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VORWORT

Dieses Berichtsheft enthilt finf Beitrige zur Theorie
der Berechnung der Versagenswahrscheinlichkeit von Bau-
werken. Der Beitrag "Non-Normal Vectors in Structural
Reliability" geht auf einen in Heft 14 dieser Berichts-
reihe, Anhang B, abgedruckten Vortrag des Erstverfassers
zurlick und stellt den derzeitigen Stand der Entwicklung
der Zuverlissigkeitstheorie 1. Ordnung innerhalb des

SFB 96 dar.

Der zweite Beitrag "Quadratic Limit States in Structural
Reliability" enth&lt wesentliche Verallgemeinerungen der
in den Heften 21 (Rackwitz, R.: Quadratic Limit State
Criteria in Structural Reliability), 22 (Neumann, H.-J.;
FieBler , B.; Rackwitz, R.: Die gendherte Berechnung

der Versagenswahrscheinlichkeit mit Hilfe rotations-
symmetrischer Grenzzustandsflichen 2. Ordnung) und 25
(Neumann, H.-J.: Methoden zur Berechnung der Versagenswahr-
scheinlichkeit) dieser Berichtsreihe vorgelegten Unter-
suchungen fiir eine Zuverlissigkeitstheorie 2. Ordnung.
Nach Ansicht der Verfasser k&nnen damit die Untersuchungen
zur Zuverldssigkeitstheorie 2. Ordnung in gewissem Sinne
als abgeschlossen betrachtet werden. Die vorgeschlagenen
Rechenmethoden sind als Computer-Programm realisiert und
stehen Anwendungen zur Verfiigung.

Im dritten und vierten Beitrag wird ein erster Versuch
gemacht, nunmehr auch Tragsysteme, die auf verschiedenen
Wegen versagen kdnnen, mit Hilfe der Zuverldssigkeitstheorie
1. Ordnung zu behandeln. Es wird gezeigt, daB eine ent-
sprechende Formulierung m&glich ist. Allerdings ist das
dabei auftretende Problem der Ermittlung des Integrals

der mehrdimensionalen Normalverteilung noch nicht voll

befriedigend gel¥st.
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Im letzten Beitrag wird schlieBlich der Sonderfall der nicht-
linearen Kombination von extremen Einwirkungen im Rahmen der

vorstehend angedeuteten Ansdtze studiert.

Alle Beitrdge sind als Einzelbeitrige abgefaBt und daher
getrennt lesbar.

Die vorgelegten Arbeiten sind im Rahmen der Teilprojekte
A5, C1und D 12 des SFB 96 "Zuverlédssigkeitstheorie der
Bauwerke" durchgefiihrt worden.

Miinchen, April 1978 Die Verfasser

BER EBPACE

This report collects five contributions on the theory for
the calculation of failure probabilities of structures. The
first paper "Non-Normal Vectors in Structural Reliability"
is based on a presentation of the first named author which
is printed in these series (report No. 14). The present
version illustrates the state of development of first

order reliability theories within SFB 96,

The second contribution "Quadratic Limit States in Struc-
tural Reliability" contains an essential generalization of
towards a second order reliability theory. Earlier studiés
have been published in report No. 21 (Rackwitz, R.:
Quadratic Limit State Criteria in Structural Reliability),
report No. 22 (Neumann, H.-J.; FieBler, B.; Rackwitz, R.:
Die gendherte Berechnung der Versagenswahrscheinlichkeit
mit Hilfe rotationssymmetrischer Grenzzustandsflichen

2. Ordnung) and report No. 25 (Neumann, H.-J.: Methoden zur
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Berechnung der Versagenswahrscheinlichkeit). Herewith

the major problems in the second order reliability theory
can in a certain sense be considered as solved in the
authors view. The proposed methods are realized in com-
puter programs and are available for further applications.

The third and fourth contribution are a first attempt to
apply the concepts of first order reliability theory to
structural systems which can fail in different modes. A
suitable formulation is given. However, it requires

the evaluation of the multi-dimensional normal distribution

which is not yet solved satisfactorily.

The last paper is concerned with non-linear combination
of extreme loadings as a special case of application of

first order reliability concepts.

No attempt has been made to avoid repetition in tge diffe-
rent contributions so that they can be read separaﬁiy.

The foregoing studies are part of the projects A 5, C 1
and D 12 of the SFB 96 "Structural Reliability").

Munich, April 1978 The authors
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Abstract

Informative probabilistic reliability assessments for
structural facilities require the prior choice of proba-
bilistic models for the uncertainties, particularly their
distributional characteristics. In principle, multi-
dimensional numerical integration is necessary for the
calculation of reliabilities which is rather tedious as the
type of models for the uncertain variables becomes more
complex and their number increases. Therefore, suitable
approximations are in order. The well-known second moment
reliability method as proposed e.g. by Hasofer and Lind is
generalized to take account of any arbitrary type of dis-
tribution of the uncertainties by means of a discrete

first order transformation into a normal distribution. A
suitable algorithm is presented for finding the appropriate
point of transformation. The method is applied to some
extreme cases of limit state functions. The possible error
of the approximative method is calculated. It is proved
that the inclusion of second order terms for the expansion

of the limit state functioncan yield results which are i
in

error only insignificantly.

Introduction

ba

to direct design of struc

one of the major problems in the application of probability

sed design methods to the elaboration of design codes Or
tural facilities is to develope

an efficient method for determining the probability of not

exceeding a given structural limit state. If X is a para-

meter-invariant vector of n basic uncertain variables such

as actions, dimensions and strength of materials with joint

distribution function F(x), then the failure probability

P, = b= dF (x) (1)
{D}

is the complement to the probability content of the safe

domain D which is separated from the unsafe domain by the

function describing the limit state. Analytical solutions

of (1) exist only for a few special cases concerning the

distribution function F(x) and shapes of D and, therefore,

are of minor practical interest. The following study deals

with an approximate calculation of the integral (1) for

hapes D of the

arbitraty distribution functions F(x) and s

safe domain.

First Order Reliability Methods

Recently, approximate "first order reliability methods" as
Hasofer/Lind (71, paloheimo [10]

proposed by pDitlevsen L2k,

and Veneziano [11) reduced the fundamental problem of multi-

grationtoa numerically much simpler

dimensional inte
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problem of mathematical programming. Let the vector

) be represented by its mean value vector

B (XKoo Xy s X)
: AR - S ngd -~ |

M, = E[X] and by its covariance matrix E§ = E[(X-E[X])

(;-E[X})T].Then, there exists an orthogonal transformation

such that the components of X become uncorrelated yielding

a new variable vector

Y = R.+X (2)

with the rotation matrix gT and the matrix of Eigenvectors R

- T :
of Lyr the mean value vector E[Y] = R « E[X] and diagonal

covariance matrix EY - BT Zx R. If the vector Y is stand-

ardized by

(3)

with DiYil representing the standard deviation of Yi’ P

ElZ.]=0 and D[Zi]= 1 and so EZ = I (unit matrix). The so-
l R

called safety index B can be found by minimizing the dis-

tance b between the limit state function or failure surface

in the formulation g(z) = O and the coordinate origin

B = min b = min { ET z} (4)

z €{g(z) =0} B
The point representing the smallest distance is denoted by
the "checking" or "approximation" point E*- Several authors
consider B a convenient reliability measure since further

information on the stochastic characteristics of X is dis~-

pensable or may not be available.

The informativeness of B about the reliability in terms of a
probability statement, however, remains poor and is of the
Tchebychev-inequality~type [11]. More precise statements can
be made if distributional assumptions on the components of X
are adopted. For example, assuming the vector X being a
normal vector and g(z) = O being continuous at the point where
eq.(4) is satisfied, the safety index B produces two useful
and simple reliability bounds when approximating the actual,
generally non-linear failure surface by either a tangent
hyperplane or a supporting hypersphere. For well-behaved con-
vex safe regions the failure probability Pf is, then, bounded
by (see Veneziano [11]):

2t allee P,
LRl Sl s e S (5)

Herein, Xi(.) denotes the chi-square distribution for n de-
grees of freedom whereas ¢(.) is the invariate standard
normal integral. Essentially, these bounds are related to
pure normal uncertainty vectors. In practice, though a
lower bound, the right hand side limit frequently yields an
accurate estimate of the failure probability Pf.
If the uncertainty vector is log-normal, a simple trans-
formation z + u : u; = 1n z; for i =1, 2, ..., n reduces

this case to the normal one [3]. Of course, the limit state

function now has to be formulated in the new u-space.
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However, many uncertain phenomena are only poorly described
by either the normal Oor log-normal model. It is also known
that the results in terms of estimates or of bounds to fai-
lure probabilities significantly depend on the stochastic
model adopted for the basic variable vector. A generalization
towards non-normal models would, therefore, considerably

increase the applicability of first order reliability methods.

Review of Extensions to Non-Normal Distributions

Paloheimo f10} approximated a non-normal distribution by a
normal distribution having the same mean and the same p_ - or
f

(1~Pf)—fractile. Setting

X -~
P=¢(E—) = F(x_; o)
ag p -

(6)
it is by solution for the new standard deviation o
X —-u =1
g ?1 e f  (P30) =1
¢ (p) +~ " (p) >

- 24 ; ;
where F '(.) is the inverted Non-normal marginal distribution

with parameter vector ©, ¥ the mean value and ¢—1( ) th
. e

inverted standard normal distribution function

bability P

gr if the variable is 4 resisting variable

Ditlevsen [3] suggested a similar approximation to the dis-
tribution of extremes of independent normal variables. Again,
the approximation is chosen such, that the new normal distri-
bution fits the non-normal distribution best in the vicinity

of the fractiles corresponding to the target failure (survival)
probabilities. Alternatively, he proposed to fit the non-normal
distribution by a normal distribution having the same values

in two different extreme points but, again, with no strong

arguments for the choice of these points.

Lind [9] verified the basic idea of applying a continuous
mapping which transforms a non-normal distribution into a
normal distribution. For example, if the basic uncertainty

vector X has independent components with different distribu-

tion type it is:

A |

x+u: u = h(x) = ¢ [F(x; 9) (9)

This idea is, no doubt, implicit in many of the earlier works.
The approach is formally appealing. The transformation (9) is,
in general, not elementary. However, eq.(9) can easily be
applied in computerized analysis where distribution

functions and their inverses can be given by suitable series
expansions or rational approximations [1, g8]. In each but
Lind's approach the aforementioned probability bounds are no

longer valid.
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Linear Approximation in the "Checking Point" - Independent
Uncertainty Vectors

Since the checking method described before employs one single
point on the failure surface it suffices to apply ed.(9) in
that point, only (see fig. 1). Following Paloheimo's idea,
eqg. (8) can be improved by taking the value p at the checking
point, giving the transformation

x+u: u = %{;E—i—‘ ¢_1 [F(x*; 9)] (10)

which is linear in x. The checking point must be known. Alter-
natively, the mean y might be substituted by any other appro-

priate central parameter, e.g. the median {I of F(x).

xsu: u = -El;l% 6" [F(x; O] (10a)
It is obvious that these expressions give a correct mapping
only with respect to the value of the distribution function
at point x*. A discrete mapping ought to be accurate in the
vicinity of the checking point x, as well. Hence, it is proposed
to linearize the mapping function (9) in the checking point

e.g. by taking its Taylor expansion up to the linear term:

. ., < :
S ) o et ¢ xext) 2 GG

= ¢ (B pixxt) - Bl : (11)
P T nTe)))

The variable U is then a standard normal variate. In the ori-

ginal space, it has mean

L xSV M O (12)

and standard deviation

v o (r(x*:0))
9 f(x*;o)

(13)

This linear transformation is equivalent to adjusting a con-
tinuous non-normal distribution to a normal distribution
having the same cumulative probability and the same probabi-

lity density in the checking point.

X, '
|
|
| acc. ¢g- 11 —
g=< 20 |
iy i
Py a .
~ l u
I' ﬂ
7 a¥es | =
x" i 1 1 2y,
|
|
|
T T % a7+
1 f 1
t(X,) = 0.5

normalised and
standardised space

original space
Figure 1
In fig. 2 the different methods as expressed by egs.(8), (10)

and (11) are illustrated for the simple one-dimensional case

of an extreme value distribution type I.
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c;‘ The hyperplane H approximates the failure surface in the
point 9* obtained by applying the transormation (9) in the
© // same sense as the original linear approximation of g(x) = O
? i (see fig. 1). Therefore, it can be said that the linearized
% ; 5 E transformation (11) is exact within the first order theory
~3 | | f
2 | § 1 under consideration. It is also obvious that a similar argu-
| :
il ; ; 8 i ment holds for the approximating hypersphere S.
& §hok = -
o~ s o4 t 5 ) S P
Qi ~ 3l 13- '3 r'g ; ° :
e i e o A Suitable Iteration Algorithm for finding the safety Index 8
i | +
o | | u )|
o % i s i T E s The point by point transformation of non-normal distributions
P = ™ { | 4 [ s
o | | | a —
! ; : ' | | 4%7/ 7 e X into normal distributions can easily be incorporated into
= |
ohe = E | = ' = s
= s = ' i /// § ,/// S a suitable algorithm to find 8. Usually, the checking point
@ D e + Rk (!
e, = = | 2 0
o x| 5 -5 Q E in unknown beforehand and must be found by iteration.
g g g' 8" e + & o
+ o
o 3 = © P
§ 88 = Sl -
© a3 33 3 % .9 | 0 A possible iteration algorithm is the following:
B E E e a 3] =~ 5
g NS Lt i
S 6 O '// G g¢/’/ o+ 1. Input: failure surface g(x) = O
(oA « TR o1 2 + s
o . | -0
& g & o // | A E 5 %E 1% tg gfg ; mean value vector M,
B ] — o pat
/' / | 5“*;’{ 5 0 distribution type(s of components)
i ; — Moo
f. / /’ | gﬁ-—c &ro | . 3 3 »
A ORI Tl | initial values X
o~ £ /_/ 4 -Ui © Q |
g -+ o 0w e :
4/ ok = ) i
: %O 0 0E i
// / / 8 'é’ 1 . T G e 1 =
- ol Al - 1 2. Normalization x»u by an approximation to u=¢ [F(x)]
s J’/ T e - e i o
3T ot S | G e - in x* = u* according toeq. (11).
1 i o™ — -
® 2 © © e o e @ bob :
/ i 1 ! f 1 | 1 i T gL 5’
— i — — — g - — — — Fxy
// 3. Standardization 1
// 4. Transformation of g(x) = O into g(u) = O using the

results of 2. and 3.




5. Calculation of direction cosines of search direction by

i 2Tl 0 21=-1/2
R T
B d 3g i 4 :
with §% - §§ «+ o' and ¢' according to eq.(13) (see appendix B)
6. Calculation of b(i+1) from
g(u") = 0 with u" = m(1+1) ; b(i)

7. Inversion of standardization and normalization u-»v-+>x

8. Output: Checking point x ", safety index 8 = b(m)

If the result at step 8 is unsatisfactory, the sequence of
steps has to be repeated from step 2 downwards until conver-
gence is reached. Obviously, the main iterative improvement
occurs in the consecutive alteration of the vector of direc-

tion cosines a for the distance b. Other methods are possible.

To be convergent the algorithm requires local differentiability
of the failure surface as well as local continuity and monotony
of the original density function. The latter condition is
sufficient to yield parameters of the approximating normal
distribution which are monotonic functions of the checking
point. In practical cases of any dimension with continuous
failure surfaces and distribution functions deviating not too

far from the normal, excellent results have been obtained (see,

for example [3] to [6]).

The search for B becomes numerically more complex if the
original failure surface has several local minima or if the

original distribution function is discontinuous and/or its

density function is locally non-monotonic, e.g. in case of
multimodal distributions. For the latter case, the search
for all local minima may turn out to be guite cumbersome.
The iteration may even diverge depending on the relative
position of a mode and the approximation point. Applica-
tion of the rougher approximation eq.(10) may help in some

cases which also holds if the distribution is discontinuous.

Accuracy of the Method

The accuracy of the results decreases as the number of
loading or resisting variables having very skewed and/or
limited distributions increase. The convexity properties

of the safe domain may be modified.

In order to check the accuracy of the method comparisons
can be made with a few results form exact probability

theory. To avoid additional influences the following linear

l1imit state surface is chosen

n
¢ C Ry iRl (14)

in which C_ is a constant derived from the reference case of
n

jdentically normally distributed variables. Let the constant

. 1] : %
uy £ 8 Oy /n and the X,'s be some identi

be defined by Cn =n-
cally distributed random variables. B is the pre-selected

safety index. For rectangular distributions with probability

density

1/a for O = x = a

(15)

]

f(x)

0 elsewhere




S U e
u
the distribution function of X = X; is [8]
i=1
1 S P £ n , ( )
Ely) = — J =Ty ly-ve a) 16
a n! v=0
and, therefore,
Bes 1.5 E(C)

For sums of gamma-distributed variables with probability

density function

’

ax) exp[-ix] w0

T (k) (17)

£(x) =4

LO X D

the type of distribution is retained but with parameters A
and n -k [8]. Remember that k = 1 corresponds to the
extremely skewed case of an exponential distribution. In

Figure 3 some examples are presented for 8 = 3.

One recognizes that only in the exceptional cases of the
rectangular and the gamma distributions with, say k<5, the
approximate method results in significant errors. They
increase with the dimension of the basic variable vector. The
maximum error associated with each type of distribution
function approaches a limit which in using the Central Limit
Theorem of probability theory is found as follows. For

symmetrical reasons and from eq.(14) the exact approximation

point is known to be xi”= Cn/n TOr ‘go= 1. 2. er N, There-

fore, the limiting approximate failure probability can be

derived from

A 16g (ﬁze;)
1 0_ Ptxuct
3
linear expansion
== === quadratic expansion
\ ~=—.== central limit theorem
0,5- :
\\ a uniform distribution

-05-

L)

~1,0 -

=lD ]

gamma distribution

Fig. 3: Approximation errors as a function of ;

dimension n for sums of uniformly and :
gamma-distributed variables Ya f r S




Second Order Expansions

r

; ]
Vi=i®ilim {u }|

ii‘ippr ‘nhe S (18) A significant improvement can be achieved even for those
AN exceptional cases if a "second order reliability theory” is
o anIn- T used (see Fiessler/Neumann/Rackwitz [5]). Let the checking
T Yo -ao' (19) point be found according to the procedure just described and

let the limit state function be locally continuous and twice

L ] 7 .
» 9 by expressions (12) and (13) differentiable. Calculate the matrix G, of second order

derivatives of the limit state function in the standardized

and normalized space (U) in that point (see appendix B).

u =+ /n :,&‘_],pF(‘. = B.UX ]
R o St e B (20) Rotate the coordinate system into a new system (R) with the
S vn -
is obtained. same origin such that the new rn-axis is parallel to the
A safety index vector (see fig. 4). Then, the n-1 principal
€nce, proceeding to th imi
e
. | limit one reaches for Symmetrical curvatures ki of g(r) = O are obtained as the Eigenvalues
distributions with F(.)=0,5 for :
: Do divided by the gradient of g(r) = O in r of the matrix
R of derivatives gr where the n-th row and column are de-
lim ‘Lun; = frfy‘;.ﬁ'g £(u ) =
n-+ow X X (21) leted. With
which is independent of
n. For asymmetrical distributions the Be? v B }
fimit | ither - e k = min {k,} or k = max {k, (22)
it 1s either > Or =, However, this i=1 * 1= .
result does not seem 8 ”
to be a serious 4 i
rawback since such sums of identically dis-
tributed excessively non-normal variables rarely occ i T
uyY . 1in
practice. Moreover the inf1
’ uence i : :
i ce of resisting variables, n-1 2 - | 2
€ distribution functions ) + (8 DR S Nl 23
SFiin Q s s § (23)
1ch frequently are skewed to j=1 1 B k2

can be set. For convex safe regions (k <0) a circumscribing

OPposite signs, compensate each other (Q = R;ax) or inscribing (Q =Riin)hypersphere can be defined.
LN The random variable Q is said to be non-central chi-square
i oo g e
2 U R )'ﬁ? % distributed with n degrees of freedom and non-centrality

parameter 6i = (R - 8)2. Thus, the failure probability is
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the limit state function

2
n,§

P, = 1 ~ X% (R%) (24)

Inserting the minimum or maximum radius R eq.(24) yields

two bounds to the true failure probability. The non-central
chi-square distribution can be evaluated by using expansions
as given, for example, in [1] or [8]. When applying eq. (24)
to the limit state function (14) one recognizes from fig. 3
that a second order reliability theory is in error only in-
significantly. The hypersphere shows excellent agreement
with the exact results. It can be proved that more general
quadratic forms yield results even still closer to the

exact ones (see [5]).

Conclusions

The discrete safety checking methods as proposed by Hasofer/
Lind and others can be generalized with respect to arbitrary
distributional assumptions for the basic uncertainty vector.
In essence, non-normal distributions are approximated in a
first order sense by normal distributions in certain checking
points. In general, the accuracy of the method is sufficient
for engineering purposes. A suitable iteration algorithm is
presented to find the appropriate checking point. As an
alternative a second order reliability method is proposed
which appears to be in error only insignificantly but re-
quires continuity and twice differentiability of the limit

state function.
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Appendix B: Transformation of Derivatives

» e P and
If X is a non-normal variable with the distribution function F(x)

LE

the transformation

i d
3g/9x is the derivative of the limit state function an

(B.1)

i i ar
is applied to independent variables X it is from elementary

calculus of differentials

3¢ (u) -1
3 °{¢ [F(x)]} _ 39 _ &
X 9 au ad ’
%% = %% . %G 5 3% aF (x) ox f (x) ax
ax

' i 13) . Further, the
where o' is identical with expression (13)

second derivatives become

2 ] 90! :
azg a(ag/ax.ol)-éﬁz _a.._gno‘ +%—g'a—xjg
20 X au =
ou
3(@{¢-1[F(x)]})
2 3 f(X) g!
= {3_% gr F 3% ax }
X
af (x) -
2 “1 3}{ i }ol
X o =
and
azg i g 7.
U, dU. Bxiaxj i j

It is noted that evaluation of

derivative of the probability density function ol 673 5

(B.2)

(B.3)

(B.4)

(B.3) requires existence of the
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Appendix C: Notations

£4.)
g
)
g(.)
M, M
P

Py

X, 'K
8

g

z
Vi)
¢(.)
2
X (.)

probability density function
probability distribution function

inverse probability distribution function

limit state function

E[X], E[X] = mean value (scalar or vector)
probability

failure probability

uncertain quantity (scalar or vector)

safety index

D[X] = standard deviation

covariance matrix

standardized normal pProbability density function
standardized normal probability distribution function
inverse normal Probability distribution function

chi-square Probability distribution function for

n degrees of freedom
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Introduction

Abstract
The computation of sensitive reliabilities for arbitrary

Second moment methods are widely applied in structural ' by
structural problems in principle involves the evaluation

reliability. Recently, so-called first order reliability
of a n-dimensional volume integral. If, for example, X is

methods have been developed which are capable to produce
a vector of time and space independent uncertain variables

reliable estimates of the failure probability for arbitrary : %
with joint distribution function F(x), then the probability

design situations and distributional assumptions for the . :
of failure is one minus the reliability,

uncertainty vector. In essence, non-linear functional

relationships or transformations are approximated by linear Pf i b S e (1)

Taylor expansions so that the simple second moment calculus

is retained. Failure probabilities are obtained by evaluating | with D representing the domain in which the structure operates

the standard normal integral being the probability content ' in safe states. The surface which separates the safe and unsafe

of a circular normal distribution in a domain bounded by a domain may be denoted by the limit state or failure surface

hyperplane. which is taken to be associated with some given utility loss.

Numerical integration over some arbitrary safe domain generally

In this paper second order expansions are studied to turns out to be rather tedious if feasible at all so that
approximate the failure surface and some results of the simpler methods have been developed. An effective method has
Statistical theory of quadratic forms in normal variates been proposed by Hasofer and Lind [1] and others. In its

are used to calculate improved estimates of the failure original form it reports reliability in terms of the safety
probability. Also, close bounds on failure probabilities index B and makes use only of the first and second statistical
are derived. Some numerical studies indicate when the moments of the uncertainty vector. It is a discrete point
application of the "second order reliability method" as checking method, measuring the minimum distance between the
proposed herein is in order. boundary of the safe domain and the mean of the uncertainty

vector in terms of standard deviations of the function des-
cribing the limit state. Certain extensions to include more

information on the stochastic nature of the uncertainties

have recently been developed (7, 10].




- 26 =

The method has been applied successfully to a number of

engineering problems. In spite of its conceptual simplicity,

practical examples usually require the use of computers which,

however, is mainly due to the complexity of the mechanical
pProblem to be dealt with. In some cases the results have
been checked by numerical integration displaying inaccurate
results only for some exceptional design situations. In the
following, another simpler method is proposed to examine

the accuracy of the "first order reliability methods".

Critics of Present First Order Reliability Approaches

Some objections have been raised against the informativeness
of the Hasofer/Lind safety index B on survival or failure

Probabilities. Even if the vector of uncertain variables X is

an independent unit normal vector which always can be achieved

through appropriate transformations the safety index does not
take proper account of the particular shape of

1
seed7 bhor 4431 . an general, the relationship

of the limit state surface at the checking point Rty dg
: . ) e |

the univariate standard normal integral. 1p this presentatio
n

the checking point is simply the point x* on the limit stat
ok ate

surface in the formulation g(x) = O which is nearest to th
o

coordinate origin. The inequality (2) is valid for co
nvex

safe regions. In pra tice =
practice, P. =1 ~ $(B) ig frequently used

as an estimate for the true failure probability Anoth
- Another

the safe domain

equally elementary and fairly conservative upper bound has

been given by Hasofer [2]

o s o Gty
P o) (3)

Xi(.) is the chi-squared-distribution for n degrees of free-
dom (equals the dimension of the random vector X) . This bound
corresponds to a supporting hypersphere which substitutes the
true failure surface. It is immediately recognized that in
this case Pf depends on n and hence the safety index B is no

more dimension-invariant (see also [13]). Depending on the

values of n and B8 both bounds are not always sufficiently close

so that, in fact, the aforementioned objections apparently are

justified; at least as long as the range of application of
the simple reliability approach described before is not
clearly defined. Several improvements to the method have

recently been suggested by various authors.

Ditlevsen [1] developed sharper bounds for the true failure
probability by calculating the probability content of in-
scribing and circumscribing rotational paraboloids. Those
involve a convolution of a normal with a chi-squared variable
and will be explained in more detail in the sequel. Recently,
Neumann/Fiessler/Rackwitz [8] investigated further approxi-
mating quadratic forms with rotational symmetry and gave
suitable tables. The additional forms investigated are the
hypersphere with the same (minimum or maximum) curvature in
the checking point leading to the evaluation of the non-

central chi-square distribution and the rotational ellipsoid




or hyperboloid both again involving operations with non-
central chi-square variables. Simple numerical integration
is likewise required in the latter cases. Horne and Price [4]
investigated the error in the failure probability given by
eg.(2) by studying an approximating hypersphere with radius

corresponding to the mean curvature in the checking point.

If the safe domain is of a certain well-behaved shape, at
least in the neighbourhood of the checking point, these
rotational forms clearly yield sharper bounds for the true
failure probability. By taking the mean curvature one also

arrives at better estimates for the failure probability than

those obtainable by use of eq.(2) or (3). However, the limit

state surface now must be continuous and twice differentiable

since the second derivatives are used as additional infor-

mation about the limit state surface. This is a more or less

severe complication of such approaches. Also, physical rea-

soning must be used to choose among the parabolic, elliptical

or hyperbolic form.

For convenience, we denote the method involving second
derivatives by "second order reliability theory"; in contrast
to its well-known "first order" version aﬁd exact reliability
methods. In the following it is shown that there exist exact

non-rotational quadrics whose probability content can be

evaluated without undue difficulties in most of the cases.

Thus, their application may be recommended in all exceptional
cases and primarily to check the results of less accurate
methods. The results on quadratic forms in normal variables
given below are not novel from a statistician's point of

view but appear to be applied here for the first time to

engineering problems in more detail.

General Derivation

Assume that a given limit state surface is twice differentiable
in the neighbourhood of the checking point P* in the stand-
ardized and normalized coordinate system (X) of basic uncer-
tain variables. Also, let the vector X be an independent and

uncorrelated normal vector.

Thestandardizationrequirestheoperationxi:=(xi—E[xi})/D{Xi]

whereas normalization is achieved by the transformation

=

X: =¢ {F(Xi)} for all components of X with E[Xi] the mean,

DLXi} the standard deviation and F(Xi) the distribution {;]
function af Xi. The direction cosines of the location wvectc

of P* are given by the vector o (see fig. 1). - Expand the

.T62
limit state surface g(x) = O into a second order Taylor series
about P".

n
1 vl g
g{x) mogla’) b de J SRUEL Gl iy
I gy 9% L B3
i=1 i X
-
n 2 : 2
+ __1_,1 5 0 g(x) (}&i"x ) o (4)
2t & 2 B
Li=1 3xy |x
ngi ? o2 (%) - g
*F 1 = (x,-x. ) (x.-x.)} =0
=1 jui+r 0% 9%gpe 1 10T T




Or in matrix notation after some rearrangements

SO Gpe e T 4
R Y g T (xx") +2:g(x") =0 (5)

where G i 3 1 X ]
G, 1s the matrix of second and mixed derivatives and

¥ ) e :
g, the vector of first order derivatives.

Eg. (5) constitutes a general quadric which easily can be
brought into one of the standard forms in a new coordinate
system (Z) by certain linear transformations (see appendix B)

If 5 . y
the n-m variables occuring only in linear terms are denoted

~

by 2, it is:

N (zi-@i) = (6)

or

in which Aot ]
the A;'s are the eigenvalues of the matrix G and

¥ - 1
the ©; S are the non-centralities in the Z-coordinate system

whereas the constants
K1, K2 and ki’ respectively, are deter-

A's are
greater than zero the quadric is denoted by a positive

definite. The positive definite case of eq.(8) clearly is

O ( -lf 2’ r 6 ) a d

semi-axi K.7) Ve 1/2 '
R T R TG L K 8V

X . . .
S are zero, cylindrical forms are obtained

. If some of the

The indefinite

case is for A's wi ' '
with different Signs. Further detailed classi-

fications are given in appendix B

Since the 2's are standardized uncorrelated normal variables

new stochastic variables W and V can be defined by:

M -
» G §

=
"
I~
-
S

<
i
~

)

(8)

n r -
¢ & ol %, =K
A, (2m60% 4 izmki 1 2% (9)

Obviously, the variable W is a linear combination of non-

central chi-squared distributed variables while the variable

vV additionally contains a linear combination of normally

distributed variables. Therefore, the distribution function

of W is simply the probability content of a spherical normal

distribution over a region defined by eq.(6). A similar

interpretation holds for the variables V. It follows from

the definition of the safe domain in either of the forms

g(x) >0 or g(z) >0 that the probability of failure can then

be estimated by:

P. = P(W:>K3)

o
I

P(V>K2)

]

1 - F(K,) (8a)

1 = FylK,) (9a)

Thus, the probability distribution functions of W and V must

be known.
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The Distribution of W and V

—————— T —————————— ——— - —

General

Quadratic forms have received much less attention by sta-
tisticans than other problems involving normal variables.

The statistical literature on this topic is exhaustively
reviewed in Johnson/Kotz [6]. However, only few of the results
available are useful in the context of structural reliability.
They require the use of a computer which in the light of its
necessity in non-trivial engineering applications, anyhow,
appears to be no serious obstacle. Since most of the readers
may not be familiar with the theoretical results on quadratic

forms several formulas are given below.

The Positive Definite Case for W

In analogy to the non-central chi-square distribution which
can be expressed as mixtures of central chi-square distri-
bution with weights given by the Poisson density, Ruben
[11, 12] showed that in the positive definite case the dis-
tribution of W can be given as a mixture of chi-square-pro-
bability functions. The distribution function has the

expansion

ST o 2
F(w;\,8) = j£0 e 'P[Xn+2-j< w/k] (10)

wherein ) is the vector of coefficients Ai’ § the vector of
deviations from the origin and «(> 0) a suitably chosen con-

stant. Here, n is the dimension of the basic variable vector.

]
The ej's can be obtained from

T VS ———

A e

t n
(1-K/7\i) T E KN
1 i=

2 5 =1
(83/2g) (=e/2y) (13)
and
O'= %' min A (14)
(1)
The series (10) is uniformly convergent over any finite inter-
val of w. Ruben also gave the following bound for error in

truncating the series (10) at the N-th term (see [6)] or [11H)

v 2
¥ eﬁ .Pl:Xn+Z.<w/Kj,
J

I‘(%n+N) N

1
= e ——ifﬁ___ * 55 (1+4M); '8 ).p X s = (1-M) w/x (15)
T (3n)

1 n
where M = 53¢ ) (Gz/A.)-i-max|1—nc/A.| for MLy &
2 o : s © : i
i=1 (i)
It is, therefore, particularly useful for computerized

evaluations.




The Indefinite Case for W

Another qui
l =3 =2 s - F
Juite general and useful expression for t}
2 ; ; 1¢ inde-

finite
- Case as well has been derived by

Imhof [5]. The

@ solution of I 1S se n Y f ac-
mhof is based on an inversion of the ct
. f e charac

teristic fu i
nction of W. The characteristic function of w

1S given by (see Johnson/Kotz [6])

exp {1i -

he—o
I

18] Bl
. DO
.

e

[ and the distributj
| ution function of -
of W is obtai m
ned fro

e o]

l r t_] I =ity
m g e ot)} dt (17)

0]

2

eq.(17) can be evaluated by

oo

P(W>x) =4 + 1 [ sin0(u) .
jaarsipn
5 ) (18)
with
n i
O(u) =1 7 | &
et tan " (A..u) 4 2 {
=1 1 ? Ag 5 ul1+) 42)-h
J"§X-u(19)
( n :
EeRl ™ 1 (T ) -l12)1/4 e ]
=1 3 73 (1 +25:u9} (20)
For u » o we have
¥ lim S5inO(u) B ,
us0 U-o(m) =7 § A (1462 _ 2
i§ j=1 J j 7 X (21)

T e e

Note that eq.(18) must be evaluated by numerical guadrature.

The truncation error of integration can be bounded from

the above by

5 n n
=J.J sino (u) e : k 1/2 1 b SHW fdtar
[tUI \ﬁ T D(u)du - Ln kU _r__injl expf3 E 5j Aj U
U i=1 el
2" Brade e
(1425 U )} R ) |
. & B
with k = 5 |

From the integrand of formula (18) it is obvious that the

integral converges although the sinus operation in the

nominator indicates an alterating convergence. The authors

agree with a conclusion of Imhof that a simple trapezoidal

rule applied to a sufficient number of steps and starting

with the value given by eq.(21) is a convenient procedure

to keep both the relative quadrature and the truncation i

error sufficiently small. The same author also obtained

the density function t
1

cosO (u)
o) O (23) |

f(x) = %

) Mrriin,

in which the same expression (19) and (20) are valid. Imhof's

formulas hold for both the definite and indefinite case soO

that it might be used throughout. Finally, it is mentioned

that for small failure probabilities the formulas by Press [9]

may be preferred.
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The General Parabolic Case

From egs.(8a) or (9%9a) it is seen that the variable V is the

sum of a normal variable Zn and a variable distributed like

W but with fewer degrees of freedom, say m. Therefore, to
obtain the distribution of V it 1is necessary to convolute

a W-variable with Zn. It is

+ o0 v
" .
F(v) = J } G(zn) fw(t—zn) dt dzn
\ 2o
= j u(zn) Fw(v—zn) dzn (24)

in which ©(.) is the standard normal density and FW(.) the
distribution according to the foregoing two sections. Note
that the non-centrality in W can be omitted in certain cases
which further simplifies the expressions in an easily recog-
nized manner. Formula (24) generally must be evaluated by

an appropriate method of numerical integration. Since

the evaluation of FW(.) generally already involves numerical

integration a normally less time-consuming alternative to

eqg.(24) is !

F_(v) = | o¢(v-w) fw(w) dw (25)
in which ¢(.) can be evaluated by one of the well-known
rational approximations to the normal integral and fW(.) is
given by eq.(23). In some cases, however, the integral (23)
does converge quite slowly which is obvious because u is
missing in the denominator of the integral (23) (compare

with expression (18)).

Special Forms with Pre-Determined Principal Axis

It is possible to use other quadratic approximations to the
boundary of the safe domain g(x) ® O whose probability con-
tent can be calculated much easier in some cases and, there-
fore, shall be studied in some detail. In essence, such forms
are set by preselecting the direction of their principal
axis. Their curvatures in a nodal point are chosen such to
comply with the curvatures of the original limit state sur-
face. But, it should be clear that such forms may give an
increasingly worse approximation to the true failure surface

as the distance from the nodal point increases.

For example, let the original coordinate system (X) be rofated
into a new system (Y) with the same origin such that the

point P* is on the Yn*axis and has coordinates (0, O, ...

(see fig. 2). Then, calculate the second order and mixed ;7%
derivatives in P* and rotate the system (Y) about the Y -we
axis such that the mixed derivatives vanish (see also [1}rwad
The new system has coordinates 210 Zos <o B =Y o Conse
quently, an approximating quadric derived from the remaining
diagonal (n-1) matrix of second derivatives has the same

principal curvatures in the point P* (for further details

see appendix C). Then, either of the forms

!
= ;
nZ1 P 22 g o S ¢ il )2 = 1 (26) |
i=1 : (R | N on e |
or
n-1 "
1£1 Py #y = lmnog) m (27)
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can 3 71 B
be set with the coefficients pi simply related to the
curvatures in point p" (see appendix C). Analogically to
the section for general quadratic forms the left hand part
Oof egs.(26) and (27) represent a function of central or
non=central, linear or Squared standard normal variables
Since egs. (26) and {27) are POssible approximations to
the true failure surface, the probability of failure is the
pProbability of a unit, uncorrelated normal vector falling
Outside the domains defined by egs.(26) or (27). Hence th
: ! | . He i e
ormulas of the Preceding sections likewise may be used to
estimate the failure Probability. It is noted that they
simplify to a certain extent since only the one non-cen
trality ] .
= Y parameter 6n 1S retained. As mentioned before, the
| ice of either a complete quadratic form or a paraboloid
1S now somewhat arbitrary. Information on the connectivenes
s

of the safe 4 i
omain and its con i
Vexity propertie
S may be used

to select the appropriate one.

Hyrt
yYperspheres and Rotational Paraboloids

M p

or (27) are simplifi
Plified towards i
rotational surfac i
28 with the

rotation axi a3
s being the 2 —axis. The
& nodal curvature may be

an } = a S p
) ]. S

k)db .1 y > -

n - ;)
Y'

Although rotational ellipsoids or two-shelled hyperboloids
can principally be handled with the material presented in
the foregoing most gain is achieved if one concentrates on
two elementary forms, the hypersphere and the rotational
paraboloid, respectively. The former is obtained by taking

the mean, maximum or minimum curvature so that the quadric

(26) becomes

] 22+ [z, - (Red)]” = R’ Sl

which is a hypersphere with radius R and centre at the

point (0, O, ..., O, R+R). If the 2's are unit uncorrelated
normal variables, the left hand expression of (28) is known to

be non-central chi-squared distributed with non-centrality

and, thus

parameter § = [R+8]

Similarly, the rotational paraboloid receives the form

v BTl

R ) z; - (zn-ﬁ) =0 (29)
If the 2's are unit, uncorrelated normal variables the first
term is chi-squared distributed and the latter is normal.
Hence, the probability of failure is the probability of a
chi-square variable convoluted with a non-central normal
variable being greater than zero. In using expression (24)

one arrives after some elementary manipulations at
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:
|

- e
P, = ( ﬂ‘~(i— |
| ol >R t4+B)Y]«f X LT at (3
0 x;—1 s
in which ¢ 1 is +i
¢l | is the standard normal integral d
> 1l an
f‘z(x) = T—L— .  (v/2=1)
2 T X « exp p—%) (31}

1s the density of
Nsity of ]
Y O a chi-squared variable wit}

do I
M. Though expression (30)

m
ust be evaluated by numerical

quadrature a
ccurat !
€ results generally can be obtaj d
ined quite

easily. Also
+ SOme tables are :
a\"allable in [ -I ]
L1] and [ o

Discussion and Examgles

A (; ner l 73 F) O 57
e a vView O I h
F:‘ n t e sa =

fo i
r various curvature

s 1 g l - g

.
o

Fi A .
igure 5 finally expresses the -

probabili -ty of ;
Probability versus the ahe the failure
i on-of x

th , and the
€ checking point for o CUrvature in
abilit

%
Y levels asg exXpressed

by B=3 and g =7,

1 Vv degrees of free-

These results indicate that there may exist significant

errors when simply using expression (1) . However, from the

authors experience only in extreme practical cases the

curvature of g(x) = O exceeds values of about 0.05. For a

simple example, take a tension bar with known load and random,

normally distributed strength and diameter. Figure 6 illus-

trates the corresponding limit state curves and in the

table below, some results for the plane, parabolic and

spherical approximation are given. It is noted that the

differences are negligible from an engineering point of

view. This conclusion also holds for the majority of more

complex engineering problems even in higher dimensions as

long as the uncertainty vector has distributions not too

far from the normal. But if the original uncertainty vector

has a distribution function which deviates significantly

from the normal originally sufficiently smooth failure

surfaces can become distinctively curved in the normalized

space. Then, the accuracy of simple estimates according

to egs.(1) or (2) may no more be sufficient. Rackwitz/

FieBler [10] have proved that adopting the foregoing

"second order" approach in the transformed space will

yield accurate probability estimates in almost all practi-

cally relevant cases. The use of quadratic forms appears

to be even more crucial in parametric cases, for example

for time-dependent reliability problems.

M —
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Appendix B: Quadratic Taylor Expansions

Eq.(5) can be rewritten as follows:

Gl i : T * *T
glx)=x" vG x+2x (g -G x)+x (L. 2g.) =0 (B.1)
In using the transformation Ex =PEA gT, X =T z and
- iy ; g, where T is the modal matrix of gx with T -TT =1
(identity matrix) and A = (Ai) the diagonal matrix of the

Eigenvalues of gx, one obtains the principal form where all

mixed terms vanish.
glz) =z"* p z+227(g, = A E*)'+E*T(Q E*"zﬂz} = 0 (B.2)

3

If gx is regular, that is Ay t 0 far.all L& 1. S B

eq.(B.2) represents a complete quadric. After applying the

linear translation z = z' + § which implies
§w 2% S g (B.3)
s Facs — gz >
-1 i ;
and, of course, A = (I/Ai), the standard form is constructed:
R Py e e
(2 = 0) A (3 =8).» ool B (B.4)
or
0 2
121 Ai(zi-ﬁi) = K1 (B.5)

J 1 g
with K1 = Qe il g, and which is the same as eq.(6) in the

main text.
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If : : :
Gx 1S singular, that is some of the A's equal zero (t}
- 1e

case where a : i
11 )\'s equal zero is of no further interest

since g(x) = i ] A
g (x) O is linear in each component of X) and the

corresponding eleme 3 ]
g ments of g, vanish, too, then Cylindrical

quadrics but with a smaller dimension.

&it-is A, = ‘
Z i O but gz,i T O. In general, it is

R i
B A9 28T g0 (B.6)
gt g .

¢+ Specifi-

1)} l p M . ) 4
A 1 l r h S da

£ >
orm (B.6) can be written in the form of eq.(7)

o n
S e N R
L 4784 im zi gzi - K2 (B7)
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convenience, the

For

components of 2 in eq.(B.7) have been

i

e

side of eq. (B, 7).,

Appendix C: Principal curvatures in the checking point P

Let the checking point P* with the vector of direction
cosines o be found by a suitable algorithm in the (X) -space.
There always exists an orthogonal rotation matrix T such
that the Yn—axis of the new coordinate system is parallel

to the vector a.

¢ ZT . X e

Clearly, the last column vector of T is the vector a. The other

columns may be found by one of the well-known orthogonali-

T

zation procedures. In the new system it is for the derivatives

Gy B O for i= 1, 2i .o .0 {(C:2) 1

The matrix G of second and mixed derivatives in P* is a
symmetrical matrix with the n-th column and row deleted. In
applying elementary results of dif ferential geometry, for example
the two Gaussian fundamental theorems for curves on n-dimen-
sional surfaces, the principal curvatures in P* are obtained

from the roots of the characteristic eguation.

det(—— G -k +I) =0 e
9y,n i

Then, the radius of curvature in P*with respect to the i-th
principal axis is Ri = 1/Ki. In order to establish suitable

quadratic forms with the same principal curvatures we set




(C.4)

Ul where § = (0, ©
| 6 Pk 3T ...,5n) and P is the diagonal matrix of

coeffici i 1 i
ients indicating the length of the semi-axj
—axis a, p
l/ai . 'The Semi-axis ai depends on the

f Curvatures by a2
3

il

I the relation p:, =
| i

‘| = an/Ki.

The requirement that the form

(C.4) has the Same gradient jin p*

as the origin
leads to p._ = g2 S
n ?

:h can be
calculat

! ed by using the aforementloned relationship p

| semi-axi i 0

| S and Curvatures in the nodal point i e

d 1s immedjia-

t : ia

1 ely deducted that

I

ii S Ki gxn

| i e nifard e 1

A Ly ne (C.3)

Of Course,

e

the radius jg given by R
i

E u - ’ 2
i -/
He
Xt

e

P's as given by (C.6) ang 8 =3
n " i -

L .
& AL DX ke g n e
Ly i {Ki} O k =max (i }
i i i3

i AT
Appendix D: Notations
a, QT column vector, row vector
A, QT matrix, transposed matrix
g(x) state function of x
Ny e random variables
_* location vector of checking point p*
o vector of direction cosines of checking point p”
B(X) expectation (mean) of X
D (X) standard deviation of X
P probability
Pe probability of failure
B reliability index
F(.) probability distribution function
£ probability density function
¢(.) standard normal probability function
¢_1(.) inverse standard normal probability function
() standard normal density function
Xi (central) chi-square distribution with n degrees of
freedom
Xi_a non-central chi-square distribution with n degrees

of freedom and non-centrality parameter §
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STRUCTURAL RELIABILITY OF REACTOR SYSTEMS

— b e

by

R. Rackwitz, B. Krzykacz
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Fig. 6: Limit state function of tensile bar

! Presented at the ANS Topical Meeting
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g fbd - In the following an attempt is made to reformulate the problem
1 of system reliability such that use can be made of a probabi-
a listic model for which stochastic dependencies can be handled
rav“er easlly. In fact, the only probabilistic model for which
this is true appears to be the multidimensional normal vector
‘ or Gaussian process. Many reliatility problems are independent
of parameters such as time or can be reduced accordingly.
Hence, an essentlal part of formulation will be the proper
trans’J+mau¢ of arbitrary models for the uncertainties into
1 normal vectors. In pa“tlcular, the formulation makes use of
I some recent results of "first order reliability theory" [1]
ii which, in essence, replaces multidimensional integration of
| probabilities by s*mplD algorithms in a transformed space of
| R A basic uncertain variables and by the evaluation of the univar-
i ABSTRACT iate normal integral. It will be seen that systems, instead,
rorkin n reactor systems require the evaluablo of multidimensional normal integrals for
Reliability analys ao;n‘~5 S P Compo- which some met are presented. The formulation to be followed
A ™ 5 4 . i -
should be COHEQ??EU nfers - CrMmor ﬁgefqei+ events. The thus further Apva ops several proposals made earlier, e.g. by
nent or mode i:;luﬂe? V:en ar :e. JiBptl aven = Moses [2] and Vanmarcke [3]. Finally, the el asslflcatLon of the
.,,»1 rtical and numerical tools for realistic system e A PN T 13
anadlytic I B £ states of a system which traditionally rests on two basic states, :
liability assessments i1n those cases are stall no . el g £ ; ;
apo y i i e lower or upper survival and fallure, respectively, is generalized towards a ;
vet ful velcped. The well-Known 1O yel rnanli 3 i + ol & i £ i
Je~_-u71¥ Q°:e‘”; ; ﬁ:f g guides for optimal mcr,-:al+s,¢caescr1pt*:n. The criteria for classification are %
14 a) 79+ ounds Aar 1V DOO = \.‘ < 1 3 . 1 .
rellabllilliy Dou Dh“'fio“:; 5” 7 E here is a large not purely physical or mathematical but include utility aspects
design decisions, particular.ly, % 3t insofar as states are ordered according to their potential
number of potential failure modes. Therefore, an 5 A s - £ . i - -
aumoe B e S anBipbk of so- losses when entered. This gives rise to consider not only the
alternative Iormulation within the : most unfavourable event, e.g. total failure with large conse-
called first order reliability methods is presented. " + e Rl st P i :
e .5 e i::;~14%a‘e Sitemmination of component quences but also to take account of losses due to intermediate
; :Eqi;gffftigg ;:y;vig;a; tné;;;ﬁnvaénon S8 hbh-niarnal partial failure which may govern the design in a2 number of
reliabiliti ¥ cal transliorm : g cases.
basic uncertainty vectors into normal vectors and by
P 2% . W a1 ]
. local linearization of arbitrary mechanical failure 11 COMPONENT RELIABILITY
. criteria. Component reliabilities then are simply : ; iy
the values of the univariate Torwal ‘ntegraltWLgh Let the mathematical model describing the "limit state” in
- ty index being the argument. Due : ST e e e ;
thetso cillfd Safeéén;;@gxce Opgh:Q d*’§e;er* sl ol which the component j fails to accomplish its intended function
: to the stochastic penden f ¢t 1t e ol wallh
i of failure, the calculation of system reliabilities Sa¥ y
{ requires the evaluation of multinormal probabilities, 2. % g {X) =20 (1)
| instead. Some numerical methods for vi 12 Pvaiuailo; J 3o
1 apa gHR Finally, the method is applied to Markovian : 1 : 1
i :Tebb;;eg%e‘;22~e;’o? WM are nefined by sets of where X is a vector collecting all uncertain (random) variab-
i System ; e o T i e a3 S - les, for example the possibly vector actzons, strength of
components or subsystems having either failed or sur tGRTE) PR Rs P L S 1 even variabl 13
f vived. The presentation concentrates on the mathe- materials, gec“e°*?”37 p.f?e-Fies ang syt V“‘*?bfes taking
Jjb;ﬁ'?l'”hcé':ﬁ”::atééjuf:ﬁ, techniques rather than account of uncertainties in the model for the limit state
| matical SO:nﬂpiﬂTTHQE:£~;;:5ﬁr' ; function itself. The formulation of the limit state function is
‘ on direct practical application. such that the random state variable Z; is greater than zero for
I s : 1 s 2
1 INTRODUCTION any non-failure state and less than zeroc for failure. Hence,
= I. INTRODUCTZION ; the failure probability can be determined from
J For complex systems with high reliability requirements it :
| is customary to introduce sufficient redundancies so that PooocE -J dF(x) (2)
| failure of one or more components does not "Hces:aﬂllj cause 1,J] . .
h L e R A s "standby" dund o “ { X8 \E) >0}
i SJ’StE‘m ffajlure. rnot as wvell as sStal Yy reduriazancles can av
f LT s iences of partial failure and can main- ; e : : % y
| least 1¢r:: ;?edzonziq;p ﬂ»;wab:;:*" e e A with F(x) the joint distribution function of X. In first order
1n rree L (D08 ~54 ke - - ~4 - WL al
S tain a Ce:°ag 2 -goccureﬁ e exawEWe earthquake, fire, mis- reliabiTity methods the evaluation of expression (2) is drasti- ‘
; adverse even as by SRR b 2 s cally simplified according to the following steps: ‘
sile impact, etc. Thereby, most concern is mandatory if a 5 §
|
; single cause can produce simultaneous failure of many compo- ,
i nents and/or subsystems and so can eliminate any degree of i. Transformation of a nor—qormal dependent uncertainty f
: redundancy employed in the system. Component failures then are vector into a standardized, correlated normal vector. For !
‘ dependent events which makes a probabilistic evaluation of ;
it system reliability rather difficult. Further, the system nay '
: be exposed to several consecutive "shocks" between which no
preventive action or repair 1is possible and so the system may

be destroyed gradually.
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example, if the components of X are non-normal but independent
it suffices to transform each component separately. From the
required identity F.(x.) = ¢(z,) the transformation X = 2

4 - B

becomes

= B (& (= )
x; = F, “{e(z;)]) (3

in which F:-l(.) is the inverse of the marginal distribution
= . : 2 2 +and-

7y wtion of the i-th component and ¢(.) the univariate stand

" “normal integral. Clearly, eq.(1) can then be rewritten as

1,3 s 5 oy G 19+ah]
--__aking these transformations one profitably may use sultadle
S* -es expansions cr rational approximations for the lnverse

ribution functions iT these cannot be obtained 1n analyclcadl
Rend r oy v ] 3 b
| (see, for example (4]).
borr
- - =5 £ 1 N >S5 £ +1
£O glly, it is easier first to work with the inverse of the
N - o . : 1 2 1
O asformation (3) and to determine the parameters Hi and O3
of an approximating normzl distribution. This is equivalent
to expanding it into a linear Taylor series about a given
point x* on the limit state function
-~ =%r= Fa—s e |
1 1 = oQ LR AX) ]t i
s x B -....&._ o o 33 - L | % q
z = | 5 . = s LX) 1 F = | X X.
z: = ¢ [F(x;)1=¢ "[F;(x)] T - b e, =x2) . (5)
-~ -~ 11 = + n 1 n 1 |
After some elementary manipulations the "normalized” variable
' ! 3 - Y - vy oy
X. then can be shown to have mean
e ' A"'ll--a o 6a)
Ll_; = X ot E B ] :-\};;/] (ua
% 1 B |
and standard deviation
*
: PURT)
= 1 6
g. = — (6b)
— - ‘* 1
!"J{:/ L-—_:(){;)j}
3 " Rl 2 " %
Note, that the "approxir gint’ X" must be known. Its
determination will be e under the next iten.
If the uncertainty vector 1s a dependent non-normal vector a
formally similar but usually more difficult procedure can be
followed. Assume that the uncertainty vector is a vector the
components of which are somehow linearly related so that its
covariance matrix Ly is informative about the stochastic de-
pendence structure. Such models frequently result from stoch-
astic model building of more complex uncertain phenomena.
Rotate the coordinate system such that the uncertainty vector
becomes uncorrelated. For X being the original uncertainty
vector with joint distribution function F?x) we obtain with
15
wr R p 1
B X (7)

) S

and 3T the transpose of the matrix of Eigenvectors of Ex

-

Fo(y) = Fyl(8D) ™2y (8)

In analogy to the one-dimensional case, we now define z by:

n
P..(x = ( R
Fe(¥) = ¢,(2) = 1M ¢, (z;) (9)
181 3°
The last @dentlty can be set since for multidimensional normal
g1§triputlons no correlation means stochastic independence as well
LD Therefore, the joint distribution equals the product of
the marginal distributions.
Inversion of eq.(9) for the variable z4 yields
w1 Fel¥r W
Z: = ¢ vr ] (10)
Il (z
i @ : )
=P FN
JTE
which can be expanded in the same manner as expression (5).
The z;'s are unknown. Those can be evaluated from a suitable
- S b i T3 P
set ol quatlons for the (marginal) densities of being equal,
for example

"'“*'—é—y-—‘ *= T = .H ¢J(ZJ) -“’(zi) . C34:)

Again, rearrangement of the ex
n

: anded eqs.(10) will yield the
parameters of the approximatin arginal

normal distributions.

It 1s useful to standardize these variables by

i . (12)

so that the limit state function finally can be written in the
£
iorm

L) 1

B:(eeuy 2, 00, # My +22) =0 (13)

with the z's being independent standard univariate normal
variables.

;. Apprgximation of the limit state function by a hyper-
plane in a point z* nearest to the coordinate origin. This

point on g(.) can always be found by a suitable search algas-

rithm (see, for example [§, 71). The minimum distance is
denoted by the safety index B
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Rk where I ={1,2, ..., mland I;€I with |I;| = 1, In words, the
R rman (A, c.(z) = 0} (14) failure probao;ilty is the sum of the probabilities for which
J — s = k of the U's are greater than the corresponding limits where-—
\ ; : : : as all other U's are smaller than the limits. The summation
: Obviously, an approximating hyperplane is then given by goes over all combinations of k in a total of m elements.
g, =B, =0 (15) From eq.(13) it follows that the standard normal variates Uj; ho
I v are correlated since the same ccmporents of the uncertainty
' with a; the vector t] cosines of the p01n, z* on vector enter different limit state functions. According to the
g; £ ) =0, nou_, that <the vintwise transformation of non- calculus of first and second statistical moments [9] we have
qornaw vectors into ors ought to be made at just for the covariance (correlation coefficient) for any two U's
this point.
H m
l; Sy ' oo , 3 L Covi[U750. ) sag™ " iivs 21
i | 131, Calculation of failure (survival) probabilities by P’ q TPhZieng i
A | : S : and
i Pf=-“r{:}__*%J>C‘J (16)
L . . - (055041 = CoviU,,Ul[lo) = a.);
I and since Z is an independent normal vector it is "sp q} Vp2 i % Uq)’ Lot
i 2 ] ¢ ¢
L PlZ-0.>R.1=1-P[U.,>B T51T=%(B.) = 6(=B,) (17) It is recognized that the evaluation of either of the eqs.(19)
L - B ] ] 1 £ 1 1
B o J J J J J reduces to the determination of the probability content of
il Wnicn U3 1s a standard norma rariate witl 1at
| ¥t Las beeb q;nqﬂs-%;—cay normal ot AT A multinormal densities wltn correlation coefficient matrix R
It 1 S 1 that expr 1on 11 yiel r i £
| s e Bl G Qﬁ;ﬁffs— 3 ‘;~‘_ffiffs rath 9T+3CCUT§ ve with elements {pp, g, over rectangles. For the three systems
1l X SEE. Qe :er-“r§-_-;,b-b depends mainly on the type of mentioned above we have
il tormuitation ol tne limit state surface and on the speed of ®
convergence ol tae algorithm for the search of the safety in- - T
3 iy o i A : i x g Series: s A L e 1) B.)] = 1= .
i dex B£. Step i. can easily be incorporated into the search Serdes: K. = ARl 0 NI R LN J ®(u; B) du (222)
i algorithm . Frequently, a good approximation can also be ob- J=4 % -]
B tained if the transformation is made only for a suitably -8 S
i) chosen unfavourable fractile of the distribution of X [8]. = E
;1 ~ Paraltel: P ='"Bl A (U:a =85 = ©(u; R) du (22b)
vl + 3 / / e =
i III. RELIABILITY OF SIMPLE SYSTEMS $as ot ) -
Ml pe sy
i | " ucnl;c?r now as introductory examples the reliability "Reout of-mY:
01 Several elementary systems as there are: series svstems =2
it | B e o, iaene el series systems, - = (I=T3) (22¢)
1 parallel systems and "k out of n"-systems. An ideal series Pax 1w ) 1
it System fails if at least one component fails. An ideal parallel & 1= ®(u,R)du du )
i System falls 1f all components have failed. A "k out of m"- = B e == H(I\Il) —(Il
| SYSLeEm 1alls 11 more than m-k components have failed. Accor- i v
! ding to the foregoing the j-th component fails if Us: < - R
i and survives if PJyo= § Therefore, the failure prébab;lity ®(.) is the multidimensional normal density.
| of a series system with'm components is given by [10]
i Of course, the method given before can also be applied to more
‘f B it m it s EES complex systems. Obviously, the crucial point is the calcula-
i o T & M (18) tion of multi-normal probabilities for which some details are
t Jd7d given in the appendix.
t For a parallel system we have
it m IV. MARKOVIAN SYSTEMS
i 8 pu
| BP0 (U S wiBi) ] (4
i " j=1 s J 9) 1. General Concepts i
t whereas the probability of failure for a given "k out of m"- For many redundant systems Markovian properties can
i be assumed for the description of their state behaviour. Then,

a number of problems can be resolved in using well-known re-

20 o - :
(20) posed of several elements. The system can realize the states ;
SOs S1s .++3 Sy Which from a reliability point of view can be ’

distinguished. Denote by So the initial state where all per-

m
1 P =7 = P [ - 1
£ Z ) i L e ﬁkufW {U s-8 1}

8 ' ] sults of the theory of Markovian chains. Let a system be com-
l
|
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2. Some Applications of the Theory of
Most of the problems in the relia
A1y A+ Sy e 2
systers can be reduced to sinple operation
of transition probabilities. For examgle,
erete reliability function of the system
s R ;
Rk = P s P
- 3 " - - 1" a v - 4! Yy
where the random variable K is the nunber
e < = Paast o o i P Y - -
until system fails (= entrance of state
that
:'?("‘\ - '.'_‘.';.-' > r Y - 1 -~
I ) I B 1
(k) - o= - - b | 4 - d= Y F o T o 4= -
Ppy, 1S5:the last element in the first row
A
1 = F i o’ Tl e e, =il ol T S e s [P
K-step transition probabilities. The latte
Sm3 1
imilarly,
1. %
of \ Yy » 5\ Ly i X
Flk) = P(K s k) = pn.
< } i - S £ L2437 P 3
1S the probabilitfy of failure before the
Further,
£ 1, f
Y = Dl = —tave) e
p\r., = r'lA = K) = = MA
¥ - £ - - = }n 1 o
1S the probability of failure at the k-th
- (I . ~ -~ —~ Y )’ -~
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e is an immediate and simple extension to a random number
shocks". If N is this number» and X the number of shocks
1 failure, the survival prcbability for the system is

(31)

example, if the rnumber N is Poisson distributed with para-
r A, then

k=1 k=0
o 2ot 5
o ', SIS \K+1) A R =A
=l-e - = LA i (32)
k=g On On
d~. 18 the (0O,n)-th element of the matrix
[ 1 2D
PDA A . le 100
oo i g ‘ 3
Ra af T TR SRS ’
dl e = Ap
Lu p_,J Lu ‘" Fnr
U the matrix of Eigenvectors of the matrix P of transition
abilities with Eigenvalues pO"’ . waia pp ‘
other elementary counting processes yield compact results
which may be applied under given circumstances. If the
k=-generating process is a time-dependent Po;sson process,
fcre;o;no model has a straightforward application for
tems where no repair 1 0 le, for example, for space
ts. The concept of Ma systems may also be applied
he sequence of shocks rated by different causes.
this case the Markov cl omes non-homogenous.

ther theoretical considerations and applications to enginee-
systems will be given in a separate paper.

First Order Reliability Concepts for Design Codes, Joint
Committee CEB/CECM/CIP/FIP/IABSE on Structural Safety
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CEB-Bulletin No 112, Paris, 1976
Moses, F.: Structural System R bility and Optimization,
Computers & Structures, Vol.7, 5, pp. 283-290
Janmarcke, E. H.: Matrix Formulation of Reliability Analy-
sis and Reliability-based Design, Computers & Structures,
Vol.4, 1973, pp. 757-770
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CLOSE BOUNDS FOR THE RELIABILITY OF
STRUCTURAL SYSTEMS

R. Rackwitz
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ABSTRACT

First order reliability methods are applied to two limiting
structural systems, the series and the parallel system, re-
spectively. In principle, any distribution and correlation
structure can be assumed for the uncertain quantities to

be considered for the description of the component be-
haviour. It is shown that correlation increases reliability
for series system and essentially decreases reliability for

parallel systems.

- £9 =

Structural systems have successfully been modelled by two
limiting idealizations, the series system and the (redundant)
parallel system, respectively. For series systems the system
is said to fail if at least one component(structural element,
section, point in the structure where yielding occurs, etc.)
fails or the conditions are met to fail in one of a number

of mutually exclusive modes (mechanisms). For parallel systems
the system is said to fail if all components have failed or all
originally redundant structural configurations or paths

to carry the load have been eliminated. Usually, component
failures are dependent events since the same uncertain
variables are imbedded in the functions describing the passage
into failure states of the different components. This fact
makes a probabilistic evaluation of system reliability rather
difficult. Therefore, practice frequently makes use of several
easily assessed and well-known reliability bounds. If there
are m different components (failure modes, load paths, etc.)
the reliability R (= survival probability) of a series system

is bounded by

m m -
E R. < R, < min'fh.} (1)

3 S 3=1 J

in which the Rj are the individual component reliabilities.
The left hand bound is associated with stochastic indepen-
dence whereas the right hand bound assumes full stochastic

dependence between the components [1]. For parallel systems

the limits are




e

—0

m m
s (1R F S R s 1 = I (1=-R,) (2)

j=1 #

Full stochastic dependence is valid for the left hand bound
and the right hand bound corresponds to stochastic indepen-
dence. Note that stochastic dependence increases system
reliability for series systems but decreases it for parallel
systems. In some applications the upper bound in eq.(1) has
been used as a lower bound for parallel systems. Although,
the exact reliability frequently is close to the bound corre-
sponding to stochastic independence the bounds have proven
to be too wide for systems with a large number of components.
Much sharper bounds, however, can be assessed if some
results of the so-called "first order reliability methods"

as outlined, for example, in [2] are applied.

Let X be the vector collecting all uncertain (random)
guantities relevant for system performance such as actions,
strengths, geometrical properties and other uncertainties,

for example in the prediction model of system behaviour. If
the prediction model is formulated such that a state variable
for the j-th component,zj: = gj(i) is less than zero for

failure, its reliability becomes

R, = I d Fy(x) (3)
{x: g3 (x) >0}

with FX(E) the joint distribution of the basic uncertainty

vector X. If the vector X is a non-normal dependent vector

with given covariance matrix Ex, then, there exists an

orthogonal transformation (rotation) (X) »+ (¥) such that

the new vector Y has uncorrelated components. Also, there
exists a transformation (Y) + (Z) such that the vector Z

is a standard normal vector with independent components

(for further details see [4, 6,8]). In first order reliability
a rather good estimate of the component reliability is
achieved by approximating the failure surface gjtg) = 0 by

a hyperplane in a point on gj(g) = O nearest to the coordi-
nate origin [(6]. For example, if 3* is that point having
direction cosines Ej and which may be found by a suitable

search algorithm [8] the integral (3) is replaced by

R, & J d o,(z) = P[Uj> -Bj] = ¢(Bj) (4)
{gzgj(§5'>0}

with

95(2) =2z a5 = By =0 (5)

being the approximating hyperplane, @z the m-dimensional norm

distribution function, ¢( ) the univariate standard normal in

B; = min {JEIE g gj(g} = 0} (6)

the so-called safety index and Uj =2 a4 @ standard normal
variate. It can be shown that the reliability estimate ob-

tained by expression (4) is usually in error by only a few

percent [4].

For any two components characterized by the same uncer-
tainty vector Z but possibly different functions for the

failure surface g(z) = O the state variables U; and Uj are

__3=______________________________;:-----E-=-=l--I---------------I-I-----------I-IIIIIII-‘
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Unfortunately, the evaluation of integrals of type (9) or
correlated. According to the calculus for statistical moments (10) is rather tedious if possible at all for arbitrary
[10] the covariance is forms of the correlation matrix (see [5] and [9]). However, there are
= some useful bounds. Dunnett and Sobel [3] showed that if
COV[Ui, Uj] s oy (7)
g the correlation coefficients can be expressed by Dij==li 3
and since the variables Z, are already standardized the then, the following expression holds
|
correlation coefficient becomes = + e (_Bj)__lj _uo
PEan U. s-8. = [w (oA
[j=1 ( 5 J)] (uo) '=1¢ : &uo (12)
p[Ull UJ] ™ COV[Uif UJ] (8) -00 J v -Aj
with I_=T1I the covariance matrix of the vector Z. Hence, the The integral can easily be evaluated by simple numerical
=Z o
reliability of a series system can be written as quadrature. If, in particular, Pi3 = ° > O, the integrand ?
m simplifies significantly. For negative values of P, :
Re:= Pl £Y-100, > -85)
=1 Steck and Owen [12] gave a useful reduction formula which 4
o F
- is not repeated here. Now, note that for symmetrical :
= I ¢(u; R) du (9)
= reasons, it is
m m
and the reliability of a parallel system is given by P[ M u% >-Bj)] =PI “H sﬁj} (13)
W j=1 j=1
8 & Lo PLL) (Uj s-Bj)]
| | = Eidak [11] proved the following probability inequalitj. I£
- =8 |
i £ 21__J {3 Byedu (10) the elements of two correlations matrices obey {Kij};s{pij} j
E = for all i, j,then :
!
& £ : A m m
g: with the standard multinormal density PK[ (i sica] Pp[(ﬂ (X:5¢.)] (14)
| tof T e
B J
Eﬁ ¢(u; R) = 1n/2 11/2 exp[ v % (ET §_1gﬂ (11)
L | (2m) (|IR])

wherein the cj are some given constants.

and R the matrix of correlation coefficients Dij'

Therefore, let A' be a vector producing a correlation matrix

R for which {p} = {A]+ A5t s foy4} for all i, j and A"




-k -

be a vector producing a matrix R" for which {pi}} = {Ai -Aj}
2 {pi.} for all i, j. Then, the two new reliability bounds

J
for a series system are in using expressions (9), (13) and

(14) :

- e - . n 15
LA (U, £8,)|R'] sRg sPLN (U 58, R"] (15)

whereas for parallel systems application of eq.(10) and

(14) yields

m m
- . "] SR, 51~ . < -B,) |R 16
1 P[jr=\1(ujs ﬂj)|_§1:=Rps1 P[jg(ujs 8,) [R'] (16)

The probabilities P[ . ] can easily be evaluated by eq.(12).

Frequently, it suffices to set {pij} =o' .= min {pij}and

" =nt = sf If, Further, the limits B. are
{pij} o max {pij} 0% ;. far 3 3
equal and absolutely less than 3.5 tables published by

Gupta [5] can be used to determine the bounds in egs. (15) or

(16). In fig. 1 to 3 some further results are presented which

may help to judge when calculation of the boundsaccording to egs.

(15) and (16) becomes advisable. In agreement with other
authors it is noted that the previous bounds of egs.(1) and
(2) may still be used for moderate m and correlation co-

efficients less than, say. 0.5 (see for example [13]).

References

[1] Cornell, C.A.: Bounds on the Reliability of Structural
Seabteoma . 0. Struct. Div.; ASCE 93 (ST1), 1967

{2] First Order Reliability Concepts for Design Codes, Joint
Committee CEB/CECM/CIP/FIP/IABSE on Structural Safety,
CEB-Bulletin No 112, Paris, 1976

Dunnet, C.W.; Sobel, M.: Approximations to the Probabi-
lity Integral and Certain Percentage Points of Multi-
variate Analogue of Student's t-distribution, Biometrika,
42, 1955, pp. 258-260

FieBler, B.; Hawranek, R.; Rackwitz, R.: Numerical Methods
for Probabilistic Safety Checking and Design, Technical
University of Munich, Laboratory for Structural Engineering,
Res. Report, SFB 96, 14, 1976

Gupta, S.S.: Probability Integrals of Multivariate Normal
and Multivariate t, Ann. Math. Statistics, 32, pp. 888-
893, 1961

Hasofer, A.M.; Lind, N.C.: An Exact and Invariant First-
Order Reliability Format, Journal of the Engineering
Mechanics Division, ASCE, Vol. 100, EM1, 1974, pp. 111-121

Paloheimo, E.; Hannus, M.: Structural Design Based on
Weighted Fractiles, Journal of the Structural Division,
ASCE, Vol. 100, St7, 1974, pp. 1367-1378

Rackwitz, R.; Fiessler, B.: Structural Reliability under
Combined Random Load Sequences, to be published in Com-
puters & Structures

Ruben, H.: An Asymptotic Expansion for the Multi-variate
Normal Distribution and Mill's ratio, Journ. of Research
of the National Bureau of Standards, Series B, 68, No. 1
1964

Rao, C.R.: Linear Statistical Inference and its Appli-
cations, Wiley, New York, 1973

Sidak , Z.: On Multivariate Normal Probabilities of
Rectangles, their Dependence on Correlations, Ann. of
Math. Statistics, 39, No. 5, 1968, pp. 1425-1434

Steck, G.P.; Owen, D.B.: ANote on the Equicorrelated
Multivariate Normal Distribution, Biometrika, 49,
1962, pp. 269-271

Vanmarcke, E. H.: Matrix Formulation of Reliability
Analysis and Reliability-based Design, Computers &
Structures, Vol. 4, 1973, pp. 757-770




| - 77 -
Apf - i
-2 >
10 - ——— — | A Pg
e | Wle—— : :
o =01 | |
AR e } 5 “ | L BasRs
| ,ffjgjziiizqv"ﬁ: | ?_2}"
I itz -1 8 b ..,‘-‘\,.‘_'
M .f: - 1§ | \: - \_ -
¢ =0 : / o=l
Q =\ -
}
¢ =0,80 ,
10=" +—
0 =093 .
= 096 b,
- V. o3 10
[ rj"d/{
1
™ A ..I"" y
=0¢2" ' L 0 500 10 : 20 30 40 50 it
2025 CABa 9=0°3
’
=050 9= 0.95
‘ Bl o
080 VS
E o= 0,80
&0 ;?
?9=:CL70
£ 0=0.60
s C‘,D J 9 - O.EO
'9: 0133
£0.50 i )
o8 PARALLEL SYSTEM
-4 PARALLEL | SYSTEM Q = 0,30 - ' 1
: | 10-5° | J
-~ B |
1 i) g e e s e L ] :0'00
i 5 =0,10 l 9
¥ FIG., 2: SYSTEM FAILURE PROBABILITY VERSUS NUMBER N
i FIG, 1: SYSTEM FAILURE PROBABILITY VERSUS NUMBER N OF EQUICORRELATED COMPONENTS WITH COMPONENT
I OF EQUICORRELATED COMPONENTS WITH COMPONENT FAILURE PROBABILITY 107>
FAILURE PROBABILITY 1074




10°°

AP - 78 -

(oYY

.60

‘O O 000
wononon
o
3
o

"
o
(e
o

¢=0,90

9:035

=099

30/0=0,0C |
50 °

PARALLEL SYSTEM ; |

: | | |

-

FIG. 3: SYSTEM FAILURE PROBABILITY VERSUS NUMBER N

OF EQUICORRELATED COMPONENTS WITH COMPONENT
. 5E PEADAD =6

>N

NON-LINEAR COMBINATION FOR EXTREME LOADINGS

by

R. Rackwitz




- 81 =

Introduction

A HB5 T RACT

Extreme loading conditions govern to a large extent the desing

of structures for/ﬁb%lear power plants and other outstanding
j; | ; Mel'E Approximate results on the linear combination of structural facilities. Extreme loading events are normally

extreme loadings are applied to non-linear combination characterized by their short duration but considerable

RS T

within the context of first order reliability theory. magnitude. Examples are earthquake, tornado, vehicle impact,

ST A e
% 7 ¥

AP e e et
o U

ﬁ i The failure events are treated as dependent events. By fire. In some cases the consideration of the simultaneous

GE B

J | B suitable transformations, the reliability can then be occurrence of two or more such extreme loadings must be re-
s SRR B i 3 [ 1 i

if[( f' obtained by an evaluation of the mulitnormal integral. quired. Wen [9] showed that if the extreme loading can be

] E ‘ . . .

E i}: 5 A simple example illustrates the method. modelled by a filtered Poisson process the joint occurrences
{ i §

|

I
P B of two or more actions also form a filtered Poisson process.
t 2% He derived approximate formulas for the extreme value dis-
{1} i tribution of the extreme loadings and their sum. However,

just under extreme loading conditions structures are un-

4 : likely to behave in a simple linear manner. As will be

5 shown this shortcoming of Wen's approach can easily be

| Q ' overcome by use of some concepts of the so-called "first
I ' order reliability theory" as presented, for example, in
! | (2] o [415

: ! Review of Wen's [9] results

Assume that an extreme loading can be represented by a

s

filtered Poisson process

S—

homogeneous Poisson process with intensity Ai; hv = load

e e e e T o e

| N(t)
: : X(¢) = ] h, (W, d, T, t) (1)
l 7: } v=1
| |
i E in which v = occurrence number; N(t) = total number of
é * 5i occurrences in the time-interval (O,t), generated by a
’ I
|

amplitude function at each occurrence (here, a rectangular

function is assumed) ; Wy's s im (maximum) load amplitude in

each occurrence with distribution function Fw,i(w)’ dv =

| the random exponentially distributed duration of the load

| W with mean uij’rv = random occurrence time. The interval
\V

(0,t) is denoted by the reference period which usually is

e BT S SRS B8 5 < s i 0




taken to correspond to the anticipated time of us - 8 ol
pated . f use c -he
+ v \
structure. Since extreme loadings are characteri I »
Lngs a characterized by
) . , s
[ el -and s << the coincid
i i My Ty the coincidence of more than one
PET e : 3 2 o |
impulses of the same loading at any point in time can b
: yopoint i ime ca e

neglected an thu R e T : . 5
= d, thus, the maximum in time of X)t) can be

given as

e o =

F
max
[ Qut)]

Il 1 89
O
)
-
=,
e
-
p
I
m
L
”
o
I
o+
I
=
—_
e
Nt
,,
—

Wen [9] proved f W tEy ] i
D1 p ed 1or two extreme loadings of the type described

Dyeeg (1) with parameters A., ). and . ]
. and u., U., respectively,

y b
-

e Bl J J
that the joint occurrence of both loads i S ;S\f'mptOtiC”lll
1S 1S asy a Y

again a filtered Poisson process with intensity
B e e () (3)

Then it i ily derived that
1S easlly derived that the extreme value distribution

becomes

F () = exp [- t{A.(1-F (%) )
. B R B (e Fadr)) 4250 (02F, 50 )]

max
(0.t J ij 5
where F..(x) is the distributic £ =
4 id stribution of wiv+wj. Unfortunately,
1€ necessary convolution N wi I
n-of h1 with hz is generally not

elementary.

Wen [9] 4 ated
L9] demonstrated the validity of his approach by extensive

simulation studies.

Application of First Order Reliability Theory

Let g(x) >0 define the domain of safe structural states in
the space of all basic uncertain variables. The equality

g(x) = O may be called the limit state surface of the
structural problem under consideration. The vector X collects

the relevant uncertain variables such as loads strengtl f
' 1 of

of materials or geometrical parameters having any type of

marginal distribution function. If the components of X are

uncorrelated which always can be achieved by a suitable

transformation (see (4]) and are transformed into standard

normal variates by using the relation
P, (x.) = ¢(zj) (5)

the so-called Hasofer-Lind safety index [ ] can be found as

the minimum distance between the limit state surface and

the coordinate origin by a suitable search algorithmus [4]).

B = min{/zT z : g(z) = 0} (6)

. . 3 . s *
If the limit state surface is linearized in the point P

nearest to the origin by a hyperplane
za+8=0 (7)

. : * .
where o is the vector of direction cosines of P it can

be shown [4] that a fairly good estimate of the survival

probability for one load application can be obtained from

Pg = P(g(X)>0] = P[g(2) >0] = P[2a > =B8] = Plu>~-8]1= ¢(8)
(8)
where U is the standard normal variate. For the probability
of survival in an interval (0,t) the distribution of
xtreme loading has to be replaced by its
according to eq.(2). Consequently,
he probability of survi-

amplitudes of an e
maximum distribution e.g.
if there are two extreme loadings { o

val has to be evaluated from

p[{gi(é):>O}|W{gj(5)3>O}ﬂ{gij(§)3’0}}

]

P_.(t)

i

P[{g,(2) > o} n {qjig) > O}n{gij(g_) >0}] (9)

and by substituting the linearized limit state surface as

given by eq.(7)




§ | can be evaluated easily by use

SeaEhas Plis o> -8t n{Za, >~8,7n{Za,.> -8, .)
g(t) Pre =y i = =3 3 ==ij ij )
= P|lU, SRl INU:> <8 ( > =0, 1
i i 31U, 4 131 (10)
Clearly, the survival events are not independent since the

Same uncertain variables are imbedded in the various limit

state surfaces. In fact, they are correlated with correla-
tion coefficient

ij - %4 =g "2y A

where the covariance matrix boo= 1
Ly -
u

components of Z are made already

(unit matrix) if the
ncorrelated. It follows
that the survival probability of the system under individual

and combined extreme loading can be calculated from the

three-dimensional normal integral

-~ 8
— 8
[+

37 P12rP37P¢3) du,, du, du,
(12)

where ¢(.) is the trivariate normal density. This integral

of the methods given, for

: example, by Kendall [3] or Steck [7]

l, or for positive corre-

lation coefficients by simple numerical quadrature of

Ps(t) = P‘_‘r_\ Ui>-Bi; = P[ M U, s ral
i=1 1=}
= i o TR
=] P(t) - ¢ | ————| dt (13)

* : =t L /A5 2

o

with @(t) the standard univariate normal density and

3 =)/“‘12 =21 o g vpz‘s P 194 R V‘-‘H i (14)
] P23 2 P13 3 '

ot

Pq2

Numerical Example

For illustration consider the elementary case in which
failure occurs if a random resistance quantity X. is

1
exeeded by any of two independent extreme load effects X

2
and X3 or their combination that is the joint action of
two independent loads X, and Xe with the same amplitude
distribution as X2 and X3, respectively. Therefore, the

three limit state surfaces are

g2(31, x3) = X, "Xy = 0
93(){1; x41 XB) = K] Fa (x4+x5) - O

Let X
1
logarithmic standard deviation 61. Assume further that the

be log-normally distributied with median ﬁ1 and

amplitudes of the extreme loadings are exponentially distri-

buted with parameters v, = v, and v, = v The intensities

2 - 3 5

are Az, A3 and, according to eq.(3), A4 = AS = Kz -k3

(p2+-p3) with Hor Mg the mean durations of loads X? and X3,
respectively. In applying the transformation (5) with

-Vx i
F(x) = ¢(ln(3&)/6} = ¢(z) and F(x) = 1-e "~ = ¢(z) the fore

going limit state surfaces can be written as:

-1, : -1
91(21, z,) = g,(F, {¢(z))}, Fy t¢(22)})

1 r 1n ¢ (22}
=1 + exp [z, .51]-+—- lnL— T =0
1 Vo 2
[ 1n¢ (2,)]
23 e Rt ln!— ______;l_E =0
9,(24, 23) = uq = exp 2, ¢ 8,] Vs | Ay ot ]
[ 1ln¢ (24)T
v i g 1n’-—-—~——---J
q3(z1,2425)= He * €XD LZ, 51] v, L A4 i -
[ 1né¢ (2.)]
! 5
P lan ——j—1_€“| =0
\J3 5 |
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e el = 10, 08, =2 0,2 V4 = P s
As an numerical examplie 1€t 4 0, ! 2 1
: z [ = v A =2
- gL S e 2,0k = 0,05, 0,005 and My u2/10
\“ A "-! 5 ' K u.) F - - . ]
" > 3 = 3. =55 10-4. The direction cosines
and, therefore, Fe e S e ' :
- e eafeotvy 2 - ar
of the approximating planes and the safety indices e found
: -‘ % -
tO be 1 1 3\
directiron €O n e 1 | it .
g | safety index |failure probability
Z1 E b A 2 i 23 1 ‘ 1
% | ¥ H B m_*,_, S pm it ; _2
= | | | | | 2,145 1,596 * 10
i ~n 579 |0,815 | :
L L‘] “ = U, : U004 o i o (O N
| e R 1 ,—,‘ | | 1,982 :)'3—’,-4 _ 10-—2
l o o \'\ :‘DL 1 :,-“_\,n 34 | :
B | _ E s T 1
e 5l |5 loasssk o,9602] 3,819 | 6,704 * 107
193 CH WARRSNR ) e ¢

and by application of formula (11) the matrix of correlation

coefficients becomes

“ § p 206 0,122 \
{
|

‘ B 206 -+ 0,075

e,

ﬂ 0,122 0,075 1

Evaluation of the probability of failure according to eq.(13)

yields P_. = 3,942 . 10~2. As expected from the relatively small
Pe : [ .

correlation coefficients its value is close to the lower

bound 1 -1 (1-P_ .) = 3,938 . 10-2, Extensive parameter

L

Iyl

studies for the example just described including less un-
favourable distribution functions for the extreme loading
indicated that unless the coefficient of variation of the
resistance is close to or exeeds that one of the loadings
the lower probability bound yields an accurate estimate of

the more exact result.

Closing Remarks

] z i lving
In the same manner more complex structural problems 1invo
: ’ : r
multi-dimensional basic uncertainty vectors with arbitrary

marginal distribution functions and distinct non-linear

. : ; F
1imit state surfaces can be dealt with. In fact, it may b

- 87 -

realized that there is mathematically no distinction
between mechanically non-linear failure surfaces and the
non-linearity caused by the transformation of non-normal
distribution into normal distributions. Inclusion of more
than two independent extreme loadings follows the same
pattern. The necessary analogues to egs.(3) and (4) are
given in [9]. Even multi-mode failure of structural systems
can be treated since it just increases the dimension of the
multi-normal integral to be solved [6]. For example, assume
that a structure can fail in different modes each of which

can be reached by n loading situations, then the failure
probability must be calcuated from

m
Be 3 T PL{W
i=1

n - n
1 ~ 3
j/; 9;4(X) >0] 21 P[iQ1 N (U >8

Hence, the dimension of the integral would be n - m.

In general, the calculations may require the use of a com-
puter. Frequently, the correlation coefficients are so
small that any correlation may be neglected. Then, the
survival probability is as known close to but greater than

(E) ¢(Bi) and always less than ?§¥ ¢(Bi)

The foregoing concept may even be used for the combination
of ordinary loads in a concept as proposed by Turkstra [8]
and outlined in more detail by Ditlevsen [1]. A thorough
discussion of this concept will be given in a separate
paper.
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