
FAKULTÄT FÜR INFORMATIK
DER TECHNISCHEN UNIVERSITÄT MÜNCHEN

Malicious Bits and How to Fight Them

Julian Kirsch

Vollständiger Abdruck der von der Fakultät für Informatik der
Technischen Universität München zur Erlangung des akademi-
schen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzender: Prof. Dr.-Ing. Jörg Ott
Prüfer der Dissertation:

1. Prof. Dr. Claudia Eckert
2. Prof. Dr. Aurélien Francillon

Die Dissertation wurde am 31. 01. 2022 bei der Technischen Uni-
versität München eingereicht und durch die Fakultät für Infor-
matik am 08. 07. 2022 angenommen.

A C K N O W L E D G E M E N T S

The present document marks the end of a years-long endeavour.
Many people contributed—either directly or indirectly—to its
genesis, whom I would like to thank:

• Family and friends, for endless support and keeping me
connected to the real world.

• Claudia, for the opportunity to work in an interesting field
of research while letting me overwhelm students with
low-level topics.

• Aurélien and Apostolis, for advice and teaching me how to
write scientific texts.

• Jonas, Sebastian, Fatih, Christian, and Daniel for sparking
my interest in IT security topics.

• Manuela and Alex, for providing assistance on administra-
tive processes—be it in the analog or the digital world.

• All colleagues and students associated with projects con-
ducted while sailing the Unknown Waters of Academia (in
reverse alphabetic order, because why not): Zoe, Zhechko,
Vivija, Uli, Tobias, Thomas, Tamas, Sergej, Sandro, Peng, Mi-
hai, Maurice, Martin, Marius, Marcel, Ludwig, Lorenz, Krista,
Katharina, George, Felix, Fabian, Clemens, Christian, Bruno,
Bojan, Benjamin, Benedikt, Andreas, Alexis

• All students attending our practical courses. It was a plea-
sure to see you mastering reversing and/or exploitation
over the course of a single semester.

• The capture the flag community for being a trusty source
of both, inspiration and pain.

• Deutsche Bahn AG for allocating tremendous amounts of
distraction-less time that I could spend thinking or writing
about research topics.

A B S T R A C T

Malicious software is still one of the more relevant threats occur-
ring during the day-to-day usage of current computing systems.
As such, so-called Malware continues to threaten end-users in
multifarious ways stealing their data, identities, banking creden-
tials, or—with the rise of crypto currencies—computing power.

To remain stealth (i.e. circumvent detection) and to slow down
analysts, attackers prevalently employ obfuscation techniques—
functionality preserving program transformations that raise the
bar for successful analysis—to their malware prior to releasing
them into the wild. Obfuscation usually tries to hinder either
static detection—where a program is rewritten in a more compli-
cated fashion—or (non-mutually exclusively) dynamic detection—
where software becomes aware of its execution environment to
detect an analysis situation.

One way for attackers to illegitimately gain access to com-
puter systems is the exploitation of security-critical software
bugs—so-called vulnerabilities—to gain malicious code execu-
tion. Accepting the omnipresence of bugs in code written in
low-level programming languages, manufacturers—in an effort
to make exploitation of such vulnerabilities more challenging—
built in-depth defenses into their operating systems.

This thesis focuses on both—obfuscation and exploitation
techniques—observed in context of current (2020) operating
systems. Precisely, it (1) introduces, analyzes, and breaks a re-
cent static control-flow-based obfuscation technique, (2) iden-
tifies and mitigates weaknesses of dynamic analysis tools, and
(3) identifies and mitigates attacks on well-established anti-
exploitation mechanisms on Linux.

All studies conducted throughout this work put emphasis on
reflecting the state and challenges of real computing systems
used in our day-to-day work. For example, one presented at-
tack bypasses all exploit mitigations deployed on recent Linux
systems (5.10) running on recent hardware (x86-64 Ice Lake).
Furthermore, analysis of obfuscation techniques is performed
on machine code only, without relying on the presence of source
code.

Z U S A M M E N FA S S U N G

Eine der Herausforderungen beim täglichen Einsatz digitaler
Systeme stellen bösartige Schadprogramme dar. Sogenannte Mal-
ware bedroht die Integrität unserer Systeme durch den Diebstahl
von Daten, Identitäten, Passwörtern oder–befeuert durch die
zunehmende Bedeutung von Crypto-Währungen–Rechenzeit.

Um ihre Malware zu schützen, verwenden Angreifer unter an-
derem sogenannte Obfuskierungstechniken, die es ihnen erlauben,
Analyseprozesse zu verlangsamen. Bei Obfuskierung handelt
es sich um Transformationen von Computerprogrammen, de-
ren Ergebnis ein schwieriger zu analysierendes, aber funktional
gleichwertiges Programm ist. Obfuskierung setzt sich zur Wehr
entweder gegen statische Analyse, in welchem Fall zu schützen-
der Programmcode auf eine weniger leicht verständliche Art
ausgedrückt wird, oder gegen dynamische Analyse, in welchem
Fall das geschützte Programm versucht eine Analysesituation
zu erkennen um darauf im Sinne des Angreifers zu reagieren.

Ein Weg für Angreifer zur Platzierung ihrer Schadsoftware
ist das Ausnutzen sicherheitsrelevanter Programmierfehler in
Software mit Internetanbindung. Um die Auswirkungen solcher
Programmierfehler abzumildern hat die verteidigende Seite
Schutzmechanismen in Compiler und Betriebssysteme eingebaut.

Diese Arbeit beleuchtet beide Probleme: Erschweren der Ana-
lyse von Malware durch Obfuskierung, sowie das Ausnutzen
von Schwachstellen im Kontext aktueller Betriebssysteme (2020).
Genauer gesagt (1) analysieren und brechen wir eine neuarti-
ge Technik zur statischen Obfuskierung, (2) identifizieren und
beheben wir Schwachstellen bestimmer dynamischer Analyse-
programme und (3) identifizieren und beheben wir neue An-
griffsvektoren auf weit verbreitete Schutzmechanismen gegen
die Ausnutzung von Schwachstellen in Linux-Programmen.

Die Studien in dieser Arbeit legen besonderen Wert darauf,
weit verbreitete Softwaresysteme zu betrachten, um so eine
möglichst hohe Relevanz für den täglichen Einsatz von Linux-
Software zu zeigen. Zum Beispiel ist eine der vorgestellten
Angriffstechniken in der Lage alle auf aktuellen Linux-Systemen
(Kernel 5.10) verwendeten Schutzmechanismen zu umgehen.
Außerdem wird für ein realistisches Modell bei der Analyse
von obfuskiertem Code der kompilierte Maschinencode ohne
Quelltextzugriff als Ausgangspunkt angenommen.

C O N T E N T S

1 introduction 1

2 background 9

2.1 Obfuscation 9

2.1.1 Control-Flow-Graph-Based Obfuscation 9

2.1.2 Instruction Substitution 10

2.2 Dynamic Binary Instrumentation 10

2.3 The Arms Race around Software Vulnerabilities 11

2.3.1 w⊕x Memory Protection 12

2.3.2 Code Reuse Attacks 12

2.3.3 Stack Smashing Protection 13

2.3.4 Function Pointer Protection 14

2.3.5 Address Space Layout Randomization 14

3 related work 17

3.1 Obfuscation 17

3.1.1 Control Flow Flattening 17

3.1.2 Instruction Substitution 17

3.1.3 Obfuscation Countermeasures 18

3.2 Applications of Dynamic Instrumentation 19

3.2.1 Binary Analysis 19

3.2.2 Bug Detection 19

3.2.3 Control Flow Integrity 20

3.2.4 Malware Analysis 20

3.3 Attack and Defense of Software Vulnerabilities 21

3.3.1 Stack Smashing Protection 21

3.3.2 Code Pointer Integrity 22

3.3.3 Address Space Layout Randomization 23

4 control flow linearisation 25

4.1 Obfuscating Transformation 26

4.1.1 Constructing Linearized Programs 27

4.1.2 Challenges on Real Computing Systems 31

4.1.3 Instruction Substitution Layer 32

4.2 Deobfuscating Transformation 34

4.2.1 Finding Key Structures 35

4.2.2 Identifying Labels 36

4.2.3 Identifying Jumps and Calls 37

4.2.4 Reconstructing the Control Flow Graph 38

4.3 Evaluation 39

4.3.1 Obfuscation Overhead 39

4.3.2 Deobfuscation Correctness 40

4.3.3 Impact on Symbolic Execution 42

4.4 Conclusion 43

x contents

5 dynamic binary instrumentation in context

of security 45

5.1 Security Guarantees of Analysis Frameworks 46

5.2 Stealthiness 47

5.2.1 Code Cache / Instrumentation Artifacts 47

5.2.2 Environment Artifacts 51

5.3 Isolation 52

5.3.1 Direct Code Cache Modification 53

5.3.2 Exploiting Address Space Information 55

5.4 Increased Attack Surface 57

5.4.1 The Return of Stack-Based Shellcode 57

5.4.2 Code Execution and CVE-2017-13089 58

5.5 Conclusion 60

5.5.1 Discovered Attack Vectors 60

5.5.2 Attack Mitigations 61

6 smashing the stack protector for fun and

profit 63

6.1 Collected Features 64

6.1.1 Qualitatively Determined Features 65

6.1.2 Empirically Determined Features 65

6.1.3 Data Collection Framework 66

6.2 Smashing the Stack Protector 67

6.2.1 Qualitative Results 67

6.2.2 Empirical Results 69

6.2.3 Attack Vectors Introduced 71

6.3 Stack-Protector-Enhanced CPI Mechanism 74

6.4 Conclusion 75

6.4.1 Discovered Attack Vectors 75

6.4.2 Attack Mitigations 77

7 dynamic loader oriented programming on

linux 79

7.1 Pointer Classification 80

7.1.1 Identifying Defilable pointers 81

7.1.2 Identifying Reachable pointers 85

7.2 Evaluation 86

7.2.1 Considered Testcases 87

7.2.2 Directly Dispatched Defilable Pointers 88

7.2.3 Indirectly Dispatched Defilable Pointers 90

7.2.4 Reachable Pointers 91

7.3 The Wiedergänger-Attack 93

7.3.1 Probabilistic Attack 93

7.3.2 Reliable Attack 95

7.3.3 Extended Attack 98

7.4 Conclusion 100

7.4.1 Discovered Attack Vectors 100

7.4.2 Attack Mitigations 100

contents xi

8 conclusion 103

8.1 Control Flow Linearization 103

8.2 Dynamic Binary Instrumentation 104

8.3 Security Guarantees of Exploit Mitigations 105

8.4 Reproducibility & Source Code Availability 107

Bibliography 109

L I S T O F P U B L I C AT I O N S

Thomas Kittel, Julian Kirsch, and Claudia Eckert. Counteracting
Data-Only Malware with Code Pointer Examination. In 18th Interna-
tional Symposium on Research in Attacks, Intrusions and Defenses (RAID),
Nov 2015.

Andreas Ibing, Julian Kirsch, and Lorenz Panny. Autocorrelation-
Based Detection of Infinite Loops at Runtime. In 14th International
Conference on Dependable, Autonomic and Secure Computing (DASC),
Aug 2016.

Julian Kirsch, Clemens Jonischkeit, Thomas Kittel, Apostolis Zarras,
and Claudia Eckert. Combating Control Flow Linearization. In 32nd
International Conference on ICT Systems Security and Privacy Protection
(IFIP SEC), May 2017.

George Webster, Bojan Kolosnjaji, Christian von Pentz, Zachary Hanif,
Julian Kirsch, Apostolis Zarras, and Claudia Eckert. Finding the
Needle: A Study of the PE32 Rich Header and Respective Malware
Triage. In 14th Conference on Detection of Intrusions and Malware &
Vulnerability Assessment (DIMVA), Jul 2017.

Julian Kirsch, Bruno Bierbaumer, Thomas Kittel, and Claudia Eckert.
Dynamic Loader Oriented Programming on Linux. In 1st Reversing
and Offensive-oriented Trends Symposium 2017 (ROOTS), Nov 2017.

Clemens Jonischkeit and Julian Kirsch. Enhancing Control Flow
Graph Based Binary Function Identification. In 1st Reversing and
Offensive-oriented Trends Symposium 2017 (ROOTS), Nov 2017.

Vincent Haupert, Dominik Maier, Nicolas Schneider, Julian Kirsch,
and Tilo Müller. Honey, I Shrunk Your App Security: The State of
Android App Hardening. In 15th Conference on Detection of Intrusions
and Malware & Vulnerability Assessment (DIMVA), Jun 2018.

Sergej Proskurin, Julian Kirsch, and Apostolis Zarras. Follow the
WhiteRabbit: Towards Consolidation of On-the-Fly Virtualization
and Virtual Machine Introspection. In 33rd International Conference on
ICT Systems Security and Privacy Protection (IFIP SEC), Sep 2018.

Bruno Bierbaumer, Julian Kirsch, Thomas Kittel, Aurélien Francillon,
and Apostolis Zarras. Smashing the Stack Protector for Fun and
Profit. In 33rd International Conference on ICT Systems Security and
Privacy Protection (IFIP SEC), Sep 2018.

Julian Kirsch, Zhechko Zhechev, Bruno Bierbaumer, and Thomas
Kittel. PwIN: Pwning Intel piN – Why DBI is Unsuitable for Security
Applications . In 23rd European Symposium on Research in Computer
Security (ESORICS), Sep 2018.

xiv list of publications

Tobias Holl, Philipp Klocke, Fabian Franzen, and Julian Kirsch.
Kernel-Assisted Debugging of Linux Applications . In 2nd Reversing
and Offensive-oriented Trends Symposium 2018 (ROOTS), Nov 2018.

1
I N T R O D U C T I O N

Analysis of compiled computer programs without access to
the underlying source code is an inherently challenging task.
There are plenty of reasons for that:

First, the process of compiling source code to executable ma-
chine code is a lossy operation—information such as variable
names and developer comments are discarded by the compiler.
Similarly, higher level program semantics—for example class inher-
itance relationships in object oriented programming languages,
or the logical grouping information of non-primitive data types—
get translated to their machine-code-specific equivalents which
are usually less accessible for human analysts.

Second, source code expressions and compiler-generated ma-
chine code instructions in general form a many-to-many relation-
ship. As counter-intuitive this insight may seem, it becomes
evident by considering the following example: A simple dec-
laration of a mutable array (cf. FIGURE 1A) containing the text
"Hello World" in the C programming language results in mul-
tiple x86-64 instructions being generated during compilation:
The first instruction allocates space for the array in the local vari-
able area (declaration), whereas the remaining machine code
initializes the allocated memory with the desired value (defini-
tion). In contrast, the lengthy operation of inverting the order
of the four bytes that constitute a standard integer in C involves
the combination of six shift operations, but can be conveniently
expressed by just one special-purpose x86-64 instruction bswap
(cf. FIGURE 1B).

1 char str[] = "Hello World";

sub rsp, 18h
mov rax, 6F57206F6C6C6548h
mov [rsp+4], rax
mov dword ptr [rsp+0Ch], 646C72h

Compilation (gcc -Os)

(a)

1 z = (((x >> 24) & 255) << 0) |
2 (((x >> 16) & 255) << 8) |
3 (((x >> 8) & 255) << 16) |
4 (((x >> 0) & 255) << 24);

bswap eax

Compilation (gcc -Os)

(b)
FIGURE 1
Declaration and de�nition in C compiled to multiple x86-64 machine code instructions (a), compared
to a rather-verbose operation in C compiled to one x86-64 machine code instruction

2 introduction

public mod10
mod10 proc near
; __unwind {
mov rdx, 6666666666666667h
mov rax, rdi
imul rdx
mov rax, rdx
mov rdx, rdi
sar rax, 2
sar rdx, 3Fh
sub rax, rdx
lea rax, [rax+rax*4]
add rax, rax
sub rdi, rax
mov rax, rdi
retn
; } // starts at 11D0
mod10 endp

rdx := 0x6666666666666667

rax := ((x · rdx) >> 64)

rax := (rax >> 2)− (x >> 63)

rax := rax + rax · 4
rax := rax + rax

y := x− rax

y ≡ x mod 10

Compilation (gcc -O3)

FIGURE 2
An example of an Euclidean division (of two signed 64 bit integers) by 10 being compiled to equivalent
x86-64 assembly (left side). Equations (right side) summarize the mathematical steps implemented by
the machine code (>> denoting arithmetic bitshift operations).

Third, code generation strategies of modern compilers in-
volve non-trivial optimization techniques. Hence, the resulting
machine code can perform operations that are trivial to under-
stand in themselves, but the overall semantic of the combination
of all instructions remains hidden. As an clarifying example
might serve how compilers transform Euclidean division by
non-power-of-two constants to a combination of multiplication
by a magic constant and a bitshift operation—yielding higher
performance at the expense of accessibility. Looking at FIGURE 2
we can see that the arithmetic operations implemented by the
machine code are self-contained, but understanding that the
instruction sequence as a whole forms a rather-cryptic version of
an Euclidean division by 10 is non-trivial for human analysts.
An in-depth discussion of this (and many other) performance
optimization commonly used by C compilers can be found in
the book Hacker’s Delight by Henry S. Warren [69].

� Henry S. Warren.
Hacker’s Delight. 2013. To exacerbate the challenge of analyzing machine code,

not all binary code is the direct result of compiled source code:
Indeed, to make analysis more difficult, prior to releasing a
certain piece of software its (machine) code can be transformed.
Such transformations bearing the intention of hindering analysis
are commonly referred to as obfuscation. The reasons for apply-
ing obfuscation to a piece of software are manifold—starting
with companies who try to protect trade secrets within their
software products right through to criminals trading develop-
ment duration for risk of successful analysis. In this thesis we
treat all cases of obfuscation, regardless of the motivations of
why they are employed, as malicious.

introduction 3

; Segment type: Pure code
; Segment permissions: Read/Execute
_text segment para public 'CODE' use64
assume cs:_text
;org 1050h
assume es:nothing, ss:nothing, ds:_data, fs:nothing, gs:nothing

; int __cdecl main(int argc, const char **argv, const char **envp)
public main
main proc near
; __unwind {
push r12
mov r12d, 1
push rbp
lea rbp, buf
push rbx
mov ebx, 2
jmp short loc_107B

loc_1070:
add ebx, 1
cmp ebx, 2FAF080h
jz short loc_10D5

loc_107B:
mov eax, ebx
sar eax, 5
cdqe
mov eax, [rbp+rax*4+0]
bt eax, ebx
jb short loc_1070

mov esi, ebx
lea rdi, format ; "%d is prime\n"
xor eax, eax
call _printf
lea ecx, [rbx+rbx]
cmp ecx, 2FAF07Fh
ja short loc_1070

db 2Eh
nop word ptr [rax+rax+00000000h]

loc_10B0:
mov eax, ecx
mov edx, r12d
sar eax, 5
shl edx, cl
add ecx, ebx
cdqe
or [rbp+rax*4+0], edx
cmp ecx, 2FAF07Fh
jle short loc_10B0

add ebx, 1
cmp ebx, 2FAF080h
jnz short loc_107B

loc_10D5:
pop rbx
xor eax, eax
pop rbp
pop r12
retn
; } // starts at 1050
main endp

; Segment type: Pure code
; Segment permissions: Read/Execute
_text segment para public 'CODE' use64
assume cs:_text
;org 1040h
assume es:nothing, ss:nothing, ds:_data, fs:nothing, gs:nothing

; int __cdecl main(int argc, const char **argv, const char **envp)
public main
main proc near

var_58= qword ptr -58h
var_50= qword ptr -50h
var_44= dword ptr -44h
var_40= dword ptr -40h
var_3C= dword ptr -3Ch

; __unwind {
push r15
lea r10, buf
push r14
mov r14, 100000002h
push r13
mov r13, 500000004h
push r12
lea r12, SEL_DATA
push rbp
lea rbp, OBF_SEL_TAR
push rbx
lea rbx, OBF_OPT
sub rsp, 28h
lea rax, [rsp+58h+var_3C]
mov [rsp+58h+var_3C], 1
lea r15, [rsp+58h+var_40]
mov [rsp+58h+var_50], rax
lea r11, [rsp+58h+var_44]
mov rdx, r15
mov r15, r11

loc_10A0:
mov [rsp+58h+var_58], rdx
mov edx, cs:OBF_TAR
xor eax, eax
lea rdi, aDIsPrime ; "%d is prime\n"
mov cs:off_4048, r15
test edx, edx
lea rdx, myprintf
setz al
mov cs:OBF_ON, eax
mov rax, [r12+rax*8]
mov dword ptr [rax], 2
xor eax, eax
cmp [rsp+58h+var_44], 2FAF07Fh
setle al
mov [rbx], r14
xor esi, esi
mov ecx, [rbx+rax*4]
movsxd rax, cs:OBF_ON
mov rax, [rbp+rax*8+0]
mov [rax], ecx
mov ecx, [rsp+58h+var_44]
mov rax, 300000004h
cmp cs:OBF_TAR, 1
mov [rbx], rax
mov eax, ecx
setz sil
sar eax, 5
cdqe
mov eax, [r10+rax*4]
sar eax, cl
not eax
and eax, 1
mov ecx, [rbx+rax*4]
mov rax, [rbp+rsi*8+0]
mov [rax], ecx
xor ecx, ecx
cmp cs:OBF_TAR, 3
setz cl
mov esi, [rsp+58h+var_44]
mov rax, rcx
mov cs:OBF_ON, eax
xor eax, eax
call qword ptr [rdx+rcx*8]
movsxd rax, cs:OBF_ON
mov rdx, [rsp+58h+var_58]
lea r10, buf
mov edi, 1
mov cs:off_4048, rdx
mov rcx, [r12+rax*8]
mov eax, [rsp+58h+var_44]
add eax, eax
mov [rcx], eax
xor eax, eax
cmp [rsp+58h+var_40], 2FAF07Fh
setle al
mov [rbx], r13
mov ecx, [rbx+rax*4]
movsxd rax, cs:OBF_ON
mov rax, [rbp+rax*8+0]
mov [rax], ecx
mov ecx, [rsp+58h+var_40]
xor eax, eax
cmp cs:OBF_TAR, 5
mov esi, ecx
setz al
shl edi, cl
sar esi, 5
mov cs:OBF_ON, eax
movsxd rsi, esi
lea rsi, [r10+rsi*4]
mov cs:off_4048, rsi
mov rax, [r12+rax*8]
or [rax], edi
movsxd rax, cs:OBF_ON
mov cs:off_4048, rdx
mov rcx, [r12+rax*8]
mov eax, [rsp+58h+var_44]
add eax, [rsp+58h+var_40]
mov [rcx], eax
xor eax, eax
cmp [rsp+58h+var_40], 2FAF07Fh
setle al
mov [rbx], r13
mov ecx, [rbx+rax*4]
movsxd rax, cs:OBF_ON
mov rax, [rbp+rax*8+0]
mov [rax], ecx
mov rax, [rbp+0]
mov dword ptr [rax], 4
xor eax, eax
cmp cs:OBF_TAR, 4
setz al
mov cs:off_4048, r15
mov rdi, [rsp+58h+var_50]
mov cs:OBF_ON, eax
mov rcx, [r12+rax*8]
mov eax, [rsp+58h+var_44]
add eax, 1
mov [rcx], eax
xor eax, eax
cmp [rsp+58h+var_44], 2FAF07Fh
setle al
mov [rbx], r14
mov ecx, [rbx+rax*4]
movsxd rax, cs:OBF_ON
mov rax, [rbp+rax*8+0]
mov [rax], ecx
xor eax, eax
cmp cs:OBF_TAR, 2
setz al
mov cs:off_4048, rdi
mov cs:OBF_ON, eax
mov rax, [r12+rax*8]
mov dword ptr [rax], 0
mov ecx, [rsp+58h+var_3C]
test ecx, ecx
jnz loc_10A0

add rsp, 28h
xor eax, eax
pop rbx
pop rbp
pop r12
pop r13
pop r14
pop r15
retn
; } // starts at 1040
main endp

; Attributes: bp-based frame

; int __cdecl main(int argc, const char **argv, const char **envp)
public main
main proc near

var_54= dword ptr -54h
var_50= dword ptr -50h
var_4C= dword ptr -4Ch
var_48= dword ptr -48h
var_44= dword ptr -44h
var_40= dword ptr -40h
var_3C= dword ptr -3Ch
var_38= dword ptr -38h
var_34= dword ptr -34h
var_30= dword ptr -30h
var_2C= dword ptr -2Ch
var_28= dword ptr -28h
var_24= dword ptr -24h
var_20= dword ptr -20h
var_1C= dword ptr -1Ch
var_18= dword ptr -18h
var_14= dword ptr -14h
var_10= qword ptr -10h
var_8= dword ptr -8
var_4= dword ptr -4

; __unwind {
push rbp
mov rbp, rsp
sub rsp, 60h
mov [rbp+var_4], 0
mov [rbp+var_8], edi
mov [rbp+var_10], rsi
mov [rbp+var_14], 2
mov [rbp+var_1C], 79EE109Ch

loc_400524:
mov eax, [rbp+var_1C]
mov ecx, eax
sub ecx, 0A5B68CDDh
mov [rbp+var_20], eax
mov [rbp+var_24], ecx
jz loc_400627

jmp $+5

loc_400540:
mov eax, [rbp+var_20]
sub eax, 0CEE8F376h
mov [rbp+var_28], eax
jz loc_400695

jmp $+5

loc_400556:
mov eax, [rbp+var_20]
sub eax, 0D303CEBDh
mov [rbp+var_2C], eax
jz loc_400736

jmp $+5

loc_40056C:
mov eax, [rbp+var_20]
sub eax, 0D8DF65FBh
mov [rbp+var_30], eax
jz loc_400721

jmp $+5

loc_400582:
mov eax, [rbp+var_20]
sub eax, 0EA1E54ECh
mov [rbp+var_34], eax
jz loc_400715

jmp $+5

loc_400598:
mov eax, [rbp+var_20]
sub eax, 0F8AA1833h
mov [rbp+var_38], eax
jz loc_400669

jmp $+5

loc_4005AE:
mov eax, [rbp+var_20]
sub eax, 0DA7B326h
mov [rbp+var_3C], eax
jz loc_4006F4

jmp $+5

loc_4005C4:
mov eax, [rbp+var_20]
sub eax, 428030B6h
mov [rbp+var_40], eax
jz loc_4006B1

jmp $+5

loc_4005DA:
mov eax, [rbp+var_20]
sub eax, 6D0E9573h
mov [rbp+var_44], eax
jz loc_400709

jmp $+5

loc_4005F0:
mov eax, [rbp+var_20]
sub eax, 79EE109Ch
mov [rbp+var_48], eax
jz loc_40060B

jmp $+5

loc_400606:
jmp loc_40073F

loc_40060B:
mov eax, 0D303CEBDh
mov ecx, 0A5B68CDDh
cmp [rbp+var_14], 2FAF080h
cmovl eax, ecx
mov [rbp+var_1C], eax
jmp loc_40073F

loc_400627:
mov eax, 0F8AA1833h
mov ecx, 0EA1E54ECh
mov edx, 1
mov esi, [rbp+var_14]
sar esi, 5
movsxd rdi, esi
mov esi, ds:buf[rdi*4]
mov r8d, [rbp+var_14]
and r8d, 1Fh
mov [rbp+var_4C], ecx
mov ecx, r8d
shl edx, cl
and esi, edx
cmp esi, 0
mov edx, [rbp+var_4C]
cmovnz eax, edx
mov [rbp+var_1C], eax
jmp loc_40073F

loc_400669:
mov rdi, offset format ; "%d is prime\n"
mov esi, [rbp+var_14]
mov al, 0
call _printf
mov esi, [rbp+var_14]
shl esi, 1
mov [rbp+var_18], esi
mov [rbp+var_1C], 0CEE8F376h
mov [rbp+var_50], eax
jmp loc_40073F

loc_400695:
mov eax, 6D0E9573h
mov ecx, 428030B6h
cmp [rbp+var_18], 2FAF080h
cmovl eax, ecx
mov [rbp+var_1C], eax
jmp loc_40073F

loc_4006B1:
mov eax, 1
mov ecx, [rbp+var_18]
sar ecx, 5
movsxd rdx, ecx
mov ecx, ds:buf[rdx*4]
mov esi, [rbp+var_18]
and esi, 1Fh
mov [rbp+var_54], ecx
mov ecx, esi
shl eax, cl
mov esi, [rbp+var_54]
or esi, eax
mov eax, [rbp+var_18]
sar eax, 5
movsxd rdx, eax
mov ds:buf[rdx*4], esi
mov [rbp+var_1C], 0DA7B326h
jmp loc_40073F

loc_4006F4:
mov eax, [rbp+var_14]
add eax, [rbp+var_18]
mov [rbp+var_18], eax
mov [rbp+var_1C], 0CEE8F376h
jmp loc_40073F

loc_400709:
mov [rbp+var_1C], 0EA1E54ECh
jmp loc_40073F

loc_400715:
mov [rbp+var_1C], 0D8DF65FBh
jmp loc_40073F

loc_400721:
mov eax, [rbp+var_14]
add eax, 1
mov [rbp+var_14], eax
mov [rbp+var_1C], 79EE109Ch
jmp loc_40073F

loc_400736:
mov eax, [rbp+var_4]
add rsp, 60h
pop rbp
retn

loc_40073F:
jmp loc_400524
; } // starts at 400500
main endp

Decrease CFG
complexity

Increase CFG
complexity

(a) No obfuscation

(b) Linearisation

(c) Flattening

FIGURE 3
Three control �ow graph versions of the same program calculating (and printing) all prime numbers
below a certain threshold: The original, compiler generated version (a), the linearised obfuscated version
(b), and the �attened obfuscated version (c).

To date, many categories of obfuscating transformations are
described by literature. The category discussed in this work
falls into the group of control flow graph transforming obfusca-
tion techniques. The control flow graph (CFG) is a powerful
representation of any analyzed program, because it represents
(in case an accurate recovery is possible at all) a superset of all
possible execution paths within a given part of the analyzed soft-
ware. Hence, the motivation behind obfuscating the control flow
graph is to hide software’s run-time behaviour from static analy-
sis approaches by making the (temporal) course of events occurring
within the application less accessible to analysis. Control flow
transforming obfuscations can be achieved in two antithetical
ways depicted in FIGURE 3: Either by increasing or by decreasing
the complexity of the original control flow graph.

4 introduction

Increasing the complexity of the control flow graph during
obfuscation implies adding new nodes (basic blocks) and edges
(control flow changes) to the graph. Perhaps the most exten-
sively discussed obfuscation technique of this type that aroused
attention during the last years is Control Flow Flattening [42].

q Pascal Junod, Julien
Rinaldini, Johan Wehrli,
Julie Michielin.
Obfuscator-LLVM:
Software Protection for the
Masses. 2015.

Decreasing the complexity of the control flow graph during
obfuscation implies merging all nodes (basic blocks) and edges
(control flow changes) into one, recurring, basic block. Hence,
the resulting graph consists of one linear execution flow, coining
the term Control Flow Linearisation (CFI). In fact, it can be shown
that Turing Completeness can still be reached by applying such
a linearisation transformation to a program and afterwards
substituting all operations by x86 mov instructions. The idea
dates back to Stephen Dolan [28]

q Stephen Dolan. Mov Is
Turing-Complete. 2013.

sparking massive interest
within the reverse engineering community in 2015, when a
proof-of-concept implementation called M/O/Vfuscator [3]

q Christopher Domas. The
M/O/Vfuscator. 2015.

was
published by Christopher Domas.

Extensive study of Control Flow Flattening has led to several
prototypes implementing deobfuscating transformations to re-
cover the original

q Fabrice Desclaux.
Miasm: Framework de
reverse engineering. 2012.

control flow from obfuscated binary programs.
Such prototypes originate from both, the academic world (see
e.g. miasm [26]) and industry. However, little effort has been
spent

® https://github.com/
wildcardc/cfxc-deobf

to understand and develop algorithms alleviating the
effects of Control Flow Linearisation, motivating parts of our
work.

® https:
//github.com/rpisec/
llvm-deobfuscator Research Question I (Control Flow Linearisation)

How does Control Flow Linearisation (CFL) impact
analysis difficulty, and how can the original control
flow graph be reconstructed from linearised machine
code?

Because of the aforementioned complexity, static analysis
is often complemented by dynamic analysis techniques. Dur-
ing dynamic analysis, machine code in question is executed
such that its run-time behaviour can be studied. Dynamic
analysis offers the advantage of allowing for a quick assess-
ment of unknown machine code: Many challenging problems
of static analysis become less difficult to solve if information
about the execution state is available. Most importantly, to be
suitable for security applications, dynamic analysis needs to
provide guarantees on transparency, isolation, inspection, and
interposition—the latter three being motivated first by Garfinkel
and Rosenblum in 2003. [37]

q Tal Garfinkel, Mendel
Rosenblum. A Virtual
Machine Introspection
Based Architecture for
Intrusion Detection. 2003.

Transparency is an important factor because, by its very nature,
dynamic analysis can only show concrete program execution
flows—machine code never reached during analysis remains

https://github.com/wildcardc/cfxc-deobf
https://github.com/wildcardc/cfxc-deobf
https://github.com/rpisec/llvm-deobfuscator
https://github.com/rpisec/llvm-deobfuscator
https://github.com/rpisec/llvm-deobfuscator

introduction 5

hidden. With respect to certain analysis questions, dynamic
analysis is, therefore, incomplete. In a malicious scenario, this can
be abused by tricking dynamic execution into yielding wrong
analysis results: Analysed machine code can become aware of
the analysis situation, and consequently skew analysis results
arbitrarily. For such maliciously behaving code Balzarotti et al.
coined the term split personality malware [7]

q Davide Balzarotti,
Marco Cova, Christoph
Karlberger, Christopher
Kruegel, Engin Kirda,
Giovanni Vigna.
Efficient Detection of Split
Personalities in Malware.
2010.

.
Classic dynamic analysis approaches make use of debuggers,

tracers, or dynamic instrumentation frameworks. Traditionally,
the latter are built in such a way that both—analysis engine
and analysis target—share the same execution environment: For
example, the popular Intel PIN dynamic binary instrumentation
framework [48]

q Chi-Keung Luk et al. .
Pin: building customized
program analysis tools
with dynamic
instrumentation. 2005.

combines the debugging interface exposed by
the operating system and a just-in-time (JIT) compiler executing
on the same host machine. This sparks the question whether
such a setup can be used in accordance with the Garfinkel and
Rosenblum requirements, forming another building block of
this thesis.

Research Question II (Dynamic Instrumentation)
What guarantees on transparency, isolation, interposi-
tion, and inspection are provided by current dynamic
binary instrumentation tools?

So far, we have touched the ever-ongoing race between

defenders and intruders concerning the development and
analysis of new methodologies to protect secrets embedded into
machine code. But why do intruders involve such a dispropor-
tionate effort for such a questionable goal?

One possible answer to this question not discussed so far may
be rooted in the fact that aforementioned secrets occasionally
include valuable knowledge about potentially unknown attack
methodologies. It is desirable to keep knowledge about abusing
an unknown vulnerability secret, as otherwise the underlying
software bugs would get fixed and in consequence the attack
would be lost from an intruder’s exploit arsenal. Typical exploits,
in a scenario where an attacker can take over control of a vul-
nerable server application, strain to achieve remote code execution
(RCE) over the network or to gain additional access permissions
by escalating privileges.

The root cause of successful exploitation stems from program-
ming mistakes that oftentimes result in memory corruption vulner-
abilities. Therefore, in an effort to confine the nefarious effects of
unknown vulnerabilities, defenders are steadily endeavouring
to implement exploit mitigations. The philosophy behind such
mitigations is to accept that human programmers can inadver-
tently introduce vulnerabilities into programs, and instead make

6 introduction

exploitation of any present vulnerabilities as difficult as possible.
To raise the bar for an attacker, common exploit mitigations
typically revolve around the two concepts information hiding
and integrity protection: The former try to make the location of
valuable attack targets unknown to an attacker, whereas the
latter protects targets by either regularly checking their integrity
during run-time or placing them in read-only

q Brad Spengler. PaX: The
Guaranteed End of
Arbitrary Code Execution.
2003.

virtual memory.
The most prominent mechanisms implementing each of the two
concepts are Address Space Layout Randomization (ASLR) [10]
and Stack Canaries [20]

q Crispan Cowan et al. .
StackGuard: Automatic
Adaptive Detection and
Prevention of
Buffer-Overflow Attacks.
1998.

. Dating back almost two decades, both
mechanisms were proposed around the turn of the millennium
and have since seen adoption from all major operating system
and compiler vendors. A thorough investigation on the secu-
rity promises of the (evolved) versions of ASLR and canaries
therefore builds the third block of this work.

Research Question III (Exploit Mitigations)
What security guarantees are offered by current ver-
sions of the longest-standing exploit mitigations in
presence of memory corruption vulnerabilities?

outline

In linear order, this thesis is organized in seven more chapters
with the follwoing contents:

Chapter 2 introduces background concepts, ideas and knowl-
edge important to understand the material covered in later
chapters.

Chapter 3 covers related work.
Chapter 4 describes, analyses and breaks the obfuscation

technique Control Flow Linearisation (CFL).
Chapter 5 analyzes and remedies weaknesses of the most

commonly used dynamic binary instrumentation frameworks.
Chapter 6 surveys and analyzes implementation variants of

stack canaries used to detect stack-based buffer overflows.
Chapter 7 analyzes security promises made by address space

layout randomization on Linux and provides a novel approach
to circumvention thereof.

Chapter 8 summarizes our findings and concludes this thesis.

introduction 7

Chapter 4 Chapter 5

Chapters 6,7

Malicious
Software

Behaviour
Concealing

Obfuscated
Split

Personality
Exploiting

Control Flow
Linearized

DBI
Attacking

DBI
Aware

sta
tic

all
y

dynam
ically

FIGURE 4
Thesis Outline According toDi�erent Types ofMalicious Behvaiours Exhibited byMachine Code. Coloring
According to Research Questions Introduced Earlier in this Chapter

The chapters of this thesis follow the classification of Mali-
cious Bits (Software) used throughout this work, as depicted in
FIGURE 4: On one side, we discuss software that tries to conceal
its actual behaviour either statically (Control Flow Lineariza-
tion, see Chapter 4) or dynamically (Detecting and Attacking
Dynamic Binary Instrumentation, see Chapter 5). On the other
side, we concern ourselves with the actual malicious behaviours
that can actually be found after removing behaviour concealing
protection layers (Attacking and Defending Exploitation Mitiga-
tions, see Chapters 6,7). Coloring used in FIGURE 4 matches that
of the research questions introduced earlier in this chapter.

2
B A C K G R O U N D

This chapter briefly introduces basic concepts required for the
understanding of later chapters.

2.1 obfuscation

Obfuscation is a program transformation technique with
the goal of making the resulting code less accessible to (human)
analysis. In an (hypothetical) ideal scenario, obfuscated software
maintains its original properties in terms of functionality and
performance but becomes impenetrable to reverse engineering.
Those in favour of obfuscation hence often claim that it offers all
the necessary protection mechanisms to software authors who
want to hide the internal operations of their programs from the
prying eyes of reverse engineers.

Traditionally, two groups of software authors are interested in
obfuscation: (i) software vendors who want to protect sensitive
and confidential data shipped together with a piece of software
and (ii) malware authors who want to evade detection by anti-
virus scanners or to hinder inspection by security analysts. Both
groups seek software obfuscation for their own purposes.

2.1.1 Control-Flow-Graph-Based Obfuscation

To date, a plethora of approaches to obfuscation exist. One such
category is control-flow-graph-based obfuscation: This obfusca-
tion technique tries to conceal the logical relationship of code
within a compiled function. In the benign case, a control flow
graph can be computed from the linear disassembly forming
the function. Such a control flow graph is useful to a reverse
engineer because it provides valuable information on the or-
dering of the machine code sequences (so-called basic-blocks)
that make up the binary function. It therefore becomes possible
for a human analyst to establish happened-before relationships
between the basic blocks. Moreover, the structure of the control
flow graph of a binary function is (most of the time) closely
linked to the control flow graph of the function’s original source
code: For each if-branch within the source code, the compiler
generates approximately one conditional branch into the ma-
chine code. Such conditional branches visualize as additional

10 background

edges in the control flow graph, giving the analyst valuable
information about the structure of the original function.

One approach to destroy the control flow graph of a program
is Control Flow Flattening: Here the control flow graph is changed
such that the logical ordering of the original function’s basic
blocks becomes more difficult to understand. This is achieved by
giving each original basic block an identifier and externalizing
logic describing the (conditional) ordering of basic blocks into a
dispatcher. Thus, each basic block only knows its own identifier
and the identifier of all successor blocks.

2.1.2 Instruction Substitution

Another obfuscation technique orthogonal to the approach de-
scribed above targets the contents of a function’s basic blocks
rather than their relationship. Instruction Substitution is the term
of substituting the instructions of the original program with
equivalent sequences that are harder to understand and can take
many different shapes. For example, instructions implementing
mathematical operations could be replaced by different instruc-
tions implementing the same operation but in terms of different
mathematical computations. A well-known example borrowed
from electrical engineering is that of an addition of two integers
a + b getting replaced by the term (a⊕ b) + (a ∧ b) · 2.

In Chapter 4 we describe, analyze and break a new obfusca-
tion mechanism that combines both, Control-Flow-Based Obfus-
cation and Instruction Substitution taken to an extreme level.

2.2 dynamic binary instrumentation

Binary instrumentation is a robust and powerful technique
which facilitates binary code modification of computer programs
in order to better analyze their behavior and characteristics
even when no source code is available. This is achieved either
statically by rewriting the binary instructions of the program
and then executing the altered program or dynamically, by
changing the code at run-time right before it is executed.

The design of most Dynamic Binary Instrumentation (DBI)
frameworks puts emphasis on ease-of-use, portability, and effi-
ciency, offering the possibility to execute inspecting analysis code
from an interpositioned perspective maintaining full access to the
instrumented program. This has established DBI as a powerful
tool utilized for analysis tasks such as profiling, performance
evaluation, prototyping, side-channel analysis, bug detection
and generally adding new functionality to existing binaries.

2.3 the arms race around software vulnerabilities 11

A typical DBI framework consists of three components,
usually contained within a single process address space:

1. A compiled target program whose functionality should be
altered (instrumented application)

2. A certain (analysis) functionality that is to be added to the
target program (analysis plugin)

3. A DBI platform injecting the analysis plugin into the in-
strumented application ensuring proper execution (instru-
mentation platform)

Implementers typically develop their own analysis plugins
which the instrumentation platform injects into the binary code
of an application (instrumented application) that should be ana-
lyzed. The instrumentation platform exposes an API that en-
ables the analysis plugin to register callbacks for certain events
happening during the execution of the instrumented applica-
tion. For example, it might be desirable for a analysis plugin
implementing a shadow stack to receive a callback whenever the
instrumented application tries to execute a call or ret instruc-
tion (interposition). Once the analysis plugin is synchronously
notified of the execution of such an instruction, it may now
freely inspect or modify all register and memory contents of the
instrumented application (inspection).

DBI is important in our context because it constitutes a popu-
lar way for dynamic analysis of binary code of unknown origin.
It can be used to complement static analysis of statically ob-
fuscated code with dynamic information gathered at run-time.
Another application of DBI is addition of security relevant func-
tionality to already existant code. For both applications, in order
to produce meaningful results DBI tools must operate in a reli-
able, robust way. In Chapter 5 we establish and evaluate criteria
for DBI to provide meaningful results. Based on the evaluation,
we devise methods to skew results and show how DBI based
analysis can be broken.

2.3 the arms race around software vulnerabilities

Memory corruption vulnerabilities are as old as the Inter-
net itself. In 1988,

q Hilarie Orman. The
Morris Worm: A
Fifteen-Year Perspective.
2003.

the Morris Worm was one of the first malware
discovered in public that leveraged this vulnerability [55]. Since
then, lots of security breaches can be tracked backwards to suc-
cessful exploitation of buffer overflows, which indicates that the
problem is far from being solved. As a matter of fact, the Mitre
Corporation—a not-for-profit company that operates multiple

12 background

federally funded research and development centers—lists more
than eight thousand Common Vulnerabilities and Exposures (CVE)
entries that contain the keywords buffer overflow. A significant
portion of these vulnerabilities consists of so-called stack-based
buffer overflow bugs. This is due to the application stack’s im-
manent property of mixing both user-controlled program data
and control flow relevant information (such as return addresses).
An attacker may overwrite control flow related parts of the stack
if mistakes in the program logic allow for mixing up control
flow relevant information and attacker controlled data.

When exploiting vulnerable software systems, an attacker’s
goal is usually to take control of the program’s execution flow.
The reasons that this becomes possible are manifold: Classic
stack-based buffer overflows can lead to exploitable conditions,
as can format string vulnerabilities, or the corruption of function
pointers in memory, just to name a few. However, during most
breaches, attack methodologies converge to a point where an
attacker can arbitrarily control the contents of the instruction
pointer (the rip register on x86-64).

In current software systems, several mitigation strategies that
aim to reduce the impact of potentially abusable programming
mistakes are in use. We shortly explain the arms race around
memory corruption vulnerabilities in low-level software.

2.3.1 w⊕x Memory Protection

The idea behind w⊕x is that no memory within the software
system should be writable and executable at the same time. The
motivation is to deny an attacker the ability of first injecting
arbitrary code into the process memory followed by executing
this so-called shellcode afterwards. On Intel x86, w⊕x is imple-
mented by means of the execute-disable (XD) bit, which allows
operating systems to forbid instruction fetches from particular
pages. The introduction of w⊕x memory constitutes a signifi-
cant improvement against such Code Injection Attacks, which are
now mostly obsoleted by the consistent application of the w⊕x
idea.

2.3.2 Code Reuse Attacks

Consequently, attack methodology has shifted towards so-called
Code Reuse Attacks. In this type of intrusion, already existing
code within the program is glued together in order to imple-
ment malicious functionality. One concrete shape of a Code
Reuse Attack is return-oriented programming (ROP), a tech-
nique where the architectural x86 stack is set up in a way that

2.3 the arms race around software vulnerabilities 13

1 void g(void) {
2 uint8_t buf[16];
3. /* function body of g */
4 return;
5 }
6

7 void f(void) {
8 uint64_t a;
9 uint64_t b;

10 /* function body of f */
11 g();
12 return;
13 }

...

buf

Can

fptr

ret

a

b

fptr

ret

...

P
ro

te
ct

ed
st

ac
k

fr
am

e
of

g
U

np
ro

te
ct

ed
st

ac
k

fr
am

e
of

f

St
ac

k
gr

ow
th

O
ve

rfl
ow

di
re

ct
io

n

Low addresses

High addresses

FIGURE 5
Stack organization of a minimal C programwhen execution reaches .. The local variable buf in function
g is protected against bu�er over�ows by a stack canary Can.

chains together so-called gadgets. A ROP gadget is an arbitrary
sequence of instructions already present in the program that
eventually gives control back to an attacker by reading control
flow related information from a location controlled by the ad-
versary. An example could be a ret instruction reading attacker
controlled values from the stack, but generally ROP can take
many different shapes.

2.3.3 Stack Smashing Protection

To protect at least return addresses saved on the stack,
defenders introduced so-called Stack Canaries: Contiguous stack-
based buffer overflows are detected by checking the validity of
magic values (canaries) placed at strategic locations on the archi-
tectural x86 stack. Stack canaries are sometimes also referred to
as Stack Cookies.

Traditionally, stack smashing protection is implemented syn-
chronously with the control flow: On function entry, a stack
cookie is placed on the stack just between the return address
and user controllable buffers. After function execution, once
control flow returns to the caller, the cookie value is checked
against a known good value. Only if there is a match between the
two values, the stack frame is cleaned up and the control flow
is allowed to return to the caller. In any other case, a potentially
malicious attack has been detected and execution is terminated.
This idea is illustrated in FIGURE 5.

14 background

2.3.4 Function Pointer Protection

With the protection of return addresses on the stack, attackers
needed to look for alternative attack targets and found them in
form of function pointers stored in writable memory locations
other than the architectural stack. As such function pointers
pose a promising target to gain control of the execution flow, it
is desirable to deny attackers the ability of compromising them.
To implement this, two mechanisms are currently in place:

q Ulrich Drepper. Pointer
Encryption. 2007.

The first, Pointer Encryption [29], introduces a per-process 64

bit random secret that is used to mangle pointers in memory.
The mangling transformation is chosen such that the real pointer
value can be derived from the mangled value in memory and
the secret value, placing the result in a machine register. This
de-mangled value is then used as target for an indirect control
transfer. Note that pointer encryption is implemented in an ad-
hoc manner: It is the responsibility of the programmer to perform
the mangling.

The most widely used C standard library on Linux, glibc, im-
plements this protection in terms of the PTR_[DE]MANGLE macros
requiring manual application by the programmer. In practice,
glibc mangles (most) writable function pointers residing in global
static memory (bss).

The Windows run-time, on the other hand, provides similar
functionality by means of the Rtl[En|De]codePointer API call
since XP SP2 (2004). Both implementations use very similar
algorithms to encipher pointers: a logical bit rotation combined
with an xor (⊕) involving the per-process random secret.

A second way of protecting function pointers is to place them
in memory marked as read-only at runtime. This mechanism,
on Linux typically referred to as relro (relocations read-only),
enforces global static function pointers contained in the Global
Offset Table (GOT) and Destructor (DTOR) sections of a binary
to be mapped read-only. Note that this mechanism forces lazily
operating dynamic linking systems (such as the glibc’s dynamic
loader on Linux) to resolve any relocations to external functions
at program startup.

2.3.5 Address Space Layout Randomization

In order to reduce the attacker’s knowledge of interesting
targets within a particular process, current operating systems
randomize the location of stack, heap and libraries in memory
at a per-execution basis. Some implementations of Address
Space Layout Randomization (ASLR) additionally randomize
the image base address of the executable image in memory,

2.3 the arms race around software vulnerabilities 15

0 7 15 23 31 39 47 53 63

Page Offset

12

Randomized by mmap

28 ≤ z ≤ 32

All 1

35 - z

User all 0x0, Kernel all 1

17

FIGURE 6
Address bits randomized by the mmap system call on x86_64 Linux. Earlier kernels (≤ 4.5) hard-code z
to 28, newer kernels can be con�gured via the /proc/sys/vm/mmap_rnd_bits runtime parameter.

usually referred to as Position Independent Executable (PIE)
binaries.

It is important to note that ASLR operates at the gran-
ularity of virtual memory pages on Linux (and on many other
operating systems). As a direct consequence, ASLR only ran-
domizes those bits of a virtual address that are located beyond
the position corresponding to the logarithm of the page size.

For example, as the size of a page of virtual memory used
by Linux running on the x86 architecture is characteristically
4096 = 212 Bytes, ASLR is only capable of randomizing bits
beyond the bit at position 11 (counting zero-based). At the time
of writing, current x86-64 processors

q Intel Corporation. Intel
64 and IA-32 architectures
software developer’s
manual volume 3A:
System programming
guide, part 1. 2020.

support only 48 out of 64
possible bits of virtual address space [19], with Linux setting the
topmost (47th) bit (and therefore all bits beyond this position,
due to canonicalization) to 1 for kernel and to 0 for user space
addresses. Out of the 48− 12− 1 = 35 remaining address bits,
older x86_64 Linux kernels (before version 4.5) randomize 28
bits1, whereas newer kernels (starting with 4.5) provide a run- 1 arch_mmap_rnd in

arch/x86/mm/mmap.ctime parameter2 offering the possibility to increase this number
2 cf. /proc/sys/vm/
mmap_rnd_bits

to 32 bits. In practice, this raises the bar for brute-force guessing
of addresses to a level that is considered sufficiently high. With
the physical address width increased to 57 bits on Intel’s Ice
Lake architecture, ASLR can be expected to increase in strength
in the future. FIGURE 6 shows the randomized address bits
returned by the mmap syscall when allocating new pages for a
process.

We add to the ever ongoing arms race by demonstrating
attacks bypassing stack canaries in Chapter 6 and ASLR in
Chapter 7.

3
R E L AT E D W O R K

This chapters outlines related work relevant for our research.

3.1 obfuscation

Obfuscation and de-obfuscation both are actively maintained
research fields. We point out relevant work on the topic in this
section.

3.1.1 Control Flow Flattening

Over the years, there has been proposed a wide range of
obfuscation

q Thomas J. McCabe. A
Complexity Measure.
1977.

techniques that were focused on hiding a program’s
original control flow. Most techniques operate by artificially
increasing cyclomatic complexity [65] of the Control Flow Graph
(CFG): For instance, Obfuscator LLVM (O-LLVM) [42]

q Pascal Junod,
Julien Rinaldini,
Johan Wehrli,
Julie Michielin.
Obfuscator-LLVM:
Software Protection for the
Masses. 2015.

achieves
this by employing Control Flow Flattening (CFF), a technique
that conceals the execution sequence of basic blocks by re-
arranging them into a loop resembling the instruction cycle
of CPU pipelines. The same protection is offered by the popular
ConfuserEx [®] obfuscation tool for applications executing in
Microsoft’s .NET ecosystem, where it is referred to as Switch-
Mangler.

® https:
//yck1509.github.io/
ConfuserEx/

A similar transformation effect can also be achieved by em-
ploying virtualization-based obfuscation techniques. One example
of such an obfuscator is Matryoshka [38]

q Sudeep Ghosh,
Jason D. Hiser,
Jack W. Davidson.
Matryoshka:
Strengthening Software
Protection via Nested
Virtual Machines. 2015.

which nests multiple
layers of virtualization to cloak the functionality of a protected
program.

Virtualization and control flow flattening differ in the way
the final code is dispatched: Control flow flattening leaves the
protected code as inline basic blocks, whereas in virtualization
obfuscation basic blocks of the interpreter typically only im-
plement the semantics of the virtualized instructions. To some
extent, control flow flattening can be perceived as a special case
of virtualization obfuscation.

3.1.2 Instruction Substitution

In context of obfuscation, instruction substitution refers
to the process of replacing one or more machine code instruc-

https://yck1509.github.io/ConfuserEx/
https://yck1509.github.io/ConfuserEx/
https://yck1509.github.io/ConfuserEx/

18 related work

tions by an computationally equivalent sequence of instructions
that is more difficult to

q Rakan El-Khalil,
Angelos D. Keromytis.
Hydan: Hiding
Information in Program
Binaries. 2004.

understand for an analyst.
Literature discusses instruction substitution for the purpose

of increasing instruction diversity in context of steganographic
applications [31] or in form of malware case studies [9] .

However, decreasing the variety of
q Jean-Marie Borello,

Ludovic Mé. Code
Obfuscation Techniques
for Metamorphic Viruses.
2008.

instructions contained in
a program is a relatively new idea that was first proposed by
multiple people in a formal way.

Dolan [28] shows that in an extreme case, instruction substi-
tution can be performed

q Stephen Dolan. Mov Is
Turing-Complete. 2013.

such that the transformed program
consists of at most one instruction type: the mov instruction.
With the rise of a compiler capable of translating C99 code
to assembly consisting entirely of mov instructions written by
Christopher Domas [3] the theory manifested

® https://github.com/
xoreaxeaxeax/
movfuscator

tself into a prob-
lem relevant in context of binary analysis. A side effect of this
substitution is that the (explicit) control flow of a protected
program vanishes: The resulting program merely consists of
one linear program flow without branches—the control flow is
linearized during substitution. An analysis of this obfuscation
technique is discussed in this thesis in chapter 4.

Instruction-less Computation [8]
q Julian Bangert, Sergey

Bratus, Rebecca Shapiro,
Sean Smith. The
Page-Fault Weird
Machine: Lessons in
Instruction-less
Computation. 2013.

takes this idea one step fur-
ther: Bangert, Bratus, Shapiro, and Smith created a prototype
compiler capable of reaching Turing-completeness on the x86 ar-
chitecture using zero instructions. Instruction-less Computation
is centered around the idea to configure the interrupt handling
and the memory management unit on x86 in such a way that
meaningful logic is executed by the interrupt logic of the CPU
without ever dispatching a single instruction (after initialization
of the environment).

3.1.3 Obfuscation Countermeasures

q Babak Yadegari, Brian
Johannesmeyer, Ben
Whitely, Saumya Debray.
A Generic Approach to
Automatic Deobfuscation
of Executable Code. 2015.

Although obfuscation appears as an optimal solution, it
has its own weaknesses. There exist deobfuscation approaches
based on symbolic execution engines which are able to pene-
trate various obfuscation techniques [70]. Such solutions operate
by automatically translating

q Cristian Cadar, Daniel
Dunbar, Dawson Engler.
KLEE: Unassisted and
Automatic Generation of
High-Coverage Tests for
Complex Systems
Programs. 2008.

machine code to mathematical ex-
pressions, to which then a (semi-)automated theorem prover
is applied. KLEE [15] is an example of such a state of the art
symbolic execution engine that, however, requires the presence
of the source code. angr [61], Manticore [51], and BAP [14] are
symbolic execution solutions that do not have a similar require-
ment. Nevertheless, current

q Yan Shoshitaishvili,
Ruoyu Wang et al..
Firmalice - Automatic
Detection of
Authentication Bypass
Vulnerabilities in Binary
Firmware. 2015.

approaches for symbolic execution
depend on the presence of instructions that explicitly modify
the control flow during path enumeration.

https://github.com/xoreaxeaxeax/movfuscator
https://github.com/xoreaxeaxeax/movfuscator
https://github.com/xoreaxeaxeax/movfuscator

3.2 applications of dynamic instrumentation 19

For binaries with linearized control flow, as introduced earlier,
symbolic

q Mark Mossberg, Felipe
Manzano, Eric
Hennenfent et al..
Manticore: A
User-Friendly Symbolic
Execution Framework for
Binaries and Smart
Contracts. 2019.

execution engines are only of limited use. We will
present an algorithm that can be applied to binaries with linear
control flow to re-enable symbolic analysis in Chapter 4.

3.2 applications of dynamic instrumentation

q David Brumley, Ivan
Jager, Thanassis
Avgerinos, Edward
Schwartz. BAP: A
Binary Analysis Platform.
2011.

The interest of employing DBI tools for security applications
such as binary hardening techniques and malware analysis is
constantly increasing among researchers. However, as we will
understand in Chapter 5 the usage of DBI for security related
tasks is questionable, as in such scenarios it is important that
analysis code runs isolated from the instrumented program in a
stealthy way.

There are numerous examples of DBI utilization in literature
silently making this assumption, mostly by software develop-
ment:

3.2.1 Binary Analysis

q Jonathan Salwan,
Florent Saudel. Triton:
Framework d’exécution
concolique et d’analyses en
runtime. 2016.

Many researchers develop DBI tools in order to perform analysis
of binaries, e. g. Salwan et al. developed Triton [59], a concolic
execution framework. Clause et al. [18] implement a dynamic
taint analysis tool which supports data-flow and control-flow
based tainting using DBI.

q James Clause, Wanchun
Li, Alessandro Orso.
Dytan: a generic dynamic
taint analysis framework.
2007.

3.2.2 Bug Detection

q Elias Levy. Smashing the
stack for fun and profit.
Phrack 49. 1996.

Vulnerabilities resulting from memory corruption bugs [47] are
still problematic. Implementing vulnerability detection and
prevention tools using DBI to limit the potential damage is a
tempting

q Nicholas Nethercote,
Julian Seward. How to
shadow every byte of
memory used by a
program. 2007.

approach taken in several works. This is the case be-
cause DBI provides the advantage that custom security code may
be directly executed within the analyzed/hardened program.

The Valgrind analysis framework includes a lot of other pro-
filing and debugging

q Nicholas Nethercote,
Robert Walsh, Jeremy
Fitzhardinge. Building
Workload Characterization
Tools with Valgrind. 2006.

tools, such as Memcheck [52] which detects
memory-management problems or the heap profiler Massif [54].

Similarly, on the Windows family of operating systems Dr.
Memory [13] is a memory monitoring tool built on top of the

q Derek Bruening, Evelyn
Duesterwald, Saman
Amarasinghe. Design
and Implementation of a
Dynamic Optimization
Framework for Windows.
2001.

DynamoRIO framework. It is also capable of identifying spa-
tial and temporal memory-management-related programming
errors.

20 related work

3.2.3 Control Flow Integrity

q Vladimir Kiriansky et
al.. Secure Execution via
Program Shepherding.
2002.

A lot of research is recently conducted regarding program shep-
herding [43] and Control Flow Integrity (CFI) which attempts
to restrict the set of possible control-flow transfers to those that
are strictly required for correct program execution [5]. In order
to implement this approach,

q Martín Abadi, Mihai
Budiu et al.. Control-flow
integrity principles,
implementations, and
applications. 2009.

Davi et al. [24] developed a Pin tool
that dynamically enforces sanitized return address checks by
employing a shadow stack. This shadow stack stores source and
target of indirect control flow transfers at run-time and makes
sure that call-return semantics employed by sub-function calls
are met. While the idea of a shadow stack is much

q Tzi-cker Chiueh,
Fu-Hau Hsu. RAD: A
compile-time solution to
buffer overflow attacks.
2001.

older [17], the
advantage of this approach was the ease of development of the
dynamic security enforcement tool. A similar approach was cho-
sen by van der Veen et al. who developed a Linux kernel module

q Victor van der Veen,
Dennis Andriesse et al..
Practical context-sensitive
CFI. 2015.

together with a plugin for the Dyninst framework [67] which
determine and restrict the valid execution paths and thereby
ensure correct program execution.

In contrast, instead of verifying return address validity,
q Mateus Tymburibá,

Rubens Emilio,
Fernando Pereira.
Riprop: A dynamic
detector of rop attacks.
2015.

Tym-
buribá et al. [66] try to utilize ROP gadgets’ characteristics in
order to prevent the hijacking of program’s execution flow. In
their Pintool called RipRop they detect unusually high rates of
successive indirect branches during the execution of unusually
short basic blocks, which may be an indication of a undergo-
ing ROP attack. In order to

q Andreas Follner, Eric
Bodden. ROPocop -
Dynamic mitigation of
code-reuse attacks. 2016.

collect statistics on the executed
instructions, DBI is used. Follner et al. present ROPocop [34],
another Code-Reuse Attack (CRA) detection framework targeted
at Windows x86 binaries. It combines the idea of Tymburibá et al.

q Mohamed Elsabagh,
Daniel Barbará et al..
Detecting ROP with
Statistical Learning of
Program Characteristics.
2017.

together with a custom shadow stack and a technique which en-
sures no data is unintentionally executed. Yet another example
of a Pintool utilized in ROP attack detection was proposed by
Elsabagh et al.. Their tool EigenROP attempts to detect anomalies
in the execution process [32], due to execution of ROP gadgets,
based on directional statistics and program’s own characteristics.

Finally, Qiang et al. built a fully context-sensitive CFI
q Weizhong Qiang,

Yingda Huang et al..
Fully Context-Sensitive
CFI for COTS Binaries.
2017.

tool [56]
on top of Pin that may be used to protect Commercial off-
the-shelf (COTS) binaries. Among other advantages the tool
checks the execution path instead of checking each edge in this
execution path one by one which helps accelerate the process.

3.2.4 Malware Analysis

In addition, many security analysts employ DBI tools to study
and profile malicious programs’ behavior. Both to harden pro-
ductive applications as well as to understand and reverse engi-
neer potentially malicious program functionality in a sandbox

3.3 attack and defense of software vulnerabilities 21

environment.
q Felix Gröbert et al..

Automated identification
of cryptographic
primitives in binary
programs. 2011.

For instance, Gröbert et al. take advantage of a
Pintool to generate execution traces and apply several heuristics
to automate the identification of cryptographic primitives [39] in
malicious samples. Kulakov developed a Pintool that performs
static malware analysis in order to generate a loose

q Yevgeniy Kulakov.
MazeWalker - Enriching
static malware analysis.
2017.

timeline of
the whole execution trace [44].

To our perception, the most prominent examples of DBI frame-
works nowadays are Intel Pin [48], Dyninst [11],

q Chi-Keung Luk, Robert
Cohn et al.. Pin:
building customized
program analysis tools
with dynamic
instrumentation. 2005.

Valgrind [53],
DynamoRIO [12] and (more recently) QBDI [2] and Skorpio [57].
Another popular DBI framework developed outside of the aca-
demic research community that is especially relevant for analysis
tasks on mobile platforms is Frida.

q Derek Bruening, Evelyn
Duesterwald, Saman
Amarasinghe. Design
and Implementation of a
Dynamic Optimization
Framework for Windows.
2001.

3.3 attack and defense of software vulnerabilities

A substantial corpus of research papers exist in context of the
arms race in attacking and defending computing systems via
software vulnerabilities.

q Nicholas Nethercote,
Julian Seward. Valgrind:
a framework for
heavyweight dynamic
binary instrumentation.
2007.

3.3.1 Stack Smashing Protection

The idea to guard certain parts of the executable’s stack
q Derek Bruening,

Timothy Garnett,
Saman Amarasinghe.
An infrastructure for
adaptive dynamic
optimization. 2003.

dates
back to 1998 [22, 21]. By this time, StackGuard was introduced
to counter buffer overflows on the stack by using compiler
instrumentation. The concept is to guard control flow related
information on the architectural x86 stack using a so-called stack
canary or stack cookie, an

q Nguyen Anh Quynh.
Skorpio: Advanced Binary
Instrumentation
Framework. 2018.

(ideally) random value that is placed
between the user-controllable data and the return pointers on
the stack during stack setup phase in the function prologue.

From the time of its first introduction, it still required a
q Crispin Cowan et al..

StackGuard: Automatic
Adaptive Detection and
Prevention of
Buffer-Overflow Attacks.
1998.

couple
of years to include StackGuard into the mainline GCC distribu-
tion in 2003 [68].

Attackers may try to evade StackGuard by embedding the
canary in the data used during the overflow (i.e., canary forgery).
Cowan et al. [23]

q Crispin Cowan et al..
Protecting Systems From
Stack Smashing Attacks
With StackGuard. 1999.

propose two methods to prevent such a forgery:
terminator and random canaries. In 32-bit operating systems, a
terminator canary usually consisted of the char representation
of NUL, CR, LF, and EOF (0x000d0aff). Although this is a fixed

q Perry Wagle et al..
Stackguard: Simple Stack
Smash Protection for Gcc.
2003.

constant consisting of four symbols that usually terminate a
string operation, it is valuable because string copying functions
potentially used by an attacker will terminate immediately once
they

q Crispin Cowan et al..
Buffer Overflows: Attacks
and Defenses for the
Vulnerability of the
Decade. 2000.

hit these symbols. Random canaries, on the other hand,
have the advantage that they (ideally) cannot be guessed by
an attacker. In practice, random canaries seem to be the most
promising approach, because not all buffer overflows are due

22 related work

to string handling operations and thus it is still possible to
overwrite the fixed terminator canary using functions as for
example read().

q Hector Marco-Gisbert
and Ismael Ripoll.
Preventing Brute Force
Attacks Against Stack
Canary Protection on
Networking Servers. 2013.

Marco-Gisbert and Ripoll extend the original StackGuard
concept by proposing a renewal of the secret stack canary during
the fork and clone system calls [49] (RenewSSP. This way, an
external attacker is not able to brute-force the stack canary in
scenarios where the request handling routine is forked from a
server application for each request, as is typically the case for
network facing applications.

q William Hawkins et al..
Dynamic Canary
Randomization for
Improved Software
Security. 2016.

Similarly, Dynamic Canary Randomization [40] was proposed
as an attempt to defend against attacks targeting stack canaries.
This technique re-randomizes all active stack canaries during
run-time so the attackers cannot reuse the knowledge they
gained while leaking memory from an earlier execution of the
attacked process.

Their prevalent use in current software makes stack

canaries an valuable attack target and circumvention thereof
has been studied in multiple works:

q Raoul Strackx et al..
Breaking the Memory
Secrecy Assumption.
2009.

Strackx et al. [62] analyze the security promises made by
randomization-based buffer overflow mitigation systems, such
as the ones described above. They conclude that a vulnerable
program offering both a buffer overread and a buffer overwrite
can be easily attacked.

q Yu Ding et al.. Android
Low Entropy Demystified.
2014.

Ding et al. [27] reveal weaknesses in
the StackGuard implementation of the Android 4.0 operating
system (OS), as the source of randomness used for the stack
canaries is only initialized once at OS boot and then used for
every application on the system.

3.3.2 Code Pointer Integrity

Recently, more advanced techniques have been proposed to
prevent buffer overflow attacks including Code-Pointer Integrity
(CPI) and Control Flow Integrity (CFI) [4]. Both techniques try
to protect the control flow from

q Martín Abadi et al..
Control-Flow Integrity.
2005.

being hijacked. Code-Pointer
Integrity (CPI) achieves this property by preventing an adversary
from corrupting pointers to code.

These advanced techniques have created the illusion that
stack canaries are

q Shuo Chen, Jun Xu, and
Emre Can Sezer.
Non-Control-Data Attacks
Are Realistic Threats.
2005.

nowadays obsolete. However, both techniques
consider non control-flow diverting attacks to be out of scope.
As we discuss later, this is an underestimated attack that can be
successfully countered by stack canaries [16]. While introduced

q Laszlo Szekeres et al..
Eternal War in Memory.
2014.

almost twenty years ago, stack canaries are still one of the most
widely deployed defense mechanisms to date [63] and are, as
we will show, a necessary complement to other more recent
modern buffer overflow mitigation mechanisms.

3.3 attack and defense of software vulnerabilities 23

CFI, on the other hand, tries to verify the integrity of code
pointers at the time a pointer is used by the program.

q Volodymyr Kuznetsov
et al.. Code-Pointer
Integrity. 2014.

Such an
approach was taken by Kuznetsov et al. [45], who secure code
pointers by storing them in a safe memory region. In their work,
they assume that the location of the safe region can be hidden
and thus remains secret.

3.3.3 Address Space Layout Randomization

In our work we make use of the layout and architecture of
the Linux dynamic loader and the standard library to bypass
address space layout randomization. Other work achieves the
same by leveraging the layout of the binary format (ELF for
Linux).

Leakless, for example, uses the dynamic loader’s functionality
to resolve library functions during runtime in order to break

q Alessandro Di Federico
et al.. How the ELF
Ruined Christmas. 2015.

required ASLR without the need of an address leak. With
this they effectively eliminate the information leak step that is
typically during exploitation [33].

q Hector Marco-Gisbert
and Ismael Ripoll. On
the Effectiveness of
Full-ASLR on 64-bit
Linux. 2014.

Marco-Gisbert and Ripoll [50] identified a related problem
in Linux’ memory management. In their work, they point out
that the application code used to be placed at a static offset to
library code (offset2lib vulnerability). For this, when leaking the
address of the executable code, an attacker is able to compute
the addresses of library code and vice versa. As a result the
Linux kernel developers modified mmap to randomize the image
base of the executable binary independently of dynamic libraries
within the virtual memory.

However, in our work, we show that the original problem still
persists: Due to the allocation strategy of mmap libraries are
still allocated in one adjacent block. Thus, when leaking the
address of the code or data of one library, an attacker is still able
to calculate the addresses of the code and data of other libraries.

Interestingly, there already exists a patch that allows to al-
locate memory at

q William Roberts.
Introduce mmap
randomization. 2016.

properly randomized virtual addresses [58].
This patch, while being discussed, never made it into the up-
stream sources for unknown reasons.

4
C O N T R O L F L O W L I N E A R I S AT I O N

Piracy is a persistent headache for software companies that
try to protect their assets by investing both time and money.
Program code obfuscation as a subfield of software protection
is a mechanism widely used toward this direction. However,
effectively protecting a program against reverse-engineering
and tampering turned out to be a highly non-trivial task that
still is subject to ongoing research. Recently, a novel obfusca-
tion technique called Control Flow Linearisation (CFL) is gaining
ground. While existing approaches try to complicate analysis by
artificially increasing the control flow of a protected program,
Control Flow Linearization (CFL) takes the exact opposite direc-
tion: instead of increasing the complexity of the corresponding
CFG, the discussed obfuscation technique decreases the amount
of nodes and edges in the CFG. In an extreme case, this means
that the obfuscated program degenerates to one singular basic
block, while still preserving its original semantics.

The CFL transformation makes all original control flow
changes implicit (i.e. it removes explicit branch instructions
entirely). In fact, jump free programming is entirely feasible
without loosing Turing completeness (cf. [28]).

q Stephen Dolan. Mov Is
Turing-Complete. 2013.

CFL constitutes
a way of preventing symbolic execution engines from enumer-
ating all satisfiable paths through a program. Therefore, deob-
fuscation relying on symbolic execution fails to recover the full
CFG of a program protected by CFL. This is extremely useful for
the software authors that desire to hide the internal operations
of their programs. In essence, the Movfuscator [3]

® https://github.com/
xoreaxeaxeax/
movfuscator

which is to
the best of our knowledge the only real world implementation
of CFL, helps software to defend itself from reverse engineering.

However, as with any other solution, CFL is not entirely bul-
letproof. In this chapter we show that it is possible to construct
a deobfuscator—the DeMovfuscator—that can reconstruct the
control flow of linearised, obfuscated binaries. In addition, we
evaluate both the performance and size overhead of CFL as
well as the feasibility of DeMovfuscator. Overall, we show
that even though CFL sounds like an ideal solution that can
evade the state of the art deobfuscation approaches, it is not
impenetrable.

The overall structure of this chapter is twofold: We first de-
scribe the transformations required to linearise (obfuscate) a

https://github.com/xoreaxeaxeax/movfuscator
https://github.com/xoreaxeaxeax/movfuscator
https://github.com/xoreaxeaxeax/movfuscator

26 control flow linearisation

1 #include <stdio.h>
2

3 int main(int argc, char **argv) {
4 size_t i = 0; /* bb0 */
5 if (argc == 1) {
6 puts("One argument supplied.."); /* bb1 */
7 } else {
8 puts("More than one argument supplied."); /* bb2 */
9 }

10

11 for (i = 0; i < argc; i++)
12 printf("Argument %zu is %s.\n", i, argv[i]); /* bb3 */
13

14 return 0; /* bb4 */
15 }

(a) Source Code

bb0

bb1

bb2

bb3

bb4

dstart

dend

(b) Flattened

bb0

bb1

bb2

bb3

bb4

(c) Original

bb0

bb1

bb2

bb3

bb4

(d) Linearised

Control Flow Linearisation

Control Flow Flattening

Compilation

FIGURE 7
Comparison of (a) Source Code, (c) the Compiled Program, (b) the Control Flow Flattening (CFF) Obfus-
cated Program, and (d) the CFL Obfuscated Program.

program followed by the construction and evaluation of our
deobfuscation approach.

Parts of this chapter are based on the publication Combating
Control Flow Linearization

q Julian Kirsch, Clemens
Jonischkeit, Thomas
Kittel, Apostolis Zarras,
Claudia Eckert.
Combating Control Flow
Linearization. 2017.

whose author list the thesis author is
part of.

4.1 obfuscating transformation

We call a program linearized if it consists of only one

singular basic block (excluding initialisation of the environment)
that ends in a jump targeting itself. FIGURE 7D shows an exam-
ple of such a program. CFL therefore makes the control flow
of a program implicit by removing all control flow changing
instructions without loosing Turing completeness.

4.1 obfuscating transformation 27

4.1.1 Constructing Linearized Programs

The central idea of CFL is to duplicate all writable program
variables in memory and to re-route all write accesses to either
a real set of data or scratch data. This enables the processor
to formally execute all instructions in the program while only
a subset of instructions affects the current program state. This
effect is used to simulate the execution sequence of the basic
blocks of the original program and consequently to simulate
jumps without the need for branch instructions. In the following
paragraphs, we structure this approach to provide a generic
transformation strategy to construct linearized programs.

Scratch and Real DataWith the unavailability of conditional jumps, all instructions
of a program need to be executed unconditionally. We can
simulate (un)conditional jumps by mitigating the side effects of
memory writes that are not caused by the currently intended
basic block. If the effects of the instruction writing to memory
should not be visible to the program, we need the code to write
to the scratch version of a variable in memory; otherwise the
write operation should target the real version of the variable.

Labels and StatesNext, we assign a unique label to each basic block of the
original program. For simplicity, we use each basic block’s
virtual address in memory as its label. We also introduce a
global state variable that during each point in execution holds
the label of the currently executing basic block. Thus, during
execution of the linear program, the program is at all times able
to calculate if the current block should write to the real program
state or to the scratch version.

State TransitionsJumps connecting the basic blocks are realized as transitions
of the global state variable. This is achieved by appending code
that updates the state variable to each basic block. Note that
the state variable itself also consists of a real and a scratch

location, as basic blocks that are not targeted by the current
state also have to discard their updates to the state variable.
Based on this construction, any jump predicate can be re-written
as the base address of the state variable plus the Boolean result
of the jump predicate, where true equals 1 and false equals
0. This allows to unconditionally execute each instruction but
only if the corresponding predicate is true, the side-effects of
the instruction will become visible to the global program state.

Final JumpAdhering to this construction, it is possible to merge all ba-
sic blocks of the original program into one linear basic block
without the need for any branch instructionsion. However, to
re-trigger the execution of the program and to give other ba-
sic blocks the possibility to execute their payload, a final jump

28 control flow linearisation

transferring control from the end to the start of the linearized
program is appended.

Example of Manual
Linearization

To understand the principles of Control Flow Linearization,
we perform a manual step-by-step transformation of a simple
program computing the factorial of a user-specifiable number:

int main(int argc, char **argv) {
unsigned long long j = 0, res = 1, bnd = 0;
if (argc < 2) {

exit(-1);
}
bnd = strtoll(argv[1], NULL, 0);
for (j = 0; j < bnd; j++) {

res *= (j + 1);
}
printf("Result: %llu\n", res);
exit(0);

}

Computation is straightforward: Get the argument from the
user from the command line and convert it to a number via
strtoull. Then, compute the factorial fac within a loop. As a
first step to linearize this program, we re-write high-level control
flow constructs such as for loops solely using goto primitives
and labels:

int main(int argc, char **argv) {
unsigned long long j = 0, res = 1, bnd = 0;
S0: if (argc < 2) goto S4; else goto S1;
S1: bnd = strtoll(argv[1], NULL, 0); goto S2;
S2: res *= (j + 1); j += 1; if (j < bnd) goto S2;
S3: printf("Result: %llu\n", res); exit(0);
S4: exit(-1);

}

The above result is an equivalent program computing the
factorial. Such a transformed program is guaranteed to exist due
to Turing-completeness of goto-computability. The transformed
program transitions through one or multiple states (indicated
by labels S0-S4) while computing the factorial:

S0 Initialize local variables. Check the if the user passed in at
least one argument. Go to S1 if true, otherwise go to S4.

S1 Convert the user argument to a number and store the
result in bnd. Afterwards go to S2.

S2 Multiply result variable res by counter variable j + 1.
Increment counter variable. If counter is strictly less than
bnd, go to S2 (repeat).

4.1 obfuscating transformation 29

S3 Print the result and exit the program with exit code 0,
indicating successful computation.

S4 Exit the program with exit code -1 to indicate an error.

Now, transform the goto-program as follows: Introduce a new
state variable, and replace all goto statements by assignments
to the state variable. Wrap the result into an infinite loop and
add a switch statement serving as a dispatcher that executes
the right code according to the state variable:

int main(int argc, char **argv) {
unsigned long long j = 0, res = 1, bnd = 0;
unsigned int state = 0;
while (1) {

switch (state) {
case 0:

if (argc < 2) state = 4;
else state = 1;

break;
case 1:

bnd = strtoll(argv[1], NULL, 0);
state = 2;

break;
case 2:

res *= (j + 1);
j += 1;

if (j >= bnd) state = 3;
break;
case 3:

printf("Result: %llu\n", res);
exit(0);

break;
case 4:

exit(-1);
break;

}
}

}

Finally, introduce two memory slots per local variable by
defining two-element arrays. Of those two array elements, we
define the first one (index 0) to contain scratch data and the
second one (index 1) to contain real data. This step is also re-
peated for external functions, introducing one two-element array
containing function pointers to either a no-operation function or
the pointer to the desired external function. Then, the switch
logic can be simulated by assigning and reading the real data
value of each local variable only if the real value of the state

30 control flow linearisation

variable is set to the identifier of the current block. Then, the
final program computing the factorial of a number given by the
user with linear control flow looks as follows:

#include <stdio.h>
#include <stdlib.h>

void nop(void) { return; }

#define OFF_REAL 1
#define OFF_SCRATCH 0
#define SRI(X) (state[OFF_REAL] == (X))

int main(int argc, char **argv) {
unsigned long long j[2] = { 0, 0 };
unsigned long long res[2] = { 0, 1 };
unsigned long long bnd[2] = { 0, 0 };
unsigned int state[2] = { 0, 0 };
int (*printf_ptr[2])(const char *, ...) =

{ nop, printf };
int (*strtoull_ptr[2])(const char *, char **, int) =

{ nop, strtoull };
int (*exit_ptr[2])(int) = { nop, exit };

while (1) {
/* S4: exit(-1); */
exit_ptr[state[OFF_REAL] == 4](-1);

/* S3: printf("Result %llu\n", res); exit(0); */
printf_ptr[SRI(3)]("Result: %llu\n", res[SRI(3)]);
exit_ptr[SRI(3)](0);

/* S2: res *= (j + 1); j += 1;
if (j >= bnd) goto S3; else goto S2; */

res[SRI(2)] = res[SRI(2)] * (j[SRI(2)] + 1);
j[SRI(2)] = j[SRI(2)] + 1;

state[SRI(2)] = (j[SRI(2)] >= bnd[SRI(2)]) * 3;

/* S1: bnd = strtoll(argv[1], NULL, 0); goto S2; */
bnd[SRI(1)] = strtoull_ptr[SRI(1)](

argv[1], NULL, 0
);

state[SRI(1)] = 2;

/* S0: if (argc < 2) goto S4; else goto S1; */
state[SRI(0)] = (argc < 2) * 4;
state[SRI(0)] = 1;

}
}

4.1 obfuscating transformation 31

4.1.2 Challenges on Real Computing Systems

When implemented for the Intel x86 architecture, CFL faces
several challenges.

To begin with, while a hypothetical Turing Machine Finite Amount of
Memory

operates
on an infinite amount of memory, contemporary von-Neumann
systems typically provide only a finite number of addressable
bytes in memory. Thus—with finite memory—dereferences
of unmapped memory regions can occur if the non-linearised
version of the program assigns an invalid value to an index
variable (e.g., a pointer in the C programming language) at the
global scope: Even though the dereference operation with an out-
of-bounds index might not be reachable from the point where
the new value is assigned in the original program, the linearized
version will execute the dereference and throw away the side
effects later, which might lead to an instant program crash.
To mitigate this issue, CFL can be extended to guard memory
dereferences by adding an instruction that sets dereferenced
operands to a known good value if the basic block containing
the instruction is not active during execution.

The problem of erroring instructions can encounter in Erroring Instructionsmulti-
ple contexts. Any x86 instruction that can synchronously gener-
ate an exception (such as div and mod) needs to be guarded by
an appropriately inserted instruction that sanitizes the operand
and sets it to a known safe value before the offending operation
is executed.

A-priori well-definedness of memory cells Memory Initializationcannot be assumed
on the x86 architecture. Variables need either be located in
the .bss section putting them at the global scope or explicitly
initialized in a function prologue if they reside on the x86 stack.
The latter option adds one basic block in front of the linearized
code which sets up a stack frame and initializes all local variables
to zero.

Another challenge when linearising programs Function Callsis their abil-
ity to call into other functions, as a function call effectively
introduces branches into a linearised program. Such high-level
primitives can be adopted in two ways. Either the call to a
function can be replaced by the called function itself, a process
usually referred to as inlining, or local variables holding function
pointers can be introduced. In the latter case, a variable would
point to either the correct call target or to a single ret instruction
depending on if the basic block containing the call is marked
for execution.

These two ways of handling function calls lead to two different
results of the linearisation: In the latter case, each function is

32 control flow linearisation

linearized to one block, whereas in the former case the whole
program including all functions is transformed to one block.

4.1.3 Instruction Substitution Layer

We have seen how one can construct programs with linear
control flow. As a second step, to make obfuscation more tedious
to analyze, one can substitute all instructions of a linearized
function with mov instructions.

In the following we describe the Movfuscator—a public im-
plementation of CFL via instruction substitution by Christopher
Domas. The Movfuscator is implemented

q Christopher Fraser,
David Hanson. A
Retargetable C Compiler:
Design and
Implementation. 1995.

as a compiler back
end of the Little C Compiler (LCC) [36], capable of compiling
programs written in ANSI C. The Movfuscator is organized as
a virtual machine whose instructions are implemented by only
mov instructions.

We adhere to the terminology introduced by Christopher
Domas and call the process of substituting a program with
exclusively mov instructions movfuscation.

Execution Environment The Movfuscator VM in its standard configuration consists
of four byte-addressable general purpose registers with a ma-
chine word size of 32 bits, two single, and two double precision
floating point registers. A stack pointer register points to a full
descending stack consisting of 32 bit words. The Movfuscator

VM uses an instruction pointer (ip) that addresses the program
at a basic block granularity (we will use the terms ip and tar-
get interchangeably). That is, the instruction pointer always
points to the beginning of the currently executing basic block.
A status register storing comparison results with zero-, signed-,
overflow-, and carry-flag works analogously to the x86 status
register.

The basic execution is governed by the virtual instruction
pointer target and the on flag. The former contains a label,
the virtual address of the basic block that should be executed.
At the end of each basic block of the original program the label

is updated, effectively implementing jump instructions. The on

register is a performance optimization: instead of predicating
each memory write access with the result of the comparison
label == ip, the comparison is done only at the beginning of
each basic block and the result is stored in on. At the end of
each basic block, on is set to false and target is updated to
reflect the outgoing edge of the current basic block.

Arithmetic and Logical
Operations

Arithmetic operations are performed by an Arithmetic Logical
Unit capable of 32 bit integer computations. All computations
are performed using look up tables. This constitutes a challenge
as the machine word size is equal to the number of address

4.1 obfuscating transformation 33

a = a0 · 224 + a1 · 216 + a2 · 28 + a3

b = b0 · 224 + b1 · 216 + b2 · 28 + b3

c = a · b
= (a0 · 224 + a1 · 216 + a2 · 28 + a3)·

(b0 · 224 + b1 · 216 + b2 · 28 + b3)

= (a3 · b3) ·20+

(a2 · b3 + a3 · b2) ·28+

(a1 · b3 + b1 · a3 + a2 · b2) ·216+

(a0 · b3 + b0 · a3 + a1 · b2 + a2 · b1) ·224+

Ω(232)

≡ (a3 · b3) << 0 |
(a2 · b3 + a3 · b2) << 8 |
(a1 · b3 + b1 · a3 + a2 · b2) << 16 |
(a0 · b3 + b0 · a3 + a1 · b2 + a2 · b1) << 24

FIGURE 8
Multiplying 32 Bit Integers using only 16 Bit Addition, 16 Bit Multiplication, 32 Bit Logical Bit Shifts (<<),
and bitwise OR (|).

bits in the virtual memory space. As such, look up tables for
all arithmetic and logical instructions grow bigger than the
addressable memory space. To circumvent this problem, the
inputs for computations are split up into smaller values on
which computations are performed using two-dimensional look
up tables.

To illustrate that this is possible, we consider the rather com-
plex example of multiplying two 32 bit integers. Given two inte-
gers, the Movfuscator calculates the 32 bit result c = a · b by de-
composing the 32 bit multiplication into table look ups of 16 bit
multiplications and 16 bit additions (requiring 2 · 256 · 256 = 217

bytes each), 32 bit logical bit shift operations (requiring 4 · 256 · 31
bytes each), and bitwise OR operations. For the exact derivation
of the formula, we refer the reader to Figure FIGURE 8.

The execution of the generated linearized basic block is re-
scheduled infinitely during program execution. To restart execu-
tion, the Movfuscator generates code that transfers the control
flow to the beginning of this code. To do so, the code configures
itself to be its own, nestable SIGILL handler. Using this tweak,
execution can be re-triggered at the end of the instruction stream
using an illegal mov-instruction.

Library FunctionsTo interface with the OS, the Movfuscator follows the ap-
plication binary interface as defined by external libraries. This

34 control flow linearisation

means that the obfuscated program sets a special memory lo-
cation external to the target function’s entry in the Procedure
Linkage Table (PLT)3. Afterwards, it prepares the function argu-3 The PLT acts as a

proxy for external
function calls.

ments on the stack pointed to by the esp register prior to writing
the correct return address on the stack and triggering a segfault
by a NULL pointer dereference. This enables the Movfuscator

to call external functions only if execution is enabled by on. As a
matter of fact, there exists a fault memory location that contains
a valid pointer (no segfault) followed by a NULL pointer that
can be accessed similar to other variables. The reason for trig-
gering the segment violation is that it provides a mov-only way
of directing the execution towards a signal handler (SIGSEGV)
that calls the actual library function contained in external.

Hardening Against
Pattern Recognition

To prevent generating code with a 1:1 relationship between
the original x86 and the Movfuscator VM’s instructions and to
defend against pattern recognition, the Movfuscator employs
two hardening techniques:

The first is register shuffling. Instead of statically assigning
registers, the generated code randomly uses one of the eax, ebx,
ecx, edx general purpose registers for computations.

The second is instruction re-ordering. The Movfuscator does
a primitive, “overly restrictive”4 data-dependency analysis on4 According to its

creator Christopher
Domas

the generated code. This analysis identifies independent pairs
of instructions that can be re-ordered without destruction of the
program’s semantics.

4.2 deobfuscating transformation

In this section we introduce the DeMovfuscator.
® https:

//kirschju.re/demov

Our deob-
fuscation algorithm is a linear-sweep algorithm that operates
in four stages. All assumptions we make are generic for every
binary generated by the Movfuscator and work regardless of
the hardening techniques as described earlier. Note that while
this might seem to be very specific to the Movfuscator, we
argue that all obfuscators that implement CFL are per design
required to contain similar building blocks. Therefore, our ap-
proach is general for different CFL implementations. At a high
abstraction level, our algorithm consists of the following four
steps:

1. Finding Key Structures. In this phase we infer the location
of critical data structures such as the global variable on

indicating whether execution is enabled. Our assumptions
are carefully tailored to be applicable to invariants that
all linearized programs generated by the Movfuscator

satisfy. We also reconstruct the semantic meaning of the

https://kirschju.re/demov
https://kirschju.re/demov

4.2 deobfuscating transformation 35

respective look up tables that are later used to recover
arithmetic computations performed by the code.

2. Identifying Labels. From instructions that enable execu-
tion (i.e., set on to true), we employ a backward data-flow
analysis. Reconstruction of the label is performed by
an automatic theorem prover. As a side-effect, this step
also reconstructs the location of the global state variable
target.

3. Identifying Jumps and Calls. From instructions that dis-
able execution (i.e., set on to false), we infer jumps and
thus basic block boundaries.

4. Reconstructing the CFG. Using the gained information,
we patch the original binary to make the control flow
explicit again.

4.2.1 Finding Key Structures

In the first step, we are required to find critical management data
structures of the state machine that were generated by the obfus-
cator. We first derive the location of the on data structure from
the static initialization code. Note that while a simple pattern
matching approach would be sufficient (the static initialization
code is approximately the same for all binaries generated by the
Movfuscator modulo special compiler flags that omit parts),
we improve resilience against changes and further applicability
of our approach by reconstructing the location of on using taint
analysis. At a high level, our algorithm determines the location
of an instruction that has the shape of instruction β as seen in
FIGURE 9.

From instruction β, we perform a backward taint analysis
to infer the origin of register r1 5. Upon finding a candidate 5 In the following we

write r{N} to denote an
arbitrary (x86) general
purpose register.

instruction α with the memory location b containing data that
has been statically initialized to true, we assume a to be the

1 mov r1, [b] ; α

2 ; ...
3 ; instructions not
4 ; targeting r1
5 ; ...
6 mov r0, [a + r1 * 4] ; β

FIGURE 9
Finding sel_on

1 mov r0, [sel_on + r1 * 4] ; γ

2 ; ...
3 ; instructions not
4 ; targeting r0
5 ; ...
6 mov [r0], 1

FIGURE 10
Usage of sel_on

36 control flow linearisation

0xcb 0x07

and

0x03

or

0xcf

xor

0xcc

xnor

0xcd

bitset

0xcb

bitclear

0x4b

add

0xd2

mul_lo

0x8d

mul_hi

0x05

FIGURE 11
Distinguishing Lookup Table Based Arithmetic and Logical Operations According to Input Operands
0xcb and 0x07

location of sel_on, an array whose first entry contains a pointer
to the global scratch location and secondly a pointer to on.

4.2.2 Identifying Labels

After having found the location of sel_on, we continue by iden-
tifying the labels of the basic blocks contained in the original
program. This is achieved by scanning for an instruction that
uses sel_on as a base address for an indirect memory access (for
example instruction γ in FIGURE 10 loading the location of on

into r0). From this location we employ forward taint analysis
to find the point where on is set to 1 (true). In such a case,
we know that instruction γ is responsible for selecting the on

variable or the scratch variable depending on the result of the
predicate stored in r1.

With this knowledge it is possible to perform a backward taint
analysis6 from γ to reconstruct the predicate that evaluated to6 Taint analysis on

movfuscated programs
is trivial to implement,
as the analysis engine
needs to support only
one instruction type.

the value in r1. The backward analysis continues until: (i) the
beginning of the program is reached, (ii) we find another in-
struction modifying on, or (iii) all taint is sanitized. We then
reconstruct the syntax tree of the predicate that evaluates to the
truth value contained in r1 from the tainted instructions. To
obtain the original semantic meaning of the operations, we use
a-priori knowledge about the look up tables that implement the
operations of the Movfuscator ALU: whenever an instruction
accesses a look up table in static memory, we determine the
result of the operation for two preselected arguments which are
known to evaluate to distinct values for each computation that
the virtual ALU is capable of (see FIGURE 11). This approach
enables us to reason about the arithmetic and logical operations
contained in the reconstructed predicates.

4.2 deobfuscating transformation 37

1 mov r0, [sel_on + r1 * 4] ; δ

2 ; ...
3 ; instructions not
4 ; targeting r0
5 ; ...
6 mov [r0], 0

FIGURE 12
Distinguishing conditional andunconditional jumps

1 mov r0, [c + r1 * 4]
2 ; ...
3 ; instructions not
4 ; targeting r0
5 ; ...
6 mov [r0], r2 ; ε

FIGURE 13
Distinguishing direct and indirect control
�ow changes

The result of the above step is a Boolean formula that repre-
sents the equality check of the basic block’s (constant) label

and the virtual instruction pointer ip indicating whether the
current basic block should be executed. Therefore, it is possible
to obtain from this formula the location of the virtual instruc-
tion pointer ip and the label of the current basic block. The
latter is obtained by constraining the predicate to 1 (true) and
solving the formula for ip. In this step, our implementation uses
the automatic theorem prover z3 [25]. By repeating the above
procedure, the algorithm is able to determine the labels of all
basic blocks of the program.

4.2.3 Identifying Jumps and Calls

In the third step we use the knowledge gained in the second
step to reconstruct the analysis target’s original jump and call
primitives. Jumps and calls are determined using an approach
similar to the identification of labels: The algorithm performs a
second linear sweep to mark instruction sequences that disable
execution by setting on to 0 (false), which is illustrated in
FIGURE 12. This is needed to determine whether the control flow
change is performed conditionally or unconditionally. We use
the same technique as explained earlier involving backward
taint analysis starting at instruction δ to compute the syntax
tree of the predicate contained in r1. Using z3 we can decide
whether the predicate evaluates to either a constant value, in
which case the control flow change occurs unconditionally or
alternatively to a formula containing symbolic values, which
indicates a conditional jump.

To recover the label indicating the target basic block, we
need to identify modifications of the virtual ip (instruction ε in
FIGURE 13). In this example, if r0 is the memory location of ip

then consequently c is the memory location of sel_target, an
array holding the global scratch location at index 0 and target

at index 1.

38 control flow linearisation

Predicate Value Recovered
Source Written Control Flow Change

Immediate Constant Unconditional Direct Jump
Immediate Formula Conditional Direct Jump
Stack Ignored Return from Call
Other memory Ignored Indirect Jump

TABLE 1
Control �ow changes depending on predicate sources and values written.

After deriving the location of sel_target we have to distin-
guish indirect jumps from direct jumps and calls. This is done
by analyzing not only the value of r1 but also the source of the
predicate contained in r2 for each access of sel_target. TABLE 1
lists the different decision rules used to determine the type of
the control flow change. A basic block never targeted by a jump
succeeding an unconditional direct jump is assumed to be a
return target. Consequently, we assume the preceeding basic
block to end with a call.

Note that we do not infer outgoing edges for indirect jump tar-
gets, as this is a challenging problem which is heavily discussed
by literature. A promising way of resolving indirect jumps is for
example value set analysis [6]. However, the algorithm finds the
basic blocks that constitute the indirect jump targets.

4.2.4 Reconstructing the Control Flow Graph

Following all steps explained above, the algorithm constructs a
list of nodes and edges that form the control flow graph of the
original program. We use this information to generate images
depicting the control flow as well as a patched executable.

We do this by ordering all jumps and labels by their respective
virtual address and interpreting them as nodes. We iterate over
all nodes once. If the current node is a call label, we add an edge
to the next element, if it is a conditional jump we add a node in
between the current and the next node and add edges between
the current and the intermediate node as well as between the
intermediate and the next node. In case of an unconditional
jump we just add an edge to the target of the particular jump
instruction. After this step, all weakly connected nodes form
a function and can be merged. By analyzing the calls made
from each function, we can then reconstruct the call graph of
the analyzed obfuscated binary.

4.3 evaluation 39

Primes Factorial SHA-256

Non-Lin. Lin. Non-Lin. Lin. Non-Lin. Lin.

Non-Sub.
0.88 s 5.03 s < 0.01 s < 0.01 s 0.02 s 0.4 s
240 B 928 B 1884 B 1936 B 5672 B 8564 B

Sub.
62.82 s 289.47 s < 0.01 s < 0.01 s 8.09 s 60.57 s

16, 957 B 16, 957 B 10, 684 B 10, 684 B 213, 740 B 213, 740 B

TABLE 2
Control Flow Linearisation Overhead in terms of run-time (seconds) and code size (bytes) Observed for
the three Evaluation Targets using combinations of Linearisation (Columns) and Substitution (Rows)

4.3 evaluation

This section evaluates both the obfuscation and the deobfusca-
tion process. Obfuscation is measured in terms of run-time and
size overhead, whereas our deobfuscation algorithm is evaluated
on empirical correctness.

4.3.1 Obfuscation Overhead

To estimate the cost of the obfuscation in terms of size and run-
time overhead for different classes of programs, we obfuscated
three sample programs with known source code Primes, Facto-
rial, and SHA-256. Primes is an implementation of the Sieve of
Eratosthenes (cf. FIGURE 14) calculating all prime numbers smaller
than 5 · 107, while Factorial calculates the factorial 20! using a
one-dimensional loop. To understand the overhead introduced
into computationally heavy programs with few jumps we also
evaluated an implementation of the secure hashing algorithm
using program SHA-256.

As such, every program produced eight data points: size
and run-time for the non-linearized, non-substituted unobfus-
cated version as generated by gcc version 5.3.1, the linearised
and substituted version as generated by the Movfuscator ver-
sion 2.0 and two versions that were obfuscated using only one
of the mechanisms. The linearised, non-substituted version
was generated by rewriting the C source code according to the
Movfuscator-VM while the non-linearized, substituted version
is the output of our deobfuscator applied to the movfuscated
version. All run times are averaged over ten runs as measured
on a Intel Core i7-4770 clocked at 3.4 GHz. For the aforemen-
tioned combinations of obfuscation techniques we also added
the net size of the generated code section in bytes excluding
overhead introduced by the executable format. The results can
be seen in TABLE 2.

The measurements show that the linearization itself already
leads to a notifiable increase in both run-time overhead and

40 control flow linearisation

1 int main(int argc, char **argv) {
2 int cap, i;
3 int *buf;
4 if (argc < 2)
5 return 1;
6 if (myatoi(argv[1], &cap) || cap < 2)
7 return 2;
8 buf = malloc(sizeof(int) * ((cap + 31) >> 5));
9 for (i = 0; i < (cap + 31) >> 5; i++)

10 buf[i] = ~0;
11 for (i = 2; i < (cap >> 1); i ++) {
12 int b;
13 if (buf[i >> 5] & (1 << (i & 31))) {
14 for (b = i + i; b <= cap; b += i)
15 buf[b >> 5] &= ~(1 << (b & 31));
16 }
17 }
18 for (i = 2; i <= cap; i++) {
19 if (buf[i >> 5] & (1 << (i & 31)))
20 printf("%d is prime\n", i);
21 }
22 return 0;
23 }

FIGURE 14
Implementation of the Sieve of Eratosthenes (primes) in C and the control �ow graph generated by our
deobfuscation approach from the movfuscated executable.

binary size. For example, the SHA-256 program runs about 20

times slower after linearization, while code size increases by
roughly a factor of two. This magnitude of overhead makes
the obfuscation unsuitable to fully protect performance critical
applications, but could still be used to obfuscate critical parts of
an core algorithm’s implementation.

Instruction substitution however leads to a significant over-
head both in run-time as well as in binary size. As the cal-
culation of a hash for one megabyte of data takes more than
one minute (as opposed to less than a second in the original
program), we argue that this kind of obfuscation is not usable
in practice.

Note that the size values for the linear and the non-linear
version in TABLE 2 are the same as they differ only by the patched
bytes that our deobfuscation algorithm introduced. To keep the
binary functional relative distances of jumps and calls need to
remain the same, and consequently the size does not change for
the deobfuscated versions.

4.3.2 Deobfuscation Correctness

To determine the correctness of our deobfuscation algorithm,
we compared the CFG of the original (pre-obfuscated) version
with the control flow graph of the deobfuscated version of
four sample programs: Primes, Factorial, AES-128, and SHA-256.
TABLE 3 shows the time required to run our deobfuscation algo-

4.3 evaluation 41

Primes Factorial SHA-256 AES

0.47 s 0.213 s 0.824 s 3.68 s

TABLE 3
Deobfuscation times of the implementation of our algorithm.

Source Name Accepted Solution

Christopher Domas crackme {recon2016}
Hackover CTF 2015 move_it tH1s_I5_FuN
0ctf 2016 momo 0ctf{m0V_I5_tUr1N9_c0P1Et3!}
Google CTF 2016 guessme On-the-fly generated modified SHA1 hash

TABLE 4
Solutions for Obfuscated Executables Created by Third Parties as Reverse Engineering Challenges During
Capture the Flag Competitions.

rithm on the tested binaries. In all cases, except with the simple
factorial algorithm, it was faster to deobfuscate the obfuscated
binary and to execute the deobfuscated result, than to execute
the obfuscated version.

We chose SHA-256 and AES-128 to show that DeMovfuscator

works on programs performing complex operations. For AES-
128, we followed the official NIST specification on standardized
AES vectors and verified that the results of encryption and
decryption as performed by the executable generated by our de-
obfuscation algorithm matched the expected outcomes [30]

q Morris Dworkin.
Recommendation for Block
Cipher Modes of
Operation. 2001.

. To
understand the qualitative behavior of our algorithm, we com-
pared the CFG generated from the obfuscated Primes program
with its known, unobfuscated C source code. The reconstructed
CFG closely matches the original program. This proves that
even if a program has been obfuscated with CFL, deobfuscation
is still possible.

One way to show the generality of our approach is to create
a pool of binaries, obfuscate them, and then try to reconstruct
their original CFGs. Internet is obviously the best existing pool
to collect binaries. Another source we used to harvest binaries
is computer security competitions (Capture-the-Flag contests).
These contests often contain clever-crafted binaries which are
ideal for our evaluation. To this end, we used both sources
and indeed our algorithm was able to reconstruct the control
flow for all collected binaries. Our algorithm became handful in
previous Capture-the-Flag contests where it helped us to find
an input accepted by the binary and therefore solving the task
(see TABLE 4).

42 control flow linearisation

Clean Obfuscated Deobfuscated

Basic Blocks Executed 37 99,999 87

Execution Time (s) 5.1 1704.3 17.9
Explored Paths 2 1 3

Executable Size (bytes) 5400 5,962,776 5,962,776

TABLE 5
Execution Times of the angr Symbolic Execution Engine toDetect a Backdoor in an (Obfuscated) Example
Executable.

4.3.3 Impact on Symbolic Execution

To study the impact of movfuscation on a symbolic execu-
tion engine, we reproduced the results of

q Yan Shoshitaishvili et
al.. Firmalice - Automatic
Detection of
Authentication Bypass
Vulnerabilities in Binary
Firmware. 2015.

Firmalice [61] and
measured execution times for the clean, the movfuscated, and
the deobfuscated version of the Fauxware example backdoor.
We used angr from the official repository at commit fe30277

running on pypy version 4.0.1. and configured it to prevent
concretising symbolic memory accesses7 during the operation7 By means of angr’s

CONSERVATIVE_READ-
_STRATEGY and

CONSERVATIVE_WRITE-
_STRATEGY flags

of the Movfuscator ALU.
As angr currently does not implement the sigaction syscall

used by the Movfuscator, we adjusted the obfuscated version
to call library functions via the (traditional) PLT mechanism
rather than the SIGSEGV handler. We also patched out the calls
to sigaction and replaced the final illegal instruction with a
proper jump to re-trigger execution of the basic block.

The Fauxware executable asks for a username and a password
and compares them against a database of legitimate credentials.
There exists an execution path that checks the input against hard
coded credentials and thus effectively bypasses the authentica-
tion step. To find the existence of the backdoor, the original work
proposes to use path exploration to check whether there exists
an satisfiable path to the code that should only be reachable for
legit users without entering credentials from the user database.
We applied the script performing the detection to the original,
the obfuscated, and the deobfuscated version of the binary and
measured execution times. As FIGURE 5 shows, the backdoor can
be found in short time before obfuscation. As the executable
is intentionally kept simple, already the second explored path
triggers the backdoor condition. Nevertheless, analyzing the
same executable in its obfuscated version, angr times out after
reaching the maximum number of executed basic blocks. It is
noteworthy Note that even though the Movfuscator generates
code consisting of only one basic block, angr counts multi-
ple basic blocks due to the invocation of library functions and
a maximum number of instructions that one basic block can
contain. Internally the path exploration seems to be unable to

4.4 conclusion 43

reason about symbolic values, as the number of paths (1) shows.
We tried to re-run the experiment without a threshold and let it
continue for 6 hours without being presented with a result.

After applying our deobfuscation algorithm to the obfuscated
binary we let symbolic execution explore the binary and angr

was able to find the backdoor in less than 20 seconds. One inter-
esting observation is that angr needed to explore one additional
path. We suppose this to be founded in internal path scheduling
discrepancies.

The run-time of our deobfuscation algorithm to generate a
patched version of this example with reconstructed control flow
amounted about 0.16±0.02 seconds (averaged over 100 runs).

4.4 conclusion

In this chapter, we evaluated to the best of our knowledge the
only publicly available implementation of CFL. Our evaluation
shows that instruction substitution is not applicable in real
world scenarios due to its high overhead in terms of execution
time and code size.

However, the significant overhead and the concealment of
explicit control flow changes poses a major challenge to dynamic
symbolic execution. We have shown a state of the art symbolic
execution engine to fail at path enumeration when analyzing a
linearized executable. We have also shown that this problem can
be recovered by employing our deobfuscation algorithm and
applying symbolic execution to the deobfuscated version.

In addition to the run-time overhead, which might be ac-
ceptable for the obfuscation of a small but critical part of an
algorithm, CFL has a major drawback due to its structure. It
depends on the existence of both a block selection register, like
the target register within the Movfuscator, and a global on

flag governing execution.
Our investigation revealed that these registers are relatively

easy to detect, as they have to be initialized within the static
initialization part of the obfuscated binary and are accessed at
the beginning and the end of each basic block of the original
program during execution. To harden future CFL implementa-
tions the locations of those registers have to be concealed such
that static analysis (as ours) cannot reason about the basic blocks
of the program.

In this chapter, we introduced the concept of CFL, a novel
method of program flow obfuscation. We evaluated this tech-
nique, by analyzing one existing implementation of CFL, called
Movfuscator, which combines CFL with instruction substitu-
tion. According to our experiments, obfuscated binaries cannot

44 control flow linearisation

be analyzed by symbolic execution anymore. We provided a
general method to automatically deobfuscate linearized pro-
grams. We have implemented this approach and shown that it
is able to preprocess obfuscated real world programs such that
they become analyzable by symbolic exeuction engines again.
We conclude that while the idea of CFL is interesting in terms of
obfuscation strengths, its application for real world obfuscation
scenarios is doubtful if execution speed is desired.

5
D Y N A M I C B I N A RY I N S T R U M E N TAT I O N I N
C O N T E X T O F S E C U R I T Y

Dynamic Binary Instrumentation (DBI) can help analysts

to inspect applications’ characteristics or alter their functional-
ities even when no source code is available. Therefore, DBI is
easily employed as a malware analysis tool where the absence
of source code is very common.

Similarly, computer systems are often subject to exter-
nal attacks involving malicious inputs that aim to gain control
over their functionality. Such attacks attempt to trigger existing
programming mistakes in software, such as memory corruption
bugs to subvert execution. DBI frameworks provide a possibil-
ity to conveniently add new functionalities to existing binaries,
thus rendering these frameworks useful to harden software. One
peculiarity illustrating this approach is program shepherding—a
technique that involves monitoring of all control transfers to en-
sure that each satisfies a given security policy, such as restricting
code origins and controlling return targets. According to the
program shepherding’s paradigms this is only possible because
the hardened application is executed in the context of a DBI
framework. A typical example of program shepherding is the
implementation of CFI policies using DBI to operate on COTS
binaries.

In this chapter we challenge both scenarios painted
above. We argue that the original intent driving the motivation
to build DBI frameworks was the ability to execute analysis
code in a way that interposes execution of the instrumented
program, i. e. analysis code can subscribe to be notified of any
occurring event taking place in context of the instrumented
program. Furthermore, an important design goal of DBI was to
equip analysis code with full inspection capabilities covering the
complete memory state of the target. In practice this is typically
achieved by introducing a single address space for both, analysis
code and instrumented program.

This observation is the main motivation behind our research.
We show that due to the shared memory model, DBI frameworks
in their current state are inherently incapable of providing nei-
ther stealthiness of the analysis code nor isolation of the analysis
code against manipulations from the instrumented target.

In the following, we focused (almost exclusively) on Intel
Pin version 3.5 in Just-In-Time (JIT) mode on x86-64 Linux

46 dynamic binary instrumentation in context of security

while comparing our results also against other common DBI
implementations.

q Julian Kirsch, Zhechko
Zhechev, Bruno
Bierbaumer, Thomas
Kittel. PwIN: Pwning
Intel PiN – Why DBI is
Unsuitable for Security
Applications. 2018.

Parts of this chapter are based on the publication PwIN:
Pwning Intel Pin – Why DBI is Unsuitable for Security Applica-
tions whose author list the thesis author is part of.

5.1 security guarantees of analysis frameworks

We follow the taxonomy of Garfinkel and Rosenblum [37] to
outline key requirements that any dynamic

q Tal Garfinkel, Mendel
Rosenblum, et al.. A
Virtual Machine
Introspection Based
Architecture for Intrusion
Detection. 2003.

analysis framework
needs to satisfy to provide meaningful results. We were inspired
by this particular work because within DBI the analysis plugin
and the instrumentation platform together can be perceived as
a virtual machine host, whereas the instrumented application
could be seen as a virtual machine guest. Hence, we define the
analysis plugin and the instrumentation platform to form the
analyzing system, as opposed to the instrumented application
which constitutes the analyzed system. Then, the Garfinkel and
Rosenblum taxonomy can be rephrased to DBI tools as follows:

r1 interposition The analyzing system can subscribe to and
is notified of certain events within the analyzed system. For
DBI this means that the instrumentation platform stops
execution of the instrumented application and transfers
control to the analysis plugin once certain events occur.

r2 inspection The analyzing system has access to the entire state
of the analyzed system. Thus, the analyzed system is unable to
evade analysis. In context of our work this implies that the
analysis plugin can freely access and modify all memory
and register contents of the instrumented application.

r3 isolation The analyzed system is unable to tamper with the
analyzing system or any other analyzed system. This means
that instrumentation platform and analysis plugin have
to defend themselves against (malicious) modifications
performed by the instrumented application.

In addition, researchers realized that for dynamic analysis
systems being suitable to handle malware they also need to
operate in a way that is transparent to the analyzed system. This has
the simple reason that so-called split personality malware might
evade dynamic analysis if it is

q Tamas Lengyel, Steve
Maresca et al..
Scalability, fidelity and
stealth in the DRAKVUF
dynamic malware analysis
system. 2014.

capable of detecting the analysis
environment, as for example pointed out by Lengyel et al. [46]:

r4 stealthiness The analyzed system is unable to detect if it
currently undergoes analysis. This means that the instru-
mented application must not be able to infer the presence
of the instrumentation platform.

5.2 stealthiness 47

Note that of the previously defined requirements, R1 (Interpo-
sition) and R2 (Inspection) are fundamental features of DBI. In
the following sections, we will challenge the previously defined
requirements R4 (Stealthiness) and R3 (Isolation) to show why
subversion both consequently also annihilates R1 (Interposition)
and R2 (Inspection).

The techniques to defeat Pin presented here all constitute
corner-cases of the x86 architecture and abuse mechanisms that
have to be supported by all contemporary processors, but are not
heavily used by typical applications. Hence it is not unlikely that
DBI implementors took certain shortcuts when implementing
under-used or archaic parts of the x86 architecture not required
in every-day computing tasks.

5.2 stealthiness

In this section we present several techniques that reliably de-
tect the presence

q Francisco Falcón,
Nahuel Riva. Dynamic
Binary Instrumentation
Frameworks: I know
you’re there spying on me.
2012.

of different DBI frameworks. Insights gained
during this process will help us later to break isolation. To
achieve this, we present several existing DBI approaches [35]
to Linux x86-64 and several new detection techniques. We
group detection techniques in three categories; (1) code cache
/ instrumentation artifacts, (2) JIT compiler overhead, and (3)
runtime environment artifacts. While we explain these tech-
niques targeting Pin, we found them also applicable to other
DBI implementations.

5.2.1 Code Cache / Instrumentation Artifacts

In the first category—code cache artifacts—we include anoma-
lies introduced by the fact that the executed code is not the
original one.

Wrong Emulation of
syscall Instruction

Independent of Pin, when executing any system call via
the syscall instruction the current instruction pointer value
is copied to the rcx

q Intel Corporation. Intel®
64 and IA-32
Architectures Software
Developer’s Manual. 2020.

register [41], such that the kernel can restore
execution correctly via the sysret instruction. As operation
of the kernel happens transparently, user land perceives the
syscall instruction to have the side effect of setting the rcx
register to the instruction right behind the syscall8. The first 8 Note that this is also

the primary reason why
the System-V-ABI for
AMD64 differs for
system calls and regular
calls in how rcx is
used.

detection method involves the way DBI frameworks emulate
system calls. For example, when Pin has to accomplish some
task outside of the Virtual Machine (VM), such as forwarding
a system call request from the instrumented application to the
host OS or determining the next instruction trace to execute, the
register state of the instrumented application is saved and the
VM is left.

48 dynamic binary instrumentation in context of security

However, this is not the case for an instrumented application
executed within DBI. Since DBI frameworks wrap all system
calls performed by the instrumented application, they need to
save the program’s register state before switching from the con-
text of the instrumented application to their own internal state.
When re-entering the context of the instrumented application,
apart from the syscall result in rax, no other side effects are
propagated back to the program. As a result, the rcx regis-
ter observed by the instrumented application stays constant
across system calls. This discrepancy can be used as a reliable
mechanism to detect Pin.

This problem is, however, easily fixable for Intel by changing
the system call handling code in Pin to additionally set the rcx
register to the expected value before giving control back to the
instrumented application.

As already described, Pin does mask (almost)Wrong Emulation of
rdfsbase Instruction

all register
values, including the current instruction pointer. However, there
are some cases where register masking is broken. One such
example is the base value of fs-relative memory accesses via
the fs_base register. The standard C library on Linux uses this
mechanism to manage thread-local variables. Hence, Pin must
make sure to separate its own thread-local variables from those
of the guest by keeping two distinct fs_base values. To achieve
this, Pin saves its own fs_base value in its cache and restores
it each time execution switches from the guest back to Pin. On
Linux, the value of the fs_base register can be retrieved in at
least two ways: Either by passing the parameter ARCH_GET_FS to
the arch_prctl system call, or by executing a rdfsbase instruc-
tion (support for the latter had been added to Linux starting
from version 5.9). For detection, one can make use of the fact that
Pin mistakenly introduces a discrepancy between the fs_base
values retrieved using these two mechanisms: More precisely,
Pin fails to emulate the rdfsbase instruction implemented in
Intel processors and returns the fs_base value of Pin instead of
the guest application’s fs_base. By comparing these two val-
ues, the application can detect whether it is being instrumented.
However, if the Pintool detects the execution of rdfsbase in-
struction it could exchange it with the corresponding system
call, thus returning the correct fs_base value.

Mitigation of this problem is straightforward: Inside Pin, the
emulation of rdfsbase needs to be changed such that it returns
the fs_base value of the instrumented application.

Yet another code cache artifactSelf-Modifying Code involves the way DBI frame-
works handle Self-Modifying Code (SMC) together with the
fact that instrumentation is done at basic block granularity.
According to Intel, the Pin framework does attempt to detect

5.2 stealthiness 49

manipulations of the original code of the instrumented applica-
tion by exposing the PIN_SetSmcSupport configuration option
and a corresponding callback function TRACE_AddSmcDetected-
Function. However, the analysis plugin programmer has to
manually trigger code cache invalidation upon receiving a SMC
notification to re-trigger the JIT compiler for the altered code.
If the analysis plugin programmer does not handle SMC, or
does not invalidate the code cache, the instrumented application
could detect the presence of Pin as follows: First, the instru-
mented application marks its own code as readable, writeable
and executable. Then the malicious guest modifies its own code
and observes the effects. For example, it could modify the imme-
diate operand of a mov instruction from I0 to I1. Since Pin does
not automatically invalidate the code cache, only the original
code is modified, but not the copy in the code cache. Since all
code gets executed from the code cache only, the mov instruction
will still have immediate operand I0 and no change is observed.
On the other hand, if the same sequence is executed outside of a
instrumentation platform, the code change takes effect immedi-
ately and the mov instruction will use I1 as immediate operand,
allowing easy detection.

Mitigating this attack implies denying the instrumented ap-
plication the possibility of de-synchronizing the state of the jit
cache and the original code. This could be done by monitoring
all write accesses of the application to its own text segment and
reflecting the changes made in the code cache. Alternatively,
a code cache invalidation request after every write (incurring
performance overhead) could prevent the attack sketched above.
Both options are expected to have a rather large impact on
performance of instrumentation engines.

W⊕X is an exploitation mitigation technique enabling Neglecting NXthe
OS to mark writable pages in memory as not executable. The
consistent application of W⊕X denies an attacker the ability
to introduce own code into the address space of a program
before transferring the execution flow to it. Intel enforces this
technique on their x86 architecture by marking mapped pages
in memory as not executable by setting a NX (no-execute) bit.
However, when the JIT compiler of a DBI framework fetches
new instructions for instrumentation, it does not check whether
the source memory is mapped with executable permission; as long as
the page is readable, the JIT compiler will translate any data
present and emit executable assembly instructions. Note that
all DBI frameworks we tested were vulnerable to this problem.
Clearly, this is a substantial security issue, as this implies that
any program instrumented by a DBI framework effectively has
W⊕X disabled. We utilized this fact as a detection technique in

50 dynamic binary instrumentation in context of security

the following way: Allocate a new page on the heap without
execute permissions and place valid code in it, then execute it.
Without instrumentation, on any modern OS, a program trying
to execute code on a page without x permissions will result
in a crash. Otherwise, if the program is being instrumented,
no crash will be observed, allowing detection of the analysis
situation.

It remains unclear why instrumentation engines allow to treat
data as code. An easy mitigation would be to obtain information
about memory permissions once at startup, and then check for
every newly instrumented block that the memory from where
the block is fetched is mapped executable. This mitigation only
incurs a small performance penalty at program startup and
effectively re-establishes the W⊕X mechanism.

This technique was discovered by Falcón and Riva [35].Determining Real
Instruction Pointer

How-
ever, as detection of the real rip also is a building block for
attacks against the DBI Isolation property described later, the
techniques are shortly described nevertheless.

In a nutshell, the DBI framework VMs execute only the trans-
lated and instrumented code of the application residing in the
code cache but never the original code in the original text seg-
ment of the instrumented application. To maintain compatibility
with non-relocatable applications, Pin attempts to mask the
VM’s instruction pointer with the instrumented program’s origi-
nal instruction pointer value whenever necessary.

One technique for finding the real rip abuses the x87 Floating
Point Unit (FPU): First, any FPU instruction (e. g. fldz) is
executed. Afterwards, the FPU state is saved using the fxsave
instruction. This state includes the address (and hence the
rip) of the most recently executed FPU instruction, which is
not masked by any instrumentation platform. A malicious
instrumented application can then compare this value to the
(masked) value when directly reading the rip register. If the
values do not match, the application is being instrumented.

The same can be achieved on Linux with the help of the OS:
The sigaction system call allows the calling process to exam-
ine and/or specify the action to be associated with a specific
signal. When configured, the OS provides information about
the execution context (struct ucontext_t) at the time the sig-
nal occurred. If a malicious guest executes any floating-point
instruction and then initiates a signal (for instance by delib-
erately triggering a segmentation fault), the context argument
passed to the signal handler contains the state of the FPU reg-
isters. By comparing these values with the corresponding rip,
one can once more determine whether the program is being
instrumented.

5.2 stealthiness 51

Both issuess can be efficiently mitigated by Pin developers:
The first by fixing the emulation of the fxsave instruction to
place the masked instruction pointer (instead of the original
one) in the destination area. The second one by masking the in-
struction pointer in the FPU register information area of struct
ucontext_t.

5.2.2 Environment Artifacts

In this section we identify environment artifacts intro-
duced by DBI frameworks. By this we refer to anomalies in
the execution environment that are observable for a malicious
guest. For example, the memory layout varies drastically with
the usage of instrumentation platforms. Furthermore, searching
for DBI artifacts such as strings or particular code patterns in
memory reveals the presence of a DBI tool inside the target
process memory.

Pin sets certain environment variables Pin Internal
Environment Variables

during its operations
that carry descriptive names such as for example PIN_INJEC-
TOR64_LD_LIBRARY_PATH. As the framework spawns the instru-
mented process as its own child, these environment variables get
inherited to the child and can still be found in the instrumented
application’s memory. Searching for them can therefore expose
the underlying JIT engine. This is an issue with current imple-
mentations as the environment variables could easily be cleaned
up during the initialization process, to improve stealthiness.

A side effect of the JIT engine is the presence of pages Page Permissions and
Code Patterns

marked
readable, writable, and executable. An attacker can use this
knowledge to scan the address space for such pages. Know-
ing that rwx memory is not present in a particular binary, this
discrepancy reveals the presence of code cache and JIT compiler.

Additionally, a malicious instrumented application can scan
the whole memory for mapped pages and compare names of
memory mapped files with names related to the DBI framework
(e. g. pinbin for Pin). Moreover, as the instrumented application
and the analysis plugin share one address space, the full imple-
mentation of the instrumentation platform has to be present as
well. For example, an attacker can search for specific code pat-
terns such as the characteristic implementation of the transition
between the instrumented application and the analysis plugin
(VMLeave). This code sequence is unique because it saves the
current VM context on the stack and restores the jitted applica-
tion’s registers, generating assembly code distinguishable from
code emitted by contemporary compilers.

Attenuating memory scanning attacks is challenging due to
the shared address space design employed by DBI frameworks.

52 dynamic binary instrumentation in context of security

One fruitful approach on Linux would be to hide Pin-related
mappings from the kernel API responsible for enumerating
pages of the process address space (/proc/<pid>/maps). This
would deny an attacker the documented way of enumerating the
process address space. However, at least two other attacks to de-
termine whether a page is mapped exist: An advanced attacker
could revert to timing side-channel attacks abusing prefetching
instructions on probed pages. Or, alternatively, with the help of
system call return codes, an attacker can simply probe each page
once by letting the Linux kernel determine whether a pointer
argument pointed to valid memory (for example, read returns
EFAULT with an un-mapped buffer argument).

Both attacks are rather noisy and potentially detectable, but
no clear way forward for defenders exists due to the shared
address space nature of DBI frameworks placing themselves and
the analyzed code into the same memory space.

5.3 isolation

After discussing detectability of DBI frameworks, we now focus
on the methods and possibilities to escape from—and eventually
evade—instrumentation.

The original work describing Pin states in Section 3.3.1 that
the instrumented application’s code is never executed—instead
it is compiled (from machine instructions to the same kind of
machine instructions) and executed together with the analysis
plugin’s procedures within a custom virtual environment (the
Pin VM). Every machine instruction executed resides in the VM
(code cache) and the effect of any instruction cannot escape from
the VM region. Like other VMs, the Pin framework manages the
instrumented program’s instruction pointer and translates each
basic block of the original code lazily (i. e. when necessary).

Two shortcomings make Pin subject to attacks aiming to com-
promise isolation: First, the VM may and will reuse already
compiled code because of optimization benefits. Second, Pin
does not employ any integrity checking of already translated
instructions in the code cache. Therefore, we can alter already
executed instructions in memory, as they (comfortably) reside
on pages marked rwx by the VM. Experimental evidence from
Section 5.2 indicates that the code cache implemented by other
DBI tools behaves in accordance with Pin’s code cache. However,
we target the DBI implementation of Pin on x86-64 Linux in the
following.

For this we distinguish two different attacker models, and
describe a mechanism compromising isolation for each.

5.3 isolation 53

a1 control of code and data This is the stronger of the
two attacker models. They can freely specify which code
is executed in the instrumented application and is able to
freely interact with the application while instrumented. In
reality, such an attacker would craft a malicious binary in
the hope that an analyst would execute the binary on a
instrumentation platform.

a2 control of only data This is the weaker of the two
attacker models. In this case, an attacker has access to a
copy of the instrumented application, instrumentation plat-
form, analysis plugin, and all depending dynamic libraries.
However, this attacker has no capabilities to modify the in-
strumented program. Instead, they are permitted to freely
interact with the application while executed in an DBI
framework. In practice this is the case if some program
with an hardening policy implemented using DBI gets
attacked over the network. We will discuss this attacker
in context of the more interesting scenario where mem-
ory corruption vulnerabilities are present in the protected
application.

For our discussions of stealthiness we always assumed an
attacker of type A1. They can break isolation by maliciously
altering the code cache employed by Pin, as described in the
next section.

What is more surprising is that it is possible for an attacker
of type A2 to break isolation as well—if the attacked program
contains what is commonly referred to as a write-where-what
vulnerability.

5.3.1 Direct Code Cache Modification

First, we describe an escape mechanism for the more potent
attacker A1: A direct code cache modification attack enables
them to execute arbitrary code without Pin’s instrumentation
engine being able to embed callbacks notifying the analysis
plugin. This attack is carried out in three steps:

resolution of target in code cache The first step is to
locate the address of the instrumented program’s instruc-
tions in the code cache as translated by the just-in-time
compilation engine.

malicious modification to code cache Once the target
location is known, the attacker can then modify the JITted
code arbitrarily. Once execution reaches the modified basic

54 dynamic binary instrumentation in context of security

<...>
fldz jmp B.0
fxsave [rax]
jmp A.1

A.0

mov [rax+0x8], <code>
jmp VMEnter

A.1

mov rsp, [r15+0x40]
mov rax, [r15+0x3d8]
mov [fs:0x0], rax
jmp C.0

B.0
Code Cache .text Segment

<...>

C.01. 2.

3.

FIGURE 15
A minimal program escaping from the Pin VM.

block a second time Pin will effectively execute whatever
a malicious instrumented application placed there.

sanitization of execution environment In order to keep
compatibility to post-exploitation compiler generated code,
after breaking free from the instrumentation, parts of the
environment need to be cleaned up.

FIGURE 15 depicts the steps needed which we will explain in
the following.

Resolution of Target in
Code Cache

Prior to escaping from the VM, one first has to use one of
the techniques to find the real instruction pointer rip value
discussed in section 5.2 (Block A.0 in FIGURE 15 showing the
ripfxsave technique). As designed, Pin applies instrumentation
executes these instructions after placing them into its code cache.
As a result, at the end of block A.0, the rax register now points
to the FPU context storing a pointer to the beginning of A.0.

Malicious Modification
to Code Cache

Execution reaches block A.1, where—using the knowledge
of the code cache location in the previous step—the attacker
places code that patches out the first instruction of A.0. Then,
instead of the rip detection, the cached block A.0 is modified
such that it transfers control to a different attacker-controlled
location B.0. This is possible because Pin maps all pages with
readable, writeable, and executable page permissions and no
integrity checking of the code cache is employed.

Then, once control flow reaches A.0 for the second time (for
example because it was placed as part of a loop), the modified
instructions are executed from the cache and no further instru-
mentation will be applied. This due to the fact that, according to
the state machine employed by Pin, the program is executing
already instrumented code, and hence no further instrumentation
action is expected to be required. The modified code, however,
transfers control to attacker-controlled block B.0, which resides in
the original code. Due to the state confusion with Pin assuming

5.3 isolation 55

to be executing code from the code cache whereas in reality the
attacker diverted execution into the original uninstrumented pro-
gram image, the interposing mechanics catching introduction of
new code into Pin’s cache do not get triggered.

To maintain ABI compatibility to arbitrary code Sanitization of
Execution Environment

embedded
into the malicious executable, block B.0 restores the rsp and
fs_base registers, which, due to the code generation strategy of
the JIT are guaranteed to be conveniently accessible via a struc-
ture pointed to by register r15. The rsp register is required such
that the malicious code to be executed can make use of stack
allocations. The fs_base is required because most compiler
generated code relies on properly set up thread local storage,
which gets accessed via data accesses relative to the fs virtual
segment register base.

Now, execution can move on to any arbitrary code generated
by compilers as for example C.0 in the original executable pre-
pared by the attacker—as all pages of the original binary image
are mapped into the process there is no mechanism allowing Pin
to re-trigger the JIT to embed its instrumentation hooks. In fact,
from Pin’s perspective the application is still executed inside the
VM and awaits to regain control, which never happens. This
completes the description of how an attacker A1 can break isola-
tion, and eventually interposition and inspection by modifying
the code cache.

Clearly, to prevent this attack, the code cache needs to be
protected from unauthorized modifications. This could either
be facilitated by placing the code cache in read-only memory
(and denying the instrumented application to change its mem-
ory protections), or by introducing a mechanism guarding the
integrity of the cache. Since integrity would have to be checked
prior to execution of any block residing in the cache, the second
option would introduce a rather large performance penalty.

5.3.2 Exploiting Address Space Information

As previously stated, it is under certain circumstances also pos-
sible for the weaker attacker of type A2 to evade the instrumen-
tation. Escaping the Pin sandbox in Linux without necessarily
knowing any code cache address is also possible: We measured
the relative offsets between all mapped pages in different exe-
cutions of an application instrumented by Pin. As can be seen
in FIGURE 16, the offsets between the C standard library and the
code cache, the main Pin binary, and Pin’s internal stack are
constant. Leaking addresses from any of these code regions
therefore allows us to reliably find the other mappings. Con-
sequently, we can utilize all gadgets present in the code basis

56 dynamic binary instrumentation in context of security

[rw-] [stack]
[r--] locale.nls

[rw-] [heap]
[rwx] instrumenter-local

[rwx] instrumenter-heap-little
[rwx] [Code Cache]

[rwx] instrumenter-heap-big
[rw-] [big heap]

[r--] MeasurePinTool.dll
[r-x] MeasurePinTool.dll
[r--] MeasurePinTool.dll
[rw-] MeasurePinTool.dll
[-w-] MeasurePinTool.dll
[rw-] MeasurePinTool.dll
[r--] MeasurePinTool.dll
[rw-] MeasurePinTool.dll
[r--] MeasurePinTool.dll

[r--] pinvm.dll
[r-x] pinvm.dll
[r--] pinvm.dll
[rw-] pinvm.dll
[-w-] pinvm.dll
[rw-] pinvm.dll
[-w-] pinvm.dll
[rw-] pinvm.dll
[-w-] pinvm.dll
[rw-] pinvm.dll
[-w-] pinvm.dll
[rw-] pinvm.dll
[-w-] pinvm.dll
[rw-] pinvm.dll
[-w-] pinvm.dll
[rw-] pinvm.dll
[-w-] pinvm.dll
[rw-] pinvm.dll
[-w-] pinvm.dll
[rw-] pinvm.dll
[r--] pinvm.dll

[r--] measure.exe
[r-x] measure.exe
[r--] measure.exe
[rw-] measure.exe
[r--] measure.exe

[r--] KernelBase.dll
[r-x] KernelBase.dll
[r--] KernelBase.dll
[rw-] KernelBase.dll
[-w-] KernelBase.dll
[r--] KernelBase.dll

[r--] kernel32.dll
[r-x] kernel32.dll
[r--] kernel32.dll
[rw-] kernel32.dll
[-w-] kernel32.dll
[r--] kernel32.dll

[r--] ntdll.dll
[r-x] ntdll.dll
[r--] ntdll.dll
[rw-] ntdll.dll
[-w-] ntdll.dll
[rw-] ntdll.dll
[r--] ntdll.dll

[r
w-

]
[s

ta
ck

]
[r

--
]

lo
ca

le
.n

ls
[r

w-
]

[h
ea

p]
[r

wx
]

in
st

ru
me

nt
er

-l
oc

al
[r

wx
]

in
st

ru
me

nt
er

-h
ea

p-
li

tt
le

[r
wx

]
[C

od
e

Ca
ch

e]

[r
wx

]
in

st
ru

me
nt

er
-h

ea
p-

bi
g

[r
w-

]
[b

ig
 h

ea
p]

[r
--

]
Me

as
ur

eP
in

To
ol

.d
ll

[r
-x

]
Me

as
ur

eP
in

To
ol

.d
ll

[r
--

]
Me

as
ur

eP
in

To
ol

.d
ll

[r
w-

]
Me

as
ur

eP
in

To
ol

.d
ll

[-
w-

]
Me

as
ur

eP
in

To
ol

.d
ll

[r
w-

]
Me

as
ur

eP
in

To
ol

.d
ll

[r
--

]
Me

as
ur

eP
in

To
ol

.d
ll

[r
w-

]
Me

as
ur

eP
in

To
ol

.d
ll

[r
--

]
Me

as
ur

eP
in

To
ol

.d
ll

[r
--

]
pi

nv
m.

dl
l

[r
-x

]
pi

nv
m.

dl
l

[r
--

]
pi

nv
m.

dl
l

[r
w-

]
pi

nv
m.

dl
l

[-
w-

]
pi

nv
m.

dl
l

[r
w-

]
pi

nv
m.

dl
l

[-
w-

]
pi

nv
m.

dl
l

[r
w-

]
pi

nv
m.

dl
l

[-
w-

]
pi

nv
m.

dl
l

[r
w-

]
pi

nv
m.

dl
l

[-
w-

]
pi

nv
m.

dl
l

[r
w-

]
pi

nv
m.

dl
l

[-
w-

]
pi

nv
m.

dl
l

[r
w-

]
pi

nv
m.

dl
l

[-
w-

]
pi

nv
m.

dl
l

[r
w-

]
pi

nv
m.

dl
l

[-
w-

]
pi

nv
m.

dl
l

[r
w-

]
pi

nv
m.

dl
l

[-
w-

]
pi

nv
m.

dl
l

[r
w-

]
pi

nv
m.

dl
l

[r
--

]
pi

nv
m.

dl
l

[r
--

]
me

as
ur

e.
ex

e
[r

-x
]

me
as

ur
e.

ex
e

[r
--

]
me

as
ur

e.
ex

e
[r

w-
]

me
as

ur
e.

ex
e

[r
--

]
me

as
ur

e.
ex

e
[r

--
]

Ke
rn

el
Ba

se
.d

ll
[r

-x
]

Ke
rn

el
Ba

se
.d

ll
[r

--
]

Ke
rn

el
Ba

se
.d

ll
[r

w-
]

Ke
rn

el
Ba

se
.d

ll
[-

w-
]

Ke
rn

el
Ba

se
.d

ll
[r

--
]

Ke
rn

el
Ba

se
.d

ll
[r

--
]

ke
rn

el
32

.d
ll

[r
-x

]
ke

rn
el

32
.d

ll
[r

--
]

ke
rn

el
32

.d
ll

[r
w-

]
ke

rn
el

32
.d

ll
[-

w-
]

ke
rn

el
32

.d
ll

[r
--

]
ke

rn
el

32
.d

ll
[r

--
]

nt
dl

l.
dl

l
[r

-x
]

nt
dl

l.
dl

l
[r

--
]

nt
dl

l.
dl

l
[r

w-
]

nt
dl

l.
dl

l
[-

w-
]

nt
dl

l.
dl

l
[r

w-
]

nt
dl

l.
dl

l
[r

--
]

nt
dl

l.
dl

l

[r-xp] measure
[r--p] measure
[rw-p] measure
[rw-p] [heap]
[rw-p] [big heap]
[r-xp] libc-2.26.so
[---p] libc-2.26.so
[r--p] libc-2.26.so
[rw-p] libc-2.26.so
[rwxp] [Code Cache]
[rwxp] [PIN Stack]
[r-xp] libpin3dwarf.so
[r--p] libpin3dwarf.so
[rw-p] libpin3dwarf.so
[r-xp] MeasurePinTool.so
[r--p] MeasurePinTool.so
[rw-p] MeasurePinTool.so
[r-xp] libc-dynamic.so
[r--p] libc-dynamic.so
[rw-p] libc-dynamic.so
[r-xp] libxed.so
[r--p] libxed.so
[rw-p] libxed.so
[r-xp] pinbin
[r--p] pinbin
[rw-p] pinbin
[r-xp] ld-2.26.so
[r-xp] libunwind-dynamic.so
[r--p] libunwind-dynamic.so
[rw-p] libunwind-dynamic.so
[r-xp] libm-dynamic.so
[r--p] libm-dynamic.so
[rw-p] libm-dynamic.so
[r-xp] libstlport-dynamic.so
[r--p] libstlport-dynamic.so
[rw-p] libstlport-dynamic.so
[r-xp] linker
[r--p] linker
[rw-p] linker
[r--p] ld-2.26.so
[rw-p] ld-2.26.so
[rw-p] [stack]
[r--p] [vvar]
[r-xp] [vdso]
[r-xp] [vsyscall]

[r
-x

p]
 m

ea
su

re
[r

--
p]

 m
ea

su
re

[r
w-

p]
 m

ea
su

re
[r

w-
p]

 [
he

ap
]

[r
w-

p]
 [

bi
g

he
ap

]
[r

-x
p]

 l
ib

c-
2.

26
.s

o
[-

--
p]

 l
ib

c-
2.

26
.s

o
[r

--
p]

 l
ib

c-
2.

26
.s

o
[r

w-
p]

 l
ib

c-
2.

26
.s

o
[r

wx
p]

 [
Co

de
 C

ac
he

]
[r

wx
p]

 [
PI

N
St

ac
k]

[r
-x

p]
 l

ib
pi

n3
dw

ar
f.

so
[r

--
p]

 l
ib

pi
n3

dw
ar

f.
so

[r
w-

p]
 l

ib
pi

n3
dw

ar
f.

so
[r

-x
p]

 M
ea

su
re

Pi
nT

oo
l.

so
[r

--
p]

 M
ea

su
re

Pi
nT

oo
l.

so
[r

w-
p]

 M
ea

su
re

Pi
nT

oo
l.

so
[r

-x
p]

 l
ib

c-
dy

na
mi

c.
so

[r
--

p]
 l

ib
c-

dy
na

mi
c.

so
[r

w-
p]

 l
ib

c-
dy

na
mi

c.
so

[r
-x

p]
 l

ib
xe

d.
so

[r
--

p]
 l

ib
xe

d.
so

[r
w-

p]
 l

ib
xe

d.
so

[r
-x

p]
 p

in
bi

n
[r

--
p]

 p
in

bi
n

[r
w-

p]
 p

in
bi

n
[r

-x
p]

 l
d-

2.
26

.s
o

[r
-x

p]
 l

ib
un

wi
nd

-d
yn

am
ic

.s
o

[r
--

p]
 l

ib
un

wi
nd

-d
yn

am
ic

.s
o

[r
w-

p]
 l

ib
un

wi
nd

-d
yn

am
ic

.s
o

[r
-x

p]
 l

ib
m-

dy
na

mi
c.

so
[r

--
p]

 l
ib

m-
dy

na
mi

c.
so

[r
w-

p]
 l

ib
m-

dy
na

mi
c.

so
[r

-x
p]

 l
ib

st
lp

or
t-

dy
na

mi
c.

so
[r

--
p]

 l
ib

st
lp

or
t-

dy
na

mi
c.

so
[r

w-
p]

 l
ib

st
lp

or
t-

dy
na

mi
c.

so
[r

-x
p]

 l
in

ke
r

[r
--

p]
 l

in
ke

r
[r

w-
p]

 l
in

ke
r

[r
--

p]
 l

d-
2.

26
.s

o
[r

w-
p]

 l
d-

2.
26

.s
o

[r
w-

p]
 [

st
ac

k]
[r

--
p]

 [
vv

ar
]

[r
-x

p]
 [

vd
so

]
[r

-x
p]

 [
vs

ys
ca

ll
]

Random Offset
No Mapping Writable

Random Offset
≥ 1 Mapping Writable

Constant Offset
No Mapping Writable

Constant Offset
≥ 1 Mapping Writable

Constant Offset
≥ 1 Mapping Writable and Executable

FIGURE 16
Color matrices showing memory regions sharing random or constant distances with each other for
applications instrumented by Linux (top right) and Windows (bottom left) version of Pin. The region
names in red are additional components added by the instrumentation framework. The black region
names present the program’s original pages.

to build ROP chains, or directly write shellcode into the code
cache if the instrumented program contains a write-what-where
vulnerability. This is due to the fact that, as already explained,
the Pin framework copies itself into the application’s memory by
allocating memory using mmap. One of the results of Chapter 7

is that addresses of consecutively allocated memory allocations
returned by mmap are predictable (i. e.. relative distances remain
constant) in Linux. Thus, all required information can be cal-
culated a priori based on known binaries of Pin, the analysis
plugin, the instrumented application, and all dynamic link li-
braries. This knowledge can be helpful for an attacker while
exploiting write-what-where memory corruption vulnerabilities
present in the original program, as offsets to interesting data
structures within the address space are rendered predictable.
For mitigations of this weakness of Linux’ ASLR, we refer the
reader to Chapter 7.

We will see how this behaviour can not only be used to
break isolation, but also how a formerly difficult to exploit
vulnerability can become exploitable in presence of Pin.

5.4 increased attack surface 57

Technique Type Pin Valgrind DynamoRIO QBDI

pageperm EA 3 3 3 3

vmleave EA 3 7 7 3

mapname EA 3 3 7 7

smc CA 3 3 7 3

ripfxsave CA 3 3 7 3

ripsiginfo CA 3 3 3 3

ripsyscall CA 3 7 3 3

nx CA 3 3 3 3

envvar EA 3 3 3 7

fsbase CA 3 – 3 7

TABLE 6
Evaluation of detection mechanisms on di�erent DBI frameworks showing whether a detection mecha-
nism can reveal the corresponding DBI’s presence (3) or not (7). Abbreviations used in the Type Column
are Environment Artifact (EA), and Cache Artifact (CA)

5.4 increased attack surface

Earlier we have explained how DBI frameworks can become
both, detectable and escapable, rendering them unsuitable for
binary hardening or malware analysis. Test results for different
instrumentation platforms can be found in Table 6.

Next, we focus on how executing a given binary in a DBI
environment even introduces more possibilities to exploit bugs
already present (i.e. attack surface is increased instead of de-
creased). To support this claim, we discuss an example where a
vulnerability that is not trivial to exploit during normal execu-
tion becomes exploitable when executed within a DBI framework
interacting with the weaker attacker of type A2.

There are two main concerns involved in this—memory pages
simultaneously carrying read, write and execute permissions
and the fact that Pin executes instructions residing in memory
not declared as executable. The existence of rwx memory pages
means that exploit code can reside at almost arbitrary locations
in memory. In the following, we show how for applications
instrumented by Pin, the chance of successfully working exploit
given a buffer overflow bug considerably increases.

5.4.1 The Return of Stack-Based Shellcode

As discussed earlier in this chapter, Pin fails to check the mem-
ory protection permissions of the code that is to be processed
by its JIT engine. This means that when using Pin on a target
program any (not just executable) data in memory will be translated
to executable instructions if reached by the control flow. This
transfers us back to the dawn of buffer overflows and shell code

58 dynamic binary instrumentation in context of security

execution era (cf. Smashing the Stack for Fun and Profit, a term
coined by Elias Levy): If it is possible to divert execution to a
user-controllable buffer, an attacker can place shell code there it
and the VM will execute it. This classifies as a major security
issue not only in Pin DBI framework but also in all other DBI
engines—in our tests, Pin, Valgrind, DynamoRIO and QBDI all
share this weakness (row nx in Table 6).

We show how this vulnerability can be abused by an attacker
to gain code execution from a real-world vulnerability when the
attacked program is executed in context of Pin.

5.4.2 Code Execution and CVE-2017-13089

To substantiate our claim of Pin increasing the probability of suc-
cessful attacks, we have implemented a proof of concept (PwIN)
that exploits an existing CVE vulnerability (CVE-2017-13089,
cf. [1]) that is not easily exploited when executed in a normal
environment, but turns into code execution when instrumented
using Pin. CVE-2017-13089 is a bug in wget versions older than
1.19.2 found in http.c:skip_short_body(). The bug itself is
described in more detail in the next section. Without Intel Pin
the strongest attack (known to us) results in a 1

16 probability of
leaking an arbitrary file stored on the victim client to the server
(see below). We will discuss how the same bug can be escalated
to full code execution if the victim is instrumented using Intel
Pin.

The vulnerable function in wget is called whenDescription of the Bug processing
HTTP redirects together with HTTP chunked encoding. The
chunk parser uses strtol() to parse each chunk’s length into
a variable of type long. Prior to copying the chunk’s contents
into a buffer on the stack, the code validates that the chunk size
specified in the HTTP request fits into the buffer, forgetting to
ensure the supplied value is actually a positive number. The code
then tries to skip the chunk in pieces of 512 bytes but ends pass-
ing the negative length to connect.c:fd_read(). Interestingly,
fd_read()’s length argument is of type int, thus the higher
32 bit of the length variable are discarded. Therefore, values
in the range 0xffffffff00000000 to 0xffffffffffffffff pass
all checks while the truncation to a 32 bit value still allows an
attacker to control the length of the chunk and to overflow the
dlbuf target buffer on the stack.

Exploitation of the Bug
Without Pin

The bug allows for a continuous write of arbitrary data on
the stack. Due to the absence of stack canaries, the saved return
address on the stack can be compromised. However, without
the knowledge of the current state of ASLR, there is not much
an attacker can do, as they do not know any pointer pointing

5.4 increased attack surface 59

HTTP/1.1 301 Moved Permanently

Server: nginx/1.4.6 (Ubuntu)

Date: Mon, 30 Oct 2017 01:33:37 GMT

Content-Type: text/html

Content-Length: 193

Set-Cookie: V\xff

Connection: keep-alive

Transfer-Encoding: Chunked

Location: https://pwningse.rv/

-fffffdc6

<shellcode><0x230 bytes padding><BBBBBBBB>\x7c\x9b

RAX 0x0

RBX 0x5555555c71e5 ◂— /* ' [following]' */
RCX 0x7ffff6cb4061 ◂— cmp rax, -0x1000
RDX 0x200

RDI 0x3

RSI 0x7fffffffd150 ◂— <shellcode>
R8 0x7fffffffcfb0 ◂— 0x383
R9 0x0

R10 0x0

R11 0x246

R12 0x5555557ee1b0 ◂— /* 'https://' */
R13 0x7fffffffdf00 ◂— 0x2
R14 0x0

R15 0x0

RBP 0x4242424242424242 /* 'BBBBBBBB' */

RSP 0x7fffffffd368 ◂— 0x55555557f77d9b7c
RIP 0x55555557af7c (skip_short_body+657) ◂— ret

0000 rsp 0x7fffffffd368 —▸ 0x55555557f77d9b7c

0008 0x7fffffffd370 ◂— 'V\xc3\xbf'
0010 0x7fffffffd378 <— 0x555560200

0018 0x7fffffffd380 —▸ 0x7fffffffd7b0 —▸ 0x7fffffffdad0 —▸ ...

0020 0x7fffffffd388 —▸ 0x55555557ec6a (gethttp+3468)

0028 0x7fffffffd390 ◂— 0x0
...

0038 0x7fffffffd3a0 —▸ 0x555555806420 —▸ ...

0040 0x7fffffffd3a8 ◂— 0x0
0048 0x7fffffffd3b0 —▸ 0x7fffffffdd04 ◂— 0x0
0050 0x7fffffffd3b8 —▸ 0x7fffffffd9b0 ◂— 0x0
0058 0x7fffffffd3c0 —▸ 0x555555806810 —▸ ...

...

0068 0x7fffffffd3d0 ◂— 0x0
...

0090 rsp 0x7fffffffd3f8 —▸ 0x7fffffffd370 ◂— 'V\xc3\xbf'
0098 0x7fffffffd400 —▸ 0x555555807fb0 ◂— /* '\nConnect' */

Malicious HTTP Response

Register Contents

Stack State

0x555555579b7c <request_send+881>: add rsp,0x78

0x555555579b80 <request_send+885>: pop rbx

0x555555579b81 <request_send+886>: pop rbp

0x555555579b82 <request_send+887>: ret

0x7fffffffd370 <cookie>: push rsi

0x7fffffffd371 <cookie+1>: ret

0x7fffffffd372 <cookie+2>: mov edi,0x00

Stack Lifting Gadget

Primitive for jmp rsi on the (executable) Stack

Δ = 0x88

1.

2.

3.

4.1

4.2

5.

!

FIGURE 17
Control �ow and state changes of wget when attacked by a malicious server. The last control transfers
(step 4.2 in purple and step 5. in red) mark transitions that are enabled by the usage of Pin. Under normal
circumstances, the program would crash as the bu�ers on the stack containing the malicious shell code
would not be executable.

into valid memory (the binary is compiled as position indepen-
dent executable). Consequently, the only remaining option to
continue exploitation is a partial pointer override. Using this tech-
nique, an attacker abuses the fact that ASLR operates at a page
(4096 = 212 bytes) granularity. Therefore, the lowest 12 bits of
any object within the address space are deterministic. As a con-
sequence, an attacker can now trade the number of jump targets
reachable by a ret for exploit reliability. For example, a two-byte
partial pointer overwrite needs to guess 2 · 8− 12 = 4 bits of
randomness, allowing to transfer control to a region sharing the
same 22·8 = 65536 byte region with the original target of the
return address. Automatically evaluating all targets within this
region using dynamic analysis does not unveil any target where
an attacker could trivially obtain arbitrary code execution. The
only noteworthy effect that can be observed is when targeting
body_file_send, as register allocation (FIGURE 17) matches the
signature of this function with rsi (second function argument)
pointing to attacker controlled data specifying a file name to
transfer from the client to the server.

However, when running in context of Intel Pin we can Exploitation of the Bug
With Pin

in-
ject and execute shellcode situated in non-executable memory
regions, reducing the challenge of achieving code execution to
just having to find a reliable mechanism to jump to a pointer to
data we control. Our full exploit chain is visualized in FIGURE 17:
When reaching the end of the skip_short_body() function, the
rsi register contains the address of dlbuf (filled with values
controlled by the attacker). However, there are no convenient

60 dynamic binary instrumentation in context of security

gadgets reachable with a partial overwrite on the return address
which may divert the code execution to the address contained in
rsi. We remedy this by injecting our own jmp rsi gadget into
a buffer that we can divert control to using the partial overwrite
in step 1. It is possible to reach a stack lifting gadget with a
partial overwrite (step 2) that increments the stack pointer by
∆ = 0x88 bytes (step 3). The new stack pointer location now
points to a pointer to the UTF-8 encoded value of the contents of
the Set-Cookie header of the HTTP response. At this point the
ret will transfer control to an attacker controlled buffer (steps
4.1 and 4.2) but the UTF-8 encoding constrains the shellcode in
an uncomfortable way. Luckily enough, the raw byte sequence
56ff is encoded to 56c3bf, which is perfectly valid UTF-8 and
disassembles to push rsi; ret at the same time. As rsi still
points to (now unconstrained) attacker controlled shellcode sent
along with the HTTP response body, this control transfer (step 5)
is the last step in achieving code execution. This attack succeeds
with a probability of 1

16 , due to the partial pointer override used
in the first step.

5.5 conclusion

We discussed the requirements for DBI frameworks (and in fact
any DBI-based analysis tool suitable for security applications):
In order to provide trustable analysis results, DBI frameworks
must support R1 Interposition, R2 Inspection, R3 Isolation, and
R4 Stealthiness. We summarize our findings and explain mitiga-
tions thereof in this section.

5.5.1 Discovered Attack Vectors

Overall, we have shown that DBI frameworks currently do not
satisfy all requirements to make them suitable for security ap-
plications.

Stealthiness An instrumented application can detect whether it is currently
being executed in a DBI environment. By nature, JIT compilers
cause a lot of noise which is not only hard to disguise but trying
to do so introduces even more irregularities in the instrumented
program execution. We proposed several methods to detect the
presence of a DBI engine divided in three categories, namely
Instrumentation Artifacts, Compiler Overhead, Environment
Artifacts. As such, the requirement R4 (Stealthiness) which
is essential for security applications such as malware analysis
currently cannot be satisfied by DBI frameworks.

Isolation Since Pin does not monitor its code cache for external changes
and does not restrict its execution to known memory locations,

5.5 conclusion 61

one can alter process memory in any suitable way. Moreover,
the address of the code cache in the Linux version of Pin can
be calculated given any leaked address from other similarly
created memory regions. Hence, there is no effective isolation
between the analyzed program and the instrumentation frame-
work, invalidating R3 (Isolation). Without Isolation, a malicious
instrumented application can freely tamper with the mechanics
of the DBI framework, consequently violating the remaining R1

(Interposition) and R2 (Inspection).
The ability to execute data not normally mapped Attack Surfacewith exe-

cutable permission represents a clear benefit for an attacker and
constitutes major security issue. This threat used to be almost
completely avoided by the introduction of the W⊕X mechanism
by CPU vendors. However, we can clearly see that current DBI
engines currently do not enforce W⊕X, re-establishing shell
code attacks from past decades as a viable attack vector. We
have demonstrated that this issue enables escalation of other-
wise hard-to-exploit security vulnerabilities in software.

5.5.2 Attack Mitigations

As discussed, several ad-hoc changes to dynamic binary in-
strumentation frameworks could improve their use for security
applications:

We have seen that corner-cases of special x86 instructions
(rdfsbase, fxsave, syscall) allow for compromising stealthy
execution. The presented attacks can be contained by DBI ven-
dors with relatively small effort by simply adjusting the han-
dling of these instructions in software.

Another low-cost mitigation is a sanitization pass of the run-
time environment. Global environment variables required for
Pin’s operation should be removed after initialization of the DBI
framework.

The missing implementation of W⊕X can be implemented by
caching memory protections for every memory range allocated
by the instrumented application and making sure instrumenta-
tion targets are always only read from memory with the execute
bit set. This implies a small performance penalty.

De-synchronization of the code cache and the original code
of the target binary allows to violate stealthiness or isolation. To
prevent compromise of stealthiness, changes to the original code
need to be reflected in the code cache. To prevent compromise
of isolation, modifications of the code cache should be forbidden
via an integrity mechanism.

The most challenging attacks to mitigate are centered around
the fact that with DBI, the analyzed program and the analysis

62 dynamic binary instrumentation in context of security

engine reside in the same address space. As a first step, docu-
mented ways for the instrumented application to enumerating
its address space must be filtered and cleaned by Pin. As pre-
sented, advanced attackers could still circumvent this mitigation
by reverting to memory scanning attacks. Such identified mem-
ory regions need to be protected against modification, as they
might contain data structures ensuring proper execution of the
DBI framework. Eventually, one would have to track all memory
modifications of the instrumented application, which comes at
a severe performance loss.

We conclude that DBI, while providing convenient analysis ca-
pabilities of low-profile targets—in their current design, where
no memory separation is present—cannot satisfy requirements
to provide trustworthy results during dynamic analysis in pres-
ence of an advanced attacker.

6
S M A S H I N G T H E S TA C K P R O T E C T O R F O R F U N
A N D P R O F I T

Software exploitation has been proven to be a lucrative business
for cybercriminals. Unfortunately, protecting software against at-
tacks is a long-lasting endeavor that is still under active research.
However, certain software-hardening schemes are already incor-
porated into current compilers and are actively used to make
software exploitation a complicated procedure for the adver-
saries. Stack canaries are such a protection mechanism. When
employed, they try to detect control flow hijacking by exam-
ining the integrity of distinct values on the program’s stack,
during program execution. The careful design and implementa-
tion of this conceptual straightforward mechanism is crucial in
defeating stack-based control flow detours.

To counter the threat posed by stack-based buffer overflows,
defenders introduced a version of stack protectors named Stack
Smashing Protection (SSP). The idea behind SSP is to detect
stack-based control flow hijacking attempts by introducing ran-
dom values (so-called canaries) to the stack that serve as a barrier
between attacker-controlled data and control flow relevant struc-
tures. After a function finishes executing, a canary—the name
is borrowed from canaries historically used by coal miners for
indication of mine gas—is checked against a known good value
stored in a safe location. Only if the canary maintains its original
value, execution continues. This mitigation technique has been
present in compilers for more than 10 years and is now con-
sidered a very basic counter measure. Indeed, stack smashing
protection made it into the GNU Compiler Collection (gcc), the
clang compiler, and Microsoft’s Visual C compiler.

In this chapter, we examine 17 different stack canary imple-
mentations across multiple versions of the most popular Oper-
ating Systems running on various architectures such as Linux,
Windows, macOS, FreeBSD, Android, and OpenBSD, running
on the x86, x86_64, ARM, PowerPC, and s390x architectures.

We systematically compare critical implementation details and
introduce one new generic attack vector which allows bypassing
stack canaries on current Linux systems running up-to-date
multi-threaded software altogether. We release an open-source
framework (CookieCrumbler) that identifies the characteristics of
stack canaries on any platform it is compiled on and we propose
mitigation techniques against stack-based attacks. Although
these days stack canaries may appear obsolete, we show that

64 smashing the stack protector for fun and profit

when they are used correctly, they can prevent intrusions which
even the more sophisticated solutions may potentially fail to
block.

q Bruno Bierbaumer,
Julian Kirsch, Thomas
Kittel, Aurélien
Francillon, Apostolis
Zarras. Smashing the
Stack Protector for Fun
and Profit. 2018.

Parts of this chapter are based on the publication Smashing
the Stack Protector for Fun and Profit whose author list the thesis
author is part of.

6.1 collected features

In the following, we will use Can to refer to a local instance of
a stack canary placed on a thread’s stack during execution. On
the other hand, Ref refers to the known good reference value
that the canary needs to take such that execution is allowed to
progress.

We first derive several requirements for stack canaries to
provide effective protection. Then, we derive observable features
supporting the list of identified requirements.

Ê Both, the cookie value placed on the stack (Can) and the
reference value (Ref) must be unknown to the attacker. This
is for the simple reason that with a-priory knowledge of a
particular Ref for an attacked function frame, the attacker
could simply embed the correct value into their attack
payload and bypass detection.

Ë The known good value (Ref) is placed at a location in
memory that is distinct from the location of Can and
ideally mapped read-only. This prevents attackers from
overwriting both, the canary in the protected function’s
stack frame, and the reference value by the same time.

Ì If a stack cookie value (Can) is corrupted, program ex-
ecution terminates immediately without accessing any
attacker controlled data while avoiding to leak any infor-
mation about the program state. This is rooted in the
observation that a non-matching Can value indicates cor-
ruption of the memory contents of the program, rendering
all information placed in the attacked program’s memory
untrustworthy.

Í The attack consists of a classic stack-based, contiguous
buffer overflow. Other types of memory corruptions, by
design, are out of scope for stack canaries.

To explore the different implementations of stack canaries
used by compiler-/library-/operating system vendors more sys-
tematically, we select five qualitative and five empirical features
of the generated machine code for measurement.

6.1 collected features 65

6.1.1 Qualitatively Determined Features

Qualitative features are determined by studying the source code
of their implementations—if available—or by reverse engineer-
ing the functionality from the libraries in their binary format
and comparing them against criteria set by the requirements
outlined earlier.

As required by Requirement Ê (unknown Ref) we want to ob-
tain information about the randomness of the reference canary
values in use. After all, re-randomization of Ref is expected
to occur at two points during program execution: (a) when a
process is duplicated using the fork library function on UNIX
and (b) when a new thread (and consequently a new stack) is
being created. Similarly, Can could take on different values
while a particular thread executes different functions and al-
locates distinct local stack frames. Information that might be
encoded into function local values of Can might include (i) Ref,
(ii) the guarded stack contents or some distinct identifier of the
function context, and (iii) the thread id.

Requirement Ì (immediate termination) is another claim that
can only be verified in a qualitative manner. To determine the
magnitude of code being executed in case a stack buffer overrun
is detected by the implementation, we introduce the notion of
noisiness of the failure handler. To estimate the Noise level, we
count function invocations that are triggered from the point
where execution enters the cookie verification failure handler
until the point where the application is forced to terminate. We
also manually check the number of variables that are read from
the overflown data structure, such as the stack, and whether the
handler executes in user or kernel mode, which we denote by
current protection level (CPL).

6.1.2 Empirically Determined Features

Requirement Ë (protected reference value) means that Ref needs
to be placed in read-only memory that is distinct from the
location of Can. Both properties can determined empirically.
Hence, to reason about potential attack targets, we retrieve basic
information about the application’s memory layout. As such,
per OS/C library configuration, we run a simple test program
which follows Algorithm 1. The program measures address
distances of all possible user-controllable types of memory. The
rationale behind this choice is to determine the spatial distances
of Ref and all different types of writable memory locations
that could contain user controllable data and therefore lead
to memory corruptions across data structures. Since memory

66 smashing the stack protector for fun and profit

Algorithm collect_emp_data()
Data: Implicitly: Software architecture of the target system
Result: Data rows for main- and sub-thread
main← measure()
sub← run_thread(measure())
return (main, sub)

Procedure measure()
loc← allocate_stack(128)
tls← allocate_thread(128)
glo← allocate_global(128)
dyn← allocate_dynamic(128)
∆loc ← memory_location(Ref) - loc
∆tls ← memory_location(Ref) - tls
∆glo ← memory_location(Ref) - glo
∆dyn ← memory_location(Ref) - dyn
return ((∆loc, W(∆loc)), (∆tls, W(∆tls)),

(∆glo, W(∆glo)), (∆dyn, W(∆dyn)))

Algorithm 1: Algorithm used to measure empirical features.

allocation strategies could differ for single and multithreaded
programs, we collect a data point for each case. More precisely,
we measure spatial distances (∆) between the reference value
(Ref) and

1. ∆loc: a variable residing on the stack of the function.

2. ∆tls: a variable residing in Thread Local Storage (TLS).

3. ∆glo: a global variable residing in statically allocated mem-
ory (commonly referred to as .data or .bss section).

4. ∆dyn: a variable residing in dynamically allocated memory.

While locality information indicates the size of the overflow
that must occur, what eventually decides about exploitability
is whether the memory type that contains overflown user data
is mapped write-contiguously in close (positive) proximity to
the target Ref. This is rooted in the fact that stack canaries
can only protect against contiguous overflows, as imposed by
Requirement Í. Thus, we not only infer distance information
but also determine the amount of bytes located right after the
attacked data structure (in overflow direction) that are writable
and thus will not stop the overflow:

5. W(∆x): the percentage of continuously mapped, writable
bytes in the memory range determined by ∆x.

6.1.3 Data Collection Framework

We integrate the aforementioned features in a framework called
CookieCrumbler. From a high level perspective, CookieCrumbler
is a direct implementation of Algorithm 1 in C. Our framework

6.2 smashing the stack protector 67

is able to run on any POSIX OS that offers a C run-time environ-
ment, regardless its architecture, and it can thoroughly analyze
the implementation of stack canaries on this OS. To provide
proper results, semantic knowledge about the exact location of
Ref has to be added to the program. For instance, on x86_64,
Ref is located within the Thread Control Block (TCB)/TLS at
offset 0x28.

The core of Algorithm 1 is to retrieve the deltas ∆loc, ∆glo,
∆dyn, and ∆tls. To obtain the respective reference point in mem-
ory, we use (i) a stack local variable, (ii) a variable with the
static keyword, (iii) the pointer value returned by malloc, and
(iv) a variable with the __thread or the __declspec(thread)
keywords for UNIX resp. Windows. Threads are created by
means of the pthread_create (UNIX) and CreateThread (Win-
dows) functions. To determine W(∆x), we use signal handling
on UNIX (catching SIGSEGV on a contiguous byte-by-byte write)
and the function IsBadWritePtr on Windows.

When executed successfully, CookieCrumbler generates a set of
memory locations, deltas, and number of writable bytes for the
main- and the subthreads of a threaded application, respectively.

6.2 smashing the stack protector

The following sections describe observations made while study-
ing stack canary implementations and running CookieCrumbler
on as many different platforms, architectures and operating
systems we could access.

6.2.1 Qualitative Results

Surprisingly, we found that almost none Static Per-Function
Stack Canary

of the tested implemen-
tations randomizes Can across different function invocations
within the context of one given thread. The only exception to
this rule constitutes the Windows family of operating systems,
for which Can is chosen as Ref⊕ rbp in case the rbp register is
used as stack frame pointer and Can = Ref⊕ rsp otherwise.

As indicated by literature we Static Stack Canary
across Forks

observed Ref (and consequently
Can for all stack frames) to remain static across fork invocations
on all UNIX operating systems. It is not possible to make a
statement about Windows, as in this family of operating systems
fork is not a supported functionality.

Failure handlers execute in user Noise Level on Detected
Corruption

space in nearly all cases. The
only exception to this rule is Windows 10, which implements the
special interrupt number 0x29 (_KiRaiseSecurityCheckFailure)
which in turn terminates the program without reading any of
the potentially tainted, attacker-controlled values from user-

68 smashing the stack protector for fun and profit

space. All versions of Windows newer than Windows 7 fall
back to the old user-space failure routine only if a call to
IsProcessorFeaturePresent(PF_FASTFAIL_AVAILABLE) returns
nonzero.

Consequently, on Windows OS, the Noise level is the lowest
on versions newer than 7, as the only operation that happens
in user space is the dispatching of an interrupt specifically
designed for this purpose. Note that this design also does not
introduce machine code that could be abused to invoke the
kernel during other attacks (as, for example, the addition of a
new system call together with the syscall instruction would).

Older Windows versions call 8 functions in kernel32.dll and
collect information about the current register state before ter-
minating (TerminateProcess) the application with return code
0xc0000409 (Security check failure or stack buffer overrun).

OpenBSD, when detecting a corrupt stack canary, infers the
program’s name from a (safe) location in the global variable
section of the currently loaded standard library and prints one
line of information into the system log.

Linux’s C standard libraries implement __stack_chk_fail in
different ways:

• musl libc does not provide any output and terminates
execution using a hlt instruction, accounting for a minimal
Noise level.

• diet libc prints a static error message and terminates the
program with an exit system call, also introducing low
Noise.

• Bionic logs a static message, requiring the allocation of
dynamic memory, and finally terminates the program via
a SIGABRT, depending on the complexity of the allocator
used underneath, this could open up potential attack vec-
tors.

• glibc introduces significant noise: For our minimal mea-
surement application, glibc’s __stack_chk_fail function
performs as many as 69 calls to other functions, dispatch-
ing at least three calls using (PointGuard protected) writable
global static function pointers to create a (symbolized)
stack trace by unwinding the attacker controlled stack
before exiting the process.

• glibc prior to version 2.26 exacerbates the situation de-
scribed in the previous point by printing the program
name fetched from the argv array on the stack. We will
use this fact to describe an attack later.

6.2 smashing the stack protector 69

6.2.2 Empirical Results

We classify our data points into three categories:

1. Vulnerable implementations where ∆loc > 0 and W(∆loc) =
100.0% are marked as 7. Here, a long buffer overflow on
the stack allows for a complete stack canary bypass as Can

and Ref can be overwritten at the same time, and both lie
in positive direction of the overflow.

2. Weak implementations satisfying W(∆′) = 100.0% and
∆′ 6= ∆loc are marked as 8. In such implementations, the
reference value is placed in writable memory that is not
contiguous to the attacked data structure (due to allocation
properties of the memory type). Such an implementation
requires an attacker to not only overflow the data structure
located in the specific memory segment next to Ref (maybe
even in reverse direction), but also to get control of the
execution flow by overwriting a buffer on the stack before
the function containing the first vulnerability returns.

3. Secure implementations where W(∆) 6= 100.0% are marked
as 3 in FIGURE 18. These implementations do not offer the
possibility to overwrite Ref in memory via a continuous
buffer overflow.

In essence, vulnerable and weak implementations violate Re-
quirement Ë, and secure implementations are not attackable
because they place Ref at locations not reachable by contiguous
overflows (Requirement Í).

As OpenBSD, at the time of writing, is lacking a compiler
with support for thread-local variables, two measurements are
missing from our experiments.

Inspecting the data points measured Vulnerable
Implementations

by CookieCrumbler, we
find eight vulnerable implementations storing the reference
stack canary in the same writeable memory segment as the protected
function frame. Vulnerable configurations are found mostly in
cases of multithreaded applications using glibc. We found this
to be rooted in the fact that libpthread, when allocating a new
sub-thread’s stack, places the thread-local storage (TLS) control
block (containing Ref) right next to it.

Linux-based platforms under test (Android, Arch Linux, De-
bian, and Ubuntu) can be clustered into two different categories.
Architectures which have dedicated TLS access registers (x86,
x86_64, s390x, and PowerPC) that store the Ref in the TCB and
architectures without a direct register access to the TLS (ARMv7).
We have also analyzed the source code of glibc and categorized
further architectures as TLS-based stack canary implementations:

70 smashing the stack protector for fun and profit

IA64, SPARC, and TILE. For the latter architectures, however,
we have no hardware available and thus cannot confirm that
they also constitute vulnerable configurations.

Interestingly, diet libc defaults to storing the reference canary
in the TLS, even if the application is not multi-threaded. In
contrast to other implementations the memory layout is general-
ized and thus also the main thread stack is adjacent to the used
TLS. Note that the main thread’s stack and its TLS region are
separated in the other implementations. This effectively disables
SSP for diet libc.

There is a clear split of weak implementationsWeak Implementations being attack-
able from buffers in thread-local memory or global static mem-
ory on the Linux or the Windows family of operating systems.
This stems from the fact that C libraries on Linux store Ref

in thread local storage, whereas on Windows Ref gets placed
in static memory. Hence, they become overwriteable if buffer
overflows attacks on adjacent variables located in the same mem-
ory segment are possible. An exception to this split is Debian
Jessie running on ARMv7, Debian Stretch using musl libc, and
FreeBSD, which place Ref in global static memory but do not
belong to the Windows family of operating systems.

Windows, macOS, and BSD derivatives store the reference
cookie in the .bss section. Hence, they are not vulnerable to
an stack-based buffer overflow targeting Ref. However, column
glo in FIGURE 18 shows that storing the reference stack cookie
in the .bss region might open up a vulnerability. On Windows
and FreeBSD, the stack canary is placed directly in front of other
global variables in the global static data section (.bss). Thus, the
value might still get overwritten by an overflow running towards
lower addresses, which is less common yet not impossible.

In addition, our evaluation shows that most implementations
also fail to separate other data regions from the location of Ref.
While this is not directly exploitable, it still provides additional
options to an attacker. For instance, if the program uses thread-
local variables, and one of the variables can be overflown, an
attacker is also able to overwrite the reference canary Ref. In
this case, the attacker needs one overflow to change Ref and an
additional overflow to overwrite Can. As this is less likely than
our previous case, we think this problem is not as severe. Still
it might be used by an attacker. As a matter of fact, this also
affects single-threaded applications.

It is noteworthy to point out that Android running on ARMv7,
macOS, and OpenBSD all store Ref at a distinct location that
is adjacent to none of the other potentially attacker controllable
types of memory. As for the placement of Ref, those three cases
therefore constitute the most secure implementations.

6.2 smashing the stack protector 71

FIGURE 18
Evaluation results of reference stack canary storage location detected by CookieCrumbler. The last eight
columns indicate whether reference canary values are located in function local, thread local, global or
dynamically allocated memory in the main or a sub thread. 7, 8, and 3indicate vulnerable, weak, and
secure implementations

Oper
ati

ng

Sy
ste

m

Arch
ite

ctu
re

C
Sta

ndar
d

Libra
ry

loc tls glo dyn

m
ai

n

su
b

m
ai

n

su
b

m
ai

n

su
b

m
ai

n

su
b

1 Android 7.0 ARMv7 Bionic 3 3 3 3 3 3 3 3

2 Android 7.0 x86_64 Bionic 3 7 3 3 3 3 3 3

3 macOS 10.12.1 x86_64 libSystem.dylib 3 3 3 3 3 3 3 3

4 FreeBSD 11.00 x86_64 libc.so.7 3 3 3 3 8 8 3 3

5 OpenBSD 6.0 x86_64 libc.so.88.0 3 3 - - 3 3 3 3

6 Windows 10 x86 msvcr1400.dll 3 3 3 3 8 8 3 3

7 Windows 10 x86_64 msvcr1400.dll 3 3 3 3 8 8 3 3

8 Windows 7 x86 msvcr1400.dll 3 3 3 3 8 8 3 3

9 Windows 7 x86_64 msvcr1400.dll 3 3 3 3 8 8 3 3

10 Arch Linux x86_64 libc-2.26.so 3 7 8 8 3 3 3 3

11 Debian Jessie x86 libc-2.19.so 3 7 8 8 3 3 3 3

12 Debian Jessie ARMv7 libc-2.19.so 3 3 3 3 8 8 3 3

13 Debian Jessie PowerPC libc-2.19.so 3 7 8 8 3 3 3 3

14 Debian Jessie s390x libc-2.19.so 3 7 8 8 3 3 3 3

15 Debian Stretch x86_64 dietlibc 0.33 7 7 8 8 3 3 3 8

16 Debian Stretch x86_64 musl-libc 1.1.16 3 7 8 8 8 3 8 3

17 Ubuntu 14.04 LTS x86_64 EGLIBC 2.15 3 7 8 8 3 3 3 3

6.2.3 Attack Vectors Introduced

From qualitative and empirical results we derive implications
for application security. For this, we assume an adversary who
is capable of triggering a buffer overflow of suitable size on the
stack. As such, we discuss three possible attack vectors (À, Á,
Â) in two different scenarios depending on the threading model
the target executable uses (see FIGURE 19).

In a forking environment, the whole address space À Stack Protector
Randomization Bypass
on Forking Victims

of the
target binary is duplicated, including all Can and Ref values
contained in memory. This compromises randomness within
the process’ memory: ASLR becomes predictable (constant ad-
dresses) as well as all cookie values. Assuming an attacker is
allowed to restart communication with the vulnerable applica-
tion, a primitive that can be abused as an oracle to leak data can
look like follows: the attacker overwrites a stack canary byte
by byte and observes whether the application at the other end
crashes. Only one out of 28 possible byte values will allow the
application to continue execution. This effectively increases the
chance of guessing the stack canary correct from (28)8 = 264 to
(28) · 8 = 211 in the worst case—implying a more than signif-
icant difference in both attack duration as well as probability
of success. This attack vector has already been discussed by
researchers. A similar technique can be used to infer certain
pointer values residing in the attacked application’s stack frame.

72 smashing the stack protector for fun and profit

À Byte-wise Overwrite
Forking

Threading
Â Overwrite argv[0]

Á Overwrite Ref

yes
no yes

no

FIGURE 19
Classi�cation of stack-based bu�er-over�ow attacks on stack canaries in di�erent execution contexts.

To mitigate this attack, the reference canary value should get
re-randomized on calls to the fork library function. This mitiga-
tion has been proposed in literature earlier, however compatibil-
ity doubts exist: The location of already-placed stack canaries is
difficult to infer, and hence an hardened implementation would
introduce application crashes if execution reaches the end of
stack-protected functions that additionally use the fork library
function. This is for the reason that in the forked child process,
the reference canary Ref would get replaced, but already-placed
local stack canaries Can cannot easily be re-randomized.

Based on this idea, one could also re-randomize Ref once a
multithreaded application spawns a new thread. Since both,
Ref (in TLS) and Can (in the function frame) are thread-local
variables, no compatibility issues are to expect.

If the application exhibits multi-threading behavior,Á Reference Canary
Override on Threading

Victims

we can
use the insight gained from CookieCrumbler to bypass the stack
protection mechanism in spawned sub-threads:

If the nature of the overflow allows the attacker to include
null bytes in the payload (for example because the stack-based
overflow is triggered by a memcpy operation) and if the appli-
cation is mapped at a static address in memory, stack canaries
can be bypassed in their entirety by overwriting Can and Ref with
the same, attacker-chosen value. As all program addresses are
known, this case directly reduces to an ordinary ROP attack.

If the nature of the overflow does not allow the attacker to
include null bytes in the payload (for example because the
stack-based overflow is triggered by a strcpy operation) or if the
application’s code section is not mapped at a static address (PIE)
in memory, the attack can still succeed on Linux with glibc: By
targeting the Function Pointer Protection mechanism, a (pro-
tected) function pointer used internally by the stack smashing
protection can be hijacked. This is because the GuardVal (cf.
equations below) value is also stored in the TCB directly be-
hind Ref. An stack-based buffer overflow could then overwrite
three values at once: The local stack protector of the vulnerable
function frame Can, the reference value in the TLS Ref, and the
value used to protect glibc-internal writable function pointers.

6.2 smashing the stack protector 73

To understand this, we have to take a look at the (bijective)
mapping applied to convert between protected pointers (ptrenc)
and clear-text pointers (ptrorig):

ptrenc = ror64(ptrorig ⊕ PointGuard, 0x11)

ptrorig = rol64(ptrenc, 0x11)⊕ PointGuard

As we can see, during demangling any protected pointer is
first rotated by a fixed amount of digits and then xored with
the PointGuard value (i.e., an attacker controlled number).

This is relevant because the function in charge of terminating
the program after a failed stack cookie check in glibc eventually
ends up demangling a writeable function pointer to pthread_once.

It is obvious that due to the simple arithmetic used during
pointer demangling, the attacker can detour the execution flow
by a fixed (xor) offset to this function. From here on, no generic
attack vector exists, but we want to point out that there ex-
ist code paths in glibc that execute the assembly-equivalent
of execve("/bin/sh"), which constitute valuable jump targets
in our case. The likelihood of this attack succeeding heavily
depends on the memory layout imposed on libraries by the
dynamic loader; in our experiments we never observed a dis-
tance greater than 224 between pthread_once and a gadget that
eventually lead to remote code execution.

To get an idea how widespread multithreaded potential victim
programs are, we analyzed dependencies of binaries installed
by a vanilla Debian Jessie installation: About 40% of the exe-
cutables on the test system depend on libpthread leaving them
potentially vulnerable.

For programs that neither employ the fork Â Information Leak on
Conventional Victims

library func-
tion nor use threading, an information leak primitive can be
constructed from the stack canary mechanisms triggered by
stack-based buffer overflows when glibc prior to version 2.26 is
in use. In those versions, glibc tries to include the name of the
attacked executable in its log output before terminating execu-
tion. During this process, the name of the executable is inferred
from the argv[0] value, which is also stored on the application’s
stack. During an stack-based buffer overflow, the argv array
therefore is a potentially attacker-controlled location (this code
executes while it is already known that a memory corruption must
have occurred). By redirecting the argv[0] pointer using either
a full or a partial override, instead of printing the program
name, memory contents at the new target get included in the
error string potentially forming arbitrary memory leak. This
behaviour (assigned CVE-2010-3192) was finally fixed in glibc
version 2.26 in August 2017.

74 smashing the stack protector for fun and profit

1 int auth(char *valid) {
2 char password[32];
3 gets(password);
4 return strcmp(valid, crypt(password, valid)) == 0;
5 }
6 int main(void) {
7 char admin_hash[] = "$1$01234567$b5lh2mHyD2dJjFfAlEz1";
8 if (auth(admin_hash)) {
9 puts("Welcome to the Admin Area");

10 } else {
11 puts("Wrong password.");
12 }
13 }

(a)

Sa
fe

St
ac

k
O

nl
y

...

password

admin_hash

...

ret

ret

...

St
ac

k
Sa

fe
St

ac
k

(b)

Sa
fe

St
ac

k
w

it
h

C
an

ar
ie

s

...

password

Can

admin_hash

...

ret

ret

...

St
ac

k
Sa

fe
St

ac
k

(c)

C
an

ar
ie

s
O

nl
y

...

password

Can

ret

admin_hash

Can

ret

...
P

ro
te

ct
ed

st
ac

k
fr

am
e

of
au

th
P

ro
te

ct
ed

st
ac

k
fr

am
e

of
ma

in

FIGURE 20
Di�erent stack layouts of a C program exposing an authentication bypass vulnerability when enabling
(a) SafeStack only, (b) SafeStack with Canaries, and (c) Canaries only.

6.3 stack-protector-enhanced cpi mechanism

To highlight how stack canaries can improve application secu-
rity, we consider the C program of FIGURE 20. Depending on the
mitigation mechanisms added when compiling this program,
the authentication bypass can be trivially triggered. We consider
this example in the context stack canaries and another more re-
cent anti-exploitation protection mechanism: SafeStack [64] is a
State-of-the-Art CPI implementation that logically separates the
architectural stack into a safe and unsafe region. The safe region
contains all control-flow related data such as return addresses.
The unsafe stack contains user-controlled data, such as arrays
that are likely to be corrupted.

When compiling with SafeStack enabled, the stack layout
looks as depicted in FIGURE 20a: The password and admin_hash
have been separated out to the unsafe stack region, whereas the

6.4 conclusion 75

return addresses of the auth and main functions are placed on
the safe region. Considering the stack-based buffer overflow in
the auth function, we can see that bypassing the security check
becomes trivial: an attacker first overflows the password buffer
and then overwrites the admin_hash with the hash matching the
provided password.

Looking at the same setting with stack canaries enabled, it
becomes obvious why the sketched attack is no longer trivially
feasible: After filling the password buffer, an attacker has to
overwrite Can in order to reach the admin_hash. Once the auth
function returns, the breach will be detected and the program
will terminate.

The same security properties (protecting buffers of adjacent
stack frames) are achieved regardless of the usage of SafeStack.
FIGURE 20c shows that in order to reach the admin_hash buffer,
an attacker also has to overwrite the Can value. Corrupting
Can (in a proper stack canary implementation) should result
in program termination—the fact that the return address ret is
also reachable by the overflow becomes irrelevant.

We acknowledge that SafeStack explicitly declares corrup-
tion of non-control-flow-related data structures to be out of
scope. Yet, this example highlights that instead of replacing
stack canaries entirely, CPI should be complemented by the use of
stack canaries to provide (partial) security against non-control-flow
targeting attacks.

6.4 conclusion

In this chapter we presented CookieCrumbler, a multi-platform
framework to systematically examine stack canary implementa-
tions. We evaluated CookieCrumbler on 17 different combinations
of OSs, C standard libraries, and hardware architectures, and it
can be easily adapted to new architectures in the future. From
the results of the evaluation, we constructed three attack vectors
that allow to bypass or abuse the stack protection mechanism.
Finally, we have shown how stack canaries can enhance more
recent CPI measures such as LLVM’s SafeStack in context of
data-only attacks.

6.4.1 Discovered Attack Vectors

While examining different stack canary implementations, we
discovered scenarios which are prone to three different attacks.
One of them constitutes a novel attack that allows bypassing
State-of-the-Art stack protection mechanisms in threaded envi-

76 smashing the stack protector for fun and profit

ronments on Linux altogether. In summary, the three attacks on
stack protectors we identified are:

• À Randomization Bypass on Forking Victims Due to
the nature of the fork library function on Linux, ASLR
and stack canary values become predictable for any forked
child process. This is because fork simply produces a 1:1
copy of the calling process’ address space without spe-
cial attention towards any security-related secrets getting
duplicated. From this, attackers gain the possibility to
perform byte-wise override attacks on stack canaries to
bypass the mechanism. This attack has been discussed by
related works.

• Á Reference Canary Override on Threading Victims

In threaded Linux applications both—local stack protector
and reference value—sometimes end up getting placed
into the same memory segment. This poses a major vul-
nerability because in such environments an attacker could
simply overwrite both values and bypass stack canaries
altogether. In our of this novel attack methodology, we
show that a single overflow targeting both the local canary
Can and the reference value Ref is not only a theoretical
idea, but it is applicable on a non-negligible part of the
evaluated cases (8 out of 17).

• Â Information Leak on Conventional Victims In addi-
tion, we introduced new ideas for a more advanced attack
that abuses the way exception routines and pointer protec-
tion mechanisms work together. In this setting an attacker
can gain a memory leak primitive allowing to read out
memory (potentially containing secret information) from
the victim application.

While the attack mostly affects Linux, we found that in other
canary implementations (Windows and FreeBSD) the location
of the reference stack canary also has a fixed offset within the
global writable data section. Nevertheless, at least two buffer
overflows need to be located in a single function to successfully
exploit such implementations. Furthermore, the impact on
Windows still is questionable as typically the cookie is placed in
front of any user controllable buffers within the data segment,
thus requiring an overflow of a global static variable into the
direction of lower addresses.

Three configurations successfully separated the reference
value of the stack canary from all attacker controllable memory
or placed it in non-writeable memory: Android on ARMv7,
macOS, and OpenBSD.

6.4 conclusion 77

6.4.2 Attack Mitigations

The following measurements can be taken to make smashing
the stack protector more difficult:

Re-randomizing Ref on process creation (e.g., after Per-Thread and
Per-Function Canaries

forking)
is a promising idea to increase canary entropy. We propose
to modify multithreading libraries to randomize Ref for each
thread. The windows family of operating systems advances
this idea, generating per-function stack cookie values by xoring
the reference value with the current stack or frame pointer
value to borrow additional randomness from ASLR. However,
this mitigation is only effective for scenarios where the code
segment of the protected function is mapped at randomized
addresses.

Handlers running in obviously faulty No Reading of Tainted
User Space Data On
Corruption

program context should
strive to quit execution as fast as possible. The fact that this is
not always the case is impressively illustrated by the example of
glibc’s __stack_chk_fail handler which passes control through
several layers of code reading attacker controlled values from
the stack. Clearly, the approaches taken by Microsoft Visual C
(MSVC) or musl libc are preferable—the handler quits as fast as
possible and, in case of MSVC, any reasoning about the crashed
program’s state (if at all) is performed using (more trustworthy)
run-time data from the OS’s kernel only.

Memory containing the reference value Ref Separation of Stack
Protector Reference
Value from other
Memory

(the TCB on
Linux) must not be mapped adjacently to any memory structure
that contains user-controllable buffers. Stack protectors as imple-
mented by Android (ARMv7), macOS, or OpenBSD show that
this is in general possible, by either allocating a distinct memory
segment for the reference value, or by placing the reference
value in read-only memory.

Finally, we believe this chapter provides systematic insight
into the qualitative implementation details of stack canaries used
by modern OSs and can serve as a basis for future explorations
of security critical parts of the OSs and C standard libraries in
use today.

7
D Y N A M I C L O A D E R O R I E N T E D
P R O G R A M M I N G O N L I N U X

Memory corruptions are still the most prominent venue to attack
otherwise secure programs. In order to make exploitation of
software bugs more difficult, defenders introduced a vast num-
ber of security mitigations. In Chapter 6 we turned our attention
towards Stack Canaries. In this chapter we evaluate security
promises of another widely used anti-exploitation mechanism:
Address Space Layout Randomization (ASLR).

In the following, we describe the Wiedergänger9-Attack, a 9 "vi:d5gEN5 (lit.
"One Who Walks
Again")

new attack vector that reliably allows to escalate unbounded
array access vulnerabilities when accessing specifically allocated
memory regions to full code execution on programs running on
i386/x86_64 Linux in presence of ASLR.

In current software projects written using the C programming
language, callback mechanisms are frequently employed to ex-
ecute functionalities once a certain event occurs. For example
the atexit function as described by the Portable Operating Sys-
tem Interface (POSIX) family of standards allows programmers
to register a function at runtime that will eventually be called
upon program termination. Such functionality is typically im-
plemented by means of function pointers that get dispatched
by the C runtime once the program exits. In case of such hooks
being stored in writable memory, an attacker is able to change
the control flow of an application if they are able to overwrite
the hook with a malicious value. In the worst case, an adver-
sary can escalate a single overwritten hook to arbitrary code
execution on the attacked system.

The above attack is a well-known technique when it comes
to exploiting bugs in software. Unsurprisingly, a lot of effort
has been spent to protect these hooks: For instance, they are
typically stored in memory regions that do not contain data that
is directly modifiable by the user. Furthermore, ASLR has been
introduced to randomize and thus hide the absolute addresses of
data in memory. Last, function pointers themselves are typically
protected by the C runtime by either marking the memory they
reside in as read-only or by using protections that scramble the
pointer values using a secret key. However, as we will discuss
in this chapter, even if all defenses are in effect, there still exist
hooks that can be attacked.

80 dynamic loader oriented programming on linux

This chapter focuses on Unbound Array Access Vulnerabilities —
programming errors which lead to an array being accessed at an
index outside of the range [0, n− 1] with n being the length of
the array. More specifically, we develop attacks on (erroneous)
software such as

unsigned char *ptr = malloc(0x200000);

size_t idx = 0; unsigned char val = 0;
/* simulate vulnerability:
* idx and val are controlled by user */

scanf("%zu %hhu", &idx, &val);

ptr[idx] = val;

where a malicous attacker can (repeatedly) control the index idx
used to write (byte) value val into an array pointed to by ptr.

We believe Wiedergänger attacks to be part of an under-
researched type of control flow hijacking attacks targeting in-
ternal control structures of the dynamic

q Julian Kirsch, Bruno
Bierbaumer, Thomas
Kittel, Claudia Eckert.
Dynamic Loader Oriented
Programming on Linux.
2017.

loader for which we
propose to use the terminology Loader Oriented Programming
(LOP).

Parts of this chapter are based on the publication Dynamic
Loader Oriented Programming on Linux whose author list the thesis
author is part of.

7.1 pointer classification

In the following, we classify pointers in two stages:
First, we identify all code pointersDefilable Pointers (pointers pointing into

executable memory) that reside in writable memory or in struc-
tures referenced by pointers stored in writable memory. We
refer to such pointers as defilable pointers, because they could be
overwritten by an attacker in case a program contains an out-
of-bounds write vulnerability. Afterwards, we filter the list of
defilable pointers to only include chains ending in code pointers
that are eventually used during a control flow transfer (are live).
For readability reasons, we imply to refer to live defilable pointers
whenever we use the term defilable pointer from here on.

In a second step, we obtain a distance matrixReachable Pointers of continuously
mapped memory regions within a given process address space
containing the relative distances of each region to each other. By
performing multiple measurements and determining the entries
in the distance matrix we are able to find memory mappings that
even though ASLR is active are separated by a constant number of
bytes across several program invocations. Any pointer residing
in a region that has a fixed distance to the region containing the

7.1 pointer classification 81

Code Page: r-x
0x7fff00000000: call [rip+0xffa]
0x7fff00000006: mov rax, [rip+0xffb]
0x7fff0000000d: add rax, 0x30
0x7fff00000013: jmp rax

0x7fff00000020: /* Code of function a */

0x7fff00000030: /* Code of function b */

Data Page: rw-
0x7ffff00001000: .qword 0x7fffff00000020
0x7ffff00001008: .qword 0x7fffff00000000

Ê
Ë

FIGURE 21
Example of a directly dispatched de�lable pointer Ê and an indirectly dispatched de�lable pointer Ë.

vulnerable array that is accessible out-of-bounds is referred to
as reachable. Any defilable and reachable pointer can then be
used to construct a Wiedergänger-attack.

In order to keep the attack methodology as independent as
possible of the underlying application, we only focus on pointers
that are called during program teardown. This means that the
memory corruption might occur at any point during program
execution, but it is only once the program exits that the defiled
pointers are dispatched and thus come back to life, exhibiting
their malicious behavior10. 10 i.e. the Wiedergänger

returns

7.1.1 Identifying Defilable pointers

We subclassify defilable pointers into two categories:
First, directly dispatched defilable pointers are pointers in writable

memory that are read by a control-flow changing instruction.
For instance, pointer Ê in FIGURE 21 resides at virtual address
0x7ffff00001000 in the data section and is directly referenced as
a memory operand by the call instruction at virtual address
0x7fff00000000.

On the other hand, indirectly dispatched defilable pointers are
pointers in writable memory that are read by a non-control-
flow changing instruction but reference data structures which
in turn contain or reference a pointer that is read by a control-
flow changing instruction. In the example shown in FIGURE 21,
pointer Ë is first read from memory by the mov instruction at
virtual address 0x7fff00001000 and dispatched later by the jmp

82 dynamic loader oriented programming on linux

at virtual address 0x7fff00000013. Note how the add operation
modifies the pointer value prior to using it as a jump target. We
do not require any such operation when searching for indirectly
dispatched defilable pointers, however cases in which an offset
is added to a base address come with their own advantages, as
discussed later.

Directly Dispatched
Defilable Pointers

To allow for a fast systematic search of directly dispatched
defilable pointers, we build a system that assists us at finding
writable pointers in memory, consisting of a tracer and a tracee.
In the following we will describe the different steps to perform
the systematic search.

1. At the beginning, the tracer opens a debug handle to the
tracee using the ptrace debugging API.

2. Once a special magic instruction is executed, the tracee
traps into the tracer, and the tracer takes a snapshot of the
state of the page tables of the tracee. The magic instruction
is used to mark the start of the measurement, and in our
scenario typically would be the point where the program
starts to terminate. The magic instruction can either be
put at instrumentation points of interest, if the source
code of the application is available, or be injected using a
LD_PRELOAD library that wraps library calls of interest.

3. After obtaining the page table information, the tracer starts
injecting mprotect calls into the tracee to set all pages
with the write permission bit active (i.e. rw-) to no access
(i.e. ---).

4. Next, the magic instruction is skipped and the tracee is
allowed to continue.

5. Once the tracee tries to access memory that was formerly
writable, a segment violation is generated by the operating
system kernel, effectively pausing the tracee before control
is given to the tracer.

6. The tracer determines the faulting instruction and checks
whether the fault is a read violation caused by an indirect
control flow transfer. In this case, the tracer tries to read
the memory at the faulting location and checks whether it
has the value of a pointer pointing into formerly executable
memory. If all conditions are satisfied, the tracer logs the
instruction address, the faulting location, as well as the
pointer value stored at the faulting location to a file.

7. The tracer injects another mprotect syscall into the tracee
to restore the original permissions of the page the tracee is

7.1 pointer classification 83

trying to access, and tries to single step over the faulting
instruction.

8. After a successful single step, protection bits are set to
no access again using a third mprotect and execution is
allowed to continue.

9. If any other type of signal is raised by the tracee, the tracer
forwards this signal to the tracee in order to establish the
original behavior of the debugged application.

Effectively, the above procedure sets read watchpoints on all
writable locations in the address space. While the x86 archi-
tecture supports watchpoints in hardware by means of special
debug registers, they are constrained in number and size, re-
sulting in the need of implementing watchpoints simulated in
software.

Using this approach, we are able to construct a list of directly
dispatched defilable pointers.

Indirectly Dispatched
Defilable Pointers

In order to detect indirectly dispatched defilable pointers
we use a similar approach to the methodology explained in
Section 7.1.1 combined with taint analysis [60]. More precisely,
we obtain the desired set of pointers using the following steps:

1. Step (1) is the same as above

2. Step (2) is the same as above

3. Next, the magic instruction is skipped and the tracee is
continued in single step mode

4. After the execution of each instruction, the tracer logs the
current state of all registers and the bytes of the current
instruction to a file.

5. Once the tracee exits, a list of taint sinks is determined
by performing a linear sweep over the traced instruction
stream scanning for control flow changing instructions
with register or memory operands (such as call and jmp).
Each occurrence of such an instruction type constitutes a
taint sink.

6. Starting from each of the taint sinks, a backwards taint
analysis is performed. The goal of this analysis step is to
determine the source of the register or memory location
read by each sink.

7. For each sink, additionally the rdi register is tainted. This
enables us to reason about the source of the first argument
of the function targetted by the control flow change and

84 dynamic loader oriented programming on linux

simplifies exploitation later. For instance, an attacker typ-
ically wants control flow to call a pointer to the system
function with the first argument (rdi) pointing to the string
"/bin/sh".

8. Taint is propagated following the traced instruction stream
backwards using the following rules:

• Arithmetic operations targetting a tainted register
propagate taint to all input registers and keep the
target tainted.

• Any operation belonging to the family of mov instruc-
tions with register source propagates taint to the input
register and removes taint from the destination.

• Any instruction with tainted destination register us-
ing a memory operand as source sanitizes the tainted
destination in case of a mov instruction. If the source
memory operand does not target writable memory,
the base and the index register of the memory operand
are tainted, otherwise only the taint on the destination
operand is sanitized.

• If the base register of some source memory operand is
the instruction pointer, taint is sanitized in any case,
as the instruction pointer is not controllable for a
particular instruction located at a particular address.

• Compare instructions do not taint the flags and are
ignored.

• All control flow changing instructions such as calls,
(conditional) jumps, and returns are ignored.

• All stack-related operations (push, pop, leave) are
ignored.

• Once all taint has been sanitized, or the beginning of
the trace is reached, the analysis stops.

9. Additionally, the addresses of all instructions operating
on tainted registers are stored. These sub-traces form the
slices of the program.

Adhering to this construction, we are able to extract the list of
indirectly dispatched defilable pointers as well as all instructions
that operate on the pointer value. Due to the rules used in
step (8), the whole process yields an over-approximation of
the dynamic backwards slice of instruction sequences operating
on defilable pointers: The fact that compare instructions and
conditional branches are ignored simplifies away potential range
checks that might be performed on pointer values, potentially

7.1 pointer classification 85

Type Description

function-local Local variable on the stack
heap-little Heap allocation with 128 bytes
heap-big Heap allocation with 16 MB
thread Thread Local Storage
global Global variable
text Address of executable code
lib-text Address of glibc code
lib-global Library global data

TABLE 7
List of memory regions that are considered during our measurements.

leading to false-positives that can later be removed using manual
analysis. For a similar reason, the taint algorithm also yields
pointers that are protected by glibc’s Pointer Protection; Due
to their unique construction (ror rX, 0x11; xor rX, fs:0x30)
these are straightforward to recognize and can consequently
be filtered out in a following analysis step. This automated
analysis reduces the search space down to a few dozen slices —
an amount that can easily be processed manually.

7.1.2 Identifying Reachable pointers

We now describe how to construct a set of pointers that are
located at a fixed offset from user controllable data. Later on,
we bootstrap our attack using pointers from the intersection of
both sets.

We use a small helper program that inspects memory from dif-
ferent memory regions, prints out the respective virtual address
and the memory protection bits (readable, writable, executable).
Table 7 gives a quick overview and a description of the different
memory regions that are checked during our test. The following
memory types are considered by our program:

function-local Nonstatic function-local memory typically
is placed on the architectural x86 stack, which automati-
cally goes out of scope with the teardown of the respective
function. Therefore, pointers to local data structures are
assumed to tell us the location of the current stack page.

thread When non-local memory that is globally accessible for
one certain thread but different across all threads is needed,
thread local memory is used. This type of memory is
incorporated into modern C standards by means of the
__thread keyword.

86 dynamic loader oriented programming on linux

heap-little / heap-big As some malloc implementations
allocate memory at different address ranges based on the
requested allocation size, we sample pointers returned
by malloc for a size of 128 bytes and 16M bytes. For
example, glibc falls back to using plain mmap for requested
allocation sizes bigger than M_MMAP_THRESHOLD (128K on
64 bit systems) instead of increasing the program break.
The obtained pointers are considered to be representative
for dynamically allocated memory.

global For statically allocated memory, we simply retrieve
the address of a global static array residing in the bss
section of the binary with a size of 128 bytes.

text Is an address pointing into code that the compiled pro-
gram consists of. In C this is a function pointer to a
function of the program.

lib-text Is an address pointing to code within a shared li-
brary. In the concrete test case we use a function pointer
referencing system in libc.so.

lib-global Represents statically allocated memory in a shared
library. We use the address of a globally accessible variable
within libc to determine the location of this memory type
(stdout).

In order to determine which pointers have a fixed offset from
user/attacker controlled data, we execute the helper program
multiple times. The helper program outputs addresses of all
described memory types, which are then used to calculate a
distance matrix of all memory areas to each other. This allows
us to determine regions with constant offsets to each other by
comparing the distances over multiple executions.

7.2 evaluation

All tests are carried out on binaries compiled with the following
protection mechanisms enabled:

• -Wl,-z,relro,-z,now maps pointers to external functions
as read only (so-called relro mechanism).

• -fPIC -pie -fpie generates a position independent exe-
cutable that can be loaded at arbitrary base addresses.

• -fstack-protector-all protects all function stack frames
with stack canaries.

7.2 evaluation 87

• -D_FORTIFY_SOURCE=2 enables glibc related hardening mech-
anisms of several string handling functions.

We think that this configuration reflects best-effort software
protections. The test machine is running the 64 bit version
of Arch Linux with kernel version 4.10.6-111 with ASLR in 11 Specifically, we are

using Vagrant Box
terrywang/archlinux,
version 3.17.0719

place12,13. The glibc version in use is 2.25 (February 2017)

12

/proc/sys/kernel/
randomize_va_space
set to 2
13 /proc/sys/vm/
mmap_rnd_bits set to
32

compiled with relro enabled.

7.2.1 Considered Testcases

As mentioned earlier we only want to focus on defilable pointers
that are dispatched during common execution sequences occur-
ring in the C standard library. Therefore we focus on code that
is either directly responsible for application teardown (T0, T1,
T2, T3, T4, T9, T10) or code that is likely to change the behavior
of the code during application teardown (T5, T6, T7, T8). More
specifically, we search for defilable pointers during the following
scenarios:

T0 : return from main . This is the most basic way for an
application to shutdown. Dynamic and static destructors
are dispatched before the application quits.

T1 : call the exit function. Similar to the test above, but
also available to functions other than main to exit the pro-
cess.

T2 : call the _exit function. This function is used for
immediate shutdown. It simply wraps the respective sys-
tem call and performs no destructor processing.

T3 : call the _pthread_exit function. Terminates the
calling thread and performs destructor handling by calling
exit if the calling thread is the only thread in the process.

T4 : call the __stack_chk_fail function. This library
function is usually never called explicitly by any C pro-
gram. Instead, the compiler inserts code to check the
validity of canary values on the stack at the time a pro-
tected function returns. Only if canary validation fails
__stack_chk_fail is called. The purpose of this test is
to simulate a program abort occurring due to a buffer
overrun on the stack being detected.

T5 : call dynamic memory management logic . We call
malloc (size 0x10), realloc (size 0x20) and free on one
chunk of memory and then return from main. The ratio-
nale behind this is that glibc provides hooks14 that are 14 man malloc_hook

88 dynamic loader oriented programming on linux

dispatched on invocation of the dynamic memory alloca-
tion related functions (malloc, realloc, memalign, free).

T6 : register dynamic destructor via atexit . Registers
a destructor at runtime and then returns from main. The
purpose of this test is to check whether it is possible to
defile the newly registered destructor.

T7 : register dynamic destructor via on_exit . As the
test above but using a different library function to register
the destructor.

T8 : register static destructor . As the test above but us-
ing the __attribute__((destructor)) function attribute
to register a destructor at compile time. This is the classic
attack target that relro protects against overwriting.

T9 : raise a sigkill . This test causes the process to send itself
a sigkill.

T10 : violate a heap consistency check . Similar to test
T4, this is to study what pointers are dispatched during
a non-graceful program shutdown that occured due to
a violation of a constraint imposed by the heap checker.
During the test, we free a malloced pointer twice to trigger
a security abort.

7.2.2 Directly Dispatched Defilable Pointers

Table 8 shows code pointers in writable memory that are directly
dispatched during one or more of our tests Ti, whereas Table 9

gives a more detailed overview of which test case dispatches a
particular pointer.

As can be seen from the numbers, pointers D0 and D1 are
dispatched during 8 of the 11 tests and therefore build the most
promising targets to defile. The pairs (D4, D0) and (D5, D1) dis-
patch the same location (dl_rtld_[un]lock_recursive) but tar-
get different functions depending on whether the application de-
pends on libpthread.so (the library containing pthread_exit).
Pointers D2 and D3 are called during the creation of a stack
trace in case glibc detected a security violation. These pointers
are special in the sense that they point into code contained in
memory that gets allocated during the termination process when
glibc tries to unwind the stack and loads libgcc_s.so.

7.2 evaluation 89

Callsite (r-x)→ Pointer Location (rw-)→ Pointer Target (r-x)

D0 ld-2.25.so:_dl_fini
_ ld-2.25.so:_rtld_local._dl_rtld_lock_recursive
_ ld-2.25.so:rtld_lock_default_lock_recursive

D1 ld-2.25.so:_dl_fini
_ ld-2.25.so:_rtld_local._dl_rtld_unlock_recursive
_ ld-2.25.so:rtld_lock_default_unlock_recursive

D2 libc-2.25.so:backtrace_helper
_ libc-2.25.so:unwind_getip
_ libgcc_s.so.1.so:_Unwind_GetIP

D3 libc-2.25.so:backtrace_helper
_ libc-2.25.so:unwind_getcfa
_ libgcc_s.so.1.so:_Unwind_GetCFA

D4 ld-2.25.so:_dl_fini
_ ld-2.25.so:_rtld_local._dl_rtld_lock_recursive
_ pthread-2.25.so:pthread_mutex_lock

D5 ld-2.25.so:_dl_fini
_ ld-2.25.so:_rtld_local._dl_rtld_unlock_recursive
_ pthread-2.25.so:pthread_mutex_unlock

TABLE 8
Chain of callsites that directly dispatch de�lable code pointers for programs using glibc 2.25 as C
standard library. The pointer in the middle of the chain can be used as a target during a Wiedergänger
attack. Due to their property of being immediately dispatched frommemory, none of the observed
pointers Di is protected by Pointer Encryption or relro.

T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10

D0 2 2 17 2 2 2 2 17

D1 2 2 17 2 2 2 2 17

D2 8 8

D3 8 8

D4 8

D5 8

TABLE 9
Directly de�lable pointers dispatched during the di�erent test scenarios (numbers are absolute frequen-
cies, no entry means zero)

90 dynamic loader oriented programming on linux

Callsite (r-x)→ Pointer Location (rw-)→ Pointer Target Encrypted

I0 libc-2.25.so:__run_exit_handlers
_ libc-2.25.so:cxafct
_ ld-2.25.so:_dl_fini

E

I1 libc-2.25.so:__run_exit_handlers
_ libc-2.25.so:__libc_atexit
_ ld-2.25.so:_IO_cleanup

E

I2 ld-2.25.so:_dl_fini
_ ld-2.25.so:l->l_info[DT_FINI_ARRAY]->d_un.d_ptr
_ main_elf:__do_global_dtors_aux_fini_array

—

I3 ld-2.25.so:_dl_fini
_ ld-2.25.so:l->l_info[DT_FINI]->d_un.d_ptr
_ main_elf:_fini

—

I4 libc-2.25.so:__run_exit_handlers
_ libc-2.25.so:onfct
_ main_elf:onexit_dtor

E

I5 libc-2.25.so:malloc
_ libc-2.25.so:__malloc_hook_ptr
_ libc-2.25.so:malloc_hook_ini

—

I6 libc-2.25.so:_dl_addr
_ libc-2.25.so:_rtld_global_ptr
_ ld-2.25.so:__rtld_lock_lock_recursive

—

I7 libc-2.25.so:_dl_addr
_ libc-2.25.so:_rtld_global_ptr
_ ld-2.25.so:__rtld_lock_unlock_recursive

—

I8 libc-2.25.so:sysmalloc
_ libc-2.25.so:__morecore_ptr
_ libc-2.25.so:__morecore

—

I9 libc-2.25.so:realloc
_ libc-2.25.so:__realloc_hook_ptr
_ libc-2.25.so:realloc_hook_ini

—

TABLE 10
Chain of callsites which indirectly dispatched de�lable code pointers for programs using glibc 2.25
as C standard library. The column Encrypted indicates whether a pointer is protected by glibc’s Pointer
Guard

7.2.3 Indirectly Dispatched Defilable Pointers

Table 10 shows the chain of callsites that indirectly dispatch
defilable code pointers during one ore more of our tests. The
pointer in the middle of the chain can be used as a target during
a Wiedergänger attack because it resides in writable memory.
The last column indicates whether the pointer is protected using
the encryption mechanism of Function Pointer Protection (E).
Note that even though relro places pointers such as the target of
I2 in read-only memory, the taint analysis detects them because
the data structures used by the loader that eventually reference
the location of the destructor are writable.

7.2 evaluation 91

T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10

I0 1 1 1 1 2 1 1

I1 1 1 1 1 1 1 1

I2 1 1 3 1 1 1 2

I3 1 1 3 1 1 1 1

I4 1

I5 1 1

I6 2 2

I7 2 2

I8 2 4

I9 1 1

Other 263 42 42

TABLE 11
Indirectly dispatched de�lable pointers found during the di�erent test scenarios (numbers are absolute
frequencies, no entry means zero)

Table 11 gives a more detailed overview of which test case
indirectly dispatches a particular pointer Ii. Pointers I0, I1,
and I4 are the direct effects of registering destructors, but are
all protected by pointer encryption and therefore require the
process-specific pointer guard value (stored inside the TLS) to
be known for an attack. As can be seen, seven out of eleven
methods to exit a program reach a point in _dl_fini where an
unprotected defilable pointer gets dispatched indirectly. I5, I8
and I9 are the dynamic memory management related hooks that
get called during two tests. The last row in the table indicates
a plethora of other potential hooks that we disregarded during
manual analysis.

7.2.4 Reachable Pointers

As we do not assume a primitive to leak memory from the
victim program, we need to exploit determinism in the memory
allocation strategy used by mmap during our attack. This section
presents the results obtained when analyzing memory layout of
userspace processes. In the following, we restrict our descrip-
tion only to the interesting portion of the results: Memory areas
that share a constant offset to each other. FIGURE 22 depicts the
results of our measurements on Arch Linux. Every row and col-
umn stands for one memory region. Additional labels indicate
in what region which memory type is stored. A black field in
the table means that the two memory regions have a constant
offset to each other. In an optimal ASLR implementation only
the diagonal should be visible.

92 dynamic loader oriented programming on linux

r-
xp

 h
el

pe
r

r-
-p

 h
el

pe
r

rw
-p

 h
el

pe
r

rw
-p

 [
he

ap
]

rw
-p

 <
an

on
>

r-
xp

 l
ib

c-
2.

25
.s

o
r-

-p

 l
ib

c-
2.

25
.s

o
rw

-p

 l
ib

c-
2.

25
.s

o
rw

-p

 <
an

on
>

r-
xp

 l
d-

2.
25

.s
o

rw
-p

 <
an

on
>

r-
-p

 l
d-

2.
25

.s
o

rw
-p

 l
d-

2.
25

.s
o

rw
-p

 <
an

on
>

rw
-p

 [
st

ac
k]

r-
-p

 [
vv

ar
]

r-
xp

 [
vd

so
]

r-
xp

 [
vs

ys
ca

ll
]

Main ELF Code
Main ELF Data

Main ELF Data
Dynamic Memory (Small)

Dynamic Memory (Large)
Library Code

Library Data
Library Data
Unknown Data

Loader Code
Thread Local Storage

Loader Data
Loader Data
Unknown Data

Program Stack, Function Local Variables
System Call Emulation Related Data

System Call Emulation Related Code
System Call Emulation Related Code

r-xp helper
r--p helper
rw-p helper
rw-p [heap]
rw-p <anon>
r-xp libc-2.25.so
r--p libc-2.25.so
rw-p libc-2.25.so
rw-p <anon>
r-xp ld-2.25.so
rw-p <anon>
r--p ld-2.25.so
rw-p ld-2.25.so
rw-p <anon>
rw-p [stack]
r--p [vvar]
r-xp [vdso]
r-xp [vsyscall]

Random Offset,
No Mapping Writable
Random Offset,
≥ 1 Mapping Writable

Constant Offset,
1 Mapping Writable

Constant Offset,
No Mapping Writable

Constant Offset,
> 1 Mapping Writable

FIGURE 22
Relative Positioning and Protection Flags of Memory Regions on Arch Linux running glibc-2.25.

The memory layout can be divided into several blocks:

• program image In Linux the text, data and bss section
are always mapped continuously.

• heap The heap (program brk) is mapped independently.

• mmap regions Allocations obtained from mmap are also
mapped in a continuous way. This means that pointers in
any of this regions will give away all other regions in this
area.

• stack The stack is not in constant distance to any other
region.

• vvar, vdso These regions are alway next to each other, but
independent to the rest of the address space layout.

• vsyscall The vsyscall page is always mapped at a constant
address.

The most interesting block in the table is the large continu-
ously mapped area caused by Linux’ mmap. This block contains
several potentially user controlled memory types: big heap al-
locations, all parts of all shared libraries (text/data/bss), and
thread local variables. This means that if an attacker finds an

7.3 the wiedergänger-attack 93

unbounded array access in one of those mappings, they can
modify any value in this block by means of a constant offset that
only depends on the configuration of the libraries used by the
victim. Any defilable pointer in this block potentially enables
the attacker to take over the program’s control flow.

Clearly, during our test we find that in current implementa-
tions of ASLR on Linux all libraries are loaded in a deterministic
manner and thus all relative offsets are constant to each other. This
implies that all defilable pointers identified earlier also are reach-
able. Even worse, an attacker who is capable of modifying offsets
that are added to defilable pointers prior to dispatching them
can attack systems even without a memory leak primitive.

In the next section, we will show that this is not a purely
theoretical assumption but actually feasible in practice.

7.3 the wiedergänger-attack

In the following we will give two examples of Wiedergänger-
attacks against the dynamic loader and glibc. In summary, as
mentioned earlier, a Wiedergänger-attack targets global writable
function pointers that get dispatched during application tear-
down and, due to the implementation of ASLR are located at
a constant offset to user controlled data. Both examples par-
tially overwrite pointer values to bypass or weaken the effects
of ASLR.

7.3.1 Probabilistic Attack

Clearly, D0 and D1 (D4, D5 in multithreaded applications) con-
stitute the most valuable attack targets as they are dispatched
in all except two application shutdown scenarios. As discussed,
these pointers are both defilable, and reachable. Thus, assuming
a leak-less exploit, an attacker could launch a Wiedergänger-
attack using the corruption technique shown in the code listing
in FIGURE 23.

To understand the code shown in FIGURE 23, consider the pro-
gram slice belonging to D0 found in _dl_fini in ld.so during
our evaluation (all pointer values are examples for one particular
run and affected by ASLR):

; Points to 0x7ffff7ffd948 (writable)
lea rdi, qword ptr [rip + 0x214c22]
; Points to 0x7ffff7ffdf48 (writable)
call qword ptr [rip + 0x21521c]

94 dynamic loader oriented programming on linux

// rdi argument for attack is at ld+0x224948
// call target for attack is at ld+0x224f48
// system is at 0x3f450 in libc
// offset between mmaped chunk and ldbase is 0x59fff0

#include <stdlib.h>

int main(int argc, char **argv) {
/* Large chunk lets malloc fall back to mmap. */
unsigned char *ptr = malloc(0x200000);

/* Write "sh" to _dl_rtld_lock_recursive to set
first argument of attacked function pointer */

ptr[0x59fff0 + 0x224948] = ’s’;
ptr[0x59fff0 + 0x224949] = ’h’;
ptr[0x59fff0 + 0x22494a] = 0;

/* Partial overwrite to redirect
rtld_lock_default_lock_recursive (D0)
to system@libc. Needs to guess 12 bits. */

ptr[0x59fff0 + 0x224f48] = 0x50;
ptr[0x59fff0 + 0x224f49] = 0x94;
ptr[0x59fff0 + 0x224f4a] = 0xa7;

/* ... program continues until exit ... */
return 0;

}

FIGURE 23
Minimal example of a Wiedergänger-attack spawning a shell on Debian Buster with a probability of
1:4096 by using the directly dispatched pointer D0 .

Additionally, assume the pointer value returned by malloc
in FIGURE 23 is 0x7ffff7839010, and the system function is lo-
cated at 0x7ffff7a79450. Then the (constant) distances of the
pointer returned by malloc to the two addresses in D0 are
0x7ffff7ffd948 - 0x7ffff7839010 = 0x7c4938 for the lea and
0x7ffff7ffdf48 - 0x7ffff7839010 = 0x7c4f38 for the call in-
struction targets. These numbers can be found in FIGURE 23 when
adding the constants the ptr array is accessed at. Note how
these distances—independent of the current ASLR state—can be
calculated a priori and are used as constant out-of-bounds array
indices. The first write sequence sets up the string sh as the
first argument to the hijacked function pointer call, whereas the
second write sequence performs a three byte partial override of
the pointer stored at 0x7ffff7ffdf48. The byte sequence 50 94
a7 corresponds to the three least significant bytes of the system

7.3 the wiedergänger-attack 95

function. Thus, the code above will execute system("sh") re-
sulting in arbitrary code execution.

In terms of ASLR, we immediately see that even though all
absolute pointer values get randomized, the values used as
indices into the array remain the same. The only point where
the attack uses an absolute address is the three-byte-override.
As discussed earlier, ASLR is performed at page granularity.
This means that out of 24 overwritten bits (three bytes), twelve
bits remain constant, leaving an attacker with twelve unknown
bits. This results in an attack probability of 1 : 212 = 1 : 4096 in
the worst case.

In the next section, we will reduce the 1 : 212 attack proba-
bility using indirectly dispatched pointers to achieve reliable
exploitation.

7.3.2 Reliable Attack

To achieve reliable code execution with a Wiedergänger-attack,
we make use of the instruction sequence of I3 with rbx pointing
to the writeable copy of struct link_map in ld.so. The relevant
assembly looks as follows:

mov rax, qword ptr [rbx + 0x110]
; ... instructions omitted ...
mov r12, qword ptr [rax + 8]
mov rax, qword ptr [rbx + 0x120]
; r12 = base + l->l_info[DT_FINI_ARRAY]->d_un.d_ptr
add r12, qword ptr [rbx]
; rdx = l->l_info[DT_FINI_ARRAYSZ]->d_un.dptr
mov rdx, qword ptr [rax + 8]
shr rdx, 3
; check if DT_FINI_ARRAYSZ / 8 == 0
test edx, edx
lea r15d, dword ptr [rdx - 1]
jne loc_a
jmp loc_b

loc_a:
mov edx,r15d
; call DT_FINI_ARRAY destructor (avoid this)
call QWORD PTR [r12+rdx*8]

loc_b:
mov rax, qword ptr [rbx + 0xa8]
mov rax, qword ptr [rax + 8]
; rax = base + l->l_info[DT_FINI]->d_un.d_ptr
add rax, qword ptr [rbx]
; call DT_FINI destructor (attack this)
call rax

96 dynamic loader oriented programming on linux

The underlying C source code is found in the glibc source
in dl-fini.c in function _dl_fini. The following source code
lines are relevant:

/* Traverse all struct link_map used by the loader */
struct link_map *l = maps[i];
if (l->l_info[DT_FINI_ARRAY] != NULL) {

unsinged int i;
/* ASM listing from above starts here. */
/* Compute address of DT_FINI_ARRAY in main ELF. */
ElfW(Addr) *array = (ElfW(Addr) *) (l->l_addr

+ l->l_info[DT_FINI_ARRAY]->d_un.d_ptr);
/* Compute number of pointers in DT_FINI_ARRAY */
i = l->l_info[DT_FINI_ARRAYSZ]->d_un.d_val

/ sizeof (ElfW(Addr));
/* Dispatch all FINI_ARRAY calls */
while (i-- > 0)

((fini_t) array[i]) ();
}
/* Next try the old-style destructor. */
if (l->l_info[DT_FINI] != NULL)

DL_CALL_DT_FINI
(l, l->l_addr + l->l_info[DT_FINI]->d_un.d_ptr);

When entering the Wiedergänger-gadget I3 from above, rbx
holds the address of a struct link_map referencing control data
used by the dynamic loader. This struct in turn contains three
relevant elements: (1) the base address l_addr of the main exe-
cutable ELF file at offset 0x0 (corresponding to [rbx + 0x0] in
the ASM listing), (2) the pointer l_info[DT_FINI_ARRAYSZ] to
the size of the FINI_ARRAY of the main executalbe ELF file at off-
set 0x120 ([rbx + 0x120]), and (3) the pointer l_info[DT_FINI]
holding a pointer to the offset of the .fini destructor to the
base address of the main ELF executable at offset 0xa8 ([rbx +
0xa8]).

To achieve reliable exploitation we abuse the fact that the code
performs an addition to calculate the absolute address of the
.fini function in the last line of the C listing. As explained,
the pointer l_info[DT_FINI] usually points to the offset of the
.fini function within the main ELF executable. However, close
to this information, the loader places an absolute pointer to
the variable _r_debug in ld.so. Consequently it becomes pos-
sible to overwrite the least significant byte of l_info[DT_FINI]
and let it point to an absolute adress (_r_debug, randomized by
ASLR). Then, l->l_addr can be overwritten with the constant
distance of _r_debug to a so-called win-gadget in glibc that exe-
cutes execve("/bin/bash"). The central idea that lets the attack
succeed is to exchange base address and offset during calculation of

7.3 the wiedergänger-attack 97

// offset of mmaped chunk to link_map is 0x7c3160

#include <stdlib.h>
#include <stdint.h>

int main(int argc, char **argv) {
/* Large chunk lets malloc fall back to mmap. */
unsigned char *ptr = malloc(0x200000);

/* Set l->l_addr to fixed offset of _r_debug
in ld.so and a win-gadget in libc.so. */

*(uint64_t *)&ptr[0x7c3160] = 0xffffffffffb1480f;

/* Set l->l_info[DT_FINI] pointer to a
pointer to _r_debug in DYNAMIC section. */

ptr[0x7c3160 + 0xa8] = 0xb8;

/* Set l->l_info[DT_FINI_ARRAYSZ] pointer to a
pointer to a value < 8 in DYNAMIC section. */

ptr[0x7c3160 + 0x120] = 0xc0;

/* ... program continues until exit ... */
return 0;

}

FIGURE 24
Minimal example of a reliable Wiedergänger-attack spawning a shell on Debian Buster (glibc 2.24) using
indirectly dispatched pointer I3 and 1-byte partial pointer overwrites to bypass ASLR. Note that all
numbers are constant, even in presence of ASLR.

the destructor’s location, with l->l_info[DT_FINI] becoming a
pointer to a pointer, and l->l_addr being a constant offset.

The technique outlined above, however, needs to overcome
one more problem: If l->l_addr does not hold a valid base
address anymore the array variable in the C source code listing
will be assigned an invalid pointer that will result in a crash
when being dispatched in the last line of the first if block. To
remedy this, we use another one-byte override to corrupt the
pointer l_info[DT_FINI_ARRAYSZ] and let it point to any value
that is smaller than sizeof(ElfW(Addr)) = 8 such that the in-
teger division used to compute the variable i becomes zero.
Fortunately, there are several such values close to the original
pointer value of l_info[DT_FINI_ARRAYSZ].

Combining all of this, FIGURE 24 shows the example of a C
program that corrupts the loader’s internal data structures in
the way outlined above to spawn a shell. As this Wiedergänger-
attack only uses constant offsets and one-byte overrides, ex-
ploitation succeeds reliably for a known combination of main

98 dynamic loader oriented programming on linux

executable, dynamic loader and all shared library dependencies.
A visualization of the attack carried out by the code depicted
in FIGURE 24 can be found in FIGURE 25. For reference, we also
include a picture showing the benign state of the data structures
before corruption in the same Figure.

Protecting writable pointers from maliciousProtecting Pointers
from Malicious

Modifications

modifications on
a general level is a difficult problem.

As a first step, the unprotected function pointers in glibc’s
loader identified in this chapter could either be placed in read-
only memory, or be included into the list of targets protected
by the function pointer encryption mechanism (mangling). As
a second step, we propose to build pointer mangling into the
compiler toolchain, to take away the burden of enciphering and
deciphering pointers from the programmer. However, legacy
applications expect some externally visible writable function
pointers (such as for example the free_hook) to be present and
operational in glibc. Introduction of mangling would break
compatibility with such programs. This is for the simple reason
that any application potentially can overwrite the pointer for
legitimate purposes, and only if both, the library providing
the hook, as well as the overwriting application are compiled
with the same pointer mangling settings, functionality can be
guaranteed.

With the introduction of Wiedergänger-attacks,Improving ASLR
Allocation Strategies

the need
for ASLR allocating memory ranges with non-constant offsets
becomes even more evident: Since all libraries in the address
space get allocated in a contiguous block, ASLR for all libraries
can be broken when the location of one object in any library
becomes known to the attacker. Several proposals modifying
the mmap system call responsible for random allocation of objects
inside the Linux kernel have not been accepted into the mainline
kernel. This is likely for performance reasons: A true random
ASLR allocation strategy implies a more fragmented address
space and hence a larger memory footprint of page tables of
a process. However, an opt-in implementation for security-
conscious users might still be desirable.

7.3.3 Extended Attack

The reliable version of the presented attack relied on the pres-
ence of a win-gadget executing system("/bin/sh") on behalf
of the attacker. While several win-gadgets exist in current glibc
versions, they sometimes introduce additional constraints on
registers (for example rdx == 0).

Manual analysis can reveal additional attack possibilities, if
constraints of win-gadgets are difficult to satisfy. This is rooted

7.3 the wiedergänger-attack 99

Data of ld.so (rw-)

struct link_map {

ElfW(Addr) l_addr = 0x555555554000;

char *l_name;

ElfW(Dyn) *l_ld;

struct link_map *l_next;

struct link_map *l_prev;

struct link_map *l_real;

Lmid_t l_ns;

struct libname_list *l_libname;

ElfW(Dyn) *l_info[] {

/* ... */

[DT_FINI] = 0x555555754e18,

/* ... */

[DT_FINI_ARRAYSZ] = 0x555555754e58,

/* ... */

};

} *l;

Vulnerable Array (rw-)

. . .

Main ELF

ELF Base (r-x):
7f 45 4c 46 02 01 01 00 00 00 00 00 00 00 00 00

03 00 3e 00 01 00 00 00 80 05 00 00 00 00 00 00

40 00 00 00 00 00 00 00 98 19 00 00 00 00 00 00
...

.dynamic Section (r--):
01 00 00 00 00 00 00 00 01 00 00 00 00 00 00 00

0c 00 00 00 00 00 00 00 28 05 00 00 00 00 00 00

0d 00 00 00 00 00 00 00 74 07 00 00 00 00 00 00

19 00 00 00 00 00 00 00 e8 0d 20 00 00 00 00 00

1b 00 00 00 00 00 00 00 08 00 00 00 00 00 00 00

1a 00 00 00 00 00 00 00 f0 0d 20 00 00 00 00 00

1c 00 00 00 00 00 00 00 08 00 00 00 00 00 00 00

f5 fe ff 6f 00 00 00 00 98 42 55 55 55 55 00 00

05 00 00 00 00 00 00 00 78 43 55 55 55 55 00 00

06 00 00 00 00 00 00 00 b8 42 55 55 55 55 00 00

0a 00 00 00 00 00 00 00 8b 00 00 00 00 00 00 00

0b 00 00 00 00 00 00 00 18 00 00 00 00 00 00 00

15 00 00 00 00 00 00 00 40 e1 48 ad 3a 7f 00 00

03 00 00 00 00 00 00 00 00 50 75 55 55 55 00 00

02 00 00 00 00 00 00 00 30 00 00 00 00 00 00 00
...

DT_NEEDED: Shared library

DT_INIT: 0x528

DT_FINI: 0x774

DT_INIT_ARRAY: 0x200de8

DT_INIT_ARRAYSZ: 8 Bytes

DT_FINI_ARRAY: 0x200df0

DT_FINI_ARRAYSZ: 8 Bytes

DT_GNU_HASH: 0x555555554298

DT_STRTAB: 0x555555554378

DT_SYMTAB: 0x5555555542b8

DT_STRSZ: 0x8b

DT_SYMENT: 0x18

DT_DEBUG: 0x7f3aad48e140 (ld.so:_r_debug=

=ld.so+0x225140=libc.so+0x5c2140)

DT_PLTGOT: 0x555555755000

DT_PLTRELSZ: 0x30

C
o
n
st
a
n
t
D
is
ta
n
ce

(0
x
7
c
3
1
6
0
)

0
x
0

0
x
a
8

0
x
1
2
0

Possible due to
Constant O�set

Data of ld.so (rw-)

struct link_map {

ElfW(Addr) l_addr = 0xffffffffffb1480f;

char *l_name;

ElfW(Dyn) *l_ld;

struct link_map *l_next;

struct link_map *l_prev;

struct link_map *l_real;

Lmid_t l_ns;

struct libname_list *l_libname;

ElfW(Dyn) *l_info[] {

/* ... */

[DT_FINI] = 0x555555754eb8,

/* ... */

[DT_FINI_ARRAYSZ] = 0x555555754ec0,

/* ... */

};

} *l;

Vulnerable Array (rw-)

. . .

Main ELF

ELF Base (r-x):
7f 45 4c 46 02 01 01 00 00 00 00 00 00 00 00 00

03 00 3e 00 01 00 00 00 80 05 00 00 00 00 00 00

40 00 00 00 00 00 00 00 98 19 00 00 00 00 00 00
...

.dynamic Section (r--):
01 00 00 00 00 00 00 00 01 00 00 00 00 00 00 00

0c 00 00 00 00 00 00 00 28 05 00 00 00 00 00 00

0d 00 00 00 00 00 00 00 74 07 00 00 00 00 00 00

19 00 00 00 00 00 00 00 e8 0d 20 00 00 00 00 00

1b 00 00 00 00 00 00 00 08 00 00 00 00 00 00 00

1a 00 00 00 00 00 00 00 f0 0d 20 00 00 00 00 00

1c 00 00 00 00 00 00 00 08 00 00 00 00 00 00 00

f5 fe ff 6f 00 00 00 00 98 42 55 55 55 55 00 00

05 00 00 00 00 00 00 00 78 43 55 55 55 55 00 00

06 00 00 00 00 00 00 00 b8 42 55 55 55 55 00 00

0a 00 00 00 00 00 00 00 8b 00 00 00 00 00 00 00

0b 00 00 00 00 00 00 00 18 00 00 00 00 00 00 00

15 00 00 00 00 00 00 00 40 e1 48 ad 3a 7f 00 00

03 00 00 00 00 00 00 00 00 50 75 55 55 55 00 00

02 00 00 00 00 00 00 00 30 00 00 00 00 00 00 00
...

DT_NEEDED: Shared library

DT_INIT: 0x528

DT_FINI: 0x774

DT_INIT_ARRAY: 0x200de8

DT_INIT_ARRAYSZ: 8 Bytes

DT_FINI_ARRAY: 0x200df0

DT_FINI_ARRAYSZ: 8 Bytes

DT_GNU_HASH: 0x555555554298

DT_STRTAB: 0x555555554378

DT_SYMTAB: 0x5555555542b8

DT_STRSZ: 0x8b

DT_SYMENT: 0x18

DT_DEBUG: 0x7f3aad48e140 (ld.so:_r_debug=

=ld.so+0x225140=libc.so+0x5c2140)

DT_PLTGOT: 0x555555755000

DT_PLTRELSZ: 0x30

C
o
n
st
a
n
t
D
is
ta
n
ce

(0
x
7
c
3
1
6
0
)

0
x
0

0
x
a
8

0
x
1
2
0

Constant ∆ of Win-Gadget
and ld.so:_r_debug

Possible due to
Constant O�set

During Cleanup, ld.so calls l->l_addr + *(l->l_info[DT_FINI] + 8)

FIGURE 25
Visualization of the pointer values contained in struct link_map during normal program execution
(top), and after performing the reliable Wiedergänger-attack (bottom) spawning a shell on Debian 10
(glibc 2.24). The graphic depicts changed members of struct link_map in red.

in the fact that the vulnerable code responsible for destructor
handling executes as part of the dynamic loader. The main data
structure operated on (struct link_map) contains a whole set of
writable pointers that get processed during program teardown.
It is hence not unlikely that machine registers contain pointers
to writable memory as a side effect. With this, we observed
that some versions of the dynamic loader happened to place
a pointer to writable memory into the rdi register, storing the
first function argument during any function call. With this, a
trivial primitive of calling system with attacker-controlled first
argument can be constructed.

100 dynamic loader oriented programming on linux

7.4 conclusion

We have introduced the Wiedergänger-attack, a new attack vec-
tor targeting C programs running on Linux with glibc. To
separate corruption and exploitation time, we introduce the
notion of a defiled pointer, which is a code pointer located
in writable memory. Defiled pointers can reside within the
program without affecting their behaviour during normal opera-
tion; instead they are dispatched by the C runtime environment
during program shutdown, bringing the malicious payload to
live only instructions before the regularly scheduled program’s
termination.

To discover such pointers, we use taint analysis and back-
wards slicing at the binary level and calculate an over-appro-
ximation of vulnerable instruction sequences. We think that
Wiedergänger-attacks illustrate an elegant example how appli-
cation of formal methods to low-level software can uncover
previously unknown, real attacks on software.

7.4.1 Discovered Attack Vectors

The main reason defiling becomes possible is that mmap does not
provide proper randomization strategies. Wiedergänger-attacks
abuse determinism in Linux ASLR implementation combined
with the fact that (even with protection mechanisms such as relro
and glibc’s pointer mangling enabled) there exist easy-to-hijack,
writable (function) pointers in application memory.

We exploit two of the discovered instruction sequences to
perform attacks on Debian 10 (Buster) by overwriting structures
used by the dynamic loader of glibc. In order to show general-
ity, we solely focus on data structures dispatched at program
shutdown, as this is a point that arguably all applications even-
tually have to reach. The presented attacks achieve (reliable) code
execution regardless of the presence of well-known protection
techniques.

7.4.2 Attack Mitigations

As an ad-hoc mitigation, the identified defilable pointers could
get protected from malicious modifications on a per-case basis.
For example, struct link_map inside the dynamic loader could
get placed into memory that is read-only during program execu-
tion. However, the underlying problem that makes such pointers
become even more problematic in terms of application security
is the weak randomization strategy employed by mmap in current
Linux systems. We acknowledge that Address Space Layout

7.4 conclusion 101

Randomization (ASLR) is designed with the goal of keeping a
certain memory layout despite randomization. Introduction of
Address Space Randomization (ASR), where the base of each al-
location is chosen randomly without constraints, would provide
sufficient protection against Wiedergänger-attacks presented in
this chapter at the cost of performance. Despite performance
concerns, an opt-in strategy for mmap providing true Address
Space Randomization (ASR) would prove valuable against the
described attacks.

8
C O N C L U S I O N

We conclude by getting back to our initial research questions
and give a short summarized answer for each.

8.1 control flow linearization

Research Question I (Control Flow Linearisation)
How does Control Flow Linearisation (CFL) impact
analysis difficulty, and how can the original control
flow graph be reconstructed from linearised machine
code?

Applying Control Flow Linearization to a program consti-
tutes an effective way to hinder or even stop automated binary
analysis. This is rooted in the fact that automated analysis
relies on explicit control flow transfers to be in a position to use-
fully reason about the analyzed program. Linearized programs
inadvertently make their control flow implicit resulting caus-
ing symbolic analysis to model memory accesses using array
logic as described by Satisfiability Modulo Theories (SMT). This,
however is expensive in terms of analysis time. Experimental
evidence shows that the popular angr symbolic execution engine
fails to enumerate paths through a trivial linearized program
consisting of only two different basic blocks.

While this makes Control Flow Linearization a powerful ob-
fuscation technique, we come up with an algorithm that can
assist symbolic execution in such a way that the control flow
becomes explicit and path enumeration on linearized binaries be-
comes possible again. This is done by reasoning about the access
structure to characteristic state variables governing execution of
the linearized program and hence applies to any type of control
flow linearization that we could observe in the wild. We make
sure that our algorithm recovers the original control flow graph
of the protected code by comparing the result to applications
serving as ground-truth during several experiments.

Furthermore, Control Flow Linearization comes at a signif-
icant performance cost for the obfuscating side. Clearly, if
performant execution of protected code is desirable, this obfus-
cation technique should only be applied to the algorithmic core
of the protected application.

104 conclusion

8.2 dynamic binary instrumentation

Research Question II (Dynamic Instrumentation)
What guarantees on transparency, isolation, interposi-
tion, and inspection are provided by current dynamic
binary instrumentation tools?

Dynamic Binary Instrumentation in its current (2020) state
fails to provide transparency. This is rooted in the fact that the
complex software architecture—together with it being loaded
side-by-side into the target’s address space—is difficult to hide.
Instrumentation is further complicated by the complexity of the
x86 architecture, of which every corner case needs to be handled
properly to not fail the transparency guarantee.

Intel Pin, as an example for a popular DBI engine, fails to
provide isolation of the analysis code and the analysis target.
This is due to the fact that Pin is built on top of a Just-in-Time
compiler that caches the produced code for speed reasons. As a
result instrumented code executes in the same address space as
the instrumentation engine, lacking the usual process separation
barrier implemented by operating systems. This is an example
where the classic trade-off between performance and security is
decided in favour of performance. With missing isolation, the
remaining properties interposition and inspection automatically
cannot be guaranteed by Pin anymore.

Moreover, the JIT architecture enables malicious code to cir-
cumvent the well-established w⊕x paradigm with potentially
devastating implications on the suitability of Pin for security
applications: We show that a public CVE vulnerability in wget
that is difficult to exploit in a conventional setting becomes
exploitable when the attacked program is instrumented using
Intel Pin.

A strategy to remedy the different issues discovered is chal-
lenging to implement in a generic fashion. As a quick solution,
many of the corner cases observed could be fixed by either more
closely mimicking operations performed by real hardware, or by
filtering OS APIs revealing the presence of the code cache and
the JIT engine. What is more challenging is that even with all
fixes applied, a motivated attacker could still revert to memory
scanning to carry out the demonstrated attacks. This is due to
the inherent design choice of letting both, instrumented program
and instrumentation framework execute in the same address
space. A re-design of DBI making use of hardware-enforced sep-
aration capabilities provided by either the operating system or
a virtual machine monitor therefore constitutes an opportunity
worthwhile exploring.

8.3 security guarantees of exploit mitigations 105

8.3 security guarantees of exploit mitigations

Research Question III (Exploit Mitigations)
What security guarantees are offered by current ver-
sions of the longest-standing exploit mitigations in
presence of memory corruption vulnerabilities?

To address this question, we analyzed two widely adopted
anti exploitation protection mechanisms: stack protectors and
ASLR. We were able to circumvent both, stack canaries in a
somewhat specialized setting, and address space layout random-
ization in a more general setting.

To investigate security guarantees of stack canaries, we de-
fined a set of properties of an ideal implementation of such a
protection mechanism. Qualitative properties we determined by
source code study or reverse engineering, whereas quantitative
properties we collected using a program which we executed on
many different combinations of operating systems (Android,
macOS, BSD, Windows, Linux), hardware architectures (x86,
x86_64, ARMv7, PowerPC, s390x), and C standard libraries
(msvc, bionic, glibc, eglibc, dietlibc, musl).

In total, we identified three attacks on stack canaries mostly
applicable to the Linux world allowing to compromise security
of the stack protection mechanism:

The first bypass is enabled by the semantics of the fork library
function and the underlying clone system call: Those functions
spawn a child process with exactly the same memory layout as
the parent. Stack canaries are a probabilistic anti-exploitation
mechanism relying on randomization to establish the fact that
the correct reference value is unknown to an attacker. However,
in forking environments (that are for example the case for many
popular server applications) an attacker is given the ability to
carry out the same attack multiple times against an exact copy of
the program. This severely damages the probabilistic properties
of the protection mechanism making it easy to bypass. This is a
known problem and approaches to re-randomize canary values
at fork, thread, or function creation have been proposed but not
widely adopted.

The second attack targets the stack protection mechanism
itself, abusing the fact that the mechanism trusts data contained in
user space even after a stack canary corruption has already been
detected. The introduction of a fail fast interface towards the
kernel, as implemented by recent Windows operating systems,
could remedy the situation on Linux as well.

The third attack identified allows to bypass stack canaries in
sub-threads of multi-threaded programs, because the reference

106 conclusion

value and the value protecting local function frames both get
allocated in the same writable memory segment. This makes it trivial
for an attacker to overwrite both values and hence disable the
protection mechanism altogether. (Threading) libraries should
make sure to separate reference and local canary value into
different memory segments to mitigate the problem.

For our study of ASLR on Linux, we classified function point-
ers regarding their placement in memory. To achieve this we
used abstract interpretation on low-level program traces: For
each code pointer observed, we would only take note of its
storage class (writable, non-writable) and its distance to user
controllable data in the virtual address space. Using the results
produced of abstract interpretation step we were able to iden-
tify function pointers that (1) are present in any (minimal) C
program, (2) (nearly) always get dispatched at program exit
regardless of the exit mechanism used, and (3) reside in writable
memory at constant distance to user controllable data.

We demonstrate that this setup is particularly dangerous
by presenting two attacks achieving code execution on Linux
by overwriting pointers identified earlier. The simpler (more
generic) attack entails a worst-case success rate of 1:4096 (12

bits of ASLR entropy instead of 32). The more advanced attack
puts some (rather common) constraints on machine registers but
entails a worst-case success rate of 1:1 (0 bits of ASLR entropy
instead of 32) and hence bypasses ASLR entirely.

Such attacks can be mitigated for the concrete case by modi-
fying mechanics internally used by glibc: The attacked pointers
occur in the dynamic loader during destructor handling and
could be placed in read-only memory, easily mitigating the
presented attacks. However, the underlying problem of short-
comings in the address randomization still persists. Several
attempts to change the randomization strategy of Linux’ mmap
memory allocator have been made so far, but no according patch
has been accepted into the mainline kernel, mostly for concerns
over address space fragmentation and resulting increased mem-
ory footprint.

We conclude that formal methods and low-level program anal-
ysis can be combined into powerful analysis techniques when
examining the security of contemporary computing systems: On
the formal side we are able to specify how an ideal mechanism
would look like (secure design) to motivate the design of an
abstract interpretation algorithm. This algorithm would then
use low-level techniques operating close to the operating system
to collect only the un-skewed, minimal amount of information
to enable scalable analysis of and reasoning about nowadays’
complex software ecosystems.

8.4 reproducibility & source code availability 107

8.4 reproducibility & source code availability

In the spirit of open research and to enable others to reproduce
our findings, we publish the source code of all the experiments
conducted on GitHub:

https://github.com/kirschju/

https://github.com/kirschju/

B I B L I O G R A P H Y

[1] CVE-2014-0160. Available from MITRE, CVE-2017-13089. Ac-
cessed: 2018-04-24.

[2] QuarkslaB Dynamic binary Instrumentation. https://qbdi.
quarkslab.com/. Accessed: 2020-06-24.

[3] The M/O/Vfuscator. https://github.com/xoreaxeaxeax/
movfuscator, 2015.

[4] Martín Abadi, Mihai Budiu, Úlfar Erlingsson, and Jay Ligatti.
Control-Flow Integrity. 2005.

[5] Martín Abadi, Mihai Budiu, Úlfar Erlingsson, and Jay Ligatti.
Control-flow integrity principles, implementations, and applica-
tions. ACM Trans. Inf. Syst. Secur., 13:4:1–4:40, 2009.

[6] Gogul Balakrishnan and Thomas Reps. Analyzing Memory Dc-
cesses in x86 Executables. In International Conference on Compiler
Construction, 2004.

[7] Davide Balzarotti, Marco Cova, Christoph Karlberger, Engin
Kirda, Christopher Kruegel, and Giovanni Vigna. Efficient detec-
tion of split personalities in malware. In NDSS, 2010.

[8] Julian Bangert, Sergey Bratus, Rebecca Shapiro, and Sean W.
Smith. The Page-Fault Weird Machine: Lessons in Instruction-less
Computation. In 7th USENIX Workshop on Offensive Technologies
(WOOT 13), Washington, D.C., August 2013. USENIX Association.

[9] Jean-Marie Borello and Ludovic Mé. Code Obfuscation Tech-
niques for Metamorphic Viruses. Journal in Computer Virology,
4(3), 2008.

[10] Brad Spengler. PaX: The Guaranteed End of Arbitrary Code
Execution. 2003.

[11] Derek Bruening, Evelyn Duesterwald, and Saman Amarasinghe.
Design and Implementation of a Dynamic Optimization Frame-
work for Windows. In 4th ACM Workshop on Feedback-Directed and
Dynamic Optimization (FDDO-4), 2001.

[12] Derek Bruening, Timothy Garnett, and Saman Amarasinghe. An
infrastructure for adaptive dynamic optimization. In Code Genera-
tion and Optimization, 2003. CGO 2003. International Symposium on,
pages 265–275. IEEE, 2003.

[13] Derek Bruening and Qin Zhao. Practical memory checking with
dr. memory. In Proceedings of the 9th Annual IEEE/ACM Inter-
national Symposium on Code Generation and Optimization, pages
213–223. IEEE Computer Society, 2011.

https://qbdi.quarkslab.com/
https://qbdi.quarkslab.com/
https://github.com/xoreaxeaxeax/movfuscator
https://github.com/xoreaxeaxeax/movfuscator

110 bibliography

[14] David Brumley, Ivan Jager, Thanassis Avgerinos, and Edward J
Schwartz. BAP: A Binary Analysis Platform. In Computer aided
verification, 2011.

[15] Cristian Cadar, Daniel Dunbar, Dawson R Engler, et al. KLEE:
Unassisted and Automatic Generation of High-Coverage Tests
for Complex Systems Programs. 2008.

[16] Shuo Chen, Jun Xu, and Emre Can Sezer. Non-Control-Data
Attacks Are Realistic Threats. 2005.

[17] Tzi-cker Chiueh and Fu-Hau Hsu. Rad: A compile-time solution
to buffer overflow attacks. In Distributed Computing Systems, 2001.
21st International Conference on., pages 409–417. IEEE, 2001.

[18] James Clause, Wanchun Li, and Alessandro Orso. Dytan: a
generic dynamic taint analysis framework. In Proceedings of the
2007 international symposium on Software testing and analysis, pages
196–206. ACM, 2007.

[19] Intel Corporation. Intel 64 and ia-32 architectures software devel-
oper’s manual volume 3a: System programming guide, part 1,
2020.

[20] Crispan Cowan, Calton Pu, Dave Maier, Jonathan Walpole, Peat
Bakke, Steve Beattie, Aaron Grier, Perry Wagle, , Qian Zhang,
and Heather Hinton. Stackguard: Automatic adaptive detection
and prevention of buffer-overflow attacks. In USENIX Security
Symposium, volume 7, 1998.

[21] Crispin Cowan, Steve Beattie, Ryan Finnin Day, Calton Pu, Perry
Wagle, and Erik Walthinsen. Protecting Systems From Stack
Smashing Attacks With StackGuard. In In Linux Expo, 1999.

[22] Crispin Cowan, Calton Pu, Dave Maier, Jonathan Walpole, Peat
Bakke, Steve Beattie, Aaron Grier, Perry Wagle, Qian Zhang, and
Heather Hinton. StackGuard: Automatic Adaptive Detection and
Prevention of Buffer-Overflow Attacks. 1998.

[23] Crispin Cowan, F Wagle, Calton Pu, Steve Beattie, and Jonathan
Walpole. Buffer Overflows: Attacks and Defenses for the Vulnera-
bility of the Decade. In DARPA Information Survivability Conference
and Exposition (DISCEX), 2000.

[24] Lucas Davi, Ahmad-Reza Sadeghi, and Marcel Winandy. Ropde-
fender: a detection tool to defend against return-oriented pro-
gramming attacks. In ASIACCS, 2011.

[25] Leonardo De Moura and Nikolaj Bjørner. Z3: An Efficient SMT
Solver. In International Conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS), 2008.

[26] Desclaux, Fabrice. Miasm: Framework de reverse engineering.
2012.

bibliography 111

[27] Yu Ding, Zhuo Peng, Yuanyuan Zhou, and Chao Zhang. Android
Low Entropy Demystified. In IEEE International Conference on
Communications (ICC), 2014.

[28] Stephen Dolan. Mov Is Turing-Complete. Technical report, 2013.

[29] Ulrich Drepper. Pointer Encryption. http://udrepper.
livejournal.com/13393.html, January 2007. Accessed 2017-07-
24 18:09.

[30] Morris Dworkin. Recommendation for Block Cipher Modes of
Operation, 2001.

[31] Rakan El-Khalil and Angelos D. Keromytis. Hydan: Hiding Infor-
mation in Program Binaries. Springer, 2004.

[32] Mohamed Elsabagh, Daniel Barbará, Dan Fleck, and Angelos
Stavrou. Detecting rop with statistical learning of program char-
acteristics. In Proceedings of the Seventh ACM on Conference on Data
and Application Security and Privacy, pages 219–226. ACM, 2017.

[33] Alessandro Di Federico, Amat Cama, Yan Shoshitaishvili, Christo-
pher Kruegel, and Giovanni Vigna. How the ELF ruined christ-
mas. pages 643–658, Washington, D.C., 2015. USENIX Associa-
tion.

[34] Andreas Follner and Eric Bodden. Ropocop - dynamic mitigation
of code-reuse attacks. J. Inf. Sec. Appl., 29:16–26, 2016.

[35] Nahuel Riva Francisco Falcón. Dynamic Binary Instrumentation
Frameworks: I know you’re there spying on me. In RECon12,
2012.

[36] Christopher Fraser and David Hanson. A Retargetable C Compiler:
Design and Implementation. Addison-Wesley, 1995.

[37] Tal Garfinkel, Mendel Rosenblum, et al. A virtual machine
introspection based architecture for intrusion detection. In Ndss,
volume 3, pages 191–206, 2003.

[38] Ghosh, Sudeep and Hiser, Jason D. and Davidson, Jack W. Ma-
tryoshka: Strengthening Software Protection via Nested Virtual
Machines. In International Workshop on Software Protection, 2015.

[39] Felix Gröbert, Carsten Willems, and Thorsten Holz. Automated
identification of cryptographic primitives in binary programs. In
International Workshop on Recent Advances in Intrusion Detection,
pages 41–60. Springer, 2011.

[40] William H Hawkins, Jason D Hiser, and Jack W Davidson. Dy-
namic Canary Randomization for Improved Software Security. In
Annual Cyber and Information Security Research Conference, 2016.

[41] Intel Corporation. Intel® 64 and IA-32 Architectures Software Devel-
oper’s Manual, May 2020.

http://udrepper.livejournal.com/13393.html
http://udrepper.livejournal.com/13393.html

112 bibliography

[42] Pascal Junod, Julien Rinaldini, Johan Wehrli, and Julie Michielin.
Obfuscator-LLVM: Software Protection for the Masses. In Interna-
tional Workshop on Software Protection, 2015.

[43] Vladimir Kiriansky, Derek Bruening, and Saman P. Amarasinghe.
Secure execution via program shepherding. In Proceedings of the
11th USENIX Security Symposium, pages 191–206, Berkeley, CA,
USA, 2002. USENIX Association.

[44] Yevgeniy Kulakov. Mazewalker - enriching static malware analy-
sis. In RECon17, 2017.

[45] Volodymyr Kuznetsov, László Szekeres, Mathias Payer, George
Candea, R Sekar, and Dawn Song. Code-Pointer Integrity. 2014.

[46] Tamas K Lengyel, Steve Maresca, Bryan D Payne, George D
Webster, Sebastian Vogl, and Aggelos Kiayias. Scalability, fidelity
and stealth in the drakvuf dynamic malware analysis system.
In Proceedings of the 30th Annual Computer Security Applications
Conference, pages 386–395. ACM, 2014.

[47] Elias Levy. Smashing the stack for fun and profit. phrack 49,
1996.

[48] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Ar-
tur Klauser, Geoff Lowney, Steven Wallace, Vijay Janapa Reddi,
and Kim Hazelwood. Pin: building customized program anal-
ysis tools with dynamic instrumentation. In Acm sigplan notices,
volume 40, pages 190–200. ACM, 2005.

[49] Hector Marco-Gisbert and Ismael Ripoll. Preventing Brute Force
Attacks Against Stack Canary Protection on Networking Servers.
In Network Computing and Applications (NCA), 2013.

[50] Hector Marco-Gisbert and Ismael Ripoll. On the effectiveness of
full-aslr on 64-bit linux. In INDePth Security Conference, DeepSec,
11 2014.

[51] Mark Mossberg, Felipe Manzano, Eric Hennenfent, Alex Groce,
Gustavo Grieco, Josselin Feist, Trent Brunson, and Artem
Dinaburg. Manticore: A User-Friendly Symbolic Execution
Framework for Binaries and Smart Contracts. In Automated Soft-
ware Engineering, 2019.

[52] Nicholas Nethercote and Julian Seward. How to shadow every
byte of memory used by a program. In VEE, 2007.

[53] Nicholas Nethercote and Julian Seward. Valgrind: a framework
for heavyweight dynamic binary instrumentation. In ACM Sig-
plan notices, volume 42, pages 89–100. ACM, 2007.

[54] Nicholas Nethercote, Robert Walsh, and Jeremy Fitzhardinge.
Building workload characterization tools with valgrind. In IISWC,
2006.

bibliography 113

[55] Hilarie Orman. The Morris Worm: A Fifteen-Year Perspective.
2003.

[56] Weizhong Qiang, Yingda Huang, Deqing Zou, Hai Jin, Shizhen
Wang, and Guozhong Sun. Fully context-sensitive cfi for cots
binaries. In ACISP, 2017.

[57] Nguyen Anh Quynh. Skorpio: Advanced Binary Instrumentation
Framework. In OPCDE 2018, Dubai, April 2018.

[58] William Roberts. Introduce mmap randomization.
https://patchwork.kernel.org/patch/9248669/, 2016.

[59] Jonathan Salwan and Florent Saudel. Triton: Framework
d’exécution concolique et d’analyses en runtime. 2016.

[60] Edward J. Schwartz, Thanassis Avgerinos, and David Brumley.
All You Ever Wanted to Know About Dynamic Taint Analysis
and Forward Symbolic Execution (but Might Have Been Afraid
to Ask). In IEEE Symposium on Security and Privacy, 2010.

[61] Yan Shoshitaishvili, Ruoyu Wang, Christophe Hauser, Christo-
pher Kruegel, and Giovanni Vigna. Firmalice - Automatic
Detection of Authentication Bypass Vulnerabilities in Binary
Firmware. In ISOC Network and Distributed System Security Sym-
posium (NDSS), 2015.

[62] Raoul Strackx, Yves Younan, Pieter Philippaerts, Frank Piessens,
Sven Lachmund, and Thomas Walter. Breaking the Memory
Secrecy Assumption. In European Workshop on System Security
(EUROSEC), 2009.

[63] Laszlo Szekeres, Mathias Payer, Tao Wei, and R. Sekar. Eternal
War in Memory. IEEE Security & Privacy, 12(3):45–53, 2014.

[64] The Clang Team. Clang Command Line Argument Reference.
https://clang.llvm.org/docs/ClangCommandLineReference.
html, February 2017.

[65] Thomas J. McCabe. A Complexity Measure. In IEEE Transactions
on Software Engineering, December 1977.

[66] Mateus Tymburibá, Rubens Emilio, and Fernando Pereira.
Riprop: A dynamic detector of rop attacks. In Proceedings of
the 2015 Brazilian Congress on Software: Theory and Practice, page 2,
2015.

[67] Victor van der Veen, Dennis Andriesse, Enes Göktaş, Ben Gras,
Lionel Sambuc, Asia Slowinska, Herbert Bos, and Cristiano Giuf-
frida. Practical context-sensitive cfi. In Proceedings of the 22nd
ACM SIGSAC Conference on Computer and Communications Security,
pages 927–940. ACM, 2015.

[68] Perry Wagle, Crispin Cowan, et al. Stackguard: Simple Stack
Smash Protection for Gcc. In GCC Developers Summit, 2003.

https://clang.llvm.org/docs/ClangCommandLineReference.html
https://clang.llvm.org/docs/ClangCommandLineReference.html

114 bibliography

[69] Henry S. Warren. Hacker’s Delight. Addison-Wesley Professional,
2nd edition, 2013.

[70] Babak Yadegari, Brian Johannesmeyer, Ben Whitely, and Saumya
Debray. A Generic Approach to Automatic Deobfuscation of
Executable Code. In IEEE Symposium on Security and Privacy,
2015.

	Introduction
	Background
	Obfuscation
	Control-Flow-Graph-Based Obfuscation
	Instruction Substitution

	Dynamic Binary Instrumentation
	The Arms Race around Software Vulnerabilities
	wx Memory Protection
	Code Reuse Attacks
	Stack Smashing Protection
	Function Pointer Protection
	Address Space Layout Randomization

	Related Work
	Obfuscation
	Control Flow Flattening
	Instruction Substitution
	Obfuscation Countermeasures

	Applications of Dynamic Instrumentation
	Binary Analysis
	Bug Detection
	Control Flow Integrity
	Malware Analysis

	Attack and Defense of Software Vulnerabilities
	Stack Smashing Protection
	Code Pointer Integrity
	Address Space Layout Randomization

	Control Flow Linearisation
	Obfuscating Transformation
	Constructing Linearized Programs
	Challenges on Real Computing Systems
	Instruction Substitution Layer

	Deobfuscating Transformation
	Finding Key Structures
	Identifying Labels
	Identifying Jumps and Calls
	Reconstructing the Control Flow Graph

	Evaluation
	Obfuscation Overhead
	Deobfuscation Correctness
	Impact on Symbolic Execution

	Conclusion

	Dynamic Binary Instrumentation in Context of Security
	Security Guarantees of Analysis Frameworks
	Stealthiness
	Code Cache / Instrumentation Artifacts
	Environment Artifacts

	Isolation
	Direct Code Cache Modification
	Exploiting Address Space Information

	Increased Attack Surface
	The Return of Stack-Based Shellcode
	Code Execution and CVE-2017-13089

	Conclusion
	Discovered Attack Vectors
	Attack Mitigations

	Smashing the Stack Protector for Fun and Profit
	Collected Features
	Qualitatively Determined Features
	Empirically Determined Features
	Data Collection Framework

	Smashing the Stack Protector
	Qualitative Results
	Empirical Results
	Attack Vectors Introduced

	Stack-Protector-Enhanced CPI Mechanism
	Conclusion
	Discovered Attack Vectors
	Attack Mitigations

	Dynamic Loader Oriented Programming on Linux
	Pointer Classification
	Identifying Defilable pointers
	Identifying Reachable pointers

	Evaluation
	Considered Testcases
	Directly Dispatched Defilable Pointers
	Indirectly Dispatched Defilable Pointers
	Reachable Pointers

	The Wiedergänger-Attack
	Probabilistic Attack
	Reliable Attack
	Extended Attack

	Conclusion
	Discovered Attack Vectors
	Attack Mitigations

	Conclusion
	Control Flow Linearization
	Dynamic Binary Instrumentation
	Security Guarantees of Exploit Mitigations
	Reproducibility & Source Code Availability

	Bibliography

