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ABSTRACT
The distribution of Strength of systems of a number of
elements in parallel under imposed uniform strain is 1n-

vestigated. Daniels asymptotic results are generalized towards

Systems with dependent elements. Usinag an order statistics

approach, sharper results are obtained for small to medium

Systems. The models Presented can be applied to 3 larce number

of types of material and construction, e.qg. to concrete and

masonry under tensile Stresses, connections made of nails,

dowels or rivets and, of course, all bundie~of~threads like

Structures. In particular, the formula aiven may be used in

all cases where the deformation modulus of the elements ig

2

nearly constant, i .o strenoth and ultimate strain gre highily

POsitively Correlated,

CIVIL ENGINEERING ABSTRACT

The exact and asymontotic distrjbution Of strenath of systems

©f a number of elements with independent or dependent strength

Properties under imposed uniform Strain is investigated.

Key Words: Brittile materigl];

Paralle]l Systems; Safety;
R S
Statistical Analgsis; Strength models; Structural
Reliability

Introduction

Modelling of uncertain phenomena jeopardizing structural relia-
bility has to a certain extent concentrated on loading variables.
Much less work has been done to establish suitable statistical
models for the resistance of materials against those loadings.
However, realistic models for both types of uncertainties are
needed for a sound analysis of structural reliability. Their
development is particularly important since serious world-wide
activities are underway with the intention to create a new

generation of probability-based design codes.

There appear to be only two limiting cases in which a satisfying
statistical theory of strength of stressed zones of arbitrary
shape and size exists. On the one hand, so-called "weakest link"
materials, i.e. materials which fail to sustain the applied

load as soon as its weakest "element" fails, have found some
interesting solutions. The best known and most usable results
are nevertheless asymptotic in various ways. Apart from the
famous work of Weibull [17] for independent sequences of ele-
mental strengths leading strictly to one of the three asymp-
totic extreme-value distributions some additional results are
available for the strength of materials whose elemental proper-
ties can be modelled by continuous random processes or spatial
fields and whose first-order distribution belongs to the
Gaussian family (see e.g.[1,6,15]. Although, the references

i s
mentioned are primarily concerned with large value problems,

the corresponding small value results can easily be derived.




Similarly, the extreme value results for exceptional loadings

modelled as renewal Processes have their small value counter-

J e

Part when modelling "defects" [13]. Many of these results rely

on the equivalence between extreme value and first-passage

time statistics of randam processes.

On the other hand, certain exact Or asymptotic results e

Xist
for pPerfectly ductile materials. In this case, given the
spatial correlation Structure of elemental strengths, the
random strength of Cross-sections is obtained by integrating

the random field over finite domains. Under certain regularity

conditions such integrals converge to the normal distribution

with known mean and variance [16]

J e

Very few results are available for realistic types of material

where "elementsg® form a redundant System and whose mechanical

behaviour ig neither ideally ductile nor ideally brittle. The

earliest and still most prominent investigation for brittle

materials is due to Daniels [2]. Daniels considered a system

of discrete elements in a3 parallel arrangement

(bundles) with
equal load-

sharing and whose elemental strengths are Positivly,
independently andidenticallydistributed. Equal load—sharing

implies perfectly elastic

=brittle Stress-strain behaviour. The

ratio of ultimate elemental Strength ang Strain is constant.
Daniels derived an €xact solution for the distrib

ution function
of system Strength which, unfortunately,

is less amenable to
numerical applications., It 18

Nevertheless,

exact analytical result in thig area,

But, perhaps more
important,

the only known

he found an asymptotic result expressing that, if

lim x (1=F(x) O where

: : 3 =
F(x) is the distribution function of

tal strenath X 1_:';,--.;2’ the rij-gtfibT_ltiOﬂ functlon
positive elemental strength X,

; . -enath R
of system strength R

to the normal with known

totic results have been

R(X +X ) tends with increasing n
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mean and variance. More general asymp-
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y recently by relaxing the
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solutions are desireable for small to

Moreover, the mechanical basis needs
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Its exact distribution function is given by Gabriel [5]. Now,

for Markovian 2's and large n, we have (4], pp. 314

k
En I X Py (8)
and 2 R
oy a2 kRl (9)
n+w 0 ] ¥_poo+p11
. P1o Po1 : i e
Wilth Do = and Py 3 the stationary pProbabilities
o P01+P10 Pg1 P1o

of the sequence zk. The distribution of Rn tends to the

normal according to the central limit theorem for Markovian se-

quence [4]. However, it is not easy to find a sequence {X, } for

X -
which the Markovian Property of the corresponding sequence {Zk}
holds. For the moment, we, therefore, are content with the

fact that the tendency to the normal distribution is still
maintained as long as the Sequence {Xk} has a certain depen-
dence structure, Specifically being asymptotically independent,

and with the fact that in the same case the asymptotically

correct level X, is found from €q.(4) as well. The proofs are

beyond the Scope of thig Paper and are given in [ 8 ].

It remains to determine mean and variance of a System with

known Probability layw and dependence structure of elemental

strength values. As an example,

assume the sequence (Xk) to

be a stationary Gaussian Seéquence with mean u, standard

deviation g and auto-

« For the mean of
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given by Ditlevsen*) (3]. The same concept allows an important
generalization to continuous parameter elemental strength pro-
Césses X(t) over an intervall (0,T] (Figure 2). In this case,

the summation in eq. (7) is replaced by integration. It ig then

€asy to see that the continuous equivalents to egs. (10) and

(15) are:

E[Ry] = x_ T[1-9(u )] (17)
3 i
i 2
E[R] = x%27 jm-—;—m-uo,-uo;p(r)) at (18)
(o]

- .
t is also straigthforward to formally eéxpand these results

to i
random strength fields over given domains A although the

additio i i
nal restrictions on the auto-correlation Structure of

the ra i ]
ndom field, €.9.1s0tropy, or on the shape of the domain A

mulae. In

one determi = | i
ines Xy 0.78 implying P=1l=-F(x )=0

Strength valyes. On the other hand
r

neglec .
g ted Furthermore, looking at eqg (1), the a ymp
' i ’ S tote
essentia
lly represents One dominating term which
g \ Ch is the one

* )
For e ! L
xample, a first estimate is Obtained fr
I from
: Ao
—aJ©(~ayl—£\
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Lgso(-a,-a;p) $U=2 L where L=g(

where the proportion of active elements equals n(1-F(x_)). One
o

might suspect that given the level X, according to eq.(4) the
correct distribution of order statistics produces better results.
This is, in fact, not true. On the contrary, it is rather the

choice of an inappropriate level x,, e.g. the one determined

from eq.(4), which leads to the excessive conservatism of

Daniels' asymptote.

Before investigating the possibilities of using an alternative
to eq. (4) the effect of auto-correlation is studied in Figure 4
for the asymptote of a GauB-Markov sequence. As expected, corre-

lation is important in the asymptotic case and may even be more
P E b’

important for small systems.

Perfectly Elastic-Brittle Material-Small Systems

It is possible to improve Daniels' results substantially. Re-
WrlEing eq.i(1) &as
R_. = max eop IN=K+1)X s <e0} (19)
n i k
1sksn

and making use of the fact, that one term usually dominates in

eq.(19), the distribution function of R can be bounded by
P(R_< x) <min {P((n=-k+1) X, sx)} (20)
n 1 8
1€ksn

In the independent case the right-hand term probabilities can

be given exactly [ 4 |

-~
/ \

P((n-k+1) :;}{.
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-
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which, again, may be approximated by (see [4], pp.
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X

L- -1 - 1
/ x-n(]-—é-r%)? By el : z__ _p~!
of ’ 2 S o n U et 2 o A
‘ n(1 -2+ G el S
\ 1n‘ By & L g | e
NErr Ry n 2 : ‘ =1 X :
E(F () n E(r k)

=

with F )t} inv E
h (.) the inverse of F(.) and f(.) the probability

function of X. Note that

is e L r

equivalent to solve J—L(X) _

f(x) ~ * and, therefore, with .
we have E_(x ) = (1- ) + = : )41
n %y’ o (1= X ~L;l and D (x ) = ——=2Q’ "
4 i s i :
{n ?(X }-T‘Fﬁ' r 'a"~",'/2r-' ich £Av 3 :
o’ l (X 1) wilch Ior large n dpproaches

Further, observe that eq. (21)

n = T reh £ ]
n 1. The Search for the

optimal k must pe done
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O Q
the normal approximation to the exact or

bution- For ._}:-::'_1}{‘;[3..]_@, T.-Ofﬂl'ullafi f:f:); and (1

tively, may be used in eqg. (23)

number k should be treated as a real number when searching for

the minimum. The inequality sign in eq. (2¢
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Summary and Conclusions

The distribution of strength of systems of a number of elementg

in parallel under imposed uniform strain is investigated.
Daniels asymptotic results are generalized towards systems
with dependent elements. Using an order statistics approach,
sharper results are obtained for small to medium systems. The
models presented can be applied to a large number of types of
material and construction, €.g. to concrete and masonry under
tensile stresses, connections made of nails, dowels or rivets
and, of course, all bundle-of-threads like structures. In
particular, the formula given may be used in all cases where

the deformation modulus of the elements is nearly a constant
r

1.e. strength and ultimate strain are highly pPositively corre-

lated.
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Functions, Mass. Inst. of Technology, Dept. of Civ.Eng., ' d(.) = standard normal probability function
E Res. Rep. R79-19, Cambridge, 1979 ? m_1(.) = inverse normal probability function
; [17] Weibull, W.: A Statistical Distribution of Wide Applica-
é bility, J. App. Mech., vol. 18, 1951, -pp. 293
|
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PARALLEL STRUCTURAL SYSTEMS
WITH NON-LINEAR STRESS-STRAIN BEHAVIOR
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Introduction

Considerable effort is now being invested in the elaboration of

a generation of probability-based structural design codes.
They rest on a certain set of agreed stochastic models for
the uncertain variables and a simplified probabilistic
approach most frequently called "first-order reliability
method". Relatively few studies have been directed towards
the formulation of realistic models for the strength of
materials, connections or cross-sections which necessarily
include size effects. In fact, most studies on stochastic
strength models have been limited to the statistical evalu-
ation of tests of specified type and subsequent distribution

A e of distribution is concerned, two

-

o)

curve fittin he ty

(o]

limiting cases have found special interest. On the one hand,
so-called "weakest-1ink" models have been studied repeatedly.
Their basis is the famous work of Weibull [ 1] yielding one
of the asymptotic extreme-value distributions. On the other
hand, materials whose "elements" behave perfectly ductile
and form a parallel system have been treated in the context
of integrals of random processes or fields over certain
domains [ 2 ] yielding asymptotically a normal distribution
of system strength. Very few results exist for materials
whose elements are arranged in a parallel manner but do

not behave perfectly plastic. The earliest and still most
prominent work in this area is due to Daniels 3] who was
able to derive the exact distribution of the strength of a

bundle of threads with perfectly elastic-brittle behavior

and whose elemental strength values are positively, inde-
pendently and identically distributed. This implies full
positive correlation between strength and ultimate strain.
More important, Daniels proved that the strength of the
system is asymptotically normally distributed with a given
mean and variance. This asymptote is always a conservative
bound to the true distribution. Unfortunately, the exact
distribution is numerically rather intractable if the number
of elements grows large and convergence to the asymptote is
extremely slow. While only recently some generalizations

of the previous asymptotic results have been put forward for
the case of dependent elemental strength or continuous
strength fields [ 4, 5,6] it has been shown that an order
statistics approach generally yields sharper bounds, parti-
cularly for smaller systems [ 7 ]. In the following, this order
statistics approach is applied to parallel systems whose
elements have arbitrary non-linear stress-strain behavior.
The order statistics approach is used in the context of
modern first-order reliability methods [ 8 ] and is further
improved by applying certain concepts in first-order system
reliability [ 9 ]. The assumption of fully correlated strength
and ultimate strain is relaxed. However, the condition of
uniform imposed strain is still maintained as well as

stochastic independence between elements.




Preliminaries

Assume the elements Ei in a given system of size n to

follow different stress-strain laws which depend on an uncer-
i tain parameter vector 0., i.e. for the i-th element we have

{ g

(compare figure 1):

B =S (] =5 fe] =5(c,8,) fore 2 O (1)

in which S denotes stress and & denotes strain.

Then, the system strength under uniform imposed strain simply

is (figure 1):

n
R = max{ } S(e,0,)! (2)
i g0 11 2

An important special case is already worth mentioning. Let

S(e,0.) be non-decreasing in e. If a certain value e _ exists

where all curves S(E,Qi) attain their maximum, then the i-th

gt "

element strength is:

S(e,/8;) = max{S(e,0,)} = X (3)
£z0

and, therefore:

n n

B = § "max(S(c,06.)} = T x. (4a)

" i=1 e20 o i=g o=

The failure probability at a load level x becomes:
n n
P(R s x) = P( ] Xi$x) =p(} X, = x5 0) (4b)
i=1 i=1
which, for arbitrary distribution functions of X may best be

@ evaluated by using the well-known fast convolution techniques

as given, for example, in [ 8]. For perfectly plastic materials

eq.(3) is formally true with €, = ® and egs. (4) yield the

expected result.

Unfortunately, there is no such simple solution in the general
case. In using eq.(2) the failure probability may be written

as

It e

P(R_ % x) = P(max{ S(e,0,)} - x= 0) (5)

where the max-term is most difficult to handle probabilistically.
In order to demonstrate this, we assume a special perfectly
elastic-brittle material with iy == Yi the element ultimate

strain and, therefore

r € for O &5 ¥
i
S(e,9,] = ! (6)
—i
} 0 for &7 ¥
Here, for example, Si = (Yi). It is easy to see that in this
case
n s B 1
max{ ) ' 8(e,80 )1 S x S paRt L Xi: S (7a)
€20 i=1 L Acl 1i€A
or, equivalently
[R5 gd o=t B X, s x} (7b)
" A dE€BRT

where A runs through all 2" - 1 non-empty subsets of I={1,...,n}.
Eqgqs. (7) essentially are the basis for the aforementioned exact
result given by Daniels [ 3 1. In a similar manner it is possible
to formulate the system strength for less specialized though
still brittle stress-strain relationships which, however, appear

: a 2 ,‘ ¥ o
hardly be amenable to numerical evaluation. On the other hand
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each event in braces in eq. (7b) may be denoted as a failure

mode. But even the powerful technigues of first-order system
reliability methods as developed e.g. by Ditlevsen [11] fail
due to the enormous number of substantially contributing and
partly highly correlated modes to be considered. Therefore, an

alternative approach is chosen.

Let XT'XZ""'Xn be the sequence of random strength of brittle
elements as before. Then, the resistance of the system with
uniform imposed strain (i.e., in this special case, equal load

sharing) can be given by

Rn = Rn(X1,...,Xn)
= max {n §1,€n-ij iz, ..,i I
1sksn L
Eaomax  {...,(n=k+1) %X ki) (8)
1sk=n k

- -

where X1;QX2 S gxp are the order statistics of X1,x

F * e X
2 A
and k- 1 the number of elements which have failed at ultimate

system strength. Fortunately, one term in eg. (8) usually domi-

nates. Therefore, the distribution function of R can efficiently
n

be bounded by:

Ep(x) = P(R_sx) 3 1@}19 {P((n-k+1) S‘{k < x} (9)
2KzZn 5

Clearly, the optimum k minimizing eq. (9) depends on n and, in
il 1
general, also on the level X, but % converges to a well-known

limit. Some exact and approximate formula are derived in 7

where it is also shown that eq. (9) is exact for n=l-systems

and converges to Daniels' asymptote for large n.

General Formulation Using Order Statistics

For later convenience and without loss of generality, we speci-
fy two components of ©. to be the elemental strength (= maxi-

mum stress) X, and the corresponding ultimate strain Yi so

that eq. (1) can be written as:

S(e,0,) =X, Q(??r i) (10)

where LL is the remaining parameter vector describing, for
example, the type or the coefficients of the stress-strain
relationship. Note that the auxiliary function Q(t,li} has been
introduced in a normalized form such that for each fixed ;i
it is non-decreasing Os ts 1 and Q(1,;i): 1 and Q(t,li)< 1 in

t > 1. Consequently, it is
X, = 5(Y,,9.) L)

Further, we shall speak of brittle material if Q(t,;i)==0 for

ik sl B 1 Q(t,Li) is decreasing in the latter interval we

shall speak of almost brittle material (figure 1).

We first generalize the order statistics approach for arbitrary
brittle stress strain relationships. Under uniform imposed
strain the elements now fail according to the order statistics
Y] Y2 diaia ?n of ultimate strain (figure 2). The maximum
system strength occurs for a sum of the stresses in the un-

broken elements. Thus eq. (2) attains its maximum at one of

the points € = Y , and the condition "S(E,gi):=0 for Ef’Yi"
K

reduces eq.(2) to:




n n S
B max - ) S(Y, ,0.) = max { ) s(Y ,0.)}=
. kkpie -1 Kisn i=k © *
-~ n -~ ?{k -~
o e e S L G e L | i |88 (12)

Ik n k

The ordering indicated by " is always with respect to the

L
Yi S.

For "almost brittle" elements we have instead (figure 1b):

n n
s max | ) B(Y. .0 )} = max { ] s(¥,,0,) =
s i KT Bl 499 k1
S man (X o+ Jo Ro0(=,R.) )
= 1 S =l
kn M ¥

i=1 i
ik

The inequality sign in eq.(13) just indicates that depending
on the functional form of Q{t,ﬂi) beyond t =1 there might
exist a larger value of eq.(2) between the points ?i at which

Rn is solely considered.

In view of eqg.(12), eqg.(5) may now be written as

~

% W Y “
Pmax{X, +] X, o(== , T.)} -xs 0)
k i v

Il

P(Rn 5 X)

-~

-~ ~ Y -~
B gt T x5 0))
Nk + 1 kg oGk, 4

i

Il

)

min{P(ﬁk + ) %i Q(t:E ’ Ei)"xi 0) (14)
k 1 :

i

[°4%

<

with "%“ corresponding to eq.(12) and (13) and where the
special version (10) of the stress-strain relationship is

used. For almost brittle material the first equality in (14)

becomes "s".

In general the numerical effort for the evaluation of the pro-
babilities in eq.(14) is still exorbitant if not prohibitive even
for small systems and the most elementary joint distribution
functions for 90 = (Y,X,l). However, the formulations

of the failure events in the last three lines are exactly the

ones required for a solution within first-order reliability

methods [ 8 ]. To make this clear, we write eq. (14) with

a ~ A -~ T A -~ -~ -~ T -~ - -~ - T
é o (X.!"{Z’...’Xn) I ;f_ = (YT’Y2’.."YH} and £= (51,5{-2'...’-}2“)
as
P(R_3x) s min{P(g, (¥, X,1,%) <0} (15a)
n k K="=

and, provided that a probability distribution transformation

PR,

fle=t?

)*>¢(U,V,W) exists where U, V and W are vectors and

matrices of independent standard normal variates:

P(Rn Z %1 = miniptgk{_g,l],ﬂ,x} £.0)}
min(é(—Bk)} {15b)
k

in which B, 1s the safety index of the k-th term to be deter-,
mined in the usual way [ 8 ] and ¢(.) the standard normal inte
gral. Note that the approximation sign is only an indication
the possible error introduced by the linearization at the
Hasofer-Lind point [10] and which allows the simple calculatips
of the failure probabilities by p(*Bk). As verified by a numb
of authors this error usually is negligible and, can further be

diminished by polyhedric approximation as proposed in [11].
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We need to transform (g,g,ﬁ) into a standard normal vector 1
using the transformation technique given in [ 8 ].. Assume an Q} = F—]1(b(U1)) = F;1f1~¢(—u1)n} (19a)
n,
independent vector sequence {Yi,xi,ﬂ£ with joint distribution . ; 11
= . i T ] a g )
‘ : Y, = F (P{UL) |Y,) = Po L= 1=B, 6%, )18 (S00) } =
Fy X II(y,x,m) where X.'s and II,'s are not necessarily inde- 2 ,2 e v 4 ety W 2
(ALY P X -1 1 3
pendent of the Yi's. LS F;1{1—b(wU1Jn ﬁ{~U2)n_]} (19b)
The joint distribution of the order statistics (§1,...,?n) . 1
! { -1 o ] : - - i oTEs L]
can be given by a sequence of conditional distributions making Yi i Fn,i(Q(Ui)ifi~1) r iy i1—“_F‘£ui-‘a)"©(-{“i) J =
use of the obvious fact that el " E:%I? 1 i
= ®o{1=- N1 {8(=0) 1} (191)
¥ ; 3
Jed
B 2 ~J “« s e g + == Y < |y = v - v =
| nd ¥sl¥qr e e G S CTREAR SRR SYR
E 2 Next we have:
i =P Y Ao - G
i (*éfl Y1—1 y1—1) I?n,i(yl‘yi—“ (16)
i Ay . ke
I X, = F¢ ‘D(]i}lli* (20)
for Y, 5y2 ~Eear <Y, In particular
If, in particular, (X,Y) is binormally disStribiited; l1.6ss
L B0 e o
: =l = =g : ‘ 5 3
F n,i¥il¥5.4) = e (17) Foy (X:¥Y) = 0 (X, ¥ilyrlyrTgrTysP) (21)
&1 S0 el ¥ ) oA
! = :
f Y(yi—1’ i ollo v, e
= a
T“EJY-) : FY(y) *(“Ft‘)
1L (_____QL___)n—l+1 for y. >y Y Ox
1—Egyi_1) i=fi-1 b i J,x—ﬁﬁfc.@w(yﬂby})) (21b)
51_{:!"' JS(
Hence, from
and, therefore, by substitution in egs.(19) and (20):
& = { e , I iz ’ ’ £
% (u,) B - (1~Fy<y1;;l (18a) 1
5 § —
B R e N e (22a)
220 N n, 0 ety (18b* it Povvsd j=1 ]
d(u,) = . | e T:“:T g+ % 0. i::‘;fG S (22b)
Qui -Fn,i(!l Y1,...,yi_1} (1813 i—" _3_ v @ -,\’ L-x“‘ Q\r\‘i '--}_,» ¥
we cbtain: Finally, the wvector ﬁl = {wi },...,wi ¥ (the d=th yow . of: tha
variable matrix W) is defined by:




(23.1a)
(4357 1h)
@(Wi'l) = Fn,l(ni'l’yilxirni'T,...pni'l_1) (23_‘]a)
= RGN R o
B T AW YT, 2 (23.1b)

with I, = (T, ,,..

If I is independent of X and Y, then ii and §i do not appear in
€gs. (24) . For the special case that I vanishes, egs.(24) also
vanish. If 1 is constant or, more general, = PL¥ X) is a

function of Y and X, egs. (24) reduce to

-~

Iy 0= Z(¥;.X,) (24)
These formulae, introduced in €9.(15a) provide the required
formulation in the standard normal space. Since the algorithms
proposed for finding B+ ©.9. the one proposed in [ 8], are
rapidly converging in this case it is only a matter of computer

Storage capacity which limits the size of the system.

A "Failure-Mode" Improvement

As demonstrated in [ 7 | the use of the bound (last line) in

eq.(14) yields sufficiently accurate results for very small

and very large systems. For medium systems the distributional

bound is fairly conservative indicating that other than only

the dominating term in eq. (14)

have to be considered. However,

it is possible to find closer bounds when using the second

line of eq. (14) directly. In analogy to eq.(15b) wewrite in

collecting (u,v,w), in W, (see [

1

= P(n{gy w, s -8, 1)

14]) :

0))

%3

= P(m’izks -Bk}) SP(N tzks-Bk}) =

k.=k1
-8
= J'( ?(z;R) dz
+00 -
k2 "B_-vC |
= j o(t) N sltaE) gu (25)
£ k=k, ¢1=p_

in which Sy

is the vector of direction cosines of the approxi-

mating hyperplane of the k-th "mode", Zk the corresponding

standard normal safety margin,

coefficients between safety margins, i.e. R = (QZZi:Zj]) for all
. . R s

kK,s i, js k, with p:zi,zj] =a; I Qs ®(.:R) the standard

multinormal density and p_= max {pizi,zjf: k,s1i, jsk,}. The

interval {k1,k2jshould include
Within first order reliability

are exact but no simple methed

R the matrix of correlation

the mode k with the largest Bk‘
the first three lines of eq.(25)

is available for the evaluation

of gquadrant multinormal probabilities.
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fherefore, the simple bound in the last line of eq. (25), involv-
ing only one-dimensional integration is used (see, for example,
[14,15,16]).

It is worth noting that by some more involved considerations

one can replace transformation (19) by

s -1
;T 8 (¢(o, ))
k, (k,) k,
- -1 A
i F (¢ (U My )
ky+1 n ko +1 b
. -? 3
¢ =F (X0 )Y ) (26a)
k2 n,k2 k2 k2 1
with
8 n - o=
Pl @) = 1£k (3) Fo(¥) (1-F,(y))

1

the distribution function of the k1~th order statistic [12],
and transform the remaining Yi's as independent, truncated

variates as follows:

e 2 | ~ t ;
Yi ¥ FY (Fy(Yk}) D(Uki) (1<ky) (26b)

Sl 7 -F (% 5 :
Yj = Fy (FY(Ykz) s e FY(Ykz)) @(Ukj)) (3 >k2) (26c)

This transformation produces smoother failure regions and for
large systems allows the application of the central limit

theorem for the variates (k<:k1) and (k:sz).

Discussion and Applications

A special case is studied first since it has an exact solution
given by Daniels [ 3 ] and, therefore, can demonstrate the
accuracy of the method. Assume the components to behave per-
fectly elastic-brittle, i.e.:
= = . —E— — i
Si(e) = S(e,gi) Xy Q(yipﬁi) Xi v (27)

i
for O &5 Yi

together with p[Xi,Yi] = 1 and “X/“Y = UX/UY' Figure 3a demon-
strates at an example that in the probability range of interest
formula (15b) is slightly conservative and is improved by
formula (25). Figure 3b shows the reliability of the system

for different correlation coefficients p between X and Y

(eg. (21)).

Next we demonstrate how the general formulations above can be
employed to solve more realistic problems. In essence, this
requires to define an appropriate Q-function and a correspon-

ding [I-parameter, as well as an appropriate stochastic model.

Example 1: Different Shapes of Stress-Strain curves

Let 1 = (B) and
tB for O3 23.1
Q(t,II) = (28a)
0 for z>.0
so that @, = (Y,,X;.B,) and, hence,
cX, YiTLe L Jlor teies ¥
1 i i

Ste, 03] =2 (28b)
0 for e:>Yi



Example 2:

Let for each parameter E:hB::hB(z) (05 2-<») be a non-decrea-

sing function and Il = (A,B), (A > 0)
7 IA) h_ (At) for Os t 1
Q(t,1) = j "By i (29a)
(0] o= 1
resp.
X4 5
—_— e (2 = or Dses Y,
| ilB(Ai] hE(Aj }H) 3 i
S(i’::}_) =) - L ; (29:.1)
- H o) for € >1
To illuminate the effect of the parameter A, we observe that for
fixed A.,Y.,B,the argument z = A, * éi becomes O: z #A, if
2 b = § i Xi i

O0< e< Yi. Thus at the elements breaking-point Y, the hBufunction
is just in its "phase" Ai, so that Ai determines the phase of

the stress-strain relationship, in which rupture oOcCcurs while
B determines is t type. For an illustration see figure 4 with

a bilinear h-function (B vanishing) and the important cases

Example 3 ("Slip",

Some more effort is required if the elemental stress-strain
relationships exhibit uncertain Slip for example by imper-
fect anchorage of the threads in a bundle or by unavoidable
tolerances in screwed joints. Then, an additional random para-
meter Z may be introduced. If the Slip is independent of

elemental stress-strain properties, it is convenient to write:

- jgj—
0 = (Y,X,I), IL:= (Z;B),
0 for Oz e85
! X. -2 ;
S (e/6 ) = o Jhogiegaigy & Tl
9y) ={ - ) for z.s es
hﬁgAj) EL i Yi-z. Lo 'Yi (30)
] for g >¥

Note that Y s > i { i
1at ;s the ultimate strain of the i-th element including
s Schiupf ., 80 that- ¥ =Y y ' :
'z that i1 = Hi - Ai is the "material ulti-
mate strain" (without slip). This is important to bear in

mind since for the order-statistics of rupture naturally the

varia AR st be take i
bles /j must be taken into account.

In order to illustrate some essential points of the transfor

mations eq. (19), (20), (23) res

o)

. (22a), (22b), (23) we consider

elements wi Hi . i ‘1
th binormally distributed "material values”, i.e.

Foo (Y., .,X.) = 0(X,¥:los] Fes O :
vx Yy, %) P(XsYilgely yeOxgrOy yr Py (31)

B vanishinc Z. inde lent of (X,,Y 1
B Jr 2, independent of (X.,Y, .) and normally distri-

buted with mean UL_ and variance o

Then, the varic es Y 4
> variables Y, = + %, are mutus ‘
ables \i ' + 2, are mutually independent normal

M,1
variables with mean and variance: u., = u + ‘U “2- 02 + 2
Yy " My y Tillgy MG SO e

to be used i a8 L 6224 ;B (v R ;
ed in egs.(22a) and (22b). The correlation p=p[¥..X.]

in eq. (22b) yields

1
g 2 2l
- ) e 0 . + 0T ™
* Py Ty v S0y o kg (32)

Finally 2 Z's 4 : &
lly, the Z's have to be transformed into standard normal

variate accordi [ 2
arliates W according to eq. (23). We have to determine the condi-
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w A0 -

tional distribution of 2 conditioned on Y and X, where

Y:YM+Z' - e s

viz]|y,x] = V‘Z‘YM+'K’XE (33)

Where Y“, X and Z are normal and 2 independent of (Y, ,X).
F

M
Abbreviating as X = X =-u TR e 72 =2 -y
1 g X X’ \M &M UM,Y’ 7 uﬁ and
GM = QM,Y’ the wvector {Yﬁ+fﬁ,ﬁ,ﬁ} 1S tri-normally distributed

with mean zero and covariance-matrix

T B ;2
/ 3 TR °x°m % \\
' \
e i ] ,
= | MX'M % ! (34a)
LIRS 2
Viti: ol ¥ i
With
=13 3 5 i b
i = a a
W= T |- %23 22 =33 (34b)
\ 234 230 433
the required distribution eg. (33) is normal with mean and
variance
H_ =-——(a (f,—+i) + a X)) + = + ' I
Egaa 'y 32 %)) R s (35a)
02 = —]-— — "2 -
o aj (35b)
Therefore, egs.(23) reduce to
3 Z=a, (¥,~u,) - a (%, -u,)-u
& =i AT A e L e i i 2 X Z
‘(Wi) Fz(Zi,Xj,Yi) = ¢ B VR T (36a)
Zj = a3 Wi +a1 (Yj'-pM’Y—';.‘Z) +a2(X_i—,1XJ + by (36b)

Example 4: Defect Elements

Next, the case of unfastend or defect elements is discussed
which otherwise would involve rather tedious numerical calcu-
lations. This example also illustrates the construction of a

new parameter, if the original parameter is not of the form

(¥, X, 1)
Let X, ; and YM : the "material" strength and ultimate strain
Lap r

and M. the material parameter without reference to possible
—1"1p L

defects. The corresponding stress-strain relationship is:

v

i o £ = :
| = °+h(A, *c—-) for Os es Y
| h(&) b ¥, i) o M,i
=40 = 37
SM(L'ém,i) (37)
@) for L"&H,i
(compare example 2; for simplicity EM = {YH,KM,A} with wvanishing

B-Parameter, which does not essentially influence the following

derivations).

Including the existence of defects into our considerations we

may write:

S (c;0;) =13, MBS (e ) (38)

where Z, is an independent O-1-variable (0 for defect, 1 else)
1

and O = (¥-h1’ Z) .

In case of Z, =1 we obviously have Yi::Yv i * Since a stress-
1 My

P A < - . - I} 1
strain curve which is constantly zero may have its "Y-point'

everywhere, we can also write Y. = ¥ i & SR e
i | M,1 1 |

Then from eq. (11)

3 .:S(YEIL\—]‘) = B

p © Syl¥

) = 5. e . 39
M,i"—m,i) &i \(:M,.l (39)
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> W

5 0 for W, <o (p)

% = l i O(W)=p TR ¢
s < Fy,x ¢ =5 ¥y % 108 Ww.2¢ (p)
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Example 5: Reliability of a temporary bridge support

during construction

o

Finally, a practical, numerical example will be given. Assume
that a cantilever beam must be supported temporarily by a row
of steel columns. The Supported superstructure can be taken

as perfectly rigid. If the columns rest on single footing it

is obvious that even very small unequal settlements can cause

a drastic redistribution of column forces and hence partial

Oor total collapse of the scaffolding. The vertical displace-
ments of columns are third order effects. Therefore, one might
avoid such dangerous situations in practice in controlling the
column forces by jJackets or the like (stress-controlled design).
Here, we determine the reliability of the scaffolding structure
under uniform imposed strain (rigid column foundation) . Figure
5a displays some mechanical and geometrical data, figure 5b
shows an example of the force-displacement relationship. The
maximum load corresponds to the yield load. Second order effects
are taken into account. Beyond the yield load it is assumed
that a plastic hinge is formed at mid-span. Strain-hardening
effects can still be neglected. For simplification the uncer-
tainty of the force-displacement curve is entirely attributed
to the independent random initial excentricity of the columns
which is assumed to be truncated log-normally distributed with
mean 2 cm and standard ceviation 1 cm. The truncation point

has been chosen at e " 6 cm for obvious geometrical reasons.
Figure 6 shows the distribution of the resistance of a struc-
ture consisting of 10 columns. The dashed line is obtained

when perfect Plasticity beyond the yield load is assumed.

The dotted line corresponds to perfectly brittle colum be-
haviour, i.e. no bearing capacity beyond the yield load.

Table 1 collects the safety indices for all "failure modes"

indicating that due to relatively high correlation between

the modes (p = 0.998 to 1) and almost non-varying safety

indices the mode with largest resistance is fairly represen-

tative for the system. Only little is achieved if more than

the critical mode is considered. The authors conjecture that

this is generally true for small parallel systems, perhaps with

the exception of systems whose elements behave ideally elastic-

brittle.
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Figure 2:

Brittle System and Order Statistics

o 5 T T
5 6S 4 5 6 Load S

Figure 3: System with N = 10 Components (X,Y), Binormally

Distributed, Mean = 1, Standard Deviation = 0.2
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MODE

358 !1.9250

K =1 [5.010
K=2 |[5.039

K =3 fs.oazs

K =4 ]5 042 i
K =5 f5-°1“ |
K=6 ;4.9?6

K =7 f4.90:
K=8 |4.779
K=9 [4.553
K=10 }'4.120 ;
FAILURE- ! l

|
|
|

Table 1:

Safety-Index B=-¢_T(Pf) of Single Modes and
System (10 Elements), Loag in 103 KN

Prot

:abLILtios

APPROXIMATE EVALUATION OF THE MULTINORMAL
DISTRIBUTION FUNCTION

M. Hohenbichler
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5 Introduction

Let ¢ = (Cyre..
normal random vector with correlation coefficient matrix

’= (Gij * 15 i, js n). The n-dimensional normal integral

+C,) € R" and let X = (K1,...,Xn) be a standarg-

n Tl n
| |

=Q0 =00

I

1

cannot be solved analytically. However, it has important appli-
cations. For example, it represents the failure probability of

2 redundant (parallel) System with failure events {Xi-_ci* 0} or
the survival Probability of a series system with safe domains
{X.-cis O} with the X's denoting uncertain performance variab-
les. Therefore, approximate solution methods or bounding techni-

ques are highly desireable.

A survey of the available solution methods of eq. (1) is given
in chapter 35 of reference [1]. The methods described in [1]
generally require high—dimensional numerical integration and,
thus, eXponentially increasing computing time, so that their
application 25, in fact, limited to very few dimensions (s 5,
say) [2]. Less €Xxtensive methods exist only for special cases.
For example, 3 formula of Dunnett and sobel [3] reducing eq. (1)
to a one-dimensional integral (eq. (26) in [1], chapter 35). iz
restricted to Correlation coefficients Py =R - g

Put forward by B. FieBler, who developed 3 first
of the Dunnett-Sobel integral

2. Method of Solution

. 'l' :\ i L ; : |
FlfStﬂﬁ,.n(:,g} '8 separated into two factors one involving a

(n-l)-dimensional conditional probability, i.e.

n
(2) 2. (c:R) = pq O {X. 3¢} | (x. 2 €. }) e P(X 5 c.)

i i dard
an

normal, independent variables Ui:

LSl Aal e Ug il Bl by
( a = gt
A Sk e B b o1 B8
Xn 5 S Lk b, " %an Un (anT 7 Dn1)

i C 1% A
For the evaluation of %44 see appendix

S s ; ] & Lo
= s ; nditional distribution func
Suppose now U, = X, s Cqi the ¢o

of U1 conditioned on U1; c1 is

) --..__..l......_.. N (u.; c )
{4) F(u!(—'er.]]) = 5 ‘b(c“l) D(-l) 1 r
' t ] U fined b
and, thus, the distribution of the variable U1 defin Y
C %, : 1) = 9-1(¢(c ) ¢(U,))
(5) Oisxse F (?(Ui) (==,c4] 1 1
Since the

i i | < £
equals the conditional distribution of U1kU1= <, iy
U.'s are independent, the distribution of (&2,...,Xn :

aij Uj (1229
2

I 1

(6) ii +=ra o 0 :

(xz,...,xn);u s ¢y

——a

then equals the conditional distribution of

n 5 ‘)
(7) P([) {X,s c1 =
=2 >

! s U, =q) dF~ (4) =

J liz

r 3 5 % U c: Y dF: (u)'=
=  P( {a, .0 + i 55 ¢4 U,

J § =0 sl 3=2 J
= | dF (i (=»,c,]) =




With (5) and (6) the last probability reads in the space of
s

ion n-1 modes g1

In non-degenerate cases in the l-th ite

b
i

d

T

J . )

i=2 i=2 have to be linearized, so that the total amount of computation
: : : : 2 :

time is roughly proportional to n(n=1) ~n~. This enables also

I iy A § o8 solutions for higher dimensions.

(U U )< 0}) For degenerate multinormal distributions, the case a;q = 1 may
Qs e g _J= 3] e
o ‘ n el ; g RN b o 3 :
1=2 occur which implies X, = AW) minic,,c; ;s and enables a faster
4

solution (less than n factors in eqg.(14).

n 3. Discussion and Modifications

(9) {qg.

l{Ui“."U j: Q!

n

114
[
+
(®)

\
|
|
i
|
|

j;1 1.3 Joesd To illustrate the accuracy of the method, Figure 1 presents some

3

| : } L S results for n=1 %50, c,=c,=...=¢c_=c and p,. =p (equi-corre-
It with the normalising condition |} y%.=1 generates a new (n-1)- s q

L
ro

; taq 2d lation). The ordinate is B = -¢ (¢_(c;R)). It is emphasized,
‘ set of standardnormal variables: ; : : i : = 2 ;
i s e = riab.les however, that the algorithm works for arbitrary c¢ and R and is

r
implified by these assumptions. The exact result is obtained
(10} = X,
S

obel integral, whose
error 1s negligible for this purpose as compared with numeri-

Their c St a3 :
Their correlation matri 3 3 '
tion matrix is cal integration.

| A\ 2 . 5 . ~ 1 1 - v . I3 1 . * -
! (11) 2( ) 2. = (:Fg) 2225935 n) ., The crucial point of the proposed technique is the linearisation
| 13 ij 3 o
! ) = - = . i3 -
of the surfaces 1g. = 0}. The resulting "first-order error" in

i i

! p : . : s 5 g
5 {29 n % eq. (9) might be significant and ; Ehe total errer oF

~

I

ij s D e : bt : .
2 k=1 & IJX eg. (14) might increase disproportionally.

BRI writin (2) g additional remarks:
} SaEy WeLLing Cy : ~B;, ©9.(8) can be approximated by
i & a) The functions g, in egs. (8), (9) are linear in all wvariables
] i i n &

(12) P( 1315 Cl e 2l XfZJ C(ZJ}) s (C(z) x ?(2)\ except the first. Thus, the first-order error essentially is
4 =2 ;oS ] n STy P p 712 / = e . z Bels E 2
' = i=2 e 1 the one of a two-dimensional problem, which usually is small.

indicating that the dimensi : : ]
= -€ dimension of the integral (1) has been = N et e ? PRANEE Ly £ b e 2
) In the case c, >> 0, in the region of interest U, is very

reduced by one: 3

@]
t
i
-
@
v
O
5]
4 )
-
n
U
f 4
b
O
w0
rt

- I R - - - s 11 m} - FE, e

9 1121 =T o3 (2 (2) LN EREDN. TRE l1rst—-order error 1s small. Thlis accounts Ior
: Z a
{13 r‘_l\C : Lr{}iﬂ,‘!'r‘}) ‘o 1((: / Rx ,l)
4 )i 3 - - f : . - 3 B = 2 = - }
S n=1 = the good result obtained for parallel systems with large
t railiur robab lities res series svstems with Small ':al."
i ™= o = £ L= e | & D 3 55 1 LTS = LicCS oYoalLle 4 Uil i .
| #epeated application of eq. (13) final} 1
- il > 8 i - | : o 13 1 }
1 .} dll¥Y VYields: lure probabilities (see also mares1b, 1c).
g 5 =L {9
| (14I . rf: : :J‘) i \C él . & (r > | + -1 ' ~ 1 = += S - — a' 3 23 |
g A s5e— g = B 5 / * @ ) / 1€ ;S al eYo—correliated,; CTHEen. & st : Sl and,
i i i
} - - ' . 1 . -~ P -~
i thererore, g; 1s linear; Foxt {.'s being fully correlated,
-\l:ﬁi‘ and g. 1is univariate. Hence, the result 1s exact Ior

A L
| F . et = R - 9 oy o
H fully correlated and independent X, 's.
L - 1
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d) In the course Oof the iteration the correlations R(l) are
d?ffeasing with 1 while (for positive correlations) the
€; 's are significantly increasing. Both effectsg reduce
the error in subsequent iterations (see b) and c¢)). This
explains why the total error is surprisingly moderately
increasing with the dimension n (see Figure 1).

e) For Simplification, all of the ci's are set equal to c
(ci==c for all i) in Figure 1. This is the most unfavourable
case (no dominating mode) . Furthermore, all correlation
coefficients pij are assumed equal (p,. =p for - 1 e Ea (A b
This is again unfavourable, since witéjoriginally eéual

C;'s and mutually qj :
; . Y different pij S some modes would dominate
after the first iteration,

£ ;
) Following 4 Suggestion of R. Rackwitz, an essential improve-
ment is obtained in replacing Bi in eq. (9) by

n
(15)" {g.s0}={ 7} Sk .
= o U < : = —¢~ 1
where P; is a better estimate of P(qg.
1

high i
gher order techniques. 2 Very natural application of this

idea igi
Originates from a deeper investigation of the general
shapes of the gi's. As alread ;

= 0) obtained with

Y mentio
ned, 9; can be represen-

nsional Space of inde

: pPendent Standard-

normal variates u,v (U==U1, V = (1-02 y~1/2 :
i1

Figure 23 shows a typical

lated X, ang x i
i i (i.e. pi1.—_—a_ 2 0) Figure
r 2b p
Correlation. Two asymptotes ;; : St negative

r{_: ¢
one obtains for g; =0} are obvious, Namely,

(30) % ey 0

1 1 .
X, = 2

i ai1 U +-v'1--aiT V=1:auy +bV ang
g, (u,v) = a ¢_1(‘1’(c1)¢(u)) AT S

1

the asymptotes

g)

)

!

(17)  h,(u,v)

au +bv -c,
i

e Al eSS
hz(u,v) = vy b(ci ac1) = 0

These asymptotes together with the first-order linearisation

eq. (9)
(18) h3(u,V) = Yqru iy v HR G

determine a polygonal approximation to{gi==0}.The probability

3
1 -=P(N{-h.(U,V)s 0} (ay45 O)
. J=t il
(19) P(g;s 0) = R e 3
P(N {hj(U,V); 0o}) (@j45 0)

=9
where hj(U,V) are again correlated normal variables, can in

turn be evaluated with the proposed method (n=3).

The resulting improvement is illustratd in Figure 1. It also
enables a rough estimate of the error of eq.(14). Closer
approximations can, in principle, be obtained by considering
other polygonials. Better linearization strategies for the

modes g; are studied in a subsequent paper.

For probabilities close to one (e.g. when applying eq. (14)
to series systems), eq.(14) is not suitable numerically
since numbers very close to 1 can only be represented on
computers up to a certain number of digits. Here (but also
for smaller probabilities) use of logarithms produces much

better results:
(14%) log ®,(ciR) = logd(c,) + log¢(c52)) R St o log¢(0én))
where (log®) is directly computed. Also, instead of eq. (5),
(57) U, = (logd)

(log®(c,) + log®(U,))

is numerically more convenient.
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h) For Pi1 = @57 2 0 eq. (9) can be completed by (compare figure 2);

n
(9a) {91(01,...,Un);o} DNy g B s 0}

j=1 s 55 [l i

This results in:

(13a) ¢ (ciR) = ¢(c,) P plos’ SR

-1'= =:

% 3 ailito SR .. n).

Therefore, the final result is too small if in the course
L e s

€S are unconservative
for parallel System (too small failure probability) and
conservative for series systems (too small survival proba-
bility). The converse is true for the q. - 0, which is of
minor practical interest. g '

4. Summary and Conclusions

pProblems involving multi-

Ain : : - :
ensional integration. Certain refinements wil) be discussed

in a separate paper.
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Appendix A

The aij can be determined recursively:

Q.4 = 1
e TR el T P Rl

i aad - @ quye
e Lk e | et S i O

32~ %31%21 7 %5390, = a,, = L
b a2 2 B Ay ina. 2
YRR = 0] * a7 +a T =10, 1=0377¢35

For degenerate distributions this algorithm is easily modified.

Eg.(3) is the Rosenblatt-Transformation of (X1,X2,...,Xn),

€q. (6) together with (5) is the Rosenblatt-Transformation of
(X2,-o-fxn) ( l5])'

C1:Cf:—2

FIGURE 2b

FIGURE 2a




RELIABILITY METHODS
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ACTIVITY NETWORKS - AN APPLICATION OF FIRST-ORDER
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1. Introduction

The representation of complex technical projects by activity net-
works has proven to be a useful tool in the efficient management
of engineering tasks. Unfortunately, deterministic considerationsg
guite frequently are of limited value since many lnput variables
are uncertain beforehand and, therefore, total durations are
generally underestimated, previously critical paths become suyb-
critical, penalties may possibly burden certain parties in an
unjustified manner and the total Project costs can increase. At
least in the state of planning those uncertainties should be
taken into account but might be removed gradually by updating

during the course of the g [o) o

A number of proposals exists to handle activity networks with
uncertain activity durations :1,2,8,9,10,12,13E. Most of them
are restricted to relatively simple stochastic models for the
uncertain activity durations. Others introduce significant
simplications and approximations in order to =

Problem of dependences of activities and/or activity paths. In
Principle, a pProbabilistic method for activity networks shoul

be capable to give answers to the following two questions

a) What is the Probability distribution (or mean and variance)
of the state of Production in a given point in time so that,

for example, the capital demand can be determined

Sl .

b) What is the probability distribution of the duration of
Partial or complete networks consisting of
Sequences of various activities,

: et . I : :
In the following, some concepts of modern first-order reliabi-

lity methods will be applied to Stochastic networks with
emphasis to the last question. It will pe demonstrated that
these concepts enable a rather realist

ic and nhumerically accurate
treatment of many netwo

-
ge)
=
@]

=
et
M

ems. In Particular, the spectrum

r

F aihy ST et - T e Fg e ? ;

O possibilities of modelling the uncertain phenomena i O
] a

broadened conside rably and, theref RER, ‘can idive rise +o affiaimnt
control strategies, the problen Of stochastic
activity networks is oblem of Organization and
edient f”r the assurance OL the quality

n
Cests but also an ingr
e

2. General Formulation for Stochastic Networks

Denote” the 1=th activity by AL having uncertain duration T
and the j-th path through a network by ﬁj having uncertain
i T 1 1 ix vy = {y.,.} with zero-
duration 14. Define a connectivity matrix Y 13 t
one varlables indicating whether the i-th activity is contained

in path j or not. Then, the probability distribution of the

duration of path j is

(1) P(Tj EE) = 0t ? ?lj T, = ¢)

| bability distributio f ject duration T
and, therefore, the probability distribution of project dur

becomes

]
B,
[T
T

j of
= P(N{T. -t 50})
3 ]

which, in general, is difficult to compute because of the many
- r
convolution operations required by eg.(1) and the complex depen-

£ | ] g i3 2 However
=t} ‘s to.t C ed in eq.(2).
dence structure of the T.'s to be considered in Tieili2 ) ’

ey 28y
T GU) =G U ) be a suitable trans-
let z = T,,...,‘;ﬁ) = a (U '-_:-.!'_,'p-..,w.,?_:, D 4a SU d
e 15} = + = - m = -
formation of the random, generally dependent vector T of acti

e.g. the one proposed in [61]:

. n e 2 = G. (U
(3a) i Fyo (00U
l sl b
~— ' 'y r m b - 1—-‘
r -~ f 8 O (¥
(3b) l LA - e 1t ¢ 2=
| .
.
r'I\ “ 1T J
= 3 (
— { =1 i e ‘ = 5 "{:\
31i) | T il B U. | T rdi3 s \Y
{3 S 1 1 i x o | 1
. .
. | 2
. | < ;
{8 ) T it ) = G_(U)
2 X E LU P - 1 -l
()‘\\ 4 = \ 1 n-—1 n
n
N on
) 23 t = | (= . e g b
where F,(t,) (T L : AT LT 4o 255 =1
| I 1 1 i
3 o~ ~ A 3 ¢ m
P(T T I = . and (.) the standard normal
- I e ¢ 1=1 ] -
1 Lt 1 1 1
I ¥ =+an 3 S
ntegral . (] NS then be g & ao




(4) BOSE) = P(X v,. T <t)

it s el |
= G (U t
P(i Yi; G, (U) )

mP(L v . G, = £<0
P(i Y G, (U) )

= Pla. U+B. 50)
s ffa J

where the surface i yij Gi{g) =t=0 is replaced by its linear-

=0 in the so-called "B-point" (see LS, 14313
Ej is the vector of direction cosines and B.

the linearization to t

el i ’
i }ij Gi(g) t <0). We note that A

normal variable. Two variables Zp and Zq have correlation
m

ization a.U+ B.

the distance of
he coordinate origin (B8 is negative if
- gjg is again a standard
coefficient p = gé 8, Hence, the Probability eq. (2)

can be
Pg
dpproximated by

(5) P(T <t)

Il
)
’Lﬁ\

to

ek

T J
B
= [ flzip) az

R = {qu} which may be
using the algorithm given in [ 7 ].

As an eXample for questions of the

first type mentioned before
we study the Production states of t

he system. For the moment, we

activity has bee
roduc

concentrate only on states when one

n terminated.
Let Vi be the deterministic volume p

ed in activity i and
assume that it ig unlikely that two
the same point in time. Then,

duced at time tk is

Or more activitiesg end at

the €xXpected tota] volume

pro-

n
k83 - E[vii= ¥

e o L R RR g s
i (Ji IJA)P") tk})

where the

Summation goes only over those
to accomplish activity i1,

activitieg which are
necessary

- . s 1179 +1
3. The Brownian Process Model for Duration of Activities
. Y LAl -

Various assumptions for the distribution of activity durations
have been made; among them are the beta=, normal-, logfnor?al—'
and the gamma-distribution. Here, it is assumed tha# tné dlszrl—
bution of durations is the first-passage time distribution o

: . , 3 .
a Brownian process with linear drift (see Figure 1)

i
o 18 md O e e t 3+ -)t sv-]dov—l ™ ; gl ! 53T =] - -
( ()_l._;ld(.A C1ONS . P ne g o g i | rar il points 111 tla.iv the PIO

.| Y g that
luction is modified by a random amount Y, so that
au = @) L l i Ao i Y

Y. is the total production after N such changes in pro=-
"L o - L

A :.7 1 1 ‘ h E
i . o ' < - L a cime | I8 LIS LT 4L
dU.Ctl.OIl f(:_J.“Clt]. I e Dta LESQOL pI ductlon t’. era ore

[N] « E[Y] and variance E“[Y] Var[N]+Var[Y] E{N] where
has mean E[N] « E[Y] an

] f ci - 8 & B time interval [O,t].
N is the random number of changes in the time

K i rticular, the changes occur according to a Poisson
s G it dn=E[Y] and 2 _ Var(Y], the pro-
process with intensity v an . ElY ,2 e (H2+ :Z)vt

has mean py = E[(X] = nvt and variance g° = Var[X] = (n £ 3
cess has mean p = E[X] =

By virtue of certain limiting operations the Bro?nian pr?cess
is obtained. In order to assure that the production remalés
positive we require u >>g. As known, the states of a Brownian

! . 1 . . 4 . ;
process at any time can be described by the normal distribution
until the process i i
if the production process starts at x » 1ts probability density

b i n

of 'states x 3

Sr =R

; . : ] b _';,____:;_#_q ]
7 b Fgt 1 BT SRS —
Wbl o vt TIE

‘ he time to the first crossing of a
DY ability density of the time to the fir
The probability density f

1 lar ar dictances Y —ar is 313
barrier at distance V Xy 1S |
\
V-x (V=x_)-ut) 2
) et \
¢ £l | s tixy = —————— aXp = = &
(8) Ltix V) e 2 s

3 1 3
' ’olume to be produced in order t
Here, V represents the total volume to be proquc
Here, V repres S - | i
] In this case the time to the first
accomplish a given task. In this case the <44
o - ' v T, = (V¥ <518
. . i rd variancas Var|[ T = (V )
Passage has mean E[T] = \\‘h ‘._ and variance
" 7 ieal
| g ] be determined bv numerical
The distribution function must be determined by n

) apter 1 agiven in 14]
& el =l . T ?‘--"'!":ﬂl..'.l‘-.] 1:0 : \_":.J!..“;K_ Y e’ 4 iver i 3 L
Lntegration or by use of for




In order to make the model slightly more realistic, assume now
S

that the proce

0

starts at x, = o with an initial mean "velocityn
city

o

. } - . ¥
H .. The time target for cmpleting the activ Al | R o L ini- : : 1 - B 1
o 3 Or completing the activity is 1T +ie 1ini Various refinements are possible, for example, a random obser-
tial velocity generally is much sm: ar. th: I/T". The state of : 2 1 ; 1 }
T i T i heh smaller than V/T ... The state of vation error for x, or a random delay time after which the new

the process i s R e : e
mean velocities become valid can De 1ntroduced. Other control

2N points in time t1,tq,.... At

/7]
Q
-
1]
()
~
<
(o
[+ o 7
U
pors
Q
o)
0]

time & the process state has istributi " func+ i ) g 2o Wik . . 3
1 s Py S distribution function strategies may be used. A possible modification is also to let

n
X.=u t sequential activities start at a given percenta of volume of

(Te}
@

r
) the preceeding activity. In this case, total project duration
¥ C
1 is the intersection of all path durations and all individual
a

a
letad h Facl . - 3 . . . : 1 1 :
FEIEH The taskiup toit = t} 18: activity durations smaller than the given v

Faat PAT 431} = foplx = 0,V, y) dt Furthermore, the parameters u_ and ¢ may be tre
0 reflecting the particular cond

If X, <V, the process continues. Given the state X = x. at T=t entire job. It is seen that the sequence of condit

the process mean is now changed into I butions has exactly the form required for the tran

£ s

~ £ 2 . ~ } P 4 p | —~ 111 1
eq. (3). and, therefore, the numerical calculation

(10) By = L formed.

=

. Examples

=1

and, therefore, the distribution function at time T = t, is Figure 3 shows a network, which has been computed with different
(compare also Figure 2): z methods for the determination of the distribution of the project
Yﬁ—(‘T(t -t.)+x.) duration given in the literature [1,8,9]. In Figure 4 the results
L FX{XZ!tz Xi'CT) = ol ————E ' : are compared with the proposed method and the Ditlevsen-Bounds
5t2_t1 i [4]. (Note, that all individual activity durations are normally
f " Pbabilicy Of having completed the task now is: distributed.) It can be recognized that the method proposed herein
i e falls well between the bounds according to [4] and is close to

V,u,,0) dt the simulation

0 clude from Fiq

Of 1717 e 4% > = 1. £ =
course, eq. (10) represents only one of several alternative qulte significant. In
! g g r ure 1s repeated until assumed independentls

t
age times Passage-time distributed

the d ‘Y of the first-passage tion, respectively. N
time 1in the last interval is: ption lead essentiall
i v probability of less than
t1e) £ (tix ,v) = 5 B \ % 1 (V—<k]"u‘(t“t“) ¢ lurati (i 11
T A L Py £l expl== ( ! K L duration (i.e. all act
i=1 V2T (+=+ )3 : 2 e T 3
: L Get="1, represents the network
activities and 6 possib
o N e . i
for .t > ¢, critical. In Figure
uncontrolled independent Brownian processes with the given means

and standard




for processes which start with the same parameters but are con-
trolled at t, = E{Ti]/B according to eq. (10). For comparison,
the bounds obtained by the PERT technique are also given and
shown to be considerably in error (without control, naturally),

5. Summary and Conclusions

Techniques of first-order System reliability are applied to

activity networks. They enable the realistic modelling of

individual activities as well as the treatment of complex

dependencies between activities and paths. For very large net-

works it may be necessary to compromize between the details of

modelling of the individual activity and the numerical effort

such that the number of uncertain variables remains sufficiently

small, e.g. less than 100, say. Further studies are intended to

investigate the role of a number of generalizations and refine-

ments.
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RELIABILITY OF GENERAL STRUCTURAL SYSTEMS
UNDER COMBINED LOADING

R. Rackwitz and B. Peintinger




Introduction

Iraditional design of structural systems generally is based op
member by member design assuming unfavourable actions and
conservative resistances between which a certain margin of
“safety" is kept in order to take account of uncertainties

in those asumptions and in the structural model ordinarily
applied. The rise of a probabilistic treatment of the uncer-
tainties in the structures area has put out such procedures

to a revaluation yielding sometimes surprising results, con-
firming present practice in other cases, but also exhibiting
interesting possibilities for the extrapolation of traditional

rules to new areas of building construction. Many deterministic

approaches have found their adequate probabilistic counter part.

This is particularly so for simple structural component relia-

o
8)!

this formulation for component (section, element, ...)

failure, only.

Structural systems, on the other hand, usually can fail in

a number of modes each of which may be viewed as a component
in a series system which, per definition, fails if any one
component fails. For example, if a yield hinge model is
assumed for structural behaviour each of the possible mecha-
nisms represents a failure mode. Each multiple component mod
of failure, in turn, generally has various ways to carry =
load, e.g. it can survive a given load although part of it:

components have "failed". Therefore, each mode may be views

bility. as a parallel system which fails if none of the possible A
combinations of components survive. For example, part of ti

Structural reliability or better its complement, the structu- concrete in a stressed zone may have been ruptured while tﬁS)

ral risk quantified here as a failure probability per design rest sustains the load. Many other types of systems exist.

life should be a small number. It should be related to some an example, for the system just described the failure prob

Structural state being defined as adverse - specifically lity can formally be written as:

being related to a given loss. A state of given loss is denoted

as a limit state. The usual formulation of structural reliabi- a¥ S ?% e e f i% (g. .(X)< 0)] £33

lity then is based on the selection of a number of basic o i=1 §=1 13 1=1 j=1 > Ailaie J

uncertainty variables, e.q. actions, dimensions, resistances

Or model errors, whose realisations belong either to the safe @ formulation which is similar to, those USEE LN SEAS LSS T

Set of data points or to the disjoint set of failure points. liability theory (see, for example, [4]). However, the numeri-

These sets are separated by t“e limit state equation. For cal difficultles in pursping .An SNSGE SN glfen ;

example, let X = (x1,_,_,< ) be the time-invariant vector by egs. (1) and (2) are exorbitant. This is even more so if the

basic variables or the failure boundary depend on time in which

of random uncertainty varlables with joint distribution

function Fy(%) and define the limit state by g(x) = 0, while case one has to determine the probability tha:Athe.random vector
for the safe set it is § = X :glx) > 0}. mhe:, the simpliest process X(t) leaves the safe domain in a certain time.
[ AT Problen i BEEETEyLated as Subsequently, some concepts of the so-called first-order relia-
r ( . bility method will briefly be reviewed because these have proven
Pf el L R Ry Jﬁs X)=| aF (;J=:‘f”(5)d§ (1) to be efficient tools in solving problems of the type as given
= I (F A by eqg.(1). They will then be generalized in order to determine
ST ! S8 che denaley oF £ 1f it exists and F denotes the system reliabilities. Further, the rmulation of eq.(2) is
P aean e {ﬁ it e i cOnvenience, we will use eXtended to include time=-variant basic variables. It is belie-

ved that it is just this potential of possible gener
2

which makes first-order reliability methods most us

Structural reliability. What appears important is th
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of quite simple solutions can be produced which under certain

in each practical case more or less restictive conditions are
either exact or give strict narrow bounds from a mathematical
point of view. Therefore, the type and nature of approximationg
and simplification whichwill be necessary when making the methog
more rich and powerful remains known at any stage of development
and application. On the other hand, it is usually straightforwarg
to simplify these methods in a number of areas such that they
€ven can serve as direct design tools in every day work as ex-

emplified by some recent safety codes.

What is perhaps crucial and which s essentially the case of this
report is that since it rests on a random variable representation
by standard normal variables dependencies among variables can
properly be treated. This is particularly important in system

reliability as will shown below.

Nevertheless, in concluding this introduction it is emphasized
that perhaps none of the methods to be discussed is exact and,
therefore, numerical results are conditional on the selected
approximation method. If, however, structural reliability is a
number close to one fairly accurate numerical results can be
obtained in most cases. When judging the numerical accuracy of
approximate reliability methods one has also to keep in mind
that the numerical results are conditioned on the set of stoch-
astic models selected for the uncertainties. The selection of
stochastic models generally remains rather ambiguous and is
pProne to modifications whenever new data become available or
the technical problem requires more information than the one
the original model was capable to convey. In this respect the
interpretation of calculated failure probabilities needs care.
These, in fact, must not be interpreted as relative frequencies
of failure. They are rather operational failure probabilities

to be used in and consistent with a decision theoretic frame-

work of design.

2. Estimates and Bounds on Component Failure Probabilities

ra

{

s 19 v ce (1) ine if tl s i
Essential advantages when solving eq. (1) are gained if the or

ginal space of uncertainty variables can be transformed into a
épace of Gaussian variables, specifically into a space of inde-
pendent standard normal variates. Then, the probabilistic mani-
pulations can be performed in terms of Gaussian variables which
by far have found most interest among statisticians and, fortu-
nately, possess quite a number of useful analytical and/or

numerical features. Such transformations have been given in

18,23,29,30,31] at various levels of sophistication but the one

= i be the 1 .
outlined in [17] is considered to be the most general. Let:

4

X = 1(0) L3)

d
H
I
)
0
o
Il
v |
o]
|3
I
(@)
|
o
Qi
)
WA
(@]
B

where U is an independent

S
1 3 T i1 4 4 1
if P e) = Pixﬁ; X) denotes the distribution fun

1 ction of 4\1,
‘f W wr w 3 . ~dL; 1 e
fred v = > “ 8 . P, ) 1 = 2'3’---rq th
g 6 kq,...,m; ,) = P(Ai; XLy X _q)
1 d S} = 4
£ 1is tion functions of X. condi-
sequence of conditional distribution functions o i
: k
‘ X < d ¢(.) the standard normal distribution
tioned on Xire«.,X,_, and ¢(.) the standar
function . 1t .1s
55, F.(x) (5a)
F— | s L ) L.._\ b | L X p LU,
\? d “ { ] '
R wm P ety YN = mintx : F (XX ) < ¢$(0 ) 20
2 ) g 2
2 2 2 :
.
.
: .
%
o 1 = 5 x A
P! RS X = mintx E X|XspreasopX ) p(U_)
§§ L \ 1! . ’ sI_ ’ . q 3
bl ' i (5q)
] ~11m +hat +h ~omponent rel f_abl;ity
In the following it is assumed that the componen t ' :
1 ol the norn ized space. It will
problem is already formulated in the normalized spac
] ; - +h ransformatior 3) reso.(5)
be shown that, in practice, .the transiormacion i P
Jiamyr oy += Alem egs. (5
must only be carried out in some discrete points. Also, egs. (
implif tly for independent components of the basic varia-
S ‘“‘P 11y greatctly LWL L ALUC U LIUC Il — b
: ) : s 11 1 r
i 3 FTlEstu) and specialize to the well-Known
ble vector, i.ev: X. =F L ¢(U.}) i, and speciali




dependent normal—-lognormal vectors. In

transformations for
general, the inversion of distribution functions must be

carried out numerically, e.g. by application of a Newton-
algorithm if the corresponding density is also known. Some-
times, fairly accurate initial solutions can be obtained by

f a Cornish-Fisher expansion for

using the first few terms o

the inverse distribution [1].

The basic idea of the simplified reliability methods to be
discussed is to approximate the true limit state equation or
failure surface (formulated in the u-space) by simpler sur-
faces so that the probability content of the failure set can
easily be computed. For example, tangent hyperplanes, tangent
quadratic forms or polyhedra with tangent plane surfaces may

be used. If, in particular, the tangent hyperplane approxi-

e to the rota-

£

mation is used it is intuitively clear that d
tional symmetry of the independent multi-normal density the
linearization should be made at a point on g(u) = O which is
nearest to the coordinate origin. This point may be called

the most likely failure point. Any such approximating tangent
failure surface cuts off a failure set with largest probabi-
lity content among all other possible linearizations on

g(u) = 0. This point has first been identified to be an out-
standing point by Hasofer and Lind [16] who measured structural
reliability by its distance to the coordiante origin and

which is denoted by the safety index BHL' It can be determined

by suitable search algorithms:

ety

B"L = min{ v u'u for {u g(u) = 0} (6)

Note that neither the transformation (3) nor the failure sur-

= - o i ]
face needs to have some special Properties, e.qg. differentia-

bility, in this formulation although both the probability
distribution transformation and the search for g as well is
Al HL :

S
greatly facilitated in those casges. In particular, jif =iy s
e e R r e o . e
e u

(o}

Hh

ifferentiable 3 suitable search

=2 algorithm is as follows:

C > a ;:. ( \
141 1 o 50
u = e 1 — 1 - T )
C (jT g
— L

where g is the vector of partial derivatives to be evaluated
numerically and gll its Euklidian norm. Other similar algo-
in 14 2 X 129,280 S8

and yet other alternatives can be constructed on the basis of

rithms have been proposed,

Hh
0
~
@
v
3]
o
=

He)
| ad
1]

the well-known methods in mathematical Programming. Certainly,

the one requiring the least number of calls of the function g

usually is preferable.

-

The starting vector usually can be set to be

[
Il
O
H
Hh
Tt
o
1]

failure surface exhibits several local minima the one with
smallest safety index must be found bv a suitable choice o

the starting point.

The approximation of g(u) = O by a plane

=
ke
A

Il

c
~]

|
O

1s the gradient of g(u) =0 in the most likely failure

=HL = 4
point (Hasofer-Lind point, B...=point) produces the very simple

where

= HL
result
B \_-3-_:-\ \8}
T aral the physical models vield snfficiant+l " e - 1
in general, ne ysSlCal models yiel Ssulricientcly Liat
failure surfaces so that eq. (8) is accurate enough for most
practical applications. The probability distribution trans-

formations, however, may cause substantial deviations from
"flat" surfaces. Therefore, in view of the system reliabilit;
considerations to come it is useful to introduce the notion
A "generalized" or "equivalent" safety index defined by
Ditlevsen [10] and give it a specific interpretation. Let
a(u) =0 be any ipproximating surface Ose probability conter
an be aluated without too muc effort. An "eguivalent"
linear failure surface can then be defined as having the same
jradient as the linearization in the oOriginally most likely
failure pPolnt and distance to the origin:

g = ~¢ [P(au) $0) (9
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SO that the "equivalent" failure set has the same prubabllity
content as the more informative failure set defined by a(u) 50

(see figure 1). Therefore,

«l
&«

—
Ic
|

+B8., =0 (10)

Suitable substituting failure surfaces afu) =0 can be constructeq
in a number of ways only few of which are useful in practice for
their easy computability. Quadratic forms have found most inter-
est (see e.gq. 19, 18:15,281]). Also, polyvhedrical approximations

have been proposed [11]. They are not discussed further, herein,

7

The concept of equivalent failure surfaces will next be used in

a much broader perspective.

3. Failure Probabilities of Parallel Systems

The formulations given above are readily extended to structural
Systems where it is assumed that the safe and failure set o
components are separated by an equivalent hyperplane with dis-
tance B (according to €g. (9)) and gradient & corresponding to
the Hasofer-Lind point. Proceeding formally, define Z.=0T a.

=

~
a standard normal state variable. Hence, the component failure

probability can also be written as:

e = P(5.(U)<0)= U)s0) =P(U a. +8.5 =P(Z.3 ~ By
Pe,§ = P(3;(W)s0) FRLIDNS0) = P(U o . +8.50)=P(z B5)

The wvariables Zj may also be denoted by standardized safety
margin.

Failure of parallel systems occurs if all of its m components

fail. Therefore,

= —
P =PIN (2.5 -8.) = ¢ (-B;R,) = | Pz;R.) dz (12)
PR ovs 5= 3 m' —'=7% Z
-1 'E=1 J J a—
3 =+ ]
where 7%3;£z; is the standard multi-normal density and R, the
matrix of correlation coefficients with elements ¢
: = Corr{Z,,%2.]1 = qr £ (13)
33 i L =y

- 91 =

using well-known second moment algebra for the correlation

coefficient between two linear functions.

Before further discussing the physical interpretation of eq. (12)
we briefly comment on the .evaluation of multi-normal probabili-
ties over rectangles as required by eq.(12). Numerical integration
simply is prohibitive for larger dimensions than, “say,; m>56[25]]
A series expansion as proposed by Kendall [20] and generalized

in [27] and [33 ] is of extreme slow convergence. So-called Monte-

Carlo integration requires much computing time as does ordinary

simulation and poses non-trivial problems with the (infinite)
integration limits. However, the integral can be bounded [33]
noting a theorem given by Sidak [35] saying that for two normal
w1 1 c £F1 1 nte { } :v‘"‘ “- f i = 4 t"‘le
vectors with correlation coefficients '<ij‘ ALFEE ori=3j, ti
1 1 £ > »
following inequality holds (analogously for 2):
P (0¥ z:a3) SPLAY e & ) (14)
K J J e J J
Now, if a random vector Y can be represented
‘2 I3 =
1]_: ,V*'1—i‘fv: 1_1121 « I (15)
where V and V. are uncorrelated standard normal variates and,
hence,
5 = CorrfY.,¥y = (16)
%]  Sde a EES
with s 1, the evaluation of multinormal probabilities re-
1 -~
duces to
T m -B.-teA,
P (=B, Ry) "= ey BT § (S (17)
m = =ty : -
- j=1 1-3 %
J




-~
o i

It is important to note that evaluation of eq.(17) only re-
quires one-dimensional integration which can be done Humerically
without effort. Clearly, any set of constants -1{ producing g
correlation matrix where all correlation coefficients are larger
than the given correlation coefficients yields an upper bound

to eq. (12) according to inequality (14). In the contrary case,
one obtains a lower bound. Fortunately, there are some techniques
to choose the set of constants in such a way to make the bounds

d4S narrow as possible. The simpliest choice is by setting

3 r , vy /2
g SaAR D L ] (18&)
J 1]
for the upper bound and
= [min{ ‘.71/2
kj = [mln;aijJJ (18b)
for the lower bound provided that min{ﬁij7-o 33]. The same

values may be used for the largest/smallest correlation coeffi-
cient and subsequent values can be determined for the second,

Ehira, largest (smallest) correlation coefficients from

0. .
1 =4 2
A; = max o

< owd (19a)
jSi=1 3
and
P A
jsi-1 %5

Somewhat different choices are proposed in [11]. Rough
estimates, on the other hand, can be obtained by selecting
"average" A-values, e.q. from
§s G5 2
Bl d . B T S e + mir 2
1,3 {54 lj) min (20)
Finally, it is obvious that
m
QD - : 1
m( 12y S.’jll". '{‘Bj, (21a)
7 % i=1
and o
¢ (=8,R > e D(=B.) for o o) 21b)
m' =r87 A j :: - b e (
o
As pointed out in [11] Oother choices for the A's are possible

provided that the resulting matrices of correlation coefficients

are non-negative definite and fulfill the condition necessary
for the validity of eq. (14). Although the bounds obtained in
this manner are strict bounds on failure probabilities (within
the framework of first-order or generalized first-order relia-
bility), they are not necessarily sufficiently narrow as will

be demonstrated later at an example. For arbitrary correlation
coefficient matrices one alternatively may use a method given

by Hohenbichler [19] which essentially is an application of the
transformation technique as described before and the first-order
reliability method and which usually yields highly accurate pro-

bability estimates.

We return to the interpretation of eq.(12). The most elementary
interpretation is a direct analogue to classical parallel
systems, i.e. the structure consists of m components each with
a failure domain defined by g.(u)< O. The first component is
loaded. If it fails, the second one is loaded. If this fails,

the third component is loaded and so on. Hence,

m
P. _=P( ] (g.(U.) <0)) (22)
L,pP ]=1 K e

]
Cne of the most prominent examples certainly is a nuclear

power plant where the containment functions as a standby-

- : 9 nf +hea 0 5 X 1 :
component in case of failure of the pressure vessel caused

by internal accidents. Further direct applications of eq.(22)

i i tl defi tion of a
will be discu the fini 1

0
n
)]
oF
j+1]
C
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-
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"component" in the reliability sense is much more complex and
il i ad o - il B .

il

depends on the physical context. For example, in the structural
2

case failure of a comp nt or a set of components usually
increases the loads on the remaining components, modifies the
distribution of loads among the components or even changes
their strength. Furthermore, a physical component is not
necessarily a compeonent in the reliability sense. For example,
one of the simpliest redundant structures is given in figure 4
where it is assumed that the applied load distributes itself




equally among all unfailed components. For illustration pur-

poses we assume perfect elastic-brittle behaviour of the

components. The deformation modulus is constant for all

elements. The elemental strength values are distributed accord-
ing to FK(X) = P(X. s X) and independent. Obviously, a

£ e
system consisting of m elements can carry a load in exactly
m ¥ - 3 = £ N
27-1 different ways, e.g9.: no element fails, any one of n
elements fails while the other elements survive, any two
elements fail and the other survive, ..., any m-1 elements
el : : ! M { ‘
fail and one element survives. Each of these 2 -1 variations

may be interpreted as components in the reliability sense

Due to the large number of possibilities for larger m this
definition of a component is generally not useful although
inevitable in some cases. Our aim, therefore, is to reduce the
number of components in parallel by suitable redefinitions.
Specifically, the strength of the same System can also be given

das 3 m

Rm = R(X!,...,hm) = ?2¥1(mu3+1}x3:

-~

where Xj is the j-th order statistic in a sample (X?,...,X ) and
: m

whose distribution function can easily be constructed from F (x)

i34]. An appropriate formulation of System failure probability
then is given by:

o m
Pe o= pfmaX1(m—j+1)xj;; X) = P(max{(m-j+1)X.-x} <0) =
j=1 1=1 J
m
= P(max{ (m-j+1) T.(U) - x} 50) (23)
3=1

o X e Lo e ; . B :
hich is just the iormulation chosen in €q.(22). Here, each of

5 i " 1 :
the ‘max-terms"can be interpreted as a "component" in the sense

of eq.(22), Note that the equivalent to 9. (21a) corresponds

to the number j with smallest failure pProbability. This idealized
Ssystem has been investigated
L

FLESELY by Daniels (7] in some

detail., More realistic mechanical assumptions are studied

(=

n (18] using the order Statistics approach as described be-

rh

ore

-

More generally, w il i
2 + W€ assume that the forCC*4=formatl0n relatien-
ship of a physical component is of th

re 2, i.e. with increasing deformation the force reaches a

= i o S e =

maximum and falls off in a certain manner beyond that point. For
aximum & - B

the k-th component one has
§) = oz I,) 24
R_(6) —Rﬂ(u,___wj (24)
in which I, is a random vector of parameters defining the
ch I,

: : {823 e :
special force-deformation characteristic, e.g. initial slope,
= — -
maximum resistance and corresponding deformation.Let us assume
i
that structural behaviour is modelled by assuming the location
of the necessary number of hinges and the formation of a given
mechanism (failure mode) implies failure (compare figure 3). All

a

te at the hinges.

|
deformations (rotations) are taken to concentr
a

The limit state equation then may re

1
1

where M, (8§, (6)) is the moment at hinge k as a function of the
ki k

rotation §, which in

functi F lobal def

function of a global def
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k
the assumption of rigid-plastic behaviour of the structure
implicitly made before can easily be relaxed at the expense of
some more numerical effort. Each of the deformation states may
now be taken as a failure mode in a parallel system. The idea
of interpreting different deformation st

u
in parallel probably has been put forward first in [21). Far

the standardized space we formally write:
1 L A m T1 1 e 1 \ — )
3o (28 ol A ( JIEE)) - b, T,(U;) ='0 (26)
§ = i { K K i =X Ty o i L
(.'() e e -
In discretising the parameter § = ., 3 =1,2,...,m the mecha-
nism viewed as a parallel system with m components (in the sense

of eq.(12)) can be treated in the usual vay. Clearly, the accu-
racy of the probability estimate highly depends on the choice
Of the parameter § but also on the type of function in eq. (24).
In general, there will be a value of § = :¥ for which the safety
index B becomes maximal and for which application of eq. (21a)
Yields an upper bound. In L34] it has been shown that this
bound is close to the éxact result for very small and for very
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large systems. For medium systems it is generally worthwhile g
use the sharper bound provided by egs.(17) through (20) or to use

one of the failure probability estimates mentioned before. The

i

£
choice of the number m and the spacing ;i::&i+i_gi of modes is
somewhat arbitrary. Nevertheless any choice-even those which do
not include the mode with largest safety index-yields an upper
bound.

'

For later use, it is convenient to define an "equivalent" safety
index SP if such improvements are carried out:

g~ 0 [P(Qg.(U:8)50)] (27)

so that the probability of system failure corresponds to the
failure probability of one component (in the reliability sense)
representing the whole system. Ypically, this is the component
with largest safety index B.x, the same gradient O g%

but modified safety index Bey > B . Hence, the parallel system

P
is represented by an equivalent linear failure surface

—
I3
—
L

_:_"c‘*E+Bp=O (28)

Whether BP differs substantially from B.4 depends to a large ex-
tent on the type of the system under cogsideration, the number of
&S "components", but especially on the type of force-deformation
relationship €q. (24) and the dependence Structure of its para-
meters. Quite generally and not unexpected, the difference be-
comes small for force-deformation relationships which tend to-
wards perfect Plastic behaviour. On the other hand, considerable
differences have been observed for peaked force-deformation
relationships and ROt substantially differing safety indices of
the modes. ;

4. Failure Probabilities of Series Systems

In a similar manner the Probability of failure of Pure series

Systems can be computed. A series System fails if any of its

omponents, Specifically the weakest, fails. Its failure pro-
bability is defined by the Probability of the union (in h;n-
trast to the intersection With parallel Systems) of the fajilure
events, . i.e.:

n n
Pes = PUU B = B( U (Zeguel
. i=1 i=1

= 1 = | f(z;Rz) dz (29)
J_E 25

with the notations as before. Techniques to evaluate eq. (29)
have found continuous interest among structrural reliability
engineers (see, for example, in chronological order [6,36,27
33,11]. The bounds given by Ditlevsen in [11] are perhaps the
most easy to use and sufficiently narrow. (Their general formu-
lation, i.e. for arbitrary failure sets, is used lateron.) Figu-
re 5 demonstrates, however, that the problem of correlation
among modes is less significant as compared with the parallel

een in writing down

0
(D

case (see eqgs.(21)). This is readily been
the bounds resulting from the assumption of fully dependent and

independent failure modes.
n

m {d (-1 S S
..uax ;D( ,31) I = f,s
i=1

d(~B.) £ 1 (30)

c 1 £ 114 o~ 1 3 121
In fact, for the worst case of egquicorrelated modes and equal

o
safety indices for the different modes it is ocbserved that the
e i

correlation coefficient must be rath igh in order to sub-

SR R e 514k o g i b
stantially diminish the £ ility of series systems

; ; : i e e et e i LT
in comparison to the upper und given in eq. (30). Excellent

. . : iy R Gt : 3
bounds are obtained when usina the equivalent to eqg.(17), i.e.:
+co :
mn +03 "“'t‘ s
3
- - o N F 4 \
P =k e Yit) ¢ ) dt (31)
£ C
Ly 4 1:1 ;g .
] | i
- OO L
1 L1 . ~tp £ DINILT G - | =1=-P(U(Z 2B \)
WwWhe re ¥ ~ 11 +0o +he SVvMme + ry. 3. F 1]‘ - | \UVG, 2 / r
where now, due to the symm etry -« h ey B iy i
: 3 1 2] ¢ bhound In n e
€q. (19a) gives a lower and eq. (19b) an upper bound. In analogy

CO parallel systems, one can obtain weaker but simplier bounds
d

i - : ) PR g [ oW bound an

ln setting A, = ¢ =vmaxip, .} for a lower bound an
=v/minio..} for an upper bound. Accurate estimates can

i iy e

ilgain be obtained b sing the algorithm proposed in [19




The formulation in the second and third line of eq. (29) has
important implicaticns for a different type of lower bounds
first mentioned by Augusti/Barrata | 2 ]. Observe that the pro-
bability of the union of survival events gets larger with in-
creasing number of modes considered. Thus, the consideration of
only a limited number of modes-always produces a lower bound op

the failure pProbability.

In analogy with the foregoing section one might define an
equivalent single component system having the equ
index

(7]
w0

I

I

o
= fia
(S

W

|

™

(%

B

and the same gradient % as the component with smallest (1)
safety index. This formulation may prove useful if a

given structural system is composed of series systems in paral-
lel (in a reliability sense).

5. Failure Probabilities of Parallel (Series) Sub-Systems
in Series (Parallel)

We are now ready to compute the general problem of eq. (2) in
Simply combining section 3 and 4. We have

i Dy e ong
By == 0 e vri0O (278 —~8")
i=1 j=1 *J f=1 j=1.- *d +J
::P(E: Z i
i=1( p,i* BP,i)) (33)

where the safety index g e
¢ B, . and th ent o - S
P,i =€ gradie % ; in mode i

corresponds to the equivalent

r

values used in €g.(28) and an

- . : . .
PPropriate method is applied to bound or estimate the

e P e S :
failure Probability of the Series system. For

. . Series subsystems
*h parallel quite an analegous .

formula hold

7]

.
.

0. Ny D,
e s s R P O (e S
i=1 j= v, i=1 j= B B iy
n
2Py (2 $s-8 )
i=1 Sll S,l {3-;}

— 9‘) -

Clearly, the validity of the approximations in egs.(33) and

(34) first rests on the assumption that the failure surfaces

of the various modes of failure in parallel and in series are
sufficiently flat. Moreover, the subsystems must be character-
izeable by a dominant mode and the other "significant” modes
should have similar gradient. The "equivalent" failure surfaces
may, in fact, only be sufficiently representative if they some-
how envelop the individual mode surfaces in the region of inter-
est, i.e. the BHL—points for the series modes should lie in the

"equivalent" failure set.

If these conditions are not fulfilled, the problem becomes more
involved. However, the upper bound of the parallel-in-series
system failure probability in the sense of eq.(30) which then
is a reasonable basis for further calculations can be improved
at the expense of some more effort. The probability bounds

initially derived for simple series systems by Ditlevsen are

easily generalized, i.e.:[11]

n g%
SP(AF,.) + ) (P(NF,.) -max{P(NF . A AF, .})
" ’J | l_i ) P— j =
] i=2 N k=1 < ]
P.RPIINAF. )= (35)
T T 39
1y *—_1 1= i
,P(nFaﬁ) + max{O,P(nFlj)- ) P(A Fl;f\g kj)}
Gl PRCES - e
where the probabilities p(nFijijy;ijj, i.e. the probability of
i s s o
the intersection of the failure domains of two parallel systems,
h

are computed in

A somewhat weaker lower bound may be obtained by replacing the
probability for the intersection of two parallel systems by the
smallest intersection probability of any two components of
these svstems.
n =)

Pe2P(N F]]): lf'max:ﬁ,?kﬂ Fl]—‘_£~ ?i?;? F;jn ?kl: (36)

J 1=4a ] . k=1 J.,1
Appearently, there are no such simple rules for series-in-

pParallel systems and one is essentially

mentary bounds:
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,.mm{p(uvij)_} (37a)

-

= ( F Y=
Ee s PN VF,)
i ]

T
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P(LJFij) (37b)
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with which one might compare the result of eq. (34) in order to
judge the gquality of the approximation. On the other hand it

5

would generally be misleading to use either of the two bounds
since only slight dependencies between the various series systems

can drastically modify the system failure probability.

Although it would be desireable to have a general, direct calcu-
lation method for series Systems in parallel of a quality com-
parable with that of eq. (35) thus is not necessary from a mathe-
matical point of view. In fact, any system the states of which
are either intact or not intact, and the same idealization of
states is valid for its components, can be represented by series
Systems in parallel (minimum failure paths representaion) oL,
equivalently, by parallel Systems in series (minimum cut set
representation) [4]. The possibility is just the one required
for application of €g. (35). The details of representing arbi-
traty (structural) Systems in this form will be given in a
Separate report. The mathematical problem essentially reduces

to implement one of the various algorithms for searching for
minimal cut sets available in the literature (see, for example,
[4]) with further references). The engineering problem of inter-
Preting components and subsystems in this abstract formulation

with the aim to improve the design appears much more difficult.
Therefore, we return to the more direct interpretation of eq. 125

6. Combined Loading

To make the spectrum of structural reliability problems complete

we finally comment briefly on load combination. The probably

most flexible formulation for time-variant reliability problems

has been given in (37] i.e.

3

BaiT) % P AO) & 111 (S5¢) a+ (38)

where pf 1 failure Probability, T the design
<ife and A(S,t) the mean Crossing rate of the random vector
ioad process X(t) out of the safe domain S which here is meant

- " A - h aafe | : c ay: e ¢ v -
to correspona to the safe domain Of a specific failure mod

Frequently,

sy +he
Slaer Tie

=
P-(0) is negligible small and it suffices to con-
8

tationary case so that the second term in eqg. (38)
becomes A(S)T. anortwnatoly, /eIy Iew exact results are
for the mean Crossing rate out of arbitrary safe
domains (see [5,24,25,37]. But quite a number of processes
f the safe domain is bounded by a hyperplane.

can be dealt with if

Moreover,

surface be

upcrossing

i 3 *
in which fr

derived [22,26] in this case. For example, let the failure
N
given by g(X(E)) =z X =8 . ¢ (t) =0. Then, the mean
0 Tl r=1 3
rate of I X (t) of a threshold X can be given as
r= r
N :
) ) _(y) £_(x-y) dy {(39)
L r'? Y ¥
r=1
(.) 1s the probability density of I X. which must
4 S e 7z 4 = g

be computed by repeated convolution and

3 3 3 7 a) raaAd ith P (D) = .
now a random threshold eq.(38) reads with P_(0) O:
a0
-+ S G T
- N=
P_i(7) T ) vV (v £ tx=v)-d EorRlax
S ¥ i rih 8 cib r i i X
r=1
+ L
N
o . * f y
p = c 3+ =BT
= T f XK= Fo(Xr-dyv.dx (40)
‘ ™ <4 — - A o
TP X r
-~ -y ~ S - .~ 1 ~ =T
wnere the ) jJrals correspond to the formulation given in eq.
(1) _for. a Lnearly bounded failure set. Therefore, we may also
Write
\\j £
F 7\ s /
Y X ] 2 i)
D Fy - — R \
P_(T) Plg, (X, X5 dSe R s g Nl yk 1 Xy
- s
=1
Y
hrha Ffas Tiavrm oy -3 - oy - -~ - = laler=]
vher ( . he ailure surface of the i-th ode,
4 ~ v o = o 1 = - o - »™ =y
X X X X represent loads with their random
sy i 2 ) ’ R, B + ’ ’ \I
y : 3
- TE S ~T 1 \pﬂﬂ'\-\,;v-d,--“
olnt- -t (first-order) lstribution, Y _, 1f properly
int = y riable ha an outcrossing and im-
2 Y ) y 1) LK C -
1 r 4
~ = - ( T an Z a random
Jroper dis bution unctic b 4 £
g mlnl ~ N +ha+
o+ y -. b 4 $ 1me=1r = 1T varlapiles NOtTe, CiidatT
s ’ L& | 4 4 LILE
3 e - | 1 ] e aq amarv
‘ e ¥ random varlable 1S not mandat Y.
the 1nterpretation of Y -as & random varliar
K \ M - = ~ompD | 1mentar
It 1 e lel Vs 1ecessarv to introduc (Y L &S -l COdipLiiiencary
| 182 Nniiy necessal cC Li1CL - i
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distribution function of a fictitious variable Y . The"equiva-

lent" safety index is now defined by

v r r 4 7 1 -
P(g‘.(X1,...,.\r_1,&1_;-\:_”+]r---fHfo_J_,‘ ~O),(42)
The "egquivalent" gradient corresponds to the

term in the sum with smallest "local™" safety index. The in-
equality sign of eq. (38) is changed into an approximation sign

in eq. (41) which not only indicates th

o7}

t there can be small
@rrors when replacing the exact convolution integrals of edq.
(36) by the approximate convolution of first order reliability
methods. It also regards the fact that it is not vyet known
Precisely although conjectured whether the equivalent to the
bound eq. (39) is valid for arbitrary safe domains (see 0 )
But it is important to mention that the "point crossing"
approach outlined before has potential to consider quite
general processes with rather complex stochastic dependence
Strutures. A special case wWill be dealt within an example
later on.

7. Structural System Reliability under Combined Loading

The complete formulation of System failure probability under

combined loading, therefore, is

Pf.System(T) : Pt.U F,(T)]

P,r ;i

r.+} o o) 3 3 = -~ : - . ’ 1
where “p,r*:i 18 the equivalent safety index with respect to
the deformation mode with largest individual safety index and
with respect to the

combination mode With smallest individual

n

E 1 ) 3 T i I ol <
Sarety index. It is here wnere a random variable interpretation
of Y _ is needed and the whole depeng

$SNCe Structure .of the ran-

w
s
T O

dom vector 3

¥

(t) but also between

o

|

d
X(t) and the extremes of the

components of X(t) must be known. Since this is to be expected
only rarely in applications an alternative formulation is pro-
posed. In particular, we treat each term in eq.(41) as a

different "loading case" and, therefo

H

&

p (T) = . 0. PG U ol e )) (43)

.
f,System

ignoring the dependence of outcrossings which might exist in
the different loading cases. Also, eq. (43) 4
eqg. (40) which, in essence, corresponds to Tu
Formulation {(43) further
ducing a more refined description of loadings, for
by incorporating informa

example where eq. (43) c

a
1 : L = 5% £ =1 - 3 ha=
reliability, e.g. by taking account of the dependencies be

tweern the failure events corresponding to the "loading" cases

QLTS CT L

We consider a simple unsymmetric steel f

weight of the roof, snow load and wind load and which is designed
according to present design standards (see figure 6). The time-
variant loadings are modelled as sparse filtered Poisson pro-
cesses with rectangular (enveloping) pulses of the kin proposed
S gener-

L 7 5 1 - < har aArYro
by Wen [33,39],i.e. there are

B
i i 41 ind fre h laf r wind from the right-
ating either snow, wind from the left- or wind from th ght

r
hand side of the structure as shown in figure 6. Further there
ls one process (weather condition) which generates after a
certain delay time, generally different for wind and snow, snow
With certain probability and with another probability wind from
4 given direction. Naturally, wind from both directions is
excluded. If snow and wind coincide it is assumed that their
load amplitudes are mehow correlated. The three distribution
functions if the loads are "on" are normal. Table 1 collects
the set of parameters. According to [ 39] coincidences of any
two time-variant loads occur approximately with rate
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cases" shown in t

The Structure, on the other
represented by a number of me
modes 9 to 12 have been

since their contribution +

cad have intensity
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"double-counting" and RiL-.i+Apiy
of one load process, v the Occurrence

lng two other processes with proba-
mean delay time K; and k. and mean

respectively. Therefore, the "loading

d dn “the numerical calculations
=

failure probability is

negligible. It is assumed that beams behave perfectly rigid

between hinges. The general

form of the moment rotation curves

is shown in figure 8 reflecting, for example, local buckling of

the flanges beyond the vield

curve, of course, coul

Point. Any other moment rotation

Peen used. The specific type of

moment-rotation curve has been chosen because it isg rather

flexible to fit various mechanical Situations by simple modi-

fications of it
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example, no essential improvements are obtained as compared with

the simple bounds given by eq. (30). Due to generally large corre-

lations between series modes in a loading case, the exact pro-

bability mostly is close to the lower bound. The last two columns

of table 4 indicate that ¢t}

e}

€ assumption of perfect elastic-
pl: ic behaviour can lead to a significant overestimation of

Structural reliability.

Table 5 shows the various bounds on the mode/loading case safety

o 0 {

indices. It is seen that certain sets of bounds, can, in fact

become rather wide.

-

Finally, it should be mentioned that changes in the correlation

Structure of the uncertain parameters defining the moment-rota-
tion curves in the various hinges have non-negligible effects

on the total failure pProbability

behaviour

In a second example the mode int

erpretation as given in 8LL. (23)

(order statistics interpretation) is used in the system shown

in figure 4 with 10 independent elements. Elemental strength

and ultimate strain are assumed to be fully correlated and

to vary normally with a coefficient of variation 0L 0.2, The

example is especially interesting because one can compare with

some exact results. Figure 10 shows the distribution of system

Strength. The right-hand thick line corresponds to the exact

e left-hand thick line represents Daniels'
asymptotic distribution., The dashed line is t

distribution, t

he exact distri-
bution of the Oorder-statistics mode with largest bearing capa-

1l details the reader is referred To

city. For the computationa
[18]. The dotted lin

€ corresponds to the same dominating mode

Y the first-order reliability technique
~point) while

HL, ~F the thin line has been
obtained DY using the approximation in (19 to the multinormal

integral (12). In this case the improvement of considerin

] a 1 ]

al but the first-order estimate is

in error by approximatels half an order of

ten. Presumeably,

if the individual modes

by applying the equivalent

section 2, one would

the whole system.
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aI‘ﬁOl‘lg the components is the common load L1 1S well F\llﬂ“r\n {i)at an

analysis can be made by conditional System analysis

’ f.H. by
conditioning on a given value of the load and then in“wrating
over the probabilities with which they occur. Further Variableg
introducing dependencies into the System may be treated in the

Same manner but numerical effort can soonln‘owm'lrwtrh%Ld)hu

Alternatively, one may use the representation of such complex

Systems by minimal cut SetS as mentioned earlier, Details of
this approach must be left to a Separate report where it will pe
shown that the resulting parallel-in-serijes Systems are sti]]
sufficiently Simple.

Example 4: Parallel Systems in series

We study the case of parallel Systems in series g little bit

further. Consider the system schematica]ly shown in figure 13,

It may represent a System resulting from a4 Search for minima]
cut sets but here, for illustration Purposes, a bridge Crossing

a river andg sitting on 10 Supports of 3 piles each.. It is loaded

by ice-pressure. The functioning of the Protective structure
does not depend on the magnitude of the

ice-pressure. Note that
this Tepresentation of an uncert

ain variable may also be used
for truly booleans variables. If one or two piles break the ice~
Pressure is somewhat reduced for the remaining pile(s).

=]

Here,
We use the second compon

ent definition given in
fore, if x.
150

Section 3. There-
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3. Discussion and Some Open Questions

The aim of the foregoing presentation was to attempt a rather

general formulation of structural reliability for given limit
states and to demonstrate that convenient numerical solutiong
are possible within the frame-work of first-order reliability
methods. It rests on the presupposition that irrespective of the
type and number of loadings, the number of potential failure
modes and the degree of redundancy in any of the modes, con-
stant reliability designs are desireable. This is, no doubt,

a reasonable objective under certain circumstances. In other
cases such designs are suboptimal. The design for a particular
loading case or for a special failure mode for a given reliabi-

lity may require enormous investments while the same reliabi-

-

ity level can be achieved with small efforts in other modes.

4

1t appears that present practice, in general, is closer to
optimal design than to constant reliability design. This, in
turn, means that different modes will have considerably
differing reliability levels and, hence, there are only very
few critical modes in most cases. If this is so the foregoing
considerations simplify greatly. The art of the determination
of system reliability, then, essentially consists in identi-

fying the critical modes and loading cases.

In the general case, the first step in an analysis is always
an appropriate formulation of the physical model for the rele-
vant limit state and the determination of the component safety
index (or failure probability) given the stochastic models for
the various uncertainties. Both tasks can get quite involved.
It is obvious that the sophistication in modelling should not
have too much bias to either the mechanical or the stochastic
part. Moreover, both types of modelling must be compatible
particularly with respect to their use in generalized first-
order reliability methods. For example, limit state equation
should be differentiable since MOSt search algorithm for the
safety index require the existence of, at least, the first

derivatives. Since some physi phenomena, in fact, do not

ch work ought to be done

(T
O

c
share this property, more resea
a

develop less restri

reh algorithms, They should in any

case be made as efficient as possible although experience with

those already available is promising [14].

It should be mentioned that the usual mechanical formulations

must be modified in some cases. The parallel system studied in

example 1 has been formulated in the most simple way. Realistic

~

£
formulations may require the determination of system behaviour
J_

under a set of impo

0
1Y)
| &
Q.
(L
Hh
0
2,
=
f+l}
t
},J
T o

¥
ns which simultaneously ensures

tatic equilibrium and geometrical compatibility under realistic

assumptions for stiffnesses and second-order effects between

hinges.

ry component reliability the Hasofer-
Lind safety index B . together with the failure probability
tion in this point
ding to the BHL-
s only in extreme

S
1t small errors in each of the Hasofer-Lind probability
D

therefore, the concept of an approximation of a single mode
by more realistic failure surfaces generally deserves further
attention. If the simpliest first-order estimate is inaccurate
oolyhedrical approximations undoubtedly should be preferred
as an alternative. These may not be as good as quadratic appro-
Ximations for the single mode but have the potential to carry
at least part of the information needed in system reliability.
'ney enable to check w ) y more effort (see second
1alf of section 5) er the much simpler approach with
"equi lent" failure surfaces is not only feasible with respect
tO the singl 1ode bt an also be applied to systems.
* ; ‘ ;
'he concept "equ >nt" failure surfaces is, as mentioned,
nly a icable i rtain modes in the various sub-systems
dominate. Parallel subsystems in series can still be handled
appropriately (see, for example, eqg. (35)). The numerically more
mportant case of series-subsystems in parallel cannot be treated




satisfactorilv as of yvyet and needs more research work. And,

clearly, the same is true for systems at an higher level. But,

again, a combination with the many available minimal cut sets

algorithms may at least solve any system reliability problem

4

in a mathematical resp. numerical sense. Difficulties can

W

fu

P]]

thermore, the numerical effort

u
nd some research is nec

v

ded to establish suitable criteria to

e
reduce the numerical work in the struct
s

8

ilar lines as in cla

un
=]

It has been shown that one of the key points in general structu-

ral system reliability is the computation of the multi-normal

integral. Presumeably, the approximate evaluation according to

[19] satisfies most practical needs but further attempts should

be made for an easier and more accurate computation.

The derivations in this paper have been governed by arguments
a

of mathematical and numerical convenience where in many

cases bounding techniques were obligatory. How can these

approximations be verified by

there are only a few studies which verify to g satisfying de-

gree certain aspects in specific examples either by stochastic

simulation or numerical integration. The study of the reliabi-

- s = e ; - 1
11ty of systems of the general nature as considered herin

might no more be feasible on the basis of "exact" probabili-
stic methods as mentioned before. Therefore, there is an

urgent need to develop methods at the next level of accura

so that the simplier methods can be checkeqd
improved.

and, possibly, be

B
rise when the physical component definition is not so obvious
nd, therefore, one is left with relative y abstract operationsg,
r may

become quite considerable

higher order methods? At present,

As concerns conclusions

and design only

is known already.

complex, safety

be sufficiently

city one may assume
mechanical proper

those which attai
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. o
one i larges
effort. However
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lations are sti
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be found in each loading c
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1 order to find
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practical structural analysis
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id which goes beyond what
most critical series mode must
Caution is in order if the

Y since the deterministically
ily coincide with the probabi-
very large and

s
most critical mode then may

for the whole system. Secondly,
argest carrying capa-

or slightly below mean wvalue)

ity factors 2a) with running
given in figure 9 where the

for increasing deformation.
components at thelr respective

hosen but the search for the

emphasized that such recommen-
ok

ons

esp. failure probability of
cading within the framework of
L1ty methods is proposed. It
rements of components (in
lealt with by using suitable
I non-normal vectors into
~tors, by applying the concept
>r conveniently chosen sub-
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Systems and by estimating multi-normal probability integralsg
over rectangles or by bounding them by simpler expressions, The
reliability under combined loading can easily be evaluated op

at least be bounded by the use of the so-called point—crossing
method. It appears that in most practical applications signifj-
cant reductions of the failure modes and loading cases to be

considered are possible and, thus, the probabilistic part is
greatly simplified. If the concept of equivalent failure syr-
faces cannot be applied solutions are still possible by repre-

Senting any arbitrary system by parallel-in-series Systems vig

"minimal cut sets" and then applying certain bounding techniques

Unfortunately, the numerical effort may be quite high and the
physical interpretation of the resulting failure
come dubious. Nevertheless,

sets can be-
the problem of computing reliabi-

lities of some Structural systems may be considered as solved

in a first-order Sense. In order to check the results of
generalized first-order system reliability methods higher order
methods are most sucessfully derived on the b
approximations to the individual mode f
tangent hyperplanes.

asis of better

ailure surfaces than by
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In der Berichtsreihe sind bisher erschienen:

Heft 1/1972%)

Heft 2/1973%)

Heft 3/1973%)

Heft 4/1973*)

Heft 5/1974

Heft 6/1975

Heft 7/1973%)

Heft 8/1975%)

Heft 9/1975

Heft .10/1975

Mathematische Hilfsmittel zur Sicher-
heitstheorie

Seminarvortrige zur Sicherheitstheorie

Beitrige zur Zuverlassigkeit von Beton-
bauwerken

Wahrscheinlichkeitstheoretische Unter-

suchung der Knicksicherheit von schlanken
Stahlbetonstiitzen

Zur Sicherheitstheorie im konstruktiven
Stahlbau

Monte Carlo-Studie zur Zuverlassigkeit
von durchlaufenden Stahlbetondecken in
Birogebiuden

Festigkeitsverhalten von Fichtenbrett-
schichtholz; Teil 1: Versuchseinrichtung
fir Rurzzeit-Druckversuche

Sicherheit gedriickter Stahlstitzen,

Teil I: Grundlagenvergleich mit den Ver-
suchen der Europidischen Konvention der
Stahlbauverbdnde am Profil IPE 160

Zur Sicherheit von statisch beanspruchten

HV-Verbindungen unter bescnderem Bezug auf
die DASt-Richtlinien der Jahre 1956, 1963

und 1974

Deterministische und stcchastische Analyse
des Tragverhaltens von Stahlbetonbauteilen

(7 Beitrige)

(7 Beitrage)

(11 Beitrige)

C. Knappe
R. Rackwitz

Chr. Petersen
R. Hawranek
U. Kraemer

R. Rackwitz
E. Grasser

P. Glos

W. Maier

U. Weigle

R. Hawranek
Chr. Petersen

R. Hawransk

G. Thieslen

Variable Symbol | mean |Standard deviation| Remark unter Last- und'Zwangbeanspruchungen
Modell error X 2 0. 1/0.2; vk Heft 11/1976%) sStatistische Untersuchungen von gecmetrischen G. MaaR
. e - 55 ; Abweichungen an ausgefihrten Stahlbetonbau- R. Rackwitz
Protection : P ! teilen, Teil 1: Gecmetrische Imperfekticnen
'SYStem i,0 : B gr 5 bei Stahlbetonstiitzen
Piles Xi 17
r
Xi:Z'xi,3 1.0 0.2 i Heft 12/19?6*) Wahrscheinlichkeitstheoretische Analyse der B. Krzykacz
Lebensdauerverteilung nach Freudenthal et al. M. Kersken-
Bradley
Hert 13/1976*) Studien fir ein stochastisches Mcdell der R. Rackwitz
Betondruckfestigkeit, Teil 1: Untersuchung K.F. miller

Figure 13: Parallel systems in series (bridge example, zur Betondruckfestigkeit im Bauwerk sowie G. Maa8

see text
} . zum Qualitdtsangebot von Beton
| Heft 14/1376 Numerische Methoden probapilistischer B. FieBler
| Bemessungsverfahren und Sicherheitsnach- H. Hawranek
| R. Rackwitz
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Die Anwendung der Bayesschen statistischen
Entscheidungstheorie auf Probleme der
Qualitdtskontrolle von Beton

Zur Ermittlung optimaler Sortiermethoden
bei der Herstellung von Brettschichtbau-
teilen

Zwel Anwendungen der Zuverldssigkeitstheorie
erster Ordnung bei zeitlich veradnderlichen
Lasten

Zuverlassigkeitsuntersuchungen an Brett-
schichttrigern, bemessen nach DIN 1052

Zur Untersuchung stationdrer Lastwirkungs-
prozesse von statisch reagierenden Strafen-
und Eisenbahnbricken mit der Spektralmethode

Zur Verteilung der Parameter der Wohlerlinie
sr St 37 und st 52

Einige Beitrdage zur Zuverldssigkeit von
Bauwerken

Die gendherte Berechnung der Versagenswahr-
scheinlichkeit mit Hilfe rotationssymmetri-
scher Grenzzustandsflachen 2. Ordnung

Zur Statistik der Lage und Grd3e der Vor-
spannbewehrung

Beitrage zur Risiko- und Zuverldssigkeits-
beurteilung von Tragwerken

Neuere Ergebnisse aus der Theorie der Nor-
mung, Beitrdge zum 43. SFB-Kolloguium,
MGnchen, 1.M3rz 1978

Statistische Methoden und ihre Anwendungen
im Ingenieurbau - Teil I: Grundlagen

Statistische Methoden und ihre Anwendungen
im Ingenieurbau - Teil II: Anwendungen

Statistische Untersuchungen von gecmetrischen
Abweichungen an ausgefiihrten Stahlbetonbau-
teilen, Teil II: MeBergebnisse geometrischer
Abweichungen bei Stiitzen, Winden, Balken und
Decken des Stahlbetonhochbaus

R. Rackwitz

M. Kersken-

Bradley
W. Maier
R. Rackwitz

B. FieBler

M. Kersken-

Bradley
T. Geidner
R. Quel
R. Rackwitz
B. FieBler

H.-J. Neumann
R. Rackwitz

G. MaalB

J. Bauer, BH.S.Choi
H.Kappler,O.W.Xnapps
H.-J.Melzer
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K.-H.Reichmann
G.I.Schuéller
R.F.Schwarz

H. Kappler
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G.I.Schuéller
R.F.Schwarz

H.-J.Melzer
H.~J.Niemann
G.I.Schuéller

G. Maaid

Heft 29/1878*)Zuverléssigkeitstheorie 1

o Ordnung und nicht-
normale Vektoren, quadratische Grenzzustands-

f%échen, Tragsysteme bzw, auBergewdhnliche
Einwirkungen

Heft 30/1978%)Beitrag zu einem Zuverldssigkeitsmodell fdr

Dackbalken aus Brettschichthelz unter beson-

derer Berﬁcksichtigung seines Festigkeits-
verhaltens

Heft 31/1978*)Darstellung und Auswertung von Schneeh8hen-

messungen in der Bundesrepublik Deutschland

Heft 32/1978*)Niveauﬁberschreitumgen von Summen von Zufalls-

prozessen, deren Pfade Sprungfunktionen sind

Heft 33/1978*)Sicherheitstheoretische Untersuchungen zum

Nachweis der tiefen Gleitfuge fiir einfach
verankerte Baugrubenumschlieﬁungen

Heft 34/1978 Optimierung von Sicherheitsnachweisen mit

besonderem Bezug auf den Tragsicherheitsnachweis
von Stitzen aus Formstahl

aa¥ :
Heft 35/1978%)zur Bestimmung von Festigkeitsverhalten von

Heft 36/1978

Heft 37/1978

Heft 38/1979

Brettschichtholz bei Druckbeanspruchung aus
Werkstoff- und Einwirkungskenngr&Ben

Zur Zuverlassigkeit von ermiidungsbeanspruchten
Konstruktionselementen in Stahl

Zur Anwendung der Spektralmethode auf Lasten
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bricken

Theoretische Grundlagen fir die Bestimmung
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Heft 39f1979*)Neuere Erkenntnisse in der Risikc- und Zuver-
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Wahrscheinlichkeitstheoretische Optimierung
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Uberschreitungsrate fiir Lastprozesse mit recht-
eckfdrmigen Impulsen
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Zwei Anwendungen der Bayesschen Statistik
Beanspruchbarkeit von Bauteilquerschnitten
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Zufillige Systemeigenschaften bei dynamisch
belasteten Tragwerken mit einem Freiheitsgrad

R. F. Schwarz

K. Breitung
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Kraemer

P. Kafka

H. Krawinkler
H.~J. Melzer
G.G. Oswald

W. Schmitt
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