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Problem description:

Learning from Demonstration (LfD) is an approach that allows to intuitively transfer task knowledge
from humans to robots by demonstrating the task at hand e.g. via teleoperation or kinesthetic teaching.
The gathered sensor data during a task demonstration can be described by a large set of generic
features, such as measured forces acting on the end effector or minimal distances of the robot towards
objects or important landmarks. Feature selection (FS) is the process of determining a minimal subset
of task relevant features by eliminating redundant or uninformative features from the initial set. Since
the search space of many ML setups, like Reinforcement Learning, scales exponentially with the number
of features, FS is highly important to achieve sufficient performance in real world robotic tasks that
involve a high dimensional state-action and feature space. FS approaches can be divided into filter
[1, 2] and wrapper methods [3], which are employed in a separate step prior to the actual learning
algorithm or integrated into a learning algorithm, respectively. The focus of the thesis project is set
on FS from unlabeled sensor time series, where the following tasks are to be conducted:

Tasks:

• Literature research on feature selection with focus on time series data
• Implementation of at least two different algorithms for FS from unlabeled sensor time series, em-

ploying e.g. the approaches of [1], [2] or [3]
• Evaluation of the performance of the implemented approaches regarding elimination of redundant

and irrelevant features
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Abstract

Among machine learning researchers, it is common to ought to deal with data sets
containing a tremendous amount of heterogeneous features. This infers in a great
challenge since classical machine learning strategies are not able to effectively deal
with such number of inputs. As a result, it is normal to apply a preprocessing
step to decrease the dimensionality. Feature selection provides an effective way to
solve the problem of high dimensional data analysis by removing redundant and
task-irrelevant data. It is a very effective way to reduce computation time, space
complexity, improve learning rate and achieving better results. This is quite useful
for robotics tasks especially those involving selecting task-relevant features from
sensor data collected from the environment. Clearly, excluding important features
can limit the quality of the learning process. At the same time, including redundant
or superfluous data can result to slower learning or weaker end performance. In this
thesis, we will discuss and implement several frequently used approaches in the field
of feature selection and apply them on multivariate time series data. Finally, every
method’s performance will be tested on a real world experiment.
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Chapter 1

Introduction

In the field of machine learning, it is common to performe a preprocessing step
to let off all redundant or irrelevant features and decrease the dimensionality of
the issue at hand. This can be accomplished with the help of 2 general approaches:
feature extraction and feature selection. Although we will not be dealing with feature
extraction in this thesis, it is worth differentiating between the 2 techniques. Feature
extraction reduces the feature set by creating new features through transformations
and combinations of the original features. Whereas features selection preserves
the original features and that are relevant to the learning task and removing all
redundant or irrelevant ones. In [BCAB18] we can see the difference between the
two.

Figure 1.1: Examples of feature extraction and feature selection systems [BCAB18]



Some good feature selection methods have already been implemented for some com-
plex problems. However only few do consider the case of pervasive computing; it is
a vision of an environment enriched by a distributed network of sensors and devices
that collect data continuously. In other words, not many feature selection algorithms
do consider time as a valuable parameter in the task-learning process. By providing
an effective way to collect good quality data, a robot would then be capable of not
only performing tasks in a computationally effective way, but can also learn in an
almost autonomous way a specific task under several different situations and react
correctly accordingly.

1.1 Objective and Contribution

Our aim is to analyze and implement different feature selection algorithms that en-
ables the robot with no prior knowledge of the environment nor with human/expert
intervention to select the most relevant and non redundant features for the task.
When performing multiple demonstration from the user, the robot will be collecting
a set of heterogeneous data coming from different sensors. The feature selection
methods will then extract the main features of the task, which will be the inputs
for the machine learning models allowing the robot to start the learning process. In
contrast to state of the art feature selection methods, the approach of this thesis
focuses on the data as a function of time and will consider some interesting prop-
erties like correlation, linear dependence and the idea of mapping time series in the
network domain to speed-up the learning process, and enhance the machine learning
model generalization properties.
Therefore, the feature selection methods we are interested in should:

• Reduce computational cost for sensor information processing

• Suppress redundant/irrelevant information depleting predictive Performance

Moreover, the applications specific requirements are:

• Timeseries data

• Heterogeneous sensor information

The primary goal of this thesis is to gain an understanding of the most recent and
effective developments in the field of unsupervised and supervised feature selection
and analyze these techniques in real world robotics applications. Various feature
selection (FS) methods based on different metrics will be analyzed in terms of accu-
racy and efficiency and later be tested on data obtained from a user demonstration.
The Results will then be evaluated and scored to find out what feature selection
method is more suitable for this kind of experiments. Therefore, this thesis focuses
on answering the following questions:



• What are the available feature selection techniques and how do they work?

• What are the advantages and disadvantages or each method in time-series
analysis in general?

• Based on the different demonstrations of the same task with different setups,
what is the best approach to select the most relevant subset of features in
terms of redundancy/noise reduction ?
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Chapter 2

State of the art in feature selection

As mentioned above, feature selection is the process of reducing the dimensionality of
the present features by detecting the relevant features and discarding the irrelevant
ones.
This plays an essential role such as improving learning performance, preventing over-
fitting, and reducing the computational costs. For example, the number of training
examples needed for the basic nearest-k neighbor classification algorithm to reach a
given accuracy grows exponentially with the number of irrelevant features. Usually,
feature selection can be categorized according to different perspectives. The first
one is the supervision perspective; according to the availability of supervision (such
as class labels in classification problems), feature selection can be broadly classified
as supervised, unsupervised and semi-supervised methods. We can also consider
the different selection strategies as a second criterion of categorization. Feature se-
lection can also be broadly classified as wrapper, filter and embedded methods. In
subsection 2.1, we will discuss each method briefly and give the circumstances under
which we can use each one.

2.1 Selection Strategy perspective

Feature selection methods can be divided regarding the relationship between a fea-
ture selection algorithm and the inductive learning method used to infer a model,
into three major approaches:

2.1.1 Filter methods

The methods used in this approach are independent of the learning algorithm. In
other words, they only rely on the characteristics of the data to evaluate the data’s
importance to the task (characteristics such as correlation). This makes them usually
more computationally efficient than other methods like wrapper methods (section
2.1.2). However, due the lack of the learning algorithms guiding and filtering the



features, the results may not be optimal. These methods normally consist of two
steps; in the first step, the features are ranked according to evaluation criteria which
rank all of them individually based on their importance. In the second step, all
least important ones are filtered out depending on a parameter k which specifies the
number of the k most important features. For example, Entropy measure has been
used as filter method for feature selection for clustering [DL97].

2.1.2 Wrapper methods

The methods used in this approach are dependent of the learning algorithm. They
rely on the predictive performance of a predefined learning algorithm to evaluate the
quality of selected features. In other words, it uses the method of classification itself
to measure the importance of features set. Given a specific learning algorithm, a
typical wrapper method performs two steps: (1) search for a subset of features; and
(2) evaluate the selected features. It repeats (1) and (2) until some stopping criteria
are satisfied. Feature set search component first generates a subset of features;
then the learning algorithm acts as a black box to evaluate the quality of these
features based on the learning performance. For example, the whole process works
iteratively until such as the highest learning performance is achieved or the desired
number of selected features is obtained. Then the feature subset that gives the
highest learning performance is returned as the selected features. Unfortunately, a
known issue of wrapper methods is that the search space for d features is 2d, which
can be impractical for problem with a large number of features. Therefore, different
search strategies such as sequential search [HS99], hill-climbing search, best-first
search [KJ97];[AMXS16], branch-and-bound search [NF77] and genetic algorithms
[Gol89]are proposed to yield a local optimum learning performance. However, the
search space is still extremely huge for high-dimensional datasets. As a result,
wrapper methods are sel- dom used in practice.
The following figure represents the process of the wrapper approach explaining steps
(1) and (2);



Figure 2.1: Wrapper approach for feature selection

2.1.3 Embedded methods

Embedded methods are a trade-off between filter and wrapper methods which em-
bed the feature selection into model learning. Thus, they inherit the characteristics
of wrapper and filter methods. (1) they include the interactions with the learning
algorithm; and (2) they are far more efficient than the wrapper methods since they
do not need to evaluate feature sets iteratively. The most widely used embedded
methods are the regularization models which target to fit a learning model by min-
imizing the fitting errors and forcing feature coefficients to be small (or exact zero)
simultaneously. Afterwards, both the regularization model and selected feature sets
are returned as the results which are more robust and have a higher credibility in
comparison to filters and wrapper methods. This technique searches for the most
relevant and effective features for models. The most common embedded methods
are regularization-based [EHJT04], including LASSO, elastic net, or ridge regression
[YHQ+16].

2.2 Supervision perspective

According to the supervision criterion, feature selection can be classified into super-
vised, unsupervised and semi-supervised methods.



2.2.1 Supervised feature selection

First is the Supervised feature selection; Supervised feature selection is the
process of selecting a feature subset based on some criteria for measuring the impor-
tance and relevance of the features by utilizing the labeled data to train the feature
selection model. It aims feature selection aims to maximize classification accuracy.
The first step is to split the data into training and testing sets, classifiers are then
trained based on a subset of features selected by supervised feature selection. In the
second step, the trained classifier tries to predict class labels or regression targets of
unseen samples in the test set with the selected features.
This approach is explained in the the help of the following figure:

Figure 2.2: supervised feature selection process [SFK10]

The two steps together (A+C) consist the supervised feature selection approach;
Preprocessing + Testing (evaluation of the built model).
In a preprocessing step (A), supervised feature selection reduces the set of features
X to a subset X’ (Y being the target attribute). Subsequently, the reduced training
set is used to train a classifier f (). During testing (C), the trained classifier f () is
evaluated using an independent test set with the feature space reduced to X accord-
ing to the feature selection derived in the previous step. The classifier predicts Ŷ for
each instance. Various performance measures can then be calculated by comparing
the predictions Ŷ with the true values for Y [SFK10].

2.2.2 Unsupervised feature selection

Second is the unsupervised feature selection; this approach has the ability to
identify and remove irrelevant and/or redundant features without needing a super-
vised dataset. In fact,the goal here is to identify for each feature a group (also
known as cluster). Acquiring labeled data is particularly expensive in time, unsu-
pervised feature selection may represent the better alternative for many complex
tasks. When working with unlabeled data, unsupervised feature selection methods



seek alternative criteria to define feature relevance. In contrast to supervised feature
selection, this approach is unbiased and performs well when no prior knowledge is
available. They can also reduce the risk of data over-fitting when dealing with a new
class of data [SFCOET19]. Unsupervised feature selection relies either on intrinsic
properties of the data, such as the variance of features, similarity among features,
consistency, entropy, etc. or the ability to o find good cluster structures in the data.
A more formal definition of unsupervised learning can be found in [Kan05]- [Bro09].
It goes as follows:
Given a collection of m objects X = {x1,x2, . . . ,xm}, described by a set
of n features T = {F1, F2, , . . . , Fn} possibly of different type (mixed
data). Unsupervised feature selection consists in identifying a sub-
set of features T ′ ⊆ T , without using class label information, such
that T ′ does not contain irrelevant and/or redundant features, and
good cluster structures in the data can be obtained or discovered.
To clarify this definition, we provide the following figure as of relevant and irrelevant
features is shown.

Figure 2.3: Relevant, irrelevant and redundant features[SFCOET19]

In this figure, we can see that F1 is a relevant feature because it can separate the
data; as it can be seen when the data are projected to its respective axis. On the
contrary, F2 is an example of an irrelevant feature because it by itself is unable to
separate the data, as we can see in its projection.
In the case of unsupervised (clustering) tasks, this concept is closely linked to those
features that reveal interesting and natural structures underlying the data.
On the other hand, a redundant feature refers to a feature that is relevant for
discovering cluster structures in the data. But if it is removed from the data, it
has not negative effect due to the existence of another feature (or set of features)
that provides the same information. Redundant features unnecessarily increase the
dimensionality, and therefore they can be removed.[SFCOET19]



2.2.3 Semi-supervised feature selection

At last, comes the semi-supervised method. This method is a trade-off between
the two methods mentioned above. Thus, they inherit the merits of supervised
and unsupervised feature selection methods. For many real-world applications, we
have limited number of labeled data. In order to benefit from it, some algorithms
have been developed to exploit both labeled and unlabeled data samples and take
advantage of both supervised und unsupervised characteristics. Some new ways
have been introduced to the semi-unsupervised feature selection approach such as
the Laplacian score (LS). The basic idea of LS is to evaluate the features according to
their locality preserving power. If two data points are close to each other, they belong
to the same class with high probability. It is fundamentally based on Laplacian
Eigenmaps [BN01] and Locality Preserving Projection [HN03] [YHQ+16].

2.3 Methods of feature selection in Multivariate

time series

Most of the widely used approaches explained in the section 2.2 might require an
expert intervention (cases in supervised feature selection approach), are only suitable
for time independent labeled data and not for a multivariate time series data. Since
the time dependency plays a major role in the robotics task, our feature selection
methods need to take into consideration, that our features are not some constant
values but rather be considered as time dependent. In this subsection, different
methods used on multivariate time series data will be discussed and categorized.

2.3.1 Filter Methods

Filter methods rank features according to a relevancy score. The latter represents
the main idea behind using filter methods in feature selection. Interactions and
relationships between the data itself are extremely important for this Filter-based
approach. Some of the methods that the filter approaches are based on to perform
feature selection are: correlation, t-test, information gain, mutual information en-
tropy, etc. Filter-based feature selection techniques are mainly applied because the
following reasons:

• They proved to be efficient with high-dimensional data

• They are computationally efficient when compared to other techniques; Such
computational aspects are a key factor to be taken into consideration if the
application runs on low-power devices. [Bac16]



• they do not require any prior knowledge of the task; Filtering redundant fea-
tures can be performed independently of the task we aim to learn.

Filter-based feature selection techniques, as mentioned earlier, use statistical met-
rics to determine the subset of features with potentially high accuracy. How-
ever, different filters may yield different filtered subsets, which may also delete
some task-relevant data. Generally, the feature selection algorithms often rely on
information theory concepts to choose what filter metrics to consider. We will
talk briefly about feature selection metrics used in feature selection research;

Mutual information (MI):
Mutual Information Criterion (MIC) is a popular approach to analyze the correlation
between features. It measures the dependency between the variables; The mutual
information is a measure between two random variables X and Y, that quantifies
the amount of information obtained about one random variable, through the other
random variable. For two features, X and Y , the MI is estimated using:

I(X;Y ) = H(X) +H(Y )−H(X, Y ) (2.1)

with
H(X, Y ) = −

∑
x∈X

∑
y∈Y

p(x, y) log(p(x, y)) (2.2)

H(X) = −
∑
x

p(x) log(p(x))(Shannon entropy) (2.3)

where p(x, y) is the joint probability of X and Y random variables and p(x), p(y)
are the probability density functions of variable X and Y respectively. A large
value of MI signifies high correlation of two variables. Zero value indicates that
two variables are not correlated; if the mutual information between two variables
is 0 ( pX,Y = pXpY and MI(X;Y ) = 0 ) means that the two variables are statis-
tically independent. For example, suppose X represents the roll of a fair 6-sided
dice, and Y represents whether the roll is even (0 if even, 1 if odd). Clearly, the
value of Y tells us something about the value of X and vice versa. That is, these
variables share mutual information [VR17]. A multilabel feature selection algorithm
using mutual information and ML-ReliefF for multilabel classification is proposed
in [SSXZ20]; the mutual correlation is used here to improve the correlation degree
between features and label sets. The novel mutual information-based correlation
degree of features and label sets is developed to preprocess multilabel datasets for
reducing the run time of ML-ReliefF (an algorithm constructed to evaluate the im-
portance of features) [SSXZ20].

Pearson correlation (PC):
Pearson correlation (R-score) describes strength of the correlation between the fea-
tures. The value of the correlation is calculated by dividing the covariance of two



features and dividing by the product of their standard deviations. Since the corre-
lation value is divided by the product of the standards deviation of both signals, it
is not affected by their scales For two features, X and Y , the MI is estimated using:

R =
cov(X, Y )

σXσY
(2.4)

where cov is the covariance of X and Y , σX represents the standard deviation of X
and σY represents the standard deviation of Y [VR17].
An example is shown in the following figure where the Pearson Correlation matrix
of the used features in this thesis is calculated. In this case, filtering out features
with that have high correlation (Usually greater than 0.5) might be an option: an
example of 2 highly correlated feature can be feature 29 and 25.

Figure 2.4: Pearson correlation matrix of the used dataset in this thesis (30 Features)
[FBVV09]

Fisher criterion score (FS):
Fisher Criterion Score (F-Score) is widely used for classification tasks. This method
computes the importance of each feature independently of the other features by com-
paring that feature’s correlation to the output labels (supervised FS). The score is



calculated by measuring the variance between the expected value of the information
and the observed value. When variance is minimized, information is maximized.

Features with higher F-Score have better separation ability in classification prob-
lems. Hence, features with low scores will be disregarded. Similar to the example
of pearson correlation, a similarity matrix can be calculated and features with high
F-score can be eliminated.
F-score is defined in the following:

F (i) =

(
X̄

(+)
i − X̄i

)2
+
(
X̄

(−)
i − X̄i

)2
1

n+−1
∑n1

k−1

(
X̄

(+)
k,i − X̄

(+)
i

)2
+ 1

ni−1
∑n

k−1

(
X̄

(−)
k,i − X̄

(−)
i

)2 (2.5)

where X̄
(+)
i , X̄

(−)
i and X̄i are the averages of the ith feature of the positive, negative

and whole datasets; n+ and n - are the number of positive and negative instances,

respectively; and X
(+)

k,i and X
(−)
k,i are the ith feature of the kth positive instance and

the ith feature of the kth negative instance [VR17].

2.3.2 Clustering Methods

Filter methods which rely on dependence measures and predefined metrics are widely
used in feature selection. However, recent studies showed that techniques that rely
on feature clustering outperformed state of the art feature grouping algorithms[BMC20].
The main idea behind clustering different features together is to group the one who
share similar properties in one set. in this section, some popular clustering methods
will be discussed briefly here:



Figure 2.5: Example of clusters representation

K-means clustering (K-mean):
K-mean clustering algorithm is probably the most well-known clustering algorithm
in feature selection. Given a set of points (samples) in a Euclidean space and a
positive integer k (the number of clusters), split the points into k clusters so that
the total sum of the (squared Euclidean) distances of each point to its nearest
cluster center is minimized. This optimization objective is often called the k-means
clustering objective [BDM09]. Obviously, the more number of features considered,
the slower becomes the k-means clustering algorithm. Moreover, the existence of
irrelevant features may affect the algorithm’s capability on identifying the relevant
features.
Given a matrix A ∈ Rn×d( representing n points − rows − described with respect
to d features − columns) and a positive integer k denoting the number of clusters,
find the n× k indicator matrix Xopt such that

Xopt = arg min
X∈X

∥∥A−XXTA
∥∥2
F

(2.6)

The optimal value of the k -means clustering objective is

Fopt = min
X∈X

∥∥A−XXTA
∥∥2
F

=
∥∥A−Xopt X

T
opt A

∥∥2
F

(2.7)

In the above X denotes the set of all n×k indicator matrices X. From each cluster,



one representative will be selected and all other features from the same clusters will
be ignored.

Agglomerative Hierarchical clustering:
In order to decide which clusters should be combined with the Agglomerative Hi-
erarchical clustering method, a measure of dissimilarity between sets of samples is
required. In most methods of hierarchical clustering, this is achieved by use of an
appropriate metric (e.g. euclidean distances), and a linkage criterion which specifies
the dissimilarity of sets as a function of the pairwise distances of observations in the
sets. The choice of an appropriate metric will influence the size and shape of the
clusters, as some elements may be close to one another according to one distance and
farther away according to another. Some commonly used metrics for hierarchical
clustering are: Euclidean distance,squared Euclidean distance, Manhattan distance,
etc. The linkage criterion determines the distance between sets of observations as
a function of the pairwise distances between observations[SB13]. Some commonly
used linkage criteria between two sets of observations A and B are:
Maximum or complete linkage clustering:

max{d(a, b) : a ∈ A, b ∈ B}. (2.8)

Minimum or single linkage clustering:

min{d(a, b) : a ∈ A, b ∈ B}. (2.9)

In Agglomerative Hierarchical Clustering we will treat every data point as its own
cluster, initially. Then subsequently we will keep merging nearest clusters together
to form a new cluster. We will repeat this until all the data points are merged into
a single cluster. For this reason, this method is not suitable for very large prob-
lems.Similarly to K-means clustering, one representative from each cluster will be
selected to represent its group and the number of the selected features will decrease
significantly.



Figure 2.6: Example of clusters representation
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Chapter 3

Feature selection for sensor
time-series

3.1 Time series

Multivariate time series are usually used in multimedia, finance, medicine, speech
recognition and robotics navigation and manipulation. A time series is a set of
data points over time; Understanding how specific data points change over time is
the basis for many statistical and business analyses ; a combination of the changes
in relative humidity and temperature over time help dictate what we think of as
”weather”, for instance. Each time an action is performed within a network, logs are
created that allow users to trace unique activities after they occurred. Even things
such as economic data are technically time series data points, often compared to
past results and projected into the future [dat20]

3.1.1 Characteristics

Time series have several characteristics that make their analysis different from other
types of data.

• The time series variable (for example, velocity) may have a trend over time.
This refers to the increasing or decreasing values in a given time series.

• The variable may exhibit cyclicity or periodicity. This refers to the repeating
cycle over a specific period. For example, a robot can do the same subtask
over and over in order to achieve a goal.

• The data will have serial correlation between subsequent observations.

• The data will almost always have an irregular component, which is referred to
as the White Noise. This is the random variation not explained by any other
factor. White Noise is a stationary process with a constant mean and variance
[Tra19].



3.1.2 Applications in robotics

Robots rely exclusively on sensors in order to navigate or manipulate its environ-
ment. Usually, Robots are deployed with a set of sensors collecting the data over
time under the form of Time series. This way allows the robots to have a model
of the physical world enabling sensors to communicate information and link the
operations with the actuators in order to achieve a certain task.

3.2 Importance of feature selection in robotics

The new trend in the robotics field is to enable robots to interact in human envi-
ronments and become efficient when performing everyday tasks. One of the most
famous ways to achieve such goal is a new way of teaching a robot, which is Program-
ming by Demonstration (PbD). A human can teach a robot how to perform a task
by physically guiding the robotic arm throughout the task (kinesthetic teaching).
The demonstrated tasks may involve a sequence of basic sub-tasks, with different
characteristics. Learning such a complex motion requires determining the specific
constraints in each part of the task. In this area, feature selection may be funda-
mental in order to learn the task efficiently. Feature selection would help not only
in decreasing the task complexity and computational cost but also in focusing on
learning just the variables that are important for each region of the task[PUNB13].

3.2.1 Applications in robotics: importance of feature selec-
tion

Learning from redundant and noisy data affects the performance of the learning
modules and make it less and less reliable. To tackles this issue, the availability of
feature selection techniques becomes fundamental. Feature selection (FS) aims to
improve the quality of the collected sensor streams by filtering out redundant and
noisy data and selecting a subset of all features set with little to no human/expert
intervention. With the help of these techniques discussed in this thesis, the various
unsupervised FS methods will prove how their applications will improve the models
interpretability, accuracy and generalization all while dramatically speeding up the
learning process.

3.2.2 Incremental Cross-correlation algorithm

This method consists of identifying non redundant sensors data in an unsupervised
fashion even in the presence of large portions of noisy features [Bac16]. It is based
on the cross correlation of the Multivariate Time Series and determines whether a
feature is redundant or not. The number of sensors streams feeding the learning
models is then optimized which can be quite effective for limited computational
requirements when working with heterogeneous information sources. One of the



main advantages of the Incremental Cross-correlation Filter (ICF) is the fact that it
is completely independent of the learning process. Thus, it can be applied of sensors
data and deliver the main features without being affected by the complexity of a
specific learning model.
The ICF algorithm focuses on reduction of feature redundancy based on the pairwise
cross-correlation of the data. The latter is a set of 4 selection/elimination rules which
determines whether a features is in the selected features set of the deleted features
set. The first phase is to calculate the feature redundancy matrix R in (0,1). All the
diagonal values of this matrix are set to 0 set account for the trivial correlation (the
signal with itself). The other matrix values are then obtained by calculating the
maximum cross-correlation between all univariate sequences the following formula
[Bac16]:

φx1x2(τ) =

min{(T 1−1+τ),(T 2−1)}∑
t=max{0,τ}

x1(t− τ) · x2(t) (3.1)

where τ ∈ [− (T 1 − 1) , . . . , 0, . . . , (T 2 − 1)] and T 1, T 2are the time-series lengths
The values of the latter are then normalized to account for the amplitudes of different
scales and reading. The normalized cross correlation is introduced:

φ̄x1x2(τ) =
φx1x2(τ)

φx1x1(0) · φx2x2(0)
(3.2)

where φxx(0) denotes the zero-lag autocorrelation, i.e., the correlation of a time-series
x with itself. The normalized function φ̄x1x2(τ) takes values in [−1,+1], where a
value of φ̄x1x2(τ) = 1 denotes that the two time-series have the exact same shape
if aligned at time τ . Similarly, a value of φ̄x1x2(τ) = −1 indicates that the time-
series have the same shape but opposite signs, while φ̄x1x2(τ) = 0 denotes complete
signal uncorrelation [Bac16]. However, it is recommended to add some tolerance
to the pair and account 0.99 as correlated and 0.1 as uncorrelated as thresholds.
Based on this mathematical approach, the percentage of samples in which each pair
i,j is correlated is calculated and if the both signals are correlated more than a
given percentage defined by the expert the value (20 % is usually sufficient to detect
redundancies), the corresponding Rij in the redundancy matrix (R ∈ {0, 1}D×D
with D number of features) is set to 1 and 0 otherwise. The second phase consists of
deleting all features with much noise; This phase relies on the fact that time series
with noise tend to have a mean of autocorrelation equal to 0 in all lags other than
lag=0 The third phase exploits the information in the redundancy matrix R and
follows iteratively 4 different rules with the undeleted or unselected features.

• Rule 0: Select completely uncorrelated features.

• Rule 1: Delete completely correlated features.

• Rule 2: If R contains only ones select less correlated feature.



• Rule 4: If stuck, pick one feature for selection and one for deletion.

After the completion of all these steps, all features would be divided in 2 different
sets; selected features and deleted features.
The ICF algorithm performs a multivariant feature selection process on pairwise
features at a time to gain their dependencies information. Therefore, it maintains
a limited computational complexity and can handle large amounts of heterogeneous
data.

3.2.3 Complex Network-based clustering algorithm

Traditional unsupervised Feature selection methods based on dependence measures,
such as correlation coefficients, linear dependence, or statistical redundancy, are
already widely used. Recently, feature clustering demonstrated its merit in terms
of accuracy with respect to other unsupervised approaches. In addition, cluster-
ing algorithms outperform state-of-the-art methods in detecting groups of similar
features, as well as in selecting metrics (one or more features) out of every cluster
to reduce the dimensionality of the data with more or less granularity based on
the application. The most common approaches involve modifying the conventional
clustering algorithms to adapt them to deal with raw time series or to convert time
series into static data (feature vectors or model parameters) so that conventional
clustering algorithms can be directly applied. In addition, according to the way clus-
tering is performed, the algorithms can be grouped into whole time-series clustering
and subsequence clustering, a valid alternative to reduce the computational costs
by working separately on time series segments. It has been recently demonstrated
that network approaches can provide novel insights for the understanding of com-
plex systems, outperforming classical methods in the ability to capture arbitrary
clusters. In particular, the weakness of conventional techniques resides in the use of
distance functions which allow finding clusters of a predefined shape. In addition,
they identify only local relationships among neighbor data samples, being indifferent
to long distance global relationships [BMC20].
In this section, we will talk about the main steps of the proposed clustering approach:

• Remove time series noise through a low-pass filter.

• Segment time series yn into consecutive non-overlapping intervals s1n, s
2
n, . . . , s

T
n

corresponding to a fixed time amplitude L, where T is the number of segments
extracted for each time series.

• Transform every signal segment stn(t = 1, . . . , T and n = 1, . . . , N) into a
weighted natural visibility graph Gf

n.

• Construct a feature vector ktn = ((ktn)1 , (k
t
n)2 , . . . , (k

t
n)L) for each visibility

graph Gt
n′ where

(
kfn
)
i

is the degree centrality of the i th node in the graph
and ktn the degree sequence of the graph.



• Define a distance matrix Dt for every t th segment (t = 1, . . . , T ), where the
entry dtij is the Euclidean distance between the degree centrality vectors kti
and ktj. Every matrix gives a measure of how different every pair of time series
is in the t th segment.

• Compute a global distance matrix D that covers the full time period T where
the entry (i, j) is computed as dij = 1

T

∑T
t=1 d

t
ij, averaging the contributions

of the individual distance matrices associated to every segment.

• Normalize D between 0 and 1, making it possible to define a similarity
matrix as S = 1−D, which measures how similar every pair of time series is
over the full time period.

• Build a weighted graph C considering S as an adjacency matrix.

• Cluster the original time series by applying a community detection algorithm
on the graph C and visualize the results through a force-directed layout: The
community detection is done by the Louvainâs algorithm; it is done by maxi-
mizing the following modularity function [BMC20]:

Q =
1

2m

∑
i,j

[
Aij −

didj
2m

]
δ (ci, cj)

where m stands for the number of edges of G,Aij represents the weight of the
edge between i and j (set to 0 if such an edge does not exist), di is the degree
of vertex i (i.e. the number of neighbors of i), ci is the community to which
vertex i belongs and the δ -function δ(u, v) is defined as 1 if u = v, and 0
otherwise [DP15].



The next figure illustrates the flowchart of the methodology.

Figure 3.1: Flowchart of the proposed time series clustering methodology [BMC20]

3.2.4 Genetic algorithm: Wrapper method

Genetic algorithm (GA) is based on Darwinâs theory ”Survival of the Fittest”.
That is the best solutions in the current population of features are selected for
mating in order to produce better solutions. By keeping the good solutions and
killing the bad solutions, we can reach an optimal or semi-optimal solution. In
contrast to the previous two feature selection approaches, this new method is not
time dependent. The selection process is exclusively influenced by the machine
learning model Support Vector Machine (SVC). The idea behind this method is to
select the ’best’ feature based on their fitness level (classification accuracy). Since
our experiment is a classification problem, we can have a feature selection algorithm
that relies on how good a set of feature performs to predict the right class. The
higher the accuracy the better the solution. Our used dataset is divided into train
and test samples. Based on the train data, the SVC will be trained using the selected
feature elements by each solution in the population. After being trained, it will be
tested according to the test data.
Based on the fitness value of each solution, we can select the best of them as parents.
These parents are placed together in the mating pool for generating offspring which



will be the members of the new population of the next generation. Such offspring are
created by applying the crossover and mutation operations over the selected parents
[Gad]. The following steps explains the main steps of the wrapper method.

Figure 3.2: Genetic algorithm steps [VR17]

Fitness level:

Each feature in a classification problem has a degree of contribution in predicting
the right class. GA assumes that combining 2 features with a high contribution in
predicting the right class will produce an even better solution if combined in the
same set. After each iteration, the best features will be saved for the next set and
weakest features will be eliminated. The fitness level represents the accuracy level
for each set of features in predicting the right class. This will help in creating better
and better features sets after each iteration/generation and will try to find what
combination of features is more likely to get the highest accuracy [Gad].



Figure 3.3: Progress of the fitness value for the selected features
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Chapter 4

Evaluation of the different feature
selection methods

In order to evaluate the effectiveness of the feature selection methods mentioned in
the previous chapter, we used the dataset from a recent research paper [FBVV09],
in which a robot should be able to infer the best policy (a set of decisions) to
navigate his own environment with the help of a user demonstration. The features
selected from each method will be fed to machine learning models (like support
vector machine, K-Nearest neighbours, etc.) and depending on the quality of the
selected features, the accuracy and performance will be compared. The policy can
be easily obtained, since it is the same for the whole task and only 4 different
actions are possible. In the next section, the experiment will be further discussed
and explained in details.
This experiment has been conducted at the Federal University of Ceara, Brazil
and was used in the work on the paper: Short-term memory mechanisms in neural
network learning of robot navigation tasks: A case study [FBVV09]

Figure 4.1: Robot SCITOS G5.



4.1 Used data set

Before considering what features we might consider in this dataset, an experiment
overview is given here to describe the most important steps of this experiment.
The SCITOS G5 robot has a 360 degrees rotation capability and is equipped with
24 ultrasound sensors (sampling rate is 9 samples per second) arranged circularly
around its ’waist’ with a range within 20cm – 300cm (an ultra sound sensor every
15 degrees) . The robot task is to navigate through the room following the wall in
a clock wise manner and avoid any obstacles that come in the way.
The robot will have to take one of 4 decisions at each time steps:

• move forward (Class 1)

• slight right-turn (class 2)

• sharp right-turn (class 3)

• slight left-turn (class 4)

Figure 4.2: Experiment Overview



The data set consists of 30 different features and a class label which are constructed
in the following way:

• The first 24 features represent the raw measurements of the ultra-sound sen-
sors; feature 1 is the ultrasound sensor at the front of the robot (reference
angle: 180◦ ) feature 2 is at the reference angle: 165◦ and so on

• Feature 25 to feature 28 are the simplified distances (front, left,right,back)
They consist, of the minimum sensor readings among those within 60 degree
arcs located at the front, left, right and back parts of the robot, respectively.

• Feature 29 and 30 represent front and left distance (same as feature 25 and
26, respectively)

• Last column consists corresponding class label (Target) (move forward (Class
1),slight right-turn (class 2),sharp right-turn (class 3),slight left-turn (class 4))



Figure 4.3: Visualization of all features on the robot

Figure 4.4: Graph of all 30 features/signals in time

The goal behind this experiment is to find which feature selection method delivers
the ’best’ features, which helps the robot determine the best decision or class to
take.



4.2 Results and evaluation

To evaluate the results of each feature selection algorithm, different machine learn-
ing models have been used to interpret the quality of the selection process. For
this purpose, a support vector machine (SVM), a K-Nearest neighbours (KNN) ,
and neural network with 2 hidden layers (2 fully connected layers with 100 nodes
each) have been used to check how good they can predict the corresponding class at
each time step depending on the input features. The purpose of this step is to com-
pare the performance of the classification models when given different input features
and these input features will be determined with the help of the feature selection
methods explained in the last chapter. All of the mentioned models are specifically
designed for classification tasks. In our case, The model should decide what decision
to make with the input features. In other words, the models will try to predict what
move to robot should take depending on the input features; forward, slight right
turn, sharp right turn or slight left turn . Since the performance and accuracy of
each model highly depend on the quality of the input features, the results of the
models vary significantly.

The following table summarizes the different results gathered from this experiment:

Selected
features:
number of
selected
features

relies
on pre-
defined
parame-
ters

KNN
accu-
racy
in %

KNN
run
time

SVC
accu-
racy
in %

SVC
run
time

NN
accu-
racy
%

NN
Run
time

All features ALL: 1 to
30: 30

NO
87.90 0.11

92.18 0.20 93.71 145

Clustering
features

2,6,9,17,13, NO 92.30 0.04 96.21 0.22 97.07 126

25,26,23:8

ICF features 3,4,5,6,7,8, YES
87.90

0.08
85.77 19.04 91.20 142

11,12,14,15
,23:11

Wrapper
features

25,26,30:3 NO
98.90 0.03 99.88 0.16 98.78 111



To visualize prediction accuracy of the learned models, we use confusion matrices.
This way we can see how often did the machine learning models predicted the right
class on the corresponding time step.

(a) KNN with all features (b) KNN with Clustering features

(c) KNN with ICF features (d) KNN with wrapper features

Figure 4.5: K-Nearest neighbours (KNN) confusion matrices with different input
features from the feature selection algorithms



(a) SVC with all features (b) SVC with Clustering features

(c) SVC with ICF features (d) SVC with wrapper features

Figure 4.6: support vector machine model (SVM) confusion matrices with different
input features from the feature selection algorithms

Note: for each of the machine learning models GridsearchCV has been used to
determine the best hyper parameters:

• For K-Nearest neighbours (KNN): number of neighbors was 1

• For support vector machine (SVC) : kernel=’poly’,degree=4,coef0=3



• For the neural network : structure: /100/100/4 with 300 epochs

First of all, we can see from the table that selecting less features does not mean
less run time and less accuracy. This statement can be justified by the results of
working with all features (30) and working with the features selected from ICF. For
example the SVC model accuracy dropped from a 92.18 % accuracy when working
with all features to just 85.77 % accuracy when working the features selected with
ICF. This can also seen with the confusion matrices in Figure 4.5; In comparison
to working with other combinations of features, SVC with ICF features (c) has the
lowest success rate in determining the right class. The run time of the SVC model
working with ICF features was almost a 100 times slower than working with all
features.

4.3 Interpretation of the results

To complete this thesis and understand the results of the machine learning models,
it is necessary to analyse the causes that led to them. In this chapter, we will try to
explain why the performance of the implemented feature selection methods varied.
First we will take a naive approach for interpretation, secondly, we will rely on some
metrics to test the importance of the features and lastly, we will focus on the neural
networks learning curves.
Note: All of the algorithms that have been implemented for the unsupervised feature
selection are based on the following 3 references:

• Cross-correlation Filter (ICF): Unsupervised feature selection for sensor time-
series in pervasive computing applications’ [Bac16]

• Complex Network-based clustering Approach : Time Series Clustering: A
Complex Network-Based Approach for Feature Selection in Multi-Sensor Data
[BMC20]

• Wrapper approach algorithm : Practical Computer Vision Applications Us-
ing Deep Learning with CNNs: With Detailed Examples in Python Using
TensorFlow and Kivy [aR18]

Before starting to analyze the performance of each machine learning model and the
feature selection methods based on mathematical models and metrics, we consider,
firstly, a rather naive way to interpret the results; According to 4.2 and 4.4, in order
for the robot to follow the wall in a clock wise manner, the main features that
the robot should use in order to figure out the best policy are the sensors/features
pointing to the wall. More specifically feature 25 or 29 (front), 26 or 30 (left) as
simplified distances and features 24,0,1,2, 23,22,21,20 as ultra sound values which
make out the simplified distances front and left). The latter can detect if the distance
between the robot and wall/objects is too small and therefore change the direction



of its movement.
According to 4.2, the ICF feature selection method fails to select the most important
features (25/29 or 26/30). In fact, the ICF ignores all simplified distances and
focuses rather on the ultra sound sensors pointing from the back and right of the
robot. In contrast, the wrapper method, all important simplified distances (25
and 29) which helps find the position of robot accurately to the wall. The Complex
Network-based clustering approach is a mix between ultra sound data and simplified
distances.
In this step, we will consider the a information gain to test how good did the FS
method performed: Information Gain is calculated for a split by subtracting the
weighted entropies of each branch from the original entropy, meaning in our case,
the higher the Information Gain of a feature, the more Entropy removed. This
mean, zero entropy means maximum information gain! The entropy is calculated in
the following way:

E = −
C∑
i

pi log2 pi (4.1)

Information gain=Entropy of distribution before the split - entropy of distribution
after it

The formulas are taken from this [Zho19]

The following values represent the information gain of our 30 features in order:

0.312 0.286 0.304 0.341 0.372 0.3882 0.299
0.376 0.327 0.302 0.301 0.359 0.385 0.418
0.590 0.323 0.385 0.489 0.466 0.426 0.261
0.285 0.376 0.344 0.779 0.603 0.286 0.361
0.782 0.603

from these values, we can tell that features 30/26 with 0.603 ,25/29 with 0.782
and 15 with 0.590 have the highest information gain values. This explains why
the machine learning models working with features from the wrapper method got
the highest accuracy 4.2. However, the model working with the ICF features had
only worked with features with low information gain. The model working with the
complex Network-based clustering method features also manage to find get a good
accuracy since the FS method managed to select both simplified distances (feature
25 and 26) along other features.

In general, ICF has (in almost all models) the lowest accuracy and takes the longest
time to converge. The latter can be justified by the fact that ICF takes some strong
assumptions on the nature of the data and has some predefined values that directly



influence the selection process; According to the papers that ICF was based on,
if the auto-correlation (correlation of a signal with a delayed copy of itself as a
function of delay) of every time-series has a mean and variance of auto-correlation
close to 0 off lag τ = 0 (for all other lags),it should be considered as noise. Since the
mean and variance of auto correlation in practice cannot be exactly 0, a threshold
in the algorithm has been assigned to each one. If the mean is smaller than 0.1, the
corresponding feature should be deleted and be considered as noise.
Mathematically we can express the conditions as the following:

ψ∗i =

∑N
n=1

1
Tn−1

∑
τ 6=0

∣∣φxni xni (τ)
∣∣

N
< 0.1 (4.2)

where φxni xni (τ) is defined in (3.1) and T n is the length of the time series. Unfor-
tunately, these strong assumptions do not consider the nature of the data of each
experiment. The algorithm filters out 19 features as they fulfil the above conditions
and saves only the 11 features seen in the table 4.2.
In contrast to the ICF algorithm, the Complex Network-based clustering [BMC20]
does not use any predefined parameters as thresholds to detect redundancy between
the features. It uses different tools from complex network theory and community
detection to cluster similar features together. More specifically, visibility graphs are
used to map the features from time domain to the network domain. The results
of this method, showed a significant improvement comparing to working with all
features; In all Machine learning models that take their input features from the
Complex Network-based clustering method , we noticed a 4%- 5% accuracy im-
provement and shorter run time all while reducing the dimensionality of the dataset
by 73.33%. This method proved to be quite successful for our feature selection task
as it proved its merits on various machine learning models.
The last method is the wrapper method which does not take the time dependency
into consideration. The only important factor that is taken into consideration in this
approach is the fitness score which is given with an another SVC model. It relies on
’the survival of the fittest’ which implies that only features who contribute the most
to improving the accuracy of the machine learning model are selected. Since this
approach is not only able to detected redundancy between features but also select
task relevant ones, it displays the strongest performance between all models; this
method showed great performance by improving the model’s accuracy by 7%- 8%
all while reducing the dimensionality of the dataset by 90%
To analyse the quality of the selected features even further, the learning curves of
the designed neural network are graphed in the following figure. In the process of
designing the neural network, the loss will be calculated with the help of Categorical
CrossEntropy which is a common loss function for multiclass classification.

CCE(p, t) = −
C∑
c=1

to,c log (po,c) (4.3)



C represents all the classes (in our case 4), prediction p and target t and observa-
tion o. If for example the robot should take a slight left turn the target will be
[0,0,0,1], a confident and well-trained neural network would in that case output e.g.
[0,0.1,0.04,0.95]. Formula was obtained from this [ver]

(a) all features (b) features selected from Complex Network-based
clustering approach

(c) features selected from ICF approach (d) features selected from wrapper method

Figure 4.7: Training and validation curves of the neural network



By training the neural network, we’ve been plotting the loss on the training and
the validation sets epoch by epoch (total of 300 epochs). the training loss will go
down either when the models learn the actual task or when it learns from irrelevant
redundant data [Zho19]. This is the case with the different features sets we used.
However, The validation loss will go down only if the model learns the actual task.
The size of the gap gives an idea how much noise/irrelevant data the model has
learned and therefore, in our case, the quality of the selected features. The plots
can be categorized into two sections:

• Cases of overfitting: Figures (a) and (c): in (a) we can see the gap between
the learning curves when working with all features is quite significant which
also explains the low accuracy results. Moreover, the learning curves of the
ICF features (c) seem to diverge through the end which implies that the ICF
algorithm gave only selected potentially redundant or irrelevant features to
learn the task. This is also reflected by the very poor accuracy results of this
neural network-.

• Cases of a good fitting model: Figures (b) and (d): in (b), the gap of the
learning curves is quite small which explains a good model that was able
to generalize the task. In (d) the gap between the learning curves is quite
insignificant which implies that the wrapper method did select the right task
relevant features. The latter is also reflected in the accuracy results of the
wrapper method.

4.4 Advantages and disadvantages of each method

In this final section, we will discuss the advantages and disadvantages of each feature
selection method. Obviously, one should choose the correct approach depending on
the characteristics of the experiment. In our wall following task, where the robot
should learn the right policy to follow the wall, we needed to consider the time as
an important factor in some feature selection methods (ICF and Complex Network-
based clustering approach). However this might not be the case for other tasks
where the data is not affected by the time. Therefore, this will be as general as
possible and not task-specific.

Correlation approach: Incremental Cross-correlation Filter (ICF):

• Advantages: Relying on predefined dependence measures like correlation is a
good way to consider how features change over time. The time dependencies
may play a significant role especially with tasks involving transferring knowl-
edge to a robot. If the robotics task can be be segmented into different sub
tasks, analyzing the scores like cross correlation of mutual information 2.1
between the features can be quite helpful [PUNB13]



• Disadvantages: This approach will be highly dependent on the users choice in
certain thresholds. In our case, Many features were filtered out just because
they were perceived as noise even though they were not. Moreover, the user
must define himself the threshold at which 2 features are considered correlated
and therefore redundant. For this method, doing the experiment under dif-
ferent conditions is necessary in order to determine what experimentally the
best values to be used as thresholds.

Complex Network-based clustering approach:

• Advantages: clustering-based feature selection methods have demonstrated to
outperform traditional approaches in terms of accuracy [BMC20]. They proved
to quite effective when dealing with complex nonlinear dynamic systems as-
sociated with gathering both homogeneous and heterogeneous data streams
e.g. Timeseries [BMC20]. In our case, we have been able to reduce the dimen-
sionality of the dataset by 73.33%. Another advantage is discovering hidden
relationships between the single features consisting the data set enriching the
information content about the features roles within the network.

• Disadvantages: Unfortunately, clustering approaches rely on other algorithms
like louvain algorithm to maximize a predefined modularity function. Only
with this way, the community detection can be performed and the redundant
features can be grouped together.

Wrapper approach: Genetic Algorithms (GA):

• Advantages: One of the biggest advantages of the wrapper method is that it
is able to not only eliminate redundant data but also select task-relevant ones.
Unlike the previous methods, it aims to choose a subset of input variables by
eliminating irrelevant features only based on the fitness level. In our case,
this method improved the accuracy by 9 % when compared with using all
features all while filtering out 90 % of the features. It is quite effective for
problem involving a relatively small number of features. Since the algorithm
relies on Support Vector Machine (SVM) to test the fitness level ( classfication
accuracy).

• Disadvantages: GA’s disadvantage is that it cannot find exact global optimum
as there is no guarantee for a best solution. It is dependent on the number
of iterations, population size, number of mutations and a number of other
parameters to control their evolutionary search for the solution to their given
problems [Ele17] . Moreover, this wrapper method is a greedy algorithm mean-
ing it does not consider any time dependencies or other relationships between
the features and focuses only one one single criteria, which is finding out what
combination of features has the bigger fitness score. Finally, this method tries
different feature combinations which can be computationally expensive if the
feature set is large.





43

Chapter 5

Conclusion

In this chapter, we will draw a conclusion from the results and interpretation from
the previous chapter.
The primary objective of improving the accuracy and performance of learning the
wall following task, by applying unsupervised feature selection approaches, is suc-
cessfully achieved. Dealing with problems involving a large number of input features
compromising of sensor time-series data can contain noisy, highly redundant infor-
mation which can hamper the deployment of effective predictive machine learning
models. As noted in chapter 1, most of state-of-the-art feature selection method
algorithms are poorly suited to deal with multivariate time series data with char-
acteristics like noise or the heterogeneous nature. To address these limitations, we
discussed in this thesis multiple feature methods capable to cope with the mentioned
characteristics. Even though not all methods were not equally successful in achiev-
ing the task, we can see that feature selection can be sometimes essential in tasks
involving a large number of features by identifying non-redundant sensor sources in
an unsupervised fashion even in presence of a large proportion of noisy features.
Through this work, robotics engineers can rely on some of the proposed feature
selection methods in order to find what sensors are actually needed for the robot to
learn a certain task. These methods can reduce the overall time, processing power
and the budget, which are key factors in the designing of any project.

Limitations: Even though, the proposed methods helped to recognize the redun-
dant and task relevant features. They have a multiple limitations; The filter and the
Complex Network-based clustering Approach,for example, cannot recognize task rel-
evant features. As they only rely of dependence measures, such as correlation coeffi-
cients or linear dependence without any prior knowledge of the task, some important
features who might contribute to generalize the learning task might be considered as
noise or irrelevant and therefore deleted. Concerning the wrapper method, multiple
feature combinations must be tried. This can be very computationally expensive
when dealing with thousands of features.
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Chapter 6

Future Work

Following are the tasks which can extend the scope of the current work:

• Unlike this work, which focuses on filtering the features after the experiment
has been performed.Algorithms method can be developed to perform feature
selection while doing the experiment.

• Unlike the implemented wrapper method, a better, more intelligent wrapper
method can recognize important features without trying multiple combina-
tions.

• The Incremental Cross-correlation Filter (ICF) algorithm can be improved
further to get better performance.

• Instead of using machine learning models (in a supervised manner) to test the
performance of the select features. A reinforcement leaning approach could be
used; for example, we can see which combination of features leads to a high
reward function value.
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