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Abstract—Multiple solutions for the coexistence of different
radio access technologies operating in the same frequency band
have been proposed for 5G and WiFi. Most solutions based on
spatial division just consider a small amount of radio access
points, one link direction, and/or a single radio access technology.
As a consequence, the performance of these solutions on realistic
wireless network deployments may be poor and difficult to
estimate. This paper investigates the serving of multiple users
by multiple radio access technologies with the objective of
minimizing the interference among network nodes. This is done
by jointly optimizing the beams and link directions as well as
the transmission powers, so as to ensure fair and near-optimal
throughput allocation over time. For this purpose, a generalized
beam-gain model for small-scale antenna arrays is proposed. We
evaluate our proposed solution for realistic network scenarios in
order to show its effectiveness.

Index Terms—Beamforming, Multi-Technology Coexistence,
5G-NRU, WiFi-6

I. INTRODUCTION

The next generation of networks are envisioned to leverage
Multi-Radio Access Technology (Multi-RAT) to satisfy the
growing demand for traffic, provide support for users of
heterogeneous technologies, and increase the reliability of ser-
vices. A typical Multi-RAT Network consists of heterogeneous
radio channel access technologies which interfere with one
another. This interference can be detrimental for high data rate
networks, especially with the expected hundredfold increase
in data rates in the next generation mobile networks [1].
Moreover, with energy efficiency gaining in importance, the
interference becomes a major impediment since it leads to
packet losses resulting in re-transmissions. This also causes
the network to fall short of the sub-ms delay requirement
of 6G networks [2]. To reduce the interference between
the technologies, different coexistence concepts [3] such as
frequency domain (FD) and time domain (TD) division of the
channel, as seen in Carrier Sensing Adaptive Transmission
(CSAT) and Listen Before Talk (LBT), have been developed.
Apart from these, concepts for optimal power allocation and
successive interference cancellation (SIC) are proposed to mit-
igate interference. One promising approach is spatial division
multiple access (SDMA) which offers spatial multiplexing

implemented by solutions including Multiple Input Multiple
Output (MIMO), Multi User MIMO (MU-MIMO) and beam
forming (BF) or even cooperative solutions such as Coopera-
tive Multiple Input Multiple Output (Co-MIMO).

BF is accomplished with the techniques of digital BF,
analog BF, and hybrid BF. In digital BF, all signals for the
antenna elements are generated digitally to form the beam of
the antenna array, whereas in analog BF, one digital signal is
modified with an analog circuit per antenna element to form
a beam. In hybrid BF [4], both approaches are combined to
find an optimum in installation space and power consumption.
However, most of the research is focused on generating the
optimal signal at each antenna of the antenna array. In contrast,
we abstract the antenna array by focusing on the beam angle.

Apart from the beams, other wireless resources can also
be allocated efficiently to optimize the network. In resource
allocation, transmission power is an important factor as it
influences the Signal to Interference Noise Ratio (SINR) for
the receiver as well influencing the interference for other
network nodes. The SINR has a direct effect on the achievable
data rate. Another component of resource allocation that has
to be taken into account is the link transmission direction.
Scheduling the radio client (RCL) for uplink transmission and
optimally allocating downlink transmissions to satisfy latency
constraints is vital. For an optimal network configuration, all
three variables influence the SINR of the link and conse-
quently, the link properties (e.g. achievable capacity, delay,
etc.) and should, therefore, be jointly optimized.

A. Related Work

The authors in [5] apply machine learning to decide the
optimal beam to communicate with one RCL based on the
location information of the user. However, the system does
not try to optimize for multiple RCLs or even multiple radio
access points (RAPs). Optimally allocating multiple RCLs
in one cluster to serve them over Orthogonal Frequency-
Division Multiple Access (OFDMA) is described in [6]. The
communication is based on one antenna array shared by 5G
and WiFi. The beams are calculated by optimizing the pre-
coding matrix. Although multiple technologies are used, they



originate from the same antenna, relaxing the problem of in-
terference. Overlapping beams which could cause interference
are tackled in [7]. They propose the usage of a narrow beam to
improve the SINR. Furthermore, they solve the interference by
assigning different frequencies to spatially overlapping beams.
This solution is also described in [8]. However, they do not
consider the interference at the corners of the sectorization of
the physical space. By avoiding interference using frequency
division of overlapping beams, they reduce the maximum
theoretical spectral efficiency by 50%. This inefficiency is
avoided in [9]. They compare different user clustering algo-
rithms resulting in spectrum sharing. However, these would
yield unfair rate distributions, as the beam allocation over time
does not compensate for the cluster density. All these concerns
are addressed in [10]. However, the described optimization
problem avoids optimizing uplink and downlink together for
networks containing more than two RAPs. In most of these
papers, the optimization for the beam is based on precoding
matrices.

B. Contribution

In this paper, we propose an abstract model for beam-
forming antenna array networks, independent of underlying
beamforming technology. In addition, we combine our model
with a proposed approach to improve performance in a
heterogeneous network with interfering 5G and WiFi links.
This is accomplished by formulating a resource allocation
optimization problem with the objective of maximizing the av-
erage network sum throughput while maintaining rate fairness
among users over the time slots and minimizing the number of
users left unserved. We then solve this problem using multiple
meta-heuristic and approximate solvers. As a result of this
optimization, we allocate the optimal beam angle of the RAPs,
transmission power, and uplink/downlink transmission slots of
all devices for multiple time instances for a fixed time period.
We then evaluate the solutions for different network topologies
and system parameters.

C. Organization

The rest of the paper is organized as follows. Section II
introduces the system model considered. The optimization
problem is described in Section III. Section IV details the
solution methods to this optimization problem and the methods
are evaluated in Section V. Finally, Section VI concludes the
paper.

II. SYSTEM MODEL

The following conventions apply: ~v denotes a vector, capital
bold letters (M) represent matrices, and · is the element-wise
multiplication between two vectors or matrices.

A. Wireless devices

In this paper, a device is referred to as a radio transmission
point (RTP). It can be either a 5G-NR-U or a WiFi6 device.
We further distinguish between two classes of RTPs, the radio
access point (RAP) and the radio client (RCL). The connection

Fig. 1. Scenario Overview

Fig. 2. Antenna Description

between an RCL and the associated RAP is defined as link
i. αu contains the RAP associated and ui contains the RCL
of link i. αu and ui form vectors ~α, ~u. Multiple RCLs of
~u connect to one RAP of ~α of the same technology based
on shortest distance. While RAPs communicate directional by
BF, RCLs communicate omnidirectional. In consequence, the
transmission gain between two RTPs m and n depend on the
RAP’s beam B and their positions ~xm, ~xn, for down-link (DL)
and up-link (UL). An overview of the system is given in Fig. 1.

B. Antenna configuration

Multi-antenna arrays require a large installation space. This
is not available in the majority of the application scenarios
described in Sec. II-D. Therefore, we focus on small antenna
arrays. Every RAP is equipped with 4 antenna arrays with each
antenna array having 4 antenna elements each, as shown in
Fig. 2. Instead of using MU-MIMO or BF to allocate a subset
of the antennas per RCL, the entire antenna array is used to
connect multiple RCLs using OFDMA. This is achieved by
generating a wider beam compared to standard BF. This results
in a beam width of approximately 47° with an antenna spacing
of λ

2 where the beam gain is 1. The angle between the antenna
arrays is 90°. The beam angle of the RAP is denoted by B. The
antenna array with the smallest difference between its normal
and beam angle is active. The antenna angle θm is calculated
by (1)

θm = Bm − arg(n̂km) , (1)



with n̂km being the antenna normal and k =

⌈
Bm−π

4

2π

⌉
. The

angle between two RTPs, the RTP angle Θm,n, is calculated
by

Θm,n = arg(~xm − ~xn) . (2)

The angle relative to the active antenna, the relative angle
θm,n, is calculated by

θm,n = Θm,n − arg(n̂km) . (3)

For simplicity, we assume that RTPs positioned behind an
active RAP antenna receive a gain of 0. Otherwise the gain
between two RTPs (m and n) is calculated by the following
equations.

gm,n =


g(θm, θm,n)g(θm, θm,n) if n,m are RAPs
1 if n,m are RCLs
g(θm, θm,n) if m is RAP, n is RCL
g(θn, θn,m) if n is RAP, m is RCL

(4)
g(θm, θm,n) =

∣∣∣ sin(2π[sin(θm,n)−sin(θm)])
4 sin(0.5π[sin(θm,n)−sin(θm)]) cos(θm,n)

∣∣∣
(5)

C. Link and Coverage

RAPs can be configured as either DL or UL for a time slot.
The link direction of the RCLs is given by the configuration
of the RAP it is associated to. Not all RCLs can be covered
simultaneously by their corresponding RAP beam. Therefore,
the beam angle needs to be adapted over time, so that every
RCL is covered. To achieve this, we divide the simulation into
slots of 1 ms. The minimum slot size for 5G, disregarding
5G-URLLC, is 1 ms and the variable frame duration of
WiFi allows a channel occupancy of less than 1 ms in every
modulation scheme. This motivates the slot size being 1 ms.
The maximum time an RCL can be out of coverage is 400 ms
(5G-NR-U for timer T300 [11]) and < 1 s (WiFi 6) before
resulting in a disconnection. In addition, 5G-NR-U can exhibit
a maximum channel occupancy time of up to 8 ms [11]
requiring a movement of the beam at least every 8 ms. We
assume that all RTPs operate at the same frequency. Therefore,
a user link (DL, UL) will experience interference from every
RAP operating in DL and RCLs in UL except from the RCLs
connected to the same RAP.

D. Scenarios

In order to evaluate our approach, we focus on multiple
realistic scenarios which vary in radio client and access point
count, offering a spatial diversity in user positions and different
channels. The scenario-specific channels are based on large
scale path loss models described by

PLChannel(d) = PL0 + nch · 10log10(d) +XChannel[dB] ,
(6)

with PL0 = 20log104πfc/C being the frequency dependent
component, C is the speed of light, nch denotes the chan-
nel specific distance exponent, and XChannel is a channel
specific random variable following the specified distribution

TABLE I
SCENARIO PARAMETERS

Parameter Bus Train Aircraft Office Outdoor

RAP WiFi+5G 1+1 1+1 3+3/4+4 4+2 2+2
RCL WiFi+5G 30+30 37+37 167+167 60+30 50+50
Cover area m2 35 71.25 272.5 1250 20000
nch 1.779 1.8 2.65 1.8 2.0
Distribution Normal Normal Rician Normal Lognormal
Parameter 1 µ=0 µ=0 s=0.465 µ=0 µ=0
Parameter 2 σ=10.22 σ=2.3 σ=0.150 σ=1.65 σ=4.1

Fig. 3. Bus Topology

of Table I. We assume a center frequency fc = 2.4 GHz
and a signal bandwidth BW = 20 MHz for our simulations.
We consider transportation scenarios since this is a common
application for a multi-technology network. Many user devices
are equipped with only a certain specific technology, like
user laptops having only WiFi capability and not 5G. For
transportation scenarios, the technology for the RCLs is varied
among multiple simulation runs. In the office and outdoor
scenarios the location of the RCLs also varies. The position
and technology of the RAPs are maintained.

1) Bus: This scenario models a typical configuration that
could be found in an intercity bus service. The model was
based on the dimensions of a Travego RHD-L. Fig. 3 displays
the RTP distribution. The channel is modeled by (6) and based
on the work in [12], with the corresponding parameters from
Table I.

2) Train: The train configuration is based on a German
high-speed train seat wagon of the ICE T. Fig. 4 displays the
RTP distribution. The channel is modeled by (6) based on
the results in [13], with the corresponding parameters from
Table I.

3) Aircraft and Aircraft+2: The aircraft and aircraft+2
configurations are based on an Airbus A340-300. Fig. 5
displays the RTP distribution for aircraft. Compared to the
aircraft model, two additional RAPs are installed (at 24.2 m)
in the aircraft+2 model. The channel is modeled by (6) based
on the results in [14].

4) Office: For the office, the distribution of 5G:WiFi RCLs
and RAPs is 1:2. Fig. 6 displays one exemplary spatial
distribution of RTPs. The channel includes the effects of walls
on the pathloss as described in (7). The channel is based on
the work in [15]:

PL = PL0 + 18log10(d) + 8 · dd/10e+XOffice , (7)



Fig. 4. Train Topology

Fig. 5. Aircraft Topology

with XOffice being a normal distributed random variable (r.v.)
with a mean µ = 0 and standard deviation σ = 1.65.

5) Outdoor Cluster, Outdoor Random: The outdoor sce-
nario can be differentiated into a cluster type and a random
type. In the cluster type, RCLs appear in groups as depicted
in Fig. 7 whereas, in the random type, RCLs are randomly
distributed over the area. The channel is based on the work of
[16] and described in (6). Furthermore, we assume that during
the optimization instance the coherence time of all channels
is 40 ms [17] since we consider a low mobility scenario with
a user speed << 0.36 m/s.

III. OPTIMIZATION PROBLEM FORMULATION

In this section, we describe the problem formulation for
maximizing the throughput of all RCLs, considering user
fairness, for DL and UL, and minimizing the service waiting
time for RCLs. Solving this problem results in the optimal
values for the beam angle ~B, the transmission powers for the
RTPs ~P , the link configuration ~L and an optimal sequence of
these parameters B = [ ~B1, ~B2, ..., ~BT ] over a time period T .
We similarly define P and L as the sequences of transmission
powers and link configurations, respectively. To achieve the
optimal sequence over time we divide the time into a finite
amount of slots T = 40. In addition, we do not optimize data
rate on its own, as it might lead to an unfair distribution, but
we apply a proportional fair utility function as described by
[18].

This allows us to divide the problem into a one-shot
optimization for each slot t and a function that penalizes
solutions found in previous slots. Both problems are combined
in (8) by calculating the utility function, dependent on the
throughput, referred to as UF :

UF (t) =

I∑
i=1

ψ
rDLi (t)

rHDLi (t)
+ (1− ψ)

rULi (t)

rHULi (t)
, (8)

with ψ being a weight factor for the DL-UL-ratio, rDLi the
current DL-rate, rULi the current UL-rate, rHDLi the DL and
rHULi the UL penalty factor of link i. The value of ψ can
be straightforwardly obtained by exhaustive search to find the

Fig. 6. Office Topology

Fig. 7. Outdoor Cluster Topology

value resulting in an UL:DL ratio of ca. 1:6. This ratio depicts
the average ratio of typical asymmetric downlink to uplink
traffic in the considered network scenarios [19]. Variables rDLi
and rULi are the current rates of the link i between the RAP and
the associated RCL in the DL and UL, respectively, including
a bandwidth correction for the number of RCLs, Ni, connected
to the same RAP. The rate rxLi is calculated from the spectral
efficiency g, dependent on SINR, as:

rxLi = g(ηi)
BW

Ni
.

The SINR to spectral efficiency mappings for 5G and WiFi
are described in [20] and [21] respectively. The penalty factors
rHDLi , rHULi are calculated by:

rHxLi (t) =

{
1 if t = 1
rHxLi (t−1)t

t+1 +
rxLi (t−1)
t+1 , rHxLi (1) = 1 if t > 1

.

(9)
The value of rHxLi increases each time the link has been
served. By dividing solutions, that benefit the same link,
by their history, the link is penalized and other solutions
benefiting different links can be found by the solvers. This
ensures that more RCLs are served and that the rate is
distributed more fairly among the users, independent of the
channel impairments while at the same time the terms rHDL

and rHUL ensure penalizing DL and UL separately.



The SINR ηi is calculated as:

ηi =
gi · hi · Pi∑Ji

j=1 gmi,nj · hmi,nj · Pj
, (10)

with gi = gui,αui being the gain, hi = hui,αui the channel
effect, and Pi = Lαui ·Pαui +(1−Lαui )·Pui , the transmission
power in the link i and Ji being all links except links
associated to the same αui , and

mi = (1− Lαui ) · αui + Lαui · ui,

nj = Lαuj · αuj + (1− Lαuj ) · uj .

That is, the values of mi and nj depend on whether the trans-
mission of the link is in DL or UL. For the sake of simplicity,
we omit the link subscript in the following formulas. The gain
gm,n is calculated by (4) and the channel hm,n by

hm,n = PLChannel(||~xm − ~xn||) , (11)

where PLChannel is described by (6) and (7). The objective
of the optimization is to maximize the utility function UF .
Hence, the optimization problem is formulated as:

max
B,P,L

UF (t) (12)

Lα,t ∈ {0, 1} Bα,t ∈ [0, 2π]

Pα,t ∈ [−40,−10] Pu,t ∈ [−40,−10]

with Lα,t = 1 representing DL, Lα,t = 0 the UL, Pα,t the the
transmission power of RAP, and Pu,t the transmission power
of RCL in dBW. The power bounds are the maximum allowed
transmission power in Europe of 100 mW and the minimum
configurable transmission power for WiFi of 0.1 mW.

IV. SOLUTION METHODS

The optimization problem described in Sec. III is a Mixed
Integer Nonlinear Program (MINLP) since it has integer L and
real values B and P and the influence of these on the utility
function over time is nonlinear. Since, in general, MINLPs are
NP-Hard and thus difficult to tackle, we use multiple meta-
heuristics and approximate methods to solve the problem and
compare the results. The methods that we evaluate in this
work are: simulated annealing (SA) [22], genetic algorithm
(GA) [23], particle swarm (PW) [24], pattern search (PT) [25],
interior point (IP) [26], and surrogate (SG) [27]. The integer
constraint is relaxed for solvers that do not accept integer
variables. The solution is then rounded to the nearest integer.

SA imitates the heating of a material followed by the steady
decrease of temperature reducing defects, thereby, minimizing
the energy of the system. Similarly, the solver generates
potential solutions at each temperature state, accepting only
good solutions and repeating this process until convergence.

GA is a metaheuristic that models the theory of natural se-
lection where the fittest candidate solutions of each generation
are selected to reproduce and generate the candidates of the
next generation.

The concept of PW is based on a swarm of candidate
solutions that move through a region in steps based on

Fig. 8. Comparison of sum rate for different solvers for the Outdoor Random
topology

a formula depending on their position and velocity . The
algorithm evaluates the utility function for each particle and
step. Depending on the result, the movement is adjusted for
each particle until convergence.

The pattern in PT refers to a set of candidate solutions where
the utility function is evaluated. Depending on whether a better
solution is found or not, the mesh or search space for the next
pattern is expanded or contracted.

IP is a gradient-based nonlinear programming solver. It uses
the interior-point algorithm to solve a constrained minimiza-
tion wherein it solves a sequence of approximate optimization
problems.

SG is recommended for expensive objective functions with
nonlinear inequality constraints and integer constraints. To
solve the problem, the optimizer evaluates the surrogate, which
is the approximation of the objective function, on multiple
candidate solutions and takes the best values as an approxima-
tion of the optimal values of the original objective function.
It is to be noted that, in this paper, SG is terminated after
a maximum of 230 function evaluations. This is comparable
with the average function evaluations of the other solvers
when their termination is determined by an objective function
tolerance of 10−2 over a maximum of 50 stall iterations.

V. EVALUATIONS AND DISCUSSIONS

The optimization problem is solved using the solvers de-
scribed in Sec. IV and is extensively evaluated with simu-
lations. The simulations are performed for varying network
topologies and for different power and beam configurations.
The results of 1000 simulations for each evaluation are pre-
sented in this section.

The optimization problem for the Outdoor Random scenario
is solved and the resulting network sum rate is shown in
Fig. 8. Additional network Key Performance Indicators (KPIs)
are described in Table II. From the table, we observe that IP
performs the worst in terms of sum rate, the Jain fairness
indicators [28] in DL and UL, and the number of unserved
RCLs. This is due to the non-continuous nature of the objective
function and its gradients. Due to its poor performance, we
exclude this solver for the following analysis. GA yields the



TABLE II
KPIS FOR OUTDOOR RANDOM SCENARIO

IP GA PW PT SA SG

DL [Mbit/s] 63.87 343.04 310.35 284.87 255.71 309.49
UL [Mbit/s] 31.42 98.112 118.34 107.19 66.034 49.225
Achieved ψ 67% 77.8% 72.4% 72.7% 79.5% 86.3%
unserved RCL 49 17 17 19 18 19
Jain DL 0.374 0.704 0.656 0.658 0.634 0.660
Jain UL 0.225 0.403 0.418 0.446 0.466 0.434
SideLobeUse 20.1% 22.3% 22.9% 21.5% 24.2% 24.8%

Fig. 9. Comparison of run time in CPU time for different solvers for the
Outdoor Random topology

highest sum rate, while also serving the maximum amount of
users and still approaching ψ closely. For all these reasons
we continue further analysis with this optimizer. The Side-
LobeUse denotes the percentage of data transmitted over the
side lobes. Interestingly, by optimizing for the data rate ca.
1/5th of the transmission for all optimizers is over side lobes
which is undesirable in other works, because of the expected
interference. However, our approach includes this effect in the
rate calculation and is, therefore, able to benefit from this type
of transmission.

To analyze the time to solve for the different optimization
algorithms, we measure the actual time a CPU core spends on
solving the problem. This should reduce the variance between
different multi-core systems. However, the distribution of the
duration for each solver still indicates a hardware-dependent
component as seen in Fig. 9 which shows the duration for
each solver for the outdoor random scenario. To provide more
insight on the calculation duration we computed a Hierarchical
Linear Model (HLM) with Duration as criterion and Solver as
the predictor variable. The model uses SA as the reference and
creates 4 variables representing the other Solvers except for IP.
We control for the co-variate Worker, as different computers
were used to generate the results and hence likely to confound
the duration. The model is described by (13).

Durationi,m = β0 + β1(GA− SA) + β2(PW − SA)

+ β3(PT − SA) + β4(SG− SA) + b0,m + εi,m
(13)

where, Durationi,m is the criterion of observation i, for
the grouping variable Worker represented by m. Here, i ∈

TABLE III
HLM RESULTS

Name Mean Difference SE Lower Upper

GA-SA 200.19 2.662 194.97 205.41
PW-SA 242.08 2.662 236.86 247.3
PT-SA 247.37 2.662 242.15 252.59
SG-SA 257.26 2.662 252.04 262.48

Fig. 10. Comparison of sum rate for varying beam configurations for SA and
GA

{1, 2, ..., 1000} and m ∈ {1, 2, ...8}. βj , j ∈ {1, 2, 3, 4} are
the fixed effect coefficients, β0 is the intercept, and b0,m is
the random effect of the grouping variable, and εi,m is the
observation error for i. The effect of different computers is
confirmed by a 9376 point smaller AIC value for a model
including Worker compared to a model solely based on
Optimizer. The AIC is an indicator of how well a model fits the
underlying data, with smaller AIC values indicating a better
fit. The variance in the data that can be explained by this
model is R2 = 85%. Table III shows the results of this model
and the difference in mean values and the corresponding 95%
confidence intervals. We can infer from Table III, that SA is
the fastest optimizer as all mean differences are significantly
greater than 0. Hence, for the following evaluations, we use
SA to compare with GA.

Fig. 10 shows a comparison between omnidirectional com-
munication and our proposed beam-optimized system. While
both scenarios use the same amount of RAPs, the beam-
optimized network is able to increase the sum rate by a factor
of 2.5. As expected, SA performs worse.

Fig. 11 shows the optimized sum rate for various scenarios.
In general, GA performs better than SA. However, when
increasing the amount of RAPs to increase the throughput
for high-density environments such as an aircraft, SA is not
able to make use of the 2 additional RAPs in the aircraft+2
scenario. Although GA is able to leverage the two additional
RAPs for the sum throughput the spectral efficiency decreases
from 6.197 bits/s/Hz to 4.915 bits/s/Hz.

In all scenarios except the outdoor scenario, all RCLs
are served with GA. The users left unserved in Outdoor
Random are due to the harsh channel conditions and could
not have been served even with a directly allocated beam.



Fig. 11. Comparison of sum rate and spectral efficiency for different scenarios
for SA and GA

Fig. 12. Comparison of sum rate and spectral efficiency for different RCL
to RAP ratio for SA and GA

The clustering of users, compared to a random distribution,
yields better results. This is, in part, due to the reduced space
that needs to be covered by the beams.

The results for varying RCL to RAP ratio in the Outdoor
Random scenario are shown in Fig. 12. Increasing the number
of RCLs for the same number of RAPs decreases the sum rate
and spectral efficiency due to more transmitting RCLs causing
interference and the larger area to be covered by the RAPs.
However, by increasing the number of RAPs, the optimizer
can leverage the additional capacity and increase the sum rate
at the cost of a reduced spectral efficiency. Here, GA performs
much better than SA.

An additional comparison is made in the Outdoor Random
scenario between the power-optimized network and networks
with fixed transmission powers while still optimizing for the
other variables. The results of this comparison for GA are
depicted in Fig. 13. The powers of the RCLs are fixed to
the values in the figure and the powers of all RAPs are
fixed to 100 mW. Contrary to expectations, fixing the RCL
transmission power to 100 mW increases the throughput in
DL and decreases the throughput in UL compared to a power
of 20 mW. This is due to the fact that, by increasing the power,
more users are being served by an RAP in fewer slots, resulting
in more slots being allocated to the DL. This is shown in
Table IV.

Fig. 13. Comparison of DL and UL sum rate for varying transmission power
configurations

TABLE IV
PERCENTAGE OF SLOTS ALLOCATED TO DL

RAP 1 2 3 4

20mW 88.7% 88.6% 82.9% 81.4%
100mW 89.9% 89.9% 87.6% 86.9%

VI. CONCLUSION

In this paper, we propose a beam-gain model based only on
beam angle and eliminating precoding matrices. In addition,
the considered antenna array allows for small installation
spaces, crucial for most of the application scenarios described
in this work. We also propose a resource allocation approach
for heterogeneous networks and evaluate it in detail with mul-
tiple metaheuristics. The results verify that only a minimum
amount of RAPs are needed to cover most transportation sce-
narios with 5G and WiFi. This is accomplished by optimizing
for the transmission power, the beam angle, and the link
direction of all RTPs, while keeping the number of unserved
users to a minimum. We also show, that increasing the number
of RAPs can benefit the network throughput but reduces the
spectral efficiency. In addition, we show that our approach
is able to increase the network throughput compared to the
baseline. We also conclude that fixing the transmission power
influences the sum throughput minimally, as opposed to its
influence on the throughput distribution between UL and DL.
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