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Abstract 
 

The study of urban heat island (UHI) is becoming more significant since the growing of 

population and rapid urbanization magnify the effect of UHI in the urban area. In comparison 

to the rural area surrounding the city, the UHI effect leads to a lower air temperature during 

the day and a higher air temperature at night due, in large part, to solar radiation heat 

entrapment in the urban area. Mesoscale numerical modelling, such as the Weather Research 

and Forecasting (WRF) model, has been used for simulating the UHI intensity (UHII) in the 

urban area. This model requires, among other input data, the land use/land cover (LULC) map 

to run the simulation. However, the available LULC default datasets are too coarse for urban 

simulation. The so-called local climate zone (LCZ) is an approach that is introduced to classify 

the urban area into 17 classes, which are defined by the zone properties. The LCZ map can 

be used as LULC input for UHII simulation. It has a finer spatial resolution in comparison to 

the default LULC used by the WRF model, which is expected to give a better simulation result.  

To generate the LCZ map, three methods can be used: in-situ measurements, machine 

learning classification on satellite imagery, and GIS-based method. For obvious reasons, urban 

in-situ measurements conducted over a large urban area do not constitute a practical 

approach. A more convenient approach has been proposed by a project, namely the World 

Urban Database and Access Portal Tools (WUDAPT) to generate the LCZ map. It is called 

WUDAPT level 0 (L0). The WUDAPT L0 LCZ map is obtained by classifying the satellite imagery, 

such as Landsat images, with the training areas digitized over Google Earth imagery. However, 

this method is dependent on the number and quality of the training areas. Another approach 

to derive the LCZ map is based on the Geographic Information System (GIS) method. This 

method has a better accuracy than WUDAPT L0 since it is able to quantify the zone properties 

of LCZ classes based on high-resolution vector or raster datasets.  

The GIS approach is used in this thesis to obtain the LCZ map of Berlin. Fuzzy logic is employed 

for the purpose of classification of the zone properties to yield the GIS-LCZ map over 100 x 

100 meter grid tiles covering the Berlin region. The zone properties are calculated from raster 

and vector datasets with the aids of the Urban Multi-scale Environmental Predictor (UMEP), 

QGIS and Python scripts. After the classification, a post processing is carried out by applying 

a majority filter to the result of the classification. This result of GIS-LCZ is then compared to 

WUDAPT’s training area for accuracy assessment, which shows good overall accuracy and 

kappa values. The GIS-LCZ is also compared to WUDAPT L0, which leads to a conclusion: lack 

of WUDAPT in detecting building height and inadequate data for the classification of GIS-LCZ 

lead to the misclassification of the LCZ. The GIS-LCZ map is further correlated with the surface 

urban heat island intensity (SUHII) and the near-surface air UHII. At the end, an analysis is 

conducted to look for the possibility to enrich the 3D city model of CityGML using the result 

of GIS-LCZ classification.  
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1  Introduction 

1.1 Motivation 

The urban heat island (UHI) effect has been defined as a phenomenon whereby the 
near-surface urban canopy air temperature is, in average, higher than that of its 
surrounding countryside (Oke 1982). Its intensity is likely to keep increasing in the 
future due to population and urbanization growth (McCarthy 2010). The UHI intensity 
characterizes urban climates and is related to a negative impact on the sustainable 
environment by increasing energy demand due to an increase in air conditioning, 
elevating emission of greenhouse gases and air pollutants, endangering human health 
and comfort, and impairing water quality (EPA 2021). Therefore, forecasting of UHI is 
becoming significantly important. 
 
Numerical modelling such as with the Weather Research and Forecasting (WRF) model 
(Skamarock 2019) can be applied to simulate the UHI effect (Vogel and Afshari 2020). 
The WRF model requires land use/land cover (LULC) information for the simulation. 
Often, a conventional LULC data source such as CORINE is used for this purpose. A 
local climate zone (LCZ) based map is another possible data source for LULC 
characterization, which can be used in a WRF simulation. The LCZ method was 
developed by Stewart and Oke (2012) for urban climate study purposes by classifying 
urban and rural sites into 10 urban classes and 7 natural classes. These classes are 
defined by 10 zone properties such as sky view factor, mean building height, and 
surface fractions. This LCZ scheme has been used extensively in studying UHI in 
different approaches.  
 
The World Urban Database and Access Portal Tools (WUDAPT) (WUDAPT 2021) is a 
project deriving the LCZ map or the so-called WUDAPT level 0 (L0) data by running a 
machine learning supervised classification approach over satellite imagery such as 
Landsat 8 or Sentinel 2 (Bechtel et al. 2019). Another method to derive the LCZ is the 
GIS-based method where vector or raster datasets of building, roads, vegetation, land 
use or land cover are used for quantifying the zone properties to define LCZ classes. 
The GIS method is claimed to have primarily a better accuracy for deriving LCZ 
compared to WUDAPT L0. One major downside of WUDAPT is that its accuracy highly 
depends on the number and quality of training areas (Wang et al. 2018; Hammerberg 
et al. 2018). 
 
The aim of this thesis is to derive the LCZ map based on the GIS-based method for the 
city of Berlin. The classification result will be compared with the available WUDAPT L0 
of Berlin and will be used as an input of land cover/land use for the WRF model. The 
WUDAPT L0 of Berlin has a resolution of 100 m derived from Landsat Imagery of 
generally 30 m resolution. Applying the GIS-LCZ map, which will be derived from a 
much higher resolution dataset, will give a possibility to have a better simulation result 
with the WRF model. 
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1.2 Objectives 

There are four objectives of this thesis: 

a. Developing an algorithm to derive the LCZ classification from GIS data to obtain 
detailed and accurate land use and urban morphology. 

b. Assessing the accuracy of the GIS-LCZ map and comparing the map to WUDAPT 
L0. 

c. Finding a correlation between zone properties on the one hand and surface urban 
heat island intensity (SUHII) and near-surface air urban heat island intensity (UHII) 
on the other hand. 

d. Analyzing possible enhancement to CityGML with the calculation result of zone 
properties and the classification of the GIS-LCZ map. 

1.3 Research questions 

a. How can the LCZ classes accurately and unambiguously be classified from the 
calculated zone properties and what kind of algorithm can be used? 

b. How is the accuracy of the GIS-LCZ map compared to the WUDAPT training areas? 
c. How is the agreement between the GIS-LCZ map and WUDAPT L0 map?  
d. What correlation between the result of GIS-LCZ and the surface/near-surface urban 

heat island intensity can be found?  
e. How can CityGML be enriched with the calculated zone properties and the result 

of the GIS-LCZ classification?  
f. How will the new concept of CityGML 3.0 support the GIS-LCZ classification? 
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2  State of the Art 

This chapter comprises the fundamentals related to the thesis, which are urban heat 
island, local climate zones (LCZ), the World Urban Database and Access Portal Tools 
(WUDAPT), and geographic information system-based local climate zones (GIS-LCZ). 
Theories regarding the evaluation and analysis of the classification result, which are 
confusion matrix, correlation analysis, and City Geography Markup Language 
(CityGML) are also disclosed in this chapter. Finally, in the last subsections, the dataset 
and software used in this thesis are also explained. 

2.1 Urban heat island (UHI) 

Urban heat island (UHI) refers to “the atmospheric warmth of the city compared to its 
countryside which is traditionally measured at standard screen height (1-2 m above 
ground), below the city’s mean roof height in a thin section of the boundary layer 
atmosphere called the urban canopy layer” (Stewart and Oke 2012). The air 
temperature in the urban canopy layer (UCL) is usually warmer compared to the air in 
the countryside at the standard screen height as illustrated in Figure 1. The UHI 
phenomenon is caused mainly by the differences in land cover and structure between 
urban and rural areas. These differences increase with population growth and rapid 
urbanization happening in the urban areas.  
 

 

Figure 1 Urban heat island (Fuladlu et al. 2018)  
 

There are factors, which cause the UHI in the urban area (EPA, 2008): 

 Reduced vegetation 
Urban areas are characterized by reduced trees and vegetation compared to 
rural areas. Trees and vegetation reduce air temperatures through 
evapotranspiration. In this process, plants release water to the air while 
absorbing ambient heat, which leads to a reduction of air temperature. In urban 
areas, this process is less due to the predomination of dry and impervious 
surfaces. This will contribute to the increment of surface and air temperatures. 
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 Properties of urban materials 
Solar reflectance (albedo), thermal emissivity, and heat capacity are properties 
of urban materials that influence UHI intensity, since they are the parameters 
related to the reflection, emission, and absorption of solar energy. Albedo 
determines the percentage of solar radiation reflected by a surface. Low albedo 
materials will reflect only a small part of the radiation and will increase the UHI 
effect.  
 
Thermal emissivity is the ability of a surface to shed heat or emit long-wave 
radiation. Surfaces with high thermal emissivity will be cooler as they lose heat 
more rapidly. The other property is heat capacity, which describes the ability of 
materials to store heat. Building materials, such as stone and steel, are high heat 
capacitors compared to materials from rural areas, such as sand and dry soil.  
 

 Urban geometry 
Urban geometrical parameters that are related to the UHI are the spacing and 
dimensions of buildings. They influence energy absorption, wind flow, and a 
given ability of a surface to release long-wave radiation back to space. In the 
city, a building is surrounded by neighboring buildings that obstruct the release 
of heat from the building. This will lead to a high thermal mass inside the city. 
During the night the UHI effect will be clearer when the temperature of the city 
is warmer compared to the rural area due to the hindrance of the heat 
dissipation between the buildings. 
  

 Anthropogenic heat 
Anthropogenic heat refers to heat generated by human activities and 
contributes to the urban heat island. This heat is estimated by summing up the 
energy consumed for cooling and heating, transportation, running appliances, 
and industrial processes.   
 

 Additional factors: weather and geographic location 
The primary properties of weather that influence the UHI are wind and cloud 
cover. Generally, UHI occurs during the periods of clear skies and calm winds 
where the sun radiation is at a maximum during these conditions and the 
amount of heat that is convected away is at a minimum. The geographic 
location determines the climate by the form and features of the topography. A 
lake might reduce the temperature of an area by cooling through convection or 
evaporation. 

 
The increasing urban temperature could cause several impacts (EPA, 2021): 

 Increased energy consumption 
In the city, the use of air conditioning to cool down the temperature of buildings 
increases during summer. This will lead to an increase of energy consumption.  
 

 Elevated emissions of greenhouse gases and air pollutants 
The rising energy supply during summer is still mainly generated from fossil fuel. 
This will add more emissions of greenhouse gasses and air pollutants. The 
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emission of greenhouse gasses (e.g. carbon dioxide) contributes to global 
climate change. On the other hand, the air pollutants harm the human health 
and generate air quality problems such as the creation of smog (ground-level 
ozone), acid rain, and fine particulate matter. 
 

 Endanger human health and comfort  
The urban area is getting warmer with the increment of UHI intensity. This could 
lead to heat stress, illness and even death for people living in the city. Older 
adults are the most vulnerable to extreme heat conditions because they are 
more sensitive to heat, more likely in poor health condition and more isolated. 
Young children are also susceptive to extreme heat since they have a small body 
size and a still developing respiratory system. They have an increased risk of 
getting aggravated asthma and other lung related diseases caused by smog and 
ozone air pollution. 
 

 Impaired water quality 
The high temperatures of rooftop and pavement surfaces can heat up the rain 
water runoff which flows into sewers, streams, rivers, ponds, and lakes. The 
rising water temperatures can be stressful to the aquatic life since the water 
temperature affects the reproduction and metabolism of many aquatic species. 

After realizing these impacts, it is becoming significantly important to predict UHI 
intensity in urban areas. UHI phenomenon is clearly a worldwide issue, since urban 
areas keep expanding all over the world. By the end of 2050, it is predicted that 68% 
of the world population will live in urban areas (UN 2018). In the future, if there is no 
effective mitigation from the stakeholders, the UHI phenomenon could worsen and 
lead to more severe impacts.  
 
There are four types of UHI as explained by Oke et al. (2017): 

 Subsurface urban heat island: underground temperature difference between 
the city and rural area.  

 Surface urban heat island: surface temperature difference between the ground 
in the city and the ground in a rural area 

 Canopy layer urban heat island: air temperature difference between the UCL of 
the urban area and the near-surface layer of the rural area. 

 Boundary layer urban heat island: air temperature difference between a layer, 
which is between the top part of the UCL and the top part of the urban 
boundary layer (UBL), and the similar layer height of atmospheric boundary layer 
(ABL) in the rural area.   

  
In this thesis, there are two types of UHI, which are used for the evaluation: the surface 
urban heat island intensity (SUHII) and canopy layer near-surface urban heat island 
intensity (UHII). The SUHII can be obtained from land surface temperature (LST) derived 
from thermal satellite imaging instruments such as the Moderate Resolution Imaging 
Spectroradiometer (MODIS) and the Spinning Enhanced Visible and Infrared Imager 
(SEVIRI). On the other hand, the UHII is best investigated with mesoscale numerical 
weather prediction models, such as the WRF model (WRF 2021). These mesoscale 
models require land use/land cover (LULC) data for the simulation. However, the 
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available LULC default datasets are usually too coarse for urban simulation. The WRF 
model, for example, uses as default a LULC map derived from the (MODIS) dataset 
with 30 s resolution.  

2.2 Local climate zones (LCZs) 

The conventional approach to determine the magnitude of urban heat island is to 
simply measure temperatures at two or more sites and classify these sites as urban or 
rural. The urban heat island magnitude is then the temperature difference between 
the urban and rural sites. However, this method is claimed to suffer in giving 
quantitative metadata of the site exposure or the land cover that influences the screen-
height temperature at the specific site (Stewart and Oke (2012)). 
 
Stewart and Oke (2012) proposed LCZs as a climate-based classification of urban and 
rural regions by defining the regions with uniform surface structure, surface cover, 
surface fabric, and human activity which could span from 100 m to few kilometers in 
horizontal scale. This approach is intended to be universally and relatively easily 
implemented to local temperature studies applying screen-level observations. This 
approach conceptually aims to assist consistent documentation of the site metadata 
and to provide an objective guideline in measuring the urban heat island effect’s 
magnitude in any city in the world.  
 
The name “local climate zones” has a meaning of local in scale and climate in nature 
as well as zonal in representation. Every zone in LCZs has a representative screen height 
temperature regime, which is most obvious over dry surfaces, during calm and clear 
nights, as well as in areas with simple relief. These temperature regimes prevail year-
round and are related with the homogeneous environments of cities, natural biomes, 
and agricultural lands. 
 
The LCZ methodology comprises 17 zones, 10 of which are built environments and the 
other seven are land cover types as shown in Figure 2. These zones are characterized 
by its 10 properties, which are related to surface structure, surface cover, surface fabric 
and human activity. The surface structure influences local climate by modification of 
the airflow, the atmospheric heat transport, and the balances of shortwave and 
longwave radiations. The surface cover modifies the moisture availability, the albedo, 
and the cooling/heating potential of the ground. 
 
The 10 properties that define LCZs are as follows: 
 

 Sky view factor (SVF): fraction of sky hemisphere which is visible from ground 
level. The value ranges from 0 to 1 and it depends on variation of spacing and 
height of building and trees. The value of 0 represents that the view from this 
area is completely blocked from the sky and the value of 1 tells that the area 
can see the whole sky.  
 

 Aspect ratio (H/W): aspect ratio of street canyons (for LCZ 1-7), building 
spacing (for LCZ 8-10), tree spacing (for LCZ A-G). The aspect ratio is calculated 
between the mean height and the mean width of the specified object (street 
canyons, building or tree). 
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 Mean building/tree height (height of roughness element): average value 
of building heights (LCZ 1-10) and tree/plant heights (LCZ A-F).  

 

 Terrain roughness class (TRC): classification of terrain roughness length 
based on Davenport et al. (2000). The terrain roughness length is a wind profile 
parameter used to define the roughness of a surface area. The roughness is 
related to the efficacy of a surface area in transforming the average wind 
energy, which flows over it, into a turbulent motion above the surface 
(Davenport et al. 2000) 

 Building surface fraction (BSF): fraction of land which is covered by buildings. 
 

 Impervious surface fraction (ISF): fraction of land which is paved or covered 
by rock.  

 

 Pervious surface fraction (PSF): fraction of land which is covered by 
vegetation, water or bare soil.  

 
 Surface admittance: measure of a surface’s ability to absorb or release heat. 

 

 Surface albedo: fraction of solar radiation reflected by a surface. 
 

 Anthropogenic heat flux (QF): mean annual heat flux density where the 
source of the heat could be from generally human activity and fuel combustion. 

The values for some of these zone properties are shown in Figure 3.  
 
To classify the LCZs, users should examine three steps: 

 Collecting site metadata: to quantify the surface properties of the area of the 
temperature sensor which is optimally done by conducting field survey in 
person. The users acquire data regarding local horizon, building geometry, land 
cover, surface relief, surface wetness and population density. 

 Defining the thermal source area, which is the surface area for which the sensor 
measures the temperature. 

 Selecting the local climate zone. The site metadata collected in the first step will 
lead users to the suitable LCZ classes. The suitable LCZ class does not have to 
be a perfect match for the metadata. The process of assigning a best-fit LCZ 
class is rather an interpolation approach than a straight matching.  
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Figure 2. Local climate zones (Stewart and Oke 2012) 
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Figure 3. Zone properties of LCZ (Stewart and Oke 2012) 
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2.3 The World Urban Database and Access Portal Tools (WUDAPT) 

The initial approach in deriving local climate zones is by doing in-situ measurements. 
On the other hand, there are two approaches applied in generating local climate zones 
namely the WUDAPT-based method and the GIS-based method. Those methods utilize 
data that is readily available without the need of observing the field site directly to 
generate the classification of LCZs.  
 
WUDAPT is a project initiated by urban climate researches to provide universally 
coherent and consistent information on form and function of urban morphology for 
climate studies (Ching et al. 2018). The form comprises surface cover, urban geometry 
and construction materials. On the other hand, the function is activities that lead to 
consumption of energy, materials and water and lead to emission of waste heat, 
particulates, gases and water (Mills et al. 2015). 
 
WUDAPT information consists of three levels of detail (L) and is gathered using distinct 
methodologies: 

 Level 0 data comprises  a local climate zone map which is based on the work of 
Stewart and Oke (2012) 

 Level 1 data gives a better representation for each LCZ through sampling by 
providing information regarding urban form and function in a finer spatial 
resolution. Level 1 data has a representation in three-dimensional form. 

 Level 2 data refines the data further by giving detailed description of urban 
parameter values for boundary layer modelling. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                Figure 4. Workflow of generation of WUDAPT L0 (Bechtel et al. 2015) 
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WUDAPT Level 0 (L0) data is produced by applying machine learning supervised 
classification of Landsat or Sentinel images. The workflow of generating L0 data is as 
follows (Figure 4) (Bechtel et al. 2019):  

 Digitizing training areas (TA) in Google Earth:  
Volunteer local experts who know the respective city to be mapped digitize 
polygon areas that represent local climate zones occurring in the city. A training 
area would have ideally about 1 km2 area. The more training areas are digitized 
the better the classification result should be. Figure 5 shows the training areas 
for Berlin. 

Figure 5. Training areas digitized over Berlin (Fenner, 2015) 

 Raster processing in SAGA GIS:  
Satellite imagery from Landsat or Sentinel can be employed as an input raster 
for the classification. A Local Climate Zone Classification tool is provided by an 
open source software, the System for Automated Geoscientific Analyses 
(SAGA) (Conrad et al. 2015). Before the classification, preprocessing to the 
satellite imagery needs to be done by cropping the raster with respect to the 
region-of-interest (ROI) and resampling of the raster to a defined grid size. 
 
After that, the classification can be carried out with the Local Climate Zone 
Classification tool. The classification step can be performed several times to 
improve the classification result. The classification result is then checked with 
the Google imagery and existing TA can be modified or additional TA can be 
digitized to repeat the classification process. If the classification result is too 
granular, it can be filtered using a majority filter. 
 

 Evaluation: 
After a volunteer generated a sufficiently high quality LCZ classification map, 
the respective training areas and Landsat data will be submitted to the 
WUDAPT team and made available on the website. The submitted data will be 



 

18 
 

further processed in a local climate zone production and quality assessment 
workflow (as shown in Figure 6) before dissemination to the database and 
portal.  
 

 

Figure 6. LCZ generation and quality assessment scheme in WUDAPT  
(Becthel et al. 2019) 

 
Every data submitted to the WUDAPT team will be checked in the workflow 
whether it is a new data or not by comparing the hash value with the previously 
processed data. If the training data or the Landsat data is new, the 
classification, post-processing, and documentation step is activated. In this 
production chain, three approaches are applied for the quality assessment of 
the level 0 LCZ maps: cross validation, manual review and cross-comparison 
with other data. The cross validation and manual review by experts determine 
whether the LCZ map generated has an adequate quality and can be published 
on the WUDAPT portal. 

The cross validation is applied automatically by employing a bootstrapping 
method as shown in Figure 7. This method is a random sampling scheme which 
estimate accuracy measures from the training areas. A number of sub-samples 
from the training areas is used for the classification and the accuracy of the 
classification result is evaluated with the samples that are not used. 
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Figure 7. Automated quality assessment with bootstrapping  
(Bechtel et al. 2019) 

WUDAPT provides level 0 LCZ maps for several cities around the world in the WUDAPT 
portal. However, this portal is no longer maintained and updated, and the user is asked 
to move to a new website, namely LCZ Generator released this year by Ruhr University 
Bochum (Demuzere et al. 2021). This website has published around 348 LCZ maps 
from around the world until now (LCZ Generator 2021). Users who want to generate 
their LCZ maps can easily submit the training areas to this website and the LCZ map 
will be generated automatically. The generated LCZ map is provided with the accuracy 
measures, which are openly published on the website together with training areas.  

2.4 Geographic Information System (GIS) – based method for local climate 
zones 

Another approach to derive local climate zones is by applying the so-called GIS-based 
method. As summarized by Quan and Bansal (2021), the first GIS-based approach 
employed in deriving LCZ was done by Lelovics et al. (2014) and Unger et al. (2014) 
and since then, 16 representative studies, which implemented the GIS-based LCZ 
mapping, have been published. From these studies, the general GIS-LCZ mapping 
process is illustrated in Figure 8. 
 
  

 
 
 
 

 

 
Figure 8. GIS-LCZ mapping method (adopted from Quan and Bansal (2021)) 
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The data used to calculate the zone properties explained in section 2.2 can be in the 
form of vector or raster data. The vector data from OpenStreetMap, for example, is 
processed to derive building surface fraction. Raster data from satellite imagery such 
as Landsat and Copernicus, can also be employed to calculate the other properties, 
such as impervious surface fraction.  
 
The basic spatial unit (BSU) is the minimum mapping unit of the classification. The 
classification is carried out for every BSU so that every BSU will have the values for the 
zone properties. The BSU has been defined in several representations. It can be in the 
form of grid, lot area polygon, neighborhood, urban block and sensor unit area. Geletič 
and Lehnert (2016) applied a 100 m x 100 m grid size for the classification. Unger et 
al. (2014) defined lot area polygon for the classification as illustrated in the left image 
in Figure 9. Quan et al. (2017) implemented urban block approach as the BSU as shown 
in the right image in Figure 9.  

Figure 9. Basic spatial unit. Left image: lot area polygon (Unger et al. 2014). Right 
image: urban block (Quan et al. 2017) 

The number of zone properties used in the 16 representative studies vary. One study 
only used 4 of the zone properties (Quan et al. 2017) and another study used only two 
of them but with 10 additional zone properties (Hidalgo et al. 2019). A study in 
Colombo, Sri Lanka used the default 10 zone properties (Perera and Emmanuel 2018). 

After the zone properties are calculated, the classification is done by implementing a 
specific classifier. The representative studies used different kinds of classifiers: standard 
rule-based, modified standard rule-based, new rule-based, Naïve Bayes, K-means 
integrated rule-based, and Fuzzy rule-based. From the 16 studies, the most 
implemented classifiers are modified standard rule-based (six studies) and fuzzy rule 
based (six studies: Lelovics et al. 2014, Šećerov et al. 2015, Geletič and Lehnert 2016, 
Quan et al. 2017, Wu et al. 2018, and Estacio et al. 2019).  

The classification result can be further processed by aggregating or merging the basic 
spatial unit. At the final step, evaluation is carried out on the classification result or 
post-processed result. The evaluation can be done by comparing the result with remote 
sensing-based method (WUDAPT L0 map) and by validating the result with expert 
knowledge and temperature observations.     
 

2.5 Confusion matrix 

Using a confusion matrix is a common method to assess the accuracy of a classification 
where the classification result is compared with the reference or ground truth data. An 
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example of a confusion matrix is shown in Table 1. This table denotes the result of 
classification of forest and water compared to the reference data.  

Table 1. Confusion matrix 

 Reference 
SumUser AccUser 

 Class Forest Water 

Classified 
Forest 20 10 30 66,67% 
Water 30 50 80 62,5% 

SumProd 50 60   
AccProd 40% 83,33%   

Overall accuracy = 63,64%   
 
The first column shows the classified classes and the first row implies the reference 
classes. From this table, it indicates that there are 20 sites correctly classified as forest 
and 50 sites correctly classified as water. 
 
The SumProd explains the total number of values in a class of reference data. The 
AccProd or producer accuracy for a class is defined as correctly classified class divided 
by SumProd. This value implies the map accuracy from the perspective of the producer 
(map maker) or the probability that the reference class is correctly classified in the 
classification result. On the other hand, the AccUser or user accuracy is the probability 
that the classifed class is correctly classified in the reference class. This accuracy specifies 
map accuracy from the perspective of a map user and defines as the correctly classified 
class divided by SumUser. The SumUser is total number of values in a classified class.  
 
Moreover, the overall accuracy value is the number of sites correctly classified divided 
by the total number of sites (total of SumProd or SumUser). Besides that, the kappa 
coefficient can also be calculated. This value describes how well the classification was 
executed in comparison to just a random classification. The value ranges from 0 to 1 
where 1 represents a perfect match between the classification result and the reference 
data, and 0 is the other way around where the classification result is considered 
completely random (Accuracy Metrics, 2021). The kappa coefficient can be categorized 
as follows (Strunz, 2021): 

 Excellent : >0.81 

 Good  : 0.80 – 0.61 
 Moderate : 0.60 – 0.41 

 Weak  : 0.40 – 0.21 

 Bad  : ≤0.2 

2.6 Correlation analysis 

In this thesis, there are two correlation calculations. First is correlation of SUHII and 
urban fraction from GIS-LCZ over different GIS-LCZ classes. The second one is the 
correlation calculation of UHII and the urban fraction from WRF over GIS-LCZ. 
Correlation is a linear regression calculation, which yields a function that has minimum 
distance (in the least squares sense) between the fitted regression line and all data 
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points (Regression 2021). Beside the regression coefficients, there are three other main 
measures obtained from this regression analysis: 

 Correlation value: defines the strength of a linear relation between two 
variables. This value is between -1 and 1, which both of them show a perfect 
correlation result where all data points are distributed along a straight line. A 
positive correlation implies a positive relation between the variables, while a 
negative correlation tells a negative association between them (Correlation 
2021). 
 

 R2 value: denotes how close the data points to the fitted line. It is calculated as 
the division of the explained variable variation divided by the total of the 
variation. This will give a percentage value. 0 implies that none of variability is 
around the mean value and 1 implies that the regression line explains all the 
variability of the data around its mean (Regression 2021).  

 

 Standard error: is the standard deviation of the coefficient estimates (BSE 2021). 

2.7 City Geography Markup Language (CityGML) 

CityGML is an international standard issued by the Open Geospatial Consortium (OGC) 
for representing and exchanging semantic 3D city models. This standard defines the 
geometrical, topological, semantic, and visual aspects of the 3D city models in different 
levels of detail (LODs) (Gröger et al. 2012) as shown in Figure 10 for the case of the 
building model. CityGML is designed as an Extensible Markup Language (XML)-based 
format and as an implementation of the application schema of Geography Markup 
Language 3 (GML3).  

 
Figure 10. The five LODs of CityGML version 2.0 (Biljecki et al. 2016) 
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CityGML serves as a central information hub where the semantic 3D city model has 
been used by many disciplines to attach their specific information for different purposes 
as shown in Figure 11 (Kolbe 2009). Solar potential analysis and energy consumption 
analysis used the semantic 3D city model with CityGML format as part of the analysis 
and also at the end enrich the model by the result of the analysis (Chaturvedi and Kolbe 
2017; Carrión et al. 2010).  

 

Figure 11. CityGML as information hub (Kolbe 2009) 

CityGML comprises one core module and 12 thematic modules. The core module 
defines the basic elements of the CityGML data model. This consists of abstract base 
classes, from which the thematic classes in the thematic modules inherit. The 12 
thematic modules are as follows (Gröger et al. 2012): 

 Appearance: representation of the appearances of CityGML features.  
 Bridge: representation of bridges in four levels of detail (LOD 1-4). 

 Building: representation of buildings in five levels of detail (LOD 0-4). 
 CityFurniture: representation of city furniture objects (immovable) like 

lanterns and traffic signs. 

 CityObjectGroup: providing a grouping concept of CityGML objects. 

 Generics: providing generic extensions for additional attributes and features 
which are not defined by the thematic classes of CityGML by introducing 
generic objects or generic attributes. 

 LandUse: representation of land use and land cover. 
 Relief: representation of the terrain. 

 Transportation: representation of the transportation features. 

 Tunnel: representation of tunnels in four level of detail (LOD 1-4). 
 Vegetation: representation of vegetation objects. 

 WaterBody: representation of rivers, canals, lakes, and basins. 
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 TexturedSurface [deprecated]: representation of visual appearance 
properties. However, this module is expected to be removed in future CityGML 
versions and can be converted into CityGML’s Appearance module.  

All modules including the core are defined by their own XML schema definition file 
(XSD) with a globally unique XML namespace for every module. Figure 12 shows the 
dependency relations of the CityGML core and extension modules. 

Figure 12. CityGML modules and their dependencies (Gröger et al. 2012) 

The Landuse module is used to define areas of the earth’s surface related to land use 
and land cover. Land use describes human activities on that specific land, while land 
cover describes its biological and physical cover. Every land use object can have the 
attributes of class, function, and usage. The class specifies the classification of the land 
use object e.g. settlement area, vegetation, etc. The possible values are defined in a 
code list. The function describes the nature or the purpose of the object e.g. residential, 
forest, etc. On the other hand, the usage is used when the way the object used is 
dissimilar from the function. 
 
The Generics module allows extensions to the CityGML model that can be used to 
model and exchange 3D objects that are not covered by the predefined classes of 
CityGML. The generic extensions introduce two main concepts, i.e. generic city objects 
and generic attributes as shown in Figure 13. A GenericCityObject can have the 
attributes which are class, function, and usage. The class represents the object 
classification in the thematic area such as power line, the function describes to which 
thematic area the object belongs such as power supply, and the usage is used when 
the way the object used is dissimilar from the function. A generic attribute has name 
as an attribute which is mandatory to be filled and used as an identifier. The attribute 
value is associated with the generic attribute, which can be filled with different kind of 
data types. 
 



 

25 
 

Besides applying the Generics module, an extension to the CityGML data model can 
be realized by using Application Domain Extensions (ADEs). The extension can be in 
the form of addition of new properties to the existing CityGML modules or introduction 
of new object types. The main difference between generic extensions and the ADE 
approach is that a new XSD file and its own namespace have to be defined in the ADE. 
Besides defining on XSD, an ADE can also be specified using UML (Unified Modeling 
Language). Thus, the advantage of using ADEs is that the extension is formally 
described, which allows instance documents to be validated with the extended 
CityGML and the ADE schema. 

Figure 13. UML model of generic object and attribute (Gröger et al. 2012) 

A new version 3.0 of CityGML was recently published (OGC 2021) introducing some 
new modules as shown in Figure 14. The new concept of CityGML 3.0 defines several 
new concepts including a space concept and the new modules Dynamizer and 
Versioning (Kutzner et al. 2020). 
 
The space concept delineates spatial features into spaces and space boundaries. A 
space is a feature, which has a volumetric measure in the real world such as buildings, 
trees, and water bodies. On the other hand, a space boundary is a feature, which has 
an areal measure in the real world and connects as well as delimits the spaces. Examples 
for space boundaries are wall surfaces that bound buildings. 
 
Furthermore, spaces can also be categorized into two forms, which are physical spaces 
and logical spaces. Physical spaces define spaces, which are fully or partially delimited 
by physical objects such as buildings and rooms. On the other hand, logical spaces are 
spaces bounded by thematic considerations such as a building unit, which is defined 
as an aggregation of rooms and delimited by a virtual boundary (Kutzner et al. 2020).  
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Figure 14. CityGML 3.0 module overview (Kutzner et al. 2020) 

The Versioning and Dynamizer modules are introduced to represent the dynamics of 
change in the cities. A city object may change with respect to time. The change can be 
related to the geometry, semantics, appearance, and topology. A building that was 
renovated can have a modification in its geometry and appearance. Some sensors can 
also be attached to the building, which measure, for example temperature and 
humidity over time. The changing of the renovated building and the sensor values can 
be expressed with Versioning and Dynamizer. 
 
The Versioning module handles qualitative changes that are considered slower in 
nature such as transformation of cities as well as their versions of city models. This 
module identifies the changes in a city object by specifying two identifiers which are 
identifier property and feature:id attribute. The identifier property is stable for the 
lifetime of the object. On the other hand, the feature:id attribute specifies the version 
of the object. The Versioning module also defines two feature types: Version and 
VersionTransition. Version is used to specify versions of the city objects and 
VersionTransition is applied to linking different versions of the city object by expressing 
the reason of modification and the changes applied to the model.  
 
On the other hand, the Dynamizer module specifies the quantitative changes that 
represent high dynamic variations of city object properties such as thematic attributes 
(e.g. energy demands and solar irradiation levels), spatial properties (e.g. geometry 
change of a feature), and real-time sensor observations. The dynamic values in 
Dynamizer can be represented in three different classes: 

 AtomicTimeseries class which tabulates the time/value pairs. 

 CompositeTimeseries class which gives patterns of time/value pairs according 
to statistical rules. 

 SensorConnection class which facilitates the retrieval of data from external 
sensor/IoT.  
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2.8 Dataset 

The following datasets are used in this thesis: 

 Deutsches Zentrum für Luft- und Raumfahrt (DLR) 
  The DLR dataset is obtained from the work of Heldens et al. (2020). They 
generated raster data of Berlin for a microclimate simulation. The raster dataset 
includes rasters of building height (Figure 15), terrain height, vegetation, streets 
and bridges. The dataset provides several resolution ranges from 1 meter to 16 
meter. For this thesis, rasters of building height with the resolution of 1 meter 
and 5 meter as well as raster of terrain height with the resolution of 1 meter 
are used to calculate the zone properties. The building raster data is derived 
from the 3D building model of CityGML LOD2, and the terrain height  is derived 
from the LOD0 3D city model generated from airborne LiDAR (for the 
municipalities) and 30 m digital elevation model (DEM) of SRTM (for the 
surrounding areas).  

Figure 15. Building height’s raster data of DLR 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Height (m) 
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 OpenStreetMap (OSM) 
OSM is a vector dataset containing primarily building (Figure 16), land use, 
road, and water features. OSM is an open source data generated by a 
community of mappers (OSM, 2021). For this thesis, building surface polygon 
of OSM is used to calculate the aspect ratio property of a local climate zone.  

Figure 16. Building data of OSM 

 Copernicus 
Copernicus is the European Earth monitoring system where data is acquired 
from different sources, such as in-situ sensors and Earth observation satellites. 
Raster data of land cover and high resolution layers, such as imperviousness 
density (IMD) is provided by Copernicus (Copernicus, 2021). For this thesis IMD 
raster from 2015 with the resolution of 20 meter is used to calculate the 
impervious surface fraction of the LCZ’s zone property (Figure 17). 
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Figure 17. Imperviousness density 2015 of 20 meter resolution of Copernicus 

 WUDAPT L0  
WUDAPT provides level 0 (L0) maps for many cities around the world. The Berlin 
L0 map is downloaded from the WUDAPT portal (WUDAPT Portal 2021) as it is 
shown in Figure 18. The map was produced in 2016 and was derived from 
Landsat 8 Images from March and April 2015. The resolution of the map is 100 
meter and has been resampled from generally 30 meter Landsat 8 input image 
resolution. The training areas can also be downloaded through the WUDAPT 
website (WUDAPT TA 2021). 

Figure 18. WUDAPT L0 of Berlin (Bechtel and Daneke 2012, Bechtel et al. 2015, 
Ching et al. 2017, Stewart and Oke 2012) 

 

IMD 
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 Measured land surface temperature (LST) 
Measured land surface temperature is obtained from satellite imagery of 
MODIS Aqua with the resolution of around 700 meter. The data products used 
are MYD21A1D v006 and MYD21A1N v006 which correspond to day and 
night LST respectively (Hulley 2017). The Aqua satellite passes over every place 
on the earth at around 1:30 PM (day LST) and 1:30 AM (night LST). 
 
This dataset can be accessed or downloaded in various ways. For this thesis, a 
website application namely Application for Extracting and Exploring Analysis 
Ready Samples (AρρEEARS) is used to retrieve the LST raster data. This website 
is very convenient to use since you can define the area of interest, choose the 
period, select the LST data sources, and finally specify the format and the 
projection of the LST raster data (AρρEEARS 2021). 
 
The LST data retrieved is from 21st of June until 4th of July 2010. This period is 
chosen to fit the period of the available WRF simulation results, which will be 
used later for the evaluation/correlation of GIS-LCZ.  
 

 WRF simulation results 
The WRF simulation was carried out over Berlin and surrounding area from 21st 
of June until 4th of July 2010 (Vogel and Afshari 2020). The result of the 
simulation is saved in netCDF format and contains data including urban fraction 
(UF) and urban heat island intensity (UHII) which are used in this thesis later for 
the correlation analysis. 

2.9 Software 

To support this thesis, QGIS and its plugins are used to do the calculation of the zone 
properties. QGIS is an open source software for Geographic Information System (GIS) 
which supports vector, raster, and database functionalities (QGIS 2021). The QGIS 
plugins relevant for this study, which are primarily used to support the data processing, 
are the Geospatial Data Abstraction Library (GDAL), the Geographic Resources Analysis 
Support System (GRASS), and the Urban Multi-scale Environmental Predictor (UMEP). 
GDAL is a geospatial data translator and processor library for raster and vector data 
formats. GRASS plugin allows access to databases and functionalities of GRASS GIS 
(GRASS QGIS 2021). UMEP is an open source climate service tool which combines 
models and tools for climate simulation (UMEP 2021). The UMEP pre-processor 
component (a tool to prepare input data for meteorological and surface information) 
is applied in this thesis (Lindberg et al. 2018). 
 
Python libraries are also used to facilitate the calculation process of zone properties as 
well as the classification of the zone properties into local climate zones. After the GIS-
LCZ is generated, an evaluation of the result is carried out. The evaluation comprises 
accuracy assessment and comparison between the GIS-LCZ map and WUDAPT dataset, 
which is done using SAGA. Another evaluation is  correlation analysis between zone 
properties/LCZ classes and temperature values, which is calculated in a custom code 
written in Python. ArcGIS Pro is also used to retrieve the WRF simulation results for the 
correlation analysis. ArcGIS Pro is similar to QGIS but it is a commercial software (ArcGIS 
Pro 2021). Finally, Enterprise Architect is used to generate the UML model for the 
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analysis of enrichment of CityGML. This software is a modelling platform, which can 
be used for the analysis, design, implementation, assessment, and maintenance of 
models using UML, SysML and other open standards (EA 2021).  
 

2.10  Related works 

Lelovics et al. (2014) with its related work (Unger et al. 2014) is considered as the first 
research deriving local climate zones with the GIS-based method (Quan and Bansal 
(2021). The study is carried out in Szeged, Hungary applying lot area polygon as the 
BSU. They apply seven zone properties: sky view factor, building height, surface 
roughness, surface albedo, and the three surface fractions (building, impervious, and 
pervious surface fractions). These zone properties are classified using fuzzy logic. The 
classification result is further processed by merging the BSUs. The resulting map has six 
urban classes of GIS-LCZ. The map is used to plan the location of urban temperature 
measurement network. Other related studies use this map for the integration with 
WUDAPT L0 map (Gál et al. 2015) and for monitoring air temperature (Skarbit et al. 
2017). 
 
A GIS-LCZ map is also generated for Vienna, Austria by Hammeberg et al. (2018). This 
work applies 100 m x 100 m grid tile as the BSU and employs five zone properties: 
building height, aspect ratio and the three surface fractions. The classification of the 
zone properties utilizes Naive Bayes classifier. There is no post-processing done in this 
study. The evaluation for the classification result is carried out by comparing it to the 
WUDAPT L0 map. 
 
Wang et al. (2018) derives the GIS-LCZ map for Hong Kong applying 100 m x 100 m 
grid tile as the BSU. They use three zone properties and 1 additional land use data. The 
zone properties, which are building height, building surface fraction, and sky view 
factor, are employed to classify the urban classes (LCZ 1 – 10). The additional land use 
data is used for the classification of the natural classes (LCZ A – G). The classification is 
done by the modification of the standard rule proposed by Stewart and Oke (2012). 
An accuracy assessment is carried out to the resulting GIS-LCZ map by comparing it to 
the established validation samples.  
 
Another GIS-LCZ study is conducted by Estacio et al. 2019 in Quezon City, Philippines. 
The study employs seven zone properties: sky view factor, building height, roughness 
length, surface albedo and the three surface fractions. The classification is done by 
employing fuzzy logic by modifying trapezoidal membership function from Lelovics et 
al. (2014). The result of the classification is aggregated by using cellular automata to 
derive the LCZ map. The map is validated with the expert knowledge. The land surface 
temperature profile for each LCZ type is also assessed in this study.  
 
The study that is considered as the latest GIS-LCZ study is the work of Chen et al. (2020) 
in Chenzou, China. The classification is done over 200 m x 200 m grid tiles with seven 
zone properties and one additional property: building height, the three surface 
fractions, sky view factor, aspect ratio, terrain roughness class, and the additional 
vegetation coverage ratio. The classification is carried out by modifying the standard 
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rule proposed by the LCZ framework. The result of the classification is compared to the 
test samples. Moreover, the result is also analyzed with the land surface temperature.  
 
In this thesis, GIS-LCZ method is applied to the city of Berlin, Germany by dividing the 
city area into 100 m x 100 m grid tiles. Five zone properties are used: sky view factor, 
building height, aspect ratio, building surface fraction and impervious surface fraction. 
The classification of the zone properties employs fuzzy logic by modifying the rule 
applied in Estacio et al. (2019). The post-processing applied to the result of the 
classification is majority filter as applied by the WUDAPT L0 approach.  The resulting 
GIS-LCZ map is compared to the training areas from WUDAPT for the accuracy 
assessment. The LCZ map from WUDAPT, which is WUDAPT L0, is also compared to 
the GIS-LCZ map to see the agreement between both of the maps.  
 
The result of GIS-LCZ map can be further used to enhance the 3D city model of 
CityGML. The calculated zone properties and the LCZ class of the grid tiles can be 
represented with the statistical grid as done by the government of Japan. They  
introduce statistical grid module in the ADE of i-Urban Revitalization. This module 
specifies the statistical grid of thematic values of the city objects, which is intended for 
time series analysis and regional comparison (Ishimaru et al. 2020). Figure 19 illustrated 
statistical grids that represent the number and age of building in Munakata City, Japan. 

Figure 19 Aggregated statistical grids (Height: Number of buildings,  
Color: Average of year of construction) (Ishimaru et al. 2020) 
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3  Methodology  

The GIS-LCZ method employed in this thesis comprises the processing steps shown in 
Figure 20. Vector and raster datasets are used to calculate the zone properties needed 
to derive the LCZ map. Building, terrain, and land cover or land use datasets are 
obtained from different sources and formats. These datasets are georeferenced to the 
same coordinate system to calculate the zone properties.  
 
The calculation of the zone properties is done with the aid of Python and QGIS applying 
plugins such as GDAL, GRASS, and UMEP. The calculated zone properties are classified 
applying Fuzzy logic to generate the LCZ map. A post classification is carried out by 
applying a majority filter to the classification result. The accuracy of the resulting map 
is calculated with the training areas provided from WUDAPT. Moreover, the 
comparison of the GIS-LCZ map with the WUDAPT L0 map is also evaluated. 
 
The LCZ map derived from the GIS dataset is correlated with the surface UHI intensity 
(SUHII) which is calculated from the land surface temperature acquired from satellite 
imagery. The correlation is also carried out with the simulated near-surface air UHI 
intensity (UHII) resulting from the WRF simulation. Finally, the possibility of integrating 
the result of GIS-LCZ map to enrich the CityGML is also analyzed. 
 

Figure 20.  Methodology 
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3.1 Study area 

The study area of this thesis is located in Berlin with the border of the city shown in 
Figure 21. Berlin is the capital city of Germany with an area of 892 km2. As of 2019, 
its population is around 3.8 million, which is the highest number among other cities in 
Germany. Berlin is chosen for this study because, contrary to most other German cities, 
the GIS data is abundantly available for deriving the GIS-LCZ map. DLR dataset, OSM, 
WUDAPT L0 map, and Copernicus dataset are also available for Berlin. Previous work 
related to WRF simulation from the Urban Physics Group of Fraunhofer Institute for 
Building Physics have also been conducted in Berlin. The results of this work will be 
used in this thesis for the validation/correlation purposes. To the best of the author’s 
knowledge, Berlin is the first city in Germany to be classified in local climate zones with 
a GIS-based approach. 
 

Figure 21. Berlin area 

3.2 Calculation of zone properties  

As explained in section 2.2, there are ideally 10 zone properties defining the 17 local 
climate zones which are sky view factor, aspect ratio, building surface fraction, 
impervious surface fraction, pervious surface fraction, height of roughness element, 
terrain roughness class, surface admittance, surface albedo, and anthropogenic heat 
output. However, due to limited data sources, in practice only a subset of those 
properties can be used for the classification of the LCZs. Chen et al. (2020) used seven 
of them excluding surface admittance, surface albedo, and anthropogenic heat flux for 
the city of Chenzou in China. Hammerberg et al. (2018) used five of them, which are 
average building height weighted by area, building surface fraction, impervious surface 
fraction, pervious surface fraction, and height to width ratio. Wang et al. (2018) only 
used three of them, which are building height, building surface fraction, and sky view 
factor for the city of Hong Kong.  
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For this thesis, 5 zone properties will be calculated to generate the LCZ map. Pervious 
surface fraction, terrain roughness class, surface admittance, surface albedo, and 
anthropogenic heat flux are excluded from this calculation, because the data are not 
easily obtained.  
 
The basic spatial unit for the classification is in the form of grid tiles with the size of 
100 m x 100 m. Every zone property will be resampled to this resolution. The polygon 
of the grid tiles is created in QGIS in the shapefile format with the extent of the area 
of Berlin with the coordinate reference system (CRS) of European Petroleum Survey 
Group Geodesy (EPSG) 25833 (ETRS89 / UTM zone 33N). This CRS is used as the default 
CRS for all the calculation of the zone properties. The number of grid tiles in total for 
the area of Berlin is 90517 as shown in Figure 22. The extent of the grids is based on 
WUDAPT’s Berlin L0 grid, which also has 100 m spatial resolution. The reason of 
choosing WUDAPT’s Berlin L0 map as the reference is that after the classification of 
GIS-LCZ, the resulted map is compared with WUDAPT’s Berlin L0 map. The comparison 
is done tile by tile. Thus, for later convenience, the WUDAPT’s Berlin L0 map is chosen. 

 
Figure 22. Grid tiles of GIS-LCZ for berlin (example) 
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The calculation of the 6 zone properties is explained as follows: 
 

 Sky View Factor (SVF) 
The SVF is calculated with the Urban Geometry-Sky View Factor Calculator of 
the UMEP plugin in QGIS. The algorithm used to calculate the SVF is described 
in Lindberg and Grimmond (2010). For the calculation of the SVF, rasters of 
building and terrain heights are needed. Before starting the calculation, a 
conversion of null values (no building height information) to zero is done for 
DLR raster of building height with the resolution of 5 meter which has netCDF 
file format. This conversion is done using GRASS library namely r.null in QGIS 
and the result is saved in GeoTIFF format. The GeoTIFF file is then reprojected 
to EPSG 25833. The conversion to zero is done for convenience later in the 
process of addition with the raster of terrain height. 
 
The terrain height’s raster is also processed by applying resampling to the 
raster of terrain height from 1 m to 5 m resolution. The resampling is done 
due to consideration of computation time that might take a longer time for 
a resolution of 1 meter. The result of SVF calculation with the 5 meter 
resolution is considered enough for the classification as it is later also 
averaged over 100 x 100 m grid tile. The resampling applies GRASS library 
namely r.resample in QGIS. The resampling method applied in this library is 
the method of nearest neighbors. The result is saved in GeoTIFF format. The 
conversion of null values to zero is also done. However, the result shows no 
null values in the raster of terrain height. The reprojection is not necessary 
since the original netCDF file of the terrain height’s raster is already in EPSG 
25833. 
 
A raster of Berlin city boundary is also applied to both rasters of the building 
and terrain heights. The boundary raster has zero pixel values inside the city 
boundary and no data/null values outside the city boundary. Thus, when both 
rasters of building and terrain heights are added with the boundary raster, 
the boundary sets all the pixel values outside the city to null values. The 
addition of these three rasters (boundary, building height, and terrain height) 
is done in Raster Calculator in QGIS. The result is shown in Figure 23. This 
raster is then used as input in the UMEP’s SVF calculator. The resulting SVF 
of the calculation is in the form of raster with the same resolution as the 
source data which is 5 m. 
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Figure 23. Raster of building and terrain height 

For the LCZ classification purpose, only the SVF value from the ground-level 
is needed therefore the generated SVF raster is extracted with the value only 
from the terrain and the value from the building is set to no data. This is done 
by preparing a 0-1-building raster by converting the pixel values in building 
height’s raster to the value of zero for the pixels with building height 
information and value of one for pixels with no building. This process is 
carried out in the Raster Calculator. The resulting raster is then multiplied 
with the SVF raster and yields an SVF raster with zero pixel values for building 
footprints. These zero pixel values are then translated to null values or no 
data applying Translate (Convert Format) tool from GDAL in QGIS. The 
resulting raster (Figure 24) is then resampled to the grid tile of 100 m x 100 
m for calculation of zone property of SVF. The resampling is carried out by 
calculating the mean statistics using Zonal Statistics tool in QGIS. The mean 
value from this calculation result is assigned as the SVF value for the 
respective grid tile. 
 
When the original SVF raster is evaluated, there is an anomaly in the SVF pixel 
values at the border of Berlin. The outside pixel values that are near to the 
border should have null values for the SVF since the input raster data has null 
pixel values for the area outside the city boundary. However, these tiles have 
values so that the calculated mean SVF values for the tiles in the border are 
not correct. Therefore, the SVF values for these tiles are converted into no 
data. The SVF values in the forest area are also not correct, since the 
vegetation height is not available for the calculation of the SVF. Thus, the 
forest areas have SVF values of around 1. This is one of the limitations of this 
thesis: data about plants or tree heights is not available. 
 

 
 

Building 
and terrain 
height (m) 



 

38 
 

Figure 24. SVF 

 Building and impervious surface fractions (BSF and ISF) 
BSF is defined as the percentage of the area covered by buildings in a 100 m 
x 100 m grid tile. It is calculated from the building footprint from the DLR 
building height‘s raster with the resolution of 1 meter. The raster is 
reprojected to EPSG 25833 and further processed with Zonal Statistic tool in 
QGIS to get the number of pixels that contain buildings in a specific grid tile. 
The number of pixels (NOP) can be derived from count calculation in the tool. 
The count value is divided by 100 to get the BSF percentage in a grid tile. The 
resulting BSF is shown in Figure 25.  

Figure 25. BSF 

SVF 

BSF (%) 
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The ISF is the percentage of the area covered by impervious (paved or rock) 
materials in a 100 m x 100 m grid tile. Copernicus Impervious Density (IMD) 
raster is used for the calculation of ISF by calculating the mean of the 20 
meter resolution raster data over 100 m x 100 m grid tile applying Zonal 
Statistic tool. However, the IMD cannot be directly used to represent the ISF 
needed by LCZs framework, since the IMD also includes building information. 
ISF as a zone property in the LCZs excludes the information of buildings since 
it is already covered by BSF. Thus, BSF should be subtracted from IMD in order 
to obtain the ISF, which can be formulated as “ISF = IMD-BSF”.  
 
However, when this formula is implemented, it results in negative ISF values 
in several grid tiles. It can be due to the fact that IMD raster is not fully 
harmonized with the BSF value since they are from different data sources and 
have different resolutions and acquisition methods. To avoid the negative 
values of the ISF, the IMD is corrected by taking the maximum between the 
original IMD and the BSF which can be formulated as IMD= max(IMD,BSF). 
The corrected IMD will have more information about imperviousness in the 
study area since it gets additional information from the BSF. Finally, the ISF is 
defined as corrected IMD with the subtraction of BSF. Figure 26 shows the 
final ISF map. 

    Figure 26. ISF 
 
 
 
 
 
 
 
 

ISF (%) 
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 Aspect ratio (H/W)  
 
The width of the street canyons or building spacing (w) is estimated by the 
equation modified from Samsonov and Varentsov (2020). The original 
equation is as follows:  
 

𝑤 = [ √𝑆0(√𝜆𝑢𝑟𝑏 0 −  √𝜆𝑂𝑆𝑀 𝐵𝐿𝐷  ] /√𝑁𝑂𝑆𝑀 𝐵𝐿𝐷   (1) 

 
where S0 is the grid tile area which, in our case, is 10.000 m2, λurb 0 is the 
urban surface fraction, λOSM BLD is the building surface fraction obtained from 
OSM, and N BLD is the number of buildings. This formula assumes that 
buildings in a grid tile are located regularly within its urban area and have the 
same size and also are square.  
 
In this thesis, λurb 0 , modified to include all the surface fractions (urban/built-
up and natural) in a grid tile, is set to 1 as shown in equation 2. The inclusion 
of all surface fractions is aimed to obtain the overall width of building spacing 
in LCZ 8-10. λOSM BLD is also modified into λ BLD to include the building surface 
fraction from DLR that was calculated before and defined as BSF. 
 

𝑤 = [√𝑆0(1 −  √𝜆𝐵𝐿𝐷 )] /√𝑁𝐵𝐿𝐷      (2) 

 
λ BLD is then formulated as max(λOSM BLD, BSF). NBLD is obtained from building 
data of OSM and DLR. Building data from OSM is in the vector format and it 
is easier to be processed to get the number of buildings by applying methods 
in QGIS and Python. However, not all building data are detected by OSM, 
there are around 1500 grid tiles that have no building data in OSM but 
include buildings in the DLR raster data. Thus for these tiles, building data 
from DLR is used for the calculation of N BLD. For the calculation, the DLR data 
is then clipped by applying a mask layer of grid tiles that do not have building 
information from OSM. This process is done using GDAL library of Clip Raster 
by Mask Layer in QGIS. The resulting masked raster is then converted into 
vector data in shapefile format.  
 
For calculating the N BLD, both OSM and DLR vector data are dissolved in QGIS. 
It is done by applying GDAL library of Dissolve in QGIS. For the building vector 
data from OSM, it is needed to be dissolved since buildings that are attached 
to each other have different identification numbers and they are counted as 
different features in the shapefile (left image in Figure 27). This condition is 
not desired in the calculation of N BLD. Even though the building belongs to 
different persons, but if they are attached to each other (sharing the same 
walls), the buildings are considered as one feature for the calculation of N BLD. 
For the vector DLR data, the building is also necessary to be dissolved since 
the data is in the form of grid tiles of 1 m x 1 m (left image in Figure 28) 
which is the original resolution of the building raster data from DLR.  
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Figure 27. Dissolved OSM building data 

 

  

Figure 28. Dissolved DLR  building data 

 
After the dissolution is completed, the vector building data, either from OSM 
or DLR, is separated into single features since the dissolved result is in the 
form of merged buildings in one feature. The separation is done using 
Multipart to singleparts tool in QGIS. After the separation into single features, 
the building features are then intersected with the grid tiles of GIS-LCZ. The 
intersection is carried out by applying Intersection tool in QGIS. The 
intersected building features are further processed in Python with Geopandas 
library for calculating the number of buildings in each grid tile.  
 
The resulting N BLD together with other variables in Equation 2 is then used to 
calculate the mean width/space between buildings (w). After that, the aspect 
ratio can be calculated which is the ratio between mean building height (H) 
and mean width/space between building (w). The result is shown in Figure 
29. 
 

Dissolve 

Dissolve 
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Figure 29. Aspect ratio (H/W) 
 

 Mean building height (H) 
The DLR raster of building height with the resolution of 1 m as used for the 
calculation of BSF is also used to calculate the mean building height (H) in the 
grid tile. The calculation is done per grid tile with the Zonal Statistic tool by 
taking the mean value. The resulting H is shown in Figure 30. 
 

  

Figure 30. Mean building height 

H/W 
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After all the properties are calculated, all the grid tiles over Berlin have zone property 
values as exemplified in Figure 31. Every grid tile has an identification number (ID) that 
distinguishes the grid tile from the other grid tiles. These zone properties are further 
processed to classify the tiles into local climate zones.  

Figure 31. Zone properties of a grid tile 

3.3 Classification of GIS-LCZ 

The zone properties used in the classification of GIS-LCZ in this thesis are simplified into 
12 classes instead of 17 classes. We retain the original 10 urban classes (LCZ 1 – LCZ 
10); however, the seven natural classes (LCZ A – LCZ G) are simplified into two new 
classes: LCZ 11 and LCZ 15. LCZ A – LCZ D and LCZ F – LCZ G are combined into LCZ11 
since they all clearly belong to natural classes. LCZ E is separated from the other natural 
classes since it could have a paved surface property which is manmade and cannot be 
systematically categorized as natural class. Moreover, WRF framework also recognizes 
LCZ E as an urban class. For the convenience in the classification process, LCZ E is 
named as LCZ 15. The simplification of these 17 classes is done because the 
classification of natural classes is not necessarily needed for the WRF simulation. On 
the other hand, we do not have sufficient data to calculate the zone properties in 
natural classes. The zone properties such as SVF and H/W require information about 
tree/plant height, which is not easily obtained. 
 
The calculated zone properties are classified into LCZ classes by applying fuzzy logic 
with a trapezoidal membership function modified from Estacio et al. (2019). The 
membership of every zone property for every LCZ class is determined as shown in Figure 
32 (example case of LCZ 1 and its ISF property). The property value which is in the 
specified range will have a membership value of 1 and the membership value will 
linearly decrease from 1 to 0 when the property value is out of the range. The range 
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values for the zone properties (based on the framework of Stewart and Oke (2012)) 
used in the classification of the GIS-LCZ map is shown in Table 2. 

 
Figure 32. Trapezoidal membership function of fuzzy logic for ISF of LCZ 1 (adopted 

from Estacio et al. (2019)) 

To understand how this membership function works, an example from Figure 31 is 
explained here. The zone property of the ISF of LCZ 1 has a range value from 40 – 60, 
which implies 40 as the left bound (LB), 60 as the right bound (RB) and length (L) = RB-
LB = 20. When a grid tile has a value of the ISF, which is in this range (40-60), the 
membership value will be 1. On the other hand, when a grid tile has ISF which is not 
in this range, the membership value will depend on how far it is away from the LB or 
RB. The membership will become 0 for the ISF value of 20 and 80. These values will be 
called as left zero bound (LZB) and right zero bound (RZB), respectively. The value of 
the RZB and LZB are defined as LZB = LB - L = 20 and RZB = RB – L = 80.  
 
A problem arose for the zone properties that do not imply the RB, for example, the 
property value of H/W for LCZ 1, which is bigger than 2. The LB is 2 and the RB goes 
to infinity. It will not be a problem for defining the RZB because it can be set to infinity 
as well. However, it will be a problem for defining the LZB. The LZB cannot go to 
infinity, as it will overestimate the membership value of the zone property, which is less 
than LB. For this case, Estacio et al. (2019) chose value of 0 as the LZB. However, when 
choosing 0 as the LZB, it will still overestimate the membership value of H/W that is less 
than 2, because the H/W will get membership values from all the urban classes of LCZs 
which ranges, from 0 (LZB) to 2 (LB). This is not desirable since the purpose of the 
classification is to obtain a relatively distinct classification outcome. To tackle this issue, 
the LZB is chosen from the second highest RB value of HW’s range values defined in 
Table 2, which is 1.5. This value will constrain the H/W membership to two LCZ classes: 
LCZ 1 and 2.  
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 Table 2. Range values of zone properties for the classification of the GIS-LCZ map 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The same approach is also used for the zone property H of LCZ1 and LCZ4, which has 
the range value of >25. The LB is then defined as the second highest RB value of the 
range values of H from Table 2, which is 15 m. The other zone properties, which do 
not define LB or RB, are SVF, BSF, and ISF. The common value is chosen as the LB or 
RB. For SVF, the LB would be 0 and the RB would be 1. For BSF and ISF, the LB would 
be 0 and the RB would be 100.  
 
The membership value for every property in every class of LCZ is calculated, and then 
the membership values of the zone properties for every class are summed up so that, 
at the end, for a grid tile, there are 12 total membership values from the 12 GIS-LCZ 
classes. These membership values are normalized by the number of zone properties 
available for the respective grid tile. From these 12 total membership values, the 
maximum value is chosen and assigned as the LCZ class of the grid tile. For an example, 
Table 3 shows the membership values calculated for every zone property for the grid 
tile shown in Figure 31. From Table 3, it implies that the final LCZ class assigned to the 
grid tile with the ID of 81531 is LCZ 2 as it has the highest normalized membership 
value.  
 
 
 
 
 
 
 
 
 
 

LCZ SVF H/W BSF (%) ISF (%) H (m) 

1 0.2 – 0.4 >2 40 – 60 40 – 60 >25 

2 0.3 – 0.6 0.75 – 2 40 – 70 30 – 50 10 – 25 

3 0.2 – 0.6 0.75 – 1.5 40 – 70 20 – 50 3 – 10 

4 0.5 – 0.7 0.75 – 1.25 20 – 40 30 – 40 >25 

5 0.5 – 0.8 0.3 – 0.75 20 – 40 30 – 50 10 – 25 

6 0.6 – 0.9 0.3 – 0.75 20 – 40 20 – 50 3 – 10 

7 0.2 – 0.5 1 – 2 60 – 90 < 20 2 – 4 

8 >0.7 0.1 – 0.3 30 – 50 40 – 50 3 – 10 

9 >0.8 0.1 – 0.25 10 – 20 < 20 3 – 10 

10 0.6-0.9 0.2 – 0.5 20 – 30 20 – 40 5 – 15 

11 
 

< 10 < 10 
 

15 < 10 >90 
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  Table 3. Membership values (example) 

 
The Python libraries used for the classification are numpy, skfuzzy.membership, copy, 
pandas, and geopandas. The classification result is further processed by applying a 
post-processing step namely filtering. The filter chosen is a majority filter and is applied 
using SAGA with the filter radius of two pixels and the search mode of square. These 
parameters yield a window filter of 5 x 5 pixels. The final result after filtering is shown 
in Figure 32. 
 

Figure 33. GIS-LCZ 

 
 

Zone Properties Membership value for each LCZ 

ID: 81531 1 2 3 4 5 6 7 8 9 10 11 15 

SVF: 0.47 0.65 1 1 0.85 0.9 0.56 1 0.23 0 0.56 - - 

H/W: 1.5 0.1 1 0.94 0.4 0 0 1 0 0 0 - - 

H: 20.99 0.6 1 0 0.6 1 0 0 0 0 0.4 - - 

BSF: 43.22% 1 1 1 0.84 0.84 0.84 0.44 1 0 0 0 0 

ISF: 52.54% 1 0,873 0.92 0 0.87 0.92 0 0.75 0 0.3 0 0 

Total 3.35 4.87 3.86 2.69 3.61 2.32 2.44 1.98 0 1.33 0 0 

Normalized 0.67 0.97 0.77 0.54 0.72 0.46 0.49 0.4 0 0.27 0 0 
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LST (oC) 

3.4 Calculation of surface urban heat island intensity (SUHII) 

In the evaluation, the result of GIS-LCZ map will be correlated with the SUHII. This 
section will explain the steps to retrieve the SUHII from land surface temperature (LST) 
obtained from the satellite imagery of MODIS Aqua instrument. The period of the LST 
is from 21st of June until 4th of July 2010. 
 
For the calculation of SUHII, the LST values per pixel for each day in the period and for 
day and night are averaged. As a result, there are two different mean raster, namely 
average daytime LST and average nighttime LST. The average calculation is done using 
Python libraries (numpy and rasterio). The resulting raster of the average LST needs to 
be scaled by the factor of 0.02 to obtain the LST value in Kelvin (MYD 2021). The pixel 
values are then subtracted with 273.15 to get the LST values in degree Celsius. The 
scaling and subtraction are carried out by using Raster Calculator in QGIS. The LST 
raster is reprojected to EPSG 25833 from the CRS of the original data source WGS 84 
applying Warp (Reproject) tool in QGIS. Figure 34 shows the average daytime LST of 
the 2010 period. 

 

Figure 34. Average day LST of 2010 period  
(from 21st of June until 4th of July 2010) 
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After the average LST values are obtained, a ring rural reference (RRR) is defined. The 
RRR (shown as green colored ring in Figure 35) is specified with the inner radius of 26 
km from the city center and with the thickness of the ring of 3.765 km. It has the same 
area as the city. This ring is determined based on the work of Vogel and Afshari (2020). 
The average day and night LST are calculated for the area of RRR with the resulting 
average LST values of 31.24 oC for the day and 10.84 oC for the night.   

Figure 35. Ring rural reference outside Berlin 

Before calculating the SUHII, the GIS-LCZ’s grid tiles are resampled to the size of LST’s 
pixel resolution (683 meter) and with the extent of the LST raster data. Resampling is 
done by applying GRASS library r.resamp.stats in QGIS. This calculation is saved in 
GeoTIFF and then converted to vector with shapefile format applying the Raster Pixels 
to Polygon tool. 
 
For the calculation of SUHII, new attributes of the average day and night LST in the 
area of berlin are added to the resampled grid tile. The addition of the attributes is 
done with the Zonal Statistics tool by taking the mean statistics of the rasters of average 
day and night LST over the resampled vector grid tile. SUHII values are calculated for 
day SUHIII, night SUHII, and average SUHII. Day or night SUHII are obtained from the 
subtraction of the average day or night LST of every grid tile of Berlin area, with the 
average day or night LST of the RRR. The average SUHII, shown in Figure 36, is the 
mean of day SUHII and night SUHII. The calculation of these three SUHII values is done 
in Field Calculator in QGIS in the attribute table of the resampled vector shapefile. 

 
The average SUHII is used for the correlation analysis with the urban fraction calculated 
from GIS-LCZ. The urban fraction (UF) is the addition between building surface fraction 
(BSF) and impervious surface fraction (ISF) of the zone property. For the correlation 
calculation, the BSF and ISF are converted into raster applying GDAL library Rasterize 
(vector to raster) tool. In the tool, no data value needs to be specified by assigning 
arbitrary number other than 0 until 100, because the values in this range are the BSF 
or ISF value. If the no data value is not specified here, the value of zero of the BSF or 
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ISF will be assigned as no data since the default value of no data in this tool is zero. If 
the default value is already used, the assignment of no data can also be later done 
using  Translate tool from GDAL by assigning a specified no data value to output bands. 
Finally, the rasters of BSF and ISF are added to the resampled grid tile applying Zonal 
Statistics tool by taking the mean statistics of the rasters. The UF is simply the addition 
between the mean values of ISF and BSF in the resampled grid tile, and this addition is 
carried out applying the Field Calculator. The GIS-LCZ classes are also added to the 
resampled grid tile by calculating the majority statistics of the GIS-LCZ raster using the 
Zonal Statistics tool. 

Figure 36. Average SUHII 2010 

3.5 Retrieval of urban heat island intensity (UHII)  

The result of GIS-LCZ will also be correlated with the UHII. The UHII is obtained from 
the WRF simulation result that is stored in netCDF file format. The file contains several 
variables including: 

 XLON   : longitude 

 XLAT   : latitude 

 UF   : urban fraction 

 UHII_vrr_tavg  : UHII calculated with the virtual rural reference (VRR). VRR 
is a fictitious rural area created from urban area that is replaced by natural 
classes (Vogel and Afshari (2020)).  

These variables are used to calculate the correlation of UHII and UF with the GIS-LCZ. 
To retrieve these variables from the netCDF file, a tool called Make netCDF feature layer 
in ArcGIS Pro is used. The UHII_vrr_tavg and UF are read separately.  
 
To read the UHII_vrr_tavg from the netCDF file, six parameters need to be defined in 
the tool. They are variables, X variable, Y variable, output feature layer, row dimensions 

Mean 
SUHII (oC) 
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and value selection method. Variables are the data from netCDF file that will be read 
which is the UHII_vrr_tavg. The X and Y variables can be filled with the XLON and XLAT 
respectively. The output feature layer is the name of the output layer. The row 
dimensions are used to separate the value of UHII for every grid point of WRF. The 
dimensions used are west_east and south_north. The value selection method used is 
by value which is the default method. After all of these parameters are set, the tool 
can be run. The output layer is in the form of grid points, and then it is saved as a 
shapefile and further processed in QGIS. The grid vector is reprojected in QGIS to EPSG 
25833 and buffered with the distance of 500 meter to get a square-grid form as shown 
in Figure 37. The buffering is done with Buffer tool with the segment of one and end 
cap style of square.  
 
The same steps applying ArcGIS Pro are also done to retrieve the UF data from the 
netCDF file.  After reprojection to EPSG 25833 in QGIS, the UF is added to the buffered 
grid of UHII by applying Join Attributes by Location tool. The GIS-LCZ classes are also 
added to the grid by calculating majority statistics of Zonal Statistics tool over the GIS-
LCZ raster. 
 

 

Figure 37. Simulated UHII 

UHII (oC) 
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4  Evaluation and Analysis 

In this chapter, the result of GIS-LCZ for Berlin is evaluated and analyzed. First by 
comparing the GIS-LCZ with the training areas from WUDAPT. Second by comparing 
the map to WUDAPT L0. Third by correlating the urban fraction from GIS-LCZ with the 
SUHII for each LCZ class. Fourth by correlating the urban fraction and UHII from WRF 
simulation for each LCZ class. Fifth by analyzing the enhancement of CityGML model 
with the result of GIS-LCZ. 

4.1 Comparison to WUDAPT’s training areas 

The result of GIS-LCZ is compared to training areas from WUDAPT using the confusion 
matrix calculated in SAGA applying Confusion Matrix (Polygons / Grid) tool. Before the 
calculation, the GIS-LCZ map is rasterized and loaded as a grid in SAGA. Training areas 
from WUDAPT, which are in the vector shapefile format, are loaded in SAGA as Shapes 
in the form of polygons. The confusion matrix tool evaluates whether the grid or pixel 
center falls into the polygon or not. If it falls, it will be counted as one value of 
agreement or correctly classified pixel in the confusion matrix.  
 
The result of GIS-LCZ is compared to the training areas (TA) from WUDAPT using 
confusion matrix, which is tabulated in Table 4. 

  
Table 4. Confusion matrix of GIS-LCZ and WUDAPT’s TA 

  WUDAPT's Training Area   

 CLASS 2 4 5 6 8 9 11 SumUser AccUser 

G
IS

-L
C

Z 

1 0 0 0 0 0 0 0 0 0 

2 1224 2 101 1 3 0 0 1331 91.96 

3 0 0 0 0 3 0 0 3 0 

4 0 37 27 0 0 0 0 64 57.81 

5 83 422 863 7 49 0 0 1424 60.6 

6 0 45 182 2007 387 43 0 2664 75.34 

8 0 0 0 0 12 0 0 12 100 

9 0 4 12 56 26 0 3 101 0 

10 0 1 36 0 2 0 0 39 0 

11 0 87 40 3 8 2 2158 2298 93.91 

15 0 0 2 0 33 0 0 35 0 
 SumProd 1307 598 1263 2074 523 45 2161   

 AccProd 93.65 6.19 68.33 96.77 2.29 0 99.86   

 Overall Accuracy = 79,05%   

 Kappa = 73,09%   

 
The training area data from WUDAPT comprises LCZ 2, 4, 5, 6, 8, and 11. It does not 
have LCZ 1, 3 and 10 which GIS-LCZ has. The accuracy or the agreement calculation 
between the WUDAPT’s training areas and GIS-LCZ can only be conducted between 
the classes which exist in WUDAPT. From the table, the green color shows the value of 
the correctly classified GIS-LCZ pixels compared to WUDAPT’s training area polygons.  
 
The producer accuracy for LCZ 4, 8, and 9 does not show good values. On the other 
hand, the user accuracy does not have good values for LCZ 1, 3, 9, 10, and 15. LCZ 1, 
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3, 10, and 15 do not exist in WUDAPT, and thus the user accuracy is zero. For the LCZ 
9, it has producer and user accuracies of zero since there is no LCZ 9 of WUDAPT 
correctly classified in GIS-LCZ. The overall accuracy calculated for the classification 
result of GIS-LCZ is 79.05 % with the kappa coefficient of 0.73 which is considered as 
a good kappa value. 

4.1.1 LCZ 4 

For LCZ 4 in WUDAPT’s training area, many of the tiles are classified as LCZ 5 in GIS-
LCZ. LCZ 4 and 5 are indeed in a similar group of zones, which is open zone. LCZ 4 is 
an open high rise and LCZ 5 is open mid-rise. The significant differences between these 
two LCZ classes are in the range values of aspect ratio (LCZ 4: 0.75-1.25, LCZ 5: 0.3 -
0.75)  and building height (LCZ 4: >25 meter, LCZ 5: 3-10 meter). Figure 38 shows one 
of the example of LCZ 4 in WUDAPT’s training areas (yellow polygon) but it is LCZ 5 in 
GIS-LCZ. When the aspect ratio (H/W) and mean building height (H) for the WUDAPT’s 
training area are calculated, it shows the value of 0.57 and 14 meter respectively. These 
values are suitable for LCZ 5, not LCZ 4. Moreover, the H/W and H of the LCZ 5 of the 
GIS-LCZ shown in this figure is 0.6 and 16 meter respectively. These values are also fit 
for the zone properties of LCZ 5 but not LCZ 4. Thus, this case shows the lack of 
WUDAPT method in deriving LCZs where it cannot quantify the H/W and H since the 
decision of the class of LCZ in WUDAPT is based on the visual perspective obtained 
from satellite imagery.  

Figure 38. LCZ 4 in WUDAPT’S TA and LCZ 5 in GIS-LCZ. Left image: WUDAPT’S TA 
(yellow polygon) and GIS-LCZ (colored polygon) with its label. Right image: satellite 
view from the left image. (id: 24545 in shapefile) 

4.1.2 LCZ 8 

For LCZ 8 in WUDAPT’s training areas, many of the tiles are classified as LCZ 6 in GIS-
LCZ. As shown in Figure 37, the yellow polygon represents WUDAPT’s TA which is LCZ 
8 but classified as LCZ 6 in GIS-LCZ. Visually the yellow polygon is LCZ 8, but in GIS-
LCZ it is considered as LCZ 6 after applying majority filter. Before filtering, there exists 
other classes such as LCZ 2, 3, 5, and 15 (represented as red grid tiles with labels in 
Figure 39). However, LCZ 8 is not there but in the periphery. These periphery tiles of 
LCZ 8 do not give significant impact for the majority filter to categorize the yellow 
polygon as LCZ 8.  
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Figure 39. LCZ 8 in WUDAPT’s TA and LCZ 6 in GIS-LCZ. The labels inside the 
grid tiles are the unfiltered GIS-LCZ. (id: 80460 in shapefile) 

LCZ 6 and LCZ 8 are respectively open low rise and large low rise. From the names of 
the LCZs, it can be inferred that they have the same building height’s range values (3-
10 m) but differ in the width of space between the buildings. This will eventually differ 
them in H/W value. Because the space is wider in LCZ 8, the H/W would be smaller 
(0.1-0.3) than LCZ 6 (0.3-0.75). When this yellow polygon is evaluated, the H value is 
11.18 m which is still in the RB-RZB range value of LCZ 6 and 8. The average H/W value 
is 0.72 which is suitable to LCZ 6. As the area of the yellow polygon viewed from the 
satellite imagery, it obviously does not have that much space to be categorized as LCZ 
8. On the other hand, LCZ 6 is also not really suitable for this area as the satellite image 
shows only small portions of vegetation. LCZ 6 should have pervious surface with the 
LB of 30%. This is the reason, in the unfiltered version, the tiles are classified diversely 
to classes that do not have that much of pervious surface fraction: LCZ 2, 3, 7, and 15. 
From this case, it implies that there is no perfect match in a classification result as also 
mentioned by Stewart and Oke (2012). There is always a case where the zone 
properties could lie between two different LCZ classes. This is the reason that in some 
studies, they add additional LCZ such as LCZ 34 which represent the mix of compact 
low-rise and high-rise (Chen et al. 2020). 
 
Another example for LCZ 8 in WUDAPT’s training areas classified as another LCZs is 
shown in Figure 40. In this Figure, there is one dominant class of the GIS-LCZ which is 
LCZ 15 (bare rock or paved surface). In the satellite image, the LCZ 15 is also dominant 
as shown in the right image. WUDAPT’S training areas generalizes the area as one LCZ 
class which is LCZ 8 which represents an airport area based on the framework. On the 
other hand, GIS-LCZ gives detail since the tiles are in 100 m x 100 m. For this case, 
classification of GIS-LCZ are successful at detecting the LCZ 15, but the classification 
cannot recognize LCZ 8 which represents the buildings and the paved surfaces of the 
airport. In the unfiltered version, there exists few tiles which are LCZ 8 and they are in 
the periphery. After filtering, these tiles are removed. LCZ 8 cannot be represented in 
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these building area because of the building height in this area is around 20 meter which 
is not the property of LCZ 8 (3-10 m). The H in this area are for LCZ 2 and 5. This is the 
reason that in the unfiltered version, the buildings area of the airport are classified as 
LCZ 2 or 5. Finally, after filtering, some parts of the building are generalized in to LCZ 
5. From this case, it is also found that the framework of LCZ is not ideal for every city. 
The visual inspection done by WUDAPT categorizes the area as LCZ 8, which is 
supposed to represent airport area. However, based on the zone property of H, the 
area cannot be in the LCZ 8. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 40. LCZ 8 in WUDAPT’S TA and LCZ 15 in GIS-LCZ. Left image: yellow polygon 
represents LCZ 8 in WUDAPT’S TA and filled-colored polygons represents GIS-LCZ with 
its LCZ class label. Right image: satellite imagery from tiles of the left image with the 
unfiltered GIS-LCZ as label. (id: 85119 in shapefile) 

4.1.3 LCZ 9 

For LCZ 9 in WUDAPT’s TA, there is only one polygon of training area representing this 
class of LCZ. However, this class is not found as LCZ 9 in GIS-LCZ but it is found 
primarily as LCZ 6 in GIS-LCZ as shown in the right image of Figure 41. The left image 
shows that the area is an allotment where the small gardens exist with small buildings. 
However, most of these buildings are not detected either by the DLR raster or by OSM. 
Thus, calculation of zone properties for defining the LCZs are not optimal in this area. 
Building height, sky view factor, building surface fraction of SVF cannot be calculated 
correctly. Only impervious surface fraction can be obtained from the IMD of 
Copernicus. The mean ISF for the yellow polygon is 32.63%. This value is in the range 
value of LCZ 6, not LCZ 9. Visually from the satellite image, the area is also more to 
LCZ 6 rather than LCZ 9 because LCZ 9 represents a sparsely built area which is spaced 
widely in comparison to LCZ 6. Thus, the result of the GIS-LCZ in this area is favored. 

Filtered Unfiltered 
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Figure 41. LCZ 9 in WUDAPT’S TA and LCZ 6 in GIS-LCZ. Left image: yellow polygon 
represents LCZ 9 in WUDAPT’s TA and filled-colored polygons represents GIS-LCZ with 
its LCZ class label. Right image: satellite imagery from tiles of the left image with the 
unfiltered GIS-LCZ as label (id: 74127 in shapefile)  

4.2 Comparison to WUDAPT L0  

A comparison is carried out between the WUDAPT L0 map and the GIS-LCZ map of 
Berlin. Both maps are represented in Figure 42. Each grid tile from the WUDAPT L0 
map and the GIS-LCZ map is compared to find the agreement between these two 
mapping methods, i.e. whether the LCZ classes match. The comparison is done 
applying the confusion matrix in SAGA. For the calculation of the confusion matrix, the 
WUDAPT L0 is converted into vector shapefile in QGIS and loaded as Shapes in SAGA. 
The resulting confusion matrix is tabulated in Table 5. The overall accuracy calculated 
from this matrix is 67.33%. This value denotes the relatively good agreement between 
WUDAPT L0 and the GIS-LCZ. 

Unfiltered Filtered 
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Figure 42. GIS-LCZ vs WUDAPT L0 
 
Table 5. Confusion matrix of GIS-LCZ and WUDAPT L0 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

4.2.1 CZ 2  

In the confusion matrix, the producer accuracy of LCZ 2 is considered good. However 
many of LCZ 2 from WUDAPT L0 are classified as LCZ 5 in GIS-LCZ. These classes are 
found in the GIS-LCZ as neighboring classes. Based on the definition, these classes 
belongs to midrise group where LCZ 2 is compact midrise and LCZ 5 is open midrise. 
From the name of the classes, it can be inferred that LCZ 5 has more spaces compared 
to the LCZ 2. The zone properties of these classes are different significantly in H/W and 
BSF. They have the same range value for H and ISF as well as a bit of overlap in the 
SVF’s range value. Figure 43 shows two images. Left image is the grid tiles which are 
colored and labelled. The color represents WUDAPT L0’ LCZ classes (red: LCZ 2, orange: 
LCZ 5). The label represent the LCZ classes from GIS-LCZ. Right image is the 
representation of the satellite imagery of google maps in QGIS.  

  WUDAPT L0   

 CLASS 2 4 5 6 8 9 11 SumUser AccUser 

G
IS

-L
C

Z 

1 1 2 0 2 2 0 1 8 0 

2 4545 31 870 30 223 0 1 5700 79.74 

3 0 0 0 0 15 0 0 15 0 

4 9 114 52 3 3 0 0 181 62.98 

5 1453 1985 6363 1204 815 2 50 11872 53.6 

6 52 692 3375 19566 3168 160 184 27197 71.94 

8 0 36 248 312 72 41 11 720 10 

9 9 131 411 1874 481 68 105 3079 2.21 

10 0 21 164 76 14 0 3 278 0 

11 52 1067 892 7762 667 248 30221 40909 73.87 

15 73 6 57 0 410 0 12 558 0 

 SumProd 6194 4085 12432 30829 5870 519 30588   

 AccProd 73.38 2.8 51.18 63.47 1.23 13.10 98.80   

 Agreement (“overall accuracy”) : 67.33%   

WUDAPT L0 GIS-LCZ GIS-LCZ 
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Figure 43. LCZ 2 in WUDAPT L0 and LCZ 5 in GIS-LCZ. Left image: color represents 
WUDAPT L0 and label represent GIS-LCZ. Right image: satellite imagery from tiles of 
the left image. (id: 76418 in shapefile)  

Based on the satellite image, the area of the tiles has quite large spaces between 
building that it is supposed to be LCZ 5 rather than LCZ 2. When the zone properties 
of the four tiles (yellow box) are evaluated, the H values are found to be in the range 
of LCZ 2 and 5 (10-25 m). However, the ISF value for these four tiles is not in the range 
of both LCZs range values (30-50%). It has lower value than that which is around 20%. 
Nevertheless, this value is not that far from the range, which is still in the LZB-LB range. 
For the H/W property, the average value of H/W for these tiles is 0.75, which is the 
upper range (RB) for LCZ 5 but lower limit (LB) for LCZ 2. Moreover, the BSF and SVF 
values in these four tiles are around 29% and 0.6, respectively, which are in the range 
of LCZ 5 but not LCZ 2. The zone properties calculated for these tiles are more for LCZ 
5 rather than LCZ 2. Thus, the classification of WUDAPT in this case is not correct. 

The other way around, in Figure 44, it is shown that the tiles of LCZ 2 in GIS-LCZ are 
classified as LCZ 5 in WUDAPT L0. This also happens between the border of LCZ 2 and 
5. The yellow box seems to be LCZ 2 when it is inspected with the satellite imagery, 
which is the same with the class of GIS-LCZ. The H, SVF, and ISF values for the yellow 
box are in the range of LCZ 2 and 5. However, the BSF and H/W values for these two 
tiles in the yellow box are in the range of LCZ 2, not LCZ 5. Thus, the classification of 
these tiles are again correct based on GIS-CLZ, but not WUDAPT L0.  
 
However, the neighboring white box does not look like LCZ 2 in the satellite image, 
but LCZ 5. Although the H & ISF values form this tile is in the range of LCZ 2 and 5, the 
other properties, which are SVF, BSF and H/W, are in the range values of LCZ 5, not 
LCZ 2. Therefore, the classification of GIS-LCZ here is not correct. When it is traced 
back, this tile was originally LCZ 5 in GIS-LCZ before majority filtering applied. This case 
denotes the drawback of the majority filter in removing detail of the LCZ classes in GIS-
LCZ. 
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Figure 44. LCZ 5 in WUDAPT L0 and LCZ 2 in GIS-LCZ. Left image: color represents 
WUDAPT L0 and label represent GIS-LCZ. Right image: satellite imagery from tiles of 
the left image with the unfiltered GIS-LCZ as label. (id: 74444 in shapefile)  

4.2.2 LCZ 4 

LCZ 4 from WUDAPT L0 are classified mostly to LCZ 5 in GIS-LCZ, which is the case for 
1985 tiles compared to its agreement for only 114 tiles. A similar case is also found in 
the accuracy assessment in section 4.1 when the confusion matrix of GIS-LCZ and 
WUDAPT’s TA is evaluated. From the previous case, it is concluded that the 
shortcoming of WUDAPT in detecting H/W and H leads to the misclassification of LCZ 
4 to LCZ 5.  

4.2.3 LCZ 5 

For LCZ 5 in WUDAPT L0, there are many of them that are classified as LCZ 6 in GIS-
LCZ. The orange tiles in Figure 45 are LCZ 5 in WUDAPT L0 but LCZ 6 in GIS-LCZ. LCZ 
5 and 6 are in the same group of open LCZ. LCZ 5 is open midrise and LCZ 6 is open 
low-rise. From the name of each class, it can be inferred that the significant difference 
between them is in the building height. When the zone properties are evaluated, the 
H values for these tiles are actually in the range of LCZ 6, not LCZ 5. Thus, the 
classification of WUDAPT L0 is not correct in this case. 
 
 
 
 
 
 
 
 
 
 
 

Filtered Unfiltered 



 

59 
 

 
 
 
 
 
 
 
 
 
 
 

Figure 45. LCZ 5 in WUDAPT L0 and LCZ 6 in GIS-LCZ. Left image: color represents 
WUDAPT L0 and label represent GIS-LCZ. Right image: satellite imagery from tiles of 
the left image with the unfiltered GIS-LCZ as label. (id: 55188 in shapefile)  

Another case is shown in Figure 46. The yellow box is LCZ 5 in WUDAPT L0 but LCZ 6 
in GIS-LCZ. The satellite image shows that these two tiles are more for LCZ 15 or 
probably a bit part of LCZ 8 (as the unfiltered GIS-LCZ). In these two tiles, there is no 
building that the H and H/W are null and BSF will be 0. The ISF value for these tiles is 
in the range of several LCZ classes: LCZ 1, 2, 3, 5, 6, and 8. From these classes, the SVF 
values for these tiles fit only to LCZ 8. The unfiltered of GIS-LCZ has the same LCZ. 
After the filtering, the class becomes LCZ 6. Thus, none of WUDAPT L0 or GIS-LCZ 
result is correct here.  

Figure 46. LCZ 5 in WUDAPT L0 and LCZ 6 in GIS-LCZ. Left image: color represents 
WUDAPT L0 and label represent GIS-LCZ. Right image: satellite imagery from tiles of 
the left image with the unfiltered GIS-LCZ as label. (id: 55986 in shapefile)  

There are also tiles of LCZ 5 in WUDAPT L0 but LCZ 8 in GIS-LCZ as shown in this Figure 
47. Based on the satellite image, it can be perceived as LCZ 6. The classification of GIS-
LCZ in these tiles cannot be conducted correctly since the building data to calculate 
related zone properties (SVF, H/W, H, BSF) are mostly not available from either DLR or 
OSM. Thus, neither WUDAPT nor GIS-LCZ has a correct classification in this case.  

 

Filtered Unfiltered 

Filtered Unfiltered 
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Figure 47. LCZ 5 in WUDAPT L0 and LCZ 8 in GIS-LCZ. Label in satellite image 
represents GIS-LCZ classes before and after filtering. (id: 63038 in shapefile)  

4.2.4 LCZ6 

For LCZ 6 in WUDAPT L0, there are tiles, which are classified as LCZ 11 as shown in 
Figure 48. From the zone properties, the tiles have no building information as well as 
impervious surface that it leads to the classification of GIS-LCZ to LCZ 11. From the 
satellite image, the tiles are also easily recognized as LCZ 11. Thus, WUDAPT L0 
classification is not correct here.  
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 48. LCZ 6 in WUDAPT L0 and LCZ 11 in GIS-LCZ. Label in satellite image 
represents GIS-LCZ classes before and after filtering. (id: 68923 in shapefile) 

The tiles shown in Figure 49 below are LCZ 6 in WUDAPT L0 but LCZ 9 in the filtered 
GIS-LCZ. Before filtering, they are LCZ 6 for the upper tiles and LCZ 9 for the lower 
tiles. Based on the satellite image shown, these tiles are between LCZ 6 and 9 which 
are open low-rise zone and sparsely built zone respectively. From the name of the 
zones, LCZ 9 should have more spaces than LCZ 6. Based on the properties, the range 
value for H of both LCZs are the same (3 – 10 m) and their SVF’s range values are a bit 
overlapped. The significant difference of range values are for H/W, BSF, and ISF. The 
H/W, BSF, and SVF for the four tiles are LCZ 9. However, the ISF value for the tiles are 

Filtered & Unfiltered 

Filtered & Unfiltered 
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for LCZ 6. Since most of the zone properties are classified as LCZ 9, the GIS-LCZ 
approach here is considered correct.  

Figure 49. LCZ 6 in WUDAPT L0 and LCZ 9 in GIS-LCZ. Label in satellite image 
represents GIS-LCZ classes before filtering. (id: 99145 in shapefile) 

The tiles in Figure 50 are LCZ 6 in WUDAPT L0 but LCZ 5 in GIS-LCZ. Before filtering, 
the tiles were from two different zones: LCZ 5 and 11. As explained before, LCZ 5 and 
6 are in the same group of open LCZ. LCZ 5 is open midrise and LCZ 6 is open low-
rise. The significant difference between them is in the range values of the building 
height property. When the zone properties are evaluated, the H values for these tiles 
are actually in the range of LCZ 5, not LCZ 6. Thus, the classification of WUDAPT L0 is 
not correct in this case. 
 

Figure 50. LCZ 6 in WUDAPT L0 and LCZ 5 in GIS-LCZ. Label in satellite image 
represents GIS-LCZ classes before filtering. (id: 94434 in shapefile) 

There are also tiles which are classified as LCZ 6 in WUDAPT L0 but LCZ 8 in GIS-LCZ 
as shown in Figure 51. These tiles do not have building data that the related zone 
properties cannot be calculated correctly with the GIS-LCZ approach. From the image, 
these area looks like more to LCZ 6 as in WUDAPT L0.  

Unfiltered 

Unfiltered 
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Figure 51. LCZ 6 in WUDAPT L0 and LCZ 8 in GIS-LCZ. Label in satellite image 

represents GIS-LCZ classes before filtering. (id: 52050 in shapefile) 

4.2.5 LCZ 8 

The agreement of LCZ 8 of WUDAPT L0 to GIS-LCZ is very low that the producer 
accuracy is around 1.23% only. Most of the tiles are classified as LCZ 6 in GIS-LCZ for 
around 3168 tiles. Figure 52 shows the tiles where they are LCZ 6 in GIS-LCZ after the 
filtering. The labels shows the classes before filtering. The unfiltered version has more 
variety of classes: LCZ 3 and 9. From the satellite imagery, the area looks like LCZ 8 
where the offices or workshops take place, which agrees with the classification from 
WUDAPT L0. When the tile in the middle of the image is evaluated, it has H of 6.3 m 
which is in the range of LCZ 3, 6, 8, 9, and 10. The BSF value is 24.4% which is in the 
range of LCZ 4, 5, 6, and 10. The H/W is 0.21 which is in the range of LCZ 8, 9, and 
10. The ISF is 71.6% is in the range RB-RZB of LCZ 1 and 3. The SVF value is 0.9 which 
is in the range of LCZ 6, 8, 9, and 10. From the classification of zone properties, the 
tile is definitely assigned as LCZ 6 and 8. However, from the satellite image, the area 
has a small amount of pervious surface fraction that it cannot be classified as LCZ 6. 
Inclusion of pervious surface fraction (PSF) in the classification could lead this area to 
LCZ 8 since LCZ 8 is identified with PSF of less than 20%. 

Filtered & Unfiltered 
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Figure 52. LCZ 8 in WUDAPT L0 and LCZ 6 in GIS-LCZ. Label in satellite image 

represents GIS-LCZ classes before filtering. (id: 92069 in shapefile)  

4.2.6 LCZ 9 

There are not many tiles classified as LCZ 9 in WUDAPT L0 (519 tiles) compared to GIS-
LCZ (3427 tiles). From the 519 tiles, only 69 tiles agree with GIS-LCZ. The rest are 
distributed to LCZ 5, 6, 8, 9, 10 and 11. The highest number of distributed tiles are 
247 tiles, which are classified as LCZ 11 in GIS-LCZ. Figure 53 shows LCZ 9 in WUDAPT 
L0 which is classified as LCZ 11 in GIS-LCZ. From the visual inspection of the satellite 
imagery, the tiles are definitely LCZ 11. The zone properties of GIS-LCZ has no 
information of H/W and H because there is no building. Thus, the BSF is zero 
everywhere. The ISF is also almost zero in all the tiles. Therefore, the suitable LCZ class 
is LCZ 11 which agrees with GIS-LCZ. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 53. LCZ 9 in WUDAPT L0 and LCZ 11 in GIS-LCZ. Label in satellite image 
represents GIS-LCZ classes before and after filtering. (id: 66961 in shapefile) 
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The other way around, the GIS-LCZ 9 has the highest number of agreement to LCZ 6 
of WUDAPT L0 for 1968 tiles. This agreement case is explained in section 4.2.4. which 
denotes the favored GIS-LCZ approach. 

4.2.7 LCZ 11 

LCZ 11 of GIS-LCZ has a good agreement with the WUDAPT L0. The producer accuracy 
is almost 99 % and the user accuracy is 74%. The user accuracy is lower because many 
of the tiles (around 19%) from GIS-LCZ 11 are classified as LCZ 6 in WUDAPT L0. This 
case is already discussed in section 4.2.4.  

4.2.8 Disagreement: LCZ 1, 3, 10 and 15 

There is no agreement found for GIS-LCZ 1, 3, and 10 to WUDAPT L0 since these 
classes are not available in WUDAPT L0 of Berlin. The number of tiles that belongs to 
these LCZs are also not significant compared to 90517 tiles in total. GIS-LCZ 1 has eight 
tiles which are classified to all LCZs in WUDAPT L0 except for LCZ 5 and 9.  
 
Figure 54 shows the tiles of LCZ 1 of GIS-LCZ (bigger label in the left image) which are 
classified to several classes in WUDAPT L0 (smaller label in left image). As it is visualized 
in the satellite image, the area might be an LCZ 2. However when the zone properties 
are evaluated in these tiles, the building height values are more than 25 meter (one of 
the tiles has H of 55.41 meter). If the two lower tiles are evaluated, the H and H/W 
values belong to LCZ 1, the SVF and BSF are both for LCZ 1 and 2. Moreover, the ISF 
are for LCZ 1 for the left tile, but for the right tile is for LCZ 2 and still in the LZB-LB 
range of LCZ 1. Thus, the classification of GIS-LCZ here is correct.  
 

Figure 54. LCZ 1 in GIS-LCZ and WUDAPT L0 LCZs. Left image: color represents 
WUDAPT L0 and label represents GIS-LCZ (bigger label) and WUDAPT L0 (smaller label). 
Right image: satellite imagery from tiles of the left image with the unfiltered GIS-LCZ 
as label. (id: 79973 in shapefile)  

For LCZ 3 in GIS-LCZ, there exist only 15 tiles and they are all classified to LCZ 8 of 
WUDAPT L0. The visual imagery of some of the tiles of the LCZ 3 is shown in Figure 
55. The rest of the tiles are mostly found in the similar places as viewed in the satellite 
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image. Based on the zone properties, LCZ 3 and 8 have the same range value for H 
and overlaps in BSF and ISF. Significant differences are found for the properties of SVF 
and H/W. When the zone properties of these tiles are evaluated, the mean values of H 
(9.3 m) and ISF (40.6%) are for LCZ 3 and 8.  However, the BSF (55.6%), SVF (0.8), 
and H/W (0.8) are a fit for LCZ 3. Thus, WUDAPT L0 classification here is not correct. 

Figure 55. LCZ 3 in GIS-LCZ and LCZ 8 in WUDAPT L0. Left image: color represents 
WUDAPT L0 and label represents GIS-LCZ (bigger label) and WUDAPT L0 (smaller label). 
Right image: satellite imagery from tiles of the left image with the unfiltered GIS-LCZ 
as label. (id: 80856 in shapefile) 

For LCZ 10 in GIS-LCZ, there are in total 278 tiles, which are mostly classified to LCZ 5 
of WUDAPT L0 for 164 tiles. Some of these tiles are shown in Figure 56. Based on the 
satellite imagery on the right image, the area seems to be LCZ 5. When the tiles of LCZ 
10 of the GIS-LCZ are evaluated, their mean values of H (12.6 m), H/W (0.47), BSF 
(23%), and SVF (0.8) are both for LCZ 5 and 10. But the mean value of ISF (20.4) is for 
LCZ 10, but still in LZB-LB of LCZ 5. Based on the zone properties, these tiles are suitable 
for LCZ 10. LCZ 10 is actually representing an area of heavy industry where few or no 
tress in the area.  In the satellite image, the area does not look like the heavy industry 
area at all. The inclusion of other zone properties in the framework that are not 
included in the classification of GIS-LCZ such as pervious surface fraction and 
anthropogenic heat could further give a distinct decision of the final LCZ class.  
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Figure 56. LCZ 10 in GIS-LCZ and LCZ 5 in WUDAPT L0. Left image: color represents 
WUDAPT L0 and label represents GIS-LCZ (bigger label) and WUDAPT L0 (smaller label). 
Right image: satellite imagery from tiles of the left image with the unfiltered GIS-LCZ 
as label. (id: 84367 in shapefile) 

For LCZ 15 in GIS-LCZ, the tiles are mostly classified as LCZ 8 in WUDAPT L0 for 410 
tiles. This case has been explained in section 4.1.2. 

4.3 Correlation analysis of GIS-LCZ with the calculated SUHII 

The correlation between the GIS-LCZ classification result and the calculated SUHII from 
satellite imagery is evaluated by employing urban fraction from the GIS-LCZ. The 
correlation results for all the LCZs and each LCZ are shown in Figure 57. The LCZ class 
existing in the resampled GIS-LCZ are LCZ 2, 4, 5, 6, 8, 9, 11 and 15, but LCZ 4, 8, and 
15 correlation are not shown here since mot enough data is available for the 
correlations.  
 
The correlation results indicate a high correlation value of 0.708 for the correlation 
between urban fraction of GIS-LCZ and the average SUHII for all the LCZ classes. 
However, when the correlation calculation is conducted separately for each LCZ, the 
correlation values decrease. LCZ 11 has the highest correlation of 0.586 and LCZ 2 
corresponds to the lowest correlation of 0.163. The correlation values are LCZ 11 > 9 
> 6 > 5 > 2. The R2 value for all LCZs is 0.501. However, when it is evaluated for each 
class of LCZ, the R2 decreases significantly. The highest R2 value for an LCZ class is LCZ 
11 which is 0.343 and the lowest R2 is 0.027 which is LCZ 2.  
 
The correlation result of LCZ 11 leads to a question on why such a class has a high 
urban fraction which is until around 70 %. This is due to the result of the filtering of 
GIS-LCZ classes and the resampling to LST pixel resolution which takes the mode of 
LCZ classes (see section 3.4) existing in the extent of the LST pixel. The final result could 
have LCZ 11 as the mode class, but the urban fraction from the other urban classes 
existing in the unfiltered and non-resampled grid tiles are still considered in the final 
resampled tile. 
 
Nevertheless, from all the correlation and R2 values of the classes of LCZ, it shows that 
SUHII derived from LST cannot segregate the LCZ classes based on its urban fraction.   
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   Figure 57. Correlation of SUHII and urban fraction of GIS_LCZ over the LCZ classes 

4.4 Correlation analysis of GIS-LCZ with the simulated UHII 

The correlation calculation is also conducted between the simulated UHII and the urban 
fraction from WRF considering the GIS-LCZ. The correlation is conducted for every GIS-
LCZ class. After calculating the majority statistics, there are seven GIS-LCZ classes 
available over the grid of UHII. They are LCZ 2, 5, 6, 8, 9, 11, and 15. LCZ 8 and 15 are 
omitted for the correlation analysis due to less representation of these classes over the 
grid of UHII. The correlation result for the rest of the GIS-LCZ classes are shown in 
Figure 58. The upper left image shows the correlation of the urban fraction from WRF 
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and its UHII for all the LCZ classes, and the rest of the images shows a separate 
correlation analysis for each LCZ class.   

Figure 58. Correlation between UHII and urban fraction of WRF over GIS-LCZ classes 

For the LCZ classes, the correlation result denotes LCZ 2 has the highest correlation 
value of 0.846 and LCZ 11 is the lowest one with the value of 0.727. The correlation 
values are LCZ 2 > 9 > 5 > 6 > 11. The highest R2 value is also found in LCZ 2, which 
is 0.715, and the lowest one is also LCZ 11 with 0.529. The R2 values are LCZ 2 > 9 > 
5 > 6 > 11. From these measure values, it is found that the distribution of GIS-LCZ 
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classes can be well represented with the correlation of UHII and urban fraction from 
the WRF simulation result. 
 
The standard error of the slopes and intercepts from the coefficients of the regression 
line are listed in Table 6 and illustrated in Figure 59. The standard error for slope are 
LCZ 11 < 6 < 5 < 2 < 9, and for intercept are LCZ 11 < 6 < 5 < 9 < 2. 
 

         Table 6. Standard error of slopes and intercepts 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

                     Figure 59. Standard error of coefficients of linear regression  
                     between urban fraction and UHII 

 
 

GIS-LCZ 

Slope Intercept 

Coefficient Standard error Coefficient Standard error 

LCZ 2 2.807 0.235 0.578 0.173 

LCZ 5 3.208 0.197 0.224 0.111 

LCZ 6 2.365 0.089 0.558 0.039 

LCZ 9 2.673 0.478 0.278 0.164 

LCZ 11 2.038 0.086 0.504 0.016 
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4.5 Enrichment of CityGML with the GIS-LCZ 

CityGML as the information hub can be enriched with the result of the GIS-LCZ map. 
From the GIS-LCZ classification, every grid over Berlin comprises two main attributes: 
the LCZ class and the zone properties which are sky view factor (SVF), mean building 
height (H), aspect ratio (H/W), building surface fraction (BSF), and impervious surface 
fraction (ISF).  
 
There are two main approaches, which are provided by CityGML to augment the model 
beyond its fundamental scope. The first approach is by defining generic objects and/or 
attributes, and the second one is by defining Application Domain Extensions (ADEs). In 
this section, these two approaches will be analyzed on how they could be applied to 
enrich the CityGML model with the result of GIS-LCZ.  
 
At the end of this section, an analysis on the possibility of the new concept of CityGML 
3.0 in assisting or supporting the GIS-LCZ method will also be conducted.  

4.5.1 Defining generic attributes to the LandUse module 

In this section, the generic attributes will be analyzed towards its capability on 
specifying the result of GIS-LCZ map for an existing CityGML class. The existing module, 
which is closely related to the result of GIS-LCZ, is the LandUse module. Figure 60 
describes the UML diagram of the LandUse class and the generic attributes. The GIS-
LCZ map can be represented with the class and function attributes. The class can be 
filled with ‘Local Climate Zone’ and the function can be filled with the local climate 
zone class it belongs to.  

 Figure 60. LandUse module with generic attribute (adopted from Gröger et al. 2012) 

For the zone properties of the LCZ classes, generic attributes can be introduced. The 
geometry properties (street sky view factor, aspect ratio, mean building height) cannot 
be really represented by the definition of the LandUse object because they do not 
explicitly represent the human activities and the physical or biological cover of the 
earth’s surface. On the other hand, the surface cover properties (building surface 
fraction and impervious surface fraction) are obiviously related to the land cover 
definition of the LandUse object. Thus, the surface cover properties can be added to 
the LandUse class by defining the generic attributes. 
 
There will be 2 instances of generic attribute which will be defined for GIS-LCZ. They 
are BSF and ISF. However, these instances cannot be modelled in the UML diagram. 
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The data type for these instances can also be defined as represented in Figure 13. The 
data type for the LCZ class would be intAttribute and for the zone properties would be 
doubleAttribute. The geometry of the GIS-LCZ map is in the form of polygon surface 
which can also be represented by the geometry of LandUse object. As illustrated in the 
UML model, LandUse object has the geometry of MultiSurface, which is derived from 
GML.  
 
As shown in Figure 60, the generic attribute is related to the CityObject (core module) 
with the composition relation as shown in the UML model. The LandUse module 
inherits the definitions from the core. Thus, the land use object inherits generic 
attributes which allows to represent the zone properties of GIS-LCZ. However, other 
thematic modules will also inherit these generic attributes since they are all derived 
from the core module. 

4.5.2 Defining a generic city object and its generic attributes 

Another approach to enrich CityGML is by introducing a generic city object as well as 
its generic attributes. A grid tile of GIS-LCZ map can be defined as a generic city object. 
The attribute class of this object can be filled with ‘Local Climate Zone’ and the function 
can be filled with the local climate zone class it belongs to. The geometry can be 
specified as Surface. There are in total 90.517 grid tiles inside the GIS-LCZ map. So 
there will be the same number of instances which are defined in the instance 
documents. However, these instances cannot be modelled in UML. The zone properties 
of the GIS-LCZ can be defined with the generic attributes as explained in the previous 
section. However, in this approach, not only surface cover fractions can be added as 
generic attributes, but also the rest of the zone properties: thermal and geometry 
properties. These properties would also be defined with doubleAttribute as the surface 
properties.   

4.5.3 Defining a new Application Domain Extension (ADE)   

Another possibility on defining new attributes or objects is to specify an Application 
Domain Extension (ADE). A UML model designed for the ADE of GIS-LCZ is depicted in 
Figure 61. The name of this ADE is Local Climate Zone and lcz is defined as a 
namespace. Every grid tile of the GIS-LCZ map is represented as LocalClimateZone 
feature. This feature has six attributes, which are the zone and its properties. The zone 
indicates the LCZ class and has value of CodeType. The codes and its values are listed 
in Table 7.  After the zone, the five zone properties are also specified for every grid tile 
of the GIS-LCZ map and have a value of double. The six attributes of LocalClimateZone 
can only occur maximum once. Finally, the geometry of the LocalClimateZone feature 
is defined as a Surface. The advantage of defining ADE compared to Generics is that 
the zone properties can be modeled directly in the UML model. This will better illustrate 
the information comprised by the GIS-LCZ map. 
 



 

72 
 

 

Figure 61. UML model of Local Climate Zone ADE 

 
Table 7. Code list of zone attribute of Local Climate Zone ADE 

 

4.5.4 Analysis on whether the new concept of CityGML 3.0 could support the GIS-LCZ  
classification 

The new space concept can be applied in defining local climate zones as logical spaces. 
The 12 zones of local climate defined by GIS-LCZ delineate Berlin area in the form of 
grid tiles. However, applying such definition to the zones will probably not give an 
impact for the classification of GIS-LCZ and its application.  
 
The Versioning and Dynamizer modules could be used to support the GIS-LCZ 
classification. The changing in the city can definitely happen. New buildings are 
constructed and green spaces are reduced. This will lead to the change of the 
geometry, surface and thermal properties of a city. These are indeed the properties 
from local climate zones. Therefore, the changing city could also change the existing 
local climate zones inside the city. When a new GIS-LCZ map is derived based on these 
changes, the new GIS-LCZ map can be specified with the new Versioning concept.  
 

Code list of the attribute zone of  LocalClimateZone 
1 LCZ 1  7 LCZ 7 
2 LCZ 2 8 LCZ 8 
3 LCZ 3 9 LCZ 9 
4 LCZ 4 10 LCZ 10 
5 LCZ 5 11 LCZ 11 
6 LCZ 6 15 LCZ 15 
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The changes in the zone properties of local climate zones could be defined with the 
Dynamizer concept. This concept is essentially developed to enhance the application of 
CityGML for different types of simulations and to assist in facilitating the assimilation 
of sensors with 3D city models. Even though GIS-LCZ is not a result of simulation but 
more as input for the WRF simulation, the changes happening in the zone properties 
and the LCZ class can still be quantified using the dynamic concept of Dynamizer. The 
value of these properties can be specified with the AtomicTimeseries. By applying 
Dynamizer to the result of the GIS-LCZ map, the changes in the zone properties as well 
as the LCZ class can also be tracked and analyzed for further application, such as trend 
analysis and mitigation related to the changes of local climate. 
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5  Discussion 

The research questions asked in the first chapter are answered in this chapter. The first and 
second questions are related to each other so that they will be answered in the same section. 
For the rest of the questions, they will be answered separately. 

 How can the LCZ classes be accurately and unambiguously classified from the 
calculated zone properties and what kind of algorithm can be used? Moreover, how 
is the accuracy of the GIS-LCZ map compared to the WUDAPT training areas? 

To know whether the classification result is accurate and unambiguous, an accuracy 
assessment needs to be done. The accuracy calculation is carried out with the reference to 
WUDAPT’s training area and yields an overall accuracy of 79.05 % with the kappa coefficient 
of 0.73 which is considered as a good value. This kappa value shows that the classification 
result is not completely random or ambiguous. The highest producer accuracy is found for 
LCZ 11, which is 99.86%, and followed by LCZ 6 and 2 which are 96.77% and 93.65% 
respectively.  
 
The producer accuracy does not show good values for LCZ 4, 8, and 9, which are 6.19%, 
2.29%, and 0%, respectively. Many of LCZ 4 from WUDAPT’s TA are classified as LCZ 5 in 
GIS-LCZ, and it is found for some tiles that WUDAPT’s TA fails to detect the H and H/W 
properties of the selected zone, which leads to the misclassification of LCZ 5 into LCZ 4.  
 
For LCZ 8 of WUDAPT’s TA, many of the tiles are classified as LCZ 6 in GIS-LCZ and the reason 
identified at some tiles is due to the H/W property is more to LCZ 6 which WUDAPT fails to 
recognize. However, LCZ 6 does not fit for these tiles due to few of pervious surfaces shown 
in the satellite image. Thus, the LCZ class for these tiles lies between LCZ 6 and 8, which 
implies that there is not a perfect classification. The LCZ 8 is also classified as LCZ 5 and 15 in 
GIS-LCZ. This happens at some tiles due to the H property, which is not detected by WUDAPT 
to classify the area into LCZ 5. Even though the tiles are airport area (LCZ 8) as viewed in 
satellite imagery, but the H property does not fit LCZ 8. This implies the shortcoming of LCZ 
framework that cannot be ideally implemented for every city. It is also found that the size of 
the grid tiles of GIS-LCZ are able to classify the paved surfaces in the airport areas as paved 
class which is LCZ 15.  
 
For LCZ 9 in WUDAPT’s TA, there is only one polygon representing this TA and it is classified 
as LCZ 6 in GIS-CLZ due to the ISF value of the area is for LCZ 6. In the WUDAPT’s TA, there 
is no LCZ 1, 3, 10 and 15 which leads to zero value of user accuracy 

 How is the agreement between the GIS-LCZ map and WUDAPT L0 map?  

The agreement found between GIS-LCZ and WUDAPT L0 for Berlin is 67.33%. The same 
agreement value is also found for the GIS-LCZ of Vienna when it is compared to the WUDAPT 
L0 (Hammerberg et al. 2018). A full disagreement between GIS-LCZ and WUDAPT L0 of Berlin 
is  found in LCZ 1, 3, 10, and 15 since these LCZs do not exist in WUDAPT classification. The 
number of grid tiles belongings to these LCZs are not significant compared to the total of 
90.517 tiles. LCZ 1 is 8 tiles, LCZ 3 is 15 tiles, LCZ 10 is 278 tiles, and LCZ 15 is 558 tiles. For 
the case of LCZ 1 which is classified into LCZ 2 and 8 in WUDAPT L0, it is found that based 
on the zone properties it is actually LCZ 1.  
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For the tiles of LCZ 3, they are all classified as LCZ 8 in WUDAPT L0. When some of these tiles 
are evaluated based on the zone properties, the tiles are fit to LCZ 3 rather than to LCZ 8 as 
classified by WUDAPT L0. For LCZ 10, they are mostly classified into LCZ 5 in WUDAPT L0. 
Based on the zone properties, the tiles are suitable for LCZ 10. However, based on the image, 
they seem to be LCZ 5. Inclusion of other zone properties such as pervious surface fraction 
and anthropogenic heat could give a better decision of the final LCZ class. LCZ 15 in GIS-LCZ 
is mostly classified as LCZ 8 in WUDAPT L0. This case has been discussed in the previous 
discussion of training areas.  
 
The agreement between WUDAPT L0 and GIS-LCZ is found for the other LCZs: LCZ 2, 4, 5, 6, 
8, 9, and 11. Many of LCZ 2 of WUDAPT L0 are classified as LCZ 5 in GIS-LCZ. The reason 
found in this thesis is that the lack of WUDAPT L0 in detecting BSF and SVF which are in the 
range of LCZ 5 as classified in GIS-LCZ. The effect of filtering also influences the final GIS-LCZ, 
in which the filter removes the correctly classified LCZ 5 in GIS-LCZ. It is also found that LCZ 
2 in GIS-LCZ are classified to LCZ 5 in WUDAPT L0. After the evaluation, it is shown the lack 
of WUDAPT in detecting BSF and H/W to correctly classify the tiles into LCZ 2. 
 
As in the previous discussion of training areas, many of LCZ 4 in WUDAPT L0 are also classified 
as LCZ 5 in GIS-LCZ. On the other hand, there are many of LCZ 5 in WUDAPT L0 which are 
classified as LCZ 6 in GIS-LCZ. The reason found in some of the tiles is the lack of WUDAPT in 
detecting H value to correctly classify the area into LCZ 6. It is also identified in some tiles, 
after the evaluation of the zone properties, that the tiles are actually LCZ 8 (same as the 
unfiltered GIS-LCZ). However, after filtering, it becomes LCZ 6 in GIS-LCZ, and it is found as 
LCZ 5 in WUDAPT L0. Thus, in this case none of WUDAPT L0 and GIS-LCZ are correct. There 
are also tiles of LCZ 5 in WUDAPT L0 but they are LCZ 8 in GIS-LCZ, which are not correctly 
classified by GIS-LCZ due to the unavailability of the building data to calculate the zone 
properties. 
 
For LCZ 6 in WUDAPT L0, there are many of them are classified as LCZ 11 in GIS-LCZ. One 
reason found is misclassification done by WUDAPT L0 to classify the area without building and 
impervious surfaces as LCZ 6. There are also the tiles of LCZ 6 which are classified as LCZ 9 in 
GIS-LCZ. Based on the properties the area is more to LCZ 9 rather than LCZ 6. There are also 
tiles of LCZ 6 which are classified as LCZ 5 in GIS-CLZ. The significant different between the 
zone properties of LCZ 5 and 6 is in the H value, and in these tiles are found that the H values 
are for LCZ 5. Moreover, there are also the tiles of LCZ 6 which are classified as LCZ 8 in GIS-
LCZ. However, the classification of GIS-LCZ here is not correct since the building data is not 
available for these tiles.  
 
For LCZ 8 in WUDAPT L0, most of the tiles are classified to LCZ 6 in GIS-LCZ. One tile is 
identified to be LCZ 6 based on the zone properties, however the satellite imagery shows that 
the area has a very few of pervious surfaces that it cannot be classified as LCZ 6, but rather to 
LCZ 8. Inclusion of pervious surface fraction as a zone property might help to identify the class 
to LCZ 8. 
 
For LCZ 9 in WUDAPT L0, the total of tiles are only 519 tiles compared to the GIS-LCZ which 
has 3427 tiles of LCZ 9. The agreement between them is only for 69 tiles. One of the 
disagreement found, where the tiles of LCZ 9 in WUDAPT L0 are classified as LCZ 11 in GIS-
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LCZ. The classification from WUDAPT L0 is not correct here, since there is no building in the 
area and almost no ISF value but full of pervious surfaces as shown in the satellite imagery. 

 What correlation between the result of GIS-LCZ and the surface/near-surface 
urban heat island intensity can be found? 

The correlation analysis is done for two types of UHI, which are surface urban heat island 
intensity (SUHII) and near-surface air urban heat island intensity (UHII). For the correlation with 
SUHII, it is found that the overall correlation value for all urban fraction of GIS-LCZ has a good 
correlation value of 0.708 and R2 of 0.501. However, these values are decreasing when the 
correlation is done separately for every LCZ class. It is concluded that the SUHII derived from 
LST cannot be used to distinguish between LCZs distribution. The LCZ framework is intended 
to study air UHI magnitude that is based on temperature measurements at a height of 
approximately 2 meter above ground. Land surface temperature measurement, even if it were 
accurate (which it is not, given that it is inferred from remote radiation readings) would not 
be expected to correlate with LCZ. 
 
Therefore, when the correlation is carried out with the WRF simulation result, which is based 
on the urban canopy-layer air simulation, the result shows a better correlation and R2 values, 
even for single LCZs. Based on the classes, LCZ 2 has the highest correlation and R2 values 
which are 0.846 and 0.715 respectively. The correlation and R2 values are LCZ 2 > 9 > 5 > 6 
> 11.  

 How can the CityGML be enriched with the calculated zone properties and the 
result of the GIS-LCZ classification? 

CityGML can be enriched with the result of GIS-LCZ by applying three possible approaches: 

o Defining generic attributes to the LandUse module 
The LandUse module can be used to store the local climate zone classes of the grid 
tiles by defining the attribute class with ‘Local Climate Zone’ and the function with the 
class of local climate zone of the grid tile. However, based on the definition of the 
LandUse module, only the surface cover properties of GIS-LCZ can be integrated with 
this module. These properties of the GIS-LCZ can be defined with the generic attribute. 
 

o Defining a generic city object and its generic attributes 
A grid tile of GIS-LCZ map can be specified as a generic city object. The attribute class 
of this object can be filled with ‘Local Climate Zone’ and the function can be filled with 
the local climate zone class it belongs to. The geometry can be specified as Surface and 
the five zone properties can be defined with the generic attribute mechanism. 
 

o Defining a new Application Domain Extension (ADE) 
A new ADE can be defined to facilitate the local climate zone features. A 
LocalClimateZone class can be specified with its six attributes: zone, SVF value, H/W, 
H, BSF, and ISF. Attribute zone is defined as CodeType which lists the name of LCZ 
classes. The geometry of this feature is defined as Surface. The advantage of ADE is 
that the extension is formally described, which allows instance documents to be 
validated with the extended CityGML and the ADE schema. 
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 How will the new concept of CityGML 3.0 support the GIS-LCZ classification? 

The two new modules, Versioning and Dynamizer of the new version of CityGML 3.0 could 
be used to facilitate the result of GIS-LCZ. Versioning can manage multiple versions of GIS-
LCZ when in the future, a new GIS-LCZ classification is generated for Berlin. On the other 
hand, Dynamizer could help in quantifying the changes of LCZ class and zone properties inside 
the LCZ map. The values of the LCZ class and zone properties can be saved with the 
AtomicTimeSeries. Applying Dynamizer, it would be possible to track the changes of the LCZ 
class and its zone properties for further analysis.   
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6  Conclusion and outlook 

6.1 Conclusion 

The GIS-based method is applied to derive local climate zones over Berlin using Fuzzy 
logic algorithm. When compared to the training areas from WUDAPT, the overall 
accuracy found for the result of the classification is 79.05% with the kappa value of 
0.73. Both show good values for a result of a classification. The agreement between 
the GIS-LCZ and WUDAPT L0 is 67.33%, and full disagreements are in LCZ 1, 3, 10, 
and 15 due to the nil of these classes in WUDAPT L0. However, the number of grid 
tiles that belong to these classes are not significant.  
 
It is observed that WUDAPT L0 is lacking at detecting the zone properties related to 
building geometry (H, H/W, SVF, and BSF) which leads to the misclassification of LCZs. 
This case is found in WUDAPT L0 for LCZ 2, 4, and 5. WUDAPT L0 also gives a 
completely random classification result on LCZ 6 and 9. It is found in these classes that 
the tiles are actually natural class (LCZ 11) instead of urban classes, based on the zone 
properties and the view from the satellite imagery.   
 
On the other hand, GIS-CLZ specifies the building geometry, which enables to correctly 
detect LCZs that are misclassified by WUDAPT L0: LCZ 2 instead of LCZ 5, LCZ 5 instead 
of LCZ 2 and LCZ 4, and LCZ 6 instead of LCZ 5. However, GIS-LCZ is dependent to 
the availability of data. It is identified that some tiles cannot be classified correctly due 
to the inadequacy of the data to calculate the zone properties. GIS-LCZ also lacks on 
detecting LCZ 8, which is probably due to the unavailability of pervious surface fraction 
property. The majority filter applied can remove the granular view and give a more 
homogeneous LCZ classes. However, this filter can also diminish the correctly classified 
GIS-LCZ classes. Some tiles of GIS-LCZ are found between LCZ 6 and 8 which implies 
that the combination of two LCZs is possible to represent a local climate zone as it was 
also done by the other research (Chen et al. 2020). The airport areas are classified as 
LCZ 5 in GIS-LCZ because of building height property suits this class rather than LCZ 8. 
This highlights the limitation of LCZ framework, where its implementation cannot 
always be ideal for every city.  
 
A correlation analysis is conducted between estimated GIS-LCZ and SUHII.  It is found 
that the correlations of urban fraction from GIS-LCZ and SUHII over each LCZ class do 
not show good correlation values. Thus, it is implied that SUHII derived from land 
surface temperature cannot explain the distribution of LCZs. The LCZ framework is 
indeed not related to the measurement of surface temperature but near-surface air 
temperature, which is used to calculate the UHII. Therefore, the correlations carried out 
between urban fraction and UHII from the WRF simulation yield satisfying results for 
each LCZ class where the highest correlation and R2 values are detected in LCZ 2 for 
0.846 and 0.715 respectively.  
 
The GIS-LCZ map can be further used in enhancing the CityGML model by applying 
the LandUse module, the Generics module or creating an ADE. The LCZ classes can be 
stored with the existing LandUse module or with a generic city object. On the other 
hand, the zone properties of each class can be specified with generic attributes. The 
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new version of CityGML 3.0 can be used to facilitate the result of GIS-LCZ by employing 
the Versioning and Dynamizer modules. Versioning is able to qualitatively describe the 
change of the GIS-LCZ map’s version. On the other hand, Dynamizer can quantify the 
changes of LCZ classes and their zone properties within GIS-LCZ map over time. 

6.2 Outlook 

In this thesis, only five of the zone properties are used for the classification of GIS-LCZ. 
It would be interesting to add the other zone properties for the classification and to 
see whether the result is better. Data about plants and tree heights could be added for 
the future work so that the zone properties, such as H, SVF, and H/W, can be quantified 
to classify the natural classes (LCZ A-G).  
 
WUDAPT method has been identified on its deficiency in detecting building height that 
the zone properties, such as H, H/W, and SVF are not considered. The classification in 
WUDAPT could be probably improved by introducing building height information to 
the machine learning algorithm. Integration of the GIS-LCZ and the WUDAPT L0 
method could also be possible to obtain advantages from both of these methods by 
replacing the post-processing step (majority filter) of WUDAPT-L0 with the aggregation 
step from the GIS-LCZ method (Gál et al. 2015).   
 
Using the existing 3D city model of CityGML of Berlin could be an option in the future 
to generate the LCZ map. The sky view factor calculator, which is developed for the 
purpose of solar potential analysis by the Chair of Geoinformatics at TUM, can be 
implemented to calculate the zone property SVF of the grid tile (Chaturvedi et al. 2017). 
The building height and the aspect ratio (H/W) can also be calculated with the 3D city 
model since the building spacing and the height of the building are given in the model. 
However, for a city scale, it could be computationally expensive to calculate the zone 
properties based on the 3D city model. 
 
The result of GIS-LCZ can be further used for the WRF simulation to improve the spatial 
resolution of LULC and improve the accuracy of the simulation result. The simulation 
result, such as UHII, can be correlated with the LCZ classes for further analysis. Another 
correlation can also be carried out between the LCZ classes directly with LST without 
deriving it into the SUHII (Yang et al. 2021). 
 
The simulation result of the microscale numerical model, such as from PALM4U model, 
can also be evaluated with the GIS-LCZ classes to assess the local climate at a very high 
spatial resolution of 10 m o 1 m (Ianger et al. 2021). The GIS-LCZ classes can also be 
applied to design urban temperature network for the purpose of understanding of 
spatial and temporal characteristics of urban climate (Unger et al. 2015). This network 
can be further used to analyze the air temperature conditions within the GIS-LCZ 
classes (Skarbit et al. 2017). 
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