate(𝑃s, 𝑟)
3: Cvoronoi = VoronoiDiagram(𝑃s,d)
4: Cvoronoi∩road = {}
5: for each 𝐶 ∈ Cvoronoi do
6: if 𝐶 ∩ 𝑃s,d ≠ ∅ then
7: Cvoronoi∩road ← 𝐶 ∩ 𝑃s,d

8: T = Triangulate(Cvoronoi∩road)
9: 𝑃d = Deflate(𝑃road, 𝑟)

10: Cd = T

11: for each 𝑖 ∈ 1...𝑛 do
12: Cd = MergePolygons(Cd, 𝜏m, 𝑃d)

to zero velocity when approaching the goal point. We scale the target speed with the curvature
and a maximum accepted lateral acceleration threshold in the curves.
As a start point for the reference, we select the initial point for planning. The second point of

the reference is selected as the point on the reference line with minimal Euclidean distance in front
of the vehicle. The initial velocity is chosen as the velocity of the initial point for planning. Note
that this straightforward reference generation strategy can yield suboptimal results for starting
positions far off the reference line, as possibly the optimization tracks an unreachable reference.
We do not adapt the reference line when intersecting with obstacles or the environment but expect
MINIVAN to resolve these conflicts. From this reference line and speed profile, we sample an
interpolated reference trajectory as an input to the planning step.

Map Processing MINIVAN relies on a convex approximation of the available free-space for
navigation. Nearly all road shapes are non-convex and therefore have to be decomposed into
several convex sub-polygons. A naive triangulation is possible but undesirable, as the number of
constraints scales linearly with the number of environment polygons. Therefore, we aim for an
efficient convexification algorithm that outputs as few polygons as possible while still covering
the whole area. Algorithm 6.5 shows the pseudocode of this convexification, where 𝑃 denotes
an arbitrary-shaped polygon, 𝐶 denotes a convex polygon, 𝑇 denotes a triangle, and P,C,T the
respective sets.

We construct the (non-convex) road polygon 𝑃road from the left and right road boundaries and
simplify it in line 1 using the Ramer-Douglas-Peucker algorithm. We deflate the environment
polygon with the radius of the circles that approximate the vehicle and construct the Voronoi
diagram on this polygon. using a sweep line algorithm [For86]. Each point of the input polygon
is used as one point for constructing the Voronoi diagram. No linear segments are used. We
create a sufficiently large bounding box around all points and add it to the construction of the
Voronoi diagram to avoid infinite edges in the creation process. The Voronoi cells Cvoronoi from
the Voronoi diagram represent a segmentation of the available space into polygons. In our case,
all cells are polygons with straight edges. In lines 5-7, we intersect the deflated original polygon
with the set of Voronoi cells and drop all cells outside the original polygon. As Voronoi cells are
not necessarily convex, we decompose the cells in line 8 into triangles. Finally, line 12 iteratively
merges the triangles into bigger convex cells in a greedy manner as follows. Starting from one
triangle, we merge it with a neighboring triangle. We then check if the convex hull of this union
lies within the original (non-convex) road polygon or the union is itself convex. If yes, we try to
merge further triangles. If not, we close this sub-polygon and start a new one. We do this until
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(a) Simplification distance = 0.1m, convex merging toler-
ance = 0.1m (12 polygons)
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(b) Simplification distance = 0.1m, convex merging tol-
erance = 0.5m (7 polygons)
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(c) Simplification distance = 0.5m, convex merging toler-
ance = 0.1m (11 polygons)
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(d) Simplification distance = 0.5m, convex merging tol-
erance = 0.5m (6 polygons)

Figure 6.6: Results of the convexification of an example environment, a lane corridor forming a curve. In
black, the original lane boundary is depicted, as red line, the deflated lane corridor, that shall
be decomposed into convex polygons (colored shapes). (graphics from [KEK22], ©2022 IEEE)

every triangle is processed. This procedure does not guarantee an optimal result. To cope with
this, it has proven to be beneficial for the road shapes used in this work to iterate again once or
twice over the resulting list of convex sub-polygons to reduce the number of polygons further and
find larger convex shapes (line 11).

The convexity checks in the merge step are performed with a particular error margin that two
shapes are merged, even if the union is marginally non-convex. Then the convex hull is used. This
robust convexity check avoids numerical errors and helps to create significantly fewer sub-polygons.
However, it introduces errors in the road approximation, which we add as a safety margin to
the collision shape of the agents. As the last merging step, we simplify each polygon in the set
of convex-sub polygons to avoid very small edges. We inflate each polygon by the maximum
simplification error again to avoid holes between polygons. With the described merging strategy,
the set of sub-polygons can intersect, which is not a problem for MINIVAN.

The number and size of the sub-polygons are highly dependent on the two introduced parameters:
the simplification distance 𝛿s and the convexity threshold 𝜏m for merging two polygons. Hence,
we can find a balanced approximation accuracy and sub-polygons size ratio with an appropriate
setting. In Figure 6.6 we compare three different settings and show the effect of the parameters.
We observe that the number of polygons is reduced with increased merging tolerance. With low
values, the approximation of the (red) deflated environment shape is accurate, whereas a notable
approximation error at the inner part of the curve occurs with higher values.
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Figure 6.7: The finite state automaton controlling the planning sequence. Using the current velocity and
the remaining distance on the trajectory, state transitions are triggered between the Driving
(default), Starting, Stopping, and Standstill state. (graphic from [KEK22], ©2022 IEEE)

The strategy described here has proven to generate a sufficiently accurate environment decom-
position with a fast runtime. Still, we want to emphasize that we rely on a greedy heuristic, and
theoretically, shapes can be constructed where the algorithm yields poor results. We did not
observe such problems in the tested road geometries. In a specific planning cycle, possibly not
all convexified sub-polygons are needed, as most do not lie on the current vehicle horizon. As
the solution complexity scales with the number of convex environment polygons, we only use the
polygons that intersect with the reference trajectory of the current planning instance with some
tolerance to make sure enough space is available if the vehicle, e.g., performs an evasive maneuver
or drives faster than the reference.

Warmstart Computation In Section 5.5.2, we elaborate how we speed up the optimization
using a warmstart solution.

Optimization Problem Generation This stage collects all previously generated data and
assembles the optimization problem. We compute values specific to the MINIVAN optimization,
such as the initial region and the possible regions in this planning cycle, followed by various
consistency checks to avoid infeasible optimization problems, e.g., ensuring to start inside the lane
polygon. Here we also load the warmstart solution from the previous planning cycle.

Planner State Management Our planner implementation is controlled by a finite state
automaton with four states representing different driving situations:

• Standstill: We do not trigger a planning cycle but maintain the current position.

• Starting: We omit the MINIVAN planning step but compute a trajectory along the reference
path and speed profile using the trajectory smoothing module.

• Driving: In this default state we set up, solve, and smooth the resulting trajectory.

• Stopping: We omit the MINIVAN planning step but compute a trajectory along the
reference path and speed profile (ramped down to zero) using the trajectory smoothing
module.

Figure 6.7 shows the resulting automaton and its respective transitions, where

𝑠stop ∶= min(𝑠goal, 𝑠blocking). (6.3)
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The automaton transitions from Standstill to Starting if the velocity is greater than a standstill
threshold and the distance to the routing destination 𝑠goal is greater than zero, and the path is
not blocked by an obstacle right in front of the vehicle (𝑠blocking). The automaton transitions from
Starting to Driving if the current velocity is greater than 𝑣miqp,min, and from Starting to Stopping
if the vehicle approaches the destination point. A transition is triggered from Driving to Stopping
if the vehicle approaches the destination point and the current speed falls below 𝑣miqp,min. Once
the velocity drops below 𝑣standstill, the automaton transitions from Stopping to Standstill. In the
Starting and Stopping state, we only consider obstacles that are immanently in front of the vehicle
and do not plan trajectories avoiding all obstacles. This, of course, is a restriction of our system
that we consider acceptable for a research platform.

Post-processing of the MIQP Solution After a successful MINIVAN optimization, we post-
process the result. First, we compute and store the warmstart for the next planning cycle according
to the warmstart strategy described in Section 5.5.2. We then transform the solution trajectory
back from global Cartesian coordinates into the vehicle-relative frame having absolute values in
vehicle orientation

(𝑝𝑥 𝑝𝑦 𝑣𝑥 𝑎𝑥 𝑣𝑦 𝑎𝑦) ⟶ (𝑝𝑥 𝑝𝑦 𝜃 𝑣 𝑎 𝜅) (6.4)

using trigonometric formulas and appropriate derivations:

𝜃 = arctan(
𝑣𝑦

𝑣𝑥
), (6.5a)

𝑣 = 𝑣𝑥
cos(𝜃)

, (6.5b)

𝑎 = cos(𝜃)𝑎𝑥 + sin(𝜃)𝑎𝑦, (6.5c)

𝜅 =
𝑣𝑥𝑎𝑦 −𝑎𝑥𝑣𝑦

(𝑣2
𝑥 + 𝑣2

𝑦)3/2 . (6.5d)

To ensure no approximation errors have been introduced, we check the resulting trajectory for
collision with the unmodified obstacle shapes and environment polygon. In the final step, we
perform trajectory smoothing as described in Section 6.3.4.

6.3.4 Trajectory Smoother
MINIVAN does not allow putting direct costs on absolute acceleration change and curvature
change. However, both are desirable to generate a comfortable driving experience. Also, due
to the approximation of the orientation into a set of discrete regions, the vehicle orientation
at the boundaries of regions can be inaccurate, and the orientation change can be non-smooth.
Furthermore, in MINIVAN, we want to use a more extensive time discretization to achieve a longer
planning horizon that we subsample in the smoother to hand over a smooth and more fine-grained
trajectory representation to the controller. Note that due to the overapproximation of the vehicle
shape, this is not a safety issue when avoiding obstacles. Nevertheless, it can lead to uncomfortable
driving behavior.
Therefore, we introduce a trajectory smoothing step to find a trajectory 𝑇out as a nonlinear

MPC optimization in the vehicle frame to stay as close as possible to the original trajectory 𝑇in.
Obstacles are not directly used in the smoothing optimization but only indirectly through the
input trajectory. We implicitly perform interpolation by increasing the number of support points
from 𝑇in to 𝑇out.
We define 𝑥𝑘 ∶= (𝑝𝑘

𝑥, 𝑝𝑘
𝑦 , 𝜃𝑘, 𝑣𝑘, 𝑎𝑘, 𝜅𝑘) and 𝑢𝑘 ∶= (𝑗𝑘, ̇𝜅𝑘), where superscript 𝑘 denotes the

discrete timestep. We use Heun’s method to integrate the single-track model equations. Generally,
any explicit integration method would be possible, also the explicit Euler method, that needs
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less function evaluations. By using a two-stage integration method, the introduced errors are
significantly lower. The discretized system dynamics can then be formulated as

𝑝𝑘+1
𝑥 =𝑝𝑘

𝑥+
1
2
Δ𝑡𝑣𝑘 cos(𝜃𝑘)+1

2
Δ𝑡(𝑣𝑘+Δ𝑡𝑎𝑘) cos(𝜃𝑘+Δ𝑡𝑣𝑘𝜅𝑘), (6.6a)

𝑝𝑘+1
𝑦 =𝑝𝑘

𝑦+
1
2
Δ𝑡𝑣𝑘 sin(𝜃𝑘)+1

2
Δ𝑡(𝑣𝑘+Δ𝑡𝑎𝑘) sin(𝜃𝑘+Δ𝑡𝑣𝑘𝜅𝑘), (6.6b)

𝜃𝑘+1 =𝜃𝑘+1
2
Δ𝑡𝑣𝑘𝜅𝑘+1

2
Δ𝑡(𝑣𝑘+Δ𝑡𝑎𝑘)(𝜅𝑘+Δ𝑡 ̇𝜅𝑘), (6.6c)

𝑣𝑘+1 =𝑣𝑘+1
2
Δ𝑡𝑎𝑘+1

2
Δ𝑡(𝑎𝑘+Δ𝑡𝑗𝑘), (6.6d)

𝑎𝑘+1 =𝑎𝑘+Δ𝑡𝑗𝑘, (6.6e)
𝜅𝑘+1 =𝜅𝑘+Δ𝑡 ̇𝜅𝑘. (6.6f)

We place bounds on the states

𝑣max <𝑣(𝑘) < 𝑣max, (6.7a)
𝜅max <𝜅(𝑘) < 𝜅max (6.7b)

and inputs

𝑗max <𝑗(𝑘) < 𝑗max, (6.8a)
̇𝜅max < ̇𝜅(𝑘) < ̇𝜅max. (6.8b)

We compute a quadratic cost function

𝐽(𝑢1, ..., 𝑢𝑁, 𝑥1, ..., 𝑥𝑁) =
𝑁
∑
𝑘=1

((𝑥𝑘−𝑥𝑘
in)

⊺𝑄𝑘
1(𝑥

𝑘−𝑥𝑘
in)+(𝑥𝑘)⊺𝑄𝑘

2𝑥
𝑘+(𝑢𝑘)⊺𝑄𝑘

3𝑢
𝑘) (6.9)

where 𝑥in denotes the state of the input trajectory to the smoother module, which may not be
available at some time instances due to the wider sampling of the input trajectory 𝑇in. Therefore,
we select the weight matrices 𝑄𝑘

1, 𝑄
𝑘
2, 𝑄

𝑘
3 in a way to not penalize deviations of subsampled states.

𝑄1 ensures minimal deviations from the input trajectory and 𝑄2, 𝑄3 ensure a smooth motion.

6.4 Trajectory Tracking Control
This section describes how we implemented and tested our trajectory tracking controller. We
show how we extended a trajectory tracking algorithm from literature and state the component’s
architecture. As main contributions, we consider the description of the communication setup
between the non-real-time trajectory planner, the real-time trajectory controller, and the vehicle
control units.
We modeled the controller and the CAN and Ethernet interfaces in Mathworks Simulink.

The handling and interpreting of Apollo’s Protocol Buffers messages are embedded as C-Code
S-Functions. We execute the model on a development PC for a seamless module test without
real-time hardware. Mocking the same interfaces as the vehicle CAN bus enables us to run open or
closed-loop tests with the controller running in Simulink on a computer while receiving trajectory
and localization from Apollo or recorded data. To debug errors occuring in test drives, it has
been proven valuable to record all input signals and internal controller states using the toolchains
offered of the different platforms [Min+16]. A unified analysis and plotting framework has been
implemented to analyze the recorded data.

130



6.4 Trajectory Tracking Control

UDP RX, Decode
Trajectory

UDP RX, Decode
Localization

Reference
Point

Determination
Acceleration
+ Curvature

Control

Trajectory

Localization

Reference
Point

Curvature

Acceleration

Odometry
CAN RX, Decode

Vehicle Data

Controller Status + Errors

Trajectory Sanity Check
Control Strategy + Parameter Selector

ParameterizeParameterize

Controller Status,
Tracking Error

Comfort Limits
Safety Limits

UDP Encode, TX
Status + Errors

CAN Encode, TX
Control Signals

Vehicle
Interface

Communication

CAN Encode, TX
Interface Activation

CAN RX, Decode
Interface Status

Activation

Communication to Apollo

Communication to Vehicle

Controller Modules

Steering

Vehicle
Status

Figure 6.8: Architecture overview of the trajectory tracking controller with the longitudinal/lateral vehicle
control data flow from the left to the right. The module parameterization and error handling
flow from top to bottom. (modified graphic from [Kes+19], ©2019 IEEE)

6.4.1 Control Algorithm

The control algorithm is based on the work of Werling et al. [WZT10] and shown as a block diagram
in the middle part of Figure 6.8. This work focuses on driving scenarios, including interactions
with other dynamic traffic participants; therefore, we apply full trajectory tracking by interpolating
the time on the trajectory received from the planning component. We use the localization time
signal as a common time base for the trajectory planner and the controller. Full trajectory tracking
is especially valuable when driving on longer road segments with sufficient time and space to cope
with sensor and actuator errors. The trajectory planner must ensure that a sufficient backward
horizon of the trajectory is available to guarantee a valid result of this interpolation.

When starting to drive from a standstill, we implemented two special cases to avoid huge tracking
errors due to the vehicle’s inertia. First, all trajectories are dropped, if not all low-level vehicle
interfaces are ready to drive. Once the interfaces are set up, the controller waits for the subsequent
trajectory to start driving. Otherwise, the controller could try to track an unreachable reference
point which results in unnecessary high control values. The introduced delay of one planner cycle
is neglectable. Second, for very low velocities, we do not perform a time-based trajectory tracking
but track the one trajectory point with zero time. Proceeding this way also avoids high control
signals if the vehicle cannot track the accelerating trajectory properly, e.g., when starting to drive.
As soon as the vehicle starts moving, we switch to the trajectory tracking mode. With appropriate
parameterization reflecting the accelerating behavior of the vehicle, the introduced error when
switching is low.
The tracking errors and their derivatives are extracted from the tracking point in a Frenet

reference frame. Using input substitution and backstepping asymptotic stability of the control law
can be proven [WZT10]. For the sake of driving smoothness and planner error tolerance, we limit
the absolute values and rates of all control signals. A separated software module, implemented as
a finite state automaton, activates and parameterizes the different controller components based
on the received trajectory and a host PC HMI command (omitted in Figure 6.8). Doing so, we
achieve a complete separation of control algorithm code from functional execution logic.
We perform basic consistency checking of each trajectory and localization signal in terms of

data and time validity, and time deviation. Furthermore, we detect actuator failures and vehicle
interface errors. In case of an error, the control is handed over to the safety driver. Higher-level
components are expected to treat more sophisticated errors like a degraded performance in tracking
quality.

In [Kes+17] we show that in the presence of sensor and actuator errors that are not treated in
the planning layer, the control concept implemented here has deficits in robustness. This work
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assumes errors to be treated in the planning layer and does not focus on maximized robustness.
An advanced MPC scheme, such as [LKK15], can stabilize a trajectory even with errors present.

6.4.2 Communication Interfaces
Besides performing the trajectory tracking, the controller module translates from publish/subscribe
messages in Apollo’s middleware to cyclic messages on the vehicle’s CAN bus.

Trajectory Planner Communication Interfaces

The control algorithm runs on a rapid prototyping hard real-time computation platform, whereas
PC-like hardware executes the trajectory generation components in a soft real-time context. As
the trajectory is available to the controller over a particular horizon, no real-time communication
between planner and controller must be implemented. Consequently, delays or packet loss in
communication become acceptable. Also, short planner computation delays still result in smooth
motions. In case of a planner software failure, the controller can still evaluate the last valid
trajectory and can trigger an emergency stop or hand over the control to the safety driver. The
controller assumes that while driving, always a valid trajectory is available and triggers an error
state otherwise. The trajectory planning module outputs a collision-free trajectory over the time
horizon (with respect to the predicted motion of dynamic traffic participants) and transfers a
sampled representation on a defined horizon to the trajectory controller. The controller performs
no collision checks allowing it to run at a high frequency.
Figure 6.8 depicts the interfaces of the controller and the communication channels. The

communication to the trajectory planner and the localization module is realized using Ethernet
with a User Datgram Protocol (UDP). With the interpolation method described in Section 6.4.1,
no assumptions on the time or spatial distance of trajectory points are required. As an encoding
format of the messages, we use the Protocol Buffer definitions for trajectory and localization from
Apollo. To shrink the size of the transmitted trajectories, we take the original trajectory message
in Apollo and remove unnecessary information for the controller, such as debug values, redundant
fields, or unused variables. Still, due to size limitations in the UDP stack implementation on the
real-time device, trajectory messages are split into multiple messages and have to be reassembled
again. We also ensure trajectory and localization are transmitted with a suitable frequency. The
control algorithm is evaluated on a real-time device with a fixed cycle time. Note that localization
and trajectory messages in Apollo are still standard messages, and we transmit them to the
Autobox using the standard Bridge component. On the Autobox side, we re-implemented the
pack and unpack functionalities of the Bridge component in ANSI C. This way, no specialized
components are necessary, and the Autobox acts like a standard component in the overall system.

Vehicle Communication Interfaces and Execution Platform

In contrast to the Apollo reference vehicle, we separate the computers for planning, perception,
and other driving functions from the closed-loop vehicle control. That way, in case of timing
problems on the computers or Ethernet network outtakes, we can still keep up the control loop
on a short horizon. The trajectory controller is executed with a cycle time of 0.01 s. Only this
real-time hardware holds access to the vehicle controls.

The controller does not directly influence the vehicle actuators but computes high-level control
values like acceleration and steering wheel angle. A subsequent vehicle gateway control unit uses
these high-level control values and actuates the production vehicle’s control unit interfaces to
control the vehicle motion. The main interfaces are

• the acceleration interface from the production vehicle’s automatic cruise control,

• the steering wheel angle interface from the production vehicle’s park assistance system.
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For low-speed and maneuvering scenarios with reverse driving segments, the gear selection, throttle,
and brake are actuated directly. No modification of any production control units is necessary. The
implementation of the low-level interfaces and the actuation of the production control units are
realized on private CAN buses. These are proprietary and out of the scope of this work.

6.5 Lessons Learned
After having described the experimental vehicle based on Apollo and the integration of MINIVAN
we will now elaborate on our experiences with this setup.

The Apollo Platform

Apollo’s setup and build environment are easy to use for experienced developers after an initial
hurdle, and the usage of one pre-configured Docker container eases this. Still, the pure size
and number of dependencies, combined with the non-comprehensive documentation and hidden
inter-dependencies, increases the risk of breaking an existing component when introducing changes
in the build environment. Also, the usage of various outdated versions of packages and software
tools (such as the Bazel build tool or the Boost C++ libraries) makes porting existing software into
Apollo’s Docker environment cumbersome. All modules are compatible with each other.

The performance of the whole Apollo system heavily relies on the accuracy and level of detail
of the HD-Map. For example, the planning component uses lane centerlines as a reference
line the vehicle should drive on. The prediction component relies on the assumption that road
users intend to stay close to the centerline of their respective lanes. Therefore, an inaccurate,
unrealistic, or asymmetric true lane center yields unrealistic predictions or undesired ego planning
maneuvers. Also, various ROI filters operate on lane geometries and benefit from maps with high
accuracy. We decided not to activate the ROI filtering in the perception component, not to be
dependent on the accuracy and detail of the map. The benefit is that we do not lose any relevant
obstacles, while the drawback is having more objects available for the prediction and planning
to process. The generation and maintenance of the maps in Apollo’s customized format was an
underestimated effort, as no standardized and open toolchain is available. Furthermore, the routing
and maneuvering are purely map-based, which again poses high demands on the quality of the
map topology. An inaccurate map is thus a very crucial issue.
The simulation engine shipped with Apollo is suitable for preliminary integration tests of a

new planner but not comprehensive. For example, no obstacle simulation is available. Also, the
vehicle motion is extracted from the planned trajectory position and not determined by a tracking
controller component. Baidu offers a more comprehensive, cloud-based simulator that was not
examined in this work, as the planner evaluations were executed in the BARK simulator [Ber+20].
BARK is designed as a benchmarking tool for planning algorithms, and could be used for a
simulative comparison of MINIVAN and Apollo’s planner. We leave this to future work.

The Cyber RT middleware worked smoothly without introducing noticeable delay, jitter, latency,
throughput bottlenecks, or hiccups. Distributing the components over multiple computers did not
show any problem and only needed accurate time synchronization and appropriate configuration.
Integrating additional components based on existing implementations is straightforward. The
toolset provided with Cyber RT is sufficient but less comprehensive than the toolset of ROS. All
basic functionalities for monitoring and debugging the system are available, such as recording and
visualization. For analysis, mainly scripting Application Programming Interfaces (APIs) exist, but
no set of prebuilt tools.

Apollo’s lidar pipeline proved to work well also with a 32-layer Velodyne lidar. Even though we
do not have internal knowledge of the involved networks, i.e., how the networks were trained, and
cannot judge the quality of the training data, the overall performance of the perception systems
translates to German roads. As we will discuss later in Figure 6.14 the accuracy of the detection

133



6 The Software Stack for a Behavior Planning Research Vehicle

(a) Static vehicle avoidance (b) Vehicle following (c) Pedestrian avoidance

Figure 6.9: Schematic sketches of the three evaluation scenarios.

varies. Still, the performance is good enough for the conducted experiments, and no effort was
invested in mitigating suboptimal object detection and size estimation. However, we only tested
this for low-speed scenarios. Evaluating the accuracy in scenarios with higher speeds remains to
be studied.
The data fusion component proved to be configurable for the usage in our setup with different

sensor types and positions due to its configurable and modular code structure. Object recognition
and segmentation provide state-of-the-art results that are sufficient for on-road driving experiments.
The drawbacks are the high dependency of the relevant object-filtering algorithms to the HD-Map
and the high demands on the graphics card. In the setup with only lidar sensors, object type
classification often showed unreliable results for non-vehicle object types.

Apollo’s CAN bus component is extendable but based on low-level parsing of the CAN messages,
which makes integration of custom CAN buses time consuming and requires testing effort. No
parsing and automated analysis of CAN database files or similar are provided.

Fortuna’s System Setup

To simplify the system setup, we chose to use the localization information and not the IMU
information for control as our differential GNSS position is stabilized with three fiber-optical
gyroscopes, an accelerometer, and a high-resolution wheel tick sensor. The assumption that
tracking control is possible on localization data in such a setup turned out to be false. The data
quality in terms of stability and absence of jumps is not high enough for robust trajectory tracking.
Future work should also include lidar information in the localization and base the trajectory
tracking control solely on IMU data.
To maintain the experimental platform’s stable setup, we reduced the system complexity at

various points, such as mainly relying on lidar as sensor technology. All simplifications are not
transferable to production-grade automated vehicles but proved to fit the needs of a research
vehicle except for the high reliance on the GNSS. While the employed minimal sensor set to reduce
engineering maintenance served our needs, relying on the differential GNSS did not.
The planning and prediction components in Apollo do not operate together interactively.

Trajectories from prediction have to be post-processed in the planner. Otherwise, frequently errors
occur, such as vehicles driving from behind into the ego vehicle or pedestrians walking on the side
of the street being predicted to jump in front of the vehicle. This yields unnecessary planning errors.
However, the prediction component yields a good baseline performance and reliable trajectories for
vehicles moving on roads. Generally, the prediction system focuses on the lane centers and tends
to project obstacles to follow these lane centerlines.

6.6 Evaluation in Real-Road Scenarios
To evaluate the capabilities of MINIVAN, we performed several experiments on a real road, from
which we analyze three here, schematically sketched in Figure 6.9. We chose to analyze the
planner’s performance and overall system setup in these benchmarks scenarios and not in arbitrary
road situations to have reproducible results and examine specific strengths and weaknesses in
detail. Figure 6.10 – Figure 6.12 show the test drives.
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(a) 3 s after start (b) 7 s after start (c) 11 s after start

Figure 6.10: Visualization of the static vehicle avoidance scenario showing the vehicle front camera alongside
with the processed obstacles and planned trajectory.

(a) 5 s after start (b) 10 s after start (c) 16 s after start

Figure 6.11: Visualization of the vehicle following scenario showing the vehicle front camera alongside with
the processed obstacles and planned trajectory.

(a) 11 s after start (b) 16 s after start (c) 18 s after start

Figure 6.12: Visualization of the pedestrian avoidance scenario showing the vehicle front camera alongside
with the processed obstacles and planned trajectory. (graphic from [KEK22], ©2022 IEEE)
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(a) Static vehicle avoidance scenario (b) Pedestrian avoidance scenario

Figure 6.13: Obstacle avoidance scenarios with deflated road polygon, inflated obstacles, and the driven
path. The inflated obstacles are shown throughout the scenario. The resulting trajectory is
collision-free, although it appears to be colliding due to inaccurate obstacle measurements.
On the right hand side, we see parked cars and on the left hand side the obstacle an evasive
maneuver is planned for. (This visualization is not suited for the vehicle following scenario
and it is therefore omitted here.) (graphic from [KEK22], ©2022 IEEE)

Specifically, the three scenarios analyzed in detail are:

• Static vehicle avoidance: avoiding a static vehicle on the right side, sketched in Figure 6.9a.
The evolution of the scenario is shown at three different timesteps in Figure 6.10.

• Vehicle following: approaching a slower preceding vehicle, eventually slowing down and
accelerating again once the preceding vehicle accelerates, sketched in Figure 6.9b. The
evolution of the scenario is shown at three different timesteps in Figure 6.11.

• Pedestrian avoidance: avoiding a static pedestrian standing on the road, sketched in
Figure 6.9c. The evolution of the scenario is shown at three different timesteps in Figure 6.12.

Figure 6.13 displays both avoidance scenarios as MINIVAN processes the environment data.
The obstacle shapes are plotted for each timestep and are already inflated for planning. The
environment geometry is plotted deflated. The resulting trajectory is collision-free, but due to
inaccurate obstacle measurements, which we will discuss in Section 6.6.1, it appears colliding.

6.6.1 Perception
To study Apollo’s off-the-shelf object detection quality, we consider only the two scenarios with
static obstacles. We analyze the deviation (⋅) − (⋅), where (⋅) denotes the mean value. We perform
the analysis for the object’s center position (𝑥, 𝑦), orientation, and the bounding box width and
length. Figure 6.14 shows the resulting box plot. Extreme outliers (outside of the whiskers) are
rare but may happen with deviations of more than 1.3m. Comparing the detection of vehicle
and pedestrian, the errors regarding position and bounding box of the pedestrian are significantly
smaller. On the other hand, the orientation of the pedestrian is much noisier than the orientation
estimation of the vehicle. We expect that to improve when fusing with other sensors, e.g., cameras.
However, poor orientation estimation of pedestrians may harm the prediction quality. As a
takeaway, we can conclude that our planner needs to cope with noise within the standard outliers.
We have thus added safety margins to the obstacles processed within the planning problem.

6.6.2 Planning
To answer the question of MINIVAN’s real-time capability, we have analyzed the frequency of the
perception, prediction, and planning modules. The goal for our planner is to come up with a new
trajectory within at least 1 s. Lidar sensor data triggers the perception, which triggers prediction,
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Figure 6.14: Distribution of the deviation from the mean value of pose and bounding box dimension of the
respective static obstacle. We observe, that especially the position of there is some uncertainty
in the perception of a static vehicle. (graphic from [KEK22], ©2022 IEEE)
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Figure 6.15: Distribution of the frequency of the perception, prediction, and planning modules. On
average, the overall system meets 5 Hz, but the planning frequency also drops to 1 Hz at
single, complicated planning instances. (graphic from [KEK22], ©2022 IEEE)

which triggers planning. Figure 6.15 shows the results in the vehicle avoidance scenario, all others
are comparable. We configured the lidar to publish sensor data at 5Hz. Both the perception and
prediction components are capable of running at 5Hz with some standard outliers down to 4Hz
and up to 6Hz (to catch up). Increasing the lidar’s publishing frequency would, at our planning
frequency, only raise the system load. Our planner still runs at a mean frequency of 5Hz. However,
the extreme outliers go down to 1Hz, which mostly happens when being close to an obstacle,
where the solution space becomes narrow.

Second, we have analyzed the time consumption of the stages of the planning component:
pre-processing, solving the MIQP problem, and post-processing. Figure 6.16 shows the results.
Pre-processing the input (e.g., decomposition of the map) is fast, as we are caching relevant data
(e.g., decomposed parts of the map). Likewise, post-processing (including smoothing) is very
efficient. The duration of pre- and post-processing is reliably below 0.06 s and does not have
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Figure 6.16: Distribution of planning times of the respective parts of the planning module. Clearly, the
solution time of the MIQP solver is responsible for the majority of time, including the peaks
in the runtime. On average, the MIQP solution time is low with 0.1 s. (graphic from [KEK22],
©2022 IEEE)

significant outliers. Most of the planning time is used by the MIQP solver. It has significant
outliers of up to 1 s (when the solver is terminated), which consequently makes the total planning
time range up to more than 1 s. The analysis shows that our intended general-purpose planning
for arbitrary roads that avoids static and dynamic obstacles works smoothly at a replanning rate
of 4Hz to 6Hz with outliers down to 1Hz.

In Figure 6.17 we depict the planned trajectories over time in each scenario alongside the actual
measured value to analyze the smoothness and consistency of the generated trajectories and the
resulting tracking quality.. Figure 6.17a shows the trajectories generated from the planner for the
vehicle avoidance scenario. Each line represents one trajectory with start and end times. In the
ideal case without perception and tracking errors, these trajectories should form one continuous
line. During the evasive maneuver from 8 s to 13 s, we observe the effect of the perception and
prediction error as well as the limited trajectory length in the orientation plot. When further away
from the obstacle, the planned trajectories start the evasive maneuver earlier than necessary as
the obstacle’s position is estimated closer to the vehicle than it actually is. When steering back to
the reference line, the planner first generates trajectories taking a wider curve than necessary as
the length estimation gets more accurate when driving parallel to the obstacle. These effects can
also be observed in Figure 6.14. When accelerating from standstill, the vehicle after activation of
the low-level interfaces, accelerates slightly slower than the trajectory indicates. As we find the
initial point for the next planning step on the old trajectory (if the tracking errors are small), the
trajectories are not affected by localization or measurement errors. We observe that the velocity
and orientation profiles are smooth and tracked smoothly. As the command to stop the vehicle is
triggered based on the distance to the goal, one trajectory is visible that keeps the constant velocity
longer. In the acceleration profile, we observe a typical noise along the reference. The curvature
is computed from the steering wheel angle measurement without smoothing, rate limitations, or
stabilization terms. Therefore, minimal control interactions on the steering wheel result in visible
oscillations here. Still, we clearly see the evasive maneuver and an initial steering command towards
the reference line. We observe very similar effects in the trajectories of the pedestrian avoidance
scenario in Figure 6.17b.
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Figure 6.17: Trajectories generated by the planner plotted in different color for different times. ∘ denotes
the measurement of the respective data. For visualization clarity, only every 5th trajectory is
plotted. (graphic from [KEK22], ©2022 IEEE)
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Figure 6.18: Relative start and end times of the trajectory available to the controller measured on the
real-time device and the controller’s interpolated (matched) time for the vehicle avoidance
scenario. We observe, that always a horizon of at least 4 s is maintained. (graphic from
[KEK22], ©2022 IEEE)

The analysis of the vehicle following scenario in Figure 6.17c reveals that braking trajectories
are generated once the preceding vehicle intersects with the reference trajectory, and accelerating
trajectories are generated if enough space in front of the vehicle is available again. As a negative
side effect, we observe that the vehicle’s orientation also changes with the decelerating trajectory.
This effect arises as the road is not entirely straight, and we are tracking unreachable (due to
collision with the other car) reference trajectory points with changed orientation. To minimize the
error over the whole trajectory, the optimizer here plans an undesired slight steering maneuver.
Quantitative data reveals this effect that is barely notable when driving in the car.

6.6.3 Control
In the following, we describe the tracking performance of the controller in combination with
trajectory planning. We show the results exemplary for the static vehicle avoidance scenario. The
controller performance in the other scenarios is comparable. In contrast to the other modules, the
controller is executed on a dedicated hard real-time platform with a fixed cycle rate of 100Hz.
A trajectory with a sufficient time horizon must always be available to the controller. These
trajectories are sent to the controller after each successful planning step, but our system has no
guarantee that the controller receives a new trajectory in a given frequency. Therefore, we analyze
if a sufficient horizon is always available to the controller.
Each trajectory has a particular duration, from some start time to an end time in the future.

As the controller might need to interpolate between two trajectory points, a sufficient forward and
backward horizon has to be available. Figure 6.18 shows the relative start time and end time of
the trajectory available to the controller and the interpolated time of the controller for the vehicle
avoidance scenario. By interpolated, we denote the (relative) timestep that the controller currently
tracks. We generally plan a trajectory for 6 s and the planner starts planning from a start point
each timestep, that is 1.25 s in the future. With a maximum solution time of 1 s for the solver and
some further delay in the system, a trajectory endpoint between 6 s and 7 s is therefore expected.
At around 20 s, the trajectory is cut off at an intermediate point, as all subsequent points have
too low velocity and could therefore violate the non-holonomy assumption of MINIVAN. Still, a
sufficiently large horizon is available. Interpolation values greater than zero indicate that a point
is interpolated in the future trajectory and not only the first point in time is tracked. We observe
that the interpolated timestep is never greater than 1 s. Therefore the planning system operates
without delays in real-time.

Figure 6.19 shows the measured orientation, velocity, and curvature in comparison to reference
signals for the vehicle avoidance scenario and Figure 6.20 shows the corresponding tracking errors
in the Frenet frame of normal component 𝑒𝑛, tangential component 𝑒𝑡, orientation 𝑒𝜃 and velocity
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Figure 6.19: Measured orientation, velocity, and curvature in comparison to reference signals for the vehicle
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Figure 6.20: Tracking errors of normal component 𝑒𝑛, tangential component 𝑒𝑡, orientation 𝑒𝜃 and velocity
𝑒𝑣 for the vehicle avoidance scenario. Huge tangential and velocity errors when the vehicle
accelerates from standstill are balanced by the controller. (graphic from [KEK22], ©2022
IEEE)

𝑒𝑣. We observe that the reference values from the trajectory planner are smooth but have to be
stabilized by the controller in the lateral direction to achieve a slight deviation from the trajectory
in the normal (lateral) direction of at most 0.02m. Also, the orientation of the vehicle is stabilized
up to an error of 0.02 rad. This stabilization results in a solid tracking of the desired position,
which we omit in the figures. In tangential (longitudinal) direction, we observe that the vehicle
first accelerates too slowly, which results in velocity and tangential errors that are compensated
in the first seconds. Due to the technical limitations of the prototype setup, tracking very low
velocities are hardly possible. Therefore we initially accelerate from a standstill with a feedforward
control law without tracking the reference. The effect can be seen in the very first second of the
figures. Also, the evasive maneuver at around 10 s is observed.

From this analysis, we conclude that the whole chain of modules to compute the motion, starting
from the generation of the reference line, the MIQP-based trajectory planning, the MPC trajectory
smoothing, and real-time trajectory tracking yields a good and stable driving performance, not
only in simulation but also on the road. The trajectories generated by MINIVAN can be executed
by a standard control approach regarding timing and actual values. The parameterization was
chosen for tracking performance rather than smoothness. Also, the control performance shows
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deficits which are not relevant here, such as the aggregation of large errors when accelerating from
standstill.

6.7 Conclusion
This chapter introduced the hardware and software setup of our autonomous driving research
vehicle. We described how we enhanced the open-source driving stack Apollo to operate on
our retrofitted VW Passat GTE and described the software design and implementation of the
replaced planning and control components as the core components under test in this work. For
planning, we hooked an additional software module in the internal interfaces of Apollo’s planning
component that effectively pre- and post-processes planning requests to MINIVAN. Many aspects,
for example, the convex decomposition of the road environment, are also valuable for other planning
implementations. All implementations have proven to operate smoothly in a real-time environment.
Also, the trajectory smoother, implemented as a nonlinear MPC planner effectively mitigates the
drawbacks of the MINIVAN algorithm, such as the inability to generate valid trajectories at very low
speeds. The implementation is general and not specific to MINIVAN and can therefore be used in
combination with any behavior planner. Implementing the low-level trajectory tracking controller
on a dedicated hard real-time device has in on-road driving experiments proven to mitigate
the stability drawbacks of our prototype software setup running on non-real-time computers.
Architecture-wise, the controller hooks to the standard middleware interfaces, making a transition
to a production-grade, centralized computation platform easy.

Our driving experiments showed that the planning and control system can effectively be tested
and demonstrated even with the reduced sensor setup, as the perception pipeline generates stable
results at a sufficient frequency. Regarding flexibility, stability, and implementation quality, Apollo
proved to be a good choice for our needs to base the software stack on; for other stacks of
comparable complexity, a comparable initial hurdle is expected. Various components provide
an excellent state-of-the-are baseline performance, and we did not encounter inter-component
compatibility issues. The perception pipeline in this work was purely based on lidar data provided
a solid performance, with varying accuracy. As this was not the focus of this work, we did not
examine or mitigate these drawbacks. The prediction component, which interacts densely with
the planning component, heavily relies on the quality of the map and perception data to generate
valid results. The main drawbacks are the focus on a non-standardized map format (which we
mitigated by a custom map converter) and a very narrow C++ development environment that
hinders the out-of-the-box usage of up-to-date libraries and requires creativity from the developer.
Our design decision solely based the ego localization on the differential GNSS system proved to
be the primary source of instability in the system setup. We also showed the real-time capability
with the chosen parameterization of the MINIVAN approach. However, We revealed that critical
peaks in the runtime of the MIQP solver occur, which are handled by the remaining components
of the planning and control system. Always a trajectory of at least 4 s in the future is available for
the tracking controller.

142



7 Conclusion
This chapter concludes this thesis by summarizing the benefits of the Autonomous Car Coordination
(ACCORD) and Mixed Integer Interactive Planning (MINIVAN) planning approaches and the
usage of the Apollo driving stack. Section 7.1 summarizes this work and in Section 7.2, we
compare both developed planning algorithms with respect to technical properties and performance.
Section 7.3 assesses the research questions. Section 7.4 gives an outlook to open research questions.
A final conclusion is drawn in Section 7.5.

7.1 Summary
This work introduced two novel scenario-agnostic, deterministic multi-agent behavior and motion
planning and coordination algorithms to compute a cooperative vehicle motion strategy incorpo-
rating human-driven vehicles and Connected Autonomous Vehicles (CAVs). Both methods solve a
dynamic game by reformulating it as a Model-Predictive Control (MPC) problem that is optimized
using Mixed-Integer Progamming (MIP).
ACCORD solves the multi-agent game using a decision tree with discretized actions and

continuous states. The tree is generated by stepping nonlinear agent models. An optimal set of
traces through the tree is found using Mixed-Integer Linear Programming (MILP). The main focus
of the approach is the coordination of connected vehicles. It also creates cooperative behavior
interacting with non-communicating agents such as human-driven vehicles. The estimated intention
of every agent is adopted online to fit the actual observed behaviors to handle non-cooperating
agents. Behavior and motion are planned alongside, and the solution is deterministic. The
complexity and runtime analysis showed in which settings the approach can be applied and where
restrictions apply. The implementation can slow down the exponential growth in runtime with a
growing number of agents, discrete decision options, or horizon steps but cannot avoid it. This
work quantitatively showed that the runtime complexity does not scale with up to three loosely
coupled agents. With an appropriate discretization, either in the number of decision options per
step or the number of steps along the horizon, real-time bounds can be met regardless of the
environment. The algorithm is scenario- and location-agnostic. The effectiveness and performance
were demonstrated in various simulated scenarios, such as cooperative intersection management,
highway merging, and bottleneck passing. This work showed a wide range of settings on different
road geometries, with high and low vehicle speeds, including multiple interacting agents. To also
support fully autonomous valet parking, the modified variant Autonomous Car Coordination for
Valet Parking (ACCORD-P) handles direction changes, non-unique goals, and multiple references
along predefined paths. The experiments showed the impact of an altruistic, cooperative, and
egoistic behavior setting on the outcome of scenarios with conflicting agents’ goals. A cooperation
factor was integrated into the optimization that effectively scales the aggressiveness of the ego
planning while conflicts with a non-cooperating vehicle are safely resolved. ACCORD handles
prediction errors by altering the trace in the behavior option tree. It invests acceleration and
steering savings and generates a worse but safe solution. Qualitatively, the cooperation strategies
human drivers follow in traffic evolve in the proposed cooperative planning framework.
Contrary to the discrete action space of ACCORD’s game tree, MINIVAN introduced an

integrated Mixed-Integer Quadratic Programming (MIQP)-based formulation for the behavior
planning problem on continuous action and state space. Multiple agents’ behavior and motion
planning in generic environments and scenarios is integrated into one linearized optimization
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problem. The model shows a correct non-holonomic motion of the optimized trajectory for
arbitrary road curvatures and orientations of the vehicle despite using a linear triple integrator
vehicle model. Linear overapproximations of the collision shape safely avoid collisions. The
algorithm is hence scenario- and location-agnostic. The multi-agent formulation leverages the
interests of all agents and finds collision-free trajectories. The introduction of slack variables
to the collision constraints makes the method robust against inaccuracies of the modeled future
motion of other agents. The cooperation factor effectively scales the aggressiveness of the ego
planning, and conflicts with a non-cooperating vehicle are safely resolved. A thorough complexity
analysis and parameter study revealed that MINIVAN can be applied in real-time when interacting
densely with up to around ten static or dynamic objects. Scenario-specific restrictions apply in the
multi-agent formulation, and more than three interacting agents are computationally intractable in
real-time. In a simulation study, MINIVAN proved to operate reliably, reproducible, deterministic,
and fast, even with a high number of obstacles present. Various simulated scenarios demonstrated
the effectiveness and performance of the algorithms. A wide range of experimental settings was
shown on different road geometries, with high and low vehicle speeds, including static or dynamic
obstacles and multiple interacting objects. Connected and unconnected settings were studied,
including various levels of cooperation ranging from reaction to egoistic behavior of others to
proactively enforcing own goals. The algorithm’s robustness was demonstrated by introducing
inaccuracies between the actual and modeled behavior of the other agent and analyzing the effect
on the ego planner. MINIVAN handles these using soft constraints to generate a safe solution that
is less desirable in terms of comfort and intended safety margins from the perspective of the ego
vehicle.

MINIVAN was integrated into the open-source fully autonomous driving stack Apollo. This work
described how the Apollo stack was adapted for the research vehicle Fortuna and the integration
of MINIVAN. The modularity and flexibility of Apollo for adding new (planning) concepts were
assessed. Apollo proved to be a stable, compatible, and performant baseline implementation of
an autonomous driving stack that offers state-of-the-art implementations for most functionalities
without posing special requirements on vehicle interfaces, vehicle hardware, software development,
and organizational processes. Also, this work provided a complete toolchain from standard
OpenDrive High Definition Maps (HD-Maps) to a convex, polygonal decomposition of arbitrary
road environments within the Apollo stack. The contributed planning components implement
a two-stage optimization approach: MINIVAN for behavior and coarse motion is followed by
a smoother, realized as a nonlinear MPC-based optimizer. This trajectory smoothing method
compensates for the limitations of MINIVAN that it by design produces invalid results when
driving at very low velocities (less than one meter per second). The theoretic limitation that the
motion is invalid for velocities lower than one meter per second is mitigated by the smoother. A
suitable trajectory tracking controller fitting the vehicle and the planner was implemented on a
rapid real-time prototyping system to account for stable vehicle control even with computation or
communication flaws in an experimental software stack. We further shared our lessons learned while
developing and working with Apollo. Three on-road benchmark scenarios showed the real-time
performance of the planner in settings with static and dynamic obstacles. The MINIVAN planning
approach is real-time capable, and the trajectories are kinematically valid. The system setup,
including hardware, the Apollo platform, the perception pipeline, and the trajectory tracking
control, proved to be performant, robust, and accurate enough for conduction driving experiments
to evaluate behavior and trajectory planning research.

7.2 Comparison of MINIVAN and ACCORD
We developed two cooperative planning approaches that share properties but have individual
strengths and weaknesses in this work. Table 7.1 summarizes some essential properties. As the
main difference, MINIVAN is based on continuous action space, and the multi-agent planning
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Table 7.1: Similarities and differences of the discrete and continuous game formulation.
ACCORD (Chapter 4) MINIVAN (Chapter 5)

State space continuous continuous
Action space discrete continuous
Solution method MILP MIQP
Non-cooperating agent
integration

reflection soft constraints

Generative model motion primitives, single track
model

triple integrator

Collision check circle approximation circle approximation with front
axle approximation

Solution Guiding None last solution warmstart, prior-
ity branching

Optimality w.r.t. motion primitives w.r.t. vehicle model approxima-
tions

Interactivity multi-agent planning multi-agent planning
Cooperation leveraged joint objective leveraged joint objective

problem is formulated as a single mathematical optimization program. ACCORD optimizes discrete
behavior options on a tree of actions separating the generation of the motion from the optimization.
This inherent discretization yields limitations, as the true global optimal solution in a scenario, can
be excluded from the solution space, or, if the solution space is narrow, all valid solutions can be
excluded. All discretizing approaches share these effects. The discretization can be adapted to the
scenario, a suitable tuning parameter to narrow the available options for planning. The possibility
to generate behavior for fellow agents from an arbitrary generative model is a huge benefit that
was not leveraged in this thesis but is an immediate next step. MINIVAN with its continuous
action formulation, can find solutions also in very dense scenarios but introduces unnecessary
complexity in scenarios that are straightforward to solve.

Both approaches are generally applicable for all traffic scenarios, and no design restrictions apply.
Also, both are inherently designed to generate cooperative behavior among the agents present.
Furthermore, both plan motions with respect to environmental boundaries, static and dynamic
obstacles, and fellow interacting agents. Both approaches have been designed to incorporate
measures to increase the robustness of the planning. MINIVAN formulates constraints between
agents as soft. Therefore agents may violate non-safety critical driving restrictions if necessary, as
human drivers do, depending on the aggressiveness of the behavior. ACCORD relies on a tree
of possible behaviors for all agents where the optimal trace is selected, but all others, including
emergency maneuvers, are present. The selection of traces is adapted via the reflection step,
which synchronizes technical parameters with the observed behavior of all surrounding agents.
For non-controlled agents, a tree of possible behavior options is also available. The behavioral
uncertainty is addressed by the selection of different traces.

The main weakness of both approaches is the exponential runtime scaling with the number of
densely interacting agents. While we in this work sketched the path towards real-time application,
for general applicability, a reasonable trade-off has to be found between interactive and reactive
planning with multiple obstacles. MINIVAN has the property to model the complete multi-agent
behavior in one mathematical model. For this, several approximations have to be introduced,
foremost the over-approximation of the collision shape of each agent, which introduces additional
conservatism. Also, only linear models for the motion of an agent can be applied.

Both approaches can operate in the presence of human-driven vehicles and CAVs. The advan-
tages and disadvantages of the approaches lead to MINIVAN favoring scenarios interacting with
conventional vehicles, while ACCORD is primarily suited as a coordination approach for CAVs.
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7.3 Validation of the Research Questions
In Section 1.2 we defined four research questions, that we will assess here.

1. How can an existing open-source autonomous driving software stack be trans-
ferred to an experimental vehicle for behavior and motion planning research?
Apollo proved to be an excellent choice to base the experimental platform on due to its solid
baseline performance, customizable setup, and acceptable integration effort. The performance
of the overall stack is stable and powerful enough for driving experiments. It comes at the
price of a relatively closed environment where developers have to live with certain restrictions,
such as a fixed C++ development environment and the usage of a customized map format.

2. Can we develop a scenario-agnostic, unified cooperative planning approach inte-
grating behavior and trajectory planning? No clear answer can be given here. The
fact that this thesis developed two approaches already suspects that one approach does not
solve every scenario with high performance. Whereas there are no theoretic restrictions in
the scenario (the multi-agent game formulation can model and solve each scenario), the
performance in a scenario is parameter-dependent for both approaches. When restricting the
operational design domain, the analysis in this thesis reveals parameter settings that achieve
reliable, fast, and high solution quality performance will be achieved in production-grade
settings. Motion and behavior planning is effectively coupled, and both approaches only
yield plans in the form of a kinematically valid and collision-free trajectory.

3. Can autonomous vehicles plan cooperative behavior, like human drivers, while
still achieving their own goals? Both approaches inherently create cooperative plans
that leverage the interests of all included agents while being robust to errors in other agents’
predictions. Cooperative strategies of human drivers, such as lane changes on highways
for letting other vehicles merge, evolve. Nevertheless, the behavior cannot be classified as
human-like. The cooperative plans, especially for the coordination of CAVs, go beyond how
human drivers cooperate, such as letting faster vehicles pass on the right side. New strategies
evolve that use space more effectively and result in fewer state changes for every single agent.

4. Can MIP be applied for real-time planning and, if so, which restrictions apply?
Our work demonstrated that MIP-based behavior and motion planning is capable of operating
in real-time considering a sufficient number of traffic participants around the ego vehicle, both
in simulation and embedded in a driving stack on a research vehicle. Using various solver
tweaks, such as providing a warmstart solution, the runtime of the MIP is sufficiently fast
for real-time planning. Still, peaks in the solution time occur that are critical for the overall
system performance and have to be addressed in future research. The number of densely
interacting agents is limited. Even with effective implementation, the problem formulation
remains NP-complete, and at some point, the exponential growth in runtime impedes a
real-time application. Therefore, a reasonable trade-off must be found for objects to be
treated as interacting agents or dynamic obstacles.

7.4 Future Work
This section states further research directions that evolved from this thesis. The work at hand has
paved the path towards an easier usage of an experimental vehicle platform by coupling it to a
fully autonomous driving open-source stack. Now not only can a planning module be examined in
a real-road setup, but other components can be replaced, which is an enormous benefit that should
be leveraged, but this work is focused on planning. Other planners, such as ACCORD, should be
integrated, compared, and tested. To also demonstrate the real-road performance of connected
settings, the integration of a communication gateway model is very valuable.
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In the following, we will discuss specific open research points in detail. We will first discuss possible
improvements that apply to both presented planning approaches in Section 7.4.1, then discuss
possibilities individual for each planner in Section 7.4.2 and Section 7.4.3. Also, in Section 7.4.4,
we elaborate on possible next steps when continuing the development of an open-source-based
experimental software stack.

7.4.1 Further Research Directions for ACCORD and MINIVAN
Both ACCORD and MINIVAN can be improved in the following directions:

Integrate Further Agent Types In interactive multi-agent scenarios, we discussed only the
interaction of road vehicles, which is a simplification. The integration of agents whose kinematics
follow a bicycle model, such as heavy-duty vehicles or bicycles, is just a matter of parameterization.
For all other types of agents (e.g., pedestrians), a new motion model has to be integrated. In the
case of MINIVAN, this model has to be linear. The methodology to model the agent shape as a
series of circles for the collision check can remain regardless of the agent model. When considering
other objects as (dynamic) obstacles, we could already show that MINIVAN can interact with
pedestrians, and we are therefore convinced the integration of further agent types is possible.

Comprehensive Parameter Study When selecting the parameterization of the algorithms
in this work, we relied on our in-depth knowledge of the methods to select a reasonable set of
parameters. Also, variations of the cooperation factor 𝜆 have been simulated to quantify the effect
of a different parameterization. However, no comprehensive parameterization strategy has been
proposed to select 𝜆, and the magnitude of all other parameters in relation to 𝜆. Future work
should add a sensitivity analysis in different scenarios to generate an in-depth understanding of
the relation of the parameters and identify a parameter set with solid methodological foundation.

Scenario-adaptive Parameter Selection We could show that the parameterization of the
solution algorithm can have a high influence on the solution time. Therefore, if adapted parameter
sets perform best in different driving situations, an automated blending or switching of parameters
will be of high benefit. Future work should also include a strategy to choose different parameter
sets for different scenarios in an automated fashion based on a sensitivity analysis of the parameter
set.

Improve Reference In this work, the reference line the optimizer aims to track is implemented
in a very basic fashion. The reference line is just the centerline of the respective lane without
any processing. Especially in obstacle avoidance scenarios, when this reference is not collision-free
anymore, the convergence to a valid solution gets slower. Therefore, a more advanced reference
computation could help find a smoother reference line. One possibility is the integration of a
sampling-based planner, such as a rapidly-exploring random tree (RRT) [LaV06], that could find a
path closed to the optimal solution fast.

Safety and Security Our algorithms do not handle security aspects at all. Also, the setup of
the software stack on the prototype vehicle ignored security aspects. We assume that we do not
interact with destructive agents and do not consider communicating but adversarial agents.
Regarding the safety aspects, various concepts exist nowadays, such as reachable sets [AD14]

or the Responsibility-Sensitive Safety (RSS) approach [SSS17]. Both concepts can be integrated
into the planning framework [Pek+20] to make sure only a motion complying with the safety
concept is produced. For this, the simulation environment BARK can be a starting point for
the implementation. Restricting the available solution space to a safe subset could simplify the
planning problem and enhance the performance.
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Performance for Multiple Interacting Agents We could, in this work, show that complex
multi-agent scenarios are generally not tractable. However, we have not yet investigated performance
tuning strategies besides the effective parameterization of the solver to leverage the full benefits of
MINIVAN and ACCORD, the performance of the solver can be increased further. E.g., Balcan
et al. [Bal+17] use machine learning to generate branching strategies for branch-and-bound trees
effectively. Also, the structure, topology, and domain knowledge can be used to improve the solver
performance further.

Evaluate Performance Benefits with Different Solver The optimization model is formu-
lated in an abstract, mathematical language. Nowadays, several MIP-solvers suites are available
that offer different solution strategies and parameterization options. This work demonstrated
that CPLEX can solve the problem effectively but did not evaluate if other solvers offer a higher
performance or a more effective user parameterization. Examples of other solvers are Gurobi
[Gur21] of Google GLOP [Goo21] to name one commercial software package and one with an
open-source license. As an alternative, a problem-specific customized solver implementation is
possible. For example, each step depends on the previous one in the receding horizon formulation,
a property that a general-purpose solver hardly utilizes.

Generate Human-like Behavior The development of the planners in this work was inspired
by the implicit or explicit cooperation of human drivers. Both ACCORD and MINIVAN do not
generate human-like behavior as drivers base their decisions on more aspects than cooperation.
One aspect is encoding traffic rules in the planning to generate only legal behaviors [EGK20].
With driving data available, the model parameters (such as desired acceleration and steering rate)
can be tuned scenario-adaptive to realistic values.
From a behavioral perspective, ACCORD and MINIVAN do not exclude kinematically valid

options, so any (human-driven) trajectory can be realized. Comparing trajectories generated by
the planner with trajectories driven by humans can reveal deviations. Based on these, new (hard
or soft) constraints can be implemented in the model to account for human behavior.

Training Useage Imitation learning [PGP17] is a promising approach to generate behavior
based on provided training data. Both ACCORD and MINIVAN can be used to generate optimal
cooperative trajectories for a given scenario, which then can be used to train an imitation learning-
based planner. Doing so ideally, this planner can be fast in runtime while producing similar
cooperative plans as ACCORD or MINIVAN.

7.4.2 Further Research Directions for ACCORD
The following points are specific to ACCORD. It was not integrated into the Apollo stack, as the
main focus was the development of a coordination approach for CAVs and our research group only
maintains one prototype vehicle.

Improve Behavior Reflection The behavior reflection step that automatically tunes the
weights of the MILP with respect to observations relies on a basic implementation in this thesis to
evaluate the concept. The better the weights are tuned, the more the true intention of another
traffic participant is reflected. Several directions are possible: A theoretically optimal assignment
of costs to graph edges within a given cost range is proposed by Wilfong [Wil90], which can be
applied to the problem at hand. A linear-time algorithm can find a minimum value for each scaling
parameter individually when considering the costs along the actually chosen path as an upper limit
for the total costs. Also, learning-based approaches are suitable for extracting a weight-changing
strategy from data. Inverse reinforcement learning is an approach to learning the objective or
reward from an observed agent behavior. The goal is to find a reward function that fits the data
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best, relying on a Markov Decision Process [PGP17]. The work of Naumann et al. [Nau+20]
analyzes how human behavior can be encoded in cost functions and applies inverse reinforcement
learning to generate cost function weights based on observed trajectories. The behavior reflection
approach is not exclusive to the ACCORD but can also be beneficial for other optimization-based
planners.

Generative Model We span the tree of possible behaviors by sampling motion primitives using
a single-track vehicle model. This strategy exploits the available space well in unstructured and
semi-structured environments, but in structured environments, the performance depends on the
chosen sampling discretization. With a narrow discretization, a variety of behavior options is
available at the price of a high runtime. Choosing a wide discretization of the runtime is fast, but
the true optimal solution can be excluded. A compromise between performance and evaluation
can be to populate the behavior option graph with high-level actions, e.g., to follow a lane for one
second or to perform a lane change in a time interval of 5 s. These trajectories can be efficiently
generated in a street-local coordinate system (Frenet frame). The subsequent steps of the ACCORD
algorithm can be applied without modifications.

Handling of Dynamic Obstacles ACCORD was designed to operate in static environments,
and every moving object is considered as an agent, for which we coordinate behavior and a resulting
motion. To also account for dynamic obstacles with fixed and unchangeable predicted trajectories
that the ego agent shall avoid without performing a joint action planning, the tree of behavior
options can simply be reused without algorithmic changes. Instead of sampling motion options
for an agent, we insert a new agent in the model with a new behavior option tree. This tree only
contains exactly one trace starting for the current position. Vertices in the graph are created
matching the trajectory prediction for this moving object. With this extension, also purely reactive
maneuvers are possible for ACCORD and a basic integration into a full self-driving stack is easily
possible.

Augment Behavior Graph States Currently, the nodes of the behavior option graph only
store the geometry and dynamics information of the vehicles. These are used for collision checking.
Without adding complexity, additional information can be stored and processed, e.g., the compliance
to a set of traffic rules [EGK20]. By doing so, the computed cooperative maneuvers will fit better
into traffic. Examples of further information to persist and optimize for would be gap distances in
a platoon or traffic light phases.

7.4.3 Further Research Directions for MINIVAN
The following points are specific to MINIVAN.

Warmstarting We discussed that warmstarting the optimization is essential for real-time
execution. With in-depth solver knowledge, the performance can be further optimized. CPLEX
offers several heuristics to improve a given, valid solution. Such features were not examined in the
current model. Also, recent works exist that aim to learn an (initial) solution of a MIP model, and
afterward use the mixed-integer model formulation to prove optimality using a few steps [Cau+20].
Here, the combinatorial part of the problem is transferred into a learning step that is executed
offline. During runtime, only a small optimization is performed with comparable solution quality.

Environment Decomposition Road geometries are usually non-convex and therefore have
to be decomposed into several convex sub-polygons. Our implemented algorithm relies on a
triangulation based on a Voronoi diagram and a subsequent merging step of the triangles in a
greedy fashion. This algorithm can result in suboptimal decomposition with too many polygons,

149



7 Conclusion

significantly decreasing the runtime. A more advanced convexification algorithm, obtaining a
minimal set of convex sub-polygons, can speed up the optimization. Also, knowledge of the
topology of the geometry can be used to reduce the number of polygons.

Fitting We can trade accuracy for runtime with the number of regions in the polygonal fits.
Few regions result in a fast model with few integer variables and constraints. More regions yield a
better approximation of the vehicle shape and a better approximation of the nonlinear terms. Not
only the number of regions but also the minimal and maximal speed in the fitting process control
the accuracy and complexity of the fit.
The fitting model cannot be changed during runtime in the current implementation. As the

model is executed in a receding-horizon fashion, it is possible to exchange the fit from one timestep
to another to use the best-suited fit in a scenario-adaptive fashion. With this strategy, the trade-off
between accuracy and performance could be chosen dynamically and situation-adaptive.

Verification Usage The proposed model was developed for online usage as a planning component
of an autonomous vehicle. When changing the parameterization from a low computation time to
prove optimality, the model can also be applied as a tool for offline verification of behavior plans
as it can rate how far a given trajectory is away from the global optimal solution.

Pre-processing of the Planning Problem For an application in generic scenarios with an
arbitrary number of interacting traffic participants, the planning problem has to be efficiently
pre-processed to avoid including unnecessary objects. While in this work, a simple Field of View
(FOV) filter was implemented, a more advanced strategy, e.g., taking the road geometry into
account, would be beneficial. The model formulation can handle multiple agents with an own
intention, (dynamic) obstacles that follow a fixed prediction, or both. A trade-off must be found
which object to denote as an obstacle and which to handle as an interacting agent. The possible
number of interacting agents is limited, whereas a high number of obstacles can be handled in
real-time. Truly interactive maneuvers can only be planned in the multi-agent formulation.

7.4.4 Further Research Directions in Applying Open-Source Software
Stacks

Usage of HD-Maps, Map Generation, and Localization A main technical issue in this
work was the robust generation and maintenance of the HD-Map and a reliable localization within
this map using a differential Global Navigation Satellite System (GNSS). To ease the integration
of effort when extending to new locations, algorithms should be developed and integrated that
generate a map representation online, either using fused sensor data [Kes+18], lidar pointclouds,
or raw video footage. Also, the ego localization should not be purely based on GNSS but on other
sensor data, such as lidar, as even a high-end device could, in numerous situations, not provide
robust enough localization data.

Benchmark Apollo vs. Autoware.Auto The design decision to base the software stack on
Apollo dates back to the year 2018. When the performance of the Autoware platform reaches the
mature performance of Apollo, this has to be re-evaluated, also concerning the openness of system
design and ecosystem. As of now, 2021, Autoware.Auto has caught up and also claims to offer a
good baseline performance. Still, the operational design domain is limited to valet parking. Due
to the more open ecosystem of Autoware, this stack is appealing for research like in this thesis.
A quantitative comparison of the performance of both stacks would be highly beneficial for the
research community. A qualitative analysis of the effort to integrate additional components and
adapt the stack to a custom prototype vehicle compared to the procedure described here for the
Apollo driving stack is needed.
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Validate Methodology by Integrating a Second Planner MINIVAN operates seamlessly
in the Apollo driving stack. It is suspected that the same methodology and source code can
be applied to integrate a second planner, such as ACCORD. If this second planner is based
on a different technology than mixed-integer optimization, e.g., a learning-based approach, our
framework and software interface would be validated to be generally applicable.

Application in a Connected Car Setting For this research, one autonomous vehicle prototype
was available. To demonstrate the applicability of the proposed planners for groups of CAVs, the
transfer of the stack to another vehicle is necessary and the setup of a connected car setting. As
we did for the perception pipeline, a stable minimal realistic communication setup is needed. The
question has to be answered how to include minimal additional complexity in the system while
still being able to demonstrate realistic scenarios.

7.5 Concluding Remarks
The result of this thesis is twofold. First, based on mathematically sound formulations, this
thesis developed two general, scenario-agnostic optimal cooperative planning algorithms using
MIP. The resulting trajectories are kinematically valid, collision-free, and without any form of
randomness. This property is undoubtedly a favorable feature for validation and certification.
The introduced cooperation factor effectively leverages the level of cooperation among groups of
autonomous or non-autonomous vehicles. Both model formulations consider model, perception,
and prediction errors of objects interacting with the autonomous vehicle. This thesis showed that
the implementations are real-time capable with a limited number of agents, and the complexity
analysis revealed where exponential scaling can be avoided. With the models developed in this
work, it is now possible to generate not only reactive but truly cooperative behavior for autonomous
vehicles based on mathematical optimization, resulting in fair, smooth, safe, valid, and admissible
trajectories.
Second, this thesis brought the third-party, open-source autonomous driving stack Apollo to

a full-size German vehicle experimental platform. The additional source code is also published
as open-source software [EK21]. This work documented every implementation step, assessed the
strengths, benefits, and shortcomings of this setup, and elaborated the lessons learned. These
extensions and experiences will allow research groups working on a similar vehicle setup not to
have to adapt Apollo from scratch. Real-road driving experiments showed the applicability of
the full software stack, especially for evaluating behavior and motion planning algorithms. The
applied procedure is transferable to other autonomous driving stacks. With the description of the
hard- and software setup, the developed methodology, and open-source software code, this work
aims to enable other research groups to demonstrate their algorithms in reality easier to reveal
shortcomings and catch up to companies in the field.
As of 2022, production-grade highly or fully automated driving has often been promised but

never reached European roads. By evaluating research algorithms in closed-loop with the real
world, one can accelerate this development by making research results easier transferable into an
industrial context. MIP-based cooperative planning, as an evolution of nowadays human driver
behavior, can be one part of the unstoppable transformation process from manual to autonomous
driving – probably the most significant change in traffic history since the replacement of horses by
cars.
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