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Developing a reusable ontology for intelligent production facilities using Functional
Object-Oriented Network

Problem description:

With the a-priori defined 4th Industrial revolution (I4.0) the concept of connected factories is de-facto
standard for competitive advantages of European manufacturing companies. However, the realization
of this vision is still far from reaching companies. One of the pain points in the integration of this vision
is the data representation due to the lack of a common data representation [1]. One of the application
fields related to this problem is the one of human robot collaboration (HRC) as long it would benefit
the collaboration and monitoring [2]. Some examples are present in the research field and one example
is the functional object-oriented network (FOON) [3]. Therefore, in this bachelor thesis you will try to
establishing a simple data structure for representing information in the field of HRC using the FOON.
More specifically, you will focus in the use case of Learning from Demonstration (LfD) in an industrial
task. Such operation should be represented by your data structure in an automatic way. For doing
so you will select an object recognition algorithm and then you will try to propose a methodology for
creating the data structure. Once the structure will be prepared you will focus on defining an ontology
that can be shared so others can use your work. Your objectives can be summarized as follows:

Tasks:

� Literature research on object and action recognition
� Choice of a ontology for representation of information using the object recognition
� Proposal of a FOON extension with the ontology
� Implementation of the proposed framework on a factory alike infrastructure
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Abstract

A decade ago, the work on the fourth industrial revolution started with one of its
goals to make the production facilities autonomous and cooperative.
To achieve that, communication between industrial components needs to be estab-
lished. One of the approaches considered for establishing the connection between
the components are ontologies. Ontologies provide shared vocabulary to model a
certain domain. Their drawback however is their lack of reusability, which brings
us to the goal of our work to develop a reusable Ontology.
In the development of the ontology, we will use FOON, which is short to Functional
Object-Oriented Network, this framework represents tasks with knowledge graphs
containing object and motion nodes that will be used to create a linked data model
representing the ontology. During our work few implementations will be done on
the FOON to make it more reusable by integrating neural network structures for
processing visual input to directly extract object and motion nodes defined in a
FOON.
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Chapter 1

Introduction

Within the last decade, the term Industry 4.0 (an abbreviation for the ”fourth indus-
trial revolution”) was introduced, where the aim of this initiative is to innovate the
industrial landscape as we know it by making the production facilities autonomous,
dynamic and cooperative [10].

The concept envisages that the Factories of the Future (FoF) will be able to share
information regarding processes and products that will enable life-cycle tracking of
development, production, and services Deutsches Institut für Normung [1]. In order
to achieve these benefits, arbitrary components need to communicate between each
other, This unfortunately fails because information sources are heterogeneous and
communication standards focusing on data have not been established in the automa-
tion domain [3]. Automation will play an important role in the domain of FoF, and
the National Institute of Standards and Technology (NIST) has outlined the main
challenges in the manufacturing interoperability program of NIST [6]. Among those,
the most important to our work is the misinterpretation of definitions or meaning
of terms when exchanging information, which is mainly due to the lack of common
data models that can be easily shared among factories [7]. A well-recognised ap-
proach for establishing the semantics of information sources to make content more
understandable for both humans and robots are ontologies. Ontologies available in
the automation domain are however very specific and have limited usability, and our
approach to solve these issues and develop ontologies with maximum reusability is
modularization [3].

In this work, we will develop a reusable ontology using various frameworks.First,
we will discuss prior or state-of-the-art works in the second chapter ”State of the
art”. Secondly, in the third chapter “Concept” we address how these frameworks
will be used together to develop the ontology. Thirdly “Implementation” chapter,
in which we describe the work done on these frameworks to develop the ontology.
Finally, the ”Evaluation” chapter where we use a new dataset and run it on our
work to evaluate our work.
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Chapter 2

State of the art

2.1 Industry 4.0

The concept of Industry 4.0 (also known as the fourth industrial revolution) became
widely known in 2011 when a consortium known as Industrie 4.0 devised strategies
with the stated intention of improving the effectiveness of the German manufac-
turing industry [10]. The realization of the potential implementation of Industry
4.0 has become more prevalent due to the development of the Industrial Internet of
things (IIoT), cyber physical systems and smart manufacturing. These allow diverse
devices and technologies, such as wireless sensor networks, cloud systems, embedded
systems and autonomous robots, to be interconnected. The interconnection of these
applications allows for the real-time collection of production data from low-level
devices upwards to enterprise applications. Although the concept of Industry 4.0
has been formulated and expanded on since 2011, there is no agreed upon definition
among industry experts; however, integration has been identified as one of the key
requirements to realize the vision of Industry 4.0 [2].

2.2 Ontologies

Ontologies were introduced twenty years ago by Gruber et al. (1993) as an explicit
“specification of a conceptualization”. An ontology provides a shared vocabulary,
which can be used to model a domain by defining the objects and concepts that
exist and specifying the properties and relations between these objects [3].

The use of ontology in the software engineering domain was initiated by the Seman-
tic Web and Web Services Initiatives [12]. The purpose of the Semantic Web was to
extend the description of the content of a web page with machine-interpretable data
so that software agents could better search and process the information on the web
page. The core technologies of Semantic web are the Resource Description Format
(RDF) and Web Ontology Language (OWL). OWL is a widely recognized semantic
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language for creating and sharing ontologies. OWL is an extension of RDF, provid-
ing the abstraction mechanism for creating classes (groups of resources with similar
characteristics) and their properties and constraints. Although RDF and OWL were
primarily designed for the web, they were found useful in other domains as well for
describing and sharing semantically structured knowledge [4]. For example, one of
the ontologies developed on OWL is SIARAS (Skill-based Inspection and Assembly
for Reconfigurable Automation Systems) ontology, presented in Figure 2.1, in which
manipulation and handling skills of robots are presented.

Figure 2.1: Manipulation and handling skills, as defined by SIARAS ontology [15].

Developing ontologies is nowadays considered as a standard activity in research
projects dealing with semantics. Unfortunately, this is not a common result of ap-
plied projects, where the effort and knowledge required to develop an ontology from
scratch is considered not sustainable, in respect of the expected benefits, which is
a major drawback in the representation of the connection in automation domain.
Hence, the goal of this thesis is to develop a reusable ontology.
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2.3 FOON: Functional Object-Oriented Network

FOON is a framework that represents object state change in manipulation tasks and
models the connectivity of functionally-related objects and their motions in the form
of a subgraph. This subgraph is presented in the form of a bipartite network con-
taining objects and motion nodes, as shown in Figure 2.2. In manipulation tasks, a
FOON graph is learned by observing object state change and human manipulations
upon the objects. A functional unit is considered as the minimum learning unit in
a FOON. It represents the relationship between one or several objects and a single
functional motion associated to the objects. In other words, each unit represents a
single, atomic action that is part of an activity.The object nodes connected with the
edges pointing to the functional motion node are called input object nodes, while
the object nodes connected with the edges pointing from the functional motion node
are called output object nodes [9].

Figure 2.2: Two functional units, first for placing a bolt onto a strut profile and
second screwing in the bolt onto the profile. The functional units have input nodes
(green) and output nodes (blue) and are connected by two intermediary single mo-
tion nodes.

A FOON that comprises of the steps observed in a demonstration for a single ac-
tivity is known as a subgraph; many subgraphs can be combined into a large source
of information, which is known as a universal FOON. Knowledge graphs such as
FOON encode contexts, expose connections and relations among entities and na-
tively support inference and causation, and hence, they could be used for creating
better representations of data [9].
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2.4 Collaborative robotics

Collaborative robotics is a branch of robotics that focuses on the use of robots
(cobots) together with humans, rather than robots working alone. These systems
are believed to be an effective way to bring humans and robots together to improve
safety by limiting the risks of injury due to human error or malfunctioning machin-
ery [13].
However, current methods and tools for designing robotics applications are at best
only able to help answer individual questions but do not allow support to study
the system as a whole. As a result, it currently takes very long to develop and
implement a simple application featuring collaborative robotics, there is a lot of un-
certainty during that process, and there are no means for determining whether the
design decisions made are the best. Figure 2.3 shows the overall flow of the design.
There are feedback loops that check the requirements before moving on to the next
step. In general, the design is more precise because the additional process, safety,
and standard requirements are observed.
In industry, there are several field-specific tools for designing participatory robot
applications. The standard procedure includes a project manager who works with
mechanical and electrical engineers. Mechanical engineers work in Computer Aided
Desing (CAD), typically with robot simulation environments or plugins. They show
the general planning and the flow of materials and determine the type of cooperation
with the human by determining his duties. They check whether the basic require-
ments are met and select the robot type based on several criteria such as load,
access, and customer-specific preferences. The electrical system can be designed in
an electronic Computer-Aided Design (ECAD) program. As a rule, there is no direct
digital connection between the mechanical and the electrical field. Electrical com-
ponents are physically formed and cable routes are designed by machine builders.
Logical paths, communication, and electrical power can be modeled in ECAD. Once
the system is ready, the programmer can start programming the robot. They rely
on a variety of tools and frameworks and can sometimes use pre-built simulations
for their own purposes.

2.5 Activity recognition

Human activity recognition (HAR) has been a very active research topic in the past
two decades for its applications in various fields such as health, remote control,
gaming, security, human-computer surveillance and interaction. Activity recogni-
tion can be defined as the ability to detect current activity based on information
received from various sensors [5]. These sensors can be cameras, wearable sensors
or sensors attached to everyday objects. With technological advances and reduced
hardware costs, recording daily activities have become very popular and convenient.
To capture these activities, different approaches have been used. These approaches
can be broadly classified into vision-based and sensor-based [5] as shown in Figure



2.5. ACTIVITY RECOGNITION 11

Figure 2.3: Flow model of different phases during concept (design) of a HRC (Human
Robot Collaboration) application in manufacturing [13].

2.4.
In recent years, researchers have made extensive use of Convolutional Neural Net-
works (CNNs) for image classification problems. Given the success of CNNs in
classifying the image and its content, the researchers used CNN to further classify
videos of everyday activities. Classifying realistic videos into arbitrary free-form ac-
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Figure 2.4: Classification of human activity recognition approaches [5]

tivities is a daunting task, mainly due to lighting conditions, congestion, background
clutter, distortion, angle of view, size and contrast between layers. in this thesis we
will focus on YOLO, one of various NNs available for object detection.

2.5.1 YOLO: You Only Look Once

YOLO is a single neural network that predicts bounding boxes and class probabili-
ties directly from full images in one evaluation [12]. As shown in Figure 2.5, a single
convolutional network simultaneously predicts multiple bounding boxes and class
probabilities for those boxes.

Figure 2.5: The YOLO Detection System [12]

YOLO trains on full images and directly optimizes detection performance. This
unified model has several benefits over traditional methods of object detection.First
YOLO is extremely fast as the base network runs at 45 frames per second (FPS)
and the fast version (Fast YOLO) runs at more than 150 FPS.Second, YOLO rea-
sons globally about the image when making predictions. Unlike sliding window
and region proposal-based techniques, YOLO sees the entire image during training
and test time, so it implicitly encodes contextual information about classes as well
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as their appearance.Third, YOLO learns generalizable representations of objects.
When trained on natural images and tested on the artwork, YOLO outperforms
top detection methods like DPM and R-CNN by a wide margin. Since YOLO is
highly generalizable, it is less likely to break down when applied to new domains or
unexpected inputs.
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Chapter 3

Concept

Our approach to develop a reusable ontology, as shown in Figure 3.1, is integrating
learning from demonstration into the FOON. Through the analysis of an I4.0 related
industrial case, a FOON subgraph can be created afterwards, where the nodes of
the subgraph represents the parts used in the industrial case. Their properties can
be used to create a linked data model defining the ontology.

Figure 3.1: Overview of the Ontology

3.1 Enhancing the FOON

A FOON on its own is solely comprised of symbols and labels, which have no meaning
on their own to a robotic system unless we give them one. The goal of the ontology
is to encapsulate different features and properties together into a format that can
be understood by a robot and also a smart system as a whole. Our approach is to
enhance the use of the FOON with a system that will give meaning to visual input



16 CHAPTER 3. CONCEPT

from YOLO and connect it to nodes in a FOON. One of our goals by enhancing
the FOON is to solve problems like robot understanding of what humans do or
understanding its own actions, and implementing action recognition will help the
robot identify the actions performed by a human demonstrator or worker. YOLO
and hands recognition will help us identify the objects that are being used and in
which state(s) they may currently be in as it relates to the task.

3.2 Linked data model

In order to satisfy the need for an activity description aligned to an industrial-like
infrastructure, semantically linked activity information model was employed. The
ability to translate a semantically linked model to the OPC UA information model
was a driving factor in this choice [11]. Considering that we are using the FOON
comprised of several functional units, our modelling proposes an approach to build
and connect functional units. For our modelling, we start from the Task data model1

and Resources data models2 created by the Smart Human Oriented Platform for
Connected Factories (SHOP4CF) consortium [8]. These information models were
selected because they are based on linked data and they represent manufacturing
use cases; therefore, they satisfy the requirements for mapping into OPC UA. The
Task data model was chosen due to its similar definition to a motion node: a Task
is intended to be a manufacturing operation that may contain sub-steps, and it is
associated to resources (i.e., persons, devices, materials, and assets) and locations.
The Resources data models were also picked because of their notion of abstractly
representing objects on the shop floor. As a result, the mapping between functional
unit, Task, and Resource properties can be summarized as follows. The Resource
data models are mapped to the input and output objects because they can reflect
the state of the objects (i.e., state change). The Task data models are used to
represent motion nodes because they may indicate which item is involved via the
involves property and integrate the sequence of events via the isDefinedBy property.
the object state is updated according to the perceived state through the attribute
state and the Task with Resources are published on the FIWARE context broker.
This approach is described in the following algorithm.

1https://shop4cf.github.io/data-models/task.html
2https://shop4cf.github.io/data-models

https://shop4cf.github.io/data-models/task.html
https://shop4cf.github.io/data-models
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Chapter 4

Implementation

4.1 Training YOLO

In order for us to use YOLO to detect objects in industrial manipulation tasks, we
trained the neural network using a dataset containing videos of manipulation tasks
in industrial environment,Figure 4.1 bellow shows the objects used in our task.

Figure 4.1: Image of the workbench with the operator and the parts used for the
assembly process. Going from the left to the right, the parts are as follows: strut
profile 1○, bracket 2○, T-bolt 3○, and flange nut 4○.

The videos were divided into frames; using VOTT 1, a web application used to label
images or video frames and extract labeled data to local or cloud storage providers,
the frames were labeled as shown in Figure 4.2 and a CSV file containing all the
frames, the objects in them and the coordinates of the bounding boxes of said ob-
jects was created.

1https://github.com/microsoft/VoTT

https://github.com/microsoft/VoTT
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Figure 4.2: Labeling frames using VOTT web application

The CSV file and the frames were used to train the YOLO network; once training
was achieved, YOLO was able to detect the objects on new frames and output the
frames with bounding boxes drawn on them.A CSV file with the coordinates of the
boxes as shown in Figure 4.3.

Figure 4.3: Frame with bounding boxes and the exported dataframe with the coor-
dinates of the boxes.

4.2 Hand detection

Since the hands can change size and shape from the type of grasp, training YOLO
manually with VOTT with the frames did not give optimal results, as it did not
detect the hands if they were observed at different angles or in different grasp types;
to have better results we decided to use a pre-trained YOLOv3 network trained to
detect hands using CMU Hand DB dataset 2 with more than 14000 annotations,
which returned good results when tested with our frames, as shown in Figure 4.4.

2http://domedb.perception.cs.cmu.edu/handdb.html

http://domedb.perception.cs.cmu.edu/handdb.html
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Figure 4.4: Detected hands using the pre-trained YOLO network

4.3 Bounding boxes and distance matrices

Once the YOLO neural network detects an object/hand in a frame, it adds its
coordinates to a CSV file, from which we extract the coordinates (X,Y) of the center
of the bounding box. This point is where almost exactly lays the object/hand in
the frame, and by going through all the detected points in the frame, we can create
an object-to-object and object-to-hand matrix as shown in Figure 4.5.

Figure 4.5: Object to Object and Hand to object matrix

4.4 Recurrent neural network: LSTM

In order to train a long short-term memory (LSTM) to recognize the actions, on
one hand, the distance matrix of the frames were used as input and on the other,
output labels referring to the actions being done on the frame were used. These
labels were handmade according to a FOON network representing the manipulation
task. The input to the LSTM must be three-dimensional samples, time-steps and
features. The distance matrices of the frames are put in a list and each list of a
frame represents a sample, where each time-step contains 5 lists of 5 frames. The
output of the LSTM is an array extracted from the label with the shape 1,number
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of labels. Once the LSTM trained, the model was able to predict from a sequence
of 5 frames, the array representing the action being done on the last frame. A
second LSTM is trained with the same input to predict the objects being used in
the action. The output of this LSTM is an array extracted from handmade labels
with the shape 1, number of objects. The frame in the Figure 4.6 bellow is an
example of the output results.

Figure 4.6: Labeled frame

4.5 Creating the Linked Data model

From a dataset containing frames of a manipulation task in an industrial environ-
ment, using the YOLO and the LSTMS, a CSV file is created that contains the
frame number, the label number representing the action and the objects used in the
action. For the creation of the linked data model we chose the JSON-LD (JavaScript
Object Notation for Linking Data) format. JSON-LD3is a lightweight linked data
format that is based on the already successful JSON format. This format has the
advantage of being easy to read or write by human users while also being easy to
process and parse by machines.

The functional units were extracted from the CSV file, which were used to created
our JSON file as shown in the Figure 4.7 above.

3https://github.com/json-ld/json-ld.org

https://github.com/json-ld/json-ld.org
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Figure 4.7: Example of JSON-LD file
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Chapter 5

Evaluation and discussion

5.1 Evaluation

For the evaluation of our work we will use a new dataset containing frames of a
manipualtion task in an industrial environment and will run it through the different
steps presented in the Figure 5.1 bellow.

Figure 5.1: Diagram representing the different steps of the evaluation of our work

First, the frames were run through the YOLO networks to detect the objects and
hands, which will be output in a csv file containing all the coordinates of the objects
in the frames, from which the distance matrices will be created and will serve as
input to the LSTMs to predict the actions and the objects used. These results were
written on the frames so they can be evaluated by us and a linked data model was
created with them so it can be run on FIWARE. From the CSV file containing the
results of the YOLO neural networks, the objects and the hands were detected in
90 out of the 102 frames. In some cases, objects were not detected due to occlusion
by the hands. Some of the more challenging objects to detect include ”T-bolts” and
”Flange nuts”, mainly because of their small size.
The results of the activity recognition LSTM are shown in the table in Figure 5.2,
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out of the 102 frames, the LSTM predicted the correct activity in 86 frames with
an accuracy of 84%, the incorrect predictions are due to a delay in the prediction of
2-3 frames per new activity.

Figure 5.2: Overview of the results of the activity recognition LSTM.

The results of the active objects prediction LSTM are shown in the confusion matrix
bellow, it predicted the objects being used during the activity with an accuracy of
81%, like the activity recognition LSTM, this LSTMs incorrect predictions are due
to a delay of 3-4 frames every time a detected object is not being used anymore.
These delays can be reduced with more training of the LSTMs.

Figure 5.3: Confusion matrix of the results of the activ objects LSTM.

5.2 Discussion and Future works

The results of the trained networks are satisfying but can be improved upon by
increasing the dataset used for the training. Additionally the multiple neural net-
works make the creation of a linked data model a little time consuming, which can
be improved by implementing a neural network to detect the grasp of the hands.
This will provide us with not only the coordinates of the hands but also the used
objects in this way, we can avoid using a second LSTM network and improve the
results of the action recognition LSTM by adding additional information and will
fix the previous issue of hands covering the objects from the camera. Other types
of LSTM networks should also be tested, such as ConvLSTM [14] in which we can
input video frames directly into the network in addition to the distance matrices,
so it matches each matrix to its corresponding frame and thus the prediction will



5.2. DISCUSSION AND FUTURE WORKS 27

be faster, have more accurate results and provide labeled frames directly from the
LSTM.
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Chapter 6

Conclusion

In this work, we investigated with the purpose of making a reusable ontology, using
the FOON, Functional Object-Oriented Network, that provides a promising man-
ner of data representation with its knowledge graphs that encode contexts, expose
connections and relations amongst entities. The FOON was enhanced with few im-
plementations to make the data model reusable, which consist of object and action
recognition, directly from frames of tasks in an industrial environment to give mean-
ing to visual input and link it to nodes in the FOON. The object and motion nodes
are used to create our linked data model that represents our ontology, under the
JSON-LD format that is easy for operators to read and write.

The assessment of our work using a brand new set of frames of a similar industrial
task showed accurate results. However for our work to be beneficial in an industrial
environment the object and activity recognition networks may be improved so they
can provide faster results. Improvements can be achieved by comparing results with
other types of Recurrent Neural Networks and training the Convolutional Neural
Networks with new objects and tasks to provide a wider range of reusability.
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IIot Industrial Internet of things

ECAD Electronic Computer-Aided design

FPS frames Per Second
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