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Abstract

Informative probabilistic reliability assessments for
structural facilities require the prior choice of proba-
bilistic models for the uncertainties, particularly their
distributional characteristics. In principle, multi-
dimensional numerical integration is necessary for the
calculation of reliabilities which is rather tedious as the
type of models for the uncertain variables becomes more
complex and their number increases. Therefore, suitable
approximations are in order. The well-known second moment
reliability method as proposed e.g. by Hasofer and Lind is
generalized to take account of any arbitrary type of dis-
tribution of the uncertainties by means of a discrete

first order transformation into a normal distribution. A
suitable algorithm is presented for finding the appropriate
point of transformation. The method is applied to some
extreme cases of limit state functions. The possible error
of the approximative method is calculated. It is proved
that the inclusion of second order terms for the expansion
of the limit state function can yield results which are in

error only insignificantly.
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Introduction

One of the major problems in the application of probability
based design methods to the elaboration of design codes or

to direct design of structural facilities is to develope

an efficient method for determining the probability of not

exceeding a given structural limit state. If X is a para-

meter-invariant vector of n basic uncertain variables such

as actions, dimensions and strength of materials with joint

distribution function F(x), then the failure probability

P.o= 1 - I aF (x) (1)
{D}

is the complement to the probability content of the safe
domain D which is separated from the unsafe domain by the
function describing the limit state. Analytical solutions
of (1) exist only for a few special cases concerning the
distribution function F(x) and shapes of D and, therefore,
are of minor practical interest. The following study deals
with an approximate calculation of the integral {1) for
arbitraty distribution functions F(x) and shapes D of the

safe domain.

First Order Reliability Methods

Recently, approximate "first order reliability methods" as
proposed by Ditlevsen (2], Hasofer/Lind (7], Paloheimo [10]
and Veneziano [11] reduced the fundamental problem of multi-

dimensional integration to a numerically much simpler

problem of mathematical programming. Let the wvector

T .
X (X1, X2 i Xn) be represented by its mean value vector
Mo - E[(X] and by its covariance matrix Ly = E[(X-E[X]) -
A 5 : A
(X-E[X])"]. Then, there exists an orthogonal transformation

such that the components of X become uncorrelated yielding

a new variable vector
Y =R X (2)

with the rotation matrix BT and the matrix of Eigenvectors R

of EX’ the mean value vector E[Y] = BT- E[(X] and diagonal T
covariance matrix ZY = BT ZX R. If the vector Y is stand-
ardized by
Yi——E[Yi] ]
Zi — ———A—T—ﬂ—D YJ _1_:1, 2, s esp D (3)
5 c6

with DgYij representing the standard deviation of Yi, 7
Eizilzzo and D[ZiJ =1 and so ZZ = I (unit matrix). The so

called safety index B8 can be found by minimizing the dis-

tance b between the limit state function or failure surface

in the formulation g(z) = O and the coordinate origin
farn
B = min b = min {vz” 2} (4)

2:6{gi{z) =0}

The point representing the smallest distance is denoted by

: " 2 2 " 3 *
the "checking" or "approximation" point z . Several authors
consider B a convenient reliability measure since further

information on the stochastic characteristics of X is dis-

pensable or may not be available.




The informativeness of B about the reliability in terms of a
probability statement, however, remains poor and is of the
Tchebychev-inequality-type [11]. More precise statements can
be made if distributional assumptions on the components of X
are adopted. For example, assuming the vector X being a
normal vector and g(z) = O being continuous at the point where
eqg.(4) is satisfied, the safety index B8 produces two useful
and simple reliability bounds when approximating the actual,
generally non-linear failure surface by either a tangent
hyperplane or a supporting hypersphere. For well-behaved con-
vex safe regions the failure probability Pf is, then, bounded
by (see Veneziano [11]):

2 Re o = e
1 - X° (8%) =PR. =1 - ¢(8) (5)

Herein, Xi(.) denotes the chi-square distribution for n de-
grees of freedom whereas ¢(.) is the invariate standard
normal integral. Essentially, these bounds are related to
pure normal uncertainty vectors. In practice, though a
lower bound, the right hand side limit frequently yields an

accurate estimate of the failure probability Pf.

I1f the uncertainty vector is log-normal, a simple trans-
formation z + u : u; = ln z; for 1= 1, 2, ..., n reduces
this case to the normal one [3]. Of course, the limit state

function now has to be formulated in the new u-space.

However, many uncertain phenomena are only poorly described
by either the normal or log-normal model. It is also known
that the results in terms of estimates or of bounds to fai-
lure probabilities significantly depend on the stochastic
model adopted for the basic variable vector. A generalization
towards non-normal models would, therefore, considerably

increase the applicability of first order reliability methods.

Review of Extensions to Non-Normal Distributions

Paloheimo [10] approximated a non-normal distribution by a
normal distribution having the same mean and the same Pf = OF

(1—Pf)-fractile. Setting

X —U
P = ¢(“§T_) - F(xp; Q) (6)

it is by solution for the new standard deviation O°

b, Tl | =1
' F i 0
& = "E__1 - EI; 0)-u (7)
¢ (p) ¢ (p)

yielding the standardized normal variate by the transformation

-1
X+Uu: u = (x-p)o 2@ (P) (8)

F~ ' (p; 0)-u

where F—1(.) is the inverted non-normal marginal distribution
with parameter vector O, u the mean value and ¢—1(.) the
inverted standard normal distribution function, respectively.
p is equal either to the target survival probability 1-Pf,
if the variable is a loading variable or to the failure pro-

bability P, if the variable is a resisting variable.
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Ditlevsen [3] suggested a similar approximation to the dis-
tribution of extremes of independent normal variables. Again, Linear Approximation in the "Checking Point" - Independent
the approximation is chosen such, that the new normal distri- Uncertainty Vectors
bution fits the non-normal distribution best in the vicinity Since the checking method described before employs one single
of the fractiles corresponding to the target failure (survival) point on the failure surface it suffices to apply eq.(9) in
probabilities. Alternatively, he proposed to fit the non-normal that point, only (see fig. 1). Following Paloheimo's idea,
distribution by a normal distribution having the same values eq.(8) can be improved by taking the value p at the checking
in two different extreme points but, again, with no strong point, giving the transformation
arguments for the choice of these points.

X>u: u = &—‘_% o~ [F(x*; 0] (10)
Lind [9] verified the basic idea of applying a continuous
mapping which transforms a non-normal distribution into a which is linear in x. The checking point must be known. Alter-
normal distribution. For example, if the basic uncertainty natively, the mean p might be substituted by any other appro-
vector X has independent components with different distribu- priate central parameter, e.g. the median {I of F(x).
tion type it is: (x-11) i1 :

N i [F(x*; @] (10a)

x»>u: u = h(x) = ¢ [F(x; 0] (9)

It is obvious that these expressions give a correct mapping
This idea is, no doubt, implicit in many of the earlier works.

only with respect to the value of the distribution function
The approach is formally appealing. The transformation (9) is,

at point x*. A discrete mapping ought to be accurate in the
in general, not elementary. However, eq.(9) can easily be

_ vicinity of the checking point x, as well. Hence, it is proposed

applied in computerized analysis where distribution

to linearize the mapping function (9) in the checking point
functions and their inverses can be given by suitable series

g e.g. by taking its Taylor expansion up to the linear term:

expansions or rational approximations [1, g ]. In each but

Lind's approach the aforementioned probability bounds are no =1
. » ad - SiF{xXs"))
(PR 7 O s g A =

longer valid. x=

=
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E= s
|
&
-
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4 . E(x"3") 4
R AR e oy B (11)
2 (67 (F(x*:°)))

The variable U is then a standard normal variate. In the ori-

ginal space, it has mean
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The hyperplane H approximates the failure surface in the

point 2* obtained by applying the transormation (9) in the
same sense as the original linear approximation of g(x) =0
(see fig. 1). Therefore, it can be said that the linearized
transformation (11) is exact within the first order theory
under consideration. It is also obvious that a similar argu-

ment holds for the approximating hypersphere S.

A Suitable Iteration Algorithm for finding the safety Index B8

The point by point transformation of non-normal distributions
into normal distributions can easily be incorporated into
a suitable algorithm to find B. Usually, the checking point

in unknown beforehand and must be found by iteration.

A possible iteration algorithm is the following:

1., Input: failure surface g(x) =0

mean value vector Mx

distribution type(s of components)

initial values x*

2. Normalization x-+u by an approximation to u=¢—I[F(x)]

s * *
in X = u according toeqg. (11).
3. Standardization

4. Transformation of g(x) = O into g(u) = 0 using the

results of 2, and 3.

5. Calculation of direction cosines of search direction by
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with %g =£d . g* and o according to eq.(13) (see appendix E

ax
6. Calculation of b(l+1) from
g(u”) =Owithu‘=a{l+” : b(l)

7. Inversion of standardization and normalization u-v > x

8. Output: Checking point x*, safety index B = b(m)

If the result at step 8 is unsatisfactory, the sequence of
steps has to be repeated from step 2 downwards until conver-
gence is reached. Obviously, the main iterative improvement
occurs in the consecutive alteration of the vector of direc-

tion cosines a for the distance b. Other methods are possible.

To be convergent the algorithm requires local differentiability
of the failure surface as well as local continuity and monotony
of the original density function. The latter condition is
sufficient to vield parameters of the approximating normal
distribution which are monotonic functions of the checking
point. In practical cases of any dimension with continuous
failure surfaces and distribution functions deviating not too
far from the normal, excellent results have been obtained (see,

for example [3] to [6]).

The search for B becomes numerically more complex if the

original failure surface has several local minima or if the

original distribution function is discontinuous and/or its




density function is locally non-monotonic, e.g. in case of

multimodal distributions. For the latter case, the search
for all local minima may turn out to be quite cumbersome.
The iteration may even diverge depending on the relative
position of a mode and the approximation point. Applica-
tion of the rougher approximation eq.(10) may help in some

cases which also holds if the distribution is discontinuous.

Accuracy of the Method

The accuracy of the results decreases as the number of
loading or resisting variables having very skewed and/or
limited distributions increase. The convexity properties

of the safe domain may be modified.

In order to check the accuracy of the method comparisons
can be made with a few results form exact probability
theory. To avoid additional influences the following linear

limit state surface is chosen
n
$C- ) X..=0 (14)

in which Cn is a constant derived from the reference case of
identically normally distributed variables. Let the constant
be defined by Ee = a8 -0, ¢ /n and the X,'s be some identi-
cally distributed random variables.B is the pre-selected
safety index. For rectangular distributions with probability
density

1/fa for O = x = a

f(x) (15)

0 elsewhere

F(y) = — I (=17 () (y=v- a) (16)

and, therefore,

For sums of gamma-distributed variables with probability

density function

P —
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AR (17)

0 X <8

the type of distribution is retained but with parameters A
and n *k [8]. Remember that k = 1 corresponds to the
extremely  skewed case of an exponential distribution. In

Figure 3 some examples are presented for B = 3.

One recognizes that only in the exceptional cases of the

rectangular and the gamma distributions with, say k<5, the

approximate method results in significant errors. They

increase with the dimension of the basic variable vector -pé
£

maximum error associated with each type of distribution

function approaches a limit which in using the Central Li

Theorem of probability theory is found as follows. For
(=T
symmetrical reasons and from eg.(14) the exact approximat
- ~ - . .
point is known to be . Cn;n tor 4. = 04 -3 i oGy n  Pheeed

fore, the limiting approximate failure probability can be

derived from
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Fig. 3: Approximation errors as a function of
dimension n for sums of uniformly and,
gamma-distributed variables |/ 7 f

which is independent of n.
limit is either -« or =,
to be a serious drawback since suct
tributed excessively non-normal
practice.
the distribution functions of which frequently
the

functions

-

F s (18)

n ¥ OO n
with

2C 0 A
u == n —

n v'/-r; 2 G’ (19)

Substituting Cn and MU', 0' by expressions (12) and (13)
-1 B = Ux
W £IVTE T R R )| (20)
L 7 B

is obtained.

Hence, proceeding to the limit one reaches for symmetrical

distributions with F(.) - 0,5 for n-—+ o

lim {u }:i,@?-ﬁ-gr fiu )
n X X

N+«

(21)

For asymmetrical distributions the
However, this result does not seem

1 sums of identically dis-
i variables rarely occur in
loreover, the influence of resisting variables,

are skewed to

right and that of loading variables the distribution

of which are skewed to the same side but have

opposite signs, compensate each other .
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Second Order Expansions i

A significant improvement can be achieved even for those

exceptional cases if a "second order reliability theory" is L U
" linear expansion

of glu) =0
iRl

used (see Fiessler/Neumann/Rackwitz [5]). Let the checking i Ra

point be found according to the procedure just described and

let the limit state function be locally continuous and twice { L/'
! quadratic

differentiable. Calculate the matrix gu of second order ‘ -appr.
derivatives of the limit state function in the standardized -~
and normalized space (U) in that point (see appendix B). ¢ Re

Rotate the coordinate system into a new system (R) with the

same origin such that the new rn—axis is parallel to the

iy

safety index vector (see fig. 4). Then, the n-1 principal

curvatures k, of g(r) = O are obtained as the Eigenvalues

. b
divided by the gradient of g(r) = O in r" of the matrix

of derivatives gr where the n- th row and column are de- ; RIS

leted. With

e n-1
k = ?E? {ki} or K = ¢E¥ {ki} (22) Fig.4: Linear and quadratic approximation of
= i= , the limit state function

the quadratic form

B 5 F (e =08 )" = ;% = » (23)

can be set. For convex safe regions (k <0) a circumscribing
2 . a7 .
(0 = Rmax} or inscribing (Q —Rmin)hypersphere can be defined.

The random variable Q is said to be non-central chi-square

distributed with n degrees of freedom and non-centrality

parameter Gi =(R-—B)2. Thus, the failure probability is




2 2 (24)

Inserting the minimum or maximum radius R eq. (24) yields

two bounds to the true failure probability. The non-central
chi-square distribution can be evaluated by using expansions
as given, for example, in [1] or [8]. When applying eq.(24)
to the limit state function (14) one recognizes from Fig. 3

that a second order reliability theory is in error only in-

significantly. The hypersphere shows excellent agreement

with the exact results. It can be proved that more general

quadratic forms yield results even still closer to the

exact ones (see [5]).

Conclusions

The discrete safety checking methods as proposed by Hasofer/
Lind and others can be generalized with respect to arbitrary
distributional assumptions for the basic uncertainty vector.
In essence, non-normal distributions are approximated in a
first order sense by normal distributions in certain checking
points. In general, the accuracy of the method is sufficient

for engineering purposes. A suitable iteration algorithm is

presented to find the appropriate checking point. As an
alternative a second order reliability method is proposed

which appears to be in error only insignificantly but re-

quires continuity and twice differentiability of the limit

state function.
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Appendix B: Transformation of Derivatives

it X.19 non-normal variable with the distribution funct
if 09g9/9x is the derivative of the limit state function
the transformation
¢ (BS)

u = ¢'1 F (x)

is applied to independent variables x it is from elemen 5

calculus of differentials

-1
ik - ST RS
'a'g‘ax S0 o o R v (%) ol B

X

where o' is identical with expression (13) . Further, the

second derivatives become

—-—E32 =a(ag/ax.0')-§_x_= iia-g +ig-_a£i o"
au2 3ax Ju ax2 J X

- a__g U' i éﬂ I f(x) U'
) x? 30X ax
2 af (x)
sl gk 8g =1 X (g T 3
°{;% o g,% [d» (F(x)] + F(x) a H o (B.3)
and
2
L St - (e
Buiauj Bxiaxj 'ci Uj (B.4)

It is noted that evaluation of (B.3) requires existence of the

derivative of the probability density function fix).



