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Problem description:
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kinematic models of articulated objects has not been investigated in depth in current literature.The
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which is a major difficulty for efficiently and reliably identifying a kinematic model. This work therefore
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identification for articulated objects by manual exploration of the environment. The human should be
able to intuitively collect data and to share his intuition about the manipulated objects. Therefore the
following tasks have to be conducted:
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• Literature research on model identification of articulated objects
• Development and implementation of a prototypical handheld device that allows an operator to record
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• Implementation of a model fitting algorithm based on collected sensor data from simulation
• Evaluation of the semi-automatic model identification on real hardware
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Abstract

In this work, I propose a framework for human-assisted identification of articulated
objects. An articulated object could be any mechanism in the environment we hu-
mans interact with to change its state, like a door or drawer. The system developed
in this thesis allows a human operator to identify the kinematic structure of an ar-
ticulated object through a guided measurement procedure. Informed by examples
in recent literature, it is assumed that by modeling articulated objects as a series
of interconnected joints, planning for sophisticated autonomous robot interaction
with these objects is already possible. Therefore, the identified models only include
information on the associated joints, their pose in 3D space, their parameterizations,
and their overall connectivity and do not model the full 3D shape of an object. A
measurement application is developed that instructs an operator to interact with the
different joints of an articulated object one by one, such that joint models for each
can be identified from the movement data. Movement data is collected through
marker-based motion capture that tracks a self-built gripper which the operator
uses to articulate the mechanism. Tests are conducted in real-world experiments
to evaluate whether the devised procedure allows accurately identifying single joint
models. These tests show that the system implemented in this thesis enables the
accurate identification of single joint models and complete kinematic models of ar-
ticulated objects. However, there are still problems both with the mechanics of the
data collection and the underlying procedure used to fit joint models that negatively
influence accuracy and ease of use. These problems mainly occur when interacting
with small, delicate mechanisms and handles. Identified models can be queried for
joint and handle poses given a joint configuration vector. This way, they could be
used in planning tasks.
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Chapter 1

Introduction

Most interesting and relevant robotics tasks involve robots interacting with mech-
anisms in their environment, opening doors, drawers, picking and placing objects.
Humans interact with articulated objects all the time. Understanding these mecha-
nisms and developing efficient control schemes for manipulation is crucial for building
autonomous robots that confidently navigate human-dominated domains. Although
there are control-based approaches that enable robots to interact with these objects
without a specific mechanism model [JK09], these are limited to simple interactions
that only involve a single movement. Furthermore, there is still a need for human
supervision to tell the robot where an object can be grasped for manipulation, and
how to start the interaction. By presenting robots with knowledge of the underlying
models, advanced planning procedures, considering the constraints imposed by the
models, can be employed [BHB13, CCL10, JN19, RBB20, RSP+12]. Even when the
underlying models are given, it is still a long way to achieving human performance
and versatility in these articulation tasks. However, we see it as the most promising
approach to solving this problem. In recent years, research has addressed the topic
of (semi-)automatically identifying models for articulated objects on multiple occa-
sions [Stu11, MMB17, JN19]. However, these approaches are still relatively rigid in
what attributes are modeled and how these are learned. The most important infor-
mation about an articulated object is certainly its kinematic structure. However,
there are many more interesting attributes associated with articulated objects. For
some mechanisms, these could be crucial for successful interaction. Furthermore,
they could enable sophisticated reasoning about an articulated object’s state.

This thesis aims to design and build a proof of concept system for identifying mod-
els of articulated objects through user demonstration. Unlike previous approaches,
where the human operator serves as a quick, convenient way to gather articulation
data, the proposed approach should consider the human operator a central compo-
nent in the model identification procedure. Therefore, an interactive measurement
application should be implemented that guides the user through the identification
process, computes model fits in real time, visualizes them, and allows the user to
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enter insights about the mechanism and intervene when there are obvious problems.
This work focuses on implementing a basic approach for identifying the kinematic
structure of articulated objects. It aims to verify whether there is merit to this
approach. This work should then serve as a base for a modular system for detailed,
human-guided modeling of articulated objects.

1.1 Contributions

The main contribution of this work is a proof of concept system for human-assisted
identification of kinematic models for articulated objects. We propose a guided
interactive measurement procedure. All current approaches either make strong as-
sumptions about the objects they try to identify (like that they only have one joint)
or need simultaneous information about the movement of all parts of an articulated
object to find a model. In contrast, the method devised in this work should only
use end effector pose information to find models of a broad range of articulated ob-
jects. The missing sensory information or model assumptions should be replaced by
insights of the human operator about the structure and functionality of the object.
Using human insights directly in the model fitting approach rather than running
a big optimization makes the model fitting more transparent. Therefore structural
errors should be easier to identify. Furthermore, directly considering the human
operator in the model identification makes it possible to add new model parameters
quickly. The operator has immediate intuitive insights about any mechanism and
can quickly learn new measurement procedures.
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Chapter 2

Related Work

In this section, I would like to give a broad overview over the field of model identifi-
cation of articulated objects. I split the problem up into two domains, identification
of kinematic and identification of dynamic attributes, and will subsequently show
the progress made in both areas. Furthermore, to prove that these models can ac-
tually be used in robotic manipulation, I also present some approaches that employ
learned models for autonomous robotic interaction with articulated objects.

2.1 Identification of Kinematic Models

The problem of identifying kinematic models for simple everyday articulated objects
has been approached in the literature on multiple occasions. A central approach of-
ten referenced in consecutive works is presented by Sturm et al. [Stu11, SSP+09].
The major contribution of this research is a probabilistic description of the problem
that enables accurate and efficient decisions on the kinds of joints and connectivity
of a given articulated object. The proposed framework uses 6-DoF motion tracking
of every rigid body part of an articulated object. In this context, a rigid body rep-
resents a body part of an articulated object that always moves as a whole and is
connected to other rigid body parts by a joint.

Articulated objects are described as kinematic graphs G = (VG, EG) with nodes
VG = 1, ..., p that describe the rigid bodies of the articulated object and edges
E ⊂ VG × VG that describe the kinematic relationship between two nodes respec-
tively. If two nodes are connected by a joint, one of four considered joints can explain
their kinematic relationship. The joint models include three standard models, rigid,
prismatic, rotary, and a fourth parameter-free model that uses Gaussian process
regression [RW05] to learn a joint model that is not restricted in DoF or trajectory
shape. This way, the considered models can cover a broad range of mechanisms, as
the standard models can explain most regularly encountered joints, and the Gaus-
sian process model can learn most other relationships. An example kinematic graph
for a door can be seen in Fig. 2.1, θij represents the joint articulation.
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Figure 2.1: Kinematic structure of a door

Central to the approach is the insight to model the kinematic graph as a Bayesian
network where every edge can be described with an observation model. The obser-
vation model describes the dependencies between the underlying joint model, model
parameters, joint configurations, and observations. An example is shown in Fig. 2.2.

During the model fitting, a human articulates the object while a camera system
captures the rigid body poses using visual markers. At first, both the joint types
and connectivity structure are unknown. The task is split up into two sub-tasks,
first, finding the best joint model for every possible combination of two rigid bodies;
second, identifying the real connectivity by comparing all possible joints to find the
most likely spanning tree. Joint models are fit by optimizing the data likelihood of
the observation sequence given the considered model. The data likelihood can be
computed based on the observation model seen in Fig. 2.2, where xi/xj are the true
poses of rigid body i and j, yi/yj are the respective observed poses, qij is the (latent)
joint configuration, Mij is the considered joint model with parameter vector θij, ∆ij

represents the true transformation between the rigid bodies, and zij represents the
observed transformation. We can see that zij is directly dependent on ∆ij, therefore,
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Figure 2.2: Full graphical model of an articulated object consisting of two bodies as
used by Sturm in [Stu11]

knowing zij and assuming a model for the relationship between ∆ij and zij we can
infer the likelihood of zij given ∆ij. Pose data from a camera-based tracking system
can be noise and outlier-prone, so the measurements include noisy inliers and some
outliers that the underlying model cannot explain. To capture the underlying prior
on the data, the relationship between observed and true transformations is modeled
as a mixture of Gaussian distributed inliers and uniformly distributed outliers with
a mixing constant γ representing the outlier ratio. For every possible joint, an opti-
mized set of parameters is computed for every possible joint model by maximizing
the data likelihood.

Next, the best model for every possible joint has to be selected. This is done using
the Bayesian Information Criterion (BIC) [Sch78] (2.1) as a heuristic. Here, k ∈ N
represents the number of parameters of the current model, and n ∈ N represents the
number of measurements. The BIC approximates model evidence by weighing data
likelihood (first term) and model complexity (second term). The model with the
lowest BIC then represents the least complex model that still accurately explains
the data.

log p(M |D) ≈ log p(M |D, θ̂)− 1

2
k log n (2.1)

In the next step, the found models are used to estimate the overall connectivity
of the articulated object. The articulated object is described as an undirected,
fully connected graph with the object part poses as nodes and the object links and
associated joints as edges. When the considered types of articulated objects are
restricted to kinematic trees only, the overall connectivity of a given articulated
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object will be given by a spanning tree of the graph. As the number of possible
spanning trees grows exponentially with the number of nodes, it quickly becomes
infeasible to compute and reason about each of these spanning trees. Therefore,
a heuristic is employed to find the spanning tree that maximizes the posterior of
the kinematic structure for the given data. By only dealing with kinematic trees,
independence of the individual links can be assumed, which permits writing the
overall posterior as the product of the local posteriors, with ÊG as the kinematic
structure that maximizes the posterior probability, Dz the measurement data, M̂ij

the ”best” model for the joint connecting nodes i and j, and θ̂ij the ”best” parameter
vector we get,

ÊG = arg max
EG

p(EG|Dz) (2.2)

= arg max
EG

p({(M̂ij, θ̂ij)|(ij) ∈ EG}|Dz) (2.3)

= arg max
EG

∏
(ij)∈EG

p(M̂ij, θ̂ij|Dz) (2.4)

= arg max
EG

∑
(ij)∈EG

log p(M̂ij, θ̂ij|Dz) (2.5)

By decomposing the problem into a sum of the local posteriors for each joint (2.5),
it can efficiently be solved by finding the minimal spanning tree in an undirected
graph with edge costs set as the negative logarithmic posterior (2.6).

cotsij = − log p(Mij, θij|Dzij) (2.6)

This cost is approximated using the Bayesian information criterion (2.1). The ap-
proximated kinematic structure can then be identified as the minimal spanning tree.
In consecutive work [SJS+10], the framework is expanded to find kinematic mod-
els of single-joint articulated objects and use them for real-time manipulation. In
this approach the only data available for the joint identification is the robot’s end
effector pose. The results are fairly accurate and show that this method enables
robots with minimal sensory equipment (joint encoders) to almost (starting pose
and direction given) autonomously learn models of simple articulated objects. Mul-
tiple consecutive works build on the probabilistic framework presented by Sturm
et al. adding different ways of acquiring the data needed for identifying the kine-
matic models [PWT15, HNOS15, RSP+12]. These works mainly focus on computer
vision methods, as vision-based marker-less methods allow them to operate in less
clean/controlled environments. However, entirely missing from these approaches
and the approach as presented by Sturm, is the consideration that the underlying
articulation models are often not static, but rather change over time depending on
the configuration.

Even for some of the simplest articulated objects, there are different states the ob-
ject can be in, which distinctly change the underlying kinematic model. This makes
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modeling these states important for autonomous interaction. A great example is a
door. For a door, there are basically two states with respective articulation mod-
els, latched and unlatched. In the latched state, the door is closed, and there is a
rigid relationship between the door and its frame. However, as soon as the door is
unlatched (by articulating the handle), the articulation model changes, as a rotary
relationship now connects the door and the frame. Detecting and describing these
configuration-dependent changes in kinematic models is still subject to recent re-
search. In work conducted by Kulick et al. [KOT15], pre-defined kinematic models
are used to find ”joint dependencies”. Joint dependencies describe the logical re-
lationship of different joints to each other. An example of a frequent relationship
would be that one joint can lock/unlock one or multiple other joints. The presented
framework builds on the insight that most mechanisms we interact with are designed
for humans. Therefore, changes in the object’s joint kinematics are often marked by
distinct haptic or visual feedback. These discontinuities in, for example, the forces
encountered when articulating a joint can be captured. The joint configurations as-
sociated with the change points can then be used to segment the configuration space
(e.g. range of possible articulations) into distinct segments in which the kinematic
model stays the same and between which a change in the articulation model occurs.
Change points are detected using Bayesian change point detection on joint friction
time series data, estimated from FT sensor measurements. The robot is equipped
with a kinematic model of the articulated object it interacts with and a controller
that enables the robot to set the articulated object into a target joint configuration.
One-step cross-entropy maximization is used in every step to find the target config-
uration of all joints of the articulated object that maximizes the change in the joint
dependency distribution. Then the robot sets the object to the target configuration,
using the known model. In the end, this yields a probability distribution that indi-
cates whether the current joint is likely to be dependent on one of the other joints.
Whereas this research is concerned with one-to-one dependencies between different
joints and only assumes either no relationship or a locking/unlocking relationship,
work presented by Niekum and Jain et al. [NOAB15, JN19] focuses on finding
changes in the kinematic model of a single joint based on internal states. The first
paper [NOAB15] presents CHAMP, an algorithm for online Bayesian change point
detection. By employing the model formulation presented by Sturm and combining
it with a probabilistic model for efficient change point detection, they show that
their algorithm can robustly recover joint models and configuration-dependent joint
model changes from 6-DoF rigid body pose data. The second paper [JN19] presents
an extension to CHAMP, called Act-CHAMP and combine it with an algorithm
to construct hybrid automata [LST12] from the identified models. In contrast to
CHAMP, Act-CHAMP not only considers the visual feedback from object movement
but also utilizes knowledge about the intended actions to detect change points in the
joint configuration. In the presented work, a two-armed robot is used, where one arm
ghosts the movements of the other. This allows a human operator to instruct the
robot to articulate a mechanism with one arm, by moving the other arm. This way,
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intended actions can be recovered from the movements of the arm directly operated
by the human. Knowledge about the actions taken on a joint allows, for example, to
reason why object movement stopped, as this could either be caused by some model
change (e.g. locking mechanism) or simply because the operator does not act on the
object. Using the detected change points, their framework can then construct hy-
brid automata. These can be represented as a kinematic graph with edges that can
change their joint type, dependent on the joint configuration. A clear limit of both of
these approaches is that they currently only work on mechanisms with a single joint.

The approach presented in this work employs a model description similar to the one
proposed by Sturm [Stu11]; however, the user should be more involved in the model
identification such that simpler techniques can be used for model fitting.

2.2 Identification of Dynamic Models

As shown by Endres et al. in [ETB13], high-level information about the dynamics
of an articulated object can be used to simplify the control and motion planning
required for a manipulation task. Information about the forces needed to articulate
an object can be used to interact with the object dynamically, as the robot has a
model for how the object behaves even at higher speeds and accelerations. Further-
more, certain discontinuities in the object’s behavior (like high opening forces) can
quickly be estimated, rather than having to completely rely on control to, e.g. find
the force at which movement starts.

There is a broad range of literature on automatic model identification for robot ma-
nipulators [HAJ06]. The approaches presented by these works are highly accurate.
However, they also assume the availability of highly accurate, expert specified, pre-
computed models and very accurate, controlled measurements of each individual
joint. This makes these approaches unpractical for our application. There are ap-
proaches that use simple dynamic models to identify parameters. These simplified
models may not perfectly describe the real physical relationship but can be learned
more easily and are powerful for making predictions about dynamic behavior. These
include parameters like the threshold force needed to articulate an object, the gen-
eralized friction of a joint experienced during manipulation, and generalized mass
or inertia parameters. Jain et al. [JNR+10] present an approach for estimating the
opening forces of doors and drawers with simple means. The presented method em-
ploys the kinematics fitting from Sturm [Stu11], to find the kinematics of doors and
drawers from marker-based motion capture. Learned models are used to associate
the encountered articulation forces with the joint articulation. They construct a
gripper consisting of a 3D printed hook and an FT sensor. Then, the movement of
all rigid bodies of the articulated object and the gripper, as well as the forces/torques
encountered by the FT sensor, are recorded. For simplicity, it is assumed that no
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(a) Tangential force profile of a drawer
with telescoping rail

(b) Tangential force profile of a fridge
door

Figure 2.3: Tangential force profiles of different mechanisms as recorded by Jain et
al. in [JNR+10]

slipping occurs between the hook and a given handle and that the orientation of
the hook relative to gravity stays the same throughout the measurement. Move-
ment velocity is monitored so that quasi-static dynamics can be assumed. They
find that even with the aforementioned simplifications, the measured data still has
good accuracy and, as can be seen in Fig. 2.3, can show distinct dynamic prop-
erties of different mechanisms/objects. These experiments illustrate that one can
find distinctive attributes of the dynamics of an articulated object using FT sensor
measurements and motion capture.

A more sophisticated approach for approximating door dynamics is presented by
Endres et al. [ETB13]. They present two main approaches for identifying the
dynamic parameters of a door, 1) through vision-based observation or 2) through
active articulation using FT measurements. They start with a simplified model that
describes the door’s opening angle θ over time, considering the starting angle θ0,
initial angular velocity ω0, and constant friction α

θ(t) =
1

2
αt2 + ω0t+ θ0 (2.7)

which can be written as a least-squares problem

θi = c1t
2
i + c2ti + c3 = cT ti (2.8)

where the parameter c1 represents the friction coefficient. However, they find that
a door’s friction cannot sufficiently be described by a single friction constant, which
Jain et al. [JNR+10] have already shown for the quasi-static case. Therefore, an
opening angle dependent friction profile α(θ) is trained using weighted least squares.
A laser depth scanner provides training data for both the kinematic and the dynamic
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model. The door is swung open by a human operator, and the door’s position is
tracked. Using the kinematic model, the door’s opening angle can be computed at
every time step. What they find is that even the angle-dependent friction profile can
not fully capture the door’s movement. With further experimentation, they find that
the dynamics apparently can not be described by a parametric model. Furthermore,
the dependency on velocity also seems non-negligible. Therefore, a parameter-free
Gaussian process [RW05] model is employed to learn a function dependent on ar-
ticulation angle and angular velocity. For the second modeling approach, the robot
should autonomously open the door, first with a constant velocity and then with
an accelerated movement, to identify (constant) frictional torque and moment of
inertia from FT sensor measurements at its wrist. Through experiments on differ-
ent doors, it is shown that the Gaussian process model can accurately describe the
door’s movement. However, unsurprisingly given the previous results, the (simpler)
model, trained from just the FT measurements alone, can only find a very rough
approximation of the door dynamics. It is, therefore, only used as a first approxima-
tion step such that the robot can subsequently autonomously articulate the door to
gather data for training the more complex model. We can see that although there
is some promise in using FT sensor measurements to identify dynamic attributes of
articulated objects, there is no conclusive research on how to use this data combined
with gripper pose data to find useful models of object dynamics.

2.3 Use of Articulation Models in Robotic Ma-

nipulation

At this point, I would like to shed some light on different approaches that leverage
generalized models of articulated objects in robotic manipulation tasks. Most of
these approaches are either based on random sampling of end-effector poses, opti-
mization of a given cost function, or control. In some cases, control-based methods
can also enable manipulation without explicit knowledge of the articulation model.

In work presented by Burget et al. [BHB13], a random sampling-based approach
is used to manipulate single joint articulated objects with a Nao humanoid robot.
Kinematic models of articulated objects, which specify the joint type, movement,
position, and handle position, are given. The planner is based on bidirectional tree
search. Starting from the initial configuration and the goal state, configurations are
randomly sampled from a precomputed set of stable robot configurations. By pre-
computing stable poses, only the constraints for the motion of the robot’s 5-DoF arm
have to be considered, and not the added stability constraints for the robot body.
As most body poses are unstable configurations, this would increase the search space
and slow down the algorithm significantly.
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A straightforward control-based approach is the aforementioned method by Sturm
et al. [SJS+10], which uses equilibrium point control, introduced by Jain et al. in
[JK09]. Equilibrium point control tries to follow a trajectory dictated by so-called
equilibrium points, which specify the position the robot end effector would settle in,
in the absence of externally applied forces. After specifying an initial grip location
and pulling direction, in each step, the articulation model is queried for a Jacobian
that indicates the direction in which the mechanism currently moves. Using this
information and an appropriately chosen constraint vector to keep a steady grip,
a new equilibrium point can be computed. With inverse kinematics, correspond-
ing equilibrium angles for the robot joints can be determined and fed to the arm
controllers. It is also shown that, assuming some uncertainty in the measurements,
there is often sufficient similarity in different articulated objects to allow the robot
to reuse and refine a previously learned model with data from another mechanism.
In subsequent work [RSP+12], the found models are also used to reconstruct the
rigid bodies of the mechanism during articulation from camera footage and control
the manipulation with position control.

An optimization-based approach is presented by Röfer [RBB20], who applies meth-
ods from optimal control to manipulate generalized articulation models. The prob-
lem is formulated as an optimization with a target state and several task constraints.
A model-based configuration tracker is implemented to compute the configuration of
objects in the scene by minimizing the difference between the perceived object pose
and the underlying model-computed object pose. Using this configuration tracker
and a formulation of the goal as a joint configuration, it is demonstrated that a robot
in a simulated kitchen environment can keep the kitchen in the requested (orderly)
state.

These examples illustrate that there are already approaches that can use models
of articulated objects for autonomous manipulation. Although these methods still
lack robustness and are mostly only designed to deal with simple mechanisms con-
sisting of only one joint, this still verifies that kinematic object models which store
information about joints and connectivity are useful for planning interactions with
articulated objects.
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Chapter 3

Operator guided Identification of
Articulated Objects

As described in the introduction, the goal is to combine human intuition, which is
of qualitative nature, and the precision of machines in one approach for identifying
articulated objects. An overview of the proposed system can be seen in Fig. 3.1, it
consists of the following parts:

• A gripper, used by the human operator to collect data on the interaction with
the articulated object

• Interface to read out sensor data and prepare it for use in model identification

• Interface for the operator to directly input qualitative insights, monitor system
performance, get instructions

• Back end that navigates through the series of measurements computes the
single joint model fits and builds the overall model of the articulated object

Simulation should be used to build a first system implementation so that validation
and testing of different approaches are possible before moving to the actual hardware.
The following sections describe the different system components, what is investigated
and implemented.
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Figure 3.1: Overview of the proposed system

3.1 Measurement Hardware

3.1.1 Sensory System and User Interface

It is important to enable the operator to conduct reliable data acquisition easily.
The inherent strength of having a human, not a robot, do the articulation steps is
that a human will easily interact with the objects and use them in a natural way.
However, in the end, the acquired data should allow a robot to articulate these
objects. Therefore, the idea is to let the human ”imitate” a robot by using a hand-
held device representing a gripper of which the position and dynamic state should
be recorded. One should be able to rigidly contact a link of an articulated object,
such that the joints can be articulated one at a time without the gripper slipping.
Ideally, this device should be minimally obstructive to the operator manipulating
the object. However, as this thesis consists of many more parts than just hardware
design, in the actual implementation, we focus on designing and building a func-
tional proof of concept system, which could then be improved upon in future works.
The human operator should specify when measurement data is recorded, such that
simple heuristics can be used to filter out the relevant from the irrelevant data. The
user should be guided through the measurement process by the application, being
prompted whenever a measurement is needed, or some other information should
be specified. For the purposes of this thesis, this interaction can be implemented
with prompts in the command line and visualizations of the measurement data and
generated models through native python frameworks like matplotlib [Hun07]. This
way, the operator can monitor in every step whether what was computed roughly
fits the actual object. This is especially useful for avoiding simple errors, like wrong
calibration of the measurement system, that would otherwise lead to confusion and
lost time from nonsensical measurements.
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Figure 3.2: Self-constructed gripper with FT sensor and handle

3.1.2 Handheld Device

The hardware for collecting the articulation data should allow gripping and manip-
ulating different parts of an articulated object, attaching an FT sensor and multiple
motion capture markers. The focus of this work is not on the use of a special gripper
but rather on collecting the movements of articulated objects throughout manipu-
lation. An obvious choice for the gripper would be a standard electrical robot
gripper. Two electrical gripper models were available for my project, the Weiss
Robotics WSG 50-110 Fig. 3.3(a) and the Robotiq 2F-85 Fig. 3.3(b). However, by
using a standard robot gripper, one would need an extra interface for controlling
the gripper and a custom control strategy for grasping different size and shape ob-
jects. Furthermore, there would be limited ability to quickly adapt the fingers or
size of objects that can be grasped. As a human has to operate the device, most
of the time with a stretched-out arm, some consideration should be given to the
weight of the gripper. Most robot grippers are relatively heavy. The two mod-
els available to me weigh 1.2 kg for the Weiss Robotics gripper and 0.9 kg for the
Robotiq gripper. Both would still need an attachment for the FT sensor, the FT
sensor itself, and some handle for the human to grasp. Another consideration is the
amount of cabling required to get the gripper to work, as it should be minimized for
ease of use and also lowered weight. For both considered grippers, at least two lines
would be needed, one for the communication and the other for supplying the gripper.

For these reasons, a custom gripper is constructed (seen in Fig. 3.2) that can be
closed manually and allows easily attaching an FT sensor, different ”fingers”, and
a handle for the human operator to grip. To get to a viable solution as quickly as
possible, this gripper is constructed from standard ”Item Industrietechnik” profiles
that can be modularly put together to get the desired shape. Grasping is realized
as a two jaw mechanism. With the addition of two 3D printed plates attached to
two screws, one on either side, the gripping mechanism works like a vice. One side
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is rigid, and on the other one, the screw can be screwed in or out to tighten or
loosen the clamp. Next to general joints also handles should be identified. There-
fore, the feet are printed with a V-shaped groove so that there is better guidance
when rotating around- and moving along a handle. The FT sensor can be attached
through a 3D printed custom mounting plate attached to the item profiles. The
handle consists of a 45◦ angulated tube, directly attached to the FT sensor.

The gripper was tested by attaching it to different objects and moving them. With
enough clamping force, even heavy to articulate mechanisms can be articulated.
However, there is a problem when trying to open mechanisms that need a very
high initial force. Additionally, when loosening the grip, due to the applied force,
sometimes the foot unscrews from the screw so that it has to be reattached. The
second issue could be mitigated by exchanging the mobile foot by a foot with a ball
joint. It also has the added benefit that by enabling the foot to change orientation
with respect to the object being grasped, the grip is a lot tighter.

3.2 Model Identification

3.2.1 Model Formulation

The main information needed for interacting and manipulating an articulated ob-
ject is its kinematic structure. The information gathered on this structure should
allow querying the model for positions of the different rigid bodies. This, in the end,
should enable an external planning algorithm/controller to generate an articulation
trajectory for bringing the object into a requested joint configuration/state. How-
ever, planning articulation tasks is a much higher level task that is not inherently
coupled with the articulated object. Therefore, it should not be investigated further
throughout this thesis.

The structure and movement of any articulated object are mainly determined by its
joints and their connectivity structure. The models should thus be described as a
collection of joints interconnected through straight links. As most articulated ob-
jects in everyday life are kinematic trees, the formulation and fitting of these models
should focus on kinematic trees, with no special consideration of kinematic loops.
Articulated objects intended to be used by humans normally present some kind
of handle with the sole purpose of allowing a person to articulate the mechanism
easily. This assumption could be used as prior information for planning, which is
why dedicated handle models should be included in the identified kinematic mod-
els. This way, the model could provide a gripping pose associated with the handle
so that querying for a gripper trajectory is possible. Burget et al. use a similar
formulation in [BHB13], to autonomously open simple articulated objects with a
humanoid robot. In general, there are many parts on an articulated object that one
could use to grip and manipulate it. However, fully modeling these would require
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(a) WSG 50-110 (b) Robotiq 2F-85

(c) Item Gripper

Figure 3.3: Considered Gripper Models

building a fully volumetric 3D model, which significantly increases the complexity of
model identification and planning for robotic interaction. Learning a handle model
allows a much simpler definition of a grasping pose useful for interaction with most
articulated objects.

With a kinematic tree of all included joints and the handle, the model can already
capture the effects of manipulations on the object. Additionally, the model can store
information on the joint limits of every joint. Joint limits are valuable information
for articulating the object, as they pose (hard or soft) constraints on the range in
which every joint can be articulated. When the joint limits are not known, this could
lead to a robot running into them during manipulation, either being confused about
what happened or breaking something. It is very intuitive for a human interacting
with these objects where the limits are, so this information can easily be gathered by
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having the operator mark the limits. Joint dependencies and hybrid joint models, as
mentioned in Sec. 2.1, are not investigated in this thesis. Joint dependencies could
be tracked through an extra user prompt for specifying logical dependencies between
the joints after the overall kinematic structure is specified. Hybrid joint models can
be learned with one extra measurement for every extra joint model of a hybrid joint.

As already mentioned in the introduction, including dynamic information in the
model could allow more sophisticated manipulation and simplified control. How-
ever, there is also plenty of ambiguity in these parameters and how they should be
represented in a model. The interface and measurement of the force-torque sensor
are implemented, and some preliminary tests are conducted. However, as robust
identification of kinematic models is needed first to identify dynamic attributes,
identifying dynamic models remains a topic for potential consecutive works.

3.2.2 Parametric Joint Models

Most of the articulated objects encountered in everyday environments consist of ro-
tary and prismatic joints. Most other mechanisms can be described as a combination
of these two. Furthermore, Sturm’s work [Stu11] already presents a sophisticated
framework that employs parameter-free joint models when the standard ones do not
work. Therefore, as the focus of this work is to get to a minimum viable system,
only pre-defined parametric models are considered. To make it possible to add in
additional joint models in the future, each joint model is implemented as its own
class that stores joint-specific parameters and inherits from a parent joint class that
implements all general attributes associated with a joint. This way, a new joint can
be added by adding an additional class that implements joint-specific parameters,
like the forward and inverse kinematic function, and an additional function for the
fitting procedure.

The following section presents the model formulations used. The joint formulations
are adopted from the formulations presented by Sturm in [Stu11]. To describe the
kinematic relation between two object parts, the operators ⊕ and 	 are used, where
⊕ describes the motion composition and 	 its inverse. In the case that x1, x2 ∈ R4×4

represent homogeneous matrices, the ⊕ operator corresponds to matrix multiplica-
tion x1 ⊕ x2 = x1x2 and the 	 operator corresponds to the inverse multiplication
x1 	 x2 = (x−11 )x2. In the following models, the output z of the forward kinematics
functions is a frame matrix z ∈ R4×4, the input z to the inverse kinematics functions
is simply a point in 3D space without an attached pose z ∈ R3×1, as this represents
the considered input from the motion capture system.

The movement of a Prismatic joint can be represented by a line in 3D space.
This line has two limits associated with it, which represent the lower and upper
joint limits. The forward kinematic function of a prismatic joint can be represented
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by (3.1). Here a ∈ R4×4 is the center frame of the prismatic joint, which is positioned
at one of the joint limits subsequently associated with q = 0. The vector e ∈ R3×1

represents the unit direction vector of the joint axis in the joint’s coordinate frame.
For simplicity, the frame a will always be oriented such that e is aligned with the

frames z-axis, so e =
[
0 0 1

]T
.

z = f(q) = a⊕ (e · q) (3.1)

q = f−1(z) = eTtrans(a	 z) (3.2)

Here trans(·) extracts all translational components of a frame.

A Rotary joint can be represented by a circle in 3D space. As with the prismatic
joint, there are two limits associated with this circle. The forward kinematic function
of a rotary joint can be represented by (3.3). c ∈ R4×4 is the center frame of the
rotary joint, which is positioned at the calculated circle center. r ∈ R4×4 represents
a child frame attached to the rotary joint. Again, for simplicity, the z-axis of the
frame c is chosen as the axis of rotation. The x-axis is set to mark one of the joint’s
limits, defined as q = 0.

z = f(q) = c⊕Rotz(q)⊕ r (3.3)

q = f−1(z) = Rotz
−1(c	 z) (3.4)

Here Rotz(·) conducts a rotation around the z-axis by q.

3.2.3 Parametric Handle Models

The handle is intended to be the part of the model that is directly grasped during
manipulation. Therefore, it should provide a frame that contains information about
the angle and position at which the handle can be gripped. The presented models
cover the main categories of handles encountered on everyday objects. In line with
work by [MMB17], the system considers three handle models: 0-DoF handle, 1-DoF
handle, and 2-DoF Handle. The degrees of freedom describe how many degrees of
freedom there are between the gripper and the handle. For these handle models,
the input-output of the forward and input of the inverse kinematics function z is a
frame matrix z ∈ R4×4.

A 0-DoF handle can be represented by a single frame a ∈ R4×4 that is rigid in
its position and orientation. The frame a is identified by taking the average over a
sequence of recorded gripper frames. An inverse kinematics function is not needed,
no joint articulation is possible.

z = f(q) = a (3.5)
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The 1-DoF handle has one rotational degree of freedom, so the gripper can change
the orientation in which it attaches to the handle along a rotational axis. Therefore,
the 1-DoF handle can be described as a rotary joint with a center frame that rotates
about its z-axis. The singular difference is that in this model, there is no child frame
attached. Therefore, the only change that occurs is in the orientation of the center
frame in the WCS. A user-specified radius is stored with the model.

z = f(q) = c⊕Rotz(q) (3.6)

q = f−1(z) = Rotz
−1(c	 z) (3.7)

The 2-DoF handle allows rotation around and translation along a central axis,
therefore, we combine the prismatic and the rotary model. As it consists of two
models, the model has four limits, two for the rotary component and two for the
translational component. As with the other two handle models, the model does not
describe a point on its surface but rather a frame positioned on its central axis.
The z-axis of the frame coincides with the handle’s central axis to represent the axis
of rotation and translation. Like for the 1-DoF handle, the user specifies a radius
during model identification.

z = f(q) = (a⊕ e · q1)⊕Rotz(q0) (3.8)

q0 = f−10 (z) = Rotz
−1(a	 z) (3.9)

q1 = f−11 (z) = eTtrans(a	 z) (3.10)

(a) 3D Motion Capture measurements of ar-
ticulating a rotary mechanism

(b) Same Motion Capture measurements visu-
alized for each axis seperately

Figure 3.4: Sample position data from the motion capture system
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(a) OptiTrack cameras and rigid body
tracked in Motive

(b) ATI Gamma FT sensor

Figure 3.5: Used sensors

3.2.4 Data Acquisition

Initially, the use of two sensors is considered, a marker-based motion capture system,
seen in Fig. 3.5(a), primarily to gather movement data for the kinematic identifi-
cation, and an FT sensor, seen in Fig. 3.5(b), to gather information for identifying
dynamic attributes. The measurement application needs to interface to both sen-
sors, read them in real-time, align the data streams in the time dimension, and
maybe do some basic filtering. As the sensory hardware used is of high fidelity,
strong measurement noise is not expected. However, the measurement procedure
and the hardware that the sensory equipment is attached to could introduce non-
negligible errors that have to be coped with.

In tests with the actual motion tracking hardware, it is found that a capture rate
of 120Hz is sufficient for the fitting to work reliably. In comparison to the move-
ments, the sampling is so quick that, if no occlusion occurs, the position samples
are only millimeters apart, leading to smooth trajectories as seen in Fig. 3.2.3.
Furthermore, the data sent by the motion capture system is very accurate and has
minimal noise. Throughout the experiments, for a standard calibration in a prepared
workspace (camera setup, marker placement, minimized amount of reflections), the
estimated positional tracking error εy,pos is never higher than 0.8 mm (according to
calibration results from the tracking software). The nominal noise of the system is
σy,pos < 0.0005m and σy,orient < 0.001◦. There are rarely outliers due to tracking
errors. The tracking software recognizes when the positional accuracy of a marker
decreases. In case of deviations beyond a threshold, it stops tracking and continu-
ously sends the last confidently tracked point. Therefore, a problem in the tracking
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data can be identified by monitoring the tracking data for sequences of constant
values. The threshold for whether the rigid body tracking went out of scope can
be adjusted so that one can choose a good trade-off between tracking accuracy and
continuous tracking data. To combat duplicates in the tracking data due to a rigid
body running out of scope, a simple check is implemented that removes consecutive
measurements that are identical. As long as there is still a sufficient part of the tra-
jectory where no tracking error occurred, removing this data does not seem to have
a negative effect. Interpolating sections where no data is available, using previous
measurements or other sensor data, could potentially improve accuracy and stabil-
ity, but as no problems were encountered in testing, this is not considered further.

Tests with the FT sensor show promise that it is possible to pick out some of the
key points in the trajectory of a mechanism from the data. An example is given in
Fig. 3.6, where a door is opened using the gripper with the attached FT sensor and
motion tracking. In Fig. 3.6(b), some key points are marked. The door handle is
pressed two times, which is indicated by distinct spikes in the force profile of Fx.
The peaks represent when the joint limit is reached. After the door is unlatched,
the door hinge is actuated, which can be seen in Fz’s force profile and the positions
measured by the motion capture system. As the movement is initiated, a relatively
high Fz is needed to start the door’s movement. When the door starts moving,
the force quickly decreases in reaction to the movement and picks up again so that
the door moves with a roughly constant speed. When the door limit is reached,
the force reverses to stop and reverse the movement. The associated 3D plot in
Fig. 3.6(a) shows the opening movement with the associated force Fz. Although
there are clearly identifiable trends in this measurement, it can also be seen that
there is a strong variance in the measured force. Throughout this measurement, the
gripper orientation with respect to the door is held constant so that it is possible to
bias the FT sensor at the beginning of the measurement with the measured gravity
force. The gripper hardware itself, combined with the FT sensor, weighs around
500 g. To evaluate the effect reorienting the gripper has on the FT measurement,
the force profile in different gripper poses is measured, a sample result of these mea-
surements can be seen in Fig. 3.7. It can be seen that the force of gravity already
contributes to a very noticeable force acting on the FT sensor when compared to the
forces encountered in the previous measurement of the door. This effect could be
mitigated through standard gravity compensation [YSL21], commonly implemented
in robotics applications with FT sensors to remove the gravity-induced distortions
on FT sensor measurements. The tests show the promise of using an FT sensor in
a handheld device to identify articulated objects’ dynamic attributes. In the next
step, a measurement procedure would have to be devised that is robust against dis-
turbances introduced by the human operator and manages to generalize the process
over a broad range of joints and mechanisms. However, before the data can be used
to identify model dynamics, robust identification of kinematic models is needed,
which is the focus of this work. Therefore, these first experiments should only show
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(a) Motion capture data over-
layed with Fz

(b) Motion capture data overlayed with FT measurements

Figure 3.6: Motion capture and FT sensor measurements during door opening

that there is promise in further investigating integration of the FT sensor for iden-
tifying dynamic attributes of articulated objects.

Both the motion capture system and the FT sensor connect to the fitting application
via UDP. An ethernet switch is used to bundle all the ethernet connections so
that only one line has to be connected to the application PC. The FT sensor data
can directly be decoded using the specification of the frame format published by
ATI. The raw data from the motion capture system could also directly be read
from the UDP frames. However, this data is of little use without a considerable
amount of processing. Therefore, the proprietary software Motive, published by the
company that produces the motion capture system, is used. The application has an
uncomplicated interface and allows to set up a capture scene quickly. At the start
of every capture session, the system must first be calibrated, which can be done
directly through Motive. Afterwards, the objects that should be tracked can be
marked in Motive, and the resolved pose data can be streamed to the measurement
application via UDP loopback to be read and unpacked using the provided python
client. For the purpose of this work, only the gripper has to be tracked. This can
conveniently be done through so-called rigid body tracking, which allows specifying
a set of markers that identify a rigid body in the scene. However, there are two
inherent problems with rigid body tracking using Motive. First, the so-called pivot
point (point on the object that is tracked) is positioned ”randomly” (geometric
center of the associated markers), which normally does not coincide with the tip
of the gripper; second, upon creation, the orientation of the rigid body is set so
that its frame is aligned with the WCS, so it is normally not aligned with the FT
sensor frame. To combat these issues, a calibration step has to be included in the
measurement application to identify the gripper tip and align the tracked frame with
the FT sensor frame. Two approaches for each are implemented. The first simply
involves bringing the gripper into a known position and orientation to compute
the offset. However, as this is not always easily possible, as, in every new capture
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(a) Deviations in force from reorientation measured by the FT sensor

(b) Deviations in torque from reorientation measured by the FT sensor

Figure 3.7: Gravity effect on FT measurements

scene, the WCS will be set differently, a second method is implemented, which takes
advantage of the geometry of the gripper. When attached to a cylindrical handle,
there are two major rotation axes associated with the gripper. One is specified by
the screws used to clamp down on the handle. The other is specified by the skid in
the gripper foot and the major handle axis. With two subsequent rotations of the
gripper, these axes can be identified, their intersection (normally point of closest
distance) can then be used as the gripper tip. As the FT sensor is aligned with the
gripper axes, the identified axes can also be used to approximate the orientation of
the FT sensor frame relative to the WCS. The accuracy of this procedure is tested
in the evaluation.

3.2.5 Fitting Algorithm

The idea is to leverage human intuition throughout the model fitting such that the
process is more transparent and the most useful insights of the operator can be
included. For these reasons, rather than having the program find the model of a
particular joint and the overall connectivity structure of the articulated object, the
operator should specify both the joint types and their connectivity for a given artic-
ulated object. The operator can select from a set of models. Subsequently, recorded
data is then used to find a fit for the specified model. As the operator specifies which
type of joint is currently being identified, and each joint is based on a well-defined
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parametric model, least-squares based fitting methods are chosen.

A line in 3D coordinates can be parameterized by a support vector v, a direction
vector r and a scaling parameter t. Any point p on the line can be computed by
scaling the direction vector with the parameter t.

p = v + tr (3.11)

As described in [GPL17], we can formulate a least-squares problem for finding a line
that ”best” fits through a set of data points by reorganizing this line description,

px = apz + b (3.12)

py = cpz + d (3.13)

with

a =
rx
rz
, b = vx −

rx
rz
vz, c =

ry
rz
, d = vy −

ry
rz
vz (3.14)

As (3.12) and (3.13) are both linear equations with two unknown parameters we can
solve them using the standard linear least-squares solution to get an estimate for
the parameters a, b, c, d. The direction vector of the line, r can now be computed as
the cross-product of the two normal vectors of the planes described by (3.12), (3.13).

n1 =

 1
0
−a

 , n2 =

 0
1
−c

 , r = n1 × n2 =

ac
1

 (3.15)

As the least-squares fit of the straight line goes through the average of the data, the
support vector can be estimated by computing the average of all data points.
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i=1 p
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n
, v̄y =
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n
, v̄z =
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z

n
, (3.16)

To fully define a circle in 3D coordinates, we need to specify a plane the circle resides
in, a center point, and the circle radius. A point p on the circle can be computed
from two orthogonal vectors v1 and v2 defining the plane, the radius r and an angle
θ.

p = c + cos (θ)rv1 + sin (θ)rv2 (3.17)

The algorithm presented in [PCA16] is used to fit a circle to the measurement data.
In this approach, at first the plane of the circle is identified using principal component
analysis (PCA) [BK19]. As PCA identifies the directions of highest variance in the
mean-normalized data, the normal vector of the circle can be approximated from the
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third principal direction (least variance). In the next step, the data can be projected
onto the identified plane, such that it is reduced to two dimensions. In 2D, a circle
is defined by the following equation

(x− xc)2 + (y − yc)2 = r2 (3.18)

where
[
xc yc

]T
represents the circle center, r represents the circle radius, and all

vectors
[
x y

]T
that fulfill the equation are points located on the circle. This rep-

resentation can be rearranged to get a standard least-squares problem

c0x+ c1y + c2 = x2 + y2 (3.19)

Ac = b (3.20)

with

c0 = 2xc, c1 = 2yc, c2 = r2 − x2c − y2c (3.21)

A =


x0 y0 1
. . .
. . .

xn−1 yn−1 1

 , b =


x20 + y20

.

.
x2n−1 + y2n−1

 (3.22)

After identifying the central point and radius of the circle from the 2D data, the
center can be transformed back into 3D coordinates. After adding the previously
subtracted mean, we know the circle center, central axis, and radius, all parameters
needed to fully define the circle.

Although the data gathered from the motion capture system is in most cases very
clean and varied enough to reliably find accurate fits for these simple models, issues
could still occur when the operator does not perform a clean movement. Therefore,
robustness against outliers is added through a basic implementation of RANSAC
[FB81]. In every iteration, the RANSAC algorithm computes a model fit on a min-
imal set of randomly sampled data points. Therefore, one should provide a simple
fitting scheme that works on a small set of data samples such that the algorithm
only samples a negligible amount of data points in each iteration and runs quickly.
For the line model, the simplest fitting procedure is provided, which only requires
sampling two points. One of these points is then used as the support vector, and the
difference between the other point and the support vector is used as the direction
vector of the line. For the circle fitting, the outlier detection is only conducted to
remove outliers that do not lie on the circle’s plane, as this is the part of the fitting
that is most vulnerable to outliers due to PCA being prone to outliers [SV08]. There-
fore, 3 points are sampled, and subsequently, the plane they reside on is computed
by using one vector as the support vector and the others to compute the direction
vectors. The error is then calculated by taking the Euclidean distance between a
point and the respective line or plane.
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3.2.6 Measurement Process

The proposed system should be the basis of an expandable toolkit for identifying
and modeling attributes of articulated objects. User interaction is a key compo-
nent in the flexibility and expandability of the approach. The human operator can
quickly react to unknown prompts, perform novel articulations and assist the soft-
ware when it is uncertain or runs into an unknown situation. Therefore, the software
should provide real-time interaction with the user, presenting prompts whenever a
new measurement should be conducted, or other information is needed. Live visual-
ization of measurement data and fits is beneficial so that the user can quickly assess
if something went wrong.

Figure 3.10 presents a flowchart of the implemented measurement application that
illustrates the general procedure for measuring an articulated object. At the program
start, the user can input joint types and connectivity of the articulated object. The
next step implements the calibration procedure mentioned in Sec. 3.2.4, to identify
the relative position of the gripper tip with respect to the currently tracked point.
Afterwards, the program goes through the kinematic tree depth-first to identify
the parameters for each joint or handle one by one. For each identification, in the
first step, the user is asked to measure the (full) joint articulation so that the joint
parameters can be fit to the trajectory. Next, the user is asked if the joint limits
should be specified manually. If the user selects no, the program will simply use the
start and endpoint of the trajectory as the joint limits. When the operator selects
yes, the limits can be specified by two measurements. For each of these, the user has
to first bring the joint into the joint limit, then the point is recorded, and the limit is
computed by projecting the averaged measurement onto the computed joint, using
the joint’s inverse kinematic function to find the articulation. For the rotary joint,
the frame is then set such that the x-axis runs through the lower joint limit, which
subsequently is identified as q = 0. For the prismatic joint, the frame is placed at
the position of the lower joint limit, such that the lower limit corresponds to q = 0;
for the handles, this is done similarly. The process of joint fitting stops when all
joints are identified. The measured data and joint fits are visualized for a last visual
check, and the full model is stored for later use.
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3.3 Use of Simulation for Testing the Model Iden-

tification

The use of simulation should speed up the process of implementing the system on
actual hardware by already providing a method to validate the methodology before
working extensively with the hardware. However, therefore it is also important that
the simulation is reasonably close to the real world so that it can be assumed that
performance, at least partly, translates to the hardware system. One important
factor is that the user does not operate a mechanism along an ideal trajectory. The
simulation should consider this. Furthermore, contact effects like slipping on a han-
dle are likely to occur. A reasonable library of objects that adhere to their general
working principle in the real world is constructed to conduct a broad range of tests.
For a simplified transition to the actual hardware system, the general pipeline using
simulation should be very similar to the pipeline used with the hardware. There-
fore, already in the simulation step, the interfaces are chosen accordingly to make
the transition easier.

For the simulations, I decided to use the CoppeliaSim simulator from Coppelia
Robotics [RSF13]. CoppeliaSim Edu Version 4.2.0 for Windows is used. The simu-
lator offers all major features needed for testing the system. It offers a GUI frontend
for building the simulation scene from primitive or more complex objects. There is
a mesh importer that allows importing external CAD data to subsequently model it
for simulation. Every scene object can be equipped with a child script to run code
during simulation. There is a direct interface to the Qt GUI framework [Com] to
create simple GUI elements inside the simulator. The simulator offers kinematic as
well as dynamic simulation with limited contact physics.

The constructed simulation environment can be seen in Fig. 3.9. To evaluate the
full measurement procedure, real-time communication between CoppeliaSim and the
measurement application is implemented. This way, the simulator can be started
through the application, and measurements can successively be collected. A simple
GUI is implemented that allows the user to articulate a mechanism with the gripper
and also specify when a joint recording should start or stop. To get a realistic sim-
ulation, the actual gripper used in the real-world experiments is modeled in CAD
and imported into the simulator. The model can be seen in Fig. 3.8(b). To get a
realistic opening movement that considers the effects described above; the gripper
is controlled by applying a force vector rather than specifying an opening trajectory
for the gripper to follow.

CoppeliaSim offers multiple APIs to interface with the simulator through different
programming languages. For this implementation, the B0-based remote API is
used. It allows an external python application to fully control the simulator live. A
python client that implements the underlying communication protocol and standard
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(a) Simplified gripper model (b) Modeled gripper

Figure 3.8: Gripper models implemented in simulation

API functions is provided by CoppeliaSim. This way, the simulator can be directly
controlled through the measurement application. To change from simulation to real-
world measurements, only the client has to be changed. The rest of the software
can already be tested and should run very similar to the tests with the simulator.

Figure 3.9: Simulated articulated objects for evaluation
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Figure 3.10: Program flow diagram for the implemented measurement application
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Chapter 4

Evaluation

To evaluate whether accurately identifying the kinematic structure of articulated
objects is possible with the previously outlined system, tests are conducted on the
real-world hardware. The following sections give an outline of the conducted tests,
present the results and assess how good the procedure works and what could or
should be improved.

4.1 Setup

4.1.1 Measurement Hardware

The aforementioned self-built gripper is used in conjunction with the motion capture
system optiTrack primeX13 [Nat]. The motion tracking is run at a frequency of 120
Hz. Reflective markers are attached to the gripper for the motion capture, as shown
in Fig. 3.3(c) (a minimum set of 3 markers is required for tracking). The motion
capture system is set up in a semi-circle around the articulated object. Four to
five cameras, mounted on tripods at around 1.5m height, are placed to capture the
entire articulated object and the WCS origin placed on the floor in the vicinity of the
articulated object (Fig. 4.2(b)). To have consistency throughout the measurements,
the WCS origin has to be placed at the same position such that the coordinate
systems are as equal as possible. The gripper can then be tracked as a rigid body
inside the Motive software, and all rigid body data is streamed via UDP loopback
to the measurement application.

4.1.2 Metrics and Procedure

To assess the accuracy of the fit models, the fitting is tested on single joints. To get
an approximation of the ground truth, axes are manually measured with the help
of the motion capture system. The tool used to make the reference measurements
can be seen in Fig. 4.1(a). Optical markers are attached to the handle so it can be
tracked as a rigid body. Using the Motive software, the pivot point of a rigid body
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can easily be assigned to the position of a marker. This allows setting the pivot point
to the tip of one of the attached screws. After removing the marker, the tip can then
be used as a calibrated probe to sample points in the reference frame of the motion
capture system. The calibrated probe is then used to mark two points on an axis
to compute the axis’s position and orientation. This procedure is repeated several
times, and the average of the measurements is used as a reference. To increase the
accuracy of the measured direction vector, additional measurements are collected of
moving the probe along the surface of the axis and then fitting a line through it. As
one can never mark the exact center of the axis, there are still ambiguities in these
measurements. However, this still gives a good guideline for evaluating whether the
joint fits are reasonable. In the next step fitting of the different joint types is tested,
and the computed axes are compared to the reference measurement.

(a) Handle with attached Markers for reference
measurements

(b) Sample measurement

Figure 4.1: Calibrated probe

For the different joint/handle types, different metrics are important. The computed
axis should be aligned in orientation and position with the reference measurement for
a rotary joint. For prismatic joints, an offset of the axis is non-important. Therefore,
only the orientational discrepancy is evaluated. For handles, like for rotary joints,
both position and orientation are important.

The first experiments on the accuracy of the joint fits are run on the test bench
Fig. 4.2(a) we set up that includes different joint types and is re-configurable to
change the joint parameters. For evaluation, the central mechanism is used. It
includes a cylindrical joint (prismatic and rotary joint which share an axis) with
an attached 2-DoF handle. The inclination of the test bench can be adjusted to
change the direction vector of the axes. Furthermore, the joint limits of the cylin-
drical joint can be adjusted, and the orientation of the handle can be reconfigured.
An advantage of using this mechanism is that it allows easy measurement of the
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joint axes, as they are straight bars that are fully exposed. Next to this mecha-
nism, a standard cabinet with multiple prismatic drawers, seen in Fig. 4.5(c) , is
used for assessing accuracy. After assessing the accuracy for single joint fits, the
full measurement procedure is tested on the two previously mentioned mechanisms
and the standard door depicted in Fig. 4.5(b). This is only a qualitative assessment
to test whether the implemented procedure works and the models are built correctly.

(a) Annotated test stand (b) Motion capture setup

Figure 4.2: Evaluation setup

4.2 Experiments

4.2.1 Identifying the Gripper Tip

The first set of tests should assess the effect of a misaligned pivot point and if
accuracy can be increased with the calibration procedure described in Sec. 3.2.4.
When the default pivot-point location, as placed by Motive, is used, the pivot-
point is placed in the geometric center of the tracking markers. We can already
see that strong deviations can occur if the gripper orientation changes during the
measurement. An example trajectory is given in Fig. 4.3. To evaluate how much the
calibration improves the fitting accuracy in situations where the gripper orientation
is changed during the measurement, a series of measurements is conducted where
both the calibrated and the non-calibrated data is recorded. Then joint fits for both
are computed and compared to the ground truth. The measurements are conducted
on the rotary joint of the testing mechanism; as the ground truth can be accurately
estimated on this joint, it has a wide articulation range and is relatively big, which
allows focusing only on the investigated effect.

The results of these measurements are shown in Tab. 4.1. What can be seen is that
the orientational error with the calibrated tool tip is significantly lower than the
orientational error without calibrating the measurement tool. A similar effect can
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Meas.
series

orient. error
orient. error

std. dev.
pos. error

pos. error
std. dev.

Calibrated
tool tip

0.539◦ 0.184◦ 0.0082 m 0.003081 m

Not calibrated 2.260◦ 1.178◦ 0.0114 m 0.004669 m

Table 4.1: Results for fitting of rotary joint with and without aligned pivot-point

be seen for the positional error; however, the difference is much smaller here, as
the positional accuracy is already fairly good for measurements without an aligned
pivot point. One can also see that the standard deviation for both orientational and
positional error is significantly lower for the calibrated gripper, which shows that
the joint fitting is a lot more stable. All in all, this is evidence that the effect of
reorienting the gripper during measurements is reduced by calibrating the gripper
using the presented calibration scheme.

(a) Deviations in 3D trajectory with and with-
out aligned pivot-point

(b) Deviations in 2D trajectory with and with-
out aligned pivot-point

Figure 4.3: Influence of non-aligned pivot-point on measurements
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4.2.2 Performance with Outliers

In the next step, the effectiveness of using RANSAC to detect gross outliers is tested.
This is done by introducing deviations from the joint trajectory during articulation.
Again, the evaluation stand is used. It allows accurately computing the ground
truth; furthermore, the cylindrical joint makes it easy to add deviations to the joint
trajectory during articulation, as one can articulate the respective other DoF. Tests
are conducted on both the prismatic and the rotary components of the joint. A
relatively aggressive parameterization for the RANSAC is chosen. As the motion
capture measurements are normally very clean, the allowable deviations from the
model are in the range of a few millimeters. For the measurements, the respective
joint is articulated, while operating the joint, deviations are introduced by artic-
ulating the second DoF of the joint. Afterward, joint fits are computed with and
without RANSAC and compared against the ground truth.

The results of the experiments can be seen in Tab. 4.2. It can be seen that for
the rotary joint, the orientational error is significantly reduced by filtering the mea-
surements using RANSAC. The standard deviation of the orientational error is also
significantly reduced, which indicates that the fitting is a lot more stable. Inter-
esting is that the positional errors for the fit without RANSAC are better than for
the fit with RANSAC. This is probably linked to RANSAC sometimes filtering out
a significant number of measurements. As the deviations for the rotary joint are
along the axis, the projections into the plane done during circle fitting still lead to
those points being very close to the true circular arc, even though the plane might
be inaccurate. The model accuracy for the presented scenarios should be sufficient
for a robot to interact with these objects, given that there is a control scheme in
place that can regulate out small inaccuracies.

In general, we can say that using RANSAC, significant (obvious) outliers can be
filtered from the measurements, which allows the fit to be more stable against mea-
surement errors that could easily occur when a human operator articulates a mech-
anism. However, the robustness of this method should be further improved. This
could be done in multiple ways, either by improving the parameterization of the
RANSAC, maybe introducing different parameterizations for different size mecha-
nisms. The operator could also be taken further into consideration by showing a
warning when a certain percentage of the data is filtered out so that edge cases
where the RANSAC filters too many measurements can be accounted for.

4.2.3 Performance on Different Mechanisms

Next, the accuracy of the single joint fits is evaluated with a calibrated gripper, and
RANSAC filtering. On the test mechanism identification is tested on the rotary
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Mechanism orient. error
orient. error

std. dev.
pos. error

pos. error
std. dev.

Rotary
RANSAC 1.039832◦ 0.880033◦ 0.006717 m 0.001858 m

No RANSAC 6.065697◦ 3.301993◦ 0.004962 m 0.001617 m

Prismatic
RANSAC 1.082944◦ 0.540166◦ - -

No RANSAC 12.659371◦ 1.136343◦ - -

Table 4.2: Comparison of fitting with and without RANSAC for stark outliers

and prismatic joint, the attached 2-DoF handle and the central axis evaluated as
a 2-DoF handle. On the cabinet, tests are conducted on the prismatic joint and
2-DoF handle of the uppermost drawer.

The results of these tests are presented in Tab. 4.3. From the data, one can see
that the fitting gives accurate results for all tested joint types. Noticeable is that
the fitting of the prismatic component on the test mechanism is worse than that
of the rotary component. This can presumably be explained by the mechanics of
the mechanism, which makes it harder to move the prismatic component without
disturbances, as the mechanism has a cylindrical joint at its core, rather than a
singular prismatic and a singular rotary joint. Furthermore, the prismatic joint
does not move perfectly smoothly, resulting in a shaky motion during articulation.
The mentioned problems result in minimal and short-scale deflections. These are
either filtered out by RANSAC, leading to large chunks of the data being filtered
out, or unrecognized. In both scenarios this leads to worse fitting accuracy, as
either only a small subset of data is considered, or there are non-Gaussian outliers
in the data that negatively affect the least-squares fitting. For the handle fitting, the
orientational accuracy is about as good as that of the prismatic joint. The positional
accuracy is problematic when compared to the diameter of the handle, which is 3
cm. To test whether this can be explained by the mechanics of the mechanism, the
interaction or maybe even the ground truth, which could be less accurate due to the
handle being much shorter than the central bar, another test is conducted where
instead of using the dedicated handle, the central axis is used. What can be seen
is that this fit is more accurate than the fit of the other handle, in both positional
and orientational error. This shows, that the inaccuracy of the handle fitting might
not only be caused by the model fitting, but might be influenced by one of the
other mentioned factors. This hypothesis is further supported by the orientational
accuracy of the cabinet handle identification. Still, even for this ”replacement”
handle, the positional accuracy of the handle fitting is lower than for the rotary
joint.
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Mechanism orient. error
orient. error

std. dev.
pos. error

pos. error
std. dev.

Rotary joint 0.379264◦ 0.164402◦ 0.005217 m 0.002544 m

Prismatic joint 1.264748◦ 0.530295◦ - -

Handle 1.030192◦ 0.534674◦ 0.014495 m 0.010748 m

2nd Handle 0.646315◦ 0.550131◦ 0.007056 m 0.001096 m

Cabinet drawer 0.048627◦ 0.014971◦ - -

Cabinet handle 0.564795◦ 0.010581◦ 0.015051 m 0.001716 m

Table 4.3: Results for fitting different joints with aligned pivot-point

We can see that the fitting of both the prismatic axis and the handle is accurate
in terms of orientational error for the cabinet measurements. Especially the fitting
of the prismatic axis is very accurate. This is probably due to the joint trajectory
being relatively long. The orientational accuracy of the handle fit shows that the
procedure also accurately works for relatively small handles. However, considering
that the diameter of the handle is about 1.5 cm, the positional error of about 1.5
cm is problematic. This is mainly caused by the short articulation range observed
of the handle’s circular component. The problem is that the handles are very close
to each other and the cabinet itself. Therefore, during the rotary movement, the
gripper’s jaws quickly come into contact with either another handle or the cabinet,
which leads to a short observed articulation range. With such small articulation
ranges, the identification of the plane becomes inaccurate, as considering some noise
and inaccuracies, there are many planes that present a good fit to the data.

All in all, it can be concluded that the fitting procedure mostly provides accurate
results. The major problem is scenarios where, either due to the mechanics of the
gripper or due to the mechanism itself, the articulation range is short, or it is not
possible to follow the joint trajectory accurately.

4.2.4 Identification of Complete Models

In the next step, an identification of the complete kinematic chain of the different
mechanisms is conducted. Figure 4.4(a) shows a visualization of the computed model
for the test mechanism. As each of the joints is fit independently of the other joints,
the errors are again in the same range as those computed on the initial testing. In
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Fig. 4.4(a), the general kinematic structure is represented correctly as a kinematic
chain of the model root, rotary, and prismatic joint with a 2-DOF handle in the
end. The joint frames are aligned according to the respective articulation directions
and joint limits. The results of the model fitting on the cabinet can be seen in
Fig. 4.4(b). The fitting of the main door hinge is easily done; however, identifying
the smaller rotary mechanism of the door handle that only offers a small articulation
range (c.a. 20◦) is unstable. In some tests, the result is satisfying; in some tests,
the result is far off. The found kinematic structure can be seen in Fig. 4.4(c), and
a zoomed-in view can be seen in Fig. 4.4(d).
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(a) Test Stand full model (b) Cabinet full model

(c) Door full model (d) Door handle zoomed in

Figure 4.4: Plots of identified models for (left to right, top to bottom) test mecha-
nism, cabinet, door
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4.3 Discussion

The presented experiments show that identifying kinematic models of articulated
objects is possible with the presented framework. This works for simple kinematic
chains (test mechanism, door) and kinematic trees (cabinet). The implemented
procedure allows a human operator to identify the model of an articulated object
piece by piece in a guided procedure. However, there are still problems, mainly with
the robustness of the implementation. As described for the interaction with the
cabinet, there are limits to what types of mechanisms can be interacted with using
the current gripper design. Due to the width of the gripper jaws and the ”fingers”
being completely recessed between the two jaws, it is hard to grasp and collect data
for any mechanism where the handles are rather close to each other. Identifying
expansive joints like the hinge of a door or the prismatic joint of a drawer works
reliably, but there are problems with smaller joints, like those found on door handles.

In general, for situations where it is impossible to get a good, stable trajectory, it
would be useful to implement a fall-back solution that the operator could use to
increase the accuracy of the measurement. This is especially important for reli-
able identification of handle models, as these are normally small-scale, high fidelity
interactions that are hard to get right with the current gripper design and fitting
procedure. Another way to add robustness would be to use knowledge of the gripper
and articulated object kinematics to estimate errors in the measurements. For ex-
ample, knowledge of the handle model could be used to estimate when slipping along
the handle occurs. Like Martin-Martin et al. [MMB17] propose, adding in additional
sensors, like an FT sensor, not only allows identifying additional attributes but can
also improve the identification of kinematic models, as errors invisible in one sensor
domain are often apparent in another one. Right now, full identification of the test
mechanism already takes about ten minutes. This could be decreased through a
better user interface that allows users to interact with the measurement application
through input on the gripper rather than a laptop. Still, not every task initially
not easily solvable should be given to the operator to specify based on knowledge.
For example, after specifying the connectivity of the articulated object, the types
of joints involved could, most probably, also be identified by the software. In most
cases, a complicated probabilistic framework like the one implemented by Sturm
[Stu11] is not even needed. Computing fits for every model and then comparing the
root-mean-squared errors of all the fits would probably be sufficient in most cases.

As illustrated in Sec. 2.3, some methods can use generalized models of articulated
objects for robot manipulation. These could be adapted to work with our model
formulation, as they normally only need to query the model for a joint trajectory or a
Jacobian. A limitation is that these methods are still mostly limited to single-joint
mechanisms. In the current model identification implementation, only the model
root, joint frames, and handle frames are modeled and tracked. The operator could
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use any point on the articulated object to actuate a particular joint during the model
identification process. Therefore, there is still ambiguity in where a robot should
actually grasp an articulated to actuate a specific joint. For example, when opening
a door, we grab the handle, both for unlatching the door by pressing the handle
and articulating the door hinge. For this reason, the current modeling approach
models handles, as these can serve as a defined gripping point on the mechanism
for manipulation. This formulation is not perfect, as it discards many of the ways
we actually interact with a mechanism; for example, we sometimes push on the
door itself to close it rather than on the handle. As the measurements during
model identification resemble robot end effector poses, it is also conceivable to use
these as reference trajectories for a robot to articulate the single joints. A more
sophisticated approach would be to add marking other positions on the articulated
object to associate them with a specific joint during model fitting to provide multiple
grasping positions. However, it has to be evaluated whether this is sufficient to deal
with the issue.
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(a) Re-configurable test stand

(b) Door (c) Cabinet with prismatic drawers

Figure 4.5: Mechanisms on which tests are conducted
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Chapter 5

Conclusion

5.1 Achievements and Limitations

This thesis, proposes and implements a proof of concept system for human-assisted
identification of articulated objects. It can be seen that it is possible to find key
attributes of an articulated object with the proposed framework. However, the
current implementation is limited to identifying the simplified kinematic structure
of articulated objects. Furthermore, the current implementation lacks robustness.
Depending on the quality of the grip, the size, and the shape of the mechanism, the
system performance varies from very accurate to passable. This is both a mechanical
as well as a software problem. A lot more attributes could be identified, which would
make the system more useful as a universal toolbox for identifying various articulated
objects. The current implementation lays the groundwork for implementing these
extensions. This work can be seen as a base implementation from which one can start
more detailed investigations into the different components to improve the overall
performance(gripper, model fitting, data acquisition, user interaction).

5.2 Outlook

By expanding the model formulation to allow modeling of joint dependencies, hybrid
joints, and joint inaccuracies, and with added robustness and versatility, this con-
cept can be developed into a powerful platform for quickly and intuitively modeling
articulated objects. As illustrated in Sec. 4.3, there are multiple avenues that can be
pursued to improve robustness and versatility. Through an improved user interface
the ease-of-use of the system can be greatly improved, which decreases the time
it takes to identify kinematic models, and also allows gathering additional user in-
sights. Another interesting expansion to the system is to explore the field of transfer
learning. One example would be, to directly transfer the articulation measurements
to a robot, and have the robot learn a model by itself by following the measured
trajectory. There is mounting evidence that humans interact with their environment
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through learned models that allow predicting expected future outcomes [LPAH19].
Therefore, we are convinced that by learning and using expressive models of the
environment, a lot of progress can be made towards more autonomous robots.
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