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Abstract

Huge amounts of flight data are generated and recorded in the daily operations of civil
airlines. These data are analyzed to detect and predict hazards in the Flight Data Mon-
itoring (FDM) program. In addition to that, International Civil Aviation Organization
(ICAO) also suggests airlines define their Acceptable Level of Safety Performance (ALoSP)
based on their operational data, which can be described by the occurrence probability of
an incident/accident. Due to the lack of accident data, it is difficult to directly calcu-
late statistically significant statements on their occurrence probabilities. Therefore, A
model-based Predictive Analysis (PA) framework has already been developed to provide
a quantitative statement of incident probability from non-accident flight data at the In-
stitute of Flight System Dynamics (FSD). This PA framework combines the operational
flight data and the physical-based incident model by using statistical methods.

This thesis introduces advanced uncertainty quantification (UQ) methods to enhance
the quality of the PA algorithms in model calibration, contributing factors modeling,
sensitivity analysis, and physical modeling. In the PA framework, model calibration is
required to ensure that the incident model output can represent the reality of the relevant
flight operation statistically. To reduce the execution times of the time-consuming Monte
Carlo Simulation (MCS) in the state-of-the-art calibration algorithm, a new calibration
framework is proposed based on the polynomial chaos expansion (PCE) method and a
frozen sample strategy. The MCS is required only once, and the convergence and efficiency
of the calibration algorithm are improved dramatically. In addition, wind variation is
critical for some incidents/accidents. Instead of the constant wind speed in the state-
of-the-art incident model, wind time series is firstly modeled as the model input in a
statistical manner using the Karhunen–Loève (KL) expansion methods with the vine
copula approach. The built KL-based wind model allows us to generate the new wind
series, which follows the original statistical characteristics and is easily integrated into
the PA framework. Moreover, the global sensitivity analysis algorithms, as the post-
processing step, are developed to identify the key drivers of incidents. Furthermore, a
novel incident model to simulate the evolution of aircraft low energy states during the
final approach is built considering flight dynamics and standard operational procedures
(SOPs). The enhanced PA framework is implemented on the aircraft low energy incident
model to predict the occurrence probability and identify the critical contributing factors.





Zusammenfassung

Im täglichen Betrieb ziviler Luftfahrtunternehmen wird eine große Menge an Flugdaten
aufgezeichnet. Diese Daten werden im Flight Data Monitoring (FDM) Prozess analysiert,
um frühzeitig Gefahren zu erkennen und Risiken vorherzusagen. Darüber hinaus fordert
die Internationale Organisation für Zivilluftfahrt (ICAO) von den Luftfahrtunternehmen
die Festlegung eines Acceptable Levels of Safety Performance (ALoSP), auf dessen
Grundlage die Sicherheit des aktuellen Betriebs zu überwachen ist. Aufgrund der gerin-
gen Anzahl tatsächlich aufgezeichneter Vor- und Unfälle ist es schwer, deren tatsäch-
liche Eintrittswahrscheinlichkeiten direkt zu berechnen. Deshalb hat der Lehrstuhl für
Flugsystemdynamik (FSD) der Technischen Universität München einen modellbasierten
Rahmen für die prädiktive Analyse (PA) entwickelt, um valide Vorhersagen von Unfall-
eintrittswahrscheinlichkeiten aus unfallfreien Flugdaten quantitativ zu bestimmen. Dieses
System zur prädiktiven Analyse nutzt statistische Methoden, um operative Flugdaten mit
physikbasierten Unfallmodellen zu kombinieren.

Die Arbeit nutz fortschrittliche Methoden der Unsicherheitsquantifizierung (UQ), um
die Qualität von PA-Algorithmen bei der Modellkalibrierung, der Modellierung von Ein-
flussfaktoren, der Sensitivitätsanalyse und der physikalischen Modellierung zu verb-essern.
Im Rahmen der PA ist eine Modellkalibrierung erforderlich, um sicherzustellen, dass
die Ergebnisse des Unfallmodells die Realität eines bestimmten Flugbetriebs statistisch
repräsentativ abbilden. Um die Ausführungszeit der zeitaufwändigen Monte-Carlo-Simula-
tion (MCS) aktueller Kalibrierungsalgorithmen zu verkürzen, wird eine neue Kalibrierungs-
methodik vorgeschlagen, die auf der Polynomial Chaos-Expansion (PCE) und einer Frozen
Sample Strategie beruht. Dadurch wird die rechnzeitintensive MCS nur einmal benötigt,
Konvergenz sowie Effizienz des Kalibrierungsalgorithmus werden erheblich verbessert. Für
eine realitätsnahe PA sind bei einigen Unfallszenarien Modelle für Windrichtungsänderun-
gen entscheidend. Anstelle der konstanten Windgeschwindigkeit aktueller Unfallmodelle
schlägt diese Arbeit ein deutlich realitätsnäheres Windmodell vor. Dieses basiert auf
der Karhunen-Loève (KL)- Methode, kombiniert mit Vine-Copula-Verteilungen. Es er-
möglicht tatsächliche Wind-Zeitreihendaten als Modellinput zu nutzen. Das entwickelte
Windmodell erlaubt es, daraus neue Windsequenzen zu generieren, die den statistischen
Eigenschaften der ursprünglichen Messungen folgen und leicht in den PA-Rahmen inte-
griert werden können. Außerdem werden in dieser Arbeit Algorithmen für globale Sensi-
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tivitätsanalysen entwickelt, um die wichtigsten Unfallursachen zu ermitteln. Ferner wird
ein neues Vorfallsmodell präsentiert, das die Entstehung von Flugzuständen niedriger En-
ergie während des Endanflugs abbildet, wobei sowohl Flugdynamik als auch fluzeugtyp-
und betreiberspezifische Standardbetriebsverfahren (SOPs) berücksichtigt werden. Die
erweiterte PA-Systematik wird auf diese Simulation von Flugzuständen niedriger Energie
angewendet, um die Wahrscheinlichkeit eines Unfalls vorherzusagen und die wichtigsten
Einflussfaktoren zu erfassen.
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Chapter 1

Introduction

1.1 Motivation and Background

Safety is always the first concern in aviation. The ultimate goal is to eliminate aircraft
accidents and serious incidents. However, human-related activities or systems are not
guaranteed to be free of operational errors. Therefore, the safety risk is a dynamic index
and should be continuously monitored and mitigated. The International Civil Aviation
Organization (ICAO) has provided a systematic approach to manage safety, called Safety
Management Systems (SMS), involving the organizational structures, accountabilities,
policies, and procedures [1, 2]. The objective of SMS is to provide a structured manage-
ment framework to mitigate flight risks in operations. Hazard identification and safety risk
assessment and mitigation are involved in the safety risk management of SMS. According
to the Safety Management Manual (SMM) [3], safety risk assessment means quantifying
risks, which is done by analyzing the accident occurrence probability and severity of their
consequences.

ICAO SMS defined the safety objectives in terms of an Acceptable Level of Safety Per-
formance (ALoSP) as the minimum level of the safety performance of civil aviation in its
state safety program [3]. Furthermore, ALoSP can be described by the probability of an
accident or occurrence probability of exceeding the safety performance indicators (SPIs).
Airlines are required to set up and assess their safety target according to the ALoSP. The
European Commission has defined its safety target as an accident rate of less than one in
ten million flights by 2050 [4]. The occurrence probability corresponding to this accident
rate is 10−7 per flight. Lufthansa has defined its own safety target of less than 10−8 per
flight [5].

According to the International Air Transport Association (IATA) safety report in 2020 [6],
runway safety (RS), controlled flight into terrain (CFIT), and Loss of Control In-flight
(LOC-I) are still the top three high-risk occurrence categories. Although the LOC-I
accident represented only about 8% of all accidents from 2016 to 2020, it had the highest
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percentage of fatal accidents (about 45%) and remains the highest fatality risk (about
65%), accounting for 698 fatalities. Accident reports show that more than half of LOC-I
accidents involved the loss of situational awareness, to which the loss of energy awareness is
one of the leading precursors [7, 8]. Especially low energy situations during the approach
and landing phase bear a high risk, since there is not sufficient time and altitude for
the pilot to recover the aircraft. Based on the requirements of ALoSP, quantifying the
occurrence probability of low energy events becomes a crucial and challenging problem.
The flight data recorders provide a data source for identifying hazards and monitoring the
safety performance of the normal operation. The flight safety group at the Institute of
Flight System Dynamics (FSD) developed a model-based predictive analysis framework
to quantify the occurrence probability of accidents using the operational flight data, which
has been implemented in runway overrun [9]. The motivation of this thesis is to apply
advanced uncertainty quantification methods to enhance the quality of the Predictive
Analysis (PA) framework and implement it for aircraft low energy events.

1.2 State of the Art

This section introduces the development and current activities of flight data monitoring
(FDM), followed by the description of the PA framework. Some advanced statistical meth-
ods to quantify uncertainties are summarized. Some shortcomings and implementation
issues of the current PA algorithms are mentioned in the end.

1.2.1 Flight Data Monitoring

As part of the ICAO SMS process, FDM, also called flight operations quality assur-
ance (FOQA) or flight operation data analysis (FODA), is a proactive and non-punitive
program of gathering and analyzing the operational flight data for monitoring the opera-
tional safety level. Based on the Commission Regulation (EU) 965/2012, FDM program
is mandatory for commercial air transport with a maximum certificated take-off mass
(MCTOM) of over 27t for all European Union Aviation Safety Agency (EASA) mem-
ber states since 29 October 2014 [10]. Many FDM guidances, such as ICAO Flight Data
Analysis Programmes Manual (ICAO Doc 10 000) [11], UK Civil Aviation Authority CAP
739 [12], and Federal Aviation Administration (FAA) Advisory Circular 120-82 [13], have
been published to share good practices on the implementation of FDM program. Process-
ing of flight data mainly involves exceedance detection, routine measurements, incident
investigation, continuing airworthiness and integrated safety analysis.

Nowadays there are several commercial FDM software available, e.g., AirFase [14], Anal-
ysis Ground Station (AGS) [15], Aerobytes [16], Austin Digital [17], and so on. The main
functions of current FDM software include flight profile visualization, flight animation,
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event detection of exceeding the safety-critical threshold, and simple statistical analysis.
To help airlines further use and develop the FDM algorithms, the EASA established the
European Operators Flight Data Monitoring (EOFDM) [10]. The goal is to share the
practical experiences to maximize the safety benefits from flight data analysis among the
FDM community, containing airlines, equipment manufacturers, research institutes, and
so on. The company Innaxis led a project “SafeClouds” [18], which is supported by many
aviation stakeholders. They developed a novel data-driven approach to identify hazards
and mitigate aviation risks. In the United States, Aviation Safety Information Analysis
and Sharing (ASIAS) program [19], initiated by the FAA, works closely with the Commer-
cial Aviation Safety Team (CAST) and the General Aviation Joint Steering Committee
(GAJSC) to monitor known risk, evaluate the effectiveness of deployed mitigations, and
detect emerging risk. Another prominent example is the Flight Data Exchange (FDX)
service [20], offered by the International Air Transport Association (IATA). The FDX
program provides its airline members the deidentified flight data to perform and also a
comparative overview to highlight areas of flight safety concern. Many studies are ongoing
to mine the benefits from the large set of flight data. In the project “Safety Analysis for
General Aviation (SAGA)” [21, 22], researchers applied the Machine Learning algorithms
to detect anomalous operations, identify precursors and critical parameters of safety events
based on the large set of flight data for general aviation. A Quick Access Recorder (QAR)
data analysis software has been developed in [23] for wind shear and turbulence studies.
The predictive analysis framework developed at FSD [9, 24] can provide a quantitative
statement of an incident probability by combining the operational flight data and the
physical models together.

1.2.2 Predictive Analysis Framework

Due to a lack of accident data, the accident probability can not be computed by counting
the number of accidents divided by the total number of flights, especially for a new airline
that has not had any incident or accident record yet. The PA framework proposed a so-
lution to quantify the incident/accident probability for a specific airline by combining the
previous experience (operational flight data) and knowledge (physical model). Although
accidents can not be directly observed in daily operation, deviations of the corresponding
contributing factors may occur at a high frequency so that they can be measured with
statistical significance. Once the relation between the contributing factors and the inci-
dent metric can be described by a physical model, uncertainty in the contributing factors
can be propagated to the incident metric. The obtained statistical characteristics of the
incident metric allow airlines to calculate the occurrence probabilities of accidents and
quantify their safety performance level. The PA framework includes seven steps, and a
brief introduction is shown here [9, 24]:
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Step 1 Define An incident metric (continuous variable) is defined to describe the oc-
currence of the incident/accident by an inequality constrain. For example, the remaining
runway distance can be a metric to describe the runway overrun.

Step 2 Model An incident model is developed to describe the relationship between the
causal factors and the incident metric based on the aircraft model, operational procedures,
pilot behaviors, and so on.

Step 3 Identify All causal factors, so-called contributing factors, are collected from
the FDM data in this step. Some measurements of contributing factors are recorded
directly in the flight data recorder. Otherwise, the algebraic calculations and parameter
estimation methods are carried out to obtain the other measurements.

Step 4 Cumulate The collection of measurements from many flights shows the uncer-
tainties in contributing factors, which can be described using the probability distribution.
The probability distribution and the dependence structure among all contributing factors
are identified using the maximum likelihood methods.

Step 5 Calibrate Validation is required to ensure that the model output represents
the reality of the relevant flight operation properly before the “Predict” step. The distri-
butions of the incident model output and the corresponding recorded flight measurements
are compared in this step. For the minor difference, calibration of contributing factors
is implemented without falsifying the measurements of contributing factors. Afterward,
the incident model and calibrated contributing factors are used for prediction. If the dif-
ference between model output and recorded measurements can not be adjusted to satisfy
the tolerated criteria, the incident model should be revised.

Step 6 Revise Advanced statistical methods are applied to identify unknown causal
parameters. The incident model is revised by increasing the complexity of the model,
or including more causal parameters, or excluding the contributing factors without the
significant effect.

Step 7 Predict Uncertainty propagation methods are implemented to obtain the statis-
tical features of the model output and estimate the occurrence probability of the incident.
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1.2.3 Uncertainty Quantification Methods

Uncertainty quantification (UQ) is an active research field during the last two decades [25],
and the UQ algorithms are widely applied in different research areas, such as structure,
materials, electricity, and so on. Nowadays, the UQ plays a significant role in the proba-
bilistic performance assessment of complex engineering systems, especially in the absence
of adequate real experimental data [26]. According to the structure of the PA frame-
work, the UQ methods provide theoretical foundations and mathematical tools in the
estimation of the incident probability and further uncertainty analyses, such as sensitiv-
ity analysis. Figure 1.1 shows the framework of UQ. A literature review in terms of five
different objectives of UQ is shown as follows:

System Model

④ Sensitivity Analysis

Uncertainty Propagation

③ Model     
Calibration

+

① Input Uncertainty Output⑤ Surrogate Model

... ...

② Failure 
Probability 
Estimation

Figure 1.1: Uncertainty Quantification Framework, modified from [9, 26]

1© Input uncertainty quantification Input variables are usually treated as random
variables, which are described using probability distributions. The best-fitting probabil-
ity distribution function of the measurements can be obtained via the maximum likeli-
hood method. Dependent input variables can be modeled using the multivariate joint
probability distribution. However, only multivariate Gaussian or multivariate Student
distributions are commonly used. To allow the different marginal distributions, the vine
copula approach is proposed in [27, 28] to model the high dimensional dependence via
constructing the joint probability distribution using many bivariate copulas.

2© Failure probability estimation Estimation of failure probability is not easy, espe-
cially when the model evaluation is time-consuming, and the failure is a small probability
event. There are two main approaches: approximation-based methods and simulation-
based methods. The first-order reliability methods (FORM) and the second-order relia-

5



1.2 State of the Art

bility methods (SORM) approximated the model in the most critical point based on the
first/second-order Taylor series of the so-called limit-state functions [29]. However, there
is a large error when dealing with high dimensional or highly nonlinear problems using the
approximation method. Direct Monte Carlo simulation (MCS) is a classical and robust
simulation-based method, independent of the model complexity [30]. Variance reduction
techniques such as importance sampling (IS) [31], improve the convergence efficiency of
MCS. More advanced methods, such as subset simulation (SuS), are implemented for the
small probability event [32]. Paper [33] analyzed the efficiency of different Markov chain
Monte Carlo (MCMC) algorithms used in SuS and proposed an adaptive conditional sam-
pling method, which guarantees the optimal acceptance ratio of samples in SuS. To deal
with the dependent inputs, paper [34] integrated the vine copula into SuS.

3© Model calibration The physical or mathematical model of the system is built based
on existing knowledge and observations. It is generally simplified compared to reality. As
a necessary step, model validation is usually implemented by comparing the simulation
results and observations. The model calibration is to minimize the deviation between
the simulated results and measurements. As mentioned in [26], the maximum likelihood
method or Bayesian approaches can be applied to adjust the model parameters to obtain
a good match between the simulations and measurements. Different from tuning model
parameters, [35] minimized the simulation error via calibration of the input factors using
the optimization algorithms. Besides, an external error model is proposed in paper [36]
for calibration using the statistical approaches.

4© Sensitivity analysis Sensitivity analysis is traditionally used in optimization prob-
lems to find the steepest gradient of the cost function. In the domain of UQ, sensitivity
analysis is applied to measure the influence of different input variables on the output and
identify the key driver of output uncertainty [37]. Furthermore, it is also widely applied to
reduce the dimensions of the model by ignoring unimportant factors. The local sensitivity
analysis (LSA) measures the local response of the output via perturbing the input vari-
ables around their nominal ranges, such as the One-at-a-time (OAT) method. In contrast,
global sensitivity analysis (GSA), such as variance-based [38] and moment-independent
methods [39], describes the output response over the entire range of the input. In ad-
dition, the reliability sensitivity indicates the importance of the input factors to failure
probability [40].

5© Surrogate model The surrogate model is used to replace the expensive model
and speed up model evaluations [41, 42]. It allows us to achieve the uncertainty of the
model output conveniently. Therefore, the surrogate model can be integrated to solve
the questions above, like failure probability estimation, model calibration, and sensitivity
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analysis. Many surrogate modeling algorithms are available, such as linear and nonlinear
regression, polynomial chaos expansion (PCE), support vector regression (SVR), Kriging
model (Gaussian process), neural network (NN), and so on. Sufficient samples of input
and output are required to guarantee the accuracy of the surrogate models.

1.2.4 Gaps in Current Predictive Analysis Framework

The PA framework provides an advanced strategy to quantify the incident probability.
However, there are still some implementation problems demanding a prompt solution for
the current development of the PA algorithms. Some questions are listed below.

1. In the “Calibrate” step, [9] first proposed a calibration idea to match the simula-
tion and observations via tuning contributing factors in their nominal ranges, which is
subsequently implemented in [35] using the Steepest-Decent optimization algorithm and
MATLAB toolbox parameter estimation. Since the calibration process is to solve an opti-
mization problem, MCS is required to compute the cost function in each iteration, which
is time-consuming. In addition, the value of the cost function has uncertainties due to
the randomness of the samples in MCS. This feature causes the cost function unsmoothed
and difficult to converge. An efficient calibration algorithm is required.

2. In the current setup of the PA, each contributing factor remains constant in one
evaluation of the incident model. For example, the wind speed is assumed to be constant
in the runway overrun incident model [43]. However, the constant wind assumption is not
suitable for all incidents, as the variation of wind speed and direction affects the flight
performance and handling quality significantly. Therefore, statistical modeling of the
wind series is required, and the PA framework should allow the time series as an input.

3. According to the existing seven steps of PA, only the quantitative statement of in-
cident occurrence probability is provided in the results. Sensitivities describe the effect
of each contributing factor to the incident metric or the incident probability. Therefore,
the sensitivities measure can help airlines to develop better mitigation strategies of inci-
dents/accidents. Sensitivity analysis can be as a post-processing step after the “Predict”
step. [44, 45] calculated the sensitivities of contributing factors in the runway overrun
case by applying the FORM method. The most likely point of failure used in the FORM
is estimated based on the samples in the subset simulation. Since the FORM is the first-
order approximation of the limit state function, it will result in considerable errors for the
high nonlinear model. More robust and stable algorithms for sensitivity analysis should
be investigated to enhance the quality of the quantitative statements.

The PA framework has been only implemented in the runway overrun and veer-off in-
cidents [46]. Other categories of accidents/incidents can be also analyzed using the PA
framework. As mentioned in Section 1.1, the aircraft’s low energy state is a safety-critical
precursor, especially during the approach and landing. Many energy-based metrics have
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been defined for general aviation [47]. Anomaly detection based on energy metrics is
implemented in general aviation operations using machine learning algorithms [48]. How-
ever, these analyses of energy metrics are only based on the statistical characteristics of
the operational flight data. In addition, the researcher in [49] presented abnormal energy
risk criteria of large civil airplanes only based on the flight simulations. The operational
flight data and the aircraft model are not considered together in the previous research.
Furthermore, the operational procedures are not taken into account. Implementation of
PA on the aircraft’s low energy event can provide a quantitative statement of the occur-
rence probability and also allows us to identify the key contributing factors for the low
energy situation.

1.3 Objectives

The goal of this dissertation is to apply the UQ methods to enhance the quality of the PA
algorithms in terms of contributing factors modeling, model calibration, and sensitivity
analysis. Furthermore, the enhanced PA algorithms will be implemented for aircraft low
energy events. The main objectives are as follows:

• Developing an efficient algorithm to calibrate the contributing factors of the incident
model. (Enhancement of the “Calibrate” step)

• Building a wind model that allows us to reproduce the stochastic wind series as an
input in the incident model simulations. (Enhancement of statistical modeling of
contributing factors)

• Developing sensitivity analysis algorithms to identify the key drivers of the incident
metric uncertainty and incident probability. (Development of the post-processing
step after the “Predict” step)

• Building a low energy incident model based on flight dynamics and operational
procedures, quantifying the occurrence probability, and identifying the critical con-
tributing factors using the operational flight data. (Enhancement of incident mod-
eling)

1.4 Contributions

The following summarizes the contributions of this dissertation:
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Chapter 1: Introduction

C1. Calibration framework using PCE in a “frozen sample strategy” with vine
copula based dependence modeling

A new calibration framework using a PCE method with a frozen sample strategy is pro-
posed and implemented. The tuned distribution parameters are integrated into the cost
function as a penalty term to obtain the overall minimum changes in all contributing
factors. The nonlinear dependence structure of contributing factors is considered and
integrated into this framework based on vine copula. This approach has been shown to
be convergent and greatly improves efficiency because it is not required to rerun the MCS
during each iteration of optimization. The proposed calibration algorithm has been vali-
dated using a first-order system with three inputs and implemented in the runway overrun
incident model.

This contribution will be described in detail in Chapter 4. It has been published in the
Scopus listed paper [50] with the title “Calibration of Contributing Factors for Model-
Based Predictive Analysis Algorithm using Polynomial Chaos.”

C2. An efficient approach for producing time series with statistical character-
istics matching measurements

To appropriately replicate the actual statistical characteristic of the atmospheric motion
(wind, gusts, and turbulences) experienced in flights, this dissertation proposes to apply
the Karhunen–Loève (KL) expansion method on operational flight data. Compared to
the spectral representation (SR) methods, the approach is successfully verified against
the well-established von Karman turbulence model. In addition, this approach is also
implemented for sensor noise analysis and replication. Results show that the regenerated
noise series match the power spectral density of the measurements very well. Furthermore,
this statistical modeling approach for producing time series is implemented in simulations
to generate noise signals instead of white noise. This contribution will be described in
detail in Chapter 5. Together with contributions in C3, it has been published in the Scopus
listed paper [51] with the title “Modeling of Stochastic Wind Based on Operational Flight
Data Using Karhunen-Loève Expansion Method.”

C3. Dependence construction of KL coefficients for improving the modeling
accuracy of time series by utilizing vine copulas

The dissertation introduces a superior description of the statistical characteristics of the
KL coefficients by utilizing vine copula to capture high dimensional dependence among the
KL coefficients. According to the comparison results of statistical moments, integration
of vine copula dependence structure in the KL expansion improves the accuracy of the
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constructed stochastic wind model. Furthermore, the headwind during the final approach
and the horizontal wind shear ramps detected from operational flights are reconstructed
and regenerated using the KL expansion method with vine copula dependence.

This contribution will be described in detail in Chapter 5.

C4. GSA as a post-processing step to enhance the quality of the Predictive
Analysis Framework

The original process established for the PA by FSD so far comprised seven steps. This
dissertation adds Global Sensitivity Analysis (GSA) as a new step after the “Predict” step
to improve the quality of the statements by identifying the key drivers for the predicted
incident probability. To achieve that, a broad range of dissimilar GSA approaches have
been unified in a common framework and implemented in a general sample-based GSA
tool. All the GSA methods are demonstrated for runway overrun and low energy state.

This contribution will be described in detail in Chapter 3 and Chapter 6.

C5. Predictive Analysis of low energy state during the final approach

The low energy event during the final approach due to destabilization is analyzed in detail.
According to the stable approach criteria, the energy margin is introduced to detect low
energy events. By considering the speed trend and the energy bleed rate, the “time to low
energy bound”, called time margin, are also proposed as a new safety metric and applied to
a large set of operational flight data. To predict the occurrence probability of low energy
events, a novel incident model to simulate the evolution of aircraft low energy states
during the final approach is built considering flight dynamics and standard operational
procedures (SOPs). Based on the energy margin, the integral of the normalized energy
margin in a certain time interval is taken as the incident metric in the PA framework. The
expected statistics for the time duration of the aircraft below the low energy bound during
the final approach are predicted to assess critical situations. The effects of all contributing
factors are analyzed. These properties are computed by stochastic rare-event simulation,
using the statistics from recorded operational flight data as initial conditions.

This contribution will be described in detail in Chapter 6. Some results have been pub-
lished in the Scopus listed paper [52] with the title “Modeling of the Aircraft’s Low Energy
State During the Final Approach Phase Using Operational Flight Data.”
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1.5 Outline

The structure of this dissertation is summarized in Figure 1.2, and each chapter is briefly
described in the following. Chapter 2 introduces the characteristics of the operational
flight data, including the evolution of flight recorder, data acquisition, and QAR data
decoding. The preprocessing of the operational flight data is also described, which in-
cludes the calculation of time points and measurements, and flight path reconstruction.
Mathematical preliminaries of rare event probability estimation and sensitivity analysis
are outlined in Chapter 3. Chapter 4 describes the strategy of the “Calibrate” step and
proposes an efficient calibration framework using PCE methods. Calibration results are
subsequently presented using the runway overrun model. Chapter 5 describes the mod-
eling of the stochastic wind process. Headwind with gusts during the final approach is
constructed using the KL expansion method, which is used to regenerate the wind se-
ries in the incident model simulation. Furthermore, an aircraft low energy incident model
based on flight dynamics and operational procedures is proposed in Chapter 6. The occur-
rence probability of low energy and key contributing factors are estimated and identified.
Finally, Chapter 7 concludes this thesis and gives an outlook of future works.

Beyond the state-of-the-art

State-of-the-art

I. Introduction

2. Operational Flight Data Analysis

3. Mathematical Preliminaries

4. Calibration of Contributing Factors 
for Predictive Analysis

5. Modeling of Stochastic Wind

6. Low Energy State Analysis

7. Conclusion and Outlook

Figure 1.2: Structure of the dissertation.
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Chapter 2

Operational Flight Data Analysis

The main source of the operational flight data used in this dissertation is the Quick Access
Recorder (QAR) data. First, this chapter introduces the evolution of flight data recorders
and the aircraft data acquisition structure, followed by an overview of the QAR decoding
process. Several necessary preprocessing steps for the decoded QAR data are summarized,
which include QAR file splitting, airport and runway detection, time points detection,
flight data measurements calculation, and flight path reconstruction. Subsequently, flight
data time series and measurements are available for the FDM program. The threshold
exceedance detection method used in the FDM program is described, followed by the
statistical analysis method of critical measurements. Furthermore, the more advanced
physical-based incident model developed at FSD is introduced. The runway overrun
model is provided as an example.

2.1 Flight Data Recording

The history of flight data recording can be traced back to World War II. The ‘V-g’ recorder
was first installed in military aircraft to collect airspeed and load factor data for structural
design improvement [53]. By 1950, the so-called ‘V-g-h’ continuous trace recorders are
introduced to consider aircraft height for assessing the structural and aerodynamic impli-
cations of gust and loads [54]. In 1957, a combined voice and data recorder was created
by Dr. David Warren and his team at Aeronautical Research Laboratory (ARL) [55].
Since the recorded flight data and audio can provide more information about the causes
of accidents in addition to the wreckage after accidents, regulatory authorities mandate a
Flight Data Recorder (FDR) and a Cockpit Voice Recorder (CVR) into large commercial
aircraft for accident investigation in the 1960s. The first type of the FDR only records
5 parameters: heading, altitude, airspeed, vertical acceleration, and time, onto the mag-
netic metal or photographic film. Recording technology was then developed significantly
from the analog signal to the digital signal on the tap, and to the solid-state media. The
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2.1 Flight Data Recording

Digital FDR (DFDR), Solid-State FDR (SSFDR), and Solid-State CVR (SSCVR) were
introduced successively in the 1980s [56]. With the latest technology, Enhanced Airborne
Flight Recorder (EAFR) combines the FDR and the CVR into one single device. In sum-
mary, the evolution of the FDR in terms of the type and capacity is briefly described in
Table 2.1.

Table 2.1: The evolution of the FDR, source: [57]

Aircraft
type

Service
date

FDR type Number of
parameters

FDR data
capacity

Boeing 707 1958 Analogue 5 Mechanical limit of
about 10 parameters

Airbus 330 1993 DFDR/SSFDR 280 128 wps∗

Embraer 170 2004 SSFDR 774 256 wps
Airbus 380 2007 SSFDR >1000 1024 wps
Boeing 787 2009 EAFR >1000 Ethernet system
∗ wps: words per second

Although the FDR and the CVR are referred to as the black box, they are actually in
bright orange for searching among the wreckage as shown in Figure 2.1. They are designed
to withstand the immense decelerations and temperatures during accidents. In Europe,
the European Organization for Civil Aviation Equipment (EUROCAE) specifies the test
requirements for the FDR and the CVR in its document ED-112 [58]. Similarly, in the
U.S., the FAA listed the test conditions in the documents: Technical Standard Orders
(TSO), specifically, TSO-C124b [59] for the FDR and TSO-C123c [60] for the CVR.

(a) FDR. (b) CVR.

Figure 2.1: Black box flight recorders, source: [61], Image downloaded on Jan 10, 2021

Nowadays, for all airplanes of a maximum certificated take-off mass of over 27 ton, the
recording time series is requested to contain at least the last 25 hours of aircraft operation
to track the aircraft states during the accidents [1]. Furthermore, ICAO regulates the
mandatory parameters of the flight recorder for aircraft operators in Appendix 8 ‘Flight
Recorders’ of ICAO Annex 6 "Operational of Aircraft" [1], which is adopted by the FAA
and EASA. However, the mandatory parameters are not the same for all aircraft. They
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Chapter 2: Operational Flight Data Analysis

depend on the certification date of the aircraft, maximum takeoff mass, and maximum
passenger capacity [53]. For example, in the U.S, the set of mandatory parameters based
on the manufacturing date is presented in Figure 2.2. Beyond the list of parameters, the
authorities also specify the recording parameter properties, such as measurement range,
maximum recording interval, accuracy, and recording resolution for the crash-protected
FDR.

Figure 2.2: Mandatory parameters of the FDR, source: Table 1 of [53]

Aircraft 
systems

Data 
acquisition

devices
(FDAU/
FDIMU)

DFDR/SSFDR

QAR LRU*

FDR Data

QAR Data
DAR Data

Aircraft
sensors

Analogic Numeric
Converter

ARINC 429 ARINC 717 Crash-protected data

Non-crash-protected data*LRU = Line Replaceable Unit

Figure 2.3: Flight data recording architecture, adapted from [62]

Currently, the FDR can record over 3,000 parameters, far more than the mandatory
parameters. A data acquisition unit (DAU) is implemented to receive the parameters
from all aircraft systems via the relevant ARINC 429 buses and to record the parameters
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2.1 Flight Data Recording

on the FDR in the ARINC 717 format [63]. Along with the implementation of DFDRs,
the current acquisition device is the so-called Flight Data Acquisition Unit (FDAU) for
Boeing and Embraer aircraft and Flight Data Interface Management Unit (FDIMU) for
Airbus aircraft. The flight data recording architecture is shown in Figure 2.3. It is clearly
seen that the data transmission between FDAU/FDIMU and the FDR is bidirectional for
verification and synchronization in order to reduce the recording error. This recording
chain is crash-protected. Besides the FDR for accident investigation, the flight data
analysis processes were encouraged and also requested by authorities. The non-crash-
protected QAR is equipped in aircraft for the FDA or FDM programs. Usually, the QAR
records the same parameters as the FDR does. Since the data transmission between
FDAU/FDIMU and the QAR is unidirectional, the recording errors like synchronization
errors might occur. In addition, the FDAU/FDIMU also allows aircraft operators to
program and record additional non-mandatory parameters for other purposes, such as
maintenance prediction, or fuel monitoring. Through the Aircraft Condition Monitoring
System (ACMS), those additional parameters are recorded to other non-crash-protected
recorders, called the Digital ACMS Recorder (DAR).

Figure 2.4: An overview of on-board data transmission via ED48 FDIMU, source: [64].
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As one example of flight data acquisition and transmission, the ED48 FDIMU for the
Airbus A320 family is shown in Figure 2.4. It combines mandatory flight data acquisition
and high-performance monitoring capabilities into a single unit. The QAR and the DAR
data are stored via the ED48 FDIMU during the flight. As expressed by the name of the
QAR, the QAR data is easily accessible. The data is often stored on Personal Computer
Memory Card International Association (PCMCIA) media or Secure Digital (SD) memory
cards, which are easy to be copied to the flight data analysis software. Furthermore, the
so-called ‘Wireless QAR’ (WQAR) allows the aircraft to transmit the data automatically
via the cellular network with the suitable infrastructure at the airport. Therefore, the
QAR data are quite easy to be copied or transmitted to the airline’s FDM system.

2.2 QAR Decoding

As the QAR data is encoded in binary, it has to be decoded into the engineering units
before it is used in the analysis. The QAR decoding process is one of the main functions
of the FDM software. Standards of the QAR data format are required for the decoding.
As mentioned in the last section, the onboard flight data is recorded based on the ARINC
standards. There are several ARINC standards existing for data transmission, encoding,
and decoding [65]. ARINC 429 is a predominant data transfer protocol and describes the
definition of the physical and electrical interface for bus communication in the aircraft.
ARINC 573 provides the data bus standard that defines the acquisition of flight data
for recording. As an update of ARINC 573, ARINC 717 is used for QAR decoding for
the majority of aircraft types. By utilizing the latest bus technologies, ARINC 767 was
developed for QAR decoding of new aircraft such as B787 and A350. And this ARINC
767 can be able to solve the asynchronous and low-frequency recording problems [66].
Owing to the fact that ARINC 717 is still widely used nowadays, an overview of decoding
QAR data based on the ARINC 717 standard is given in this section.

The original data in the QAR file is a binary data stream. According to the ARINC
717 format, the structure of the binary data stream can be divided into superframes,
frames, subframes, words, and bits [63, 67]. The data frame structure is visualized in
Figure 2.5. The bit is the smallest unit, which is 0 or 1. Twelve bits are packed into one
word. Depending on the capacity of the QAR and the FDAU, between 64 and 1024 words
are combined into a subframe. Each subframe is recorded in 1 second. A single frame
contains 4 subframes. Therefore, one frame is recorded in 4 seconds. 16 frames combine
a superframe, which becomes a binary data stream by repeating itself subsequently.

The related physical information in four different subframes can be independent, but each
frame corresponds to the same information only with different time steps. Therefore, a
recorded parameter has to occur once in a frame. It means the minimum sampling fre-
quency is 0.25 Hz. If the parameter occurs once in each subframe, the corresponding
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Figure 2.5: Data frame 3D structure of the QAR binary data stream [65].

sampling frequency is 1 Hz. The sampling frequency can be increased by repeating the
parameter in each subframe. 8 Hz or 16 Hz is commonly used as the maximum sampling
frequency. For some special parameters, such as departure and arrival airport, flight num-
ber, or aircraft type, they might change very slowly or do not change during flight. Those
parameters can be recorded in terms of the superframe parameter with 1/64 =0.015625
Hz. For the superframe parameters, the same position of each frame can store different
parameters. To be more precise, the superframe parameter can store 16 parameters with
a sampling rate of 1/64 Hz instead of one parameter recorded in 16 different time steps.

The decoding process is to convert the QAR binary data to the engineering values. Fig-
ure 2.6 shows an example of transformation between the binary data and the decimal
number. Six bits are used to record this parameter in this case. The corresponding deci-
mal value of the binary stream ‘110101’ is ‘53’. The bit with the lowest position is called
the ‘Least Significant Bit’ (LSB). In contrast, the ‘Most Significant Bit’ (MSB) denotes
the highest position [68]. LSB is referred to 20 in the example, and MSB is equal to 25.

To decode a specific parameter, the location of the corresponding bits in the binary data
stream should be known. First, the start position of each subframe needs to be identified.
Four sync words are used as markers for four subframes, respectively. They have a unique
value without any meaning of the aircraft. These sync words are presented in Table 2.2.
By identifying the location of the sync words, the 3D data frame structure of the QAR
binary data shown in Figure 2.5 is constructed.
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Figure 2.6: Transformation between a binary data and a decimal value.

Table 2.2: Sync words of subframes, source: [63]

Sync word Binary Octal Decimal Hexadecimal

Subframe 1 MSB 001001000111 LSB 1107 583 247
Subframe 2 MSB 010110111000 LSB 2670 1464 5B8
Subframe 3 MSB 101001000111 LSB 5107 2631 A47
Subframe 4 MSB 000111011011 LSB 6670 3512 DB8

However, the data can not be decoded yet after the constructed 3D structure, as the
recorded QAR data does not provide any information about the parameters, like the
name and the data type. Such information is given by the data frame layout (DFL),
which provides the necessary information of the parameters as below:

• Location of parameters (words and subframe number)

• Number of bits (including the start and the end bit location)

• Type and method of encoding (Binary coded decimal, discrete, char, linear,...)

• Functions to obtain the engineering values from the recorded binary data.

As an example, the data frame information for airspeed is given in Figure 2.7. According
to the specified words (19) and subframes (ALL(1, 2, 3, 4)), the locations of the bits for
the airspeed parameter in the 3D data frame structure are identified, and the bits can be
further converted to decimal values. Obviously, the airspeed is recorded at 1 Hz using 12
bits. Coding a 12-bit binary data is equivalent to a decimal value from 0 to 212−1 = 4095.
By the linear conversion, the decimal value from 0 to 4095 is equivalent to the engineering
value from 0 knots to 1024 knots. According to the available DFL, all other parameters
can be decoded into the engineering value by doing the same procedures. In the end, the
time series of the recorded flight parameters are obtained.
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Parameters AIRSPEED

Words 19

Sampling Rate 1 sample per second

Bits 12-1 (12 bits)

Frames ALL

Subframes ALL (1,2,3,4)

Units KNOTS

Minimum 0

Maximum 1024

Parameter
Type

• Linear
• Format: Y = 𝑚 ∗ 𝑋 + 𝑏

o Input in decimal 𝑋
o Output in engineering unit𝑌
o Precision𝑚 = 0.25006
o Offset 𝑏 = 0

Figure 2.7: Data frame information for airspeed [69].

2.3 QAR Data Preprocessing

After decoding the QAR data into engineering values, several data preprocessing steps are
commonly required in practice, such as QAR file splitting and airport/runway detection,
which are briefly introduced at first. The following subsections discuss the time points
and flight data measurements, which are usually used to describe operational behaviors.
Furthermore, the flight path reconstruction is also described to improve the QAR data
quality.

2.3.1 File Splitting

A QAR file usually records several flights data. It benefits data management and analysis
of flights to split the decoded flight time series of a QAR file into individual flights. The
pressure altitude recorded in an original QAR file is shown in Figure 2.8. It is clearly
seen that this QAR file includes three flights. The accurate split point of two flights can
not be distinguished directly only from the altitude data, as the altitude keeps almost
constant when the aircraft is on the ground. Theoretically speaking, flight parameters, like
ground speed or the engine rotation fan speed N1, can be used to detect the accurate split
point, as these parameters become or are close to zero after the aircraft stops completely.
However, in practice, the aircraft might stop recording the QAR data before the aircraft
or the engine stops completely. The recorded flight data in the QAR might not contain an
entire flight. Therefore, a file splitting criterion is required, and it usually is a synthetic
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judgment based on several variables, such as ground speed, engine N1, engine fuel flow,
and the logical variable like aircraft on the ground [67]. First, the aircraft on ground/air
can be distinguished when the ground speed is smaller than 20 m/s, or the recorded
signal of aircraft on the ground is positive. Then, the minimum of engine N1 and the
engine fuel flow, inside the time range of the aircraft on the ground, is found and the
corresponding time point is considered as the split point of two flights. Other parameters,
like wheel speed (if recorded), can be also integrated into the split algorithm to improve
the robustness and accuracy.

Figure 2.8: Pressure altitude time series of three flights in a QAR file.

2.3.2 Airport and Runway Detection

For an individual flight, the departure/arrival airport and runway of this flight are usually
discussed at first for flight data management and further takeoff and landing performance
analysis. However, this information might be not recorded directly in the QAR data. The
detection algorithm of the departure/arrival airport and runway is requested in practice,
which is based on the location parameters recorded in the QAR data. In addition, the
world airport database is necessary for the detection to provide the latitude and longitude
positions of the runway threshold and the runway heading. The world airport information
is available on the website [70]. For example, in the detection of the arrival runway,
the touchdown point is detected from the QAR data first. The recorded latitude and
longitude of the aircraft at the touchdown point are compared with the world runway
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database to find the closest airport and runway. Furthermore, the direction from the
runway threshold to the aircraft touchdown point is also computed, which is compared
with the runway heading to distinguish the close parallel runways shown in Figure 2.9.
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Figure 2.9: Runway detection in Hong Kong airport.

2.3.3 Time Points Detection

The operational requirements in different flight phases are not the same. According to
the recorded altitude, speed, configuration, and other variables in the QAR data, time
points of starting takeoff, initial climb, climb, cruise, descent, approach, and landing can
be derived. Then, the specific flight phase can be extracted based on these time points.

Figure 2.10: Time points calculation of flight phases in a flight.

Beyond the flight phase detection, many time points or their corresponding flight data
measurements are very important for flight safety analysis. One example is the touchdown
point during the landing phase. The distance from the runway threshold to the touchdown
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point, the so-called touchdown distance, is one of the contributing factors of runway
overrun. In addition, the attitude at the touchdown point is related to the incidents of
wingtip strike or tail strike. Measurements of the load factor increment and the vertical
rate of descent increment at the touchdown point indicate if the hard landing event occurs.
These mentioned touchdown performances rely on the accurate detection of the touchdown
point. Even an error of one second in the touchdown point detection might lead to a
100-meter deviation of the touchdown distance. A considerable variation of the attitude
and the load factor also exists in one second. Considering the measurement errors and
the low-frequency recording characteristics of the QAR data, it is difficult to determine
the touchdown point accurately. Therefore, a high-precise detection algorithm of critical
time points, like the touchdown point, is necessary. A model-based touchdown detection
algorithm is developed at FSD to detect the touchdown point more precisely [71, 72].

2.3.4 Flight Data Measurements

From the decoded time-series data, flight data measurements are derived to describe
operational behaviors [12]. As already mentioned in time points detection, flight data
measurements are usually defined as the recorded variable’s value at a specific time point.
In addition to that, measurements can be also calculated values based on the flight data.
According to the complexity of calculation, three types of measurements are considered [9].

Direct Measurements

The simplest type of measurements, the so-called direct measurement, is defined as the
recorded time series at a specific time point, such as the ground speed at the touchdown
point. As the ground speed is available in QAR data, the measurement of the ground
speed can be directly read out once the touchdown point is calculated. Therefore, the
main challenge is to calculate the time point accurately. The interpolation or smoothing
algorithms might be required due to the low-recording-frequency characteristics of the
QAR data.

Algebraic Measurements

Considering a variable, which is not recorded directly in the QAR, it might be obtained
by a simple algebraic calculation based on other recorded variables. For example, the air
density is usually not provided in the QAR data. Instead, the static pressure and the
temperature are commonly recorded directly. The air density can be calculated according
to the gas law [73] as follows:

ρ = P

RT
, (2.1)
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where P denotes the static pressure, T is the temperature, and R is the gas constant.
After the calculation based on Equation (2.1), the air density at a specific time point can
be obtained as a measurement.

Another example is the equivalent acceleration during the landing phase. The auto-brake
mode is selected in most landing cases of Boeing 747-8F. To describe the manual braking
behavior, the equivalent acceleration is proposed [9], which is one of the most important
contributing factors of runway overrun, see Section 2.5. Although the actual acceleration
varies during the manual braking, the equivalent acceleration can be calculated based on
the speed reduction as below:

ax,equ = v2
1 − v2

2
2t , (2.2)

where v1 denotes the ground speed at the touchdown point. v2 denotes the ground speed
of 80 knots, which is the controllable speed during taxi [74], referred to Section 2.5. t is
the duration of the aircraft deceleration from v1 to v2. By using Equation (2.2) in a flight,
the measurement of the equivalent acceleration of the landing is obtained.

Parameter Estimation

Unlike the above two types of measurements, the required measurement might not be
expressed explicitly based on the available variables in the QAR data, such as the vertical
wind speed, the aerodynamic coefficients of the aircraft, etc. These unknown parameters
or variables can be estimated using parameter estimation methods based on the maximum
likelihood principle. Although these parameter estimation methods have been widely
used in the estimation of aerodynamic coefficients from the flight testing data [75], there
are many challenges during the implementation using the QAR data. Compared to the
flight testing data, the QAR data are recorded in a low frequency and a low resolution.
Furthermore, the lack of dedicated maneuver in the operational flights results in lower
information contents in the QAR data than the flight testing data. Therefore, there are
no parameter estimation techniques provided in the current standard FDM software. A
heuristic parameter estimation approach for the QAR data is developed at FSD [76, 77].
To overcome the low information of the QAR data, this approach allows us to process
several flights simultaneously. For details, readers are referred to [77].

2.3.5 Flight Path Reconstruction

The recorded variables in the QAR have different recoding frequencies with low resolu-
tions. To obtain more accurate aircraft states, like position and speed, the flight path
reconstruction or the so-called data compatibility check is implemented to improve the
data quality. As the relations among aircraft states are encoded in the aircraft kinematic
equations, the flight path reconstruction can utilize these relations to obtain an optimal
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estimation of aircraft states without falsifying the recorded data. Extended Kalman Fil-
ter (EKF) has been widely used to estimate aircraft state in navigation field [78]. For
the offline trajectory reconstruction, the Rauch–Tung–Striebel (RTS) smoother is recom-
mended to get the optimal state estimation [79], which is a combination of a forward EKF
and a backward EKF. Landing trajectories reconstruction using the RTS smoother incor-
porated with instrument landing system deviation information and taxiway locations has
been developed by the flight safety group at FSD [71, 80]. The involved aircraft states
and measurements are introduced in this section. The general mathematical formulations
to describe the aircraft dynamic systems are shown as below:

state equation: .
x(t) = f(x(t), um(t)− ω(t),Θ), x(t0) = x0, (2.3)

output equation: z(t) = g(x(t),Θ) + ν(t), (2.4)

where f(·) denotes the state equation of aircraft motion. x(t) denotes the vector of aircraft
states. um is the vector of system input measurements with the input noise vector ω(t).
Besides x, Θ is the vector of the extended states, which denotes the unknown parameters.
z(t) denotes the vector of aircraft output measurements with the output noise vector ν(t).
The output measurements can be calculated using the output equation g(·) combined with
the aircraft states and the extended states. In the landing trajectories reconstruction [80],
the involved aircraft states are shown as below:

x = [uB, vB, wB, φ, θ, ψ, xN , yN , zN ]T , (2.5)

where uB, vB, and wB denote three components of the kinematic speed in B frame. φ, θ,
and ψ denote roll, pitch, and heading angle, respectively. xN , yN , and zN are the three
components of the position in the runway N frame. The input measurements contain
three accelerations and three angular rates as follows:

um = [ax, ay, az, p, q, r]T . (2.6)

Due to the existing biases in the measurements of accelerometers and gyroscopes, three
unknown acceleration biases and three unknown angular rate biases are defined as the
extended states Θ to estimate. In addition, the biases of the Global Positioning System
(GPS) measurements are also included in Θ as below:

Θ = [bx, by, bz, bp, bq, br, bx,GPS, by,GPS]T . (2.7)

Θ are assumed to be constant and will be estimated using the RTS smoother. The output
vector z(t) is composed of the measured variables from aircraft sensors as below:

z = [Vgs,
.
h, χ, φ, θ, ψ, xGPS, yGPS, hbaro,corrected, hRA, δLLZ,DDM , δGS,DDM ]T . (2.8)

These measurements: ground speed Vgs, vertical speed
.
h, track angle χ, three attitude

angles [φ, θ, ψ], GPS positions [xGPS, yGPS], and barometric altitude hbaro,corrected are re-
corded directly and can be also calculated using the x and Θ. In addition, the available
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radio altitude hRA combined with the terrain data [81] is integrated into the output equa-
tions as well. Furthermore, the localizer deviation δLLZ,DDM and the glideslope deviation
δGS,DDM are utilized when the Instrument Landing System (ILS) signal is available. Once
the state equation and the output equation are well defined, the RTS smoother algorithm
is implemented to obtain a better estimation of all states by considering the input noise
ω and the output noise ν. For the detailed algorithms of the RTS smoother, readers are
referred to [80].

Compared to the raw QAR data, the frequencies of the states are homogenized after
reconstruction. For the unknown parameters, not only the biases of accelerometers and
gyroscopes are estimated, but the unrecorded vertical wind speed can be also obtained.
The comparison of the raw and the smoothed wind speed data during the approach phase
is shown in Figure 2.11. It shows a good match between the raw and the smoothed
horizontal wind speed, which validates that the smoother algorithm works well. The
smoothed wind speed data is used in Chapter 5 and Chapter 6. Besides, results of the
flight path reconstruction could be applied to improve the accuracy of time point detection
and flight data measurements calculation.

Figure 2.11: The recorded and smoothed wind speed during the final approach phase in
one flight.

In addition, flight data management is also very important, as a huge amount of con-
fidential QAR data is required to be classified and stored. An IT infrastructure using
Hadoop Distributed File System (HDFS), MySQL, and MATLAB, is developed by the
Flight Safety working group at FSD. It is not the scope of the thesis, readers are referred
to Appendix B of [82].
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2.4 FDM Events

After the preprocessing of the QAR data, the obtained time points or flight data mea-
surements can be used directly for the FDM program. As described in the ICAO Manual
on Flight Data Analysis Programmes (FDAP) [11], the flight data analysis (FDA) mainly
involves three aspects:

“a) capturing and analyzing flight data to determine if the flight deviated
from a safe operating envelope; b) identifying trends; c) promoting action to
correct potential problems.”

The main objective of FDM is carried out by evaluating deviations of flight data mea-
surements exceeding certain thresholds. The threshold exceeded events, so-called FDM
events, are reported in the flight safety report to monitor the abnormal operations. The
statistics of the critical measurements related to the FDM events are also analyzed, for
example, the analyses and statistical summaries of Boeing 747-400 aircraft operational
flight data from 11,066 flights presented in [83]. The analyses enable FAA to reassess
existing certification criteria. According to the ATR FDM training report [84], threshold
exceeded detection from operational flight data is still the main approach to analyze flight
data. Besides, several severity categories for the FDM events, such as low, medium, and
high, are defined according to the different thresholds or the exceeding duration time.

A late touchdown is one example of FDM events, which might cause runway overrun.
The measurement of touchdown distance is extracted and monitored for this FDM event.
The histogram of the touchdown distance obtained from 1133 B747-8F flights is shown in
Figure 2.12. The corresponding distribution can be estimated to identify the probability
of the touchdown distance exceeding the touchdown zone limit.

Figure 2.12: Histogram of touchdown distance measurements from 1133 B747-8F flights
in ELLX airport.

27



2.5 Physical-based Incident Model

The touchdown zone limit is a severe threshold for a late touchdown. Other thresholds
for low and medium severities can be defined according to the touchdown distance dis-
tribution. The touchdown distance is an intermediate state of the aircraft. Before the
touchdown, the hidden causal factors contributing to the late touchdown event, such as
the flare maneuver, could be analyzed via the aircraft motion. After the touchdown, the
aircraft motion can be used to quantify the influence of touchdown distance on the runway
overrun. To mitigate potential problems of the FDM event, the physical-based incident
model is proposed to analyze the causal factors and also quantify the influence of the
FDM precursor on the incidents or accidents, which is discussed in the following section.

2.5 Physical-based Incident Model

The main advantage of the PA framework is that the operational flight data and physical-
based incident model are combined in order to assess the operational risk. After the
detailed discussion of flight data above, the physical-based incident model is introduced
using a runway overrun model in this section.

Before the incident modeling, the incident metric has to be defined firstly in the PA
framework. It is a special type of flight data measurement, which can be used to distin-
guish accident flights from normal flights. The incident metric could be defined based on
the incident/accident precursors, FDM events, or SPIs. In addition, the incident met-
ric must be a continuous variable. When the calculated incident metric is closer to the
safety threshold, the flight is closer to the incident region. Beyond the simple statistical
analysis of the incident metric, the physical-based incident model is built to map the
incident metric and its corresponding contributing factors. The operational uncertainties
of contributing factors and the incident model are combined. It allows us to estimate the
incident probability and also to quantify the influence of all contributing factors on this
event. One example of the developed incident model, the runway overrun model [9], is
given below.

Runway available length

Landing distance Stop margin

Figure 2.13: The stop margin as an incident metric for runway overrun, source: Fig-
ure 6-2 of [9].
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As shown in Figure 2.13, the stop margin SM is the distance between the end of the
runway and the stop position of the aircraft. It is used as the incident metric for runway
overrun. The safety threshold is 0 in this case as below:

Incident metric: SM = Lrwy − Lldg,
Safety threshold: 0,

(2.9)

where Lrwy is the runway available length. Lldg is the required landing distance. If the
incident metric is less than the safety threshold (SM < 0), the runway overrun incident
occurs. Lldg is influenced by aircraft states, runway conditions, pilots’ behaviors, and so
on. Lldg can be split into three phases: touchdown, deceleration, and maximum braking
phase, which are modeled respectively.

Lldg = dtd + d80 + dstop. (2.10)

In the first phase, the touchdown distance dtd, can be identified directly from the QAR
data. In the following deceleration phase, the aircraft ground speed decreases to a control-
lable speed (assumed to be 80 knots [74]) by using braking systems, like ground spoilers
and thrust reversers. d80 corresponds to the distance from the touchdown point to the
position that the ground speed reaches 80 knots. After the deceleration phase, the pi-
lots might keep the controllable speed to the taxiway. To calculate the required landing
distance, the maximum braking force is applied in the third phase. The virtual distance
dstop denotes the minimum required distance that the aircraft decelerates from 80 knots
to a stop. d80 and dstop are computed based on the aircraft motion driven by the external
forces. The longitudinal acceleration ax of the aircraft is modeled as below [43]:

ax = 1
m

(FP + FD + FG + FB) , (2.11)

where m is the landing mass. There are four types of external forces. FP denotes the
reverse thrust, and it depends on the time of reverser deployment tRevDpl and the average
reverser fan speed N1avg as below:

FP = 0.8
ρ
ρ0 fT (trev, N1avg), (2.12)

where fT is the function to calculate the reverse thrust, and it is corrected according to
the ratio between the local air density ρ and the standard atmospheric density ρ0.

The drag force FD is calculated as below:

FD = −1
2ρV

2
ASrefCD, (2.13)

where Sref is the reference wing area. CD denotes the drag coefficient. VA is the true
airspeed, and decrease during the landing along with the ground speed. The initial value
of VA can be computed based on its corresponding indicated airspeed VIAS, which is the
sum of the target approach speed Vapp and the measured approach speed deviation ∆Vapp.
Vapp is influenced by the configuration and the landing mass.
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2.5 Physical-based Incident Model

FG is the longitudinal component of the gravity along the runway, influenced by the
runway slope θrwy as follows:

FG = mg0 sin θRwy. (2.14)

The braking force FB driven by the landing gear is the product of the friction index µ
and the ground reaction force affected by the lift force L and the gravity:

FB = µ
(1

2ρV
2
ASrefCL −mg0 cos θrwy

)
. (2.15)

When the braking system is off, the µ is defined as the roll friction index. During the
deceleration phase, the Autobrake system is usually applied in most B747-8F flights, in
which the deceleration target value is commanded. The µ is controlled to maintain the
deceleration target value via the braking pressure. In the case of manual braking, the
equivalent acceleration ax,equ is calculated and approximated as the deceleration target
value. In the maximum braking phase, the maximum µ is applied based on the runway
conditions. In addition to that, the coefficients CL and CD are affected by the time of
deploying spoilers tsplr.

Furthermore, the initial ground speed is influenced by the wind speed VW and the true
airspeed VA. By integrating Equation (2.11) twice, d80 and dstop are obtained. Then, SM
can be computed based on Equation (2.9) and Equation (2.10).

In summary, all contributing factors mentioned above are mapped to the SM by the
physical-based runway overrun model. Measurements of all contributing factors can be
identified from the operational flight data as discussed in Section 2.3.4. With enough
flights, the distribution of contributing factors can be estimated, and the detailed results
are shown in Table 4.3 of Chapter 4. By combing the built runway overrun model and the
obtained distribution of contributing factors, the runway overrun probability can be pre-
dicted using advanced statistical methods. In addition, the sensitivity of all contributing
factors to the runway overrun can be also quantified.
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Chapter 3

Mathematical Preliminaries

3.1 Introduction

As mentioned in Section 1.2.2 and Section 2.5, the incident metric in the Predictive Anal-
ysis is defined as a continuous variable. If the incident metric is less than the safety
threshold, the incident occurs. According to the aircraft motion, pilot behaviors, and
operational procedures, the incident model is built to describe the relationship between
the contributing factors and the incident metric. It can be expressed using the mathe-
matical equation: Y = g(X), where g(·) denotes the incident model. The model input
X denotes the contributing factors to the incident. Y is the predefined incident metric.
The uncertainties of the contributing factors are obtained from the operational flight data,
which can be quantified in terms of a probabilistic manner. Section 3.2 provides the input
uncertainty quantification methods. Afterward, the incident probability will be estimated
via propagating the uncertainties in the model input to the model output. An overview of
the mathematical theory in rare event probability estimation is described in Section 3.3.
In order to identify the key factors of the incident and provide mitigation strategies for the
incident, the global sensitivity analysis method is provided in Section 3.4. Furthermore, a
surrogate model based on the polynomial chaos expansion is introduced to speed up the
uncertainty propagation in Section 3.5.

3.2 Input Uncertainty Quantification

3.2.1 Random Variables and Distributions

In daily flight operation, the observations of the flight data measurements vary a lot,
for example, the ground speed at the touchdown point. They can be mathematically
expressed by a random variable. A random variable X(ω) is defined as a function that
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maps the sample space Ω of a random observation to the real numbers R [85]. ω is
one realization in Ω. The uncertainties of X(ω) can be described using the probability
distribution, which is the probability of the random variable taking certain values. There
are continuous and discrete variables. If X : Ω → R presents a discrete variable, its
probability distribution is described by the probability mass function pXd : R→ [0, 1]:

Pr(X = xj) = pXd(xj) = Pr(ω ∈ Ω : X(ω) = xj). (3.1)

If X : Ω → R is a continuous random variable, the probability distribution is described
by its probability density function (PDF) pX(x) : R→ [0,∞):

Pr(a ≤ X ≤ b) =
∫ b

a
pX(x)dx. (3.2)

Furthermore, the cumulative distribution function (CDF) describes the probability of
a random variable X less than or equal to a certain value x for a given probability
distribution. The CDF of a discrete random variable is:

FX(x) =
∑
xj≤x

pXd(xj). (3.3)

For a continuous random variable, the CDF is defined as below:

FX(x) =
∫ x

−∞
pX(t)dt. (3.4)

There are many distribution families for the discrete and the continuous probability dis-
tributions. The best-fitting distribution family and parameters can be estimated based
on the observations using the maximum likelihood method. We use the fi(xi) and FXi(xi)
to denote the marginal PDF and CDF with respect to Xi. When d-dimensional random
variables are independent distributed, the joint probability density function fX(x) can
be expressed as:

fX(x) =
d∏
i=1

fi(xi). (3.5)

3.2.2 High Dimensional Dependence Modeling

A joint probability distribution density fX(x) for dependent random variables does not
equal to the product of marginal PDFs. In practice, the multivariate Gaussian distri-
bution with a correlation matrix is widely used. However, they cannot capture the tail
dependence. In addition, the joint probability distribution is difficult to express analyt-
ically when the marginal PDFs are arbitrary and different to each other. A vine copula
approach is proposed in [27, 28] to model the high dimensional dependence. According to
the Sklar theorem [86], the d-dimensional joint probability distribution function FX(x)
can be decomposed into a copula distribution function C and d marginal CDFs FXi(xi)
as below:

F (x1, x2, ..., xd) = C
(
FX1(x1), FX2(x2), ..., FXd(xd)

)
. (3.6)
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Since FXi(xi) is the marginal CDF corresponding to the random variable Xi, the obser-
vation of FXi(xi) should follow the uniform distribution. C describes the dependence
structure among the d random variables. The corresponding joint distribution density
function is:

f(x1, x2, ..., xd) = ∂dF (x1, x2, ..., xd)
∂x1x2...xd

= c
(
FX1(x1), FX2(x2), ..., FXd(xd)

) d∏
i=1

fXi(xi),
(3.7)

where c is called copula density function. Compared to the joint probability density
function, the c eliminates the impact of marginal distributions. For independent variables,
c equals 1 and Equation (3.7) becomes Equation (3.5). In case that all inverse marginal
CDFs exist, C can be easily constructed using the joint CDF F and inverse marginal
CDFs F−1

Xi
(ui) based on Equation (3.6) as below:

C(u) = C(u1, u2, . . . , ud) = F (F−1
X1 (u1), F−1

X2 (u2), ..., F−1
Xd

(ud)). (3.8)

Copula Data in Three Scales

In the study of the copula, there are three scales for the random variable [28]: X-scale,
U -scale, and Z-scale. The original random variable Xi denotes the data in the X-scale.
The pair plots in the X-scale represent varying in the joint probability density of the
corresponding two variables, which mixes the dependence and marginal effects. The
probability integral transform of the original data based on the marginal CDFs are the
copula scale variables, denoted by U as below:

Ui = FXi(Xi), (3.9)

where Ui follows the standard uniform distribution U(0, 1). Furthermore, the normalized
scale of variables, Z-scale, is obtained by transforming the Ui into the standard normal
space as below:

Zi = ψ−1(Ui), (3.10)

where ψ−1(·) is the inverse CDF of the standard normal distribution. Zi follows the stan-
dard normal distribution N (0, 1). The behavior of dependence is obvious in the Z scale
pair plot, which can also be compared with the known bivariate normal variables. A case
of pair sample plots in three scales is illustrated in Figure 3.1. X1 obeys the exponential
distribution with the mean of 0.5, and X2 follows the standard normal distribution. Two
variables follow the Gaussian copula with a correlation of 0.7. Small letter xi, ui, and
zi, denote the realization of random variable in the X, U , and Z scale, respectively. In
the X-scale sample plot, one mostly observes the features of marginal distributions and
can not identify the underlying dependence. The feature of dependence in U -scale and
Z-scale is more obvious. Furthermore, one can directly know that the two variables are
mostly linear correlated from the Z-scale sample plot.
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Figure 3.1: Pair samples plot in three scales, source: Fig 1.7 of [28]

Bivariate Copula

As an example, a bivariate Gaussian copula is constructed using a two-dimensional joint
Gaussian distribution. Assume that the two variables X1 and X2 follow the standard
Gaussian distribution. The corresponding PDF φ and CDF Φ are as follows:

φ(x) = 1√
2π
exp(−x

2

2 ); Φ(a) =
∫ a

−∞
φ(x)dx. (3.11)

The joint probability distribution of X1 and X2 follow the multivariate Gaussian distri-
bution with the correlation parameter ρ and the mean vector (0, 0). The joint PDF φρ

and CDF Φρ are as below:

φρ(x1, x2) = 1
2π
√

1− ρ2 exp

(
−x

2
1 − 2ρx1x2 + x2

2
2(1− ρ2)

)
;

Φρ(a, b) =
∫ a

−∞

∫ b

−∞
φρ(x1, x2)dx2dx1.

(3.12)

Therefore, the bivariate Gaussian copula is derived based on Equation (3.8) as below:

C(u) = C(u1, u2) = Φρ(Φ−1(u1),Φ−1(u2)). (3.13)

Based on Equation (3.7), Equation (3.11), and Equation (3.12), the bivariate Gaussian
copula density is derived as below:

c(u1, u2) = φρ(x1, x2)
φ(x1)φ(x2)

= 1√
1− ρ2 exp

(
2ρΦ−1(u1)Φ−1(u2)− ρ2(Φ−1(u1)2 + Φ−1(u2)2)

2(1− ρ2)

)
.

(3.14)

Figure 3.2 shows the CDF and PDF of the bivariate Gaussian copula. By using the same
multivariate Gaussian distribution with ρ = 0.7, the relationship between joint density,
copula density, and marginal PDFs in Equation (3.7) is illustrated in Figure 3.3. One
realization of two variables: (x1 = −0.1, x2 = −0.7) is also denoted by the red point in
Figure 3.3. It is easy to see the positive correlation between two variables from the feature
of the copula density, compared to the joint probability density.
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(a) The CDF of the bivariate Gaussian copula. (b) The PDF of the bivariate Gaussian copula.

Figure 3.2: the CDF and PDF of the bivariate Gaussian copula with the correlation
coefficient ρ = 0.7.

𝑓 𝑥1, 𝑥2 = 𝑐 𝐹1 𝑥1 ,𝐹2 𝑥2 ⋅ 𝑓1 𝑥1 ⋅ 𝑓2(𝑥2)

Figure 3.3: Illustration of Sklar theorem, modified from [82]

Besides the Gaussian copula, there are many different bivariate copula distribution fam-
ilies, such as, elliptical copula families, Archemedian copula families, and extreme value
copula families [28]. Table B.2 in Appendix B.2 lists all available parametric bivariate cop-
ula families in VineCopula R package [87]. As one of parametric bivariate Archimedean
copulas with a single parameter, the bivariate Clayton copula is given as an example. The
bivariate Clayton copula density function is shown as below [28]:

c(u1, u2) =
(
u−δ1 + u−δ2 − 1

)− 1
δ , (3.15)

where δ ∈ (0,∞).The degree of dependence is controlled by δ. δ → 0 corresponds
independence of two variables. The higher the δ is, the stronger the dependence is.
Figure 3.4 shows the Clayton copula density with δ = 1 and δ = 0.1, respectively.
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(a) The Clayton copula density with δ = 1. (b) The Clayton copula density with δ = 0.1.

Figure 3.4: The Clayton copula density.

Vine Copula

For high dimensional probability, the vine copula approach allows us to construct the
high-dimensional density function c using d(d−1)

2 bivariate copula density functions by the
conditional probability and the Rosenblatt transformation [88]. Therefore, a combination
of a vine copula structure and several bivariate copulas can be used to describe the high
dimensional dependence. As a demonstration, a joint distribution with three random
variables is constructed using three bivariate copula density functions with a vine copula
structure. To simplify the notation, the marginal density function fXi and the marginal
distribution function FXi are replaced by fi and Fi, respectively.

For two variables X1 and X2, which follow the joint probability density f(x1, x2), the
conditional probability density f2|1 is defined by

f2|1(x2|x1) = f(x1, x2)
f1(x1) , (3.16)

where f1(x1) > 0. f2|1(x2|x1) describes the distribution of X2 given that X1 = x1. By
multiplying f1(x1) in Equation (3.16), the joint probability density can be rewritten as
below:

f(x1, x2) = f2|1(x2|x1)f1(x1). (3.17)

Based on the definition of the conditional probability density, the joint probability density
f of three random variables X1, X2, X3 can be derived as below:

f(x1, x2, x3) = f3|12(x3|x1, x2)f2|1(x2|x1)f1(x1). (3.18)

36



Chapter 3: Mathematical Preliminaries

According to the Equation (3.7), joint density functions f2|1(x2|x1) and f3|12(x3|x1, x2)
can be separated into copula densities and marginal densities:

f2|1(x2|x1) = f12(x1, x2)
f1(x1) = c12(F1(x1), F2(x2))f2(x2),

f3|12(x3|x1, x2) = c13;2(F1|2(x1|x2), F3|2(x3|x2))f3|2(x3|x2)
= c13;2(F1|2(x1|x2), F3|2(x3|x2))c23(F2(x2), F3(x3))f3(x3),

(3.19)

where cij;k is the conditional copula density between two random variables Xi and Xj for
a given Xk. After substitution of f2|1(x2|x1) and f3|12(x3|x1, x2) in Equation (3.18), the
joint probability density f is represented as the product of three bivariate copula density
functions and three marginal probability density functions.

f(x1, x2, x3) = c13;2(F1|2(x1|x2), F3|2(x3|x2))
× c23(F2(x2), F3(x3))× c12(F1(x1), F2(x2))
× f1(x1)× f2(x2)× f3(x3),

(3.20)

where F1|2(x1|x2) and F3|2(x3|x2) are conditional distributions. They are computed based
on the partial derivative of the copula function [89]:

Fi|j(xi|xj) =
∫ xi

−∞
fi|j(xi|xj)dxi =

∫ xi

−∞

fij(xi, xj)
fj(xj)

dxi =
∫ xi

−∞
fij(xi, xj)dxi ·

1
fj(xj)

=∂Fij(xi, xj)
∂xj

· 1
fj(xj)

= ∂Fij(xi, xj)
∂uj

· ∂uj
∂xj
· 1
fj(xj)

=∂Cij(ui, uj)
∂uj

= Ci|j(ui|uj).

(3.21)

The graphical structure of vine copula is introduced in [90] to help organize the vine
structure. Figure 3.5(a) illustrates the vine copula structure of Equation (3.20).

1,2

1,3;2

1 2 3

2,3

(a) The vine structure in Equation (3.20).

1,3

1,2;3

1 3 2

2,3

(b) The vine structure in Equation (3.22).

1,2

2,3;1

2 1 3

1,3

(c) The vine structure in Equation (3.23).

Figure 3.5: The graphical structure of vine copula in three dimensions.
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It needs to be mentioned that the construction in Equation (3.20) is not unique. f(x1, x2, x3)
can also be constructed in another two ways shown in Equation (3.22) and Equation (3.23).
The corresponding vine structures are illustrated in Figure 3.5.

f(x1, x2, x3) = c12;3(F1|3(x1|x3), F2|3(x2|x3))
× c13(F1(x1), F3(x3))× c23(F2(x2), F3(x3))
× f1(x1)× f2(x2)× f3(x3).

(3.22)

f(x1, x2, x3) = c23;1(F2|1(x2|x1), F3|1(x3|x1))
× c12(F1(x1), F2(x2))× c13(F1(x1), F3(x3))
× f1(x1)× f2(x2)× f3(x3).

(3.23)

The three-dimensional construction of vine copula is simple and three construction struc-
ture are available. However, the construction structure becomes complex for high dimen-
sional cases, and there are many construction structure candidates. To deal with the high
dimensional pair copula construction, the paper [91] proposed a sequential strategy to
obtain the most suitable construction structure. Currently, there are C-vine, D-vine, and
R-vine construction structures available in the R package ‘rvinecopulib’ [92].

Copula Estimation

To study the dependence among several random variables using a copula approach, the
appropriate marginal distributions should be estimated first. Table B.1 lists well-known
one-dimensional distribution families. Based on the maximum likelihood principle, the
best-fitting distribution family and the unknown parameters θ are estimated for the given
observations of the random variables. As shown in Figure 2.12, the best-fitted distribution
of the touchdown distance is obtained. The CDF and PDF of the ith variable are denoted
by Fi(xi) and fi(xi) as before. The unknown parameters in the CDF or PDF for the ith
variable are denoted by θi.

Bivariate Copula Estimation For the two-dimensional dependence, the best-fitting
copula and corresponding parameters can be estimated subsequently after the marginal
distributions are obtained. Unknown parameters in the copula family are denoted by δ.
Observations are the measurements of the two random variables, denoted by (x1,j, x2,j),j =
1, 2, ..., n. n is the number of the measurements. The estimation procedure is shown as
below:

1. The so-called pseudo copula data (û1,j, û2,j) are obtained via:

(û1,j, û2,j) = (F1(x1,j), F2(x2,j)), j = 1, 2, ..., n. (3.24)

38



Chapter 3: Mathematical Preliminaries

2. For a chosen bivariate copula candidate c, the corresponding unknown parameters
δ in c are estimated by using the maximum likelihood method. The maximum
likelihood estimator δML maximizes

L(δ|u) =
n∑
j=1

log c(û1,j, û2,j; δ), j = 1, 2, ..., n. (3.25)

3. Different bivariate copula families in Table B.2 are used in the step 2, while the
independent cumulative distribution function mentioned in Table B.3 are also taken
as a candidate to distinguish if variables are independent [28]. The best-fitting
bivariate copula or the independent case are selected based on the criteria such
as Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC)
in which the number of unknown parameters are taken into account besides the
maximum likelihood [27].

Vine Copula Estimation When it comes to the high dimensional dependence, the
vine copula structure is chosen as mentioned in Section 3.2.2. The three dimensional
joint distribution is used as an example to describe the estimation procedures. The vine
copula structure of three variables in Equation (3.20) is used. Similar to the estimation
procedure of bivariate copula, the pseudo copula data (û1,j, û2,j, û3,j) are obtained first.
Unknown parameters are denoted by δ = (δ12, δ23, δ13;2), which corresponds to the copula
density c12, c23, and c13;2 in Equation (3.20), respectively. The unconditioned bivariate
copula density c12 and c23 can be estimated based on the procedure above from the pseudo
copula data (û1,j, û2,j) and (û2,j, û3,j). The challenge part is to estimate the conditional
bivariate copula c13;2. By using the estimated δ12 and δ23, the pseudo observations for
conditional copula c13;2 are computed via:

v̂1|2,j = F1|2(x1,j|x2,j, δ̂12) = C1|2(û1,j|û2,j, δ̂12);
v̂3|2,j = F3|2(x3,j|x2,j, δ̂23) = C3|2(û3,j|û2,j, δ̂23),

(3.26)

where C1|2 and C3|2 are computed based on the derivative of copula distribution with
respect to the conditioned variable as below:

Ci|j(ui|uj) = ∂Cij(ui, uj)
∂uj

= ∂

∂uj

∫ ui

0

∫ uj

0
cij(ui, uj)duiduj =

∫ ui

0
cij(ui, uj)dui. (3.27)

According to the simplified assumption [28], c13;2(u1, u3;u2) = c13;2(u1, u3) holds for all
conditioning value u2. The parameter δ13;2 can be estimated based on the pair data
(v̂1|2,j, v̂2|3,j). The sequential and maximum likelihood estimation method is applied. The
sequential estimation is shown as below:

1. Estimate δ12 from (û1,j, û2,j), j = 1, 2, ..., n according to the estimation procedure of
bivariate copula mentioned above;
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2. Estimate δ23 from (û2,j, û3,j), j = 1, 2, ..., n according to the estimation procedure of
bivariate copula mentioned above;

3. Calculate pseudo observations (v̂1|2,j, v̂3|2,j) using Equation (3.26) and Equation (3.27);

4. Estimate δ13;2 from (v̂1|2,j, v̂3|2,j), j = 1, 2, ..., n according to the estimation procedure
of bivariate copula mentioned above.

3.2.3 Sampling Methods

As mentioned above, the input uncertainties are quantified based on the observation data
via statistical modeling, such as probability distribution. And they will be further propa-
gated through the model. Before evaluating the model, the necessary step is to generate
realizations from the estimated probability distribution. Three sampling techniques for
the univariate case are mentioned at first, followed by the copula sampling method with
respect to the multivariate case.

Inverse Transformation Method

The inverse transformation method is commonly used if the CDF of the random variable
is analytically invertible. In this case, the direct sampling method is to transfer the sample
from the uniform space to the original X space by the inverse CDF of x:

x = F−1(u), (3.28)

where u is the generated pseudo random number uniformly distributed in [0, 1]. The
illustration is shown in Figure 3.6.

Figure 3.6: Inverse transformation sampling
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Rejection Sampling

The CDF of xmight be not analytically invertible, and the distribution may be only known
point-wise. In that condition, the direct inverse transformation sampling does not work.
One indirect sampling method is called rejection sampling. For a target distribution fX(x)
that we will sample from, if we can find an arbitrary PDF π(x) that satisfies kπ(x) ≥ fX(x)
for all x with k ≥ 1, the rejection sampling can be applied to generate samples following
fX(x). The π(x) is called a proposal PDF to generate candidates at first. The candidates
are accepted with a probability of fX(x)/kπ(x). Finally, the accepted samples follow the
target PDF fX(x). Algorithm 1 describes the detailed procedure.

Algorithm 1 Rejection sampling’s algorithm
1: Choose a proposal PDF π(x)
2: Find the minimum constant k that satisfies kπ(x) ≥ fX(x) for all x with k ≥ 1 (see

Equation (3.29))
3: Set j = 1, and the required number of samples N
4: Generate a sample candidate v from π(x) using the inverse CDF transformation men-

tioned in Section 3.2.3
5: Generate a number u from U(0, 1)
6: if u ≤ fX(v)/kπ(v) then
7: xj = v

8: j = j + 1
9: else

10: Reject v
11: end if
12: Repeat step 4 to step 11 until j ≥ N

The constant k mentioned in Algorithm 1 can be calculated by letting k equals the
maximum ratio of fX(x) to π(x) as below:

k = max
(
fX(x)
π(x)

)
, for π(x) > 0. (3.29)

An example of sampling from a half-normal standard distribution is given to demonstrate
the rejection sampling procedure. The PDF of the half normal distribution is shown as
below:

fX(x) =
√
σ

2 exp(−x
2

2 ), x ≥ 0. (3.30)

A exponential distribution is chosen as the proposal PDF as below:

π(x) = exp(−x). (3.31)
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To calculate the minimum k to satisfy kπ(x) ≥ fX(x), the maximum fX(x)/π(x) is
calculated. By letting (

fX(x)
π(x)

)′
=
(√

σ

2 exp(−x
2

2 + x)
)′

= 0, (3.32)

x = 1 is obtained. Therefore,

k = max
(
fX(x)
π(x)

)
= fX(1)

π(1) = 1.315. (3.33)

Afterward, samples are generated based on the step 3 to 12 in Algorithm 1. An illustration
of the rejected and accepted candidates is shown in Figure 3.7.

Figure 3.7: Rejection sampling

The coordinate of the candidates is (v, kπ(v)u). The acceptable candidates are located
inside the area covered by the target PDF uniformly. A proof that the accepted candidates
follow the target distribution is given as follows. Assume that u and v follow the joint
PDF fuv(v, u). v follows the proposal PDF π(v), and u is uniformly distributed inside the
range (0, kπ(v)). fuv(u, v) is computed as below:

fuv(u, v) = fv(v)fu|v(u|v) = π(v) · 1
kπ(v) = 1

k
, 0 ≤ u ≤ kπ(v). (3.34)

Therefore, the (u, v) follows the uniform distribution in the area: A = {(u, v), 0 ≤ u ≤
kπ(v)}. Following the procedure in Algorithm 1, the acceptable area follows the uniform
distribution on B = {(u, x), 0 ≤ u ≤ fX(x)}. The density function (u, x) is:

fux(u, x) = 1, 0 ≤ u ≤ fX(x). (3.35)

The marginal distribution of fux(u, x) related to x can be derived as below:∫ fX(x)

0
fux(u, x)du =

∫ fX(x)

0
1du = fX(x). (3.36)

Therefore, the accepted samples follow the target distribution fX(x).
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Markov Chain Monte Carlo

In rejection sampling method, there is no sample generated when the sample candidate
is rejected. Therefore, a more efficient sampling technique is widely used, called Markov
Chain Monte Carlo (MCMC). Given a Markov chain whose stationary distribution is the
target distribution fX(x), the generated states in the chain will follow fX(x), but they
are not independent [30]. A well-known Metropolis-Hasting (MH) algorithm is described
in Algorithm 2 to generate a required Markov chain [93].

Algorithm 2 Metropolis-Hastings algorithm
1: Given the current state xc
2: Generate a sample candidate v from a proposal PDF q(v|xc) (see Equation (3.37))

using the inverse CDF transformation
3: Generate a sample u from U(0, 1):
4: Compute the acceptance ratio: α(xc, v) = min

{
1, fX(v)q(xc|v)

fX(xc)q(v|xc)

}
5: if u ≤ α(xc, v) then
6: xc+1 = v

7: else
8: xc+1 = xc

9: end if
10: c = c+ 1
11: Repeat step 2 to step 5 to obtain a sequence of dependent random variables xc.

When the generated candidate v is rejected, the previous state is used as the current state.
After a burn-in period [93], the sequence of states in the Markov chain will approximately
follow the target distribution fX(x). A random walk sampler is a simple example of
MH-based MCMC sampling algorithms. The proposal PDF in the random walk sampler
is:

q(v|x) = 1
σ
ψ
(
v − xc
σ

)
, (3.37)

where xc is the current state. ψ is the standard normal distribution. σ denotes the
standard deviation. Therefore, the proposal state v of a random walk is given by:

v = xc + ξ, (3.38)

where the random variable ξ follows the normal distribution N (0, σ2). As an example, the
random walk sampler is used to generate samples from a half-normal standard distribution
shown in Equation (3.30). After a burn-in period, the distribution of generated samples
will converge to the stationary that samples follows the target distribution. In order to
visualize the convergence of the algorithm, the histograms of generated samples using the
random walk sampler are shown in Figure 3.8. Three different values of σ: 0.1, 1, and
10 are chosen as the standard deviation of the proposal distribution. Since the burn-in
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period in MCMC algorithms exists, four different numbers of samples: 1000, 2000, 5000,
and 10000 are chosen to draw here in each column, respectively. Figure 3.8 shows the
histogram of 2000 samples in the case of σ = 1 has converged to the target distribution,
while the histograms of samples, in the cases of σ = 0.1 and σ = 10, are close to the target
distribution until the number of samples goes to 10000. It is intuitively clear that the σ
of the proposal distribution influences the convergence speed of the MCMC algorithm.

Figure 3.8: Histograms of samples using the MH random walk sampling

The convergence speed of the MCMC algorithm is influenced by the efficiency of the
MCMC estimator described in Appendix C. As shown in Equation (C.12), the efficiency
of the MCMC estimator depends on the autocorrelation coefficients ρ(k) of samples in
the Markov chain. The ρ(k) are calculated as below based on Equation (C.6):

ρ(k) = sk
s0

=
1
n

∑N−k
i=1 (xi − x̄)(xi+k − x̄)

1
n−1

∑N
i=1(xi − x̄)2 , (3.39)

where s0 is the sample variance of states, sk is the sample autocovariance, and x̄ is the
sample mean of states in the Markov chain. The sample autocorrelations ρ(k) calculated
based on 1000 samples are shown in Figure 3.9. The sample autocorrelations in the
case of σ = 1 are lower than the others. It also validates that the σ of the proposal
distribution influences the autocorrelation of samples, and further influences the efficiency
of the random walk sampler. The corresponding sample trace plots are also drawn in
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Figure 3.9. The traces plots show that the MCMC sampler will propose small moves for
the smaller σ. These proposed candidates ν have a high correlation with the previous
states, and these candidates will be almost accepted since the acceptance ratio α is high
due to the continuity of the target PDF fX(x) and the proposal PDF q(v|x). However,
this causes the algorithm to explore the entire state space very slowly and therefore takes
a long time to converge to its target distribution. For the larger σ, the MCMC sampler
will propose large moves to regions where the acceptance ratio α is small. Many proposed
candidates are rejected and the previous states are used for large numbers of iterations.
This also leads to high correlations among states in the chain. Hence, the larger σ also
causes a slow convergence speed to the stationary distribution.

Figure 3.9: Sample trace plots and sample autocorrelation plots

Therefore, an optimal value of σ might exist where the MCMC sampler performs opti-
mally. The solution is to select an optimal σ such that the corresponding acceptance ratio
α is also optimal since that too small α indicates that there are many repeated samples
in the generated Markov chain, while the too large α means that the sample trace of the
chain moves very slowly. To visualize the optimal σ and the optimal α, the MCMC sam-
pler is used to generate several chains with 10000 samples by using different proposed σ
from 0.1 to 10 with the interval width of 0.1. The measure of MCMC estimator’s efficiency
eff mentioned in Appendix C is calculated based on Equation (C.12). Furthermore, the
average acceptance ratio ᾱ of samples is also calculated by counting the number of ac-
cepted proposal candidates and dividing the total number of samples. Figure 3.10 shows
the relation of the MCMC efficiency with the proposal standard deviation and accep-
tance ratio. Results show that the highest efficiency of the MCMC algorithm is located
around the σ = 2 and ᾱ = 0.4. Noticed that the proposal σ is used to generate samples
X, but the autocorrelation ρY (k) is related to the output yi directly not xi as shown in
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Figure C.1. Therefore, the optimal σ is affected by the specific function Y = g(X) [94].
Instead of σ, researchers have proved that the existing optimal acceptance ratio for the
MH-based random walk is 0.44 for one-dimensional cases and 0.23 for multidimensional
cases [95, 96]. The optimal acceptance ratio is not influenced by the function Y = g(X).
In order to improve the efficiency of the MCMC algorithm, the strategy in practice is
to obtain an optimal α of 0.44 for one dimension and 0.23 for multi-dimensions via in-
creasing or decreasing the σ of the proposal distribution. This result will be used later in
Section 3.3.3.

Figure 3.10: The relation of the efficiency measure of the MCMC algorithm, the stan-
dard deviation of the proposal distribution, and the average acceptance ratio of sample
candidates

Copula Sampling

Rosenblatt proposed a transformation in [88] to generate dependent samples from a mul-
tivariate distribution via the inverse CDF of the conditional distributions. When the
multivariate joint distribution is constructed using the vine copula approach, all bivari-
ate copula functions are available. The dependent samples are generated sequentially
using the inverse CDF of the conditional distributions obtained from the bivariate copula
functions. The sequential generation procedure is shown in Algorithm 3.

The conditional distributions Cd|d−1,...,1 are computed using the so-called h-functions and
the recursive relationship [28]. For the unconditional bivariate copula fucntion Cij(ui, uj),
the h-function is defined to denote the conditional distribution Ci|j in Equation (3.21):

hi|j(ui|uj) = Ci|j(ui|uj) = ∂Cij(ui, uj)
∂uj

. (3.40)

Similarly, Cj|i is denoted by hj|i(uj|ui). Notice that the h functions are directly obtained
by calculating the partial derivative of the copula functions, which are known in the vine
copula.
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Algorithm 3 Generate dependent samples from a vine copula, source:Theorem 6.2 of [28]
1: Generate n independent samples wi,j from the U [0, 1] for each dimension i, respec-

tively. i = 1, 2, ..., d, j = 1, 2, ..., n;
2: u1,j = w1,j;
3: u2,j = C−1

2|1(w2,j|u1,j);
4: ...
5: ud,j = C−1

d|d−1,...,1(wd,j|ud,j, ..., u1,j);
6: Collect the dependent samples in U -scale: {(u1,j, u2,j, ...u1,d), j = 1, 2, ...n};
7: Transfer ui,j to xi,j via the inverse marginal CDFs: xi,j = F−1

i (ui,j);
8: Collect the dependent samples in X-scale: {(x1,j, x2,j, ...x1,d), j = 1, 2, ...n};

For the conditioned copula functions in the vine copula, let Cea,eb;De(w1, w2) denotes the
conditioned bivariate copula that describes the dependence between ea and eb under the
conditioning variables De. Then the conditional probability of ea given eb under the
conditioning variables De is described using the notation of h-function as below:

hea|eb;De(w1|w2) = ∂Cea,eb;De(w1, w2)
∂w2

, (3.41)

while the conditional probability of eb given ea under the conditioning variables De is
denoted by heb|ea;De(w2|w1). All h functions are one-dimensional CDF, and h−1 denotes
the inverse CDF of h. An example of three-dimensional vine copula is used to illustrate
the calculation of Cd|d−1,...,1 in the procedure of Algorithm 3. A structure of 3-dimensional
vine copula with the construction functions are redrawn in Figure 3.11 based on Figure 3.5
and Equation (3.23) mentioned before. The input variables in X scale are denoted by
(x1, x2, x3). (u1, u2, u3) is the corresponding variables in U scale. v2|1 and v3|1 are pseudo
observations mentioned in Equation (3.26).

𝑐12

𝑐23;1

2 1 3

𝑐13

𝑓 𝑥1, 𝑥2, 𝑥3 = 𝑐23;1 𝐹2|1 𝑥2 𝑥1 ,𝐹3|1 𝑥3 𝑥1

× 𝑐12(𝐹1 𝑥1 ,𝐹2(𝑥2)) × 𝑐13(𝐹1 𝑥1 ,𝐹3(𝑥3))
× 𝑓1 𝑥1 × 𝑓2 𝑥2 × 𝑓3 𝑥3

where
𝑢1 = 𝐹1 𝑥1 , 𝑢2 = 𝐹2 𝑥2 , 𝑢3 = 𝐹3 𝑥3
𝑣2|1 = 𝐹2|1 𝑥2 𝑥1 = 𝐶2|1 𝑢2 𝑢1
𝑣3|1 = 𝐹3|1 𝑥3 𝑥1 = 𝐶3|1 𝑢3 𝑢1

𝑣2|1 = ℎ2|1 𝑣3|1 = ℎ3|1

𝑢2 𝑢1 𝑢3

𝑥1𝑥2 𝑥3

ℎ3|2;1

⇐ 𝑤1

⇑
𝑤2

⇐ 𝑤3

(1)

(2)

(3)

Figure 3.11: A structure of 3-dimensional vine copula with the construction functions

Based on Algorithm 3, the sequential procedure of generating three dependent samples is
implementation. wi are first generated from the U [0, 1] in the step 1 and will be assigned
to different variables in the following steps. The sequential assignment of wi is also
illustrated in Figure 3.11 marked in red color. In the step 2, Let u1 = w1. In the step 3,
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the conditional copula distribution C2|1, denoted using h2|1, is the one-dimensional CDF of
u2 given U1 = u1, which is computed from copula function C12 based on Equation (3.40).
Let w2 = h2|1(u2|u1). Therefore,

u2 = h−1
2|1(w2|u1) = h−1

2|1(w2|w1). (3.42)

Since the v2|1 = C2|1(u2|u1), then v2|1 = w2. Based on the copula function C23;1(v2|1, v3|1),
the h3|2;1(v3|1|v2|1) is obtained based on Equation (3.41). Let w3 = h3|2;1(v3|1|v2|1), then

v3|1 = h−1
3|2;1(w3|v2|1) = h−1

3|2;1(w3|w2). (3.43)

Due to the fact that v3|1 = C3|1(u3|u1) = h3|1(u3|u1), then

u3 = h−1
3|1(v3|1|u1) = h−1

3|1(h−1
3|2;1(w3|w2)|w1). (3.44)

In summary, the conditional distributions C−1
2|1 and C−1

3|1,2 are computed via h functions
in Equation (3.42) and Equation (3.44). After the dependent u1, u2 and u3 are obtained,
x1, x2 and x3 are obtained via the corresponding inverse marginal CDFs, separately.

3.3 Rare Event Probability Estimation

The incident probability (quantity of interest) can be defined as follows:

PF = Pr(g(x) < γ) =
∫
g(X)<0

fX(x)dx =
∫
IF (x)fX(x)dx = EfX [IF (x)], (3.45)

where γ is the failure threshold, and IF (x) is the indicator function. IF (x) is 1 if g(x) < γ,
and 0 otherwise. Define Z = IF (x), then Z follows the Bernoulli distribution with the
probability PF . Therefore, the expectation and variance of Z are shown as below:

EfX [Z] = PF , V ar(Z) = (1− PF )PF . (3.46)

Starting from the classical MCS, a more efficient importance sampling method is intro-
duced subsequently. In order to estimate the rare event probability, the advanced subset
simulation with several modified MCMC algorithms is described in detail.

3.3.1 Monte Carlo Simulation

According to the Equation (3.45), the integral can be viewed in an expectation manner.
Therefore, the PF can be estimated by means of the statistical averaging. Direct MCS
[30] is a classical way to compute the expectation. The estimator of PF can be expressed
as the average of samples:

P̂F = 1
N

N∑
i=1

IF (xi) = 1
N

N∑
i=1

zi, (3.47)
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where zi = IF (xi), and they are independent and identically distributed (i.i.d.). The
estimator is unbiased as below:

EfX [P̂F ] = EfX

[
1
N

N∑
i=1

zi

]
= 1
N

N∑
i=1

EfX [zi] = 1
N

N∑
i=1

EfX [Z] = 1
N
NPF = PF . (3.48)

To analyze the convergence of the estimator, the variance of the estimator is computed
as follows:

V ar(P̂F ) = V ar

(
1
N

N∑
i=1

zi

)
= 1
N2V ar

(
N∑
i=1

zi

)
= 1
N2

N∑
i=1

V ar(zi) = V ar(Z)
N

. (3.49)

The variance of the estimator decreases along with the increase of the samples. The
coefficient of variance (c.o.v.) is used to measure the accuracy of the MCS. The c.o.v. of
P̂F is as below:

δP̂F =

√
V ar(P̂F )
PF

=

√
V ar(Z)
√
NPF

=
√

1− PF
NPF

≈
PF�1

1√
NPF

. (3.50)

In order to estimate the failure probability PF = 10−k with the accuracy of δP̂F = 0.1,
the total N = 10k+2 samples are required. Especially in aviation, the failure probability
PF is generally lower than 10−7 [5]. In this case, at least 109 samples are requested for
δP̂F = 0.1. The efficiency of MCS to estimate the rare event probability is quite low.

3.3.2 Importance Sampling

There are many modified sampling techniques to improve the efficiency of the direct
MCS [30]. Importance sampling (IS) is a fundamental one of variance reduction sampling
techniques, which might dramatically reduce the estimator’s variance. The basic strategy
of IS is sampling from a special proposal PDF h(x) instead of the original input PDF
fX(x). The proposed h(x) allows us to generate more samples close to the failure domain.
The failure probability in Equation (3.45) can be computed as below:

PF =Pr(g(x) < γ) =
∫
IF (x)fX(x)dx =

∫
IF (x)fX(x)

h(x) h(x)dx

=Eh[IF (x)w(x)],
(3.51)

where w(x) is called the weight function, and w(x) = fX(x)/h(x). K is defined as a
random variable that K = IF (X)w(X). The estimator of PF using the IS method is
computed as follows:

P̂ IS
F = 1

N

N∑
i=1

IF (xi)w(xi) = 1
N

N∑
i=1

ki, (3.52)

where ki = IF (xi)w(xi), and xi follows the proposal PDF h(x). If the condition h(x) > 0
is satisfied for all x ∈ {x|IF (x)fX(x) > 0}, the expectation of K is:

Eh[K] =
∫
IF (X)w(X)dx =

∫
IF (X)fX(x)

h(x) h(x)dx =
∫
IF (x)fX(x)dx = PF . (3.53)
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As mentioned, the ki is the i.i.d. sample of K. The estimator using IS is also unbiased:

Eh[P̂ IS
F ] = Eh

[
1
N

N∑
i=1

ki

]
= 1
N

N∑
i=1

Eh[K] = 1
N
NPF = PF . (3.54)

Before computing the variance of estimator, the variance of K is as below:

V ar(K) = Eh[K2]− (Eh[K])2 =
∫

(IF (X)w(X))2 h(x)dx− P 2
F . (3.55)

The variance of estimator can be derived subsequently:

V ar(P̂ IS
F ) = V ar

(
1
N

N∑
i=1

ki

)
= V ar(K)

N
= 1
N

(∫
(IF (X)w(X))2 h(x)dx− P 2

F

)
.

(3.56)
The efficiency of the IS algorithm is improved by reducing the variance of the estimator.
To obtain the highest efficiency, the optimal IS density function h(x) is as follows:

h(x)opt = IF (x)fX(x)
PF

, (3.57)

which leads the V ar(P̂ IS
F ) obtains the minimum value 0 as below:

V ar(P̂ IS
F ) = 1

N

(∫
(IF (X)w(X))2 hopt(x)dx− P 2

F

)

= 1
N

(∫ (IF (X)fX(x))2

hopt(x) dx− P 2
F

)

= 1
N

(∫
IF (X)fX(x)PFdx− P 2

F

)
= 1
N

(PF · PF − P 2
F ) = 0.

(3.58)

However, samples can not be directly generated from the hopt(x). Rejection sampling
method can be applied. In practice, the IS method is usually combined with the known
samples in the failure domain. For example, the designed point x∗ computed based on
the FORM method is located in the boundary of the failure domain [29]. Therefore, the
proposed PDF can be defined as:

h(x) = ψn(x− x∗), (3.59)

where ψn is a multivariate normal distribution centered at the design point. As illus-
trated in Figure 3.12, MCS-based samples and IS-based samples are compared for a two-
dimensional case. By counting the number of failure samples, the IS method dramatically
improves the sampling efficiency in the failure domain.
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Figure 3.12: Comparison of generated 1000 samples using MCS and IS

3.3.3 Subset Simulation

Since the optimal proposal PDF in IS is difficult to obtain in high-dimensional cases, the
IS method can not capture the failure region efficiently anymore [97]. IS is not suitable for
the high-dimensional problem with a small failure probability. A subset simulation (SuS)
method is proposed by Au[32] to deal with the rare event probability and overcome the
curse of dimensionality. The SuS method is also the core algorithm in the ‘Predict’ step
of the Predictive Analysis framework. This section introduces the basic strategy at first,
followed by several advanced MCMC algorithms which improve the efficiency of SuS. The
main idea of SuS is to express a failure event as the intersection of many intermediate
events as below:

F =
M⋂
m=1

Em, (3.60)

where the event Em satisfies: E0 ⊃ E1 ⊃ ··· ⊃ EM−1 ⊃ EM = F . As shown in Figure 3.13,
E0 denotes the whole available domain: Pr(E0) = 1. M is the number of subset levels.

𝐸0

𝐸1
𝐸2

𝐹𝐸𝑀−1
…

Figure 3.13: Illustration of intermediate events in subset simulation.
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In this case, a small failure probability can be expressed as the product of several condi-
tional probabilities as follows:

PF = Pr(F ) = Pr

(
M⋂
m=1

Em

)
= Pr(EM |EM−1)Pr

(
M−1⋂
m=1

Em

)
= ...

= Pr(E0)
M∏
m=1

Pr(Em|Em−1) =
M∏
m=1

Pr(Em|Em−1),
(3.61)

where the intermediate failure event Em is defined as {x|g(x) < γm}. γm is the intermedi-
ate failure threshold. In practice, p0 is the predefined parameter to denote the conditional
probability, and p0 ∈ (0, 1). It is used to find the intermediate threshold γm, which lets
the conditional probability Pr(Em|Em−1) = p0. p0 ∈ (0, 1). The conditional probabilities
in each subset level keep the same value p0. Until the actual failure domain, γm is set
to be the actual failure threshold γ. The final conditional probability Pr(EM |EM−1) is
computed based on the proportion of the failure samples. Therefore, the estimator of the
failure probability using the SuS method is:

P̂ SuS
F =

M∏
m=1

P̂m =
M∏
m=1

P̂ r(Em|Em−1) ≈ pM−1
0 · nfailure

N
, (3.62)

where N is the number of samples generated in each subset, and nfailure is the num-
ber of actual failure samples in the final subset level. Compared to a small probability,
the larger conditional probability is easy to estimate. According to the assumption in
SuS [32], the model input x follows the d-dimensional independent standard Gaussian
distribution ψd(x). For the arbitrary distributed input with dependence, the isoproba-
bilistic transformation can be implemented [98]. Without loss of generality, x is considered
as independent standard Gaussian distributed variables in this section. Figure 3.14 also
illustrates the process of samples generation in the subset simulation. In Figure 3.14(a),
the blue circles denote the samples generated from the ψd(x) using the MCS. p0 of sam-
ples closer to the failure region are taken as the seeds denoted by the red cross. Based
on the seeds, some sampling techniques are implemented to generate new samples inside
the region E1 shown in Figure 3.14(b). The same procedure works for the next subset
until achieving the actual failure domain. Finally, all samples in each subset are shown
in Figure 3.14(d). The procedure of the SuS algorithm is shown in Algorithm 4.

The main challenge is to generate the samples inside the intermediate failure domain, like
samples in Figure 3.14(b), which is executed in the step 9 of Algorithm 4. To be precise,
the task is to generate samples from the conditional PDFs ψd(x|Em),m = 1, 2...M − 1,
where

ψd(x|Em) = ψd(x)I (g(x) < γm)
Pr(Em) . (3.63)

Direct sampling is not possible. MCMC techniques provide a solution to generate the sam-
ples by constructing a Markov chain [30] (see Section 3.2.3). In SuS, each Markov chain
starts from one seed of the previous subset level, and the target distribution ψd(x|Em) is
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Figure 3.14: Process of the sample generation in each subset level

set as its stationary distribution. Since all seeds X(m)
seeds already follows the distribution of

ψd(x|Em), the generated Markov chain have already reached the stationary distribution.
Therefore, the burn-in period of the MCMC algorithm for stationary is not necessary
anymore in SuS. Each seed will be taken as the initial state to generate one chain. The
proposal distribution needs to be chosen to run the MCMC algorithm. The used proposal
distribution and its implementation in SuS will be discussed in detail in the following
section. It’s worth noting that in Algorithm 4, N0 is the number of seeds in each subset.
Therefore, N0 is also the number of chains. Furthermore, each chain has Nc = N/N0

samples. It ensures that there is the same number of samples in the next subset. Finally,
the probability of the failure is estimated using Equation (3.62).

Implementation of the MCMC algorithm in SuS

The procedure of the Metropolis-Hastings (MH) algorithm [93], as one of the most well-
known MCMC method, is already described in Algorithm 2 of Section 3.2.3. When it
comes to the step 9 in Algorithm 4 for the SuS, the implementation of the MH algorithm
is described below. First, the sample candidates ξ are generated from a proposal PDF

53



3.3 Rare Event Probability Estimation

Algorithm 4 Procedure of the SuS algorithm
1: Generate N samples of X: {xj, j = 1, ..., N} from ψd(x)
2: Set m = 1
3: Evaluate the model yj = g(xj) and obtain the output Y = {yj, j = 1, ..., N}
4: Sort the output Y from the smallest to the largest: y(1) ≤ · · · ≤ y(N), and select the

smallest N0 = p0 ·N samples as the seeds X(m)
seeds.

5: Compute the intermediate threshold γm = 0.5(y(N0) +y(N0+1)), where y(N0) and y(N0+1)
are the N th

0 and (N0 + 1)th value of y sorted from small to large
6: if γm ≤ γ then
7: Reset γm = γ, and go to step 12
8: else
9: Start from Xseeds, and generate new samples {xj, j = 1, ..., N} from ψd(x|Em)

using the MCMC algorithm (discussed below in Algorithm 5)
10: Set m = m+ 1, and return to step 3
11: end if
12: Set m = M , and estimate PF : P̂ SuS

F ≈ pM−1
0 · nfailure

N

q(ξ|xc) in Equation (3.66). xc denotes the current state of the Markov chain starting
from the seeds. In order to generate samples from the conditional distribution ψd(x|Em),
the candidates ξ will be accepted based on the acceptance probability as below:

α(xc, ξ) = min
{

1, ψd(ξ|Em)q(xc|ξ)
ψd(xc|Em)q(ξ|xc)

}
. (3.64)

As the current state xc already follows ψd(x|Em), then I (g(xc) < γm) = 1. By substitut-
ing the ψd(·|Em) using Equation (3.63), the acceptance probability can be simplified as
below:

α(xc, ξ) = min
{

1, [ψd(ξ)I (g(ξ) < γm) /Pr(Em)]q(xc|ξ)
[ψd(xc)I (g(xc) < γm) /Pr(Em)]q(ξ|xc)

}

= min
{

1, ψd(ξ)q(xc|ξ)
ψd(xc)q(ξ|xc)

}
I (g(ξ) < γm) .

(3.65)

The proposal PDF is chosen as:

q(ξ|xc) = φd(ξ − xc), (3.66)

where φd denotes the d-dimensional independent Gaussian distribution, which is equiv-
alent to ψd in mathematics. However, they represent different meanings. ψd denotes
the distribution of the input, while φd represents the proposal distribution. Therefore,
two different notations are used to distinguish them. Since the proposal PDF q(ξ|xc) in
Equation (3.66) is symmetric, q(ξ|xc) = q(xc|ξ). The MH algorithm with the symmetric
proposal PDF is also called Metropolis algorithm [99]. Thus, the acceptance probability
is simplified as:

α(xc, ξ) = min
{

1, ψd(ξ)
ψd(xc)

}
I (g(ξ) < γm) . (3.67)
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Therefore, the acceptance ratio can be separated into two parts. One can generate a
sample candidate ξ from the proposal distribution q(ξ|xc), which is accepted as the in-
termediate sample candidate ν with the acceptance ratio:

α∗(xc, ξ) = min
{

1, ψd(ξ)
ψd(xc)

}
. (3.68)

It is followed by checking if the ν is inside the sample space of the event Em. The accepted
intermediate candidate ν is accepted as the state xc+1 of the Markov chian only if it is
located in the intermediate failure domain, which means I (g(ξ) < γm) = 1. Otherwise,
the previous state xc is used as the current state. The detailed procedure of generating
N samples from ψd(x|Em) using the MCMC algorithm is described in Algorithm 5. The
‘while-loop’ from step 4 to step 19 in Algorithm 5 is used to generate one chain with Nc

samples. N0 chains are constructed, and N samples in total are generated for the subset
m + 1 in the end of Algorithm 5, which corresponds to the step 9 of Algorithm 4. In
summary, the subset simulation is implemented to calculate the failure probability by
combining Algorithm 4 and Algorithm 5.

Algorithm 5 Samples generation for subset m+ 1 using the MCMC algorithm

1: Given the seeds {xk, k = 1, ..., N0} from the last subset m, where xk ∈X(m)
seeds

2: for k = 1, 2, ..., N0 do
3: c = 1 and set the current state xc = xk, where xc = (xc,1, ..., xc,d)
4: while c ≤ Nc do
5: Generate a candidate ξ from the proposal distribution q(xc|ξ)
6: Generate a sample u from the uniform distributed U(0, 1)
7: Compute the acceptance ratio α∗(xc, ξ) = min

{
1, ψd(ξ)

ψd(xc)

}
.

8: if u ≤ α∗(xc, ξ) then
9: v = ξ

10: else
11: v = xc
12: end if
13: if I (g(v) < γm) = 1 (⇔ v ∈ Em) then
14: xc+1 = v

15: else
16: xc+1 = xc
17: end if
18: c = c+ 1
19: end while
20: Store the samples {xc, c = 1, ..., Nc} in the kth Markov chain
21: end for
22: Gather all samples from N0 chains, and obtain N samples in total
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Coefficients of variance of the SuS estimator

Once the failure probability P̂ SuS
F is obtained using the SuS, the accuracy of the P̂ SuS

F

should be of concern. The c.o.v. of the SuS estimator allows us to have an assessment of
the quality of the estimated failure probability based on the available information after
one subset simulation run. According to the analysis of efficiencies of the MCS estimator
and the MCMC estimator in Appendix C, the c.o.v of P̂ SuS

F is analyzed in this section by
assessing the accuracy of each subset estimator in Equation (3.62) separately [100].

MCS estimator P̂1 Samples in the first subset are obtained by the direct MCS. Ac-
cording to Equation (3.50), the c.o.v. of P̂1 = P̂ r(E1) = p0 is:

δ1 =
√

1− P1

NP1
=
√

1− p0

Np0
. (3.69)

Conditional probability estimator P̂m (2 ≤ m ≤ M) From the subset level 2, the
MCMC algorithm is used to generate samples following the target PDF. The illustration
of Markov chains in the subset simulation is shown in Figure 3.15.

Each Markov chain in subset level m is generated based on the seeds, which are used in
the previous subset level m − 1. Therefore, the different Markov chains in subset level
m might be correlated due to the possible dependence among the seeds in subset level
m − 1. As shown in Figure 3.15, the two chains in the subset level m = 2 or m = 3 are
independent, while the two chains in the subset level m = 4 are dependent since their
seeds are dependent.
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Figure 3.15: Illustration of the Markov chains in the subset simulation

Let I(m)
jl (x) denotes the indicator function for the intermediate failure domain Em. x

here is the samples located in Em−1. For simplifying the notation, I(m)
jl is used later.

j denotes the jth Markov chain and there are N0 chains in each subset as mentioned
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before. l denotes the lth sample in the jth Markov chain, and l = 1, 2, ..., N/N0. I(m)
jk = 1

if g(x) < γm, and 0 otherwise. Therefore, the estimator of Pm is as below:

P̂m = 1
N

N0∑
j=1

N/N0∑
l=1

I
(m)
jl . (3.70)

During the process of the SuS, γm is calculated to allow P̂m equal the predefined p0 for
m = 1, 2, ...,M − 1. In the final subset, P̂M = nfailure/N as mentioned. However, the
variance of the conditional probability P̂m = Pr(Em|Em−1) can be calculated based on
Equation (3.70) as below:

V ar(P̂m) = V ar

 1
N

N0∑
j=1

N/N0∑
l=1

I
(m)
jl

 = 1
N2V ar

N0∑
j=1

N/N0∑
l=1

I
(m)
jl

 (3.71)

All chains in one subset are probabilistically equivalent. As mentioned above, samples in
different chains may be dependent. It is assumed for simplicity that they are uncorrelated
through the indicator function I(m)

jl , such that Cov(I(m)
jl , I

(m)
j′ l

) = 0, j and j ′ denote two
different chains. By neglecting the dependence among different chains in one subset, the
V ar(P̂m) is derived further based on the derivation of variance of the MCMC algorithm
in Equation (C.9) as below:

V ar(P̂m) = 1
N2

N0∑
j=1

N/N0∑
l=1

V ar[I(m)
jl ] +

N0∑
j=1

N/N0∑
l=1

N/N0∑
k=1,k 6=l

Cov(I(m)
jl , I

(m)
jk )


= 1
N2

NV ar[I(m)
jl ] + 2

N0∑
j=1

N/N0−1∑
k=1

( N
N0
− k)V ar[I(m)

jl ]ρm(k)


= 1
N2

NV ar[I(m)
jl ] + 2 N

N0

N0∑
j=1

N/N0−1∑
k=1

(1− kN0

N
)V ar[I(m)

jl ]ρm(k)


=
V ar[I(m)

jl ]
N

1 + 2
N/N0−1∑
k=1

(
1− kN0

N

)
ρm(k)

 .

(3.72)

Since I(m)
jl follows the Bernoulli distribution with the probability Pm. Therefore,

V ar[I(m)
jl ] = Pm(1− Pm). (3.73)

The c.o.v. of the estimator P̂m is thus obtained as below [100]:

δm = V ar[P̂m]
Pm

=

√√√√√1− Pm
NPm

1 + 2
N/N0−1∑
k=1

(
1− kN0

N

)
ρm(k)

 =
√

1− Pm
NPm

(1 + λm).

(3.74)
where

λm = 2
N/N0−1∑
k=1

(
1− kN0

N

)
ρm(k). (3.75)
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Since the λm > 0, the c.o.v. of the conditional probability estimation is larger than that
of the direct MCS estimator. As the samples autocorrelation ρm(k) in each Markov chain
decreases, the λm will decrease, and the accuracy of estimator will increase. Based on
Equation (3.39), ρm(k) is calculated based on the samples:

ρm(k) = s
(m)
k

s
(m)
0

, (3.76)

where s(m)
0 is the variance of I(m)

jl . Therefore,

s
(m)
0 = V ar[I(m)

jl ] = Pm(1− Pm). (3.77)

s
(m)
k is the sample covariance. It is estimated by using the average of sample covariances
in all chains at subset level m as below:

s
(m)
k ≈ s̄

(m)
k = 1

N − kN0

N0∑
j=1

N/N0−k∑
l=1

((Ijl − E[Ijl])(Ij,l+k − E[Ij,l+k]))

= 1
N − kN0

N0∑
j=1

N/N0−k∑
l=1

(
IjlIj,l+k − P̂mIjl − P̂mIj,l+k + P̂ 2

m

)

=
 1
N − kN0

N0∑
j=1

N/N0−k∑
l=1

IjlIj,l+k

− P̂mE[Ijl]− P̂mE[Ij,l+k] + P̂ 2
m

=
 1
N − kN0

N0∑
j=1

N/N0−k∑
l=1

IjlIj,l+k

− P̂ 2
m

(3.78)

Failure probability estimator P̂ SuS
F The statistical properties of the P̂ SuS

F is analyzed
in [32, 100]. The simplified derivation of the c.o.v. of P̂ SuS

F is shown below. Instead of
P̂ SuS
F , P̂F is used for simplicity later. The square of the c.o.v. of P̂F is as below:

δ2
P̂SuSF

= V ar[P̂F ]
P 2
F

= E[P̂F − PF ]2
P 2
F

= E

[
P̂F − PF
PF

]2

= E

[∏M
m=1 P̂m∏M
m=1 Pm

− 1
]2

= E

[
M∏
m=1

P̂m
Pm
− 1

]2

(3.79)

To simplify the equation above using the c.o.v. of all subset estimators, the paper [100]
proposed to define the variable Zm as

Zm = (P̂m − Pm)/
√
V ar[P̂m]. (3.80)

Obviously, E[Zm] = 0, and E[Z2
m] = 1, since

E[P̂m − Pm] = Pm − Pm = 0; E[P̂m − Pm]2 = V ar[P̂m]. (3.81)
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Therefore, Equation (3.79) is further derived as below:

δ2
P̂SuSF

= E

[
M∏
m=1

(
P̂m − Pm
Pm

+ 1
)
− 1

]2

= E

 M∏
m=1

 P̂m − Pm√
V ar[P̂m]

√
V ar[P̂m]
Pm

+ 1
− 1

2

= E

[
M∏
m=1

(Zmδm + 1)− 1
]2

,

(3.82)

where
M∏
m=1

(Zmδm + 1)− 1 =
M∑
m=1

δmZm +
∑

m1>m2

δm1δm2Zm1Zm2

+
∑

m1>m2>m3

δm1δm2δm3Zm1Zm2Zm3 + · · ·+
M∏
m=1

δmZm.

(3.83)

Since δm → 0 in the order of 1/
√
N denoted by O(1/

√
N) based on Equation (3.74),

the first term in Equation (3.83) is O(1/
√
N) while the remaining sums of higher order

products approximate 0 in a higher order than O(1/
√
N) that is denoted by o(1/

√
N).

Therefore, Equation (3.82) is further derived:

δ2
P̂SuSF

=E
[
M∏
m=1

(Zmδm + 1)− 1
]2

= E[
M∑
m=1

δmZm + o(1/
√
N)]2

=E[
 M∑
m1=1

δm1Zm1

 M∑
m2=1

δm2Zm2

+ o(1/N)]

=
M∑

m1=1

M∑
m2=1

δm1δm2E[Zm1Zm2 ] + o(1/N),

(3.84)

where E[Z2
m] = 1 as mentioned before. Based on the Cauchy-Schwarz inequality, E[Zm1Zm2 ]

satisfies [100]:
E[Zm1Zm2 ] ≤

√
E[Z2

m1 ]E[Z2
m2 ] = 1. (3.85)

Therefore,

δ2
P̂SuSF

=
M∑

m1=1

M∑
m2=1

δm1δm2E[Zm1Zm2 ] + o(1/N)

≤
M∑

m1=1

M∑
m2=1

δm1δm2 + o(1/N).
(3.86)

As illustrated in Figure 3.15, the conditional probability estimators {P̂m} are correlated
due to the fact that the samples, used to calculate the P̂m, are used to start the Markov
chains in the m + 1 subset level to calculate P̂m+1. Based on the definition of Zm in
Equation (3.80), {Zm} are correlated due to the correlated {P̂m}. Noted that the upper
bound in Equation (3.86) corresponds to the case that P̂m+1 are fully correlated, since

59



3.3 Rare Event Probability Estimation

E[Zm1Zm2 ] = 1 for the fully correlated {Zm}. If all P̂m+1 are uncorrelated, {Zm} are thus
uncorrelated. Then E[Zm1Zm2 ] = 0 for m1 6= m2. In this case, the c.o.v. of P̂ SuS

F is as
below by ignoring higher order terms of o(1/N):

δ2
P̂SuSF

=
M∑
m=1

δ2
mE[Z2

m] =
M∑
m=1

δ2
m. (3.87)

The exact correlations among the conditional probability estimator {P̂m} are difficult
to calculate, while δ2

P̂SuSF

is well approximated by ∑M
m=1 δ

2
m in Equation (3.87) in prac-

tice [100]. And ∑M
m1=1

∑M
m2=1 δm1δm2 in Equation (3.86) is too conservative but it can be

taken as the upper bound of δ2
P̂SuSF

as a reference.

In summary, the accuracy of the SuS estimator is highly influenced by the δm in each subset
level. Furthermore, the δm depends on the sample autocorrelations in each Markov chain
due to the properties of the MCMC algorithm. The procedures and properties of the
MCMC algorithms are already discussed in Section 3.2.3. However, there are still some
implementation issues of the MCMC algorithm specifically for the subset simulation.
Several variants of the MCMC algorithms are discussed for the improvement of the SuS
estimator’s accuracy in the following context.

Variants of the MCMC algorithms in SuS

1© Component-wise Metropolis-Hastings algorithm

In practice, the average acceptance rate of generated candidates using the MH algorithm
decreases fast when the dimension of the input grows [101]. This is due to the fact that
the term ψd(ξ)/ψd(xc) of the acceptance ratio α∗ in Equation (3.68) drops along with
the increase of d. To overcome the low acceptance ratio in high dimensional problems,
Au proposed a component-wise MH algorithm in [100]. Instead of sampling from a d-
dimensional proposal PDF q(ξ|xc), each component ξi of the candidate ξ is generated
from the one-dimensional PDF:

qi(ξi|xc,i) = φi(ξi − xc,i), (3.88)

where ξi and xc,i denote the ith component of ξ and x, respectively. φi is the standard
Gaussian distribution density function. Furthermore, each component ξi of the candidate
ξ is accepted or rejected separately. This allows us to disassemble ψd(ξ)/ψd(xc) into one-
dimensional ψi(ξi)/ψi(xc,i) and to avoid the low acceptance ratio in high dimensions. The
detailed procedure of generating N samples from ψd(x|Em) using the component-wise MH
algorithm is described in Algorithm 6. Compared to Algorithm 5, the ‘while-loop’ from
step 4 to 22 in Algorithm 6 replaces the ‘while-loop’ from step 4 to 19 in Algorithm 5.
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Algorithm 6 Samples generation for subset m + 1 using the component-wise MH algo-
rithm

1: Given the seeds {xk, k = 1, ..., N0} from the last subset m, where xk ∈X(m)
seeds

2: for k = 1, 2, ..., N0 do
3: c = 1 and set the current state xc = xk, where xc = {xc,1, ..., xc,d}
4: while c ≤ Nc do
5: for i = 1, 2, ..., d do
6: Generate a candidate ξi from the proposal distribution qi(ξi|xc,i)
7: Generate a sample u from the uniform distributed U(0, 1)
8: Compute the acceptance ratio αi(xc,i, ξi) = min

{
1, ψi(ξi)

ψi(xc,i)

}
9: if u ≤ αi(xc,i, ξi) then

10: vi = ξi

11: else
12: vi = xc,i

13: end if
14: end for
15: Obtain v = (v1, ..., vd)
16: if I (g(v) < γm) = 1 (⇔ v ∈ Em) then
17: xc+1 = v

18: else
19: xc+1 = xc

20: end if
21: c = c+ 1
22: end while
23: Store the samples {xc, c = 1, ..., Nc} in the kth Markov chain
24: end for
25: Gather all samples from N0 chains, and obtain N samples in total

2© Conditional Sampling

In the previous section, the component-wise MH algorithm is discussed to ensure a high
acceptance probability α∗ in high dimensions. A new variant of the MCMC algorithm
called conditional sampling method is shown to guarantee that the first part of the can-
didate acceptance probability α∗ in Equation (3.68) always equals 1 by choosing a special
proposal distribution. This approach is presented by Iason in paper [33]. A similar idea is
also proposed by Au [102], which is called the Limiting algorithm. As mentioned, the cur-
rent sample depends on its previous sample in a Markov chain. One can directly propose
a candidate ξ correlated with the previous state xc during the Markov chain generation.
The new proposal PDF is given by a d-dimensional Gaussian distribution with the mean
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of ρxc and the variance of (1− ρ2)I as below:

q(ξ|xc) = φd(ξ − ρxc; (1− ρ2)I), (3.89)

where ρ is the correlation coefficient between the previous state and the current candidate.
ρ is predefined as a constant value from 0 to 1, e.g. ρ = 0.8. The proposal PDF of the
conditional sampling for one dimension is illustrated in Figure 3.16. Noticed that the
non-standard Gaussian distributed xi has been transferred into the standard Gaussian
Z space before. The proposed PDF of the conditional sampling is more close to the
distribution of xi and its variance is less compared to the random walker sampling.

0 𝑥𝑐 ,𝑖𝜌𝑥𝑐 ,𝑖

𝑓𝑖 𝑥𝑖 ~𝑁(0,1) 𝑞𝑖 𝜉𝑖 |𝑥𝑐 ,𝑖 ~𝑁(𝑥𝑐 ,𝑖 , 1)

𝑞𝑖 𝜉𝑖 |𝑥𝑐 ,𝑖 ~𝑁(𝜇 = 𝜌𝑥𝑐 ,𝑖 ,𝜎
2 = 1 − 𝜌2)

𝑥𝑖 in 𝑍 space 

Conditional sampling

Random walker sampling

Figure 3.16: The proposal PDF of the conditional sampling

The acceptance probability in Equation (3.65) can be further derived as:

α(xc, ξ) = min
{

1, ψd(ξ)q(xc|ξ)
ψd(xc)q(ξ|xc)

}
I (g(ξ) < γm)

= min
{

1, ψd(ξ)φd (xc − ρξ; (1− ρ2)I)
ψd(xc)φd (ξ − ρxc; (1− ρ2)I)

}
I (g(ξ) < γm)

= I (g(ξ) < γm) .

(3.90)

Both ψd and φd are d-dimensional standard Gaussian distribution and they are equivalent.
The numerator and the denominator inside the min operation can be canceled out since

ψd(ξ)φd
(
xc − ρξ; (1− ρ2)I

)
= ψd(xc)φd

(
ξ − ρxc; (1− ρ2)I

)
. (3.91)

Equation (3.91) above can be proved by introducing a 2d-dimensional Gaussian random
vector U with the joint PDF ψ2d(u;∑) [33]. U has the zero mean vector with the
covariance matrix: ∑

=
 I ρI
ρI I

 . (3.92)

Let U = [U1;U2] and both U1 and U2 follow the d-dimensional standard Gaussian
distribution. Thus, U1 and U2 have the marginal PDF ψd(·). Then the conditional PDF
of U1 given U2 is ψd (u1 − ρu2; (1− ρ2)I) and the conditional PDF of U2 given U1 is
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ψd (u2 − ρu1; (1− ρ2)I). According to the Bayes rule, the conditional PDFs are shown as
below:

ψd
(
u1 − ρu2; (1− ρ2)I

)
= ψ2d(u;∑)

ψd(u2) ; ψd
(
u2 − ρu1; (1− ρ2)I

)
= ψ2d(u;∑)

ψd(u1) (3.93)

By multiplying the denominator in both sides of the equation above, the joint PDF of U
is expressed as below:

ψ2d(u;
∑

) = ψd(u1)ψd
(
u2 − ρu1; (1− ρ2)I

)
= ψd(u2)ψd

(
u1 − ρu2; (1− ρ2)I

)
. (3.94)

while u1 and u2 correspond to xc and ξ, respectively. The above shows Equation (3.91)
is satisfied. Therefore, the min operation in Equation (3.90) always equals 1. The only
acceptance condition becomes if the generated candidate belongs to the sample space of
the event Em. And the acceptance ratio does not depend on the dimensions anymore.
Furthermore, the component-wise strategy can also work with the conditional sampling
method. The procedure of obtaining v from step 5 to step 15 in Algorithm 6 can be
replaced by directly sampling from the new proposal distribution φd(ξ − ρxc; (1− ρ2)I).
The procedure of the component-wise conditional sampling method is described as below:

Algorithm 7 The component-wise conditional sampling algorithm
1: Following the step 4 in Algorithm 6
2: for i = 1, 2, ..., d do
3: Generate a candidate ξi from the standard normal distribution N(0, 1)
4: vi = ρxc,i + ξi ·

√
1− ρ2

5: end for
6: Obtain v = (v1, ..., vd)
7: Go to step 16 in Algorithm 6

According to the MCMC properties mentioned in Section 3.2.3, the autocorrelation be-
tween samples determine the efficiency of the MCMC. It is worth noting that a small
predefined correlation parameter ρ between the previous state xc and the current candi-
date state ξ does not imply a small autocorrelation of the final samples in the Markov
chain, since a small ρ will cause many rejected candidates. The previous state will be
repeated as the current state, which causes a high correlation among the final samples.
In contrast, a large ρ will lead the candidate to be very close to the previous state. Most
candidates will be accepted but with a high correlation. The parameter ρ needs to be
defined before run the component-wise conditional sampling algorithm. ρ can be set by
trial and error. To adjust ρ automatically, the adaptive conditional sampling is presented
in the following.
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3© Adaptive Conditional Sampling

Based on the conditional sampling algorithm, the adaptive conditional sampling is pre-
sented in this section to improve the accuracy of the SuS by adjusting ρ automatically.
Noticed that

√
1− ρ2 is the standard deviation σ of the proposal PDF. Therefore, the pre-

defined correlation parameter ρ and the standard deviation σ correspond each other. As
mentioned in Section 3.2.3, the optimal acceptance ratio α is proposed for the efficiency
of the MCMC algorithm instead of the optimal σ of the proposal PDF. Furthermore,
the available range of the input variable becomes smaller as the subset level increases
considering the procedure of the SuS. This is due to the reduction of the intermediate
failure domain with the increase of the subset level. Most of the candidates are rejected
due to the large σ of the proposal PDF defined at the first subset level, corresponding to
a small ρ. An adaptive conditional sampling method is proposed by Iason [33] to reduce
the autocorrelations by achieving the optimal acceptance ratio. ρ mentioned above is
same for each dimension. However, the component-wise conditional sampling algorithm
allows us to set different value of ρ for different dimension of samples. ρi denotes the
defined correlation parameter for ith dimension of samples, while σi denotes the standard
deviation of the proposal PDF for ith dimension. The σi, corresponding to the parameter
ρi, is continually modified to obtain the target acceptance ratio. The adjusting strategy
is illustrated in Figure 3.17 and described in the following context.

𝑥1
𝑥2

Seeds

𝑥𝑘

Start from seeds 𝑥𝑘 ,
𝑘 = 𝑖𝑡𝑒𝑟 − 1 𝑁𝑎 + 1,… , 𝑖𝑡𝑒𝑟 ⋅ 𝑁𝑎

Set 𝑛𝑖𝑡𝑒𝑟 , 𝑁𝑎 = 𝑁0/𝑛𝑖𝑡𝑒𝑟
𝑖𝑡𝑒𝑟 = 1

Generate 𝑁𝑎 Markov chains

Es�mate the accepted ra�o 𝛼
of candidates in 𝑁𝑎 chains

Set the proposal 𝜎

end

Update the proposal 𝜎
based on the 𝛼 − 𝛼𝑜𝑝𝑡

𝑖𝑡𝑒𝑟 = 𝑖𝑡𝑒𝑟 + 1

Yes

𝑖𝑡𝑒𝑟 ≥ 𝑛𝑖𝑡𝑒𝑟 ?
No

Figure 3.17: Illustration of the adaptive conditional sampling procedure
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Instead of generating N0 chains at once in each subset level, N0 chains are generated
separately in niter iterations [33]. First, Na = N0/niter seeds {xj, j = 1, ..., Na} are
chosen randomly from the seeds X(m)

seeds. After that, Na chains are generated using the
conditional sampling algorithm with the initial σi, which is set based on the estimated
standard deviation of all seeds xj. The average acceptance ratio of Na chains is estimated
by:

α̂iter = 1
Na

Na∑
j=1

E[α(ξjl)], (3.95)

where E[α(ξjl)] is the average acceptance ratio of sample candidates {ξjl} in the jth chain.
l denote the order of sample candidates in a chain, and l = 1, 2, ..., N/N0 − 1. E[α(ξjl)]
is calculated via counting the number of accepted candidates. Before generating the Na

chains in the next iteration, the scaling factor λiter is introduced to adjust the current
σi,iter in order to let the α̂iter close to the optimal acceptance ratio αopt. One strategy of
updating λiter is proposed by [33] as below:

log λiter+1 = log λiter + kiter[α̂iter − αopt], (3.96)

where the subscript iter denotes the order of the iteration. αopt is set as 0.44, which is
the optimal acceptance ratio of the MH random walker sampler in one dimension. kiter
is used to reduce the variation of the λiter along with the increase of the iterations. It
increases the convergence of the algorithm to obtain the optimal standard deviation. kiter
is set to 1/

√
iter here. The σi of the proposal PDF, which is used to generate another Na

chains in the next iteration, will be updated as follows [33]:

σi,iter+1 = min(λiter+1σi,iter, 1). (3.97)

The updated σi cannot be larger than the standard deviation of the input variable, which
is 1 for the standard normal distribution. If the estimated acceptance ratio âiter is less than
0.44, the updated λiter+1 becomes smaller via Equation (3.96). This leads to a smaller
standard deviation σiter+1,i via Equation (3.97), and the corresponding ρi increases. The
increased ρi will allow us to generate the candidates close to the previous state, which will
increase the acceptance ratio in the next iteration of Na chains generation. The opposite
measures are taken when âiter is larger than 0.44. The acceptance ratio will be around 0.44
after several iterations. Finally, a total of N samples following ψd(x|Em) are generated.
The whole procedure is shown in Algorithm 8.

Furthermore, this adaptive conditional sampling algorithm also avoids the discrete dis-
tributed features of the failure samples mentioned in the paper [103]. As an example, the
SuS algorithm is implemented in the runway overrun case mentioned in Section 2.5. The
original conditional sampling algorithm and the adaptive conditional sampling algorithm
are applied separately. Other settings of the SuS are the same. The number of samples
in each subset N equals 5000, and the conditional probability p0 is set as 0.1. Figure 3.18
shows two histograms of headwind samples in the subset level 15.
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Algorithm 8 Samples generation for subset m + 1 using the adaptive component-wise
conditional sampling algorithm, adapted from [33]

1: Given the seeds {xk, k = 1, ..., N0} from the last subset m, where xk ∈X(m)
seeds

2: Compute the standard deviation σ̂i of seeds xk for each dimension.
3: Set the initial standard deviation of the proposal density function σiter,i = σ̂i, i =

1, 2, ..., d. and iter = 1.
4: Permute the seeds {xk, k = 1, ..., N0} randomly
5: for iter = 1, 2, ...N0/Na do
6: Compute the correlation coefficients ρi =

√
1− σ2

iter,i

7: Start from the seeds {xk, k = (iter−1)Na+1, ..., iter ·Na}, and generate Na chains
with Nc samples each chain from ψd(x|Em) using the conditional sampling method
with ρi according to Algorithm 6 and Algorithm 7

8: Compute the average acceptance ratio âiter of the generated Na chains
9: Compute the scaling parameter λiter+1

10: Update the standard deviation σiter+1,i
11: end for
12: Collect all samples N = Na ·Nc · iter

Figure 3.18: Histogram of intermediate failure samples in subset level 15 for the original
and adaptive conditional sampling method
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Compared to the continuous distribution obtained by the adaptive conditional sampling,
the histogram obtained by the original conditional sampling shows a discrete feature.
This is due to the low acceptance ratio in the high subset level when using the original
conditional sampling with a fixed σ. The low acceptance ratio means that most candidates
are rejected, which leads to a high number of repeated samples. However, the adaptive
conditional sampling method avoid this by adjusting σ continually and it is recommended
when the high subset level is required in practice.

Dependent Sampling in SuS

All sampling methods mentioned above are applied for the independent input random
variables. When the contributing factors of the original model are dependent, the iso-
probabilistic transformation can be applied to transfer the original dependent random
variables to the independent standard normal distributed random variables. Höhndorf
proposed an approach to integrate vine copula into the SuS for the realization of the high
dimensional isoprobabilistic transformation [34]. The transformation proposed in [34]
allows us to add or remove the dependence structure, which is described as below:

Xdep Fi


F−1
i

U dep remove C

add C

U ind
φ−1
i


φi
Zind, (3.98)

where the superscript dep indicates variables are dependent, and the ind denotes the inde-
pendent variables. Let Xi and Zi denote each component of Xdep and Zind, respectively.
Fi and F−1

i are the estimated marginal CDF and its corresponding inverse CDF with
respect to Xi. φi and φ−1

i denote the CDF and the inverse CDF of Zi. The variables Udep
i

and U ind
i denote the component of U dep and U ind, and they are the cumulative results

of the corresponding samples Xi and Zi, respectively. Therefore, Udep
i and U ind

i are uni-
formly distributed on [0, 1]. C denotes the dependent structure among all variables. As
mentioned in Section 3.2.2, C is constructed based on the vine structure and the bivariate
copula distribution functions, which are estimated based on the measurements of Xdep

before the transformation. The procedure of generating the dependent samples U dep from
the independent samples U ind is already described in Algorithm 3 of Section 3.2.3. The
inverse procedure also works to remove the dependence. To simplify the notation, T
and T−1 are used to denote the transformation between the dependent samples and the
independent samples as below:

Zind = T (Xdep), Xdep = T−1(Zind). (3.99)

Noticed that the Z scale data mentioned in Section 3.2.2 is different from the independent
samplesZind. Based on Equation (3.9,3.10), the dependence of Z scale copula data is same
with the original samples X. In order to distinguish the Z scale data with independent
samples Zind, Z scale data is denoted by Zdep. The transformation is shown as below:

Xdep Fi


F−1
i

U dep
φ−1
i


φi
Zdep. (3.100)
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Based on the Höhndorf’s idea in [34] and the MCMC methods mentioned above, the mod-
ified complete procedure of the subset simulation with the adaptive conditional sampling
and dependent input variables is shown in Figure 3.19. X space denotes the original space
of variables with dependence, while Z space is the independent standard Gaussian space
here. All X denotes the original variables and Z denotes the independent variables in
the independent standard Gaussian Z space without mentioning superscripts of dep and
ind for simplification. The three required transformation between independent samples
and dependent samples, marked by blue boxes in Figure 3.19, is described as below:

(1) It is used to transfer the dependent seedsX(m)
seeds for the subset levelm in the original

space to the independent samples Z(m)
seeds in Z space, since the generated candidates

using the MCMC algorithm start from those seeds in Z space.

(2) It is used to transfer the candidate vZ produced in Z space to vX in X space
for the following original model evaluation, which happens inside a Markov chain
generation.

(3) The third transformation is to transfer N samples of Z obtained in Markov chains
to X in X space together, which is used for the evaluation of the original model.

Statements about the implementation of subset simulation for readers:

• For any arbitrary distributed inputs, the isoprobabilistic transformation is imple-
mented to transfer the original inputs from X space into independent standard
Gaussian Z space before generating states using the MCMC algorithm. Likewise,
the samples in Z space should be transferred back into X space before evaluating
the physical model.

• If the model inputs are dependent, the dependence needs to be removed during the
transformation from X space and Z space, and to be added during the transforma-
tion from Z space and X space.

• An acceptance ratio of 0.44 in one-dimensional random walker sampling is optimal
for the highest efficiency, which is utilized in the adaptive conditional sampling.

• The adaptive conditional sampling method is recommended in the subset simulation
in practice to avoid too high rejection in the high subset level.

• The coefficients of variance of the estimated failure probability using subset simula-
tion is well approximated by ∑M

m=1 δ
2
m in practice, while ∑M

m1=1
∑M
m2=1 δm1δm2 is too

conservative but can be taken as the upper bound.
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Figure 3.19: Flow chart of subset simulation using the adaptive conditional sampling
method considering the dependent inputs, adapted from Fig.4 of [98]
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3.4 Global Sensitivity Analysis

Sensitivity analysis is widely used in optimization problems to find the steepest gradient
of the cost function, which is called local sensitivity analysis (LSA). In contrast, global
sensitivity analysis (GSA), also called uncertainty importance analysis, is to describe
output uncertainty over the entire range of the input variables and identify the most
critical and essential contributing factors to the output uncertainty. GSA can be as a post-
processing step to enhance the quality of the Predictive Analysis framework. Furthermore,
GSA allows us to reduce the uncertainty of the output, or failure probability by taking
actions on some specific contributing factors. In terms of different interests, four groups
of sample-based GSA methods listed in Table 3.1 are described in this section.

Table 3.1: Four groups of global sensitivity analysis methods

Methods Interpretation

1 Correlation-based correlations between input and output.
2 Regression-based sensitivity based on the regression model.
3 Variance-based sensitivity to the output variance.
4 Moment-independent sensitivity to the output distribution.
5 Reliability-oriented sensitivity to the failure probability.

3.4.1 Correlation-based Sensitivity

The correlation coefficients are a statistical dependence measure that indicates the linear
relationship between two variables around their expectations. They vary from -1 to 1.
A positive value indicates that the variable increases as the other variable increases, and
vice versa. The bigger the absolute value of correlation coefficients is, the stronger the
relationship of two variables are. For example, in the case of runway overrun, the sample
plots of the headwind and the landing mass with the model output stop margin are
shown in Figure 3.20. The sample plot shows that the stop margin becomes less along
with the decrease of the headwind and the increase of the landing mass. Intuitively,
the correlation coefficients between model output and each contributing factor provide
a sensitivity measure of each input to the model output. Three kinds of correlation
coefficients: Pearson correlation, Spearman correlation, and Kendall’s tau, are introduced
here.
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Figure 3.20: Sample plots of MCS in the runway overrun

Pearson Correlation ρ

The Pearson correlation coefficient is also called linear correlation coefficient. The correlation-
based sensitivity can be computed using:

ρi = ρ(Xi, Y ) = E[(Xi − µi)(Yi − µY )]
σiσY

, (3.101)

where µi and µY are the expectation of the corresponding variable Xi and Y . σi and σY
are the related standard deviation. Normalized Xi and Y are computed as below:

X̃i = Xi − µi
σi

, Ỹ = Y − µY
σY

. (3.102)

The normalized sample plots of headwind and landing mass with stop margin are shown
in Figure 3.21. It shows that headwind has a positive effect on stop margin, and landing
mass has a negative effect. According to the slope of the red dash line in Figure 3.21, the
influence of landing mass is larger than the headwind.

Spearman Correlation ρs

For the nonlinear but monotonic relationship, the correlation coefficients can be calculated
based on the rank number, which is called Spearman correlation. The raw data can be
transferred into the uniform space (U -scale) via the empirical CDF F e

i as below:

XU
i = F e

i (Xi), Y U = F e
Y (Y ), (3.103)

Where the F e
i and F e

Y are the empirical CDFs of Xi and Y , respectively. Therefore,
the Spearman coefficient do not depend on the marginal distributions. The Spearman
correlation is computed using:

ρsi = ρs(Xi, Y ) = ρ(F e
i (Xi), F e

Y (Y )) = ρ(XU
i , Y

U). (3.104)
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Figure 3.21: Normalized sample plots of MCS in the runway overrun

Kendall’s tau τ

Kendall’s tau is another rank-based correlation coefficient, and it can be used to measure
the nonlinear and non-monotonic correlation. It is defined as the concordance probability
minus the discordance probability between two variables. According to the definition
in [28], the Kendall’s tau of two continue variables Xi and Y is defined based on the two
independent pairs of variables (Xi,1, Y1) and (Xi,2, Y2) shown as below:

τi = Pr[(Xi,1 −Xi,2) · (Y1 − Y2) > 0]− Pr[(Xi,1 −Xi,2) · (Y1 − Y2) < 0], (3.105)

where Pr[(Xi,1−Xi,2)·(Y1−Y2) > 0] is the probability of concordance, which indicates the
positive correlation between Xi and Y . In contrast, Pr[(Xi,1−Xi,2) · (Y1−Y2) < 0] is the
probability of discordance, which represents the negative correlation between Xi and Y .
For the two independent random variables with continuous distributions, the Kendall’s
tau is 0.

3.4.2 Regression-based Sensitivity

Apart from the correlations, the standard regression coefficient (SRC) is another sensi-
tivity measure. This approach simplifies the model as a linear model. Furthermore, It
decomposes the total variance of the output into the individual effect of each contributing
factor. Therefore, it only works for independent input variables. The original model g(X)
is approximated by a linear regression:

Y = g(X) ≈ β0 +
d∑
i=1

βiXi, (3.106)

where βi is the coefficient, which is computed based on the lease-square method as below:

β̂ = (XTX)−1XTY, (3.107)
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where X and Y are samples array of input and output, respectively. According to Equa-
tion (3.106), the variance of the output are estimated by:

σ̂2
Y =

d∑
i=1

β2
i σ

2
Xi
, (3.108)

where σXi and σ̂Y are the standard deviations of the input Xi and output Y , respectively.
The SRC index is defined as:

SRCi = β̂iσi
σY

. (3.109)

To deal with the nonlinear but monotonic relations, the samples array of input and output
are transferred into the uniform space via empirical CDFs, denoted by XU and YU . The
standard rank regression coefficients (SRRC) are computed as below:

γ̂ =
(
(XU)TXU

)−1
(XU)TYU , (3.110)

SRRCi = γ̂iσ
U
i

σUY
= γ̂i. (3.111)

where σUi and σUY denote the standard deviations of the input XU
i and output Y U , respec-

tively. Since both XU
i and Y U are uniformly distributed and follow U(0, 1), σUi = σUY and

they are canceled out in above equation.

3.4.3 Variance-based Sensitivity

Variance, as an important measure of uncertainties, is also used to calculate global sensi-
tivity. Assuming the original model can be represented by some additive terms, the total
variance of the model output can be described using the sum of the variance of each term.
The variance decomposition is only valid for independent inputs, and it is usually referred
to as the analysis of variance (ANOVA). Based on the law of total variance [104], the
variance can be decomposed as follows:

V ar(Y ) = EXi [V ar(Y |Xi)] + V arXi(E[Y |Xi]), (3.112)

where V ar(Y ) is the total variance of the model output Y , and EXi [V ar(Y |Xi)] is the
conditional expected value of V ar(Y ) given Xi. V arXi(E[Y |Xi]) can be interpreted as
the variance reduction of the output Y conditioned on a fixed input Xi. Instead of condi-
tioning on the specific value of Xi, a class of samples is used to compute the conditional
expectation and the conditional variance in practice. An example is given for visual-
ization of the conditional expectation and variance. The range of landing mass is split
into 10 classes Cj, j = 1, ..., 10 based on the quantile lines of landing mass samples as
shown in Figure 3.22. The variation of 10 estimations of E[Y |Xi ∈ Cj] in Figure 3.22
indicates that the stop margin is affected by the class Cj that Xi belongs to. Therefore,
V arXi(E[Y |Xi]) can be defined as a sensitivity measure to describe the influence of this
input to the output.
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Figure 3.22: Quantile-based samples plot of the landing mass and the stop margin

As mentioned in Section 3.4.2, SRC is also one approach of variance decomposition, but
only valid for the linear model. A complex Sobol’s variance decomposition approach is
applied for the nonlinear model. The normalized V arXi(E[Y |Xi]) is taken as the sensi-
tivity indices, called the Sobol’s indices. The definition and computation of the Sobol’s
indices are shown in the following sections.

Sobol’s Indices

The original model g(X) is decomposed into effect functions with different dimensions
via the Sobol’s decomposition as below [105, 106]:

y = g(x1, ..., xd) = g0 +
d∑
i=1

gi(xi)+
∑

1≤i≤j≤d
gij(xi, xj)+ ... +g1,2,...,d(x1, x2, ..., xd)), (3.113)

with two conditions hold. The first is that g0 is the expectation of the model output:
g0 = E[g(X)]. The second condition is that the integral of the functions gi1,...is with
respect to their own variables are null, i.e.,∫

Dik

gi1,...is(xi1 , ..., xik , ..., xis)fi(xik)dxik = 0, xik ∈ Dik and 1 ≤ k ≤ s, (3.114)

where fi(xik) denotes the PDF with respect to xik . All terms of the decomposition can
be calculated using the recursive equations. Obviously, g0 is computed as below:

g0 =
∫
g(x)fx(x)dx, (3.115)

where fx(x) is the joint PDF of all variables x. Let x∼i denote the x without xi. By
integrating Equation (3.113) with respect to x∼i, gi is obtained based on the second
condition in Equation (3.114):∫

g(x)fx∼i(x∼i)dx∼i = g0 + gi, (3.116)
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where fx∼i(x∼i) denotes the joint PDF of variables x without xi. In addition, the left
part of the equation above equals E[Y |Xi] based on the definition of expectation, since

E[Y |Xi] =
∫
g(x)fx|xi(x|xi)dx∼i =

∫
g(x) fx(x)

fxi(xi)
dx∼i

=
∫
g(x)

∏d
j=1 f(xj)
f(xi)

dx∼i =
∫
g(x)fx∼i(x∼i)dx∼i.

(3.117)

Therefore,
gi =

∫
g(x)fx∼i(x∼i)dx∼i − g0 = E[Y |Xi]− g0. (3.118)

Let x∼ij denote the x without xi and xj. By integrating Equation (3.113) with respect
to x∼i,j, gij is explicitly expressed as below:

gij =
∫
...
∫
g(x)fx∼ij(x∼ij)dx∼ij − g0 − gi(xi)− gj(xj)

= E[Y |Xi, Xj]− g0 − gi − gj.
(3.119)

Computing the variance of Equation (3.113) in both sides, the variance of the g(x) is
written down:

V ar(g(x)) =
d∑
i

Vi +
∑
i

∑
j

Vij + +
∑
i

∑
j

∑
k

Vijk + ...+ V1,2,...,d, (3.120)

where Vi and Vij denote the first and second order variance, respectively. They are are
computed as follows:

Vi = V ar(gi) = V ar(E[Y |Xi])− V ar(g0) = V ar(E[Y |Xi]). (3.121)

Vij = V ar(gij) = V ar(E[Y |XiXj])− V ar(g0)− V ar(gi)− V ar(gj)
= V ar(E[Y |XiXj])− Vi − Vj.

(3.122)

The sensitivity indices are defined as the ratio of each term’s variance to the total variance:

1 =
d∑
i

S
(1)
i +

∑
i

∑
j

S
(2)
ij +

∑
i

∑
j

∑
k

S
(3)
ijk + ...+ S

(d)
1,2,...,d. (3.123)

S
(1)
i denotes the first order Sobol’s index, which describes the main effect of one input

and is computed as below:

S
(1)
i = Vi

V ar(Y ) = V ar(E[Y |Xi])
V ar(Y ) . (3.124)

The second order Sobol’s index S(2)
ij indicates the interaction effect of two inputs as follows:

S
(2)
ij = Vij

V ar(Y ) = V ar(E[Y |XiXj])− Vi − Vj
V ar(Y ) = V ar(E[Y |XiXj])

V ar(Y ) − S(1)
i − S

(1)
j . (3.125)

Furthermore, the total order Sobol’ index of Xi includes the main effect of the Xi and the
interaction effect of Xi with other inputs. It is computed via:

STi = 1− S∼i = 1− V ar(E[Y |X∼i]))
V ar(Y ) . (3.126)

The variances described in Equations (3.124-3.126) can be computed by the Monte Carlo
simulation (MCS). The algorithm is shown in the next section.
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Monte Carlo-based Estimation of Sobol’s Indices

Let Xv denotes the conditioning variables. The calculation of the variance of condi-
tional expectation V ar(E[Y |Xv]) is the challenge part for Sobol’s indices. Suppose that
the unconditioned and conditional random variables Y and Y |Xv are square-integrable.
Janon [107] proved that the variance of expectation is equivalent to the covariance as
below:

V ar(E[Y |Xv]) = Cov(Y, Y |Xv), (3.127)

which is referred to the estimator of the so-called closed index Sv proposed by Saltelli and
Homma [108]. The Sv is computed using the samples via:

Sv = Cov(Y, Y |Xv)
V ar(Y ) = Cov(Y,Yv)

V ar(Y) =
1
N

∑
yjy

v
j − ( 1

N

∑
yj)( 1

N

∑
yvj )

1
N

∑
y2
j − ( 1

N

∑
yj)2 , (3.128)

where Y and Yv denote the unconditioned output samples array and conditional output
samples array. yj ∈ Y, and yvj ∈ Yv with j = 1, ..., N . The first or higher order Sobol’s
indices are computed based on the Sv by selecting the conditioning variables Xv.

Sufficient samples are required for the convergence of the MCS estimator Ŝv. In order to
improve the efficiency of the algorithm, a special experiment design of sample array is pro-
posed in [108] to reuse the evaluation results and reduce the total number of evaluations.
The sample array design for the first order Sobol’ indices calculation is demonstrated
using a case of 3-dimensional input.

A B

A1 A2 A3 B1 B2 B3 B1 A2 A3 A1 B2 A3 A1 A2 B3

C1 C2 C3

N
 =

 n
S

a
m

p
le

𝑋1 𝑋2 𝑋3

Y𝐴 Y𝐵 Y𝐶1 Y𝐶2 Y𝐶3

Figure 3.23: Designed samples to calculate S(1)
i and the S(T )

i in the case of 3 inputs.

A B

A1 A2 A3 B1 B2 B3 B1 B2 A3 B1 A2 B3 A1 B2 B3

C12 C13 C23

N
 =

 n
S

a
m

p
le

𝑋1 𝑋2 𝑋3

Y𝐴 Y𝐵 Y𝐶12 Y𝐶13 Y𝐶23

Figure 3.24: Designed samples to calculate S(2)
ij in the case of 3 inputs.
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As shown in Figure 3.23, A and B denote the sample array of the input, while YA and YB

are the corresponding output, respectively. The sample array C1, C2 and C3 are obtained
by exchanging the components of the samples in A and B. Thus, YB and YC1 can be
used to indicate the unconditioned output Y and conditional output Y|X1, respectively.
Based on Equation (3.128), the first order Sobol index Si can be computed using YB

and YC1. A similar strategy is also demonstrated for the second order Sobol index in
Figure 3.24. The procedure for Sobol’s indices calculation is described in Algorithm 9.

Algorithm 9 Procedure of calculating Sobol’s indices
1: Set the number of the samples N
2: Generate 2N samples from fX(x); Obtain samples matrix A and B
3: if compute S(1)

i or STi then
4: Exchange each column of A using the corresponding column of B as shown

in Figure 3.23; Obtain the samples matrices: C1, ...,Cd

5: Evaluate the model using samples of A, B, C1, ...,Cd and obtain
the output response YA, YB, YC1, ...,YCd, respectively

6: S
(1)
i = Cov(YB,YCi)/V ar(YB) using Equation (3.128)

7: STi = 1− S(1)
∼i = 1− Cov(YA,YCi)/V ar(YA) using Equation (3.128)

8: if compute S(2)
ij then

9: Exchange each two columns of A using the corresponding columns of B
as shown in Figure 3.24; Obtain d(d− 1)/2 samples matrix: C1,2, ...,Cd−1,d

10: Evaluate the model using samples of C1,2, ...,Cd−1,d and obtain
the output response YC1,2, ...,YCd−1,d

11: S
(2)
ij = Cov(YB,YCij)/V ar(YA)− S(1)

i − S
(1)
j using Equation (3.128)

12: end if
13: end if

Based on the procedure in Algorithm 9, the number of evaluations to calculate the S(1)
i is

(d+2)×N , and STi can be subsequently obtained without more evaluations. To calculate
the kth order Sobol’s indices, the number of required evaluations is

(
d
k

)
×N . The first two

Sobol’s indices are widely used in practice. Therefore, the total number of evaluations to
calculate S(1)

i , STi , and S
(2)
ij is

(d+ 2)×N +
(
d

2

)
×N = d(d+ 1) + 4

2 ×N, (3.129)

where N is the predefined number of samples in sample matrix A, and d denotes the
dimensions.
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3.4.4 Moment-independent Sensitivity

Instead of only considering the variance of the conditional expectation E[Y |Xv], the
distribution changes of the conditional output Y |Xv can be also measured to evaluate the
sensitivities of contributing factors. Based on the sample plots in Figure 3.22, the kernel
estimated conditional PDFs in each class Cj are shown in Figure 3.25. The conditional
PDF of stop margin changes along with the landing mass.

Figure 3.25: Estimated conditional PDF of stop margin

The moment-independent sensitivity indices, so-called Borgonovo indices [37], measure
the expected shift of the probability distribution of the output when one of the input
is constant. The deviation between the original distribution of the output and the con-
ditional distribution of the output given a fixed Xi measures how the input influence
the output distribution. The Borgonovo indices are defined as the average L1 norm of
conditional PDF deviation:

δi = 1
2EXi

[∫
Dy

∣∣∣fY (y)− fY |Xi(y)
∣∣∣ dy] = 1

2

∫
Dxi

[∫
Dy

∣∣∣fY (y)− fY |Xi(y)
∣∣∣ dy]fi(xi)dxi,

(3.130)
where Dxi and Dy are the range of the Xi and Y , respectively. The deviation between the
two PDFs is in the range of [0, 2]. By normalizing the deviation using 1/2, 0 ≤ δi ≤ 1. In
addition, other metrics to measure the difference between two distributions can also be
used. For example, sensitivities based on the Kolmogorov-Smirnov distance are defined
as the average L∞ norm of conditional PDF deviation as below:

δKSi = EXi

[
max
y

∣∣∣FY (y)− FY |Xi(y)
∣∣∣]. (3.131)
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Furthermore, another sensitivities based on the Kuiper distance are defined as the average
range of the conditional CDF deviation by:

δKui = EXi

[
max
y

(
FY (y)− FY |Xi(y)

)
−min

y

(
FY (y)− FY |Xi(y)

)]
, (3.132)

where δi, δKSi , and δKui ∈ [0, 1]. δi = 0, δKSi = 0, or δKui = 0 all imply that Xi and Y are
independent. According to the intersection points of the original PDF and conditional
PDF of the output, the relationship of three sensitivity metrics is illustrated in Figure 3.26.
The original distribution is assumed to be a unimodal distribution in the demonstration.
When the conditional distribution is an unimodal distribution shown in Figure 3.26(a),
only one intersection between two PDFs. Therefore, the three sensitivities are equivalent
each other: δi = δKSi = δKui . For a multimodal conditional distribution, the three metrics
are not equivalent anymore. However, δKSi is always less than δKui for multiple intersection
cases.

(a) One intersection point between the original PDF and the conditional PDF

(b) Multiple intersection points between the original PDF and the conditional PDF.

Figure 3.26: Relationship of three moment-independent sensitivity metrics

3.4.5 Reliability-oriented Sensitivity

All global sensitivity methods mentioned above are applied to measure the sensitivity to
the model output. Since the incident failure probability is our concern, a sensitivity of
contributing factors to the failure probability is worth studying. The reliability-oriented
sensitivity metrics are defined to measure the averaging shift of the failure probability
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for a given Xi. PF is the probability of failure, and PF |Xi denotes the conditional failure
probability for a given Xi. Based on the definition of L1 norm, the metric is shown as
below:

L1(∆PF |Xi) : ηPi = EXi
[
|PF − PF |Xi |

]
=
∫
Dxi

|PF − PF |Xi |fXi(xi)dxi, (3.133)

where fXi(xi) indicates the original distribution of Xi. Dxi denotes the range of Xi.
According to the Bayesian rule, PF |Xi can be rewritten as below [109]:

PF |Xi = Pr(F |Xi = xi) = Pr({Xi = xi} ∩ F )
Pr(Xi = xi)

= Pr(Xi = xi|F )Pr(F )
Pr(Xi = xi)

= fXi|F (xi)dxiPF
fXi(xi)dxi

= fXi|F (xi)PF
fXi(xi)

,

(3.134)

where fXi|F (xi) denotes the failure-conditioned distribution. The L1-based sensitivity
index ηPi in Equation (3.133) can be further derived by utilizing Equation (3.134) as
follows:

ηPi =
∫
Dxi

∣∣∣∣∣PF − fXi|F (xi)PF
fXi(xi)

∣∣∣∣∣ fXi(xi)dxi = PF

∫
Dxi

∣∣∣fXi(xi)− fXi|F (xi)
∣∣∣ dxi. (3.135)

Some researchers [110] also proposed to use the ηPi /(2PF ) as the sensitivity index as below:

ηfi = ηPi
2PF

= 1
2

∫
Dxi

∣∣∣fXi(xi)− fXi|F (xi)
∣∣∣ dxi, (3.136)

where this index describes the deviation between the original PDF of Xi and failure-
conditional PDF of Xi|F . Since the absolute deviation of two PDFs is from 0 to 2, the
index ηfi has a property that ηfi ∈ [0, 1]. The mentioned L1-based reliability sensitivity
indices and the modified L1-based indices are summarized in Table 3.2.

Table 3.2: Reliability-oriented Sensitivity Metrics

Measures Definition Required estimation

1 L1(∆PF |Xi) ηPi = EXi
[
|PF − PF |Xi |

]
PF , |fXi(xi)− fXi|F (xi)|

2 L1-modified ηfi = 1
2
∫
Dxi

∣∣∣fXi(xi)− fXi|F (xi)
∣∣∣ dxi |fXi(xi)− fXi|F (xi)|

So far, fXi|F (xi) is required for the calculation of two mentioned sensitivity indices. Ac-
cording to Section 3.3, failure samples can be obtained based on SuS. Therefore, the
density function fXi|F (xi) can be directly estimated based on the obtained failure sam-
ples. Kernel distribution is utilized to allow the estimated PDF to match the histogram
of failure samples better. The subtraction between fXi(xi) and fXi|F (xi) can be computed
easily based on the estimated Kernel distributions. L1-modified index ηfi is used in the
analysis of reliability sensitivity with the property 0 ≤ ηfi ≤ 1. Furthermore, the interme-
diate failure samples are also obtained after SuS. For example, histograms of headwind
samples at different subset levels are shown in Figure 3.27.

80



Chapter 3: Mathematical Preliminaries

Figure 3.27: Histograms of intermediate failure samples of headwind in runway overrun

Based on the intermediate event Em and intermediate failure samples in SuS, we can also
measure the trend of the sensitivity along with the decrease of the intermediate threshold
γm. Based on Equation (3.136), the intermediate indices are computed by:

ηfi (γm) = 1
2

∫
Dxi

∣∣∣fXi(xi)− fXi|Em(xi)
∣∣∣ dxi, (3.137)

where fXi|Em(xi) is the conditioned PDF and estimated based on the intermediate samples.
This trend of sensitivities illustrates how the distribution of contributing factors vary when
generated samples are closing to the failure domain.

3.5 Polynomial Chaos Expansion

As one of the surrogate model, Polynomial Chaos Expansion (PCE) is used to speed up
the uncertainty propagation by replacing costly function calls in the MCS using calls of
the surrogate model, especially for the computationally expensive model. The PCE model
is applied in ‘Calibrate‘ step of Predictive Analysis framework, which is discussed in detail
in Chapter 4. This section introduces the mathematical fundamentals of PCE.

3.5.1 PCE Model

For any square-integrable model Y = g(X), the PCE model can represent the original
model by a sum of a series of orthonormal polynomials as below [42]:

Y =
∑
α

kαΨα(Z), (3.138)

where Z is the independent random variables following the distribution PDF fZ(z). kα
denotes the PCE coefficients, and Ψα(Z) is the basis of multivariate orthogonal polyno-
mials with respect to fZ(z). Furthermore, a mapping relation is required to transfer the
original input variables X to the independent variables Z. X follows the distribution
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with the PDF fX(x). For the independent input variables X, the mapping relation is
described using the simple algebra calculation if the relation between X and Z is ob-
vious and described easily, such as Equation (3.158) in the given example. In case that
the relation between X and Z might be not easy to describe explicitly or the X might
be dependent, the isoprobabilistic transformation T mentioned in Equation (3.98) and
Equation (3.99) can be applied. Compared to the transformation T used in the subset
simulation, each component of Z in the PCE model can follow any distribution, not only
the standard Gaussian distribution. In the following context, the univariate orthogonal
polynomials are derived first, subsequently extended to multivariate orthogonal polyno-
mials.

Univariate Orthogonal Polynomials

The inner product of two univariate orthogonal polynomials with respect to the corre-
sponding marginal density fZ(z) is defined as [41]:

< Pj(z), Pk(z) >=
∫
Dz
Pj(z)Pk(z)fZ(z)dz = γjδjk, z ∈ Dz, (3.139)

where Pj and Pk denote the monic polynomials like Pn(z) = zn+an−1z
n−1 + ...+a1z+a0.

a(.) is the polynomial coefficients of the Pn(z). δjk is the Kronecker delta function. δjk
is 1, if j = k, and 0 otherwise. γj is a constant value. A family of monic orthogonal
polynomials Pn(z) can be built based on a 3-term recurrence relation [42]:

Pn+1(z) = (z − αn)Pn(z)− βnPn−1(z), (3.140)

where αn and βn are computed by

αn = < zPn(z), Pn(z) >
< Pn(z), Pn(z) > , βn = < Pn(z), Pn(z) >

< Pn−1(z), Pn−1(z) >. (3.141)

Normally, P0 is set to 1 and P1 is set to z. The constructed polynomials Pn(z) are
orthogonal but not orthonormal, since

||Pn||2 =
∫
DZ

P 2
nfZ(z)dz = γn 6= 1. (3.142)

Therefore, the orthonormal polynomials are defined by

Ψn(z) = Pn(z)
||Pn||

= Pn(z)
√
γn

. (3.143)

Obviously, βn = γn/γn−1. By substituting P (z) in Equation (3.140) using Ψ(z) in Equa-
tion (3.143), the corresponding 3-term recurrence relation becomes:

Ψn+1(z)√γn+1 = (z − αn)Ψn(z)√γn − βnΨn−1(z)√γn−1

⇒Ψn+1(z)
√
γn+1√
γn

= (z − αn)Ψn(z)− γn
γn−1

Ψn−1(z)
√
γn−1√
γn

⇒
√
βn+1Ψn+1(z) = (z − αn)Ψn(z)−

√
βnΨn−1(z).

(3.144)
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Based on Equation (3.141), αn =< zΨn(z),Ψn(z) > and βn = γn/γn−1. Therefore, γn is
requested to compute βn. Due to the orthogonality of Ψn(z),

E[Ψj(Z)Ψk(Z)] =
∫
Dz

Ψj(z)Ψk(z)fZ(z)dz = δjk. (3.145)

The first term of polynomials is usually set to 1. Therefore,

E[Ψj(Z)] =

1, when j = 0
0, when j 6= 0

and E[Ψj(Z)Ψk(Z)] =

1, when j = k

0, when j 6= k
. (3.146)

Based on the distribution family of Z, different orthogonal polynomials have been de-
fined [41]. The well-known Legendre and Hermite polynomials are illustrated here.

Legendre polynomials When Z follows the uniform distribution U [−1, 1], the non-
monic Legendre polynomials are shown by the 3-term recurrence relation:

L0(z) = 1; L1(z) = z;
(n+ 1)Ln+1(z) = (2n+ 1)zLn(z)− nLn−1(z).

(3.147)

The first 5 terms of the orthonormal Legendre polynomials are listed in Table 3.3. The
norm of n-th Legendre polynomials is as below:

||Ln||2 =
∫ 1

−1
L2
n(z)1

2zdz = 1
2n+ 1 . (3.148)

Therefore, the orthonormal Legendre polynomials are L̃n =
√

2n+ 1Ln.

Table 3.3: The orthonormal Legendre polynomial basis, source: [42]

n Ln ||Ln||2 L̃n

0 1 1 1
1 z 1/3

√
3L1

2 1
2(3z2 − 1) 1/5

√
5L2

3 1
2(5z3 − 3z) 1/7

√
7L3

4 1
8(35z4 − 30z2 + 3) 1/9

√
9L4

5 1
8(63z5 − 70z3 + 15z) 1/11

√
11L5

Hermite polynomials When Z follows the standard normal distribution N (0, 1), the
non-monic Hermite polynomials are shown by the 3-term recurrence relation:

H0(z) = 1; H1(z) = z;
Hn+1(z) = zHn(z)− nHn−1(z).

(3.149)
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The first 5 terms of the orthonormal Hermite polynomials are listed in the Table 3.4. The
norm of n-th Hermite polynomial can be obtained by

||Hn||2 =
∫ +∞

−∞
H2
n(z) 1√

2π
e−

z2
2 dz = n!. (3.150)

The orthonormal Hermite polynomials are H̃n = Hn/
√
n!.

Table 3.4: The orthonormal Hermite polynomial basis, source: [42]

n Hn ||Hn||2 H̃n

0 1 1 H0

1 z 1 H1

2 z2 − 1 2 H2/
√

2
3 z3 − 3z 6 H3/

√
6

4 z4 − 6z2 + 3 24 H4/
√

24
5 z5 − 10z3 + 15z 120 H5/

√
120

The selection of the polynomial basis depends on the original distribution of input vari-
ables X. For example, the Hermite polynomial basis is usually chosen for Gaussian
distributed variables or variables without bounds. The Legendre polynomial basis is se-
lected for uniform distributed variables or variables with bounds. In addition, Laguerre
and Jacobi polynomials are also widely used. Furthermore, the univariate orthonormal
polynomials Ψn(z) can be also constructed with respect to an arbitrary probability dis-
tribution f(z), which is called the arbitrary polynomial basis [42, 111]. For the arbitrary
polynomial basis, f(z) is same as the original input distribution f(x). Therefore, the
transformation T between X and Z becomes simple. After the distribution of Z is chosen,
the orthonormal polynomials Ψn(z) with respect to the distribution f(z) are calculated
according to the recurrence Equation (3.144).

Multivariate Orthogonal Polynomials

Univariate orthogonal polynomials are defined for each input variable Zi individually.
To deal with multivariate inputs, multivariate orthogonal polynomials are constructed as
below [42]:

Ψα(Z) =
d∏
i=1

Ψ(i)
αi

(Zi), (3.151)

where Ψ(i)
αi

(Zi) denotes the univariate orthonormal polynomials. αi (αi = {0, 1, ..., p, ...})
is the order of the univariate polynomial bases for each variable Zi. In practice, the
truncated order p is used for each univariate polynomials. Therefore, there are p + 1
polynomial bases for each variable. α = {α1, α1, ..., αd} is called multi-indices. It is a
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combination of each univariate order αi. For example, α can be a tensor product of all
αi. Therefore, the total number of polynomial bases is

P = (p+ 1)d, (3.152)

where P denotes the total number of polynomial bases for the multivariate orthogonal
polynomials. Therefore, there are P corresponding coefficients required to compute. Eval-
uations of the original model should be equal or larger than P for the computation of
PCE coefficients kα. The required number of evaluations grows rapidly along with the
increasing dimensions d of input.

To avoid the curse of dimensionality, the classical truncated PCE is proposed in [41, 112].
Instead of truncating each αi, only the total degree of |α| is truncated to p as below:

|α| =
d∑
i=1

αi ≤ p. (3.153)

The total number P can be computed by

P = (d+ p)!
d! p! . (3.154)

To further reduce the polynomial bases, a hyperbolic PCE by truncating the q-norm of
α proposed in [113] is as follows:

||α||q =
(

d∑
i=1

αqi

)1/q

≤ p, 0 < q < 1. (3.155)

When q = 1, the hyperbolic PCE is equivalent to the classical PCE. When q → 0, the
interaction terms among different variables are reduced. An example of the hyperbolic
truncation with two dimensional input is illustrated in Figure 3.28. The black solid line
denotes ||α||0.5 = 7 for the setting q = 0.5 and p = 7. All points in the area lower than
the black solid line satisfy ||α||0.5 ≤ 7, which are drawn using blue circles. As an example,
the combination of α1 = 2 and α2 = 1 denoted by the point A(2, 1) in Figure 3.28 should
be included, since

||α||0.5 = (α0.5
1 + α0.5

2 )1/0.5 = (
√

2 +
√

1)2 ≈ 5.8284 < 7. (3.156)

For consistency with the application in Chapter 4, the truncated PCE model mentioned
in Equation (3.138) can be rewritten as below:

Y =
P−1∑
j=0

kjΨj(Z) =
P−1∑
j=0

kjΨj(T (X)). (3.157)
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Figure 3.28: Classical and hyperbolic truncated scheme of PCE with p = 7, q =
0.5, 0.8 and 1, adapted from [112].

Example for Multivariate Orthogonal Polynomials

An example of the multivariate polynomials construction in 2 dimensions is given. The
original model is Y = g(X) = g(x1, x2) with two independent variables, while x1 ∼
N (µ, σ) and x2 ∼ U [a, b]. To construct a PCE model, the two polynomial bases are
chosen first based on the distributions of X. The Hermite polynomials H̃n(z1) are used
for the dimension of x1, while the Legendre polynomials L̃n(z2) are used for the dimension
of x2. The mapping relation between X and Z is as below:

x1 = µ+ σz1; z1 ∼ N (µ, σ)

x2 = a+ b

2 + b− a
2 z2; z2 ∼ U [−1, 1]

(3.158)

Based on Equation (3.151), the multivariate polynomials is constructed as below:

Ψα(Z) = Ψα1,α2(z1, z2) = H̃α1(z1) · L̃α2(z2), (3.159)

The truncation order p is set to 3, and |α| ≤ 3. This indicates that all the polynomials
of z1, z2 that the total degree is less than or equal to 3 are considered in the PCE model.
The univariate polynomials of H̃α1 and L̃α2 are shown in Table 3.4 and Table 3.3. All
terms of the multivariate polynomials are shown in Table 3.5.

86



Chapter 3: Mathematical Preliminaries

Table 3.5: All the polynomials of z1, z2 in the PCE model

j α = [α1, α2] H̃α1 L̃α2 Ψα ≡ Ψj

0 [0,0] 1 1 Ψ0 = 1
1 [1,0] z1 1 Ψ1 = z1 · 1
2 [0,1] 1

√
3z2 Ψ2 = 1 ·

√
3z2

3 [2,0] 1√
2(z2

1 − 1) 1 Ψ3 = 1√
2(z2

1 − 1) · 1
4 [1,1] z1

√
3z2 Ψ4 = z1 ·

√
3z2

5 [0,2] 1
√

5
2 (3z2

2 − 1) Ψ5 = 1 ·
√

5
2 (3z2

2 − 1)
6 [3,0] 1√

6(z3
1 − 3z1) 1 Ψ6 = 1√

6(z3
1 − 3z1) · 1

7 [2,1] 1√
2(z2

1 − 1)
√

3z2 Ψ7 = 1√
2(z2

1 − 1) ·
√

3z2

8 [1,2] z1
√

5
2 (3z2

2 − 1) Ψ8 = z1 ·
√

5
2 (3z2

2 − 1)
9 [0,3] 1

√
7

2 (5z3
2 − 3z2) Ψ9 = 1 ·

√
7

2 (5z3
2 − 3z2)

By summing up all the polynomials {Ψj} in Table 3.5 with the corresponding coefficients,
the structure of the PCE model is obtained as below:

Ŷ = gPCE(x1, x2) =
P−1∑
j=0

kjΨj(Z)

= k0 + k1 · z1 + k2 ·
√

3z2 + k3 ·
1√
2

(z2
1 − 1)

+ k4 · z1 ·
√

3z2 + k5 ·
√

5
2 (3z2

2 − 1) + k6 ·
1√
6

(z3
1 − 3z1)

+ k7 ·
1√
2

(z2
1 − 1) ·

√
3z2 + k8 · z1 ·

√
5

2 (3z2
2 − 1) + k9 ·

√
7

2 (5z3
2 − 3z2).

(3.160)

After the structure of the PCE model is constructed, the only remaining thing is to
calculate the corresponding coefficients {kj}.

3.5.2 Computation of PCE Coefficients

Two well-known methods: quadrature-based projection and Least-square minimization,
are available to calculate the PCE coefficients. Their analytical solutions are identi-
cal [114]. The least-square minimization method is used in this dissertation, and the de-
tailed algorithm is introduced in this section. Based on the PCE-based surrogate model,
the residual of the surrogate modeling is computed by [42]:

ε(X) = g(X)−
P−1∑
j=0

kjΨj(T (X)). (3.161)
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The unknown coefficients kj are estimated by minimizing the mean square residuals:

K̂ = arg minE[ε2] = arg minE


g(X)−

P−1∑
j=0

kjΨj(T (X))
2


= arg min 1
n

n∑
l=1

g(xl)−
P−1∑
j=0

kjΨj(T (xl))
2

,

(3.162)

where K = {k0, k1, ..., kP−1}. xl denotes the lth sample of X. Let Y denote the output
response vector and Ψ denotes the value of polynomials for the given X as below:

Y ={g(x1), g(x2), ..., g(xn)}T , size : n× 1; (3.163)
Ψ ={Ψlj}n×P , l = 1, 2, ..., n, size : n× P. (3.164)

Therefore, the mean square ε is:

E[ε2] =(Y −KΨ)T (Y −KΨ)
=YTY − 2KTΨTY + KT (ΨTΨ)K.

(3.165)

Let the derivative of the mean square residual with respect to K equals 0:

∂E[ε2]
∂KT = −2ΨTY + 2(ΨTΨ)K = 0. (3.166)

Therefore, the estimated K is obtained:

K̂ = (ΨTΨ)−1ΨTY. (3.167)

The procedure of computing PCE coefficients using the least-square minimization method
is described in Algorithm 10. In the step 1, the used polynomial basis or distribution
families followed byZ are chosen according to the original distributions ofX as mentioned
in Section 3.5.1. In the step 2, the p and the |α| are set by trial and error. Noticed that the
selection of the truncated order p not only depends on the complexity of the original model
but also influenced by the transformation relationship between X space and Z space.
Furthermore, the computational ability limits the maximum value of p. In the step 3, the
construction of the univariate polynomial basis is based on the 3-term recurrence relation
in Equation (3.144). In the step 4, 3P evaluations of the original model are applied, since
the number of samples should be larger than the number of polynomial bases to solve the
least-squares problem. From the step 5 to the step 8, the PCE coefficients are obtained
based on the least-square minimization solution after evaluating the model. Before using
the obtained PCE model, the validation step is implemented in the step 9. By running the
MCS though the original model and the PCE model, the corresponding output responses
are compared to validate if the PCE model can represent the original model. If there is
a large deviation in the output responses, the distribution type for Zi, the p, and the |α|
can be adjusted by trial and error.
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Algorithm 10 Calculate PCE coefficients using the least-square minimization approach
1: Select the distribution type for each variable Zi according to fXi(xi).
2: Set the truncated order p and |α| by trial and error
3: Construct the univariate polynomial basis Ψ(i)

αi
(Zi) based on Equation (3.144).

4: Generate n samples of X from fX(x). n = 3P , and X = {x1,x2, ...,xn}T .
5: Evaluate the original model Y = g(X), and obtain Y = {g(x1), g(x2), ..., g(xn)}T .
6: Transfer X from space X to Z: Z = T (X) = {z1, z2, ...,zn}T using Equation (3.99).
7: Calculate the value of polynomials Ψ = {Ψlj}n×P :

Ψlj = ∏d
i=1 Ψ(i)

αi
(zl), l = 1, 2, ..., n. j = 1, 2, ..., P .

8: Solve the PCE coefficients: K̂ = (ΨTΨ)−1ΨTY
9: Validate the PCE model results using MCS

3.5.3 Statistical Moments of PCE Output

A good property of PCE is that the low-order statistical moments of the model output are
encoded in the PCE coefficients. After the PCE-based surrogate model is obtained, we
can directly compute the statistical moments without further evaluations of the original
model. According to the properties mentioned in Equation (3.146), the mean and the
variance of the model output Y are computed as below:

Mean

µ̂Y = E

P−1∑
j=0

kjΨj(Z)
 =

P−1∑
j=0

(kjE[Ψj(Z)]) = k0; (3.168)

Variance

σ̂2
Y = E[(Y PCE − µ̂Y )2] = E


P−1∑
j=1

kjΨj(Z)
2
 =

P−1∑
j=1

(
k2
jE[Ψ2

j(Z)]
)

=
P−1∑
j=1

k2
j , (3.169)

where YPCE denotes the obtained model output Y from the PCE model. For the cal-
culation of higher order moments, the expectation of the polynomials is required to be
computed. The skewness coefficient δY and the kurtosis coefficient κY are computed as
below:

Skewness coefficient δY

δ̂Y = E

((Y PCE − µ̂Y )
σY

)3
 = E[(Y PCE − µ̂Y )3]

σ3
Y

= 1
σ3
Y

E

(∑
α

kαΨα(Z)
)3


= 1
σ3
Y

∑
α

∑
β

∑
γ

kαkβkγE[Ψα(Z)Ψβ(Z)Ψγ(Z)];
(3.170)
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Kurtosis coefficient κY

κ̂Y = E

((Y PCE − µ̂Y )
σY

)4
 = E[(Y PCE − µ̂Y )4]

σ4
Y

= 1
σ4
Y

E

(∑
α

kαΨα(Z)
)4


= 1
σ4
Y

∑
α

∑
β

∑
γ

∑
δ

kαkβkγkδE[Ψα(Z)Ψβ(Z)Ψγ(Z)Ψδ(Z)].
(3.171)

3.5.4 PCE-based Sobol Indices

As mentioned in Section 3.4.3, the computation of Sobol’s indices based on MCS is time-
consuming. Sudret in paper [115] proposed a PCE-based algorithm to compute Sobol’s
indices. Since the Sobol decomposition in Equation (3.113) is unique, the PCE model ex-
actly provides the decomposition solution. A decomposed function containing all elements
of Xv can be described using the polynomial expansions:

gv(xv) =
∑
α∈Dv

kαΨα(Z), (3.172)

where Dv denotes all combinations that contains at least one variable of Xv. According
to the PCE property in statistical moments, the variance of the function gv is computed
as below:

V ar (gv(x)) = V ar

 ∑
α∈Dv

kαΨα(Z)
 =

∑
α∈Dv ;|α|6=0

k2
α. (3.173)

Noticed that V ar(gv(x)) = V ar(E[Y |Xv]), which can be proved by integrating Equa-
tion (3.113) with respect to x∼v, like computing gi and gij in Equation (3.118, 3.119).
Therefore, the closed Sobol’s index Sv in Equation (3.128) can be computed directly using
the PCE coefficients by

Sv = V ar(E[Y |Xv])
V ar(Y ) = V ar(gv(x))

V ar(g(x)) =
∑
α∈Dv ;|α|6=0 k

2
α∑

α;|α|6=0 k2
α

, (3.174)

Other order Sobol’s indices are easily computed afterwards using Equation (3.124) and
Equation (3.125).
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Chapter 4

Calibration of Contributing Factors
for Predictive Analysis

Model calibration is a necessary step of adjusting the model parameters to obtain a good
match between the model prediction and the real measurements. In Predictive Analysis
Framework, the ‘Calibrate’ step is required to ensure that the incident model output
can represent the reality of the relevant flight operation in a statistical manner. Instead
of tuning the model parameters, the calibration of contributing factors is first proposed
in [9] to avoid the abuse of the ‘Identify’ step and minimize the distribution fitting error
introduced in the ‘Cumulate’ step. To improve the convergence and efficiency of the
calibration algorithm, a new calibration framework using a PCE method with a frozen
sample strategy is proposed in this chapter. Major results of this chapter have been
published in [50].

In order to better describe the idea of the ‘Calibrate’ step, the runway overrun model
mentioned in Section 2.5 is used for demonstration. The basic calibration strategy using
Monte Carlo simulation (MCS) is explained in Section 4.1, followed by a new calibration
framework using PCE in Section 4.2. In Section 4.3, a first-order system is used to
validate the new calibration algorithm. At last, the calibration results of runway overrun
are shown in Section 4.4.

4.1 Calibration Strategy

Model calibration and validation is a necessary process to ensure that the built model
predicts reality. Generally, the built model is validated by comparing model output and
observations and calibrated by minimizing the deviation between the simulated model
output and real observations via adjusting model parameters. As shown in [26], the max-
imum likelihood methods or Bayesian approaches are applied for calibration. However,
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this process is involved in the ‘Identify’ step of the Predictive Analysis Framework. The
unknown parameters are estimated to have a good match between model output and
measurements. Readers may refer to the dissertation [77] for the ‘Identify’ step. Consid-
ering the objectives of the Predictive Analysis, the occurrence probability of the incident
is required to match the real operations. Due to the lack of incidents data, the direct
comparison of the incident probability is impossible. Alternatively, the incident model
output should represent the same statistical feature with the routine operations. The
illustration of validation proposed by [9] is shown in Figure 4.1.

Incident 
metric �����

Incident model
� = �(�)

Input
�~� �

Output
����

Contributing 
factors �����

QAR 
measurements

Match?

Distribution
of ����

Distribution 
of �����

Figure 4.1: Illustration of validation, source: Fig.1 of [50]

If and only if the probability distribution of model simulation results is identical to the
distribution of the recorded data from the QAR, the incident model with the correspond-
ing contributing factors can be used to predict the incident probability. However, this
is often not the case in reality, for example, the runway overrun case. There is no stop
margin (incident model output) recorded directly in the QAR. Instead, the model output
d80, i.e., the distance from touchdown to 80 knots, is computed directly from the recorded
ground speed and position data. Therefore, the simulated and observed distances d80 is
utilized for validation. Distributions of the simulated d80 in MCS and the observed d80 in
the QAR are shown in Figure 4.2. It shows that the simulated output distribution is not
identical to the distribution of the observations. The calibration of the incident model
and contributing factors might reduce the deviation.

Figure 4.2: Comparison of simulated and observed outputs
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Optimization loop

Measurements of Contributing
factors 𝐗𝑚𝑒𝑎𝑠

Sampling from the distribution 
of contributing factors𝐹𝑋 𝑋,𝜽𝑖

Run incident Model𝑌 =𝑔 (𝑋)
and get samples𝐘𝑀𝐶

of simulated incident metric

Predict Step

Update distribution parameters
𝜽𝑖+1 = 𝜽𝑖 + 𝚫𝜽𝑖 ;

𝑖 = 𝑖 + 1

Yes

No

Get the best fitting distribution of 
contributing factor𝐹𝑋 𝑋,𝜽𝑖𝑛𝑖𝑡 ; 

Set 𝑖 = 1,𝜽𝑖 = 𝜽𝑖𝑛𝑖𝑡

𝐽 = 𝑓(𝐘𝑀𝐶 ,𝐘𝑚𝑒𝑎𝑠 ,𝜽𝑖)
No

Calculate𝚫𝜽𝒊 using Steepest-
Descent or Gauss-Newton method

Revise Step

Yes

Is the deviation between two
incident metric distribution

acceptable ?

Δ𝐽

𝐽 𝜽𝑖
< 𝐽𝑐𝑜𝑛𝑣 or

Δ𝜽

𝜽𝑖
< 𝜽𝑐𝑜𝑛𝑣

or 𝑖 >= iterMax ?

Figure 4.3: Flow chart of the MCS-based calibration

Generally, the model calibration is implemented via tuning the model parameters. In
the ‘Identify’ step of the Predictive Analysis framework, the unknown model parameters
have been estimated to match the simulation output to the observations in each flight. In
addition, the ‘Cumulate’ step introduces a fitting error in the distributions of contribut-
ing factors. The error will be subsequently propagated to the output during the MCS.
Furthermore, there is also a distribution-fitting error for the model output. Therefore, the
calibration strategy is to obtain an optimum reproduction for the real operational features
by balancing the distribution errors in both contributing factors and the incident metric.
Without falsifying the observations of contributing factors, only a tiny modification in the
distributions of contributing factors is allowed to tune. The calibration procedure based
on the MCS is described in Figure 4.3. The X denotes the model input. Y denotes the
model output, which is the distance d80 in the runway overrun case. The subscript meas
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indicates that the model output is obtained from the observation directly. Alternatively,
the subscript MC denotes the model output from the MCS results. θ is the distribution
parameters of all contributing factors.

The cost function J computes the deviation between simulated and recorded output dis-
tributions. In the previous work [116], the author used the integrated quadratic distance
between two output CDFs as the cost function:

J =
∫ ymax

ymin
(Fmeas(y)− Fsim(y))2 dy, (4.1)

where Fmeas(y) and Fsim(y) denote the CDFs of the measured output Ymeas and the
simulated output Ysim, respectively. In order to balance the distribution-fitting errors
between contributing factors and the incident metric, a penalty term of input fitting
error, is integrated into the cost function as below:

J =
∫ ymax

ymin
(Fmeas(y)− Fsim(y))2 dy + JX(θ, Xmeas)

=
∫ ymax

ymin
(Fmeas(y)− Fsim(y))2 dy +

d∑
i=1

[∫
Dxi

(
FXi(xi|θXi)− F e

Xi
(xi)

)2
dxi

]
,

(4.2)

where JX(θ, Xmeas) denotes the input fitting errors influenced by the distribution param-
eters and the measured data of input variables. Dxi denotes the range of Xi. FXi denotes
the estimated CDF function of input Xi with the distribution parameter θXi , while F e

Xi

is the empirical CDF of Xi based on the measurements Xi,meas. JX is defined as the sum
of the integrated quadratic distance between the two CDFs FXi and F e

Xi
. Since the accu-

rate distribution function of the model output might be difficult to obtain, the statistical
moments of the model output can be also used instead. The modified cost function is
shown as below:

J = (MYsim −MYmeas)T (MYsim −MYmeas) + JX , (4.3)

whereMY denotes the statistical moments of the model output Y . MY = [µY , σY , δY , κY ],
where µY , σY , δY and κY are the mean, standard deviation, skewness and kurtosis coef-
ficients of Y , respectively. The input fitting errors Jx are also replaced by comparing the
statistical moments of the estimated distribution and the original measurements. Only
mean value of contributing factors are adjusted in this thesis. The modified cost function
is shown as below:

J = (MYsim−MYmeas)TW1(MYsim−MYmeas)+(µX(θ)−µXmeas)TW2(µX(θ)−µXmeas), (4.4)

where µX denotes the vector of all mean values of the estimated distributions of all
contributing factors. µXmeas is the vector of the mean value of original measurements for
all contribution factors. Weight matrices W1 and W2 are applied for scaling the different
distributions as below:

W1 = diag( 10
σ2
Y

,
5
σ2
Y

, 1, 1), W2 = 1
d
∗ diag( 1

σ2
1
,

1
σ2

2
, ...,

1
σ2
d

), (4.5)
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where σ2
i denotes the variance of the Xi. θ is adjusted to minimize the cost function in

Equation (4.4). Nonlinear programming methods, such as the Steepest-Descent method
and the Gauss-Newton method [117], can be used to solve the optimization problem.
The optimization loop stops when the cost function does not decrease, the ∆θ becomes
very small, or the number of iterations reaches the maximum iterations iterMax. If the
deviation between the simulated and the observed distributions of the incident metric
is acceptable, the optimization loop also stops, and the calibrated contributing factors
will be used in the following ‘Predict’ step. Otherwise, the model should be revised, for
example, by including more crucial contributing factors or excluding the unimportant
factors.

4.2 PCE-based Calibration Framework

For the calibration framework demonstrated in Figure 4.3, the MCS is embedded in the
optimization loop. Due to the fact that the MCS requires a large number of evaluations
to obtain convergent results, and it is required in each iteration of the optimization,
this framework is time-consuming. Since the samples are randomly generated from the
input distributions, the cost function varies even for the same distribution parameters
θ. Therefore, the cost function is difficult to converge when using the above MCS-based
calibration. As mentioned in Section 3.5.3, the statistical moments of the PCE model
output are encoded in the PCE coefficients. By utilizing this convenient property, this
section proposes a new PCE-based calibration framework with a frozen sample strategy.

4.2.1 PCE-based Surrogate Model

The mathematical fundamentals of the PCE model are already introduced in Section 3.5.
First, the PCE-based surrogate model is constructed based on the polynomial bases and
computed coefficients. Then, the PCE model can be evaluated instead of the original
model. A relationship between the PCE-based surrogate model and the original model is
illustrated in Figure 4.4.

The original model is represented by a sum of the series of polynomial bases. If the
original inputs are arbitrarily distributed, an isoprobabilistic transformation T is required
to transfer samples X to Z as below:

Z = T (X), (4.6)

where the inverse transformation is denoted by T−1, and X = T−1(Z). The detailed
procedure of the isoprobabilistic transformation T is already described in Equation (3.98)
and Equation (3.99). The transformation T is mainly obtained based on marginal CDFs
FXi(Xi) and φi(Zi) and their corresponding inverse CDFs, while the dependence C is also
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Incident Model
𝑌 = 𝑔(𝑿)

𝑿𝑛×𝑑

Input
𝑿𝑛×𝑑~𝐹𝑋 𝑋,𝜽𝑖𝑛𝑖𝑡

Output
𝑌𝑛×1

𝑌𝑛×1

PCE Model

𝑌 = 𝑘𝑗

𝑃−1

𝑗=0

𝛹𝑗 𝒁

PCE Basis𝒁

𝑈𝑖

𝜙−1(𝑈𝑖)
⇌

𝜙(𝑍𝑖)
𝑍𝑖𝑋𝑖

𝐹𝑋𝑖(𝑋𝑖)

⇌
𝐹𝑋𝑖
−1(𝑈𝑖)

𝑈𝑖

PCE Polynomials𝛹 𝒁

Measurements
𝑿𝑚𝑒𝑎𝑠 ,𝑌𝑚𝑒𝑎𝑠

𝒁 = 𝑻(𝑿) 𝑌 = 𝑔(𝑻−1(𝒁))

Remove 
dependence
if it exists

Original
space

Independent
space

Figure 4.4: PCE-based Surrogate Model

required for dependent variables. FXi(Xi) is estimated based on the measurements of Xi,
while φi(Zi) is selected based on the selected polynomial basis families. The dependence
of X is removed during the transformation from X to Z if it exists [34, 42]. After the
transformation, the value of the polynomials Ψj(Z) is subsequently computed based on
the value of samples Z. Then the output Y is obtained by summing up all polynomials.
As shown in Figure 4.4, the PCE model does not only surrogate the original model, but
also represent the inverse transformation T−1 as follows:

Y = g(X) = g
(
T−1(Z)

)
= G(Z) ≈

P−1∑
j=0

kjΨj(Z). (4.7)

where G(·) denotes the relation g (T−1(·)). Instead of the original model g(·), the PCE
model uses a series of polynomial expansions to surrogate G(·). It means that not only
the original model g(·), but also the inverse transformation T−1 is surrogated. Obviously,
the dependence among the input variables increases the complexity of G(·). A high order
PCE model might be required for dependent input variables to obtain the same accuracy
for the same model g(·) with independent input variables.

4.2.2 Integration of PCE into the Calibration Framework

A PCE-based calibration framework with frozen samples is shown in Figure 4.5. In the
beginning, an initial PCE model is computed based on the random samples Xn×d and the
corresponding output Yn×1 using the Algorithm 10. Furthermore, the MCS is required
to validate if the obtained PCE model can surrogate the original model properly. If the
output distributions from the obtained PCE model and the original model match very
well, the obtained polynomial bases can be used for the further calibration procedure.
Otherwise, more polynomial bases might be required in the PCE model to improve the
surrogate accuracy. In the following optimization loop, the polynomial bases of the PCE
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model will remain the same. However, the PCE coefficients will be updated in each itera-
tion step of the optimization. Since the statistical moments of the PCE model output are
encoded in the PCE coefficients, the cost function is defined by comparing the statistical
moments mentioned in Equation (4.4). The Gauss-Newton optimization algorithm [117]
is applied to update θ as below:

∆θ = −
(
∂2J

∂θ2

)−1
∂J

∂θ
,

θi+1 = θi + ∆θ.
(4.8)
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Figure 4.5: Flow chart of PCE-based calibration framework

97



4.2 PCE-based Calibration Framework

Compared to the MCS-based calibration framework, the samples Xn×d and Yn×1 are set
as the designed samples in the PCE-based calibration. They will be reused during the
optimization process. Although samples Xn×d are frozen, the description parameters of
input distributions θ are updated in each iteration. Furthermore, the samples Zn×d will
be updated correspondingly. Subsequently, the new PCE coefficients are calculated to
minimize the deviation in the statistical moments between the PCE model output and
the observed output. By freezing the designed samples, the MCS in each iteration step
is not necessary anymore. The original incident model is only evaluated in the first step.
Therefore, the PCE-based calibration framework dramatically improves the efficiency of
the ‘Calibrate’ step. The procedure of the PCE-based calibration algorithm is described
in detail in Algorithm 11.

Algorithm 11 The procedure of the PCE-based calibration algorithm
1: Initial setting of the PCE model: the truncated scheme p and |α|q
2: Store the P terms polynomial bases {Ψj(Z), j = 1, ..., P}
3: Generate n samples X from F (X|θinit), n = 3P
4: Evaluate the model Y = g(X), obtain the output Y
5: Compute the PCE coefficients using Algorithm 10
6: Run MCS in the original and the PCE model using the same inputs, and obtain two

output distributions with respect to Yoriginal and YPCE
7: if two output distributions from MCS do not match then
8: Go back to step 1, and add more polynomial bases
9: end if

10: Set the iteration number i = 1, θi = θinit
11: Starting the optimization loop
12: Transfer samples X to Z: Z = T (X) based on the current value of θi
13: Calculate the value of polynomials Ψ = {Ψj(Z)}
14: Solve the new PCE coefficients K̂ = (ΨTΨ)−1ΨTY
15: Calculate the statistical moments MYPCE

16: Calculate the cost function J = f(MYPCE ,θi, Xmeas, Ymeas) using Equation (4.4)
17: if Deviation between simulated and measured output is acceptable then
18: Stop: return θ = θi and go to the Predict step
19: else if ∆J

J
≤ Jconv or

∆θ
θ
≤ θconv or i ≥ iterMax then

20: Stop: go to the Revise step
21: else
22: Calculate the gradient G = ∂J/∂θ and the Hessian matrix F = ∂2J/∂θ2

23: Calculate ∆θ = −F−1G
24: Update θi+1 = θi + ∆θ, i = i+ 1
25: Return to Step 12
26: end if
27: Run the MCS using the calibrated contributing factors and the original model
28: Validate results by comparing two distributions of the simulated and observed outputs
Remarks: Jconv, θconv, and iterMax are the stop criteria for the optimization.
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4.3 Validation of the Calibration Algorithm

Before using the algorithm in the runway overrun model, a first-order system is used as
a test case in this section for validation. The system is also used as a test model for
validation in [35] and [50]. The system shows a proportional transition behavior with a
time delay. The model equation is as below:

y(t) = y0 + 1
T

∫ t

0
Ku(τ)− y(τ)dτ, (4.9)

where the system input is a time series, denoted by u. A step signal of u is chosen. There
are three uncertainty parameters: the initial value y0 of y, the proportional gain K, and
the time constant T . They are defined as three contributing factors. The model output
Y is the value of y at a certain time ts of the transition period. The uncertainties of the
output Y driven by the three contributing factors are analyzed. The generalized model
equation could be described as below:

Y = g(X) = g(K,T, y0). (4.10)

For the step response of the first-order system, the model output Y can be computed
analytically by

Y = y0 +K(1− e−ts/T ). (4.11)

Since the uncertainties in the contributing factors are not always Gaussian distributed.
Three different distributions: ‘Lognormal’, ‘GEV’, and ‘Normal’ are chosen for K, T , and
y0 shown in Table 4.1. The values of these three contributing factors are also limited to
a certain interval.

Table 4.1: Contributing factors distributions of the first-order model, adapted from Table
2 of [50]

X Symbols Distribution Bounds Parameters Shifted parameters

X1 K lognormal [6,14] [µ1, σ1] = [2.2, 0.2] µ1 = 2.15
X2 T GEV [6,10] [k2, µ2, σ2] = [−0.2, 7, 1] µ2 = 8
X3 y0 Normal [0,3] [µ3, σ3] = [2.0, 0.1] µ3 = 1.9

By setting ts = 3.5 and applying the distribution parameters in Table 4.1, the output
distribution is obtained based on the MCS. As shown in Figure 4.6, the distribution of y
at t = 3.5 is set as the target output distribution.

A shifted distribution parameters of contributing factors is shown in Table 4.1. They are
chosen as the initial distribution parameters. The MCS also allows us to obtain the initial
output distribution by using the shifted distributions. The first three statistical moments
of the target and initial output are compared in Table 4.2.
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4.3 Validation of the Calibration Algorithm

Figure 4.6: Output uncertainties in the first order system

Table 4.2: Statistical moments of the model output, source: Table 3 of [50]

Y µY σY δY

Target output 5.4435 0.7121 0.4832
Initial output 4.9767 0.6293 0.6227
Calibrated output 5.4357 0.7062 0.5068

The PCE-based calibration algorithm can be implemented to minimize the model output
deviation by tuning contributing factors’ distribution parameters. The first step is to
obtain an initial PCE model. Since the input distributions are arbitrary with truncated
boundaries, the arbitrary polynomial basis [42, 111] is applied. By trial and error, the
truncated scheme with p = 5 and q = 1 is selected. Therefore, P = (p + d)!/p!d! = 56
polynomial terms compose the PCE model. In order to avoid the over-fitting issue,
10P = 560 samples are used to calculate the PCE coefficients. MCS with the 105 samples
are implemented in the original model and the obtained PCE model to check the surrogate
accuracy. Samples plot between the original model output and the PCE output is shown
using the blue cross in the left figure of Figure 4.7. The red line denotes the 45◦ positive
diagonal line. The samples are almost located at the red line, which indicates that the
PCE model has the same output as the original model. Furthermore, the CDFs and PDFs
of the original and the PCE output match very well shown in Figure 4.7. It shows that
the obtained PCE model could surrogate the original model with high accuracy.
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Figure 4.7: Comparison of the original output and the PCE output in the test case

Before the calibration algorithm, the sensitivities of contributing factors to output vari-
ance, so-called Sobol’s indices, are computed easily based on the obtained PCE coeffi-
cients. By applying Equation (3.174), the Sobol’s indices are shown in Figure 4.8. It
allows us to obtain a quantitative importance measure for each contributing factor.

Figure 4.8: PCE-based Sobol’s indices of contributing factors in the test case

Since there is no fitting error about the target distribution in this case, the cost function
of the calibration is based on Equation (4.3) with the first three order statistical moments
MY = [µY , σY , δY ]. The tuned parameters are µ1, µ2, and µ3. The shift of 20% stan-
dard deviation in the mean value of tuned parameters is chosen as the upper and lower
boundaries. After the calibration, the iteration process of the tuned parameters is shown
in Figure 4.9(a). The iteration process in Figure 4.9(a) shows that the tuned parameters
converge to the true value. Figure 4.9(b) illustrates the calibrated distributions of the
contributing factors. The calibrated contributing factors obey the true distributions.
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4.3 Validation of the Calibration Algorithm

(a) Iteration of tuned parameters in the test case

(b) Calibrated distributions of the contributing factors in the test case

Figure 4.9: Calibrated contributing factors in the test case
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MCS is applied by using the calibrated contributing factors to validate the output results.
As shown in Figure 4.10, the kernel-fitted output PDFs are compared. The ‘Target’
denotes the true value with the true contributing factors. The ‘Propagate Before Calib-
Original’ indicates the simulated output with the shifted contributing factors, which has a
deviation with the ‘Target’ results. During the calibration process, the designed samples
are frozen, and they do not obey the calibrated distribution. Therefore, the output PDFs
obtained using the ‘Designed Samples’ is close to the ‘Propagate Before Calib-Original.’
Furthermore, the calibrated contributing factors are simulated through the PCE model
and the original model. Both simulated output PDFs match the ‘Target’ PDF very well.
The calibrated first three statistical moments are also listed in Table 4.2. In summary,
the PCE-based calibration algorithm works very well in this first-order system.

Figure 4.10: Calibration results in the test case

4.4 Calibration for the Runway Overrun Model

The proposed PCE-based calibration framework is implemented in the runway overrun.
The detailed runway overrun model and all contributing factors have been introduced
in Section 2.5. The distance from touchdown to 80 knots, denoted by d80, is used as
the model output for calibration. The model input contains all contributing factors X1

to X10 in Table 4.3. One observation of X is identified from the QAR data of a single
flight. A batch of measurements for each contributing factor is obtained by gathering
many flights. The ‘Cumulate’ step is carried out to estimate the best-fitted distributions
for all contributing factors. The upper and lower bounds of all contributing factors are
set based on the operational limits. Table 4.3 shows the ‘Cumulate’ results for runway
overrun case from 552 flights of Boeing 747-8F with a full flap configuration. All those
flights landed on the same runway. The estimated distributions are used as the input of
the runway overrun model. An initial PCE-based surrogate model is described at first,
followed by the discussion of the calibration results.
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Chapter 4: Calibration of Contributing Factors for Predictive Analysis

4.4.1 Initial PCE Model

According to the calibration procedure, the initial PCE model is firstly obtained to sur-
rogate the original runway overrun model accurately. As the obtained input distributions
are arbitrary with truncated boundaries, the complexity of transformation T from X

space to Z space is high when the regular polynomial bases like Legendre polynomial
bases are used. Alternatively, the arbitrary polynomial bases [42] are implemented for
each input, respectively. For the same truncated scheme, the arbitrary polynomial bases
will better represent the input distributions than the traditional Hermite or Legendre
bases. The monic orthonormal polynomials Ψα(Z) are calculated based on the 3-term
recurrence relations in Equation (3.144).

The classical PCE is applied at first with the truncated order p = 6. Based on the
definition, the total degree |α| should be equal or less than 6. Therefore, there are
(10+6)!/10!6! = 8008 polynomial bases in total. Considering the computational capacity,
the total number of bases is too large. In order to further reduce the number of polynomial
bases P , the hyperbolic PCE with qnorm = 0.5 is applied. For this truncated scheme, there
are 196 polynomial bases in total. The PCE coefficients are computed using the least-
square method in Algorithm 10. To validate the accuracy of the obtained PCE model,
105 input samples are generated to run the MCS using the obtained PCE model and the
original model, respectively. The corresponding 105 output samples are obtained. The
output CDFs and PDFs are estimated subsequently.

Figure 4.11 shows the comparison in output sample plots and distributions. Most samples
are almost located in the positive diagonal line. However, there is a deviation between
the original model and the PCE model using the current truncated scheme. Nevertheless,
two probability distributions of the model output match very well. The obtained PCE
allows us to represent the statistical behavior of the model output with high accuracy.
Due to the limit of the computational capacity and efficiency, the truncated scheme p =
6, qnorm = 0.5 is used.

Figure 4.11: Comparison of the original output and the PCE output in runway overrun
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4.4 Calibration for the Runway Overrun Model

Before the calibration, the PCE-based Sobol indices are computed and visualized in Fig-
ure 4.12. The top six important factors are

1. X3: Landing mass m

2. X10: Equivalent acceleration ax,equ

3. X6: Time to start braking tstartBRK

4. X2: Headwind Vhws

5. X4: Approach speed deviation ∆Vapp

6. X1: Air density ρ

The remaining four factors X5, X7, X8, X9 influence less, which is due to the auto-braking
system applied in the runway overrun model. The drag force caused by the spoilers,
the reverse thrust, and the braking force compromise to obtain the equivalent target
acceleration. Therefore, a minor shift in the mean of the remaining four factors can not
introduce a large deviation in the output. Therefore, only the six influential contributing
factors will be calibrated.

Figure 4.12: PCE-based Sobol’s indices of contributing factors in runway overrun

Although the PCE-based calibration algorithm can be implemented using the current
PCE model, a modification is applied to improve the accuracy of the PCE model further.
Since the contributing factors X5, X7, X8, X9 have no significant influence on the output
uncertainties, the model input dimensions reduce to 6 during the calibration procedure.
The mean value of X5, X7, X8, X9 are taken instead of random values. The simplified
model with reduced dimensions reduces the complexity of the original model. Further-
more, the simplified model allows us to increase the truncated order of the PCE model.
p = 7, qnorm = 0.5 is used. MCS with 105 samples is implemented to validate the obtained
PCE model shown in Figure 4.13.
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Chapter 4: Calibration of Contributing Factors for Predictive Analysis

Figure 4.13: Comparison of the simplified model output and the new PCE output in
runway overrun

There is only a small error in output between the new PCE model and the simplified
model. Compared to Figure 4.11, the new PCE model has a better match with the
simplified model output. In addition, the corresponding CDFs and PDFs match very
well. The new PCE model is used in the following calibration.

4.4.2 Calibration of Contributing Factors

The distribution location parameter µ of six contributing factors is set as the tuned param-
eter θ = {µ1, µ2, µ3, µ4, µ6, µ10}. The calibrated tolerance of the mean value is bounded
based on the 20% of the corresponding standard deviation around the expectation value.
The upper and lower bounds are transferred from the mean to the location parameters ac-
cording to the distribution function. The mean and standard deviation of output are used
in the cost function. To balance the fitting error of the input and output, the weighted
functions are set as follows:

W1 = diag( 10
σ2
Y

,
5
σ2
Y

), (4.12)

and
W2 = 1

6 · diag( 1
σ2

1
,

1
σ2

2
,

1
σ2

3
,

1
σ2

4
,

1
σ2

6
,

1
σ2

10
). (4.13)

The constant values 10 and 5 are set to increase the weight of the output distribution
deviation. Contributing factors are calibrated using the Algorithm 11. Figure 4.14 shows
the iteration process of the tuned distribution parameters. The comparison between the
original and the calibrated input distributions is shown in Figure 4.15.
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Figure 4.14: Iteration of the tuned parameters in runway overrun

Figure 4.15: Calibrated distributions of the contributing factors in runway overrun
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In order to validate the calibration results, the MCS is implemented using the calibrated
contribution factors through the original model. Figure 4.16 shows the kernel-fitted out-
put PDFs. The output distribution using the calibrated contributing factors and the
original model is close to the observed distributions. In summary, the minor shift of the
contributing factors allows the model output to match the observed output distribution.
The calibrated contributing factors and the incident model can be used in the ‘Predict’
step.

Figure 4.16: Calibration results in runway overrun
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Chapter 5

Modeling of Stochastic Wind

Wind speed is a safety-critical factor for the operational flight data. A wind series gener-
ator is required to quantify the wind effect in the Predictive Analysis framework. In this
chapter, a new solution is proposed to model the stochastic wind from the operational
flight data based on the Karhunen–Loève (KL) expansion methods. The KL-based wind
model allows us to generate the wind series, following the original statistical characteris-
tics. The main contents of this chapter have been published in [51].

This chapter is organized as follows: the motivation of the stochastic wind modeling is
introduced first in Section 5.1. Section 5.2 describes the classical stochastic process mod-
eling methods. KL-based stochastic process reconstruction and regeneration methods are
proposed in Section 5.3, followed by the comparison between the PSD approach and KL
expansion in Section 5.4. The integration of vine copula into KL expansion is recom-
mended to capture the dependence among KL coefficients in Section 5.5. In Section 5.6,
the von Karman turbulence model is applied to compare the power spectral density and
KL expansion coefficients. The results of KL-based wind modeling from the operational
flight data are discussed in Section 5.7. A short summary is given in Section 5.8.

5.1 Motivation

In the flight dynamics and performance analysis, the discrete gust model, low-level wind
shear model, and von Karman or Dryden turbulence model are widely used [118–120].
EASA also summarizes the mean wind, wind shear, and turbulence model for airwor-
thiness assessment [121]. However, the features of wind are affected by the local terrain
and climate. There is a considerable difference in the wind characteristics for different
airports. These mentioned wind models do not describe the local wind features and they
are not appropriate for quantifying the operational risk in the Predictive Analysis frame-
work mentioned in Section 1.2.2. Nevertheless, as described in Chapter 2, QAR records
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5.2 Stochastic Process Modeling Methods

the real encountered wind series data for each flight. Hundreds of Flights landing on the
same runway can provide a local wind series database, which allows us to analyze the
local wind features statistically.

In the application of Predictive Analysis approach, wind speed is already considered as
one of the contributing factors. For example, in the runway overrun model described
in Section 2.5, the wind speed at the touchdown point is extracted from the QAR data.
According to the measurements recorded in the QAR, one can estimate the distribution of
the wind speed. Samples of wind speed generated randomly from the obtained distribution
are used as the model input, and the wind speed keeps constant in one simulation of
the incident model. However, the constant wind assumption is not appropriate for all
accidents since the wind variation has a significant effect on flight safety. Instead of
the constant wind, wind series should be taken into account in the incident modeling.
The classical turbulence and wind shear model provide the wind series, but they can not
describe wind’s local statistical characteristics for the specific airport. Therefore, the aim
of this chapter is to provide a wind series model in order to generate a wind process,
which has the same statistical features as the encountered wind data. Furthermore,
the generated wind process should be suitable in the MCS of the incident model. The
Predictive Analysis framework with the wind process input is illustrated in Figure 5.1.
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Figure 5.1: Predictive Analysis framework with the wind process input, modified from [9]

5.2 Stochastic Process Modeling Methods

Wind series can be taken as a stochastic process. LetX(t) = {X(t1), X(t2), . . . , X(ti), . . . }
denote a stochastic process, and E[|X(ti)|2] < ∞, ti ∈ T . Each component X(ti) at one
time point ti is a random variable. Correlations between these random variables are usu-
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ally applied to analyze the stochastic process. The correlation relationship is described
using the autocorrelation and autocovariance functions as below:

R(t, s) = E[X(t)X(s)],
Cov(t, s) = E[(X(t)− µt)(X(s)− µs)] = R(t, s)− µtµs,

(5.1)

where t, s ∈ T . µt and µs are the mean of the process X(t) at given time t and s,
respectively. The process X(t) is called weakly stationary process if the mean µ does not
change with the t, and R(t, s) only depends on the time lag between t and s as below:

E[X(t)] = E[X(s)] = µ,

R(t, s) = R(t+D, s+D), ∀D ∈ T.
(5.2)

The time lag between t and s is denoted by the τ = t−s. Therefore, R(t, s) = R(τ). There
are many approaches to further analyze the stochastic process with different assumptions
on the autocorrelation. This section introduces several widely used methods for wind
modeling briefly.

5.2.1 White Noise

White noise is a random process composed of a sequence of uncorrelated random vari-
ables [122]. These variables follow the same Gaussian distribution with zero mean and a
finite variance. The sensor noise is usually assumed to be white noise.

5.2.2 Markov Process

According to the Markov properties, the current state only depends on the previous
state [123]. Since there is no direct physical relation for the wind speed, an Estimation-
Before-Modeling (EBM) approach is proposed in [124] for the parameter estimation. By
applying the EBM approach, a third-order Gauss-Markov process is used to describe the
dynamics of the wind as below [71, 125]:


.
x
..
x
...
x

 =


0 1 0
0 0 1
0 0 0



x
.
x
..
x

+


w1

w2

w3

 , (5.3)

where x denotes the wind speed, and w1, w2, and w3 are the zero-mean Gaussian white
noise. The first-order, second-order and third-order derivatives of x are driven by w1, w2, w3.
The x, .x, ..x will also follow the Gaussian distribution through the linear transformation.
In addition, the current state x only depends on the previous state. Instead of the Markov
process, the auto-regressive–moving-average (ARMA) approach can also be used to de-
scribe the stochastic process, which allows the current state x depending on the several
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previous states [126]. However, the Markov process and ARMA approach only work on
the stationary process. In order to construct a realization of the wind time series, one or
several random numbers are required to be generated from the white noise at each time
point. These random variables for each time point will dramatically increase dimensions
of the model input.

5.2.3 Fourier Transformation-based Spectral Representation

Both the Markov process and the ARMA model analyze the stochastic process in the
time domain directly. In contrast, the Fourier transform-based spectral representation
(FTSR) is often implemented to analyze the stochastic process in the frequency domain.
The Fourier series (FS) expansion and Fourier transformation (FT) are introduced first
for the periodic signal, and extended to the aperiodic signal. The power spectral density
(PSD) obtained by the FT of autocorrelation function is used to describe the stochastic
process.

Fourier Transformation

Assume that f(t) is a periodic function and T0 is the period. If f(t) satisfies Dirichlet’s
conditions, i.e., f(t) is integrable, its Fourier series expansions are as below [122]:

f(t) = a0

2 +
∞∑
n=1

(ancos(nω0t) + bnsin(nω0t)) , n = 1, 2, ..., (5.4)

where ω0 = 2π/T0 and it denotes the angular frequency. The coefficients a0,an,and bn are
calculated as follows:

a0 = 2
T0

∫ T0

0
f(t)dt, an = 2

T0

∫ T0

0
f(t)cos(nω0t)dt,

bn = 2
T0

∫ T0

0
f(t)sin(nω0t)dt.

(5.5)

Fourier series expansions can be also written in the exponential form as below:

f(t) =
∞∑

n=−∞
Fne

inω0t, (5.6)

where Fn is the Fourier coefficients and calculated via

Fn = F (nω0) = 1
T0

∫ T0

0
f(t)e−inω0tdt. (5.7)

Based on Euler’s formula eix = cosx + isinx, the two expansions Equation (5.4) and
Equation (5.6) are equivalent each other. Fn is a complex function and is written as

Fn = |Fn|eiψn , (5.8)
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where |Fn| and ψn are the amplitude and phase of the signal f(t) respectively. They are
commonly used in the frequency spectrum analysis. Then f(t) can be written as below:

f(t) =
∞∑

n=−∞
|Fn|eiψneinω0t = F0 +

∞∑
n=1

2|Fn|eiψneinω0t

= F0 +
∞∑
n=1

2|Fn|cos(nω0t+ ψn).
(5.9)

It is worth noting that the frequency spectrum of the periodic signal is discrete. For the
aperiodic signal with the finite time T0, the signal is assumed as a periodic signal with
the period T0. When T0 →∞, we have

ω0 = 2π/T0 → 0,
nω0 → ω,

∆(ω)→ dω,

F (nω0)/ω0 → F (ω)/(2π).

(5.10)

Therefore, the Fourier transformation and inverse Fourier transformation of the aperiodic
signal are as below [122]:

F (ω) =
∫ ∞
−∞

f(t)e−iωtdt, (5.11)

f(t) = 1
2π

∫ ∞
−∞

F (ω)eiωtdω. (5.12)

Power Spectral Density

The PSD function P (ω) can be calculated based on the Fourier transformation of the
autocorrelation function R(t+ τ, t) [127] as below:

P (ω) =
∫ ∞
−∞

R(t+ τ, t)e−iωτdτ, (5.13)

where R(t + τ, t) = R(τ) for the stationary process. R(τ) can also be computed via the
inverse Fourier transformation as follows:

R(τ) = 1
2π

∫ ∞
−∞

P (ω)eiωτdω. (5.14)

The PSD of the white noise is a constant value. In aviation, the classical von Karman or
Dryden turbulence model describes the wind by using the PSD [128]. In addition, one-
sided PSD is commonly used in practice since the real signal does not have the negative
frequency. The one-sided PSD S(ω) is obtained as below:

S(ω) = 2P (ω), when ω > 0
S(0) = P (0).

(5.15)

115



5.3 KL-based Stochastic Process Reconstruction and Regeneration

5.3 KL-based Stochastic Process Reconstruction and
Regeneration

All stochastic process modeling methods mentioned above can only be applied to describe
the stationary process. In order to represent the non-stationary process and achieve a
more realistic quantitative statement of the operational situation, a high fidelity model
to describe the encountered wind series is required. Without any assumption about the
stochastic process, a Karhunen–Loève (KL) expansion approach is applied to describe
the observed non-stationary stochastic phenomena, for example, seismic ground motion
in [129, 130]. This approach is also called functional principal component analysis, which
has a good performance in dimension reduction.

The definition of eigenfunction and integral operator is given first. Let Q is a linear
operator on a function space. Then an eigenfunction of the operator Q is a non-zero
function φ in that space such that the application of Q on φ equals φ multiplied by a
scalar factor as below [131]:

Qφ = λφ, (5.16)

where λ is a constant called the eigenvalue of the operator Q. As one type of the operator,
a linear integral operator Q̃, also called an integral transformation, maps a function f from
its original function space into another function space via integration:

f → Q̃f : Q̃f(t) =
∫
D
K(t, s)f(s)ds, (5.17)

where D is a given measurable set that t, s ∈ D. K(t, s) is a continuous function and
called the kernel of an integral operator. For example, the Fourier transformation in
Equation (5.11) is one of integral operator.

Let X(t) denote a continuous process at the given time interval D = [0, T ] with a zero
mean at any time t ∈ D. It means that E[X(ti)] = 0 for all ti ∈ D. If X(t) is integrable:
E[X2] < ∞, the linear operator Q̃ in Equation (5.17) can be defined by setting the
autocorrelation function R(t, s) of the process X(t) as the kernel K(t, s). Based on the
Mercer’s theorem [135], there exists a set of eigenfunctions φk(t) and eigenvalues λk ≥ 0
for the operator Q̃, and R(t, s) can be decomposed as below:

R(t, s) =
∞∑
k=1

λkφk(t)φk(s). (5.18)

The eigenfunctions φk(t) and the eigenvalues λk of Q̃ satisfy

Q̃φk(t) =
∫
D
R(t, s)φk(s)ds = λkφk(t), t, s ∈ D. (5.19)

where the eigenfunctions φk(t) are orthonormal:

< φk(t), φl(t) >=
∫
D
φk(t)φl(t)dt = δkl, k, l ≥ 1. (5.20)
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where δkl denotes the Kronecker delta function. δkl = 1, if k = l. Otherwise, δkl = 0. The
continuous process X(t) can be expressed using a series of KL expansions [134]:

X(t) =
∞∑
k=1

√
λkξkφk(t). (5.21)

where the scalar value λk and the continuous function φk(t) are the eigenvalue and the
eigenfunction of the operator Q̃. ξk is the KL coefficient, and it is given by the projection
of X(t) on the kth eigenfunction φk(t):

ξk = 1√
λk

∫
D
X(t)φk(t)dt. (5.22)

According to the properties that eigenfunctions φk are orthonormal and X(t) is a zero
mean process, ξk holds that [133]:

E[ξk] = 0, V ar[ξk] = 1, E[ξkξl] = δkl. (5.23)

Furthermore, the total variance of the finite zero-mean process X(t) is described as the
integral of the variance at each time point over the whole time interval D as follows [129]:

∫
D
V ar[X(t)]dt =

∫
D
E[X2(t)]dt =

∫
D
E

( ∞∑
k=1

√
λkξkφk(ti)

)2
 dt

=
∫
D
E

[ ∞∑
k=1

λk(ξk)2(φk(ti))2
]
dt =

∞∑
k=1

λkE
[
(ξk)2

] ∫
D

(φk(ti))2dt =
∞∑
k=1

λk.

(5.24)

The integrated variance of the process can be measured by the sum of all λk.

Since the measured data of the stochastic process is discrete, the discrete form of the
functions used in the KL expansion is described. For a non-zero mean process Y (t)
measured at time points T = [t1, t2, ..., tN ]. Y (t) = {Y (t1), Y (t2), ..., Y (tN)} denotes a
discrete stochastic process with N samples. L series in total are obtained by collecting a
batch of measured series data. The collected data is written in a matrix Y as below:

Y = [Y (t1),Y (t2), ...,Y (tN)] =


Y 1(t1) Y 1(t2) ... Y 1(tN)
Y 2(t1) Y 2(t2) ... Y 2(tN)

... ... . . . ...
Y L(t1) Y L(t2) ... Y L(tN)


[L×N ]

(5.25)

Each row of the matrix Y denotes one realization of the stochastic process. Each column
Y (ti) denotes L realizations of Y (t) at a certain time ti: Y (ti) = [Y 1(ti), Y 2(ti), ..., Y L(ti)]T .
The mean value of all realizations at a certain time ti is computed as below:

µY (ti) = E[Y (ti)] = 1
L

L∑
l=1

Y l(ti). (5.26)

Therefore, the mean of the process over time is written as below:

µY = E[Y (t)] = [E[Y (t1)], E[Y (t2)], ..., E[Y (tN)]] (5.27)
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By subtracting the µY from the process Y (t), the zero-mean stochastic process is obtained,
denoted by X(t), and X(ti) = Y (ti)−E[Y (ti)] for all ti ∈ T . Thence, the covariance of
the stochastic process Y (t) at t = ti and t = tj is shown as below:

Cov(ti, tj) = E[(Y (ti)− E[Y (ti)])T (Y (tj)− E[Y (tj)])] = E[(X(ti))T (X(tj))], (5.28)

which is also the autocorrelation RX(ti, tj) of the process X(t) at t = ti and t = tj.

RX(ti, tj) = E[(X(ti))T (X(tj))] = 1
L

(X(ti))T (X(tj))

= 1
L

[X1(ti), X2(ti), ..., XL(ti)] ·


X1(tj)
X2(tj)

...
XL(tj)

 = 1
L

L∑
l=1

X l(ti)X l(tj).
(5.29)

Thence, the autocorrelation matrix RX is shown as below:

RX =


RX(t1, t1) RX(t1, t2) ... RX(t1, tN)
RX(t2, t1) RX(t2, t2) ... RX(t2, tN)

... ... . . . ...
RX(tN , t1) RX(tN , t2) ... RX(tN , tN)

 = 1
L

XTX (5.30)

The matrix RX is decomposed based on its eigenvalues and eigenvectors as below:

RX = V ΛV T = [φ1,φ2, ...,φN ]


λ1 0 ... 0
0 λ2 0
... . . . ...
0 0 ... λN




φ1

φ2
...
φN



=


φ1(t1) φ2(t1) ... φN(t1)
φ1(t2) φ2(t2) φN(t2)

... . . . ...
φ1(tN) φ2(tN) ... φN(tN)




λ1 0 ... 0
0 λ2 0
... . . . ...
0 0 ... λN




φ1(t1) φ1(t2) ... φ1(tN)
φ2(t1) φ2(t2) φ2(tN)

... . . . ...
φN(t1) φN(t2) ... φN(tN)


(5.31)

where Λ is the eigenvalue matrix, and V = [φ1,φ2, ...,φN ] is the eigenvector matrix. The
kth eigenvector φk is a column vector, which is composed of all values of the continuous
function φ2(t) at all time points ti ∈ T as below:

φk = [φk(t1), φk(t2), ..., φk(tN)]T . (5.32)

Therefore, one element of the matrix RX is computed using the eigenvector and the
eigenvalue as follows:

RX(ti, tj) = [φ1(ti)λ1, φ2(ti)λ2, ..., φN(ti)λN ]


φ1(tj)
φ2(tj)

...
φN(tj)

 =
N∑
k=1

λkφk(ti)φk(tj), (5.33)
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which has N terms compared to Equation (5.18) for the continuous stochastic process.
The KL expansion of the discrete stochastic process X(t) at a certain time ti ∈ T =
{t1, t2, ..., tN} is:

X(ti) =
N∑
k=1

√
λkξkφk(ti). (5.34)

Let the superscript l denote the lth realization. Then, X l(ti) denotes lth realization of
X(ti). Therefore, the corresponding discrete version of calculating the random variable
ξk for X l(ti) is shown as below:

ξlk = 1√
λk

N∑
i=1

X l(ti)φk(ti). (5.35)

where ξlk denotes the coefficient of the process {X l(t), t ∈ T } projected on the kth eigen-
vector {φk(t), t ∈ T }. The matrix form of the obtained ξlk from L series is shown as
below:

ξ[L×N ] =


ξ1

1 ξ1
2 ... ξ1

N

ξ2
1 ξ2

2 ... ξ2
N

... . . . ...
ξL1 ξL2 ... ξLN

 = X[L×N ]


1/
√
λ1 0 ... 0

0 1/
√
λ2 0

... . . . ...
0 0 ... 1/

√
λN


[N×N ]

V[N×N ]

=


X1(t1) X1(t2) ... X1(tN)
X2(t1) X2(t2) ... X2(tN)

... ... . . . ...
XL(t1) XL(t2) ... XL(tN)


[L×N ]


1/
√
λ1 0 ... 0

0 1/
√
λ2 0

... . . . ...
0 0 ... 1/

√
λN


[N×N ]

φ1(t1) φ2(t1) ... φN(t1)
φ1(t2) φ2(t2) φN(t2)

... . . . ...
φ1(tN) φ2(tN) ... φN(tN)


[N×N ]

(5.36)
The kth column of the obtained ξ denotes L realizations of the corresponding random
variable ξk. Furthermore, the marginal distributions of ξk can be estimated based on the
computed realizations {ξlk, l = 1, 2, ..., L} using the maximum likelihood methods. As
mentioned in Equation (5.23), the ξk are distributed with zero mean and unit variance.
Moreover, the KL coefficients ξk are linearly uncorrelated since E[ξkξl] = δkl. However,
there might be nonlinear dependence existing among the ξk for the non-Gaussian stochas-
tic process. The estimated distribution of ξk allows us to generate new samples of ξk,
which is further used to construct new time series of the stochastic process.
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In practice, the KL expansion in Equation (5.34) is truncated at a certain order K. A
ratio of the achieved variance to the total variance is called cumulative variance ratio,
which is used to assess the accuracy of the KL reconstruction:

η =
∑K
k=1 λk∑N
k=1 λk

. (5.37)

ε = 1− η denotes the relative error of the reconstruction. In order to reduce the relative
error ε with a truncated order, λk is sorted in the order of descent: λ1 ≥ λ2 ≥ ... ≥ 0.
Therefore, the most dominant terms are selected. The calculated realizations of ξk allow
us to reconstruct the original stochastic process using K coefficients as below:

Y (t) ≈ µY (ti) +
K∑
k=1

√
λkξkφk(t), t ∈ {t1, t2, ..., tN}. (5.38)

By generating a new sample of ξ′ = [ξ′1, ξ
′
2, ..., ξ

′
K ], the new stochastic process is produced

using the Equation (5.38). The new discrete process Y is shown in a matrix form:

Y[1×N ] = (µY )[1×N ] + ξ′[1×K]



√
λ1 0 ... 0
0
√
λ2 0

... . . . ...
0 0 ...

√
λK


[K×K]

(V T )[K×N ]. (5.39)

The detailed algorithm of the KL-based stochastic process reconstruction and regeneration
is described in Algorithm 12.

5.4 Comparison between the PSD Approach and the
KL Expansion Method

The KL expansions approach is one of the spectral representation methods, but it is not in
the frequency domain. Some researchers concluded that the PSD and the KL expansion
approaches coincide for the weakly stationary process [136, 137]. The relationship between
the KL expansion and the PSD method is derived and summarized in the section.

As mentioned in Section 5.2.3, a zero-mean stationary stochastic process X(t) within a
finite time interval t ∈ [0, T ] can be expressed using the Fourier series expansion as below:

X(t) =
∞∑

k=−∞
Fkeik∆ωt =

∞∑
k=−∞

|Fk|eiψkeiωkt, (5.40)

where Fk denotes the Fourier coefficient, which is calculated using Equation 5.7. ωk is
the angular frequency: ωk = k∆ω = k · 2π/T . |Fk| denotes the frequency amplitude. ψk
is the corresponding phase angle. The average power of X(t) in the time window [0, T ] is
defined as

P = 1
T

∫ T

0
X2(t)dt = 1

T

∫ T

0

∣∣∣∣∣∣
∞∑

k=−∞
Fkeiωkt

∣∣∣∣∣∣
2

dt =
∫ T

0

∣∣∣∣∣∣
∞∑

k=−∞
Fk
eiωkt√
T

∣∣∣∣∣∣
2

dt, (5.41)
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Algorithm 12 Procedure of the KL-based stochastic process reconstruction and regen-
eration, source: Algorithm 1 of [51]

1: Collect L series of the discrete stochastic process Y (t), t = {t1, t2, ..., tN} in a matrix
form: Y = [Y (t1),Y (t2), ...,Y (tN)], where Y (ti) = [Y 1(ti), Y 2(ti), ..., Y L(ti)]T .

2: Obtain the realizations of the zero-mean process X(t):X = [X(t1),X(t2), ...,X(tN)]
where X(ti) = Y (ti)− µY (ti)

3: Calculate the autocorrelation matrix RX of X(t) using Equation (5.30)
4: Obtain the eigenvectors φk and eigenvalues λk via the eigendecomposition of RX using

Equation (5.31)
5: Calculate the cumulative variance ratio η using Equation (5.37) and set the truncated

order K
6: Calculate the coefficients ξk, where k = 1, 2, ..., K using Equation (5.36)
7: if Reconstruct the original process then
8: Calculate the Yrec using the computed ξk based on the Equation (5.38)
9: end if

10: if Regenerate the new process then
11: Estimate the distribution of ξk
12: Generate one sample ξ′ = [ξ′1, ξ

′
2, ..., ξ

′
K ] from the estimated distribution

13: Calculate the Ynew using the sample ξ′ based on the Equation (5.38)
14: end if

where the exponential terms eiωkt/
√
T in Equation (5.41) are orthogonal:

<
eiωkt√
T
,
eiωlt√
T
>=

∫ T

0

eiωkt√
T

e−iωlt√
T
dt = δkl. (5.42)

Therefore, the average power P can be rewritten as below:

P =<
∞∑

k=−∞
Fk
eiωkt√
T
,
∞∑

k=−∞
Fk
eiωkt√
T
>=

∞∑
k=−∞

|Fk|2 <
eiωkt√
T
,
eiωkt√
T
>=

∞∑
k=−∞

|Fk|2, (5.43)

Let Pk = |Fk|2 denotes the average power for the specific ωk. |Fk| can be substituted by√
Pk in Equation (5.40):

X(t) =
∞∑

k=−∞

√
Pke

iψkeiωkt =
∞∑

k=−∞

√
PkTe

iψk
eiωkt√
T
. (5.44)

Furthermore, R(τ) in Equation (5.14) can be rewritten using the Fourier series expansion:

R(τ) =
∞∑

k=−∞
Pke

iωkτ =
∞∑

k=−∞
Pke

iωk(t−s) =
∞∑

k=−∞
PkT <

eiωkt√
T
,
eiωks√
T
>, (5.45)

where t, s ∈ T . According to Equation (5.10), the P (ω) of an infinite stationary process
can be computed by taking the limit of PkT when T →∞ as below:

P (ω) = lim
∆ωk→0

2πPk
∆ωk

= lim
T→∞

PkT, for ωk ∈ [ωk−1, ωk], (5.46)
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where ∆ωk = ωk − ωk−1. Compare the Fourier series expansion in Equation (5.44) with
the KL expansion in Equation (5.21), and the autocorrelation equation in Equation (5.45)
with that in Equation (5.18), respectively. The PkT and eiωkt/

√
T obtained in Fourier

series expansions are the solution of the Equation (5.19). Furthermore, the PkT and
eiωkt/

√
T corresponds to the eigenvalue λk and the eigenfunction φk(t), respectively. It

shows that the Fourier series expansion (in PSD approach) and the KL expansion coincide
in the reconstruction of the finite stationary stochastic process. Noticed that P (ω) of the
infinite stationary stochastic process is a continues function with two sides: the positive
frequency ω > 0 and the negative frequency ω < 0. Since the KL expansion is used in the
finite process, the eigenvalue λk in KL expansion is always discrete, and the corresponding
angular frequency ωk is always larger than 0.

5.5 Dependence among KL Coefficients

As mentioned in Equation (5.23), the KL coefficients ξk might not be independent if the
process is non-Gaussian and ξk is also non-Gaussian distributed. The dependence among
the KL coefficients should be analyzed to construct the actual process better. Poirion [132]
first used several most dependent pairs of variables to capture the bivariate dependence
of ξk. Later, the Gaussian kernel estimator is applied to describe the dependence among
the KL coefficients in paper [129]. The joint distribution of {ξ1, ξ2, . . . } is modeled as a
multivariate Gaussian mixture [138]. Furthermore, the truncated order in KL expansion
might be set as 20 or more to achieve the accurate reconstruction. It is difficult to describe
the dependence using a high-dimensional joint distribution density. As mentioned in
Section 3.2.2, the vine copula approach can reconstruct the high-dimensional dependence
function using several bivariate copula densities. The advanced vine copula approach
is applied to capture the high-dimensional dependence among ξk in this thesis. The
procedure of using the vine copula approach in the KL expansion is discussed in detail in
Section 5.7.

5.6 Turbulence Modeling

The well-known von Karman turbulence model in aviation describes the turbulence using
the PSD function, which is compared to the KL-based turbulence model in this section.
The turbulence series are simulated from the von Karman model, further used to construct
the KL expansion model. The regenerated turbulence series using the KL expansion model
is compared with the original turbulence series in the time domain and the frequency
domain.
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5.6.1 Von Karman Model

Assuming an aircraft flies at a certain speed V through a frozen turbulence field, the PSD
functions of the von Karman turbulence model in three directions are as follows [128]:

Φu(Ω) = σ2
u

2Lu
π

1
[1 + (1.339LuΩ)2]5/6 , (Longitudinal)

Φv(Ω) = σ2
v

Lv
π

1 + 8
3(1.339LvΩ)2

[1 + (1.339LvΩ)2]11/6 , (Lateral)

Φw(Ω) = σ2
w

Lw
π

1 + 8
3(1.339LwΩ)2

[1 + (1.339LwΩ)2]11/6 , (V ertical)

(5.47)

where u, v, w denote the turbulence speed in three directions: longitudinal, lateral, and
vertical. Lu, Lv, and Lw (in feet) are the corresponding length scale of the turbulence.
σu, σv, and σw refer to the turbulence intensity measures in three directions. The spatial
frequency Ω is defined as the angular frequency ω divided by the speed V . The PSD with
respect to ω has the relation with the Φ(Ω):

S(ω) = Φ(Ω)
V

= Φ(ω/V )
V

. (5.48)

For the altitude h (in feet) less than 1000 feet, the L and σ are defined as follows:

Lw = h, Lu = Lv = h

(0.177 + 0.000823h)1.2 ,

σw = 0.1VW20, σu = σv = σw
(0.177 + 0.000823h)0.4 ,

(5.49)

where VW20 denotes the wind speed measured at h = 20 feet. A unit variance band-
limited white noise signal is required to generate a turbulence process with the predefined
PSD characteristics. During the simulation, the random samples are generated from the
white noise generator at each time point, subsequently passed through the approximated
transfer functions of Equation (5.47). The output signal of the transfer function holds the
predefined PSD characteristics. The approximated transfer functions of the von Karman
model are shown as below [128]:
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(5.50)
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5.6.2 Modeling of Turbulence Using KL Expansion

For a given flight condition, for example, h = 600 feet, VW20 = 15 knots, and V = 140
knots, the PSDs of the von Karman model can be computed using Equation (5.47).
Figure 5.2 shows the PSDs of the longitudinal, lateral, and vertical turbulence. Based on
the white noise generator and the transfer function in Equation (5.50), 2000 turbulence
series with a length of 256 seconds in 16 hertz are generated for each direction. Figure 5.5
shows one example of the generated turbulence in three directions. The KL expansion
method is implemented based on the generated 2000 turbulence series according to the
procedure in Algorithm 12.

The sorted eigenvalues λk of the autocorrelation matrix R(τ) are plotted along with the
index k in Figure 5.2. Compared with the PSD, the sorted λk has a similar shape with
the PSD. As discussed in Section 5.4, λk in the KL expansion is equivalent to PkT , which
is the discrete form of the P (ω). The index k corresponds to a certain angular frequency
ωk. Furthermore, the original PSD of the von Karman turbulence model decreases with
an increase of ω. Thereby, the decreasing PSD shows the same feature with the sorted
λk. This result validates the KL-based turbulence model coincides with the traditional
PSD-based turbulence model.

Figure 5.2: Comparison of the PSD and the eigenvalue in KL expansion for turbulence
data in a certain flight condition, source: Figure 1 of [51]
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Figure 5.3: Cumulative variance ratio in KL expansion of the longitudinal turbulence
data, modified from Figure 3a of [51]

As mentioned, the original turbulence series data used in the KL expansion has 256 sec-
onds in 16 hertz. Therefore, there are N = 256 × 16 = 4096 time points in a process.
In order to quantify the effect of the truncated order K(K ≤ N) in KL expansion, the
cumulative variance ratios η for K from 1 to 1000 are calculated using Equation (5.37).
The η for the longitudinal turbulence is shown in Figure 5.3. It indicates that the KL-
based turbulence model with K = 100 can achieve 84.6% of variance. 92.6%, 98.26%, and
99.86% of variance are achieved for K = 200, K = 500, and K = 900, respectively. 2000
longitudinal turbulence series are regenerated from the KL-based turbulence model for
K = 30, 100, 200, 500, 900 separately. The PSDs of the original turbulence data and the
KL-based regenerated turbulence data are computed and shown in Figure 5.4. The range
of frequency is plotted from 0 to 8 hertz (corresponding to the ω of 2π8 = 50.2655rad/s),
since the sampling rate is 16 hertz. 3 hertz is the considered frequency in flight dynamics.
The longitudinal von Karman PSD function in Equation (5.47) is marked using the black
dash line, denoted by ‘theoretical.’ The ‘raw data’ denotes the PSD of the original turbu-
lence data simulated from the von Karman turbulence model. K = 30, 100, 200, 500, 900
shows the PSD of the KL-based regenerated turbulence data for the corresponding trun-
cated order. It shows that the high K will improve the accuracy of the obtained PSD,
which is the same as indicated by the cumulative variance ratio. Furthermore, the trun-
cated KL expansion of the turbulence data neglects the relatively high-frequency signal.
Therefore, the truncated order K can be selected according the considered frequency and
the achieved PSD.
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Figure 5.4: PSDs of the original turbulence data and the KL-based regenerated turbulence
data, modified from Figure 3b of [51]

The KL-based turbulence data is further compared with original turbulence data in the
time domain. Three truncation orders K = 30, K = 200, and K = 900 are applied
to reconstruct the turbulence data. The KL reconstruction results of the turbulence
series in the longitudinal direction are shown in Figure 5.5. Results indicate that the KL
reconstructed turbulence captures the dominant trend in the original turbulence simulated
from the PSD. The reconstructed turbulence using K = 900 has a high accuracy than
that using K = 30 and K = 200. The matching accuracy of the KL reconstruction can be
improved by increasing the truncated order. Since the high order KL term is related to the
high-frequency signal in the turbulence case, higher frequencies are neglected in the KL-
based turbulence with the low truncated order. As shown in Figure 5.2, the theoretical
PSD of the original turbulence is continuous without the dominant signal in specific
frequencies. Therefore, turbulence requires a high number of discrete frequency signals
(corresponding to the KL terms) to capture the high-frequency signal. Nevertheless, the
KL-based turbulence model constructed from the turbulence data is consistent with the
conventional von Karman model by using enough terms. This approach allows us to
regenerate the turbulence process for a given frequency range.
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Figure 5.5: Comparison between the generated turbulence based on the PSD and the
reconstructed turbulence using the KL expansion with different truncated orders.

5.7 KL-basedWind Series Regeneration from the Op-
erational Flight Data

Based on the encountered wind series of daily flights, the proposed KL expansion method
is applied to reconstruct and regenerate the wind series in this section. The encountered
wind series are extracted from 849 operational flights of a B747-8F aircraft landing on the
same runway. By implementing the KL expansion approach, the headwind regeneration
results are presented first, followed by the regeneration of horizontal wind shear series.

5.7.1 Headwind Regeneration

Headwind (or tailwind) is one of the contributing factors for flight safety, especially during
the final approach to landing. The negative headwind speed means tailwind in this thesis.
The operational flight data during the final approach phase is preprocessed using the
Rauch-Tung-Striebel smoother to improve the recorded flight data quality [125]. The
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headwind time series from 1000 feet to 50 feet above ground level (AGL) is computed
from the smoothed flight data. Since the length of the headwind time series in the final
approach is different in different flights, 849 series of headwind data are resampled from
the headwind time series based on the altitude. All headwind series are homogenized and
have the same length after resampling shown in Figure 5.6.

Figure 5.6: Headwind in the final approach phase from 849 flights, source: Figure 4a
of [51].

The KL expansion approach is applied for the 849 headwind series. The eigenvalues
λk and eigenfunctions φk of the autocorrelation matrix are computed. The cumulative
variance ratio for the truncated order K from 1 to 30 is shown in Figure 5.7. It shows
that the constructed KL expansions can obtain 99.9% variance of the process using 20
terms. K = 20 is chosen in the KL reconstruction and regeneration. Figure 5.8 shows
the eigenfunctions φk and highlights the first four eigenfunctions. The shapes of the
eigenfunctions are close to the harmonic.
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Figure 5.7: Cumulative variance ratio in KL expansion of the headwind, source: Figure
4b of [51].

Figure 5.8: Eigenfunctions in KL expansion of the headwind, source: Figure 4c of [51].

By applying the Algorithm 12, the KL coefficients ξk are computed and used for recon-
struction. Three arbitrary reconstructed wind series of 849 series are compared with the
original headwind series in Figure 5.9. Even though only 20 KL functions are applied in
the reconstruction, the reconstructed data and the raw data have a good match. There-
fore, the constructed KL expansions with K = 20 allows us to reconstruct the headwind
series with high accuracy.
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Figure 5.9: Reconstruction of three arbitrary headwind series, source: Figure 4d of [51].

Marginal Distributions of ξk

The computed ξk is only used to reconstruct the original process. In order to regenerate
the new series, the new realizations of the ξk are required. The statistical characteristics
of the computed ξk are analyzed. The box plot of the obtained ξk is shown in Figure 5.10.
Figure 5.10 reveals that the obtained coefficients ξk are distributed close to zero mean and

Figure 5.10: Box plot of ξk in KL expansion of the headwind, source: Figure 5a of [51].

unit variance. It satisfies the properties mentioned in Equation (5.23). Figure 5.10 also
shows that all coefficients do not follow the same distribution. Compared to the standard
Gaussian distribution, the empirical CDFs of ξk are presented in Figure 5.11. It clearly
shows that deviations between the Gaussian and the empirical CDFs exist.
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Figure 5.11: Empirical marginal CDFs of ξk in KL expansion of the headwind, source:
Figure 5b of [51].

Figure 5.12: Estimated marginal PDFs of ξk in KL expansion of the headwind, source:
Figure 5c of [51].

Furthermore, marginal PDFs of ξk are estimated using the maximum likelihood method
from the parametric distribution families, such as: ‘Gaussian’, ‘Student-t’, ‘Generalized
Extreme Value’, ‘t Location-Scale’, and so on. The estimated PDFs are shown in Fig-
ure 5.12, and the estimated distribution parameters are listed in Table 5.1.
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Table 5.1: Estimated marginal distributions of ξk in KL expansion of the headwind,
source: Table A1 of [51].

ξk Distribution Parameters

ξ1 Generalized Extreme Value [k, σ, µ] = [−0.2220, 0.9704,−0.3804]
ξ2 Logistic [µ, σ] = [−0.0118, 0.5587]
ξ3 t Location-Scale [µ, σ, ν] = [−0.0222, 0.8706, 8.1359]
ξ4 t Location-Scale [µ, σ, ν] = [−0.0263, 0.7279, 3.9941]
ξ5 t Location-Scale [µ, σ, ν] = [−0.0158, 0.7763, 4.8160]
ξ6 t Location-Scale [µ, σ, ν] = [ 0.0141, 0.7007, 3.6527]
ξ7 t Location-Scale [µ, σ, ν] = [−0.0501, 0.7124, 3.7186]
ξ8 t Location-Scale [µ, σ, ν] = [ 0.0060, 0.6046, 2.7169]
ξ9 t Location-Scale [µ, σ, ν] = [−0.0234, 0.6777, 3.3137]
ξ10 t Location-Scale [µ, σ, ν] = [ 0.0051, 0.6529, 3.2108]
ξ11 t Location-Scale [µ, σ, ν] = [−0.0087, 0.5859, 2.4526]
ξ12 t Location-Scale [µ, σ, ν] = [−0.0262, 0.6376, 2.9137]
ξ13 t Location-Scale [µ, σ, ν] = [ 0.0075, 0.5823, 2.4866]
ξ14 t Location-Scale [µ, σ, ν] = [ 0.0231, 0.6695, 3.2488]
ξ15 t Location-Scale [µ, σ, ν] = [−0.0345, 0.6110, 2.6175]
ξ16 t Location-Scale [µ, σ, ν] = [−0.0016, 0.6387, 2.9972]
ξ17 t Location-Scale [µ, σ, ν] = [−0.0095, 0.5603, 2.3219]
ξ18 t Location-Scale [µ, σ, ν] = [ 0.0147, 0.5131, 2.1901]
ξ19 t Location-Scale [µ, σ, ν] = [−0.0003, 0.5795, 2.4952]
ξ20 t Location-Scale [µ, σ, ν] = [−0.0211, 0.6468, 2.9694]

Figure 5.12 shows the deviations between the estimated PDFs and the standard Gaussian
PDF are apparent. Most estimated distributions of ξk belong to the ‘t Location-Scale’
distribution family, which is usually used to model the tail part than the Gaussian dis-
tribution. Thereby, new realizations of ξk are simulated from the estimated marginal
distributions. Subsequently, these samples are applied to generate new wind series.

132



Chapter 5: Modeling of Stochastic Wind

Dependence among ξk

The estimated marginal distributions of ξk allow us to generate the new samples in-
dependently. Dependence among ξk is analyzed to improve the accuracy of the con-
structed stochastic wind model. A vine copula approach is applied to integrate the high-
dimensional dependence structure into the KL expansion. As mentioned in Section 3.2.2,
there are three scales in the study of the copula. Let ξk, ξUk , and ξZk denote the coeffi-
cients in the X-scale, U -scale, and Z-scale, respectively. Based on the estimated marginal
distributions, all realizations of ξk are first transformed into the uniform copula space:
U -scale. The obtained copula data ξUk allows us to separate the marginal behaviors from
the underlying dependence structure. The empirical normalized contour plots of the ξUk
are shown in Figure 5.13, which is generated in R using the ‘VineCopula’ package [87]. It
illustrates the pairwise dependence between two ξk.

Figure 5.13: Empirical normalized pairwise contour plots in the headwind modeling,
source: Figure A1 of [51].
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In Figure 5.13, the diagonal plots shows the marginal histograms of ξUk . The number above
the histograms denotes the order k of the related ξk. The uniform shaped histograms
indicate that the estimated marginal distributions are appropriate. The pairwise samples
plots of ξUk are shown in the upper triangle. The red number denotes the correlation
measure: Kendall’s τ between two ξk. The normalized copula data ξZk are obtained from
ξUk via the inverse standard Gaussian CDF transformation. The normalized empirical
contour plots of ξZk are shown in the lower triangle. It indicates that most dependence
between two ξk is weak. However, some pairs of dependence exist, like ξ10 and ξ16.

The high-dimensional dependence among ξk is modeled using the vine copula. As men-
tioned, the KL expansion of the headwind is truncated at the order of 20. Therefore,
20 dependent random variables ξk are applied for reconstruction and regeneration. To
capture the dependence among ξk in the vine approach, 20·(20−1)

2 = 190 conditional and
unconditional bivariate copulas are required. The bivariate copula densities are identi-
fied from the parametric bivariate copula families [28], and the unknown parameters are
estimated using the maximum likelihood method. According to the number of condi-
tioning variables (from 0 to 18), there are 19 types of conditional bivariate copulas in
total. The first three types of contour plots of the identified bivariate copulas are shown
in Figure 5.14(a).

(a) Contour plots using the parametric bivariate copula

(b) Contour plots using the nonparametric bivariate copula.

Figure 5.14: Normalized contour plots of bivariate copulas in the vine copula, source:
Figure A2 of [51].
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In Figure 5.14, labels above the contour plot denotes the corresponding random variables
ξk. For example, the label ’2,15’ in the left bottom plot indicates c2,15, which means the
unconditional bivariate copula density between ξ2 and ξ5. The label ’2,5;3,15’ denotes
c2,5;3,15, which means the conditional bivariate copula density between ξ2 and ξ5 for the
given ξ3 and ξ15. The normalized contour plot of the two independent Gaussian distributed
variables is concentric circles. Thereby, the shape of the concentric circles implies that
the two variables are independent. Otherwise, the two variables are dependent. Several
dependence structures are obvious, especially for the unconditional bivariate copula in
the last row of Figure 5.14(a). Furthermore, the nonparametric bivariate copula is also
implemented in order to capture the dependence better. Instead of the predefined bivari-
ate copula function, the empirical function for two variables is applied. Figure 5.14(b)
shows the contour plots of nonparametric bivariate copulas. Both of the parametric and
the nonparametric contour plots in Figure 5.14 are generated in R using the ‘rvinecopulib’
package [92].

New samples of ξk are generated from the constructed vine copula. An example of samples
plot between ξ10 and ξ16 is presented to illustrate the difference between vine copula
sampling and independent sampling. In Figure 5.15, samples of ξ10 and ξ16 in Z scale are
used to remove the effect of the marginal distributions. The dependence between ξ10 and
ξ16 is apparent in the raw data. Compared to the independent samples, samples generated
via the vine copula sampling capture the same dependence behavior with the raw data.
Therefore, the vine copula sampling allows us to generate more realistic samples than
independent sampling.
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(a) Raw samples. (b) Independent sampling.

(c) Parametric copula sampling. (d) Nonparametric copula sampling.

Figure 5.15: Comparison of samples plot between ξ10 and ξ16 in Z scale, source: Figure
6 of [51].

Independent sampling, parametric vine copula sampling, and nonparametric vine copula
sampling are applied to generate 5000 samples of ξk, respectively. The corresponding
5000 wind series are constructed using the generated samples. The distribution of the
headwind speed at a certain altitude is analyzed to validate the regeneration results.
Figure 5.16 and Figure 5.17 shows the empirical CDFs and the kernel-fitted PDFs of the
headwind speed at four altitudes, respectively. It shows the regenerated headwind has
the same statistics with the raw data. Furthermore, the headwind distributions at 50 feet
show that the vine copula sampling presents a better match with the raw data than the
independent sampling.
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Figure 5.16: Empirical CDFs of headwind at a certain altitude, source: Figure 7 of [51].

Figure 5.17: Estimated PDFs of headwind at a certain altitude, source: Figure 8 of [51].
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The first four order statistical moments of the observed and regenerated headwind at dif-
ferent altitudes are calculated and illustrated in Figure 5.18. It indicates that the mean
and standard deviation of the regenerated headwind match the raw data well. The regen-
erated headwind using independent sampling shows the skewness is close to 0, and the
kurtosis is close to 3 for all altitudes. It is similar to the properties of Gaussian distri-
bution. Results show that the regenerated headwind series can not match the skewness
and kurtosis of the raw data. Nevertheless, there is no significant difference in skewness
and kurtosis in terms of numerical value. Compared with the independent sampling, the
statistical moments obtained from the parametric and nonparametric copula are closer to
the raw data, particularly at the low altitude. The regenerated headwind series can be
further applied in simulations for the quantitative assessment.

Figure 5.18: First four order statistical moments of headwind along with the altitude,
source: Figure 9 of [51].

5.7.2 Windshear Regeneration

The low-level wind shear is a severe hazard for flight safety. To quantify the occurrence
probability and the severity of the wind shear from operational flights, the significant
increments of the headwind VW with the variation of the altitude h, also called headwind
ramps, are identified from the encountered headwind series. The extreme value of head-
wind ramps ∆VW is calculated by a moving window with the length of a height deviation
∆H as below:

∆VW = max VW (h : h+ ∆H)− VW (h). (5.51)
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An example of the headwind during the final approach in one flight is demonstrated in
Figure 5.19. The threshold of ∆VW and the length of ∆H are predefined. In Figure 5.19,
the headwind ramps threshold is set to 5 knots, and the length of the moving window is
set to 100 feet. Two headwind ramps with ∆VW ≥ 5 knots are extracted from this flight.
VW (h : h+ 2∆H) is considered as a headwind ramp. Therefore, the length of a headwind
ramp is the double length of the moving window.

Figure 5.19: Detection of headwind ramps in one flight, source: Figure 10 of [51].

The detection algorithm is implemented in the headwind from 849 flights. The threshold
of ∆VW is set to 5 knots, and the length of ∆H is set to 50 feet, 100 feet, and 200
feet, respectively. Figure 5.20 shows the mean and standard deviation of the extracted
headwind ramps series and the corresponding number of extracted series. It indicates
the statistical characteristics of the headwind ramps depend on the length of the moving
window.

∆H = 50 feet ,
184 series detected

∆H = 100 feet,
252 series detected

∆H = 200 feet,
208 series detected

∆H = 50 feet
∆H = 100 feet

∆H = 200 feet

Figure 5.20: Mean and standard deviation of the extracted and regenerated headwind
ramps, source: Figure 11 of [51].
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Based on the extracted headwind ramps, the Kl-based stochastic process construction
method allows us to regenerate new series and enrich the database of the headwind ramps.
The truncated order K is set to 10 in the KL expansion of headwind ramps. The inde-
pendent sampling, parametric and nonparametric copula sampling are applied separately
to generate 5000 new series for the three lengths of ∆H. Figure 5.20 shows the mean and
the standard deviation of the regenerated series and the extracted raw data match very
well. Therefore, the KL-based construction model allows us to generate the new headwind
ramps with similar statistical characteristics with the raw data. Results show that the
standard deviation obtained using the parametric copula sampling has a better match
with the raw data, especially in the case of the ∆H = 100 feet. Furthermore, the wind
shear intensity is an important measure to assess the severity of wind shear. A metric of
max ∆VW/∆h is defined to quantify the wind shear intensity using the maximum change
rate of headwind ramps with the altitude as follows:

max ∆VW
∆h = max VW (h)−min VW (h)

hVW,max − hVW,min
, h ∈ [0, 2∆H]. (5.52)

The raw and generated headwind ramps are used to calculate the metric max ∆VW/∆h,
respectively. The distributions of the metric are estimated using the kernel density func-
tion. The estimated PDFs for three different cases of ∆H are illustrated in Figure 5.21.
For the case of ∆H = 100 feet, estimated PDFs of the raw data and the generated series
match very well. However, there are small deviations for the case of ∆H = 50 feet and
∆H = 200 feet. Since the number of the extracted headwind ramps is only about 200,
increasing the raw data size might improve the KL-based construction accuracy. Further-
more, the difference in PDFs for the three cases of ∆H is noticeable, which can also be
captured by the generated series. The KL-based regeneration of headwind ramps can be
applied for the quantitative analysis of the wind shear intensity.
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(a) The change rate of headwind for ∆VW ≥ 5 knots, ∆H = 50 feet.

(b) The change rate of headwind for ∆VW ≥ 5 knots, ∆H = 100 feet.

(c) The change rate of headwind for ∆VW ≥ 5 knots, ∆H = 200 feet.

Figure 5.21: The estimated PDFs of the change rate of headwind along with the altitude,
source: Figure 12 of [51].

5.8 Summary

A KL-based stochastic wind model is constructed based on the operational flight data
in this chapter. For the stationary process like turbulence, the KL expansion method
is equivalent to the Fourier series expansion used in the PSD approach. For the non-
stationary process, the truncated KL expansion allows us to generate new series with
similar statistical characteristics as the raw data set. Furthermore, the vine copula depen-
dence structure is integrated into KL expansion to improve the accuracy of the KL-based
wind model. Additionally, the KL-based wind model allows the stochastic series as the
model input in the Predictive Analysis framework for the quantitative analysis.
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Chapter 6

Low Energy State Analysis

6.1 Motivation

By the analysis of Aircraft LOC-I accidents, Christina et al [139] shows that many LOC-I
accidents or incidents involve degradation in situational awareness, especially pertaining
to the aircraft energy state, followed by delayed or inappropriate pilot actions [140]. To en-
hance flight safety, researchers defined many energy-based metrics as safety performance
indicators. Energy state prediction methods based on flight simulator data were pro-
posed in [141, 142]. Energy-based metrics are identified for general aviation in [143]. The
Joint Safety Analysis Team (JSAT) identified a series of occurrences of energy state aware-
ness [144]. FAA Avionics Systems Harmonization Working Group (ASHWG) reviewed the
current low speed awareness, low speed alerting, and low energy alerting systems in Boe-
ing, Airbus, Embraer, and Bombardier aircraft to improve transport airplane standards
for low airspeed protection. The European Operators Flight Data Monitoring (EOFDM)
also takes the inadequate aircraft energy as a precursor of LOC-I accidents [145].

Although a temporary and small loss of energy will not immediately cause LOC-I ac-
cidents, this event could subsequently result in serious consequences if the flight crew
is not aware of that, especially in low altitude situations such as during taking-off, ap-
proach and landing because there might not be sufficient time and altitude to recover the
aircraft. The inadequate management of aircraft’s total energy is a factor in unstable
approach (UA) [146, 147]. Excess of energy can result in a runway excursion. Low energy
might lead to LOC-I, land short, and hard landing. This chapter mainly analyzes the low
energy situation during the final approach. The operational safety techniques during the
approach and landing are introduced firstly. According to the stabilized approach criteria,
the low energy bound is defined. Detection and predictive analysis for low energy using
operational flight data is implemented in this chapter.
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6.2 Operational Safety Techniques During the Ap-
proach

The UA is the largest contributing factor in approach-and-landing accidents. Only in 3%
of unstable approaches, the pilot clears the situation by executing a go-around [148]. For
the unstable approaches, too low aircraft energy states make the safe go-around execution
less likely, and this situation can be exacerbated by a failure to understand how to manage
aircraft pitch attitude [148]. Some operational flight techniques for a stable approach are
shown in this section. As one type of UA, a low energy situation is more critical, which
bears a high risk of a crash.

6.2.1 Stabilization Gate

The stabilization gate is an altitude at which the aircraft must be fully configured for
landing and maintain the predefined trajectory with the approapriate speed, sink rate,
thrust, attitude. During the approach to landing, rigorous respect of a stabilization gate
provides a good basis for a safe landing [149]. A stabilized aircraft at the stabilization
height reduces the pilot’s workload and allows the pilot to prepare well for a safe landing
flare. However, there is not a uniform definition of UA criteria in the airline industry.
According to the report published by Flight Safety Foundation [149], the minimum sta-
bilization height is 1000 feet above the runway elevation in instrument meteorological
conditions (IMC), or 500 feet above runway elevation in visual meteorological conditions
(VMC). Operators should define and provide their flight crew with a clear definition of
their stabilization criteria and stabilization height based on their operational guidance,
local regulations, and experience. The airline-specific stable approach criteria are ob-
tained from the Standard Operating Procedures (SOPs) of the company, published in
their Flight Crew Operating Manual (FCOM) or Operational Manual (OM). As one ex-
ample, the instrument illustration of the stabilization criteria from the A320 FCOM is
shown in Figure 6.1.

Figure 6.1: FCOM stable approach criteria for an A320 aircraft, source: [150]
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Pilots should monitor these instruments carefully during the final approach. The approach
is labeled as an UA if one of the criteria is not satisfied. The pilot should initiate a go-
around unless only a small correction is required to recover the aircraft to the stabilized
approach criteria. According to the B747-8F OM Part B of the airline, the stable approach
criteria for IMC is summarized in Table 6.1.

Table 6.1: Stable approach criteria for B747-8F, source: [148, 151]

Parameters Limits

Airspeed −5kts ≤ ∆Vapp = Vcas − Vapp ≤ 15kts
Vertical deviation -1 dot ≤ δGS,dot ≤ 1 dot
Lateral deviation -1 dot ≤ δLLZ,dot ≤ 1 dot
Sink rate

.
h ≥ −1000 fpm

Configuration Gear down; Landing Flap setting
Thrust Appropriate power
Attitude Small changes in heading/pitch/bank

The speed information that pilots get from cockpit instruments is the indicated airspeed.
Vcas denotes the corrected indicator airspeed by considering the position error of the
pitot and static port. Vapp is called approach speed target. δGS,dot and δLLZ,dot are the
Glideslope (GS) deviation and the Localizer (LLZ) deviation in dot, respectively.

.
h is the

sink rate of the aircraft. The detailed description of Vapp, δGS,dot, and δLLZ,dot are shown
in this section.

Approach speed target Vapp

During the final approach phase, the pilot aims to descend and to maintain the approach
speed target Vapp [152]. Based on the operational manual of the Boeing aircraft [151], Vapp
is the sum of the reference speed and correction term as below:

Vapp = Vref + ∆corr, (6.1)

where Vref is the reference speed, which depends on the landing weight and the flap
configuration. By the definition of Vref in Lufthansa OM-Part B for B747 [153], Vref
equals to 1.23 times 1-g stall speed Vs,1g. Vs,1g can be calculated via the equation that lift
equals weight.

Vs,1g =
√

2mg
ρ0SrefCL,max

, (6.2)

where CL,max denotes the maximum lift coefficients in the corresponding configuration.
The correction term in Equation (6.1) is calculated based on the airport wind information
as follows:

∆corr (knots) = max(5 knots,min(20 knots, 1
2 V̄hws + Vgust)), (6.3)
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where V̄hws denotes the airport steady headwind component, and Vgust is the gust intensity.
Flight crews obtain the wind information from the ATC, i.e., Meteorological Airport
observation Report (METAR), Automatic Terminal Information Service (ATIS), or tower
winds. According to the current operation, the METAR wind is a 10-minute-average
wind. The ATIS or tower average wind is a 2-minute average wind. The ATIS or tower
gust is the wind peak value during the last 10-minute period. The ATIS message is
updated only if the wind direction changes by more than 30-degree or if the wind velocity
changes by more than 5-knot over a 5-minute time period [154]. Since the wind varies
along with time, there is a deviation between the headwind from the METAR information
and the encountered headwind at touchdown estimated from the operational flight data.
This deviation, denoted by ∆Vhws,TD, is shown in Figure 6.2. The inaccurate headwind
information will influence the setting of Vapp.

Figure 6.2: The deviation of headwind ∆Vhws,TD between the METAR information and
the encountered wind at touchdown calculated using the operational flight data

In order to prevent an aircraft stall, a stick shaker device is triggered for too low airspeed
in Boeing aircraft. There is a speed margin between the stick shaker speed Vss and the
1g stall speed Vs,1g. Vss also depends on the aircraft mass and configurations, and it is
obtained from the OM-B [151].

ILS deviation δGS,DDM and δLLZ,DDM

The GS deviation δGS,DDM and the LLZ deviation δLLZ,DDM are measured as Difference
in Depth of Modulation (DDM). Their conversion to dots must not exceed the ±1 dot
shown in the flight instruments during the final approach phase [151]. The geometry of
the GS path and the LLZ course is shown in Figure 6.3.
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Figure 6.3: The geometry of the glide slope and localizer course, adapted from [71]

According to the ILS specifications in ICAO Annex 10 [155], the ILS deviation measure-
ments can be computed based on the relative position of aircraft and LLZ/GS antennas.
The aircraft height above the runway elevation hILS can be computed based on the mea-
surement δGS,DDM via [71]:

hILS =
√

(xGS − xN)2 + y2
GS · tan

(
γGS + 0.12 · γGS ·

δGS,DDM
0.0875 DDM

)
, (6.4)

where γGS is the glide slope angle, and γGS = −3◦ in most runways. xGS and yGS denote
the position of the GS antenna with respect to the runway threshold. xN is the distance
along with the runway from the aircraft current position to the runway threshold. The
GS deviation in dot δGS,dot is defined as follows:

δGS,dot = δGS,DDM
0.0875 DDM . (6.5)

Likewise, the aircraft lateral deviation to the runway center line yN can be calculated
based on the δLLZ,DDM via

yN = xLLZ − xN
xLLZ

· δLLZ,DDM
0.00145 DDM , (6.6)

where xLLZ denotes the position of the LLZ antenna. The LLZ deviation in dot δLLZ,dot
is calculated as below:

δLLZ,dot = δLLZ,DDM
0.00145 DDM . (6.7)
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6.2.2 Energy Management

A potential UA might be detected before the stabilized gate, such as the use of the energy
circle in aircraft: A320/A330/A340/A350/A380 [150]. By monitoring the high energy
situation of the aircraft, pilots can take the time to bleed the aircraft energy properly and
recover the situation in cooperation with ATC. Early energy management allows pilots
to avoid the situation for last-minute corrections and to avoid some potential unstable
approaches, especially the situation with high energy. The total energy of aircraft contains
the potential energy and the kinetic energy, and it is computed as below:

E = mg0h+ 1
2mV

2
A , (6.8)

where m is the aircraft mass, g0 is the gravitational acceleration, h is the aircraft altitude
above ground, and VA denotes the true airspeed. To reduce the influence of the aircraft
mass and to make it easily comparable for different flights, the normalized energy, also
called the specific energy, is usually used and defined as below:

Es = h+ V 2
A

2g0
. (6.9)

According to the UA criteria in Table 6.1, the energy boundary during the final approach
can be defined based on the airspeed and the GS deviation limits as below:

Upper bound : δGS,dot = 1 and Vcas = Vapp + 15kts,
Lower bound : δGS,dot = −1 and Vcas = Vapp − 5kts.

(6.10)

Based on the typical schedule for deceleration on the 3-degree glide slope [146, 156], the
aircraft normally decelerate at the speed of 10 knots per nautical mile (nm), which is used
as the desired deceleration rate before the stabilized gate in this thesis. Furthermore, the
maximum deceleration rate is limited by 20 kt/nm for the cases that all deceleration
devices are applied, like spoilers. The lower bound of the speed maintains the same as
that in the final approach phase. The speed boundary during the approach is shown in
Table 6.2. D denotes the traveled distance of the aircraft to the runway threshold. DIMC

means the traveled distance from the IMC gate to the runway threshold. Only D ≤ 10 nm
is considered.

Table 6.2: Speed boundary during the approach

From D = 10 nm From IMC gate
to IMC gate to runway threshold

Upper bound Vapp + 15kts+ (D −DIMC) · 20kts/nm Vapp + 15kts
Desired speed Vapp + (D −DIMC) · 10kts/nm Vapp

Lower bound Vapp − 5kts Vapp − 5kts
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Table 6.3: Altitude boundary during the approach

From D = 10 nm From FAF
to FAF to runway threshold

Upper bound δGS,dot = 1 δGS,dot = 1
Desired path δGS,dot = 0 δGS,dot = 0
Lower bound hILS at FAF δGS,dot = −1

FAF

IMC

Figure 6.4: Aircraft energy boundary during the approach.

The boundary of altitude before the stabilized gate is also defined based on the glideslope
deviation shown in Table 6.3. The only difference is that the lower bound of the altitude
is modified before the Final Approach Fix (FAF) point. According to the speed boundary
and altitude boundary, the energy height upper and lower bounds (Es,UB, Es,LB), and the
desired energy height Es,des are calculated and illustrated in Figure 6.4, denoted by the
red line and green line, separately. The blue line denotes the energy height of one flight
calculated using operational flight data.

During the approach, pilots try to decrease the aircraft’s altitude and speed. The en-
ergy of aircraft decreases continually. In order to avoid a high energy situation before
the stabilization gate, the safety technique of the energy circle is used. The calculation
principle of the energy circle depends on the aircraft’s descent flight profile shown in Fig-
ure 6.5. The energy circle indicates the required distance to descend the aircraft from the
current position at the current speed down to the arrival runway at the approach target
speed. Flight configurations, speed limits, and wind speed are taken into account during
the calculation, and three different flight segments are concerned. If the airport is inside
the energy circle, the pilots should increase the energy bleed rate by extending the speed
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brakes and/or request more tracking distance from the ATC. This energy circle allows
pilots to recover the energy in an early phase, which avoids the high energy situation
when crossing the stabilization gate efficiently.

Current
aircraft altitude

Destination
airport altitude

Descent from
current altitude

Deceleration
level-off

3° final
approach

slope

Computed distance to land
from current position

Navigation
Display

Energy
circle

Figure 6.5: Energy circle calculation, source: [150].

6.2.3 Late Destabilization

Only stabilized at the IMC gate is not sufficient to ensure a safe landing. Figure 6.6 shows
some flight parameters of a B747-8F flight from 2000 feet above runway elevation to the
runway threshold. The vertical dash line in each subfigure of Figure 6.6 denotes the time
point that the aircraft flies over 1000 feet above the ground. Due to the sudden decrease
of the Vhws at about 130s, Vcas also decrease quickly. The time history plot of ∆Vapp
illustrates that the airspeed is lower than the lower bound during the final approach. The
pilot advanced the thrust level to prevent the loss of speed for recovery.

During the final approach phase, some external conditions like turbulence or wind shear
might lead to late destabilization, which is difficult to predict in advance. Therefore,
pilots should monitor and keep the critical flight parameters within the limits during the
final approach to avoid destabilization. Especially, pilots should avoid low speed or low
energy situations, since the low energy at the low altitude has a high risk of incidents or
accidents. The following sections will focus on analyzing the low energy situation during
the final approach.
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Figure 6.6: Flight parameters time history from 2000 feet above ground to the runway
threshold.
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6.3 Detection of Low Energy Event During the Final
Approach

6.3.1 Low Energy Margin

According to the UA criteria, the deviation between the actual energy height and the
UA-based lower energy height bound is computed as below:

∆Es = Es − Es,LB =
(
h+ V 2

A

2g0

)
−
(
hLB + (Vapp − 5 kts)2

2g0
· ρ0

ρ

)
. (6.11)

Since the Vapp refers to the value in terms of the indicated airspeed, the corrected ratio
ρ0/ρ is added to convert the indicated airspeed to the true airspeed in Equation (6.11).
Due to the gusty wind, a short exceedance of the UA-based lower energy bound might
occur and could be compromised by the pilots and the aircraft. The low energy metric
based on the UA criteria will lead to a lot of false detection. Therefore, a more critical
bound is used in the section. Instead of the (Vapp − 5 kts), the stick shaker speed Vss is
used as the lower bound of the Vcas. Therefore, the adjusted energy height deviation is
shown as follows:

∆E∗s = Es − E∗s,LB =
(
h+ V 2

A

2g0

)
−
(
hLB + V 2

ss

2g0
· ρ0

ρ

)
. (6.12)

The energy margin for the low energy event is defined as below:

EM = min(∆E∗s ). during the final approach. (6.13)

If EM < 0, a low energy event occurs. The algorithm to calculate the EM is applied in
849 operational flights, The histogram of the EM is shown in Figure 6.7.

Figure 6.7: Histogram of the energy margin based on 849 flights.
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For normal operations, there are no low energy events. To reproduce and predict the low
energy situation, the physical model of energy state during the final approach is built
based on the aircraft’s motion in Section 6.4.2.

6.3.2 Time Margin

Besides the current energy state, the energy bleed rate also has a big influence on the
future energy state. The energy bleed rate can be derived by differentiating Equation (6.9)
with respect to the time:

.
Es =

.
h+ VA

.
V A

g
. (6.14)

Since the lower energy bound also decrease along with the −1 dot glide path, the rate of
the lower energy bound can be computed using the aircraft ground speed Vgs:

.
Es,LB =

.
hLB = Vgstan(γ−1dot). (6.15)

Therefore, the rate of the energy height deviation is computed as below:

∆
.
Es =

.
h+ VA

.
V A

g
− Vgs · tan(γ−1dot). (6.16)

In order to compute the ∆
.
Es, the unrecorded

.
V A should be computed from the flight

data. As shown in Figure 6.8, VA has a relationship with the kinematic speed VK and the
wind speed VW .

Figure 6.8: Kinematic speed VK, aerodynamic speed VA, and wind speed VW

The relation of three kinds of speeds in aerodynamic frame A is written as below. The
nomenclature used in this section is referred to Appendix A.

(~V G
A )EA = (~V G

K )EA − (~V G
W )EA. (6.17)

In order to compute the derivative of VA, Equation (6.17) is differentiated with respect
to the A frame:

(
.
~V G
A )EAA = (

.
~V G
K )EAA − (

.
~V G
W )EAA . (6.18)
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Based on the translation equations, the derivative of VK with respect to the A frame can
be further derived as below:

(
.
~V G
K )EAA = (

.
~V G
K )EOA − (~ωOA)A × (~V G

K )EA

= MAB(
.
~V G
K )EOB − (~ωOA)A × (~V G

K )EA.
(6.19)

The derivative of VW with respect to the A frame can be further computed as below:

(
.
~V G
W )EAA = (

.
~V G
W )EOA − (~ωOA)A × (~V G

W )EA

= MAO(
.
~V G
W )EOO − (~ωOA)A × (~V G

W )EA.
(6.20)

Therefore, the derivative of VK can be derived as follows:

(
.
~V G
A )EAA = (

.
~V G
K )EAA − (

.
~V G
W )EAA

= MAB(
.
~V G
K )EOB − (~ωOA)A × (~V G

K )EA −
(
MAO(

.
~V G
W )EOO − (~ωOA)A × (~V G

W )EA
)

= MAB(
.
~V G
K )EOB −MAO(

.
~V G
W )EOO − (~ωOA)A ×

(
(~V G

K )EA − (~V G
W )EA

)
= MAB(

.
~V G
K )EOB −MAO(

.
~V G
W )EOO − (~ωOA)A × (~V G

A )EA,

(6.21)

where (
.
~V G
K )EOB can be computed using the acceleration rates measured in the IMU as

below:

(
.
~V G
K )EOB = (~aGK)IIB,IMU −MBO


0
0
g0


O

. (6.22)

As mentioned in Section 2.3.5, the wind speed is estimated using the RTS smoother
in the flight path reconstruction. The third order Gauss-Markov process mentioned in
Equation (5.3) is used as the wind model. Thence, (

.
~V G
W )EOO is estimated during the flight

path reconstruction. Furthermore, (~V G
A )EA and (

.
~V G
A )EAA are written into three components

in A frame:

(~V G
A )EA =


V G
A

0
0


E

A

, (
.
~V G
A )EAA =


.
V
G

A

0
0


EA

A

. (6.23)

Therefore, the
.
V A can be computed using Equation (6.21-6.23). ∆

.
Es can be computed

subsequently. The predicted energy height deviation after t seconds can be calculated as
below:

∆E∗s,pred = ∆E∗s,0 +
∫ t

0
∆
.
Esdt, (6.24)

where ∆E∗s,0 denotes the current energy margin. If ∆E∗s,pred ≤ 0, the low energy event
occurs. Assuming ∆

.
Es keeps constant, time to the lower energy bound can be computed

as below:

∆t =


−∆E∗s,0

∆
.
Es

, if
−∆E∗s,0

∆
.
Es

> 0;

NaN, if
−∆E∗s,0

∆
.
Es
≤ 0;

, (6.25)
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where ∆t is the time to the lower energy bound, and it describes how long the low energy
will occur if the aircraft maintains the current energy bleed rate. Time margin TM is the
minimum ∆t for one flight. It is defined as below:

TM = min(∆t). (6.26)

The time margin and energy margin for a flight are computed and demonstrated in Fig-
ure 6.9. The time point related to the time margin is a little ahead of time of the energy
margin.

Figure 6.9: Time margin and energy margin in one flight during the final approach.

The algorithm to calculate the time margin is implemented in 849 operational flights.
The histogram of the time margin is shown in Figure 6.10.

Figure 6.10: Histogram of the time margin based on 849 flights.

155



6.4 Predictive Analysis of Low Energy Event

6.4 Predictive Analysis of Low Energy Event

The probability of a low energy event is not zero, even there are no low energy events
detected from the flight operational data. To cope with the small probability incident
in operations, the Predictive Analysis framework is applied to predict the occurrence
probability of low energy incidents and to identify key contributing factors.

6.4.1 Incident Metric for Low Energy Event

As shown in Table 6.3, the energy height deviaiton is reduced along the glide path, since
the height margin is reduced. The energy factor Efactor, proposed in [156], is used to
normalize the energy height deviation. Efactor is defined as follows:

Efactor =


(Es − Es,des)/(Es,UB − Es,des), when Es ≥ Es,des

(Es − Es,des)/(Es,des − Es,LB), when Es < Es,des

, (6.27)

where Efactor is inside the range of [−1, 1] for normal operations. Efactor = 0 indicates
that the aircraft has the ideal energy. Es,LB in Equation (6.27) is defined based on
the UA criteria in [156]. To avoid the false detection, E∗s,LB is used for the adjusted
energy deviation in Section 6.3.1. According to the SOPs, the pilot should execute a
go-around immediately if the aircraft airspeed is lower than the airspeed lower bound
(Vapp − 5 kts). Even pilots might tolerate a small and short violation of the low airspeed
bound in practice, the Vss is quite difficult to approach during normal operations.

Considering the implementation of UA criteria in practice [157], a persistent violation of
UA criteria for several seconds is preferred to be used to distinguish the stable or unstable
approach instead of an instantaneous violation. By taking the persistent violation into
account, a new incident metric IM for low energy events is proposed and defined as below:

IM = min
t∗

(∫ t∗+∆τ

t∗
(Efactor(t) + 1)dt

)
, t∗ ∈ [0, T −∆τ ] (6.28)

where IM < 0 denotes that the low energy event occurs. t∗ = 0 denotes the start time
point at the 1000 feet above the ground during the final approach. t∗ = T denotes the time
point at the 100 feet above the ground. ∆τ is the width of the rolling window [t∗, t∗+∆τ ],
which denotes a certain continuous segment of the flight trajectory. The minimum of the
integral of Efactor + 1 inside the rolling window is used as the low energy incident metric.
This metric takes the duration below the UA-based low energy bound into account. For
a case that the aircraft flies along the desired trajectory with the target speed, Efactor is
constant and equals 0. Therefore, IM = ∆τ for the desired flight trajectory.
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6.4.2 Modeling of Low Energy

The changing of energy is influenced by aircraft dynamics, external forces, and distur-
bance. In order to predict the Efactor during the final approach, a physical model for low
energy events is built in this section. The proposed physical-based incident model can be
used to identify the contributing factors and map them to the low energy incident metric.

1. External Forces

Aircraft motion is caused by external forces, which mainly include the gravity ( ~FG
G ), the

aerodynamic forces ( ~FG
A ), and the propulsion ( ~FG

P ). The total forces ~FG
T are sum of them

shown as below:
~FG
T =

∑
( ~FG) = ( ~FG

A ) + ( ~FG
G ) + ( ~FG

P ). (6.29)

Those forces are explained in detail in the following sections.

1© Aerodynamic Forces Aerodynamic forces are produced by air flow around the
aircraft, denoted in the aerodynamic frame (A frame):

( ~FG
A )A =


−D
Q

−L


A

= 1
2ρV

2
ASref


−CD
CQ

−CL


A

, (6.30)

where CL, CD, and CQ denote the lift coefficient, drag coefficient, and side force coefficient,
respectively. In this chapter, only the longitudinal motion of the aircraft is considered.
Therefore, the side force is assumed to be zero, and CQ = 0. The CD is computed based
on the quadratic lift-drag polar:

CD = CD0 + k · C2
L, (6.31)

where k denote the lift-drag polar profile coefficient, which depends on the aircraft con-
figuration. In order to compute the motion of the aircraft, the aerodynamic forces given
in the A frame can be transferred into the B frame via:

( ~FG
A )B = MBA( ~FG

A )A, (6.32)

where MBA is the rotation matrix from the A frame to the B frame as follows:

MBA =


cosαAcosβA −cosαAsinβA −sinαA
sinβA cosβA 0

sinαAcosβA −sinαAsinβA cosαA

 , (6.33)

where αA and βA are the aerodynamic angle of attack and the aerodynamic angle of side
slip.
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2© Gravity A simplified gravitation model assumes a constant gravitational acceler-
ation. The gravity is given in the North-East-Down (NED) frame (O frame) shown as
below:

( ~FG
G )O = m · g0 ·


0
0
1


O

, (6.34)

where g0 = 9.80665 m/s2, which is the gravitational acceleration. The gravity can be
transferred into the B frame via

( ~FG
G )B = MBO( ~FG

G )O, (6.35)

with the rotation matrix from the O frame to the B frame:

MBO =


cosΨcosΘ sinΨcosΘ −sinΘ

cosΨsinΘsinΦ− sinΨcosΦ sinΨsinΘsinΦ + cosΨcosΦ cosΘsinΦ
cosΨsinΘcosΦ + sinΨsinΦ sinΨsinΘcosΦ− cosΨsinΦ cosΘcosΦ

 ,
(6.36)

where (Ψ,Θ,Φ) are the rotation angles between the B frame and the O frame. Similarly,
The gravity can be transferred into the A frame via

( ~FG
G )A = MAO( ~FG

G )O, (6.37)

with the rotation matrix from the O frame to the A frame:

MAO =
cosχAcosγA sinχAcosγA −sinγA

cosχAsinγAsinµA − sinχAcosµA sinχAsinγAsinµA + cosχAcosµA cosγAsinµA

cosχAsinγAcosµA + sinχAsinµA sinχAsinγAcosµA − cosχAsinµA cosγAcosµA

 ,
(6.38)

where (χA, γA, µA) are the rotation angles between the O frame and the A frame.

3© Propulsion The propulsion force is usually given in the B frame, denoted by three
components XP , YP , and ZP . By assuming that the propulsion force points directly to the
x-axis of the B frame, the simplified propulsion force in the B frame is given as follows:

( ~FG
P )B =


XP

YP

ZP


B

=


T

0
0


B

, (6.39)

where T is the thrust. The propulsion forces can be transferred into the A frame via

( ~FG
P )A = MAB( ~FG

P )B, (6.40)

with the rotation matrix from the B frame to the A frame:

MAB = MT
BA. (6.41)
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2. Wind Speed in Runway Frame

The local navigation frame, runway frame N , is commonly used for the analysis in the
final approach phase. The runway threshold THR is the origin point. The xN -axis is
aligned with the runway centerline, pointing from the runway threshold to the runway
ends. The yN -axis is pointing to the right perpendicular to the xN in the horizontal plane.
The zN -axis is pointing downwards. The three wind components: tailwind Vtws, crosswind
Vcws, and downwash Vdws, are also shown in Figure 6.11.

𝑉𝑡𝑤𝑠

𝑉𝑐𝑤𝑠

THR

𝑉𝑑𝑤𝑠

Figure 6.11: The runway frame N with three wind components.

The runway frame is also the inertial frame. The difference between the N frame and the
O frame is the runway bearing angle χrwy and the original point. For example, χrwy is
240 degrees for the runway 24 at Luxembourg airport in Figure 6.11. The derivative of
VW in N frame is shown as below:

(
.
~V G
W )EOO = (

.
~V G
W )ENO = MON(

.
~V G
W )ENN = MON


.
V tws
.
V cws
.
V dws


EN

N

, (6.42)

where MON is shown as below:

MON =


cosχrwy −sinχrwy 0
sinχrwy cosχrwy 0

0 0 −1

 . (6.43)
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3. Equations of Energy Rate

The external aircraft forces and wind disturbance have been modeled in the previous
sections. The energy rate is derived in this section based on the aircraft dynamics. The
linear translation equations of the motion for the point mass are shown as follows:∑

( ~FG)O = m · (
.
~V G
K )IIO . (6.44)

Assuming Earth is flat and ignoring its rotation:

(~ωEO)O = 0, (~ωIE)O = 0. (6.45)

Equation (6.44) can be further derived as below:

(
.
~V G
K )IIO = (

.
~V G
K )EOO = 1

m
·
∑

( ~FG)O. (6.46)

This is also valid in A Frame:

(
.
~V G
K )EOA = 1

m
·
∑

( ~FG)A. (6.47)

By using the linear translation equation:

(
.
~V G
K )EOA = (

.
~V G
K )EAA + (~ωOA)A × (~V G

K )EA, (6.48)

Equation (6.47) is derived as below:

(
.
~V G
K )EAA = 1

m
·
∑

( ~FG)A − (~ωOA)A × (~V G
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By integrating the external forces, Equation (6.18) can be further derived as below:

(
.
~V G
A )EAA = (

.
~V G
K )EAA − (

.
~V G
W )EAA

= 1
m
·
∑

( ~FG)A −
(

(
.
~V G
W )EOA − (~ωOA)A × (~V G

A )EA
)

= 1
m
·
∑

( ~FG)A −
(
MAO(

.
~V G
W )EOO − (~ωOA)A × (~V G

A )EA
)
,

(6.51)

which is rewritten in terms of its three components:
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Since only the aircraft’s motion in the vertical plane is concerned in the study of low
energy events during the final approach in this thesis, assuming there is no sideslip and
bank angle. Therefore, µA ≈ 0, and βA ≈ 0, and χA ≈ χK ≈ χrwy. Equation (6.52) can
be further simplified as below:

.
V
G

A

0
0


EA

A

=
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(6.53)

Assuming the propulsion forces are aligned to the x-axis in B frame. YP = ZP = 0, and
XP = T . Since βA ≈ 0, the aerodynamic side forceQ ≈ 0. The first row of Equation (6.53)
is derived as follows:

.
V
G

A = T · cosαA −D
m

− g0sinγA −
.
V tws · cosγA +

.
V dws · sinγA. (6.54)

Relying on the Taylor expansion of triangular functions for small αA and γA, and neglect-
ing second-order terms, the equation becomes:

.
V
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Since γA ≈ (
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By substituting
.
V A in Equation (6.14) using Equation (6.56), the energy bleed rate is:
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(6.57)

Due to that
.
Es,LB =

.
hLB = Vgstan(γ−1dot), the changing rate of the energy deviation

during the final approach is:

∆
.
Es = VA
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mg0

−

 .
V tws

g0
+ Vdws

VA

− Vgs · tan(γ−1dot), (6.58)

where the wind-related term in Equation (6.58) contains the tailwind gradient and the
downwash as below:

F =
.
V tws

g0
+ Vdws

VA
. (6.59)
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The wind-related term is also called the wind shear index F factor, which is used to
evaluate the severity of the wind shear [158]. According to the FAA regulations, the
average F factor among the 1-km trajectory, denoted by Favg, is used as its hazard metric
for the wind shear detection systems on jet transports. The wind shear hazardous is
considered for Favg > 0.1, and the alert threshold is 0.13 to avoid nuisance alert [158, 159].
The calculation of Favg is applied in the final approach phase of 849 flights. The maximum
value of Favg in each flight is extracted. The histogram of the maximum Favg is shown in
Figure 6.12.

Figure 6.12: Histogram of the maximum Favg factor.

Besides the aircraft dynamics and the external environment, the thrust force and flight
trajectory still need to be controlled. The speed tracking autothrottle (A/T) system and
the autopilot (AP) system for glide slope tracking are used and described below.

4. Speed Tracking Autothrottle System

According to the SOPs of the stable approach mentioned in Section 6.2.1, the pilot should
maintain the airspeed to the selected approach speed target value Vapp. The velocity is
mainly held via the thrust [160]. The structure of the speed tracking autothrottle system
during the final approach is shown in Figure 6.13.
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Figure 6.13: Speed tracking autothrottle system.
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The thrust force T produced by the propulsion system depends on several parameters, such
as throttle angle level (TLA), fan speed N1, true airspeed VA, and environmental factors,
like the static temperature Ts and the static pressure ps. For the autothrottle system of
Boeing aircraft, the flight mode ‘SPD’ is engaged during the final approach phase. ‘SPD’
mode means that the autothrottle system maintains speed command, which can be set
using the Mode Control Panel (MCP) IAS/MACH selector or the Flight Management
Computer (FMC). Vapp is used as a speed command. The simplified autothrottle system
using a proportional-integral (PI) controller is shown in Figure 6.14.

𝐾𝑃 + 𝐾𝐼
1
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𝑔𝑠𝑖𝑛 Δ𝛾

𝑚
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𝑉𝑎𝑝𝑝

𝑉𝑐𝑎𝑠

Δ𝑇

𝑉𝐾 𝑐
Δ𝑇 𝑐

Figure 6.14: Simplified autothrottle system block diagram

In Figure 6.14, m denotes the mass of the aircraft. (
.
V K)c means the desired kinematic

speed gradient. (∆T )c denotes the desired extra thrust. The time delay of engine reaction
is simplified using a PT1 system with the time constant Td. The trimmed thrust can be
computed based on the equilibrium equations of forces in flight path direction and its
perpendicular direction as below:

L = mg · cos(γGS);
Ttrimmed = D +mg · sin(γGS).

(6.60)

Three unknown parameters KP , KI , and Td need to be estimated in the simplified au-
tothrottle system. According to the detection of the flight mode ‘SPD’ from the QAR
data, the autothrottle system is engaged in 89 flights of 849 B748 flights during the final
approach. By utilizing those flights data, the equation error method (EEM) is applied
to minimize the mean square error (MSE) of the recorded time series and the simulated
series of the model output, for example, Vcas in this case. Since the content in one flight
might not enough, several flights could be used in estimation together, which is suggested
in [77]. The estimated results are shown in Table 6.4. The comparison of the raw Vcas

and the simulated Vcas using the estimated parameters are illustrated using three flights
in Figure 6.15 .

Table 6.4: Estimated parameters in autothrottle system

Parameters Value

KP 0.1075
KI 0.0064
Td 2.3493
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Figure 6.15: Comparison between the raw calibrated airspeed and the simulated calibrated
airspeed using the estimated parameters in Table 6.4.

5. Glideslope Tracking Autopilot System

During the final approach phase, pilots try to track the glideslope with a constant flight
path angle of γ ≈ −3◦, depending on the runway. The control structure for the glideslope
tracking is shown in Figure 6.16.
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Figure 6.16: Glideslope tracking structure
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In the structure of the glideslope tracking system, d is the vertical deviation between the
current position of the aircraft and the glideslope. It can be computed using the distance
R from the aircraft position to the runway threshold and the glideslope deviation angle Γ.
According to Equation (6.4), Γ can be computed based on the aircraft position as below:

Γ = 0.12 · γGS ·
δGS,DDM
0.0875 = atan( hILS√

(xN − xGS)2 + (yGS)2
)− γGS. (6.61)

In Figure 6.16, GGS(s) is used to eliminate the aircraft vertical deviation to the glideslope
by using a PI controller with KP,gs and KI,gs. In addition, the inner loop and the aircraft
dynamics are simplified shown in Figure 6.17. The altitude controller is utilized for the
control of the flight path. (Tθ2s + 1)/(T ∗θ2s + 1) is the lead-lag-filter to convert the flight
path rate .γc to the pitch rate command qc [161]. Tθ2 = 1/Zα and T ∗θ2 << Tθ2. The transfer
function Gqqc(s) is very fast and is assumed to be 1. In summary, the parameters KP,gs,
KI,gs, Kγ, and T ∗θ2 are required.
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Figure 6.17: Simplified inner loop and aircraft dynamics

The same approach in the estimation of the autothrottle system is applied in the estima-
tion of unknown parameters in the glideslope tracking system. 89 flights of B748 with
engaged AP in the final approach phase are used. In practice, the flight path trajectory
is almost located along the glideslope. There is no considerable variation in the flight
path angle and the vertical deviation to the glideslope. Based on the flight data and the
engineering experience, the value of unknown parameters used in this thesis is shown in
Table 6.5.

Table 6.5: Parameters in the glideslope tracking autopilot system.

Parameters Value

KP,gs 1
KI,gs 0.01
Kγ 0.5
Tθ2 2
T ∗θ2 0.5
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(a) Calibrated airspeed time history. (b) Flight path trajectory.

(c) Tailwind discrete gust. (d) Flight path angle time history.

Figure 6.18: Time histories of aircraft states during the final approach with the initial
deviation in the speed and the altitude, and the gust encountered at 30 seconds.

To validate the speed tracking autothrottle system and the glideslope tracking autopilot
system, an example of simulation starting from 1000 feet above the runway elevation to
the runway threshold is given. The initial approach speed deviation ∆Vapp is 3 m/s, and
the initial altitude deviation ∆h is 50 feet. Besides, the aircraft encounters a tailwind
gust at 30 seconds. The time series of the airspeed and the vertical deviation is shown in
Figure 6.18. Simulation results show that the aircraft can recover to the glideslope and
maintain the approach speed target.

6.4.3 Identify Contributing Factors

During daily operations, the aircraft should stabilize at 1000 feet above the runway ele-
vation. Otherwise, a go-around should be initiated. Since the go-around procedure is out
of the scope of this thesis, this chapter focuses on the low energy event during the final
approach due to late destabilization mentioned in Section 6.2.3. The predefined scenario
starts from 1000 feet above the runway elevation with no initial deviation at the speed
and altitude. Therefore, ∆Vapp = 0 and δGS,dot = 0 at the start point : 1000 feet above the
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runway elevation. All parameters involved in the modeling of low energy events during
the final approach are summarized as contributing factors in Table 6.6. The ‘OPS’ stands
for ‘operations’, and the ‘ENV’ stands for ‘environments’.

Table 6.6: Contributing factors to low energy events during the final approach

Contributing Factors Symbols Type - Time Frame

Mass m OPS Continues During the final approach
Flap δF OPS Discrete During the final approach
Air density ρTD ENV Continues At the touch down point
Downwash Vdws ENV Continues During the final approach
Tailwind gradient

.
V tws ENV Continues During the final approach

Headwind Vhws,TD ENV Continues At the touch down point
Headwind deviation ∆Vhws,TD ENV Continues At the touch down point
Gust intensity Vgust ENV Continues During the final approach

Since the aircraft mass does not change too much during the final approach and landing,
the mass is assumed to be constant during the final approach and the average mass during
the final approach as the measurement. Two types of flap configurations ‘CONF 25’ and
‘CONF FULL’ are used for the Boeing 748F landing according to the OM-B. 659 flights
with ‘CONF FULL’ and 187 flights with ‘CONF 25’ of the Boeing 748F landing at the
same runway are used for analysis. The histogram and distribution of mass are shown in
Figure 6.19. There is a significant difference in mass distribution between the two flap
settings.

(a) Landing mass with Flap ‘CONF FULL’. (b) Landing mass with Flap ‘CONF 25’.

Figure 6.19: Distributions of the landing mass during the final approach
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Figure 6.19 shows that there is a large deviation between the fitted distribution and
the histogram. Instead of all parametric distribution families, the non-parametric kernel
distribution is used, and the distribution is truncated in the boundary of the mass during
operations. Results in Figure 6.20 show that the estimated kernel distribution has a good
match with the flight data.

(a) Landing mass with Flap ‘CONF FULL’. (b) Landing mass with Flap ‘CONF 25’.

Figure 6.20: Kernel distributions of the landing mass during the final approach

The air density at the touchdown is used as a contributing factor. The air density along
the final approach trajectory can be computed based on the altitude as below:

ρ = ρR

(
1− n− 1

n
· h
H0

) 1
n−1

. (6.62)

The polytrophic exponent n = 1.235, and the geopotential height H0 = 8432 m. ρR is the
measurement of the air density at the touchdown ρTD. h is the height deviation between
the aircraft and the runway threshold. The histogram and the estimated distribution
of the air density at the touchdown are shown in Figure 6.21. Two distributions of air
density with different flap settings are similar according to the flight measurements.

(a) Air density with Flap ‘CONF FULL’. (b) Air density with Flap ‘CONF 25’.

Figure 6.21: Distributions of the air density at the touchdown point
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According to the low energy model built in the previous section, the downwash and
tailwind gradient play a big role in the energy bleed rate. The downwash is assumed to
be constant during the final approach, the mean value of the downwash series during the
final approach is used as the measurement. The obtained distribution of the downwash
is shown in Figure 6.22(a). Since most measurements of the downwash are negative, the
upwash prevails along with the final approach trajectory in this local area.

(a) Downwash during the final approach. (b) Maximum tailwind increment in 100 feet.

Figure 6.22: Distributions of the downwash and the maximum tailwind increment in
100 feet during the final approach phase

The encountered tailwind gradient depends on the meteorology and the aircraft trajectory.
It can be expressed in three terms:

.
V tws = ∂Vtws

∂x
.
x+ ∂Vtws

∂z
.
z + ∂Vtws

∂t
, (6.63)

where x denotes the direction along with the runway, and z denotes the altitude. The
first term denotes horizontal wind shear, which is the primary contributor to aircraft
performance loss. The second term is the vertical wind shear, and it predominates during
the aircraft climbs or descends. The third term is the local change rate of the tailwind with
the time, which is usually secondary. During the normal final approach, the estimated
wind is along the flight trajectory. The horizontal shear, vertical shear, and the local
change of tailwind can not be distinguished directly from the recorded wind data in the
QAR. Assume that the wind field during the final approach is frozen. Therefore, only
the vertical shear is considered during the simulation. The simplified expression of the
tailwind derivative is as follows:

.
V tws = ∂Vtws

∂h

.
h, (6.64)

where ∂Vtws/∂h is a metric for the wind shear. The wind shear intensity criteria recom-
mended by the fifth Air Navigation Conference [162] are shown in Table 6.7. Measure-
ments of the maximum tailwind increment in 100 feet along the final approach trajectory
are extracted. The corresponding histogram and the estimated distribution are shown in
Figure 6.22(b). However, the estimated distribution of the tailwind increment will not
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be used directly for sampling in simulation. Instead, the tailwind series generator is built
using the KL expansion method proposed in Chapter 5. By generating the random sam-
ples of the KL coefficients from their corresponding distributions, the tailwind series are
constructed along with the altitude during the final approach phase. The probability of
the maximum tailwind increment in 100 feet (denoted by max ∆Vtws) exceeding a certain
value is estimated using the subset simulation and the KL-based tailwind model, which is
shown in Table 6.7. The occurrence probability of the severe wind shear decreases sharply
compared to the strong wind shear.

Table 6.7: Wind shear intensity criteria [162]

Intensity ∆Vtws [m/s]
in 100 feet

∂Vtws/∂h [s−1] Estimated probability using
the KL-based wind model

Light 0 ∼ 2.0 0 ∼ 0.07 Pr(max ∆Vtws ≤ 2.0) = 0.3804
Moderate 2.1 ∼ 4.0 0.08 ∼ 0.13 Pr(max ∆Vtws > 2.0) = 0.6196
Strong 4.1 ∼ 6.0 0.14 ∼ 0.20 Pr(max ∆Vtws > 4.0) = 0.0359
Severe > 6.0 > 0.20 Pr(max ∆Vtws > 6.0) = 6.1389 · 10−4

According to Equation (6.3), another two environmental factors, the headwind at touch-
down Vhws,TD and the gust intensity during the final approach Vgust, influence the calcu-
lation of Vapp. The corresponding distributions of their measurements from 846 flights are
shown in Figure 6.23.

(a) Headwind at touchdown. (b) Gust intensity.

Figure 6.23: Distributions of the headwind and the gust intensity

The ∆Vhws,TD is the headwind deviation between the METAR information and the en-
countered wind, and its distribution is shown in Figure 6.2. Instead of sampling directly
from the estimated distributions of Vhws,TD and Vgust in Predictive Analysis, the KL-based
tailwind model is used. These contributing factors related to the tailwind can be calcu-
lated based on the generated tailwind series. 5000 wind series are generated using the

170



Chapter 6: Low Energy State Analysis

KL-based tailwind model, and 5000 samples of Vhws,TD and Vgust are obtained from the
generated wind series. The PDFs of the two wind-related factors are estimated based
on the 5000 samples, which are compared with the estimated PDFs based on the direct
measurements. Results in Figure 6.24 show that the estimated PDFs of Vhws,TD and Vgust
using the raw data and the simulated data match very well.

(a) Headwind at touchdown. (b) Gust intensity.

Figure 6.24: Estimated PDFs of two wind-related factors using the raw data and the
simulated data from the KL-based tailwind model

6.4.4 Occurrence Probability of Low Energy Event

By propagating uncertainties in all contributing factors through the low energy incident
model, the occurrence probability of the low energy event due to destabilization during
the final approach can be quantified using the Predictive Analysis. The pure Monte Carlo
simulation is executed using 10000 samples of the model inputs, randomly generated
from the distributions of four contributing factors (mass, ρTD, Vdws,∆Vhws,TD) and 20
coefficients ξk in KL wind model. For the incident metric IM , the width of the time
window ∆τ in Equation (6.28) is set to 6 seconds. The histogram and the estimated
distribution of IM are shown in Figure 6.25. There are no samples located in the failure
domain IM < 0, which does not mean the probability of failure is zero.
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Figure 6.25: Histogram of IM based on the MCS with 10000 samples.

To estimate the rare event probability, the subset simulation is applied. The number
of samples in each subset N is set to 2000. The conditional probability p0 is set to
0.1. The adaptive conditional MCMC sampling method is used to generate new samples
in each subset level. According to the samples generated in different subset levels, the
cumulative CDF of the incident metric is calculated and denoted by the blue line shown
in Figure 6.26. The estimated probability of IM < 0 is 2.81 · 10−7, marked by the blue
circle. The blue error bar and the green error bar denote the small and larger covariance
boundaries calculated using Equation (3.87) and Equation (3.86) in Section 3.3.3. The
black circles denote the intermediate threshold in each subset level. The histograms
of the incident metric samples in each subset level are shown in Figure 6.27(a). The
corresponding duration of the aircraft below the energy bound during the flight is also
calculated and shown in Figure 6.27(b). The duration below the low energy bound in
final subset level is less than the ∆τ = 6s, since there are segments above the low energy
bound in the integral interval.
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Figure 6.26: Cumulative CDF of the incident metric based on the samples generated in
the subset simulation.

(a) Histograms of the incident metric in each subset level.

(b) Histograms of the duration that the aircraft below the low energy bound in each subset level.

Figure 6.27: Histograms of the model outputs in each subset level.
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In the subset simulation, the σ of the proposal distribution and the acceptable ratio of
generated samples in each subset level is shown in Figure 6.28(a) and Figure 6.28(b). By
adjusting the σ using the adaptive conditional sampling method, the acceptable ratios in
each subset are close to the optimal value 0.44, and do not decrease too much with the
increase of the subset level.

(a) Proposed σ in each subset level using
the adaptive conditional sampling.

(b) Acceptable ratios of generated samples
in each subset level.

Figure 6.28: Proposed σ and acceptable ratios in each subset level.

6.4.5 Sensitivity Analysis of Contributing Factors

1. Sensitivity Analysis Based on MCS Samples

Since there is no direct physical meaning for the KL coefficients, the corresponding critical
wind-related factors Vhws,TD, Vgust, and max ∆Vtws in 100 feet, are calculated based on
the wind series generated using the KL coefficients. Based on the MC samples, different
kinds of sensitivity indices are calculated and shown in Figure 6.29 and Figure 6.30.

Figure 6.29: Correlation-based and regression-based sensitivity indices to IM .
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Figure 6.30: Moment-independent sensitivity indices to IM .

The results of correlation-based and regression-based sensitivity indices are similar. Both
of them can indicate the positive and negative effects of the contributing factors to the
incident metric. The moment-independent sensitivity indices also extract the same two
most important factors. However, there is no significant difference detected among the
remaining factors by using the moment-independent sensitivity indices. The highest effect
factor is the max ∆Vtws in 100 feet. The higher max ∆Vtws is, the lower the incident metric
is. The second important factor, landing mass m, has a negative effect on the incident
metric. It can be explained based on Equation (6.58). A larger landing mass will lead to a
small thrust-to-mass ratio, which weakens the ability to resist the wind shear. Compared
to m and max ∆Vtws, another five factors ρTD, Vdws, Vgust, Vhws,TD, and ∆Vhws,TD have
small influence. The ρTD has a positive effect on the incident metric. One possible reason
could be that a larger ρTD leads to a smaller Vtas under the same approach target speed
Vapp. With the same wind condition, the Vgs is also smaller. Therefore, the aircraft
flies slower and will encounter a smaller

.
V tws under the same ∂Vtws/∂h. According to

Equation (6.58), Vdws has a negative effect on the energy bleed rate. Therefore, a larger
Vdws will lead to a smaller IM . It is validated in Figure 6.29. Factors Vhws,TD, Vgust and
∆Vhws,TD will be used to correct the Vapp based on Equation (6.3). Results shows that
Vhws,TD has a positive effect on the IM , while Vgust has a negative effect on the IM . The
influence of ∆Vhws,TD is not significant compared to other factors.

2. Sensitivity Analysis Based on Subset Samples

To quantify the effect of the contributing factors on the failure probability, samples gen-
erated from the subset simulation are used. The L1-modified reliability sensitivity indices
are calculated using Equation (3.137). The sensitivity indices of contributing factors to
each intermediate fail probability are shown in Figure 6.31. The horizontal axis denotes
the incident metric. The vertical axis denotes the sensitivity indices of contributing fac-
tors to the incident probability. Each broken line with markers denotes one contributing
factor. The horizontal value of the marker indicates the intermediate thresholds for one
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subset level, while the vertical value denotes the sensitivity indices. The corresponding
subset level increases along with the incident metric decreases from the right to the left
in the horizontal axis of Figure 6.31.

Figure 6.31: L1-modified reliability sensitivity indices in each subset level.

Similar to the sensitivity indices for IM , the max ∆Vtws in 100 feet plays a significant role
on the occurrence probability, following by the m and the ρTD. The samples plots and
histograms of m and max ∆Vtws are shown in Figure 6.32 and Figure 6.33.

Figure 6.32: Samples plots and histograms of the landing mass in subset simulation.
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Figure 6.33: Samples plots and histograms of the maximum tailwind increment in 100
feet in subset simulation.

The max ∆Vtws is extracted from 100 feet interval during the final approach. To obtain the
overview of the tailwind series, the tailwind series along with the altitude is plotted using
the samples from the subset simulation. The tailwind series in subset level 1 and level 7
(final subset level here) are shown in Figure 6.34. The tailwind series are plotted in the
xz plane. The y axis denotes the altitude that the minimum of Efactor is located. In other
words, for the wind series drawn in the slice of the xz plane with a low y, the minimum
of Efactor occurs at a low altitude above ground. The corresponding Efactor series are
shown in Figure 6.35. Similar to Figure 6.34, the Efactor is drawed in xz plane, and y

axis denotes the altitude that the Efactor is minimum. The shadow xy plane indicates the
energy factor lower bound that Efactor = −1.

Samples at subset level 1 are based on the direct Monte Carlo sampling. There are no
obvious features for the tailwind series in Figure 6.34(a). Figure 6.35(a) shows that
the altitude at the minimum of Efactor is spread over the entire final approach phase.
Compared to these figures using subset level 1, what can be clearly seen in Figure 6.34(b)
and Figure 6.35(b) is that the decrease of Efactor occurs along with the increase of Vtws.
The steep increase of Vtws will lead to a drop in aircraft energy. In addition, Figure 6.35(b)
shows most of Efactor series in the final subset level are at low altitude. This might be
caused by the less height margin along with the decrease of altitude during the final
approach phase.
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(a) Vtws in subset level 1.

(b) Vtws in subset level 7.

Figure 6.34: Tailwind series along with the altitude in different subset level.
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(a) Efactor in subset level 1.

(b) Efactor in subset level 7.

Figure 6.35: Energy factor series along with the altitude in different subset level.

179



6.4 Predictive Analysis of Low Energy Event

3. Comparison of incident probabilities for different situations

To assess quantitively the direct effect of the contributing factors on the incident proba-
bilities, one contributing factor can be fixed as a specific constant value when the subset
simulation is executed. By taking several fixed values inside the interval of the contribut-
ing factor, the corresponding incident probabilities can be compared. The landing mass
m is taken as an example. Four different values of m: 20t, 25t, 30t, and 34.6t are used
in simulations, respectively. The incident probability conditioned at a specific m is es-
timated using the subset simulation. The flap setting is also taken into account. Two
landing flap configurations ‘CONF FULL’ and ‘CONF 25’ are applied. The estimated
results are shown in Figure 6.36. Besides, two baseline scenarios are also drawn. ‘ F30’
and ‘ F25’ stand for the 30-degree flap (‘CONF FULL’) and the 25-degree flap (‘CONF
25’). The ‘baseF30’ denotes the baseline scenario that the landing mass is distributed
according to the flight data using the flap ‘CONF FULL’. Likewise, the ‘baseF25’ denotes
the scenario using the ‘CONF 25’ for landing. The ‘m1’, ‘m2’, ‘m3’, and ‘m4’ denote the
four different landing mass settings: 20t, 25t, 30t, and 35t, respectively.

Figure 6.36: Comparison of incident probabilities for different mass and flap configura-
tion.

In the cases of ‘m1F30’, ‘m2F30’, ‘m1F25’, and ‘m2F25’, the lower bound based on the
estimated large covariance of the incident probability is less than 0, which are denoted
by the dash green line instead of the solid green line. The obvious feature obtained in
Figure 6.36 is that the larger landing mass will lead to a higher incident probability of
low energy events. This conclusion is in compliance with the results in Figure 6.32. For
the same mass value in subset simulation, the incident probability with two different
configurations is almost in the same order of magnitude. Furthermore, the combination
of ‘CONF 25’ and the largest landing mass will cause the highest incident probability.
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The influence of the interval width ∆τ in Equation (6.28) on the incident probability is
also analyzed. The larger the ∆τ is, the more critical the low energy situation is. The
value of ∆τ is set as 2, 4, 6, and 8 seconds, respectively.

Figure 6.37: Comparison of incident probabilities for different duration setting.

As shown in Figure 6.37, the incident probability drops more steeply than the trend of the
log curve, along with the linear increase of the ∆τ . For the scenarios of ∆τ = 2s, 4s, or
6s, the estimated incident probabilities are close for two different flap configurations. In
contrast, the incident probability in the case of ‘8sF25’ is obviously less than the scenario
of ‘8sF30’. As we discussed in Section 6.4.5, the sensitivity analysis on the incident
probability shows that a sudden and steep increase of the tailwind plays a significant
role in the critical situation. ‘CONF 25’ can be better used in handling critical windy
conditions. Thereby, the ‘CONF 25’ configuration causes a lower incident probability of
low energy in the critical situation than the ‘CONF FULL’ configuration.

6.5 Summary

In this chapter, aircraft energy boundary is analyzed according to the stabilization gate
and the stable approach criteria. By taking the stick shaker speed and the -1 dot glideslope
path as the lower bound, the energy margin and time margin are proposed as safety
metrics of low energy events during the final approach phase. The detection algorithm is
applied to a large set of operational flight data to analyze the low energy event. No low
energy events are detected, but the distributions of the energy margin and time margin
are obtained.

By considering the implementation of the stable approach criteria in practice, a persistent
violation of low energy bound is taken into account in a new metric, which is used for
predictive analysis. A physical model for low energy events is built, and the corresponding
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contributing factors are extracted. A KL-based stochastic wind model is integrated into
the predictive analysis algorithm. By propagating the uncertainties in contributing factors
obtained from the operational flight data of the B748F, the occurrence probability of low
energy event for the interval ∆τ = 6s is 2.81·10−7 with the estimated covariance boundary
[1.8077 · 10−7, 3.8123 · 10−7]. Along with the increase of ∆τ , the occurrence probability
declines steeply.

During the post-processing, the wind-related contributing factors are also calculated based
on the wind series constructed using the KL-based wind model and samples. Sensitivity
analysis is implemented based on the MCS samples and the subset simulation samples.
The steep increase of tailwind plays a significant role in the incidents of low energy.
Furthermore, a larger landing mass will lead to a high occurrence probability. A lower
air density will also cause a high incident probability. There is no significant difference
in occurrence probabilities of low energy for two flap configurations, except in the more
critical situation that ∆τ = 8s. The aircraft has a better performance to deal with the
critical windy condition using ‘CONF 25’ than ‘CONF FULL’.
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Chapter 7

Conclusion and Outlook

7.1 Conclusion

The developed model-based Predictive Analysis (PA) framework provides a quantitative
statement of incident probability by combining the operational flight data and the physical
models using statistical methods. In this dissertation, advanced uncertainty quantification
methods are applied to enhance the quality of the PA algorithms in contributing factors
modeling, model calibration, and sensitivity analysis. In addition to that, the aircraft’s
low energy event during the final approach phase is modeled and analyzed using the
enhanced PA algorithms.

At the beginning of the dissertation, the overview of handling the operational flight data
is given. The flight data recording architecture shows how the flight data are transferred
and recorded by the data acquisition unit (DAU) and buses. As one type of recorded
data, Quick Access Recorder (QAR), is the main source of flight data in this thesis.
The decoding algorithm allows us to convert the recorded QAR binary data stream into
decimal data, which are the engineering values of flight parameters. Afterward, several
flight data preprocessing steps are summarized, containing QAR file splitting by flight,
departure/arrival airport and runway detection, time points detection, measurements cal-
culation, and flight path reconstruction. First, QAR file splitting is used to split the
flight data recorded in a QAR file into several individual flights, which is convenient for
later data management and analysis. For each specific flight, the departure/arrival air-
port and runway are detected according to the world airport database, combined with the
flight parameters, such as the aircraft’s latitude, longitude, and heading. It is followed
by the time points detection and the measurement calculation, which provide the criti-
cal data for flight safety analysis. The accuracy of these time points and measurements
directly influences the flight safety analysis results. The applied Rauch–Tung–Striebel
(RTS) smoother in flight path reconstruction improves the quality of flight variables and
measurements. Flight Data Monitoring (FDM) events detection and statistical analysis
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of critical measurements are the main approaches for flight data analysis. Beyond this,
the physical-based incident model is integrated into the flight data analysis in the PA
framework. An example of the runway overrun incident model explained how the corre-
sponding incident metric and contributing factors are defined. All algorithms for flight
data analysis mentioned above are developed at the Flight Safety working group at the
Institute of Flight System Dynamics (FSD).

Uncertainty Quantification (UQ) methods provide theoretical foundations and mathe-
matical tools in the incident probability estimation of the PA framework. The four main
aspects of UQ methods involved in the PA framework are discussed in detail in Chap-
ter 3, including input uncertainty quantification, rare event probability estimation, sen-
sitivity analysis, and surrogate model. First, input uncertainty quantification methods
are provided to quantify the uncertainties of contributing factors. The high dimensional
dependence among contributing factors is captured using the vine copula approach. To
generate samples of contributing factors statistically, sampling methods such as inverse
CDF, rejection sampling, MCMC sampling, and copula sampling, are described. In the
estimation of small probability in aviation, the subset simulation (SuS) method is ap-
plied. To obtain more accurate results of the SuS, several MCMC sampling methods
used in SuS are discussed. The Component-wise Metropolis-Hastings MCMC algorithm
(CWMH-MCMC) and the conditional sampling (called the limiting algorithm in [34, 102])
are used in previous studies. A more advanced adaptive conditional sampling method is
provided to obtain an optimal acceptable ratio of generated samples, subsequently to ob-
tain a better accurate result. The adaptive conditional sampling is also recommended in
the reliability sensitivity analysis. Furthermore, the global sensitivity analysis is proposed
as the post-processing step to enhance the quality of the PA results. Especially, the L1-
based reliability sensitivity index with intermediate thresholds is quite useful in practice
to identify the key drivers for the incident. Chapter 3 also introduced the fundamentals
of the polynomial chaos expansion (PCE) surrogate model, which underlies the method
developed for the ‘Calibrate’ step of PA in Chapter 4.

In the ‘Calibrate’ step, the tuned distribution parameters of contributing factors are
integrated into the cost function as a penalty term to obtain the overall minimum changes
in all contributing factors and incident metric, instead of only matching the recorded
and simulated incident metric distributions. By using the PCE surrogate model, a new
calibration framework with a frozen sample strategy is proposed in this dissertation. The
nonlinear dependence structure is also considered using the vine copula approach. This
new calibration approach greatly improves efficiency because it is not required to rerun
the Monte Carlo simulation (MCS) during each iteration of optimization. During the
calibration procedure, the sensitivities of contributing factors to the incident metric are
computed based on the PCE-based Sobol indices, which quantify the importance of each
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contributing factor and is applied to reduce the dimension of contributing factors in the
PCE surrogate model. Calibration results for a first-order model and runway overrun
model validate the new calibration approach.

To consider the time series contributing factor in the PA framework, an efficient approach
based on Karhunen–Loève (KL) expansion is proposed in this dissertation for producing
time series with statistical characteristics matching measurements. This approach allows
us to appropriately replicate the actual statistical characteristic of the atmospheric motion
(wind, gusts, and turbulences) encountered in flights. Compared to the spectral represen-
tation (SR) methods using the power spectral density (PSD), the proposed approach is
successfully verified against the well-established von Karman turbulence model. Beyond
the wind series reconstruction in this dissertation, this approach is also implemented for
sensor noise analysis and regeneration. Results show that the regenerated noise series
using the KL expansion method match the PSD of the measurements very well. Fur-
thermore, this statistical modeling approach for producing time series is implemented in
simulations to generate noise signals instead of white noise.

High dimensional dependence among the KL coefficients is also analyzed by utilizing vine
copula to have a better description of the statistical characteristics of the KL coefficients.
Headwind and the horizontal wind shear ramps, encountered by the aircraft during the
final approach, are reconstructed and regenerated using the KL expansion method with
vine copula dependence.

To extend the use of the PA framework in the incident probability assessment, low energy
situations during the final approach phase due to late destabilization are discussed in
detail in Chapter 6. Energy margin is calculated based on the stable approach criteria.
By considering the energy rate, the time margin (time to the low energy bound) is also
calculated and applied to a larger set of operational flight data. In the implementation
of the PA framework on the low energy event, a new incident metric is first proposed via
integrating normalized energy margin, called Efactor, in a certain interval, in which the
duration time of the low energy bound violation is taken into account. A physical-based
low energy incident model is built according to the aircraft’s motion, environment factors,
and autothrottle and autopilot systems. The KL-based stochastic wind model is applied
to generated wind series during the final approach trajectory and integrated into the SuS.
Sensitivity analysis is implemented based on the samples from the MCS and the SuS.
L1-modified reliability sensitivity indices work well with the SuS results. As it is difficult
to explain the physical meanings of KL coefficients directly, the wind-related factors are
calculated from the wind series generated using the KL model and KL coefficients. These
calculated wind-related factors are considered as contributing factors in the sensitivity
analysis instead of KL coefficients. Developed sensitivity analysis algorithms are used
to identify the key drivers of the incident metric uncertainty and incident probability.
Results show the steep increase of tailwind plays a significant role in low energy incidents.
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In addition, the larger landing mass and the lower air density will lead to a higher incident
probability of low energy events. Furthermore, incident probabilities in different scenarios
are also compared to analyze the effect of different factors.

7.2 Outlook

For future activities, the UQ methods can be further studied and integrated into the
PA framework to obtain more reliable results efficiently. In this dissertation, the PCE
surrogate model is only used in the ‘Calibrate’ step. However, the PCE surrogate model
can be also used to improve the efficiency in uncertainties propagation from contributing
factors to the incident metric for the incident probability estimation.

For the stochastic wind series modeling, the KL expansion method with vine copula
dependence is used to construct time series of one variable, wind speed in a direction
in this dissertation. This method can be also applied to construct multiple dependent
time series together. The dependence among multiple time series could be described by
modeling the dependence structure among their corresponding KL expansion coefficients
using the vine copula approach. For example, tailwind, crosswind, and downwash could
be constructed together using the operational flight data. It allows us to consider the
dependence among wind speeds in three directions. Therefore, a more realistic three-
dimensional atmospheric motion along the flight path could be replicated. The same
approach could be also applied to model and replicate the noise series with the dependence
of other series or measurements.

During the modeling of low energy events, the autothrottle and autopilot systems are
applied. In practice, manual flying by pilots will lead to larger deviations at speed and
altitude than auto flying. The inappropriate manual inputs or incorrect decision-making
actions may cause a high risk of low energy during the final approach phase. However,
modeling of pilot behavior in low energy events is outside the scope of this dissertation.
In the future, the pilot modeling might be integrated into the low energy model. The
pilot model proposed by researchers, such as the quasi-linear pilot model by McRuer
in [163, 164], an optimal control model of human response in [165, 166], or a data-driven
pilot behavior model in [167], might be useful to describe the pilot behavior combined
with the operational flight data. Anyway, modeling the continuous behavior of pilots
is still a challenging part, especially using the low-frequency operational data without
enough excitations.
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The PA framework has been applied in several incidents. Runway overrun and veer-off
incidents, low energy incidents during the final approach, and Maximum Mach Operating
exceedances incidents are developed by the Flight Safety working group at FSD. Other
accident types, such as Controlled Flight into Terrain (CFIT), can be also assessed to
extend the application of PA in safety assessment.

187





Appendix A

Nomenclature Principles and
Coordinate Frames

The material presented here is mainly adapted from the lecture Flight System Dynamics
1 at the Institute of Flight System Dynamics, Technische Universität München [73].

A.1 Nomenclature Principles

Notations used to describe variables of the aircraft motion in this thesis refer to the
following nomenclatures. Scalars, such as the components of a vector, are denoted by
regular letters. The index may address three components (x, y, z). For example, ax
denotes the acceleration in x-axis. The lower index of the scalar also describes its type,
such as K (Kinematic), A (Aerodynamic), and W (Wind). For example, VK and VA

denote the kinematic speed and the aerodynamic speed, respectively. The index can also
be used to indicate the meaning of the scalar, like Vapp, which is the approach target
speed. Angles are predominantly denoted by Greek letters, i.e. the aerodynamic angle of
attack αA, and the kinematic flight path angle γK .

Generally, a vector is a collection of different scalar quantities, and it has two types:
row and column vectors. All vectors are printed in bold type fonts. For the vectors in
Euclidean space (three-dimensional orthonormal space), they are characterized by the
arrow symbol. Matrices are used to map the input vector space and output vector space.
Matrices are denoted by bold and capital letters, e.g. T.

The vectors used to describe the variables of aircraft motion, such as position, velocity,
are introduced in detail in the following examples. The vector of position is denoted by

(~rGP )B =


xGP

yGP

zGP


B

, (A.1)
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which means the position of the point P relative to the point G in B frame. The subscript
B is called the notation frame, which is used to specify the components of the vector. If
the point P is ignored in the superscript, (~rG)B is the position of the point G relative to
the center of the earth O. Velocity is defined as the rate of change of a position vector
over time, such as

(~V GP
K )IB = (

.
~r
GP

)IB =
(
d

dt

)I
(~rGP )B =


uGPK
vGPK
wGPK


I

B

. (A.2)

Velocity always needs to be defined with respect to which frame (called reference frame)
the rate of change of the vector is considered. In many cases, the reference frame is
different from the notation frame, for example, the reference frame I and the notation
frame B in Equation (A.2). The rate of change of velocity over time is called acceleration.
Similar to velocity, the acceleration vector also needs to be defined with respect to which
frame that the rate of change over time is considered. As shown in Equation (A.3), the
(~aGPK )IEB is obtained by differentiating the velocity (~V GP

K )IB with respect to the E-frame.

(~aGPK )IEB =
(
d

dt

)E
(~V GP

K )IB =
(
d

dt

)E ( d
dt

)I
(~rGP )B

 =


.
uGPK
.
vGPK
.
wGPK


IE

B

. (A.3)

Angular rate is used to describe the rotation motion, denoted by the letter ω as below:

(~ωIBK )B =


ωIBK,x
ωIBK,y
ωIBK,z


B

=


pK

qK

rK


B

, (A.4)

which is the rotation rate of B-frame with respect to I-frame. The subscript K inside
the bracket indicates the type of angular rate. When the angular rate is the rotation
of B-frame with respect to another frame specified in B-frame, the simplified notation
p, q, r can be used to denote the three components of the angular rate. Similar to the
acceleration, the angular acceleration can be obtained by the rate of change of an angular
rate over time with respect to a frame as below:

(
.
~ω
IB

K )OB =
(
d

dt

)O
(~ωIBK )B =


.
ωIBK,x
.
ωIBK,y
.
ωIBK,z


O

B

. (A.5)

Besides the variables of aircraft motion, the nomenclature of forces and moments are
defined as below:

( ~FR
A )B =


XR
A

Y R
A

ZR
A


B

, ( ~MR
A )B =


LRA
MR

A

NR
A


B

. (A.6)
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The forces denoted by ~F are referenced to the point R in the superscript, called the
reference point. The lower index indicates the physical source of the force. Here, ~FA

means the aerodynamic forces. The subscript outside the bracket refers to the notation
frame, in which the coordinate components are specified. Similar definition principles are
used to denote moments ~M .

A.2 Coordinate Frames and Transformation

The used coordinate frames in this thesis are shown in Table A.1-A.7.

Table A.1: Earth-Centered Inertia (ECI) Frame I

Property Description
Index I

Role Euclidean Frame (Inertial Axis System – Newton’s Law may be used)
Origin Center of the Earth
x-axis In the equatorial plane, in the direction of the vernal equinox
y-axis In the equatorial plane, forming a right hand system with x and z-axis
z-axis Rotation axis of the Earth

Table A.2: Earth-Centered-Earth-Fixed Frame E

Property Description
Index E

Role Navigation frame for specification of positions
Origin Center of the Earth
x-axis In the equatorial plane in the direction of the Greenwich Meridian
y-axis In the equatorial plane, forming a right hand system with x and z-axis
z-axis Rotation axis of the Earth (collinear with the ECI’s z-axis)

Table A.3: North-East-Down (NED) Frame O

Property Description
Index O

Role Attitude-/Orientation Frame – used to specify the attitude of the plane
Origin Reference point of the aircraft (R)
x-axis Parallel to the local geoid surface, pointing to the geographic north pole
y-axis Parallel to the local geoid surface, pointing east to form a right hand

system with x-axis and z-axis
z-axis Pointing downwards, perpendicular to the local geoid surface
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Table A.4: Body-fixed Frame B

Property Description
Index B

Role Notation Frame – used for forces, moments, . . .
Origin Reference point of the aircraft (R)
x-axis Pointing towards the aircraft nose in the xz-symmetry plane
y-axis Pointing to the right (starboard) wing to form an orthogonal right hand

system
z-axis Pointing downwards in the symmetry plane of the aircraft, perpendicular

to the x- and z-axis

Table A.5: Aerodynamic Frame A

Property Description
Index A

Role Notation Frame for aerodynamic flow
Origin Reference point of the aircraft (R)
x-axis Aligned with the aerodynamic velocity, pointing into the direction of the

aerodynamic velocity
y-axis Pointing to the right perpendicular to the x- and z-axis
z-axis Pointing downwards in the symmetry plane of the aircraft, perpendicular

to the xy-plane

Table A.6: Kinematic Frame K

Property Description
Index K

Role Flight-Path Axis Frame
Origin Reference point of the aircraft (R)
x-axis Aligned with the kinematic velocity, pointing into the direction of the

kinematic velocity
y-axis Pointing to the right perpendicular to the x- and z-axis
z-axis Pointing downwards parallel to the projection of the local normal to the

WGS-84 ellipsoid into a plane perpendicular to
the x-axis (i.e. to the kinematic velocity)
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Table A.7: Navigation Frame N

Property Description
Index N

Role Navigation Frame, derived from NED-Frame to specify the position (i.e.
the runway threshold)

Origin Point on the earth surface
x-axis Parallel to the local geoid surface, pointing to a direction that deviates

with alignment angle χN from north direction (or pointing to the runway
center line, also called runway frame )

y-axis Parallel to the local geoid surface, to form a right hand system with
the x- and z-axis

z-axis Pointing downwards, perpendicular to the local geoid surface

The angles between different frames are summarized in Figure A.1. The transformation
matrix between two frames can be constructed based on the angles.

𝐾

𝐴

𝐵𝑂𝑁
Body-Fixed
Frame

Aerodynamic
Frame

Kinematic
Frame

NED
Frame

Runway
Frame

𝜇𝐾 ,−𝛽𝐾 ,𝛼𝐾

−𝛽𝐴,
𝛼𝐴𝜒

𝐴 , 𝛾𝐴 , 𝜇
𝐴

𝜒𝐾
, 𝛾𝐾

Ψ,Θ,Φ

𝜒𝑟𝑤𝑦

Figure A.1: Overview of rotation angles between frames
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Appendix B

Distribution Families

B.1 One-dimensional Probability Distributions

The following probability distribution families are used as distribution candidates in this
thesis to quantify and model uncertainties of contributing factors.

Table B.1: One-dimensional continues distribution

Distribution Param PDF Ranges of x
Uniform
U(a, b)

a ∈ R
b ∈ R

f(x) = 1
b−a [a, b]

Gaussian
(Normal)
N(µ, σ)

µ ∈ R
σ ≥ 0

f(x) = 1
σ
√

2πe
− (x−µ)2

2σ2 (−∞,+∞)

Logistic
Log(µ, σ)

µ ∈ R
σ ≥ 0

f(x) = e−
x−µ
σ

σ

(
1+e−

x−µ
σ

)2 (−∞,+∞)

Lognormal
Ln(µ, σ)

µ ∈ R
σ ≥ 0

f(x) = 1
xσ
√

2πe
− (ln x−µ)2

2σ2 x > 0

Log-Logistic
Ll(µ, σ)

µ > 0
σ > 0

f(x) = e−
ln x−µ
σ

xσ

(
1+e−

ln x−µ
σ

)2 (0,+∞)

Weibull
Wb(a, b)

a > 0
b > 0

f(x) = b
a
(x
a
)b−1e−(x/a)b x ≥ 0

Exponential
Exp(µ)

µ > 0 f(x) = 1
µ
e−

x
µ [0,+∞)

Gamma
Ga(a, b)

a > 0
b > 0

f(x) = xa−1e−
x
b

baΓ(a) (0,+∞)

Beta
Be(a, b)

a > 0
b > 0

f(x) = 1
B(a,b)x

a−1(1− x)b−1,

where B(a, b) = Γ(a)Γ(b)
Γ(a+b)

(0, 1)
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Generalized
Extreme
Value
GEV (k, σ, µ)

k ∈ R
σ ≥ 0
µ ∈ R

f(x) = 1
σ
t(x)k+1e−t(x), where

t(x) =
(
1 + k x−µ

σ

)− 1
k , k 6= 0

t(x) = e−
(x−µ)
σ , k = 0

(−∞,−σ
k

+ µ), k > 0
(−σ

k
+ µ,+∞), k < 0

(−∞,+∞), k = 0

t Location-
Scale
tLoc(µ, σ, ν)

µ ∈ R
σ > 0
ν > 0

f(x) = Γ( ν+1
2 )

σ
√
νπΓ( ν2 ) ·

(
ν+(x−µ

σ
)2

ν

)− ν+1
2

(−∞,+∞)

Student’s t
Stu(ν)

ν > 0 f(x) = Γ( ν+1
2 )√

νπΓ( ν2 ) ·
(
ν+x2

ν

)− ν+1
2 (−∞,+∞)

Gumbel
Gb(a, b)

a ∈ R
b > 0

f(x) = 1
b
e−

x−a
b
−e−

x−a
b (−∞,+∞)

Rayleigh
Ra(b)

b > 0 f(x) = x
b2 e
−x2/(2b2) [0,+∞)

Nakagami
Na(µ, ω)

µ > 0
ω > 0

f(x) = 2
(
µ
ω

)µ 1
Γ(µ)x

(2µ−1)e
−µx2
ω (0,+∞)

Kernal
KS

- fh(x) = 1
nh

∑n
i=1K(x−xi

h
) (−∞,+∞)

B.2 Bivariate Copula Families

The following table shows bivariate copula families with their corresponding parameters
ranges. ‘No.’ denotes the corresponding label of the specific copula family. The ‘par’ and
’par2‘ denote two parameters used in the copula distribution functions.

Table B.2: Bivariate copula families available in VineCopula R package, source: [87]

Copula family No. par par2

Gaussian 1 (−1, 1) -

Student t 2 (−1, 1) (2,+∞)

(Survival) Clayton 3, 13 (0,+∞) -

Rotated Clayton (90◦ and 270◦) 23, 33 (−∞, 0) -

(Survival) Gumbel 4, 14 [1,+∞) -

Rotated Gumbel (90◦ and 270◦) 24, 34 (−∞,−1] -

Frank 5 (−∞, 0) ∪ (0,+∞) -
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(Survival) Joe 6, 16 (1,+∞) -

Rotated Joe (90 ◦ and 270 ◦) 26, 36 (−∞,−1) -

(Survival) Clayton-Gumbel (BB1) 7, 17 (0,+∞) [1,+∞)

Rotated Clayton-Gumbel (90◦ and 270◦) 27, 37 (−∞, 0) (−∞,−1]

(Survival) Joe-Gumbel (BB6) 8, 18 [1,+∞) [1,+∞)

Rotated Joe-Gumbel (90◦ and 270◦) 28, 38 (−∞,−1] (−∞,−1]

(Survival) Joe-Clayton (BB7) 9, 19 [1,+∞) (0,+∞)

Rotated Joe-Clayton (90◦ and 270◦) 29, 39 (−∞,−1] (−∞, 0)

(Survival) Joe-Frank (BB8) 10, 20 [1,+∞) (0, 1]

Rotated Joe-Frank (90◦ and 270◦) 30, 40 (−∞,−1] [−1, 0)

(Survival) Tawn type 1 104, 114 [1,+∞) [0, 1]

Rotated Tawn type 1 (90◦ and 270◦) 124, 134 (−∞,−1] [0, 1]

(Survival) Tawn type 2 204, 214 [1,+∞) [0, 1]

Rotated Tawn type 2 (90◦ and 270◦) 224, 234 (−∞,−1] [0, 1]

As shown in Table B.2, several bivariate copula families are provided in the VineCopula R
package. It includes the elliptical copulas (Gaussian and Student-t), Archimedean copulas
(Clayton, Gumbel, Frank, Joe, BB1, BB6, BB7, and BB8), and extreme-value copulas.
The corresponding bivariate copula distribution functions are shown in Table B.3. To
extend the range of dependence, the rotated copulas are also included in Table B.2. The
rotated copula density is obtained from the counterclockwise rotation of the copula density
by 90◦, 180◦, or 270◦ as below:

90◦ : c90(u1, u2) = c(1− u2, u1)
180◦ : c180(u1, u2) = c(1− u1, 1− u2)
270◦ : c270(u1, u2) = c(u2, 1− u1).

(B.1)

In addition, the survival copulas mentioned in Table B.2 are defined as C̄(u1, u2) =
Pr(U1 > u1, U2 > u2). Compared to the definition of cumulative distribution function
that C(u1, u2) = Pr(U1 < u1, U2 < u2), the survival copula density is calculated as below
and it is same as the copula rotated by 180◦.

c̄(u1, u2) = c(1− u1, 1− u2) = c180(u1, u2). (B.2)
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Table B.3: Bivariate copula distribution function, source: [27, 28]. (a) Φ2;ρ denotes two-
dimensional Gaussian distribution function with zero mean and correlation ρ. Φ denotes
univariate standard Gaussian distribution function.(b) T2;ν,ρ denotes two-dimensional stu-
dent t distribution function with ν degrees of freedom and correlation ρ. Tν denotes uni-
variate student t distribution function with ν degrees of freedom.

Copula C(u1, u2) parameter range

Independent uv -

Gaussian Φ2;ρ(Φ−1(u1),Φ−1(u2)) (a) ρ ∈ (−1, 1)

Student t T2;ν,ρ(T−1
ν (u1), T−1

ν (u2)) (b) ρ ∈ (−1, 1), ν > 1

Clayton (u−δ1 + u−δ2 − 1)− 1
δ δ ∈ (0,+∞)

Gumbel exp(−((− ln u1)δ + (− ln u2)δ) 1
δ ) δ ∈ [1,+∞)

Frank -1
δ

ln
(

(1−e−δ)−(1−e−δu1 )(1−e−δu2 )
1−e−δ

)
δ ∈ (−∞, 0) ∪ (0,+∞)

Joe 1− [(1− u1)δ + (1− u2)δ − (1− u1)δ(1− u2)δ] 1
δ δ ∈ (1,+∞)

BB1

η(η−1(u1) + η−1(u2)) where

η(s) = (1 + s
1
δ )− 1

θ , and

η−1(t) = (t−θ − 1)δ

θ ∈ (0,+∞)

δ ∈ [1,∞)

BB6

η(η−1(u1) + η−1(u2)) where

η(s) = 1− [1− exp{−s 1
δ }] 1

θ , and

η−1(t) = (− ln[1− (1− t)θ])δ

θ ∈ [1,+∞)

δ ∈ [1,+∞)

BB7

η(η−1(u1) + η−1(u2)) where

η(s) = 1− [1− (1 + s)− 1
δ ] 1
θ , and

η−1(t) = (1− (1− t)θ)−δ − 1

θ ∈ [1,+∞)

δ ∈ (0,+∞)

BB8

1
δ
[1− (1− xy

z
) 1
θ ] where

x = 1− (1− δu1)θ,

y = 1− (1− δu2)θ, and

z = 1− (1− δ)θ

θ ∈ [1,+∞)

δ ∈ (0, 1]
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Tawn type 1

exp{[ln(u1) + ln(u2)]A
(

ln(u2)
ln(u1u2)

)
} where

A(t) = (1− ψ1)(1− t) + (1− ψ2)t

+[ψ1(1− t)θ + (ψ2t)θ]
1
θ

θ ∈ [1,+∞)

ψ1 = 1

ψ2 ∈ [0, 1]

Tawn type 2

exp{[ln(u1) + ln(u2)]A
(

ln(u2)
ln(u1u2)

)
} where

A(t) = (1− ψ1)(1− t) + (1− ψ2)t

+[ψ1(1− t)θ + (ψ2t)θ]
1
θ

θ ∈ [1,+∞)

ψ1 ∈ [0, 1]

ψ2 = 1
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Appendix C

Efficiency of MCMC estimator

The efficiency of Monte Carlo simulation (MCS) and Markov chain Monte Carlo (MCMC)
is derived via an example of estimating a quantity of interest. Without loss of generality,
the input X follows the known distribution fX, and X ∈ Rn. The function of random
variables is denoted by Y = g(X). Y ∈ R is the model output. The mean of the output
is taken as the quantity of interest in this example as below:

Q = E[g(X)]. (C.1)

MCS estimator

Then estimation procedure of Q using the MCS is as follows:

1. Generate i.i.d. samples {xi, i = 1, ..., N} from fX using direct sampling method like
the inverse CDF transformation;

2. Evaluate the model {yi = g(xi), i = 1, ..., N};

3. Estimate Q via:

Q̂ = 1
N

N∑
i=1

yi. (C.2)

The output realization yi follows fY and is also i.i.d since xi is i.i.d.. Q̂ is a function of
random outcomes of Y = g(X). Therefore, the Q̂ is a random variable. The mean of the
estimator Q̂ is derived as below:

E[Q̂] = 1
N

N∑
i=1

E[yi] = NE[Y ]
N

= E[Y ] = Q. (C.3)

The MCS estimator of Q is unbiased. The variance of the Q̂ is computed as follow:

V ar[Q̂] = 1
N2

N∑
i=1

V ar[yi] = NV ar[Y ]
N2 = V ar[Y ]

N
. (C.4)
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The relative error of the estimator, called coefficient of variance (c.o.v.), is obtained via:

δQ̂ =

√
V ar[Q̂]
E[Q̂]

=
√
V ar[Y ]
NQ

, (C.5)

when Q is not zero mean. The c.o.v. will decrease along with the increase of number of
sample N .

MCMC estimator

In the case that the CDF of fX is not analytically invertible, and the distribution is
only known point-wise, MCMC algorithm can be used to generated the samples {xi, i =
1, ..., N}, which are states of a Markov Chain with stationary distribution fX. The output
{yi = g(xi), i = 1, ..., N} are states of a random process with the distribution fY . As the
current state in Markov chain depends on the previous state, the samples {xi, i = 1, ..., N}
is not i.i.d.. Therefore, the yi is also not i.i.d.. The correlation of two different states yi
and yi+k is denoted by the autocorrelation coefficients ρY (k), which is computed as below:

ρY (k) = Cov[yi, yi+k]
V ar(yi)

, (C.6)

where Cov[yi, yi+k] is the covariance between two states. k, called lag, counts the number
of states between two states in a chain shown in Figure C.1. The ρY (k) between two
arbitrary states only depends on the lag k. For a chain with N states, there are N − k
pairs of states with the same correlation ρY (k).

𝑥𝑖 𝑥𝑖+2

𝑥𝑖+3
𝑥𝑖+4

Lag: 𝑘 = 2

Lag:
𝑘 = 1

Lag: 𝑘 = 3

A Markov chain: 𝑥𝑖+1

𝑦𝑖+1𝑦𝑖 𝑦𝑖+2 𝑦𝑖+3 𝑦𝑖+4
Lag:
𝑘 = 1

Figure C.1: States in a Markov chain.

The MCMC estimator of Q̂ is as below:

Q̂ = 1
N

N∑
i=1

yi. (C.7)

The mean of the MCMC estimator is derived:

E[Q̂] = 1
N

N∑
i=1

E[yi] = NE[Y ]
N

= E[Y ] = Q. (C.8)
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Therefore, the variance of the MCMC estimator is derived:

V ar[Q̂] =V ar
[ 1
N

N∑
i=1

yi

]
= 1
N2V ar

[ N∑
i=1

yi

]

= 1
N2

 N∑
i=1

V ar[yi] +
N∑
i=1

N∑
j=1,j 6=j

Cov[yi, yj]


= 1
N2

 N∑
i=1

V ar[yi] +
N∑
i=1

N∑
j=1,j 6=j

ρY (yi, yj)
√
V ar[yi]

√
V ar[yj]


= 1
N2

(
NV ar[Y ] + 2

N−1∑
k=1

(N − k)V ar[Y ]ρY (k)
)

=V ar[Y ]
N

(
1 + 2

N−1∑
k=1

(
1− k

N

)
ρY (k)

)
= V ar[Y ]

N
(1 + λ) ,

(C.9)

where
λ = 2

N−1∑
k=1

(
1− k

N

)
ρY (k). (C.10)

The relative error of the MCMC estimator is calculated as below:

δMCMC
Q̂

=

√
V ar[Q̂]
E[Q̂]

=
√
V ar[Y ]
NQ

(1 + λ), (C.11)

Due to the autocorrelation of the Markov chain samples, denoted by the positive λ, the
relative error of MCMC estimator is larger than the MCS estimator with the same number
of samples. The efficiency of the MCMC estimator, denoted by eff , can be measured
via:

eff = 1
1 + λ

= 1
1 + 2∑N−1

k=1

(
1− k

N

)
ρY (k)

. (C.12)

As the ρY (k) decrease, the λ will decrease and eff will increase. Therefore, the efficiency
of MCMC estimator will increase with the decrease of the autocorrelation coefficients.
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