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ABSTRACT1

When planning road networks, inhomogeneous traffic conditions and the effects of multi-modal2

interactions are often neglected. This can lead to a substantial overestimation of network capacities.3

Empirical macroscopic fundamental diagrams or volume delay relationships show considerable4

scatter, reflecting a reduction in network performance and an inefficient use of infrastructure. The5

implication is that the external costs of vehicular (car) traffic get underestimated, when planning6

traffic capacities and speeds based on optimal rather than on real estimates. In this paper, we7

contribute with an explorative and empirical approach to analyze network inefficiency and quantify8

its drivers. We propose to measure network efficiency by introducing the idea of excess delays9

for the macroscopic fundamental diagram. We define excess delays as the difference between10

the observed speed and the optimal network speed at a given density. We apply the concept on11

traffic data sets of six European cities that differ in the data collection method and use quantile12

regression methods for analysis. We find that excess delays are present in every data set and13

increase with the road network’s traffic load. We further confirm the intuition that traffic signal14

control, network loading, and multimodality influence the level of network inefficiency. The excess15

delay formula allows quantifying this information in a simple way and provides additional insights16

apart from the standard MFD model. The approach supports planners to obtain better real-world17

and less optimistic speed predictions for traffic analyses and suggests shifting urban transport to18

more spatial and temporal efficient modes.19

Keywords: macroscopic fundamental diagram, multi-modal, network efficiency, urban congestion,20

policy21
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INTRODUCTION1

We plan our road networks based on guidelines assuming normal and homogeneous traffic condi-2

tions, not accounting for multi-modal interactions, and therefore an overestimation of capacities.3

This results in rather best-case estimates of road traffic. Cost-benefit analyses may only consider4

these best-case estimates, but lack information on some of the factors that can negatively affect net-5

work performance, which, in turn, potentially alter planning decisions. Such negative effects are6

observed everywhere in the unpredictable reality: empirical macroscopic fundamental diagrams or7

volume delay relationships show considerable scatter, implying a reduction in performance and in-8

efficient use of infrastructure (1, 2, 3, 4, 5). In urban road networks, the literature suggests at least9

three sources contributing to inefficient infrastructure use: (i) interaction effects between different10

vehicles types, (ii) traffic dynamics, and (iii) traffic control strategies. The implication is that when11

cities plan and manage traffic capacities and speeds based on an optimal rather than on the real12

estimates, the external costs of vehicular (car) traffic get underestimated.13

In this paper, we contribute with an explorative and empirical approach to analyze network14

inefficiency and quantify its drivers. We propose to measure network efficiency by introducing the15

idea of excess delays for the macroscopic fundamental diagram (MFD). Excess delays add up to16

inherent delays of traffic. The latter ones are already described by the MFD (6, 7) and fundamental17

diagram. In this paper, we define the original MFD as idealized, i.e. as the maximum flow for18

each density independently from demand. In contrast, the observed MFD is what we observe from19

empirical or simulation data, and includes multi-modal interactions and demand-related effects.20

Excess delays are the difference between both MFDs for a given density. More specifically, for a21

certain density, we compare the speed, measured in units of pace, derived from the idealized and22

the observed MFD. The excess delay approach allows quantifying the effects of signal control,23

network loading, and multimodality on urban traffic in a simple way. Furthermore, it provides24

additional insights such as the possibility to facilitate the modeling of hysteresis patterns in the25

MFD.26

Based on this procedure, we can measure excess delays for four real-world loop detector27

data sets, one drone data set, and one simulation-based data set. We find that excess delays are28

present in every data set and that they increase with the road network’s traffic load. We find also29

that there is a difference between the network loading and unloading dynamics, and that there30

exists an intuitive influence of traffic signal control and multimodality on network inefficiency.31

Interestingly, the estimates of all six sources are comparable, even though the data sets differ in32

the collection method and the underlying network sizes, suggesting the global applicability of the33

quantitative results of this analysis. The proposed approach of network inefficiency and excess34

delays helps planners and decision-makers to obtain better real-world and less optimistic speed35

predictions for their particular analysis.36

The remainder of this paper is organized as follows. In the next chapter, we will briefly37

stress on MFDs as a traffic analysis tool, define excess delays and outline the resampling approach38

that we use to generate MFDs. In the following chapter, we will present three explorative ap-39

proaches to fit an optimal speed curve to the resampled data sets. Thereafter, we will describe the40

empirical data sets of five cities and the simulation data set. Then, we will present the results of41

the analysis, and finish with a conclusion on our findings and policy implications.42
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FIGURE 1 : Network inefficiency and estimating excess delays using the MFD.

METHOD1

We quantify urban network inefficiency by the measure of excess delays based on the formulation2

of the MFD. As mentioned above, we define excess delays as those that exist in addition to the3

delays which can be derived by the idealized MFD for a given density. In the following subsections4

we discuss each building block in the process to calculate excess delays from MFD data.5

The macroscopic fundamental diagram6

The MFD describes the relationship between vehicle accumulation (density) and average traffic7

speed (or flow) in an urban road network (6). The general shape of the MFD can be seen in Figure 1.8

One can distinguish between the idealized or upper MFD (6, 8, 9) and the observed MFD (10, 11),9

both in the flow-density and in the speed-density relationship. The upper MFD represents the10

upper envelope to all possible states that are observed in the MFD. We define the optimal (desired)11

relationship between vehicle density, flow, and speed as the idealized MFD, which can be related12

to the social optimum. However, the desired speed-density relationship is rarely reached in reality13

and therefore difficult to measure. Delays in addition to the delays defined by the MFD then always14

occur when an observed data point does not match the desired speed-density relationship. In this15

paper, we will fit an upper speed MFD and derive an optimal speed-density relation by using a16

resampling approach (12). The resampling method is expected to result in less biased upper bound17

estimates with more supporting data (time span, experimental variation). If the underlying data18

is biased, e.g., only exhibiting one loading pattern, it could be that the resampled upper bound is19

biased in such a way that the excess delay estimation is less reliable in the sequel analysis. The20

MFD literature suggests that additional or excess delays occur for three main reasons:21

1. Multimodal vehicle interactions: So far, most MFD literature focused on car traffic, al-22

though in the last years, interactions between different modes are receiving increasing atten-23

tion: For example, bi-modal interactions, i.e. between cars and buses (13, 14, 15) or cars24

and pedestrians (16), but also tri-modal interactions between cars, buses, and bicycles (17).25

As the latter show, interactions between different modes have different effects on the overall26

pace of the vehicles compared to cases where only unimodal interactions are considered.27
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Multimodal interaction effects come on top of the delays that occur due to network loading1

and unloading (increasing and decreasing vehicle densities).2

2. Network loading processes and hysteresis: Research has shown that the onset and offset3

of congestion leads to different density distributions from a spatial perspective (18). This4

is reflected in the MFD, where for a given density the observed flows during unloading of5

the network, i.e. the offset of congestion, are usually lower than during the loading phase.6

While the corresponding traffic dynamics can be explained by the FD on the link level, the7

upper MFD curve fails to do so.8

3. Traffic signal control: In some circumstances, the urban traffic controller may exert addi-9

tional red times for car traffic, e.g. to protect a certain perimeter from overcrowding (19) or10

to prioritize public transport (20). In either case, general traffic experiences additional delays11

that are in excess to those that are reflected in the desired MFD.12

Another contributor to excess delays could be the network topology and supply character-13

istics, such as speed limits, lane widths, number of intersections, or its structure. For example, in a14

city with a high number of links with speed limits below the city-wide speed limit, the mean speed15

could be lower than average on the other links and therefore result in "artificial" excess delays. For16

single analyses focusing on one city, this effect may be negligible. When comparing two different17

cities with substantial differences in the network topology, we suggest controlling for these effects18

in the delay model. This limitation will be further investigated in our future research, e.g., by sim-19

ulation experiments that analyze the interaction effects of network structure and loading on excess20

delays in particular.21

Network inefficiency based on excess delays22

Figure 1 shows where network inefficiency can be seen in the MFD. We define inefficiency as23

the gap between the upper or desired MFD, and the observed traffic states in the flow-density24

representation of the MFD. In the speed-density relationship, the gap can be directly translated25

into an additional delay. Here, we express delay in the units of additional time per unit distance26

(s/m). We quantify these additional delays in the following sequence. See Table 1 for the model27

specification.28

1. Estimate the re-sampled MFD: To approximate the smooth upper bound as good as pos-29

sible that may correspond to the upper or desired speed MFD, we apply the re-sampling30

method proposed by Ambühl et al. (12) on the aggregated data. The authors propose to ap-31

ply sampling of representative subsets to generate the resampled data set. This procedure32

aligns the data to more homogeneous distributions of network flow and density. Addition-33

ally, it results in a smooth upper bound or boundary between observed and not observed34

traffic states.35

2. Estimate the observed speed MFD: The observed MFD from which vobs is derived and for36

which the delays γ are being calculated is estimated using the methods described in Leclercq37

et al. (21) depending on the data source.38

3. Estimate the desired speed MFD v∗: We estimate the upper or desired speed MFD, v∗ (k),39

using the data from the re-sampled speed MFD and three different estimation methods to40
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TABLE 1 : Model specification

Variable Meaning

k Average network density in vehicles per meter

vobs Average journey speed observed in the network in meters per second

v∗ Desired journey speed in the network in meters per second

γ Excess delays in seconds per meter

L Network loading indicator. Equals to one when network is in the loading state
(increasing vehicle density), zero otherwise. Unitless

Parameter Meaning

λ MFD smoothing parameter (see (9)). Unitless

ß0 Intercept of the excess delay model in seconds per meter

ßk Effect of traffic density on excess delays in seconds per vehicle

ßL Effect of network loading on excess delays in seconds per meter

test for sensitivity of the relationships. More specifically, we fit in a quantile regression in1

the 99th percentile using (i) the functional form for the MFD proposed by Ambühl et al. (9)2

with the smoothing parameter λ ; (ii) the 99th percentile of the speed distribution at density3

bins and (iii) the exponential function proposed by Underwood (22) v∗ (k) = exp(log(c0)+4

log(c1 ∗ k)).5

4. Estimate excess delays: Finally, we calculate excess delays by γ = 1/vobs −1/v∗, where v∗6

is evaluated at the same density as observed for vobs.7

DATA8

To enable an extended empirical comparison of excess delays and network inefficiency, we use9

traffic data from six European cities: Athens, Innsbruck, London, Lucerne, Paris, and Zurich. The10

cities are diverse, with large differences in e.g. surface areas, population size, network size, traffic11

densities, and average speeds. We chose two very large cities (> 1 million inhabitants), two mid-12

size cities (> 400.000 inhabitants) and two smaller cities (> 50.000 inhabitants) to test the method13

for different network scales. Also, the data collection methods for the data sets differ. Table 214

shows an overview of the six data sets.15

We first aggregate the data based on 2-minute time intervals for the Athens data set, and16

on 5-minute intervals for all other data sets, except for Paris. We chose a shorter time interval17

for Athens to generate a larger database. The aggregated data sets were used as base data for the18

resampling approach. Here, the number of randomly generated subsamples and the fraction size19

had to be specified. We chose a size of 100 subsamples and fraction sizes between 0.2 and 0.25. In20

other words, we resampled 20 to 25 percent of the aggregated data for each subsample (see Table21

2).22
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TABLE 2 : Overview of the traffic data sets from six European cities and the resampling(*) pa-
rameters

Data set Athens Innsbruck London Lucerne Paris Zurich

Population size (mil.) 0.664 0.131 8.961 0.082 2.161 0.403

Network size (km2) 1.3 33 160 5 24 15

Detection method drone simulation loop det. loop det. loop det. loop det.

Time window 4 days 4 hours 22 days 365 days 335 days 365 days

Aggregation interval
(seconds)*

120 300 300 300 3600 300

No. of subsamples* 100 100 20 100 20 100

Fraction size (in %)* 0.25 0.25 0.2 0.25 0.2 0.25

Loop detector data: Lucerne, London, Paris, Zurich1

The data of Lucerne, Zurich, London, and Paris is part of the UTD19 dataset (23, 24). The large-2

scale traffic data was assembled through stationary loop detectors in the city areas. Loop detectors3

measure the occupancy, i.e. the time fraction that a vehicle occupies a detector, and the traffic4

count, i.e., the number of vehicles passing the detector, for a fixed time interval. In Lucerne and5

Zurich, data was collected over a time period of a year. In London and Paris, data was collected6

over 22 and 335 days, respectively. We selected all observations during the daytime, between7

6 a.m. and 8 p.m. The Paris data set is aggregated on a time interval of an hour, as the loop8

detector only generates observations in this frequency. The other three data sets are aggregated in9

intervals of 5 minutes. The loop detector data differs from the pNEUMA data set and Innsbruck10

simulation data with the former covering the morning hours only and the latter simulating four11

hours of weekday traffic.12

Drone data: Athens13

The observations of the data set pNEUMA (25) were collected by ten drones flying over the cen-14

tral business district of Athens, Greece, during the morning hours. The data contains the latitude15

and longitude values for different vehicle types, namely car, bus, motorcycle, medium and heavy16

vehicles, and taxis over time fractions of 0.04 seconds. The number of observations for pNEUMA17

is smaller compared to the detector-based UTD-datasets, as the measurement period comprised 418

weekdays only. Because the observations of some drone flights indicated measurement errors, the19

preprocessing was extensive. For example, we removed the eighth drone flight and the observa-20

tions of the last 2 minutes of every drone flight, as the reported speeds and densities indicate that21

there might be measurements errors. To derive density values from the data set, we assumed a22

network length of 100 km according to the official data set description. Finally, we aggregated the23

observations in 2-minute intervals.24
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Simulation data: Innsbruck1

The Innsbruck data was generated with a microscopic traffic simulation using SUMO (26). The2

network was retrieved from OpenStreeMaps (27). For all included traffic behavior models, the3

default parameters were chosen. Thus, the simulation is not calibrated. However, for the current4

study, such a calibration is not essential as we investigate traffic flow dynamics and their effects on5

the network level. Such mechanisms are included in the simulation due to the physical modeling6

of driving behavior.7

The origin-destination patterns were randomly generated. The loading curve has a trape-8

zoidal shape, i.e. after a step-wise loading, the maximum demand was kept for some time intervals,9

until the demand was decreased again in a step-wise manner. Such loading curves are commonly10

applied to mimic a rush-hour including its onset and offset. The loading and unloading phase lasted11

for 1.5 [h] each, the plateau phase for 1 [h], which results in a total simulation time of T = 4 [h].12

Vehicles follow the shortest path from their origin to their destination. In the simulation,13

we apply a quasi-dynamic traffic assignment, where the shortest paths are updated for all vehicles14

considering the current traffic states in the network for every 2 minutes. In other words, all vehicles15

can adapt their route before they reach their destination if such a change is of advantage. Such an16

assignment represents a reasonable trade-off between realism and computational cost (28).17

To allow the analysis of the impact of signal control on the network inefficiency, we varied18

the signal control parameters. We assume that all traffic signals follow a fixed-time control logic,19

have a common cycle length, have the same green-to-cycle ratio of 0.5, and no offsets apply. Three20

different cases with a cycle length of 60, 90, and 120 [s] were investigated. Previous research has21

shown that offsets do not have a major impact on the resulting MFD (29).22

RESULTS23

The resampling method proved successful to build the upper bound of the MFD for all six data sets.24

As expected, we obtain a decreasing non-linear speed-density relation for all cities (see Figure 2).25

We see that the range of vehicle density is higher for London, Lucerne, Paris, and Zurich than for26

Innsbruck and Athens. Not surprisingly, the larger data sets show less scatter than the smaller ones27

(Athens, Innsbruck). For the latter, the resampling method proves especially useful as it generates28

a more reliable database. In Figure 2, we obtain for every estimation method (Ambühl (9), the29

percentile approach, and Underwood (22)) the optimal speed curves v∗ for all six data sets. We30

find that all three fitting methods for v∗ obtain comparable relationships. Eventually, differences31

can be explained by the estimation methods, e.g. a limited flexibility due to functional assumptions32

in the Underwood and Ambühl case. With substantial observations and scatter in the uncongested33

regime and less in the congested regime, these two functions, which weigh each point equally in34

the estimation, have to balance these differences. This leads to a relationship that appears to be35

below the upper MFD in the uncongested regime, while better describing the upper MFD in the36

congested regime. This has implications for the estimation of excess delays that can be less reliable37

in the uncongested regime.38

Based on the fitted optimal speed curves from Figure 2, we examined the relationship be-39

tween excess delays and densities. The kernel density estimates of delays on the right-hand side of40

Figure 3 show the frequency of the delay value range, calculated with Underwoods’ method. As41

expected, Athens and Innsbruck show more variance in the excess delay distribution as the database42

is small. The UTD-data sets approach a Gaussian bell shape, especially Lucerne and Zurich, being43

the largest data sets. Athens, Innsbruck, and Zurich have a mean excess delay of approximately44
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FIGURE 2 : Desired flow-density (left) and speed-density (right) MFDs and three fitting methods
for v∗ for six cities.
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0.05 to 0.06 seconds per meter. London, Lucerne, and Paris have a mean excess delay of approxi-1

mately 0.02 to 0.03 seconds per meter. As can be seen in Figure 3, we obtain positive relationships2

between higher vehicle densities and excess delays, especially in higher density ranges, for Inns-3

bruck, London, Lucerne, and Zurich. This indicates that v∗ is less likely obtained, the more density4

is observed in an urban road network. The plotted results indicate that the estimation methods do5

not differ considerably.6

Network loading7

To test the influence of network loading and unloading process on the development of excess8

delays, we derive from the data an indicator variable L that equals one if the network is loading9

and zero otherwise. We assume that the network is in a loading state when the difference in10

density of two consecutive intervals is positive, after applying a three-interval moving average on11

the density to reduce the noise in the data. We then estimated a linear regression to analyze the12

effect of density k and slope L on excess delays γ . We estimate the linear model as given in Eqn.13

1, where β0, βk and βL are parameters to be estimated using ordinary least squares. ε represents14

the error terms that are assumed to be normally distributed.15

γ = β0 +βk · k+βL ·L+ ε (1)

As the excess delay values and relationships that result from the three v∗ fitting approaches16

look very similar (see Figure 2), we present the results only for the Underwood model in Table17

3. The results for the other three models do not alter the findings. Generally, we find that the18

model formulated in Eqn. 1 explains substantial variance found in Athens, Innsbruck, London,19

and Lucerne. The low R2 in Paris and Zurich suggests that the model does not well describe20

the data for these cities. Potentially, the value for Paris results from the temporal aggregation at21

one-hour intervals instead of 2-5 minute intervals, where many of the dynamic effects might be22

averaged out. In future research, we will investigate further the factors of the distribution of excess23

delays in Paris and Zurich.24

For Athens, Innsbruck, London, Lucerne, and Zurich we find positive and statistically sig-25

nificant effects of vehicle density on excess delays. However, their effect sizes differ by one order26

magnitude. Future research has to investigate why this effect is so substantially different between27

the shown networks. Potential reasons are data bias, network topology, traffic control, etc. In ad-28

dition, Figure 4 for Innsbruck suggests that the linear model in Eqn. 1 is falsely specified as the29

loading and unloading effect and their interaction are clearly not linear. This means that the model30

formulation from Eqn. 1 might not capture all underlying mechanisms, which could be a reason31

for the alternate effect direction found in Paris. Here, the effect estimation regarding the loading32

part results in βk = 0.377 (p < 0.01), which supports the findings related to the other five cities. The33

effect corresponds to increasing excess delays with traffic density. More specifically, we observe34

an increase of the estimates around 1 s/m for every 0.01 veh/m increase. Note that this effect is in35

addition to the speed reduction already captured in the MFD. Nevertheless, the findings from Paris36

indicate that an analysis of the differences could reveal further insights.37

The six cities cover different spatial scales to understand the behavior of the loading indica-38

tor for different city sizes. The indicator variable for loading is negative and statistically significant39

in Athens, Innsbruck, Lucerne, and Zurich, while Zurich and Lucerne report an effect of one order40

of magnitude less than Athens and Innsbruck. It means that during the network loading, fewer ex-41
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FIGURE 3 : Relationship between vehicle density and excess delays (left), and kernel densities
(right), for each fitting method.
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TABLE 3 : Model estimation results for excess delays.

Dataset Effect of density Effect of loading R2 Density range (veh/m)

Athens 2.96 (p < 0.01) -0.038 (p < 0.01) 0.26 0.01 to 0.02
Innsbruck 3.53 (p < 0.01) -0.090 (p < 0.01) 0.53 0.01 to 0.03
London 1.13 (p < 0.01) 0.001 (p < 0.01) 0.19 > 0.02
Lucerne 2.30 (p < 0.01) -0.003 (p < 0.01) 0.30 > 0.02
Paris -0.24 (p < 0.05) 0.001 (p < 0.01) 0.006 > 0.02
Zurich 0.48 (p <. 0.01) -0.002 (p < 0.01) 0.03 > 0.02

cess delays are present compared to the unloading, e.g. supporting the development of hysteresis1

in the MFD. The positive effect in London and Paris deserves more attention, especially from an2

econometric perspective. In the model specification from Eqn. 1, there are no control variables3

included. Consequently, any factor that could contribute to excess delays and that correlates either4

with traffic density or the loading indicator variable is partially included in the estimated effect.5

As the model is estimated for the entire urban area in London and Paris, this could be an increase6

in bus services during the loading phase that increases excess delays (30), a gating traffic control7

scheme that increases red phases for inbound traffic to protect the urban core from gridlock which8

adds waiting time and thus increases excess delays (19), or any origin-destination-based effect.9

Consequently, future research should improve the estimates with more detailed model formula-10

tions.11

Traffic control12

The simulation of Innsbruck enables to vary signal control parameters and study corresponding13

effects on the excess delay. For this purpose, we investigate three different scenarios, where the14

cycle length of all signals equals 60, 90, and 120 seconds. Figure 4 shows the resulting scatter15

plot for the loading and unloading part of the MFD as well as a local polynomial regression fitting16

(loss) of R’s ggplot package to investigate the trend in the data.17

For all three scenarios, we observe the already revealed positive relationship between vehi-18

cle density and excess delays in the loading part. In the unloading part, we see that excess delays19

are decreasing with vehicle density, hinting towards a clockwise hysteresis. Importantly, the data20

suggest that differences in the relationship between different traffic signal settings and excess de-21

lays exist. The influence seems to be nonlinear concerning the cycle length as the trend lines do22

not appear in ascending or descending order, but in the sequence 90, 120, and 60 seconds. This23

confirms that traffic control indeed has not only an effect on inherent delays already included in24

the MFD, but indeed also on excess delays as suggested in this paper. The impact of cycle times25

seems to be larger in the unloading part compared to the loading part as it can be seen in Figure26

4. However, in future research, we will investigate this relationship more extensively using more27

simulation scenarios.28

Note that the apparent relationship between excess delay and density in Figure 4 in the29

unloading part suggests that simple mathematical modeling of hysteresis effects is possible. This30

will be further explored in future research.31

TRB 2022 Annual Meeting



Hamm et al. 12

Loading Unloading

0.00 0.01 0.02 0.03 0.00 0.01 0.02 0.03

0.00

0.05

0.10

0.15

0.20

Vehicle density (veh/m)

E
xc

es
s 

de
la

ys
 (

s/
m

)

Cycle time (s)

120

60

90

FIGURE 4 : Influence of cycle lengths on excess delays using the Innsbruck simulation data.

Multimodal traffic in Athens1

We further investigate the variation of excess delays in Athens by distinguishing between different2

vehicle types. We use the pNEUMA data here, as it is the only data set allowing such in-depth mul-3

timodal analyses. Note that there exists already a paper on multi-modal interactions at space-mean4

network speed working with the pNEUMA data set (31). The authors use regression models of5

the space-mean speed on the vehicle accumulations of the multimodal traffic. The core distinction6

of the analysis presented in this paper is that we do not use a speed-accumulation relationship but7

an excess delay formulation, i.e., additional time delay in s/m in relation to the maximum speed8

at a given density. In each time interval, we compute the share of taxis, large vehicles (labeled as9

‘large and medium-sized vehicles’ in the original data), buses, and motorcycles. Figure 5 shows10

the resulting scatter plots. For the share of taxis, large vehicles and motorcycles we find a posi-11

tive relationship with excess delays, while for the share of buses we find a negative relationship.12

This seems perhaps surprising given that the 3D-MFD assumes negative interaction costs between13

cars and buses (13). To explore the multivariate nature of the data, we estimate a linear model14

of excess delays as a function of the taxi, large vehicle, bus, and motorcycle share. We find sta-15

tistically significant (1 % level) marginal effects of taxi share of 0.39 (s/m), and truck share of16

0.62 (s/m). This means that when the taxi share increases by ten percentage points, excess delays17

increase by 0.04 (s/m). This can be translated to an additional delay of 3.3 minutes for a typical18

journey with a length of 5 km per 10 % taxi share increase. When the large vehicle share increases19

by ten percentage points, excess delays increase by 0.06 (s/m). For buses, the model estimate of20

-1.37 (s/m) (statistically significant at 1 % level) confirms the relationship from Figure 5. This21

counter-intuitive relationship may result from the limited sample size and experimental variation:22

The share of buses correlates strongly negatively with vehicle density. In other words, the share of23

buses only increases as a consequence of an overall decreasing vehicle density (fixed timetable).24

Thus, this variable approximates more high and low demand traffic states and less the impact of25

buses. This makes the revealed estimate reasonable. Nevertheless, this finding emphasizes that an26
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FIGURE 5 : The influence of multimodal traffic on excess delays in Athens.
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important variable is omitted in the present model formulation. The model does not reveal a sta-1

tistically significant effect of motorcycles, i.e. the relationship found in Figure 5 is not supported.2

Overall, the model has a goodness of fit of R2 = 0.27, when controlling for potential outliers it3

increases to R2 = 0.37.4

Multi-modal traffic occurs in all cities including the resulting interaction effects. In larger5

cities such as Paris or London, the flows of bicycles and scooters are clearly observable and are6

quite likely contributing to excess delays. To account for them in the excess delay formulation,7

many observations and sufficient experimental variation are required (high/low volumes of cars8

and high/low volumes of bicycles or scooters) to reveal the interaction effects shown in field ex-9

periments (17, 32). Another modeling challenge is the violation of traffic regulations, which might10

impede the observation and estimation of effects. In the case of the pNEUMA data set, the exper-11

imental variation was limited, leading to a high correlation of densities and the expected effects12

could not be revealed. In cities with loop detector data, one approach to control for the impact13

of bicycles/scooters on excess delays would be to use bicycle counts from permanent counting14

locations as a proxy. Unfortunately, such data was not available to the authors.15

CONCLUSION16

In this paper, we showed that urban road networks experience substantial inefficiencies as seen in17

the presence of excess delays. We defined excess delays as the difference between the optimal and18

observed pace. Using five empirical data sets (loop detector and drone data) from European cities19

and one simulation data set, we observed network inefficiencies in every city. Even though the20

extent of excess delays differs across cities, their general effects and evolution are highly similar.21

This supports the applicability of the method for other cities. We further investigated causes for22

the emergence of excess delays, which would make them predictable: (i) network loading, causing23

inherent delays produced by increasing density (ii) signal control, which we showed for different24

cycle lengths in Innsbruck and (iii) multimodal interaction effects between different vehicle types,25

supported by data from multimodal traffic data set of Athens. Regarding (i), the results of the delay-26

density relation for the Innsbruck data suggest that our approach might simplify the mathematical27

modeling of hysteresis effects.28

With this paper, we not only contribute to improved modeling of the evolution of congestion29

in cities at the network level but also to a more realistic capacity planning for urban road networks.30

We show that there exists an optimal, achievable speed curve for large, medium-sized, and small31

cities. We also demonstrate that the proposed method applies to different forms of data sets - loop32

detector data, drone data, and simulation data. The inefficiency of excess delays can be measured33

easily by the proposed methods and only requires average speed and density values for a given area34

and time period. To find out which factors affect excess delays, it would be suitable to compare35

the measured excess delays of a specific area in a city for a given time period with a simulation of36

this respective scenario. Then, measures could be derived to reduce the effects on excess delays37

and therefore minimize speed drop.38

The practical implications of this paper primarily concern the applications of the proposed39

approach. First, it helps to identify and quantify factors on excess delays in a city more conve-40

niently compared to modeling speeds directly - either using empirical data or simulation experi-41

ments. Then, measures (design features, traffic management) could be derived to reduce excess42

delays and therefore minimize speed and accessibility losses either by scenario analysis or by43

a cross-sectional analysis of several cities. Second, applications of the proposed network inef-44
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ficiency approach can be possible everywhere in the field of network-wide traffic management1

where an improved capacity and speed estimate is valued for improved traffic and economic out-2

comes, e.g., road pricing or perimeter control. Third, the proposed method can be applied as a3

performance indicator to assess the impact of time and space allocation in an urban network: In4

those areas or hours with a high share of excess delays, traffic could be allocated to other roads5

or shifted to other time periods, e.g., through intelligent passenger information systems. As the6

optimal speed v∗ is almost never reached in real-world scenarios, network planners might create7

more space and capacity to obtain the optimal speed for cars. This is difficult to realize, e.g. due8

to limited space in urban areas and the risk of induced traffic. Multimodal system improvement9

in combination with setting up mode-independent accessibility values (for example, by measuring10

the minimum required transport speed or maximum acceptable travel time) which have to be met11

by a traffic system, could be a possible solution.12

This paper introduces and discusses the idea of measuring network inefficiency by the13

concept of excess delays. Therefore, there are limitations to the study and opportunities for future14

research. First, we did not consider at the present stage the influence of structural network effects,15

e.g. speed limits or network design, on the evolution of excess delays. As the MFD is governed16

by network topology, one could argue that it influences excess delays too. Second, the fitting of17

v∗ to identify the upper MFD can be improved as the relationships do not perfectly match the re-18

sampled upper MFD, e.g. by weighting observations. Only when we can correctly describe the19

upper MFD, we can retain unbiased excess delay estimates that are important for further modeling.20

This also requires a throughout data filtering and unbiased MFD estimation prior to the derivation21

of excess delays. Once unbiased excess delays estimates are retrieved, we can follow on the first22

evidence present on its driving factors (network loading, signal control, and multimodality) to23

improve the estimates and, using more extensive experiments (empirical data, simulation), obtain24

global validity of these estimates.25

In closing, describing network inefficiency by excess delays seems to be promising because26

it makes the former predictable. As effect sizes are similar, too, across cities in our study, we are27

convinced that the revealed effects can be found in every city. Last, we consider that using drone28

data for calibrating a city’s multimodal excess delays effects is promising, as it allows quantifying29

otherwise unobserved factors.30
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