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Abstract

Recently developed models for the assessment of the strength and fatigue life of cables are presented and
illustrated. The illustrations are based on experimental data and experience gained from the design and
assessment of several major cable supported bridges. It is shown how inspection results may be used to
update the reliability of cables. The procedure is illustrated using results of Ultra Sonic inspections.
Finally, aspects of design and assessment of stay cables are considered. Special emphasis is given to the
effect of design philosophy and corrosion protection on the resistance factors for the stay cable resistance.
© 2002 Published by Elsevier Science Ltd.
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1. Introduction

The stock of aging cable supported bridges is steadily increasing and the effect of degradation
processes such as fatigue and corrosion has become an evident problem for the cables of several
of these bridges, sce e.g. Haight et al. [1] and Fu et al. [2]. It is well recognised, that cables in cable
supported structures are highly redundant and that cables are relatively robust with regard to
degradation. However, there still remains to establish a rationale for the assessment of the
strength of cables subject to degradation as well as a consistent methodology for the utilisation of
inspections and in situ test results for condition control and reliability updating.

Reliability analysis of wires and wire bundles is traditionally based on parametric statistical
models for the strength and fatigue characteristics of individual wires. It has been widely accepted
that the static wire strength must be modelled by a random variable. Its variability can be
decomposed into at least two parts, one which models the variations between wires and one
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lvjv:;lﬁgSzgsciljvézi:lsl;clt;itloﬁnes;l(i)zg;};zdwlr[e_. Thefﬂuctuatlions along the wire are responsible for a
ibhalhen ok ,lLe. uction of strength as the wire length is increased. Parallel
wire cables are characterized by the fact that there is only littl che ical i o
wires between their anchorages. Wire length also determi)nes sfr(raneL tdmCﬁl T
wires tesu?d according to standard procedures one observes almost }S)Scrsfercztfk})sel?cal:]c%izi - Shor't
tpllisltcl)ij;g;r:h(;ictlr.sualL‘szsually onlypnc rz}ndomly l'ocated weakest section. Further ingilas?s;
e a]mxgst 3‘]1] dlgfjni:liégz strain hatrdttampg i}? this s;eclion, allowing for further load
‘ Sane Il de s concentrate in the resulting constriction until ultimz
strength is reached. This gives the well-known elastic—plastic behﬁviour of steelun[ e
gﬂ?};ﬁc?&stéiheof ;ourse, depex.ld on how the Wirel is .manufactured. Long wires be-lrlgsepdriefggf
s incp renc‘;m;na w111' be obscrvgd unpl yielding of the weakest section. However,
e Zredse At e elastic deformat}ons in the not-yielding sections dominate those in
g o Slone: }?.a result a long wire shows almost perfect elastic behaviour. Perfect
ol ahnol*?w'da lgh degrcc of redundancy. Further, the forces along a cable vary very
S e 2 a: ideal situations .have lead to some theoretical models rather early. The
Dh tak: named after Weibull [3] to take account of the effect of length and after
R gf)iﬁu;togi : Sth:V 'T}HZCt ‘(j)f rcduxsd?)ml:y. The most important results are of
/] . : ¢ ill be discussed below in some detail. The experiment:
Ziléﬁ;il;r?;lngggfléea;?:lgth6eﬂecl has been performed b_y Fernandes-Cantelli et al. [5{ Castlill}i‘g
it ( 5 [7’33),[ | and elsewhere. Less experimental work is available to verify the
aslgagla; St ia:}lt:;:anvc.: m%d;ls for the assessment of Fhe static strength of parallel wire cables such
S [ﬁe;sg)n ridges and cable stayed bridges have been proposed by Matteo et al. 9
o 1nen£ionedn T}rlecentlg by Fu et al. [2], apparently without knowledge of the work pl‘e:
el .f he mo els proposed by Ma}leo et al. [9] and Haight et al. [1] take into
Al So_cauedth e wire length as \.vcll as brittle and ductile wire behaviour but they both
SRl sl an;e‘ls ’eIchl. This is also reflected in their observation that their models
Si o cable ultimate s'trength by up to 10%. This effect is, however, included indirect]
}{ : al. [2] Yvherc the capacity of parallel wire cables is assessed by simulation of tt .
strain relationship for the cable. ( S
Wil;ecs(s:avg]c;rsk llra}lls sg tf.ar bec?n presented regarding thp assessment of the fatigue life of parallel
djsu—ibution‘ (se: a 1gule0 life of short and long wires is again well modelled by a Weibull
e fore.ti. [f ,.l 17 1S'upportejd by experiments (for example, [8,12]). Using para-
e C;m " dc ‘at;gue ives of individual wires, 'mode]s for the fatigue life of paralle]
il 1;:nveh. Such models are reviewed in Rackwitz and Faber [13]. Coleman
Sl enen e first theoretical model for parallel wire cables. It was later extended by
The present paper attempts to give an overview of reliability based assessment of parallel wir
cub!cs, both fqr design and for assessment of cables in existing structures. l i
F]rst.the. basic tht?ory and statistical models for the ultimate and fatigue strength of parallel wi
cables is given and it is shown how test results from both new wires and wires from ex];;lin 'Vg;re
may be utilised to determine the parameters of the statistical models. e
Thereafter, it .is described how the reliability of a parallel wire cable may be updated on tl
basis of inspections of the number of broken wires in the cable. For the special case of Ullrl;:
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wire ruptures close to the sockets of stay cables, it is demonstrated how the

Sonic inspections of
luated. Also, the effect of the inspections

so-called probability of detection of defects can be eva

on the reliability of the stay cable is illustrated.
Finally, aspects of design and assessment of stay cables are considered. Special emphasis is given

to the effect of design philosophy and corrosion protection on the cable resistance safety factors.

2. Static cable strength

A probabilistic model for the assessment of the static strength of the individual cables should be

able to incorporate all available information regarding wire material characteristics and the

number of corroded and damaged wires.
In the following such a model is presented. The model includes a reduction of the ultimate stay

tensile capacity due to the so-called length effect as well as a reduction due to the large number of
individual wires working in parallel—the so-called Daniels effect.

2.1. The strength of individual wires

Individual wires may be considered as being a weakest link structural system (a series system).
The number of clements in the system depends on the length of the wire and on the statistical
characteristics of the material parameters together with—especially for deteriorated wires—the

defects (cracks, corrosion pits, elc.) in the wires.
The material parameters and the defects in the wires may conveniently be described in terms of

o the statistical characteristics of the ultimate stress for the wires as obtained from tensile
tests

e the correlation length L, ie. the length over which the material parameters and/or the
defects in the wires may be assumed to be correlated.

The correlation length may be defined as

L, = JO |pzz(0)|de (1)

where p--(7) is the auto-correlation function for the wire strength. Some times the correlation
length is referred to indirectly as the Weibull size effect. If the correlation length of the wire is
short compared with the length of the wire, the number of elements in the series system will be
large. If the correlation length of the wire is long compared with the length of the wire, the
number of elements in the series system will be small.

Failures of individual wires may be ductile or brittle depending on the wire material charac-
teristics. However, in case of a ductile wire failure the length of the plastic zone will be in the
order of 1-3 times the diameter of the wire. As the wires usually are very long in comparison to
their diamcter it is easily realised that the elastic strains at failure will always dominate why in

general a wire failure will have a brittle characteristic.
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The strength of the individual elements in the weakest link system consisting oflm q]emepls may
be considered as a realisation of a set of m independent random variables Z; with identical Q1§-
tribution functions F; (z;). See Bolotin [11]. As the strength of the weakest link system Z is
determined by the element with the lowest strength, i.e.

Z =min(Z,, Z>, ...Z) 2)

it is seen that the strength of the system corresponds to the smallest realisation’of the element
strength random variable Z, in m trials. It is obvious that it is more likely to achx.eve a lgw 1'0?11-
isation of Z if m is large and the strength of the wire will therefore decrease for increasing wire

length and for decreasing correlation length. : {
The distribution function F (z) for the strength z of a wire of length L may appropriately be
given by a Weibull distribution with parameters A, v and k as

N
s B e ey (VS l 1 3)
Fz(z)=1 exp|: }v(u) ]
with mean value
EZl=u »7V% T(1 + 1/k) 4)
and variation

VIZ) = u* 274 [D(1 + 2/k) = T(1 + 1/k)] (5)
The scale factor 4 is given by

_L (6)
A= L

where L, is the length of the reference (test) wire specimen and L,=/-Ly is the correlation length
of the material parameters and/or the defects in the wire. : s

For new and undamaged wires it has been estimated that the corre?atlon length is in the same
order of magnitude or even larger than the length of the considered wire e.g. L=1000 m. for old
or damaged wires the correlation length may be reduced to a length in the order of the diameter

of the wire e.g. ~5-7 mm. g ] .ol
The scale factor, 4, together with the parameters £ and u may be estimated from ultimate

capacity tests by the Maximum Likelihood Method. Having observed from n, experiments the
ultimate capacities x the parameters k&, « and / may be estimated from

max(L(u, k, 4)) 7

u.k, /.

where the likelihood function L(x, k&, 4) is given by

Lou ke 2 = [ it k. ) ®)
i=1
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fatw k= () e [_A(Q)k] (9)

u \u u

As is seen from Eq. (9), 1 and u are represented in the problem only in terms of a product
between / and «*. This functional relationship poses a problem when the maximisation according
to Eq. (7) is performed. There is no unique solution for A and « but rather for iu—*. However, as
the correlation length (the product between / and L) may be assumed to be constant for test
specimens of different length L, this problem can be overcome if wire specimens of different
length are tested. Naturally, some of these different lengths must be larger than the correlation
length.

The maximum likelihood method also yields an estimate of the statistical uncertainty of the
estimated parameters. The parameters are asymptotically unbiased and normally distributed. The
covariance matrix can be determined on the basis of the Hessian matrix of the maximum like-
lihood function at the optimum, see e.g. Lindley [16], and allows quantifying the statistical error
of the estimates.

Finally, by the estimation of the model parameters it should be investigated whether all wires in
a given cable originate from the same batch, e.g. by variance analysis. The variation of the mean
tensile strength in different batches may be larger than the variation of the tensile strength
between different wires from the same batch. Therefore, if wires from different batches are used in
a given cable this may have to be included in the model. However, variance analysis may also lead
Lo the result that the wires cannot belong to the same population of wires, which could e.g. be the
case if the wires have been subjected to corrosion affecting the individual wires differently. In this
case a grouping of the wires should be made based on the results of the variance analysis. How
these are then treated for the assessment of the statistical characteristics of bundles of wires is
considered in Section 2.2.1.

As an example consider a 100 m long parallel wire cable with 200 wires. The diameter of the
wires is 7 mm. For the evaluation of the strength of the cable 30 tensile tests of wires from the
same batch as the wires in the cable have been performed. In Table 1 the results of the tensile
strength tests of the wires are given. All test items were Ly=3500 mm long. Therefore, it is not
possible on the basis of the tests to determine the correlation length of the tensile strength.

Using maximum likelihood estimation the model parameters are found to be u=1788.7
k=72.62 where the scale factor, 4, has been set to one because all test items have the same length.
The standard deviations of the parameters « and & are 4.77 and 9.89, respectively. The parameters
are correlated with the correlation coefficient 0.332.

In Fig. | the strength of a 100 m long wire is shown as a function of the scale factor. If the
results given in Fig. 1 are assumed valid for an undamaged cable the correlation length will be
large in the order of one third of the length of the cable i.e. 2=3. This implies that the strength of
the wire in mean is equal to 1748 MPa. On the other hand if the data are assumed valid for a
corroded wire the correlation length of the cable will probably not be larger than the length of the
test specimens, i.e. /=1.0 and consequently 1=200. On this basis the mean strength of the wire
can be found to be equal to 1650 MPa. It is important note that the strength reduction is not due
to a reduction of the cross-section but alone due to the effect of minor surface damages reducing
the correlation length of the wire. In the present case the reduction of the strength of the wire of
5.6% is observed, however, in general reductions of up to 10% can be found.
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Table 1
Results of tensile strength tests

Strength (kN)

Test Strength (kN) Test Strength (kN) Test
1 69.0 11 67.0 21 68.1
2 67.3 12 69.7 22 66.9
4) 67.5 13 70.3 23 66.5
4 68.5 14 68.7 24- 68.0
5 67.2 15 69.0 25 67.2
6 68.7 16 67.5 26 68.5
7 68.0 17 68.7 27 67.2
8 69.0 18 68.9 28 68.6
9 70.1 19 69.8 29 69.7
10 68.7 20 66.9 30 68.2
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Fig. 1. Strength of a 100 m long wire as function of the scale factor.

2.2. The strength of parallel wire cables

The strength of a bundle of parallel wires may be assessed by modelling the cable as a parallel
system, see Fig. 2.

2.2.1. The Daniel’s model for the strength of a parallel wire cab]e :
The strength of a parallel system with n components may, if # is large enough (n > 150), be
shown (see [4,17,18]) to be normal distributed with mean value

E, = nxy(1 — Fz(x0)) + ¢u (10

and standard deviation

M.H. Faber et al. | Structural Safety 25 (2003) 201-225 207

SNONONNNNNNNN

112 3 n-2] n-1 n

Fig. 2. Parallel system for the modelling of bundles of parallel wires.

D,y = xo[nFz(x0)(1 — Fz(x0))]"/? (11)

where ¢, may be assessed from

¢, = 0.966n' 3¢ (12)
and
3 Sa(x0)x)
(2f2(x0) + x0/7(x0)) 13

Jz(xy) is the density function for the wire strength. The parameter x, is the solution of
xo = max{x(l — Fz(x)} (14)

provided that there is f7(z) = 0 and (1 — Fz(z)) — 0. A correction for the standard deviation
can also be given but is usually not important. In particular, if Z is Weibull-distributed the
parameter x, may be determined from

' Iy [
Xp = I:IE:I u (15)

¢, may be considered as a correction term to the asymptotic solution (which is valid for large #) in
cases where » is below say 150.

The free length ie. L in Eq. (15) should be assessed by considering the length over which a
ruptured wire will be bonded by friction to the adjacent wires and thus regain its load carrying
ability. The so-called bond length is mainly influenced by e.g. clamps on main suspension cables,
however, also the wire wrapping typically installed for the purpose of protecting the cable from
degradation will have a positive effect on the bond length. Usually the bond length is taken as the
length between the clamps for main suspension cables or as the length between the sockets for
stay cables.

In Fig. 3 the mean strength of a cable (per wire) is illustrated as a function of the number of
wires for the parameters ¥ =1788.7, k=72.62 and A=3. In the considered case it is seen that the
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strength reduction amounts to about 6.5%. In general reductions of up to about 8% may be
achieved. However, as the mean value of the strength of the cable (per' wire) decreases, the stan-
dard deviation decreases even faster. Even for a moderate number of wires (n > 100) the stren‘gth
of a parallel wire bundle can be considered to be deterministic. Together the t\yo effects are oit.cn
referred to as the Daniel’s effect. This effect implies that for practlgal applications the uncgrtam-
ties influencing the failure probability for static failure modes of wire bundles may be atmbyt;d
to the loading alone. However a reduction of up to 8% of the strength as measured on the indi-
vidual wires should be accounted for. il )

In Fig. 4 the strength of the 100 m long cable with 200 wires is shown as a function of the scale
factor. : :

For the undamaged cable, i.e. A=3.0, the strength of thel cable is 12.7 MN. For lhe corroded
cable, i.e. =200, the strength is 11.9 MN. Again it is important to note that the strength
reduction is not due to a reduction of the cross-section of the individual wires but alone due to a

i rrelation length for the strength of the wires. :
rciklclgligl;gtt?seszzn i}?at the di%i"crence between the mean value and the mean value plus,{mmus
two standard deviations is small. This demonstrates that the (mean) strength of the cable is sub-
ject to very little uncertainty. In fact, the coefficient of variation of the strength of the cable is less

than 1.0%.

ress—strain relationship for parallel wires . o
Zf\i nfé;lisif)r:éiia’greif/i(clfus]y tﬁg copnditions may not be'fu]ﬁlled, under \yhlch the s‘tatlstwal
characteristics [Egs. (10) and (11)] of the ultimate capacity of a parallel wire _ca‘blc have bf:cn
derived. This is e.g. the case if the wires in the considered‘ cable have b'ecn_ s.ub_|cct to c'orrosnon
degradation or if the cable is subject to bending. In the first case the individual wires may no

‘ | FRs 3 TTT1T 1 Ik JAT
— Cable strength reduction factor

Red uction factor

10000

Number of wires

Fig. 3. Tlustration of the Daniel’s effect, i.e. a systematic reduction of the cable strength (per wire) as function of the

number of wires in the cable.
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4.1. Inspection of the number of broken wires

The inspection of the number of broken wires can be performed by means of various Non
Destructive Evaluation methods (NDE), techniques such as e.g. electromagnetic inspections,
X-ray and Ultra Sonic inspection or by wedging the cables open and inspecting the wires visually.
The different methods each have their strong points and the reader is referred to e.g. Stahl and
Gagnon [20] for further details.

The important point in the context of utilising inspection results for the purpose of reliability
updating is that the quality of the inspection method applied is appropriately modelled. This
means that the inspection reliability in regard to finding defects as well as finding defects which
are not there must be quantified. Furthermore given that a defect is found also the precision of
the sizing of the defect must be quantified. In this context the different mspection methods may be
treated along the same principles.

In the following a procedure is outlined by consideration of Ultra Sonic inspections applied for
detecting ruptured wires in stay cables in the immediate vicinity of the cable sockets.

The Ultra Sonic inspection of the individual wires is performed through the bottom and the top
anchor sockets of the stays. By the Ultra Sonic inspection a sound wave is transmitted through
each of the wires and the reflection of the sound wave is measured. On basis of the measured
reflection it can be determined if the wire is ruptured and if it is ruptured also the location of the
rupture may be determined.

4.1.1. Probability of detection

Any inspection method including Ultra Sonic inspection and hands-on inspection is not able to
detect all ruptured wires with probability one. Furthermore, the inspection may indicate that
intact wires are ruptured.

To evaluate the reliability of an inspection method it is necessary to determine the probability
of detecting a defect given that it exists as well as the probability of detecting a defect given that it
does not exist.

The probability of detecting a defect, i.c. a ruptured wire, given it exists is denoted Fp,. By the
considered Ultra Sonic inspection it may be assumed that Fp depends on the distance from the
socket to the location of the fracture. By a visual inspection £, may be assumed to be a constant.

The probability of detecting a wire rupture by Ultra Sonic (US) inspection given it exists is
Fp(d, p) where d is the distance from the socket to the location of the fracture and p are the
parameters to be estimated.

The problem is to estimate the parameters of Fp(d, p) to experimental inspections with obser-
vations of the type: detection/no detection. The maximum likelihood method (see e.g. Lindley
[L6]) is applied for this purpose since it provides the joint probability density fy(p) i.e. the full
information about the statistical uncertainty. Assuming that the individual inspection trials are
independent, the likelihood function L(p) has the following form, corresponding to N experimental
inspections performed with the distances to the defect, df =102 5N

N
Lp) =[P (23)
i=1
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where
Fp(df[p) if detection
Pip) = d . : :
B Fp(d{|p) if no detection 24
The maximum likelihood estimates, p*, are obtained by solving the optimisation problem
miny Z(p) (25)

For large sample sizes the joint distribution function of the parameters, p, tends to a Normal
distribution with expected values u, = p* and covariance matrix Cp, given by (see e.g. [16])

Cpp =[-H]"' (26)

where the elements of the matrix H are given by

 PInLp)
T dpidp,

To evaluate the goodness of fit of the selected function, Fp(d, p), the robustness of the estimates,
p* should be examined. As the maximum likelihood estimates are statistically robust the estimates
p* should at least be insensitive to augmenting the experimental inspection trial sample with one
additional sample. If this is not the case, the selected function is not suitable. Otherwise the function
Fp(d, p) can now be used for reliability analysis and/or for inspection and maintenance planning.

By a visual inspection of the wires the probability of detection does not depend on the distance
from the socket to the location of the rupture, i.e. the probability of detection is constant. Hence,
the estimation of the probability of detection can be performed by Bayesian analysis of a Bino-
mial distribution, see e.g. Box and Tiao [21]. It can be shown that the probability of detection
follows a g-distribution with density function

T(N +1)

FW*0~5 1 N—ny—0.5
Ty + 05)(N—ng+05) ° =) @

Jry(Fp) =

if a nearly non-informative prior distribution is used, i.e.

S (Fp) < [Fp(1 = Fp)|™'? 0 < Fp <1 (29)

and where it has been assumed that the individual trials are independent and where N is the
number of broken wires and #4 is the number of broken wires detected by the inspection.

Wire fractures will often tend to occur at about the same distance from the socket. This implies
that the probability of detecting a wire fracture by a US-inspection may be assumed to be con-
stant. In that case the probabilily of detecting a defect given that it exists can be determined on
the basis of Eq. (28) where N is replaced by the number of wires and ny4 by the number of wires
which were found to be broken.
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5. Condition updating

On the basis of the information obtained from the inspection it is possible to update the dis-
tribution of the number of ruptured wires.

Prior to an inspection the probability that a given wire in the cable is ruptured is p' and
the probability that a given number of wires is ruptured is given by the Binomial distribu-
tion. Let N be a stochastic variable describing the number of ruptured wires and let m be
the number of wires in the cable. The probability that the number of ruptured wires is n is
given by

P(N — ”) - (Z’I )])/”(1 _ [)/)lnﬂz (30)

The results of the inspection may be used to update the probability that a wire is ruptured. The
updating is performed by Bayesian analysis.

The information consists of the number of ruptured wires, which were detected by the inspec-
tion. If the probability of detection is constant, i.e. independent of the distance to the fracture, the
probability of detecting a given number of ruptured wires by the inspection is also given by a
Binomial distribution. This implies that the probability of detecting 54 ruptured wires for a given
value of F) in a population of m wires is given by

Eec <Z'l )(FDP)"“(I — Fyp)"™ (1)

where p denotes the true but unknown probability that a wire is ruptured.
Using Bayes rules the posterior distribution of p for a given Fp; can be determined as

L(nalp) p(p) 32)

n) = L
D [oL(nalp)f p(p)dp
where L(ng |p) is the likelihood of observing ny ruptured wires for the given value of p, ie. the
likelihood given in Eq. (31), and where f},(p) is the prior distribution of p.

Unless numerical solutions to Eq. (32) are pursued two problems must be addressed. First an
appropriate prior probability density function for the probability of wire rupture p must be
identified. Secondly the integration of the nominator has to be performed. Starting with the
problem of the choice of the prior distribution of p this might be chosen as

@) o [Fop(1 — Fpp)I™'* 0<p<] (33)

which, however, is realized not to be a proper prior in the sense that it does not integrate to one.
Further, it is not even a non-informative prior. However, this prior leads to a simple approximate
solution for the posterior distribution of p. If the number of wires is large and the number of
observed ruptures is small, the influence of the prior is negligible and the prior given in Eq. (33)
can be used to determine the distribution of p.
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Naturally p cannot be larger than 1. However, if the integration in Eq. (.32) ls 1_3c1‘['01*mcd from 0
to % an analytical solution can be determined. By this analytical solution it is found that the
postgrior of Fpp follows a g-distribution given by

Fim+1)
C(ng + 0.5)T(m — ng + 0.5)

f”(FD[)) 2 (an)ud ~0.5( i an)m—ndf{).i (34)

For a given value of Fp, the posterior distribution of p can now be evaluated by

S3@) = Fp [ (pFp) (33)

It is important to notice that the expressions given in Egs. (34)4(35) are zlpproximalion.s'. The
distribution of Fpp is defined in the interval 0 < Fpp < 1 implying that there is a probability of
obtaining outcomes of p larger than 1. However, if the number _of test_ed \\ill‘es is large alnvd the
unknown probability that a wire is ruptured is small in comparison vynh .1',; the probab]llly pf
obtaining outcomes of p larger than one is negligible and the approximation oull}lled above.m
Egs. (34) and (35) may be used. If these conditions do not hold th§ evaluqhon of the posterior
distribution of p [Eq. (32)] may have to be performed by numerical integration. .

Once the posterior of p is determined the distribution of the number of ruptured wires can be
determined on the basis of the Binomial distribution. However, the distribution must be trun-
cated because it is known that at least ny wires are ruptured. On this basis the distribution of the
number of broken wires in the cable can be determined for given values of p and Iy, as

( m )p,,(l e
) ! 1 n = ng (36)
W= m i1 Yy

=

P(N = I‘I‘N = ng) =

The uncertainty related to p and Fp may taken into account by integrating Eq. (36) over all
possible outcomes of p and Fp. . '

As an example consider a cable with 200 wires where all the wires are ‘tesled by an UT-inspec-
tion. It is assumed that all fractures are located roughly at the same distance from the socket,
implying that the probability of detection may be assumed to be‘c'onslant Thfz inspection revegls
that 10 wires are ruptured. Further, it is known that the probability of detecting a ruptured wire

by the inspection is 0.867. . G
The posterior distribution of Fj,p may be determined by Eq. (34). Further, the posterior dis-

tribution of p is given by

f5(p) = 0.867/"(0.867p) (37

The posterior distribution of the probability that a given wire in the cable is ruptured, p, is also
shown in Fig. 6. el e,

In Fig. 6 it is seen that the probability of obtaining outcomes ofp larggr than 1 is small, i.e. less
than 10199, In this case, the error made by the approximation is pegh.glble‘

In Fig. 7 the posterior distribution of the number of ruptured wires is shown.
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Fig. 6. The probability that a given wire in the cable is ruptured.

The mean number of ruptured wires is 13.68 and the standard deviation of the number of
ruptured wires is 3.60. This implies that the coefficient of variation of the number of rup-
tured wires is 26%. On the other hand the mean number of intact wires is 186.3 and the
standard deviation of the number of intact wires is also 3.60. The coefficient of variation of
the number of intact wires is 1.93%. This demonstrates that very accurate information
about the load-carrying capacity may be obtained on the basis of an inspection. This con-
clusion is also valid if the uncertainty related to the probability of detection is taken into
account. Naturally, if the number of ruptured wires detected by the inspection is large
compared to the total number of wires the uncertainty related to the number of intact wires
is large. However, in practice cables with a large number of broken wires will be replaced
immediately,
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Fig. 7. Distribution of the number of ruptures.
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6. Reliability updating

Based on inspections the model for prediction of the degradation of the cable may be updated.
The updating can be performed using Bayesian statistics taking into account the accuracy of the
inspection method, i.e. the probability of detection. . .

In Eq. (21) the damage, d, is treated as a continuous variable. For a cable with n wires the
probability that 7 wires have ruptured is defined as

Pd(t)=1) = P(’—i <d) < - l) (38)

n

where ¢ denotes the number of cycles. _ :

If an inspection of the cables has been performed after 1; cycles and a given observation, {0},
has been made at this inspection the probability of a given damage occurring at 1> 1 may be
updated. The observation, {0}, in this casc consists of an inspcctio}n. of the cable at the time ¢,
and the detection of a given number of ruptured wires. The probability that the number of rup-
tured wires at the time 7 exceeds the number i may be determined by

P = 0y = Y P(d(1) > i d(n) = j. O)P(d(11) = /10) (39)

J=1

where the probability that j wires are damaged after 7, cycles given the obscrvation, O, is given by

P(d(ll) :jlo) s ”P(Old(tl) ]) ((([1) ]) 7
ZP(0|d([1) = /()P([[([]) i k)

k=1

(40)

Further, the probability P(a’(r) > i!d(z]) = j, 0) must be independent of the ob'scrvaliop, {0},
When the damage at the time £, is known, the observation performed at the time 7, gives no
additional information on the basis of which the distribution of the damage at the time />, can

be updated. This implies that

(1) = ild(n) = j, 0) = () = id() =) (41)

The probability given in Eq. (41) may be determined on the basis of the modle of the degrada-
tion of the cable given in Section 3.2, taking into account the statistical uncertainty related to the

model parameters. ' A ) . :
The observation, {0} may for example be obtained by an US-inspection of the wires. In this

case the observation is

{0} = {obscrvation of k ruptured wires by an US-inspection at the time 1}
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The probability of observing & ruptured wires by the US-inspection at ¢, given that j wires have
ruptured is

PO = kld(t)) =)) = (Q)Pga - Ppy* 42)

where P is the probability of detection. It is assumed that the fractures are located at about the
same distance from the socket implying that the probability of detection is constant.

Again consider a cable with 200 wires. The mean strength of the wires is 1789 MPa, see Section
2.2. The deterioration of the wires is determined on the basis of the model given in Section 3.2.
The model parameters and the statistical uncertainty related to the parameters are

m = 1.50 Cmm C/mx Cm}(“ 0.0773 0.0718 0.416
o =276 C=|Cuw Cow Cox |=1]00718 0.0894 0.538
Ky =1.19-10% Crky Caky  Cioky 0416 0538 325

The cable is subject to 1.5-10° stress cycles of magnitude 30 Mpa each year. On the basis of the
estimated model parameters the deterioration of the cable can be predicted. After a period of one
year a US-inspection of the cable is performed. At the US-inspection no ruptured wires are
detected. The probability of detecting a ruptured wire is modelled by a g-distribution with mean
0.865 and standard deviation 0.0196.

Based on the information that no ruptured wires have been detected the probability that a given
number of ruptured wires exists after the US-inspection can now be determined according to Eq.
(36). The updated probability of a given number of ruptured wires after 1; cycles is given in
Table 2. The prior probability, P((¢|) = j), also given in Table 2 has been determined for ¢ =
1.5-10° (1 year) by Monte Carlo simulation taking the statistical uncertainty related 1o the model
parameters.

Table 2
Probability of a given damage after US-inspection

Number of broken wires after 7, cycles, j P(Old(1)) = j) P(d(1) =) P(d(1,) = jI0)
0 1.0 2.75.1072 8.80-10~!
1 1.35-107! 246102 1.06:107!
2 1.85-102 2,08-10 1.23.1072
3 2.59.10-3 1.73-102 1.43-1072
4 3711074 1.63-1072 1.93.10~*
5 5.41.1075 1.50-102 2.60-10°
6 8.05.10-¢ 132102 3.49-10-¢
7 1.21-10-¢ 1.20-10~2 4,65-1077
8 1.88:10°7 1.17-1072 7.04-10%
9 2.95.10-% 1.09-1072 1.03-10-%
10 ; 4.71.107° 9.26-1073 1.40-10-*
11 7.65:-10~10 8.89.1073 2.18.10710
12 1.26-10-10 9.23-1073 3.72.10- "
13 2.12.10- 8.28.103 5.62-10-12
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Now the probability that a given number of wires are ruptured 6 months after the US-inspec-
tion can be determined. In Table 3 the conditional probability, P(a’(t) = i‘d(rl) =j)is given for
1=2.25.10° (11 years). The value of i has been chosen as /=20, i.e. the relative damage is 0.10.
These probabflities are determined in the same way as the probabilities P(d(t;) = i) above. :

Using Eq. (36) together with the results in Tables 2 and 3 the probability that the damage is
larger than 0.10 6 months after the last US-inspection can now be found to be 3.78-107%.

7. Issues relating to design and assessment

For parallel wire cables, such as cables in suspension bridges and cableistayed _bridges, a format
for design and assessment taking into account deterioration may Filﬂ‘erentlelt@ betwccn the
assumed deterioration mechanism, preventive/mitigating measures, maintenance strategies, years
in service and service life in addition to the usual classifications.

7.1. Safety of cables assuming no deterioration

The static strength of cables prior to deterioration Ry can be shoyvn to exhibit a very :qm'al] or
even negligible uncertainty due to the normally large number of wires in the cabl?s. This is dis-
cussed in Section 2.2 where it is shown that the coefficient of variation of the breaking strength of
parallel wire cables is normally well below 1%. However, due to the length effect an.d vdu.e to the
Daniels effect (wires in parallel) the mean breaking stress of a cable is reduced determm@tlcgl?y by
a factor 0.9 and 0.92, respectively, as compared to the mean breaking strength of the individual
wires as assessed by testing of standard specimens. 58

The safety factor for the cable strength, assuming no deterioration, may be evaluated by

& L (43)
V=09 %092 x pexpla B V)

where r, is the characteristic or nominal wire breaking strength, u, is the mean wire bregking
strength, o is the sensitivity factor for the resistance, g is the target safety index and' V,‘_ is the
coeflicient of variation of the wire breaking strength related to the between batch variability of
the mean wire breaking strength.

Table 3 .
Conditional probability of obtaining a given damage

Number of ruptured wires after 7, cycles, j P(d(r) > 20&/(7/1):‘])

6.94.10°
1.52.1073
1.83.1072
1.94.10°!
8.46:10°"
1.0

— \0 00 ~1 O\ L

(=1
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As an example consider a case where the mean breaking strength u, is 1850 MPa and the
coefficient of variation is 2%. If g is set to 3.4, « conservatively assumed to be equal to 1 and
the characteristic value r; defined as the 5% percentile value of the probability distribution
function of the wire breaking strength, the cable strength safety factor is found to be equal to
1.25. This is significantly below the commonly assumed values around 1.7-2.0. The difference
in strength safety factors allows for deterioration corresponding to 27% of the cable cross
section.

7.2. Safety of cables subject to deterioration

The partial safety factor for cables subject to deterioration must be determined such that the
cables have a sufficient level of safety even when some damage has occurred. Let the damage
which occurs in the period of time from =0 to t=17 be denoted d(1).

For moderate degradation or large cable cross sections the partial safety factor given by

EE T
V=140 (44)

ensures a sufficient level of safety in the considered period of time if o ensures a sufficient level of
safety at the time when no damage has occurred.

Normally the governing deterioration mechanisms for cables are fatigue and corrosion or the
combined effect of these.

Following the model given in Section 3 the evaluation of the service life or residual service life
of parallel wire cables takes basis in the estimation of the probability distribution function of the
lifetime of a single wire. The effect of corrosion on the fatigue lives may be included by fitting the
model parameters on the basis of experiments performed on wire specimens, which have been
subjected to corrosion.

The degradation function g() for the cable strength subject to fatigue deterioration may thus be
written as

g =1—dn(n) (45)

If the static loads acting on the cable and the yield stress of the cable is known it is possible to
determine the probability that the cable fails in a given period of time, ¢ € [0, 7] where ¢ denotes
time and 7 the length of the considered period

PAT)=1- PRy x gn(t) <S(r) v te[0; 77 (46)

where Ry is the load bearing capacity of the undamaged cable and S(¢) is the time-variant load
acting on the cable.

The degradation functions corresponding to the two different situations are shown in Figs. 8
and 9 for typical load conditions for main cables and hanger and stay cables, respectively. The
degradation functions shown in Figs. 8 and 9 are determined on the basis of parameters estimated
by Rackwitz and Faber [13], see also Section 3.2.
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Fig. 8. Typical degradation functions for main cables, hanger cables and stay cables for non-corroded wires.
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Fig. 9. Typical degradation functions for main cables, hanger cables and stay cables for corroded wires.

For cables subjected to live loads inducing stress ranges and extreme stresses below the endur-
ance limit of 7o=200 MPa fatigue will in general not take place.. A condluol} for an end.urance
limit is, however, that damages of the wire surfaces, due Lo corrosion or handling of the wires are
avoided. ‘ . i .

In order to investigate the effect of fatigue deterioration on the required cable.resnslance a series
of reliability analysis have been performed for cables subjeptqd to the comb.m.ed effect of live
loads L and dead loads D. It is assumed that the endurance lnmt has be;n d1m1n1.3h§cl_ due to e.g.
initiating fatigue or excessive loads and as a consequence fatigue dclerlorat'lor} is xmllatqd. The
analysis have been performed for three different ratios be_tw_een the ch-araclerlsllc values of L a.nd
D, namely L,/D,=0.2, 0.25 and 0.3 where the characteristic 'valuc of }hc dead load anq Lhe_hve
load are defined as the 50 and the 98% fractile, respectively. This covers most situalions
encountered for cables in cable stayed bridges and suspension bridges. Furthermore, the _analyses
have been performed for different ratio’s « between the fatigue loadmg Dg a1.1d the x’nde.an h'\'e logd,
namely 0.05 and 0.10. In the case of x=0.05 which resembles the typical fatigue loa ngg snfuauon
for main cables on suspension bridges it has further been assumed that t.he mean nulhnl er o stlr;ltss
cycles is 5-10° cycles per year. For k=0.1, corresponding to the stress situation for fa{]rgeesrs c;ad:
on suspension bridges and stay cables on cable stayed bridges, the mean number of s ycles
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has been set to 5-10° per year. It has been assumed that the service life of the cables is 100 years
and the service life target safety index is g=3.4.

The results of the analysis are shown in Fig. 11 where the factor by which the resistance corre-
sponding to an optimal design taking into account the effect of fatigue deterioration may be
reduced if by some means the deterioration can be avoided.

From Fig. 10 it is also seen that rather significant reductions of the design cable cross section
can be justified if it is ensured that deterioration is avoided. For situations resembling hanger and
stay cables reductions of the design cable cross section of up to 40% cable can be justified. It is,
however, also seen that for situations resembling main cables, no reduction is justified. This is due
to the fact that even if fatigue is initiated, the stress situation is of such a nature that the fatigue
deterioration will be very modest within the design service life of the cable.

It is interesting to notice that the reduction factor for typical cases of p=0.25-0.3 for hanger
and stay cables is in the range of 20-40%, i.e. in the same range as the deterioration of 27%
implicitly allowed for in current cable design practice.

In Fig. 11 the effect of the design service life is illustrated for the case of k=0.1,

As a consequence of the results shown in Figs. 10 and 11, a differentiation of the required
resistance safety factor may be justified for hanger and stay cables depending on their design
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Fig. 10. Reduction factor which may be applied on the design resistance if deterioration can be avoided.
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Fig. 11. Reduction factor for different design service lives and ratio of live to dead load, for the case k=0.1.
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service life and whether or not deterioration will be avoided. The diﬂ'eremiallf)]? 'f]?nh'e[l:m%ii svl::iﬂ
depend on the ratio between the live and the dead load component as well as the ratio
the fatigue load to mean extreme live load.

8. Conclusions

The theoretical basis for assessing the safety of parallel wire c;lrbles hfasf lzgcn gj:;gncgi.r-]slg?g;ml%
i i apacity 11 as the effects of fatigue 4 sion.
the safety in regard to both the ultimate capacity as we : i i
has beenthowi how the presented probabilistic models may be adapted to experiments results
i \ ing st i i in the laboratory.
obtained by testing standard wire specimens 1n t o : ' ;
Based 011};11e p1'e§cnted models it is found that the strength of a parallel wire Fable (11];‘1: gff;?gﬂy
be treated as deterministic, if the statistical uncertainty of the model parame):&e:st use -(r)orméd g
the model is small. This may be achieved if a sufficiently large nun}bTr of Lulzlscj;e&e;ppmpr} e
{ i sable on the safety of the cable c: ate
The effect of the length of the considered cab / ' S Ry
i : h established by testing of a standard wir
d for by a 10% reduction of the mean strengt ; a standard wi
?:sclos;et;men 1¥he Da;icls effect, i.e. the effect of having a large number of wires working in
utthe 8%.
arallel further reduces the mean value by about : . ) . W
b Using the presented models it is demonstrated how mspectlonilgt th;)] condllFion ?1“21“(,\:;;;:;123
é jability of a cable. By modelling the quality of the
able may be used to update the reliability of a ca _ B oL e PERiIT
?nspectior}; method in terms of its ability to detect wire ruptures—the POD—the reliability of the
ble as a whole may be updated. o ' -
Ca]:ina]ly the aspects of design of cables has been addrcssed1 ar()jd it is sfh]own 1}11(::1(;]1;3[&315:{)]22
i an i  role for the safety and thus the design of hanger ¢ 4
degradation plays an important role for t : : e
i a sme : f suspension cables. It has been dem
‘hereas it only plays a small role for the safety o ! 520, domanstral
Klaetrif cblegrada};'lgn }l'l)y some means may be completely avoided the safety factons}or pd,r-d.“d,vgllm
cables may be reduced by approximately 27% or the other way arot{nd Fhat pma]l;l 1vvnc Cg es
may sustain a degradation corresponding to about 27% before the safety is reduced below what is
normally accepted.
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