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Abstract

Based on earlier work, a renewal model for structural failures with subsequent systematic reconstruction is developed. It is shown that
simple objective functions can be obtained by making use of some asymptotic results of renewal theory. Complete objective functions must
include benefits and expected failure cost which both must be discounted appropriately. Some techniques in optimization for locally
stationary and locally non-stationary failure models are developed. Those are illustrated at simple examples. © 2001 Elsevier Science

Ltd. All rights reserved.
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1. Introduction

Rosenblueth and Mendoza [22], Hasofer [S] and Rosen-
blueth [24] proposed a renewal model for structures. In
particular, two replacement strategies are considered, i.e.
one where the structure is given up after failure or after
service and the other where the structure is systematically
rebuilt upon failure or obsolescence. The latter strategy
appears suitable for most building facilities, especially for
infrastructure buildings like bridges. It is assumed that time-
variant loads and/or deteriorating system properties cause
failure. Rosenblueth and Mendoza [22] already pointed out
that such a model is most appropriate in the context of
optimization. Rackwitz [20] reviewed those early results
and studied various additional aspects of the renewal
model and its application to reliability-oriented cost-benefit
analysis. The most important conclusion in the context
discussed in this paper is that the likelihood of failure should
be measured in terms of failure rates or renewal densities
instead of failure probabilities related to certain reference
times. In this paper some more results are presented partially
based on Hasofer and Rackwitz [6]. The theory of the
renewal model is briefly reviewed. It is then applied to
structural optimization, which includes expected failure
cost. If the factor time is involved in risk—benefit analysis
cost occurring at a later time than the decision point must be
discounted. Some discussion is provided on how to choose
appropriate discount rates. As other technical objects,
structural facilities also involve risks to human life and

* Tel.: +49-89-289-23050; fax: +49-89-289-23046.
E-mail address: rackwitz@mb.bv.tum.de (H. Riidiger Rackwitz).

limb. Therefore, emphasis is then given to the question of
risk acceptability in the context of optimization of structural
facilities subject to various hazards. A new approach to
define acceptability criteria derived from the so-called life
quality index as proposed by Nathwani et al. [15] is used. It
turns out that risk acceptability is essentially a matter of
efficiency of investments into life saving measures.

In Kuschel and Rackwitz [10], a first proposal is made to
perform reliability-oriented optimization if a stationary
Poissonian process generates structural failures. An efficient
one-level scheme is proposed which is refined below. The
non-stationary case, i.c. when non-stationary loads act on
the structure or some deterioration occurs in time, has not
yet been studied previously. It is substantially more difficult
and, at the moment, can be solved only approximately by
asymptotic concepts. More specifically, the asymptotic
renewal density, a quantity not varying in time, must be
used. The practical computation of the asymptotic renewal
density for non-Poissonian failure models was first studied
in Rackwitz and Balaji Rao [18]. In this paper reliability-
oriented optimization using the objective function proposed
in Rackwitz [20] for Poissonian and non-Poissonian failure
models is further developed in part making use of ideas put
forward in Kuschel and Rackwitz [11,12] and including a
criterion defining acceptable risks for human life and limb.

2. Objective Functions

Assume that the objective function of a structural
component is

Z(p) = B(p) — C(p) — D(p) D
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B(p) is the benefit derived from the existence of the
structure, C(p) are the construction costs, D(p) the damage
cost and p generally is a design parameter vector. Without
loss of generalily all quantities will be measured in mone-
tary units. Statistical decision theory dictates that the
expecteq values for B(p), C(p) and D(p) have to be taken
B(p) will be unaffected or slightly decrease with eacﬁ
component of p. For simplicity, B = B(p) is assumed C(p)
increases with each component of p under normal ci'rcum-
stances. The magnitude of C(p), in general, is most easy to
assess. D(p) decreases with p in some fashion assuming that
the p‘robubility of failure is a decreasing function of p. For
each involved party, i.e. the builder, the user and the society
Z(p) should be positive. Otherwise one should not undertake’
the realization of the structure. This is illustrated in Fig. 1
Benf:ﬁts, cost and damages are not necessarily the same 'f01:
all m'vnlved parties. Therefore, the intersection of the
domains where Z(p) is positive is the domain of p. which
makes sense for all parties. ;
Furthermore, the decision about p has to be made at r = 0.

Thl's r.equ.ires capitalization of all cost. A continuous
capitalization function is used.

) = =
(1) = exp(~yr) )

where v the interest rate and  time in suitable units. As will
be. seen below the usual discrete discounting function is not
Sl.lltabh’: for our purposes. If a yearly discount rate v for
dlsconunyous discounting is given, it is related to the rate
for continuous discounting by y=In(1 + y"). y is
corrected for de- and inflation and averaged over sufficiently
long periods to account for fluctuations in time. It is also
assumed that the time for construction is negligible short as
compared to the average lifetime of structures. Although the
formula’s for failure upon construction can also be given
[20] only the case of failures due to random loads and/or

detcrlqration of system properties is considered in the
following.

Cost
A B
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3. The renewal model for structural failures with
subsequent systematic reconstruction

Assume that the sequence of structural failures (and
subsequent reconstruction) can be described by a renewal
process whose most important characteristic is the densit
g(1) of the time between failures. Let ¢

n=223

gn(t) = J-o 8n—1(t — Dg(ndm; B 3)

be.thc density function of the time to the n-th renewal
.wntten as a convolution integral. Slightly more general it
is assumed that the density of time to first failure is different
from the one for subsequent failures. The latter density is
denoted by g,(#). The corresponding renewal process will be
termed modified renewal process. Define by

£1(6) = L exp[— 0 f]g, (Hdt

*(0) = = -
g (0 L exp[—6 flg(rdr @

the .Lap]ace transforms of g(r) and g,(), respectively. For
.thc important stationary Poisson process with intensit : At
is simply St

g’(e):*g:r - s A
| g (6 ; exp[— 6] Aexp[— Az]dr = E 5)

For convolutions we have
£1(6) = 81(0)g1(6) = gi(Olg" O ©)

The Laplace transform of the renewal density defined by

00

hiy =3 g

Cp)
D(p)

/Epumum

Cesicn
parameter p

N
>

reasonable domain

Fig. 1. Cost and benefit over design parameter plafter Rosenblueth and Esteva, 1972)
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then is

PR ORI < B ()]
KO =Y 6O => @ Or =55 O

n=1 n=1

for modified renewal processes and
« - . — - i "8
o= o= O or' = Tf—”— @®
n=1 n=1 8 (6)

for ordinary renewal processes.

It is now assumed that if structures fail systematic recon-
struction is chosen. The renewal model requires indepen-
dence of the failure times. After first failure the failure times
are identically distributed. These conditions are assured by
assuming that the loads between different times to failure
are independent and structures are realized according to the
same rules with random and independent properties at each
reconstruction.The discounted total benefit B for constant
benefit b per unit time then simply is:

B= bj exp[—yrldr = L2 ©
0 Y

The present value of the expected failure cost for systematic
reconstruction after failure is in using § =y for modified
renewal processes:

DR =€)+ MY [, d0aitep

n=l1

=+, [ expl-ys, )
n=1
o . gi(v.p)
= +H ) = (C(p) + H)————
(€p) >”§g (rp)' = (C) + D)= 0 s
= (C(p) + B (y.p)
(10)
Therefore,
b .
Z(p)y =~ = €)= (CE) + DA %.p) an

For ordinary renewal processes h* (y.p) is replaced by
h*(y,p). For stationary Poissonian failure processes with

rate A(p) we simply have

b Ap

Zp) = = Cp) - (Cp)y + H)—— (12)

)
Y
A(p) may be identified as the stationary crossing rate ¥ (p)
of a random load process out of the safe domain of structural
states.

If one assumes a renewal process for certain disturbances,
for example earthquakes, with inter-arrival densities fi(f)
and ft), respectively, and in which failure can occur
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independently with probability Pi(p) one can show that [6]

b e
Zp) = — —C(p) — (CP)+ H)———F——— (13
0= = €O~ €O+ By e

For Poissonian disturbances with intensity A this reduces to

Pi(p)A
v+ Pep)A

The Laplace transform of the renewal density is analytic
only in a few cases. The general case is difficult and needs
to be determined numerically. Yet more difficult is the
inverse transform, which is necessary when some limit for
the renewal density or failure rate has been set. The renewal
density looks like a damped oscillation with period around
the mean time between failures. The magnitude of the
oscillations is larger for smaller coefficients of variation of
failure times. It overshoots the constant asymptotic value by
roughly a factor of 2-4 [20] for failure times with small
coefficient of variation. However, there is an important
asymptotic result that can be used without much error.
The asymptotic renewal density is [1]

b
Z(p) = i C(p) — (C(p) + H) (14)

lim h(t) = i provided that  f(f) — 0 for t— o (15)
—00 M

with u = E[T] the mean time between failures. It is valid for
both ordinary and modified renewal processes. The corre-
sponding asymptotic Laplace transform is:
1

lim yh(y)= — (16)
=0 I

Therefore, for the case of systematic reconstruction the
objective function is:

b 1
Z(p)y=——Cp)— (Cp) + H)—— 17)
o Y @ b Yp)
It is worth noting that this is also the result for the stationary
Poissonian failure process to which any non-Poissonian

failure model obviously converges.

4. Discussion and risk acceptability

C(p) as well as u(p) usually are reasonably assumed to
increase in each component of p. Therefore, Z(p) has an
optimum for some p. Apparently, a maximum interest rate
Yy €Xists beyond which Z(p) will be negative for any p.

e LEBTCD D (18)
wC(p)

This implies that for a reasonable undertaking we must have
w(p)b> (C(p) + H), ie. the benefit received during the
average time between failures must exceed the sum of direct
reconstruction cost and damage cost. Eq. (17) shows that the
interest rate must be non-zero, i.e. y > 0. Otherwise the
expected damage cost would grow to infinity. For very
small interest rate we see from Eq. (17) that the benefit




272 Riidiger Rackwitz / Reliability Engineering and System Safety 73 (2001) 269-279

term and the damage term dominate over the construction
cost term. Hence, Eq. (17) is simplified to

_(Cp)+ 1)
“p)

which is independent of the interest rate. It is observed that
the same condition p(p)b > (C(p) + H) applies here, too.
(C(p) + H) usuvally grows weakly in p while wu(p) is
expected to grow strongly in p. Hence, the optimum may
be found for w(p)— co, which corresponds to absolutely
safe facilities and those do not exist. It follows that there
must be 0 < y =y,

Hasofer and Rackwitz [6] also considered the case of
time-dependent benefit b(t). Assume that at each renewal
the benefit function (per unit time) starts at the same value
of 5(0). Then, due to

Zp)="b (19)

J=1

and in noting that 7,_, is independent of 7, it is

By = L exp(—ybndr + S f 0" expl—WT,_, + DIb@)dr
=2

& L exp(—ynb(r)dr + Zexp[-yT,,_l]

i=2

x JU" expl—yrlb(r)ds

(20)
With
Bp(r) = JO exp[—y1lb(Hdt (1)
we have

B= JD Bp(0)fy (ndt + (Z JG exp(wrm—](z)dr)

n=2

X L Byp(t)f (r)dt

0

= [ B @ar+ (fo(v)[f”(y)]”'z)J Bo(f (s
n=2

o X f|* () iy

=] B Ll L

IO (1) (1)dt T 9 Jo Bp(n)f(n)dt
(22)

For the stationary Poissonian failure process this simplifies
to:

AN\ [
B= (1 + ;)J’o Bp(H)Aexp[—Ar]dr 23)

For example, if b(f) = by(1 + b)) one can integrate and

obtain:

A 1 bym!
Bebs(1d =) [ o O
°( 7)(y+/\ A3 )\)”’*') @4

by may be taken as —1; ™ with 1, a pre-specified service time,
for example. ,, > 2 can model the fact that b(f) remains
almost constant over a large period of time but decays at
the end of the intended service time. For A — 0 one can
show that

B— 99(1 4 M)
- 7

whereas for A — oo it is B— by/y as in Eq. (9). B now
depends also on A but, since usually A < v, the dependence
is only weak and one simply may take B = by/y. Clearly,
one also must have by /y > 1. A time-dependent b(t) may be
assumed if there are maintenance cost increasing with time.

It is necessary to discuss the damage term H. This is
subject to a failure consequence investigation. Decision
theory dictates that expected values must be taken. Under
realistic conditions direct failure cost are between 1 and 10
times of the reconstruction cost in most cases. Quite
frequently, this term also involves some quantity measuring
the efforts for saving life and limb of persons. Its value, no
doubt, is a highly sensitive matter. Traditionally, such
values, or more precisely acceptable risks, have been set
on a widely empirical basis, for example, by looking at
other partly non-technical involuntary life risks or by
comparison with technical risks which obviously have
been commonly accepted in the past. This is all but satis-
factory. One of the most promising proposals has recently
been made by Nathwani et al. [15]. Nathwani et al. define a
social index, the so-called life quality index (LQI). Other
such indices exist, for example, the human development
index (HDI) used by the United Nations to judge and control
the state of development of a country. The LQI measures the
quality of life by the product of the yearly GNP (gross
national product) as a function of the fraction of time
spent in economical activities times the life expectancy
being part of which is the time available for the enjoyment
of life. In particular, the LQI is defined by

L=gle'™ (25)

where g is the average individual contribution to the yearly
GNP, possibly reduced by the amount spent for health care,
w is the average fraction of time necessary to raise this
amount, e the quality-adjusted life expectancy at birth of a
population in years, i.e. times in poor health or spent in
hospital are subtracted form e. Each variable g and e is
raised to the power of the associated proportion of time.
The LQI is an index by which a project or undertaking
involving risks can be judged. It is especially suited to
judge and compare public expenditures into public health,
into road traffic safety, into all other life saving public regu-
lations and, thus, also into structural safety by the relevant
codes. The project, regulation or undertaking is acceptable
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as long as the LQI remains positive. For example, improv-
ing safety results in a positive change in e while the cost of
the intervention reduce g. Conversely, a negative change in
¢ can be acceptable if there is sufficient compensation in g.
The LQI and its implications are thoroughly discussed in
Nathwani et al. [15], especially why the three parameters g,
e and w, play such an outstanding role and are sufficient for
the purpose. It is surprisingly simple and, as will be seen
below, has dramatic, unexpected consequences. Its primary
value is not so much that it generates hard numerical values
for applications. But it identifies the main factors and opens
them up to public discussion and judgement. There are, of
course, values such as cultural values, religion or environ-
mental ideals, which hardly can be covered by the LQI. For
simplicity, those are not included in this discussion.

Using relative changes in L, e and g leads to a general
acceptance criterion:

28 g W (26)
de e w

The mentioned reductions in g and e are about the same
percentage so that they approximately cancel in Eq. (26).
By some further appealing and subtle considerations, which
cannot be given here, the investments into structural safety
should be [13,21]

9C o Bl W, kv @n
dP; we

e is the mean number of life years lost in the event of
structural failure usually taken as one half of e and Ny the
expected number of persons killed in the event. Taking
£=18,000 US$ per year and person, w=1/8, e=78
years and e = 39 years one arrives at 63,000 US$ per year
and person or 2,500,000 US$ per person for lost life years.
In Eq. (27), Psis a yearly failure rate. The constant K in Eq.
(27) has the same dimension as g. More data including
historical aspects can be found in Appendix B and in
Nathwani et al. [15]. Therefore, H may be decomposed
into the direct monetary losses Hp in case of failure includ-
ing demolition cost and loss of opportunity during the time
of reconstruction and into a term covering the expenses to
save life years equal to:

52
e BLEWE ©28)
we

Remember that this quantity is not an indication for the
magnitude of a possible monetary compensation of
victims in the event. It is a number, which the society
should be willing to pay for structural safety via struc-
tural codes, quality assurance procedures or other regula-
tions. It enters into optimization as a fictitious number at the
decision point. If the legal conditions for compensation of
victims are valid, it is assumed that this compensation is
covered by insurance for which the premium reduces the
benefit.

According to Pate-Cornell [16] and Lind [13] direct

failure cost and investments into saving human lives should
be discounted at the same rate. Otherwise inconsistencies
occur which cannot be accepted. Since the time horizon for
structural facilities is in the order of 100 years the interest
rate for investments into structural safety may be hardly
larger than the long term growth rate of the GNP [21].
According to Steckel and Floud [27] this was 2.86% per
year during 1848-1960 for the US, 2.3% per year during
1756-1980 for the UK, 1.3% per year during 1820-1990
for France and 1.8% during 1820-1965 for Sweden. The
United Nations Human Development Report [28] gives
values between 1.2 and 1.9% for industrialized countries
during 1975-1998. Skjong and Ronold [25] computed an
interest rate from the growth in the LQI for some
industrialized countries during 1984-1994 and found values
between 1.0 and 4.2% with an average at about 2%. A
computation for the years 1850-1998 based on the data in
Steckel and Floud [27], Maddison [14] and United Nations
[28] of the capitalization of the constant K for Np=1 for
several industrialized countries and taking into account the
changes in life expectancy, fraction of life expectancy
devoted to work and GNP yields 1.8-3.1% with an average
of 2.4%. Communities and governments frequently use
an interest rate of about 2% for investments into the
infrastructure. This number appears to be appropriate but
further research is necessary. It may be slightly different
for various countries even within the same development
category.

Can optimization automatically fulfil criterion (27)?
Rewrite Eq. (27) as

1 — w)e, N
19,¢) 1= 81200 g g 29)
for the stationary case and

g(1 — w)e, Np
we

\

(30)

I V,Co) lI=

1
PE[T(p)] H

for the non-stationary case. Here, Py is replaced by the
outcrossing rate in the stationary case and by the asymptotic
renewal density in the non-stationary case, respectively.
Checking this condition at the optimal solution p* we recog-
nize that cost efficiency of safety related measures is also
required. A facility should not be built if those conditions
are not fulfilled. || V,C(p) || usually increases more than
proportionally in || p|| whereas || VP\'+(p) I or |IV,1/
E[T(p)] |l decrease strongly for larger ||p|l. Therefore,
for high reliability structures conditions (29) or (30) can
eventually be fulfilled. When optimizing structures by
Eqgs. (11) or (13), Egs. (29) or (30) have to be added as a
constraint. It turns out that this constraint is active quite
frequently. It is also interesting to note that Egs. (29) or
(30) are differential criteria and do not contain interest
rates. There is no direct limit on the failure rate (asymptotic
renewal rate) but a limit defining the cost efficiency of life
saving measures.
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5. Optimization
5.1. Swationary case

In general, optimization of structures is difficult and not
always unique. A structure may fail in different failure
modes and the failure modes may be associated with differ-
ent mean failure times and damage cost. In the following we
\jvill discuss the case of one failure mode only and ignore the
fact that many structures are replaced after they have
become obsolete. Some concepts on those topics are
outlined in Rackwitz [20]. Also, the material presented in
Egs. (20)-(24) may be of use. Further, we will assume that
C(p) is differentiable as well as the mean time between
failures. Structural states will be described by a at least
twice-differentiable state function g(x(1),p) where x(1) is a
vector of random variables including process variables for
the loads. Failure states are defined for g(x(s),p) <0.The
process variables have properties such that the process of
downcrossings of 8(x(1),p) below zero is a regular point
process so that a crossing rate is well defined [2]. It is also
assumed that FORM/SORM techniques in so-called stan-
dard space are applied (sce Ref. [9] and the rich literature
on reliability of structures under random process loading).
In the following vectorial rectangular wave renewal pro-
cesses and vectorial differentiable processes and combina-
tions thereof are considered only. The optimization problem
for the stationary case can be formulated as follows:

minimise:

b +
THP)= =2+ Cp) + (Cp) + Hy + Hy) 12
=

subject to:

&u.p)=0

Ml Vugup) | +V,800p) 1w ll=0; i=1,7...,n— 1
Bp) = B,

Bp)=0; =1,k

19,0 1 = EEele g sy a1

with B, the solution of

@y

(::21 N=p,) + E‘P(ﬂr))csom ~ Vadmissible = 0 (32)

If the case treated in Eq. (14) is of interest v*(p)ly must be
replaf:ed by AP{p)/[y + AP{p)]. In Eq. (31) the first two
conditions are the usual Kuhn—Tucker conditions for a valid
B-point [9]. The third condition is a restriction on the down-
crossing rate that can also be absent. The forth conditions
are possible restrictions for the feasibility of the design
parameters. Simple bounds on P may also be added. Finally,

the last condition is condition (29) for saving human liveg
efficiently. It needs to be added only if Hp# 0. Note that
wP)=1v"(p) where v*(p) is the downcrossing rate
independent of ¢ due to stationarity. In Eq. (32), the first
term corresponds to the downcrossings due to a stationary
rectangular wave renewal vector process. The jump rates of
the components of this process are denoted by A, The
second term corresponds to the downcrossings due to a
stationary differentiable translation vector process which
are generated from a normal process by a one-to-one trans-
formation x() = flu(n)). w, is the central cycling frequency
of the process. A; and w, are independent of p because they
are generally uncontrollable loading characteristics. Regu-
larity assures that the corresponding rates can be added.
@(.) and ¢(.) define the standard normal integral and the
standard normal density, respectively. Cgopy=1 is a
second-order correction factor, After transfom;ing arbitra-
rily distributed random variables into standard normal vari-
ables by u = T(x) [3,4,7], B(p) is defined as the solution of
the following optimization problem:

B(p) =min{ || | } for {u:g(u,p) < 0) (33)

Since the Kuhn-Tucker conditions for this problem are
added to the general optimization problem in Eq. (31), an
explicit solution of Eq. (33) is not necessary, :
The advantage of this formulation is that it is a true one-
level oplimi.zation [10], ie. the optimization in p is
performed simultaneously with the optimization to find
the B-point in the reliability problem. Of course, it must
be assumed that a unique B-point exists, The disadvantage
clearly is that second-order derivatives of g(up) are
required at each iteration step for gradient—based’search
algorithms like sequential quadratic programming (SQP).
Second-order derivatives of g(u,p) with respect 1o u are
also required for the determination of Csorm. Therefore, it
is proposed to solve the optimization task iteratively. Initi-
ally, Csorpm = 1 and the Hessian V,fg(u, p) is set equal to a
zero matrix corresponding to a linear failure surface. A first
approximation can then be found by solving Eq. (31). At the
solution p the Hessian V2g(, p) and with it Csorym and
possibly, a new B are determined. The optimizau'or;
problem can now be solved again with a constant approx-
imation for the Hessian V2g(u, p”) when determining the
gradient of the gradient condition in Eq. (31). This scheme
is repeated until convergence is reached. Experience with
example problems indicates that convergence usually is
reached after at most three iterations.The stationary time-
variant optimization problem has already been solved
Kuschel and Rackwitz [10] making use of the full Hessian
of g(u,p) in each iteration step and simple FORM. For high-
dimensional problems this results in very large computa-
tional effort. Moreover, numerical computation of the Hessian
can cause instabilities of the algorithm. The iteration scheme
proposed above is a substantial improvement as it starts with a
zero Hessian and, then, needs its computation only once at
each reiteration. Simultaneously, it updates the outcrossing
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rate according to higher-order theories (SORM and/or Monte
Carlo simulation) at each reiteration. A similar updating
procedure has been proposed by Polak et al. [29].

The same algorithm can also be applied for time-invariant
problems after appropriate modifications.The human safety
condition is difficult to fulfil because it is a differential
criterion. The gradient of C(p) can usually be determined
numerically. For the determination of the gradient of »*(p)
some useful approximations are given in Appendix A,

5.2. Locally non-stationary case

The optimization problem can be given as follows:

minimize:

Z 1
e _; + Cp) + (Clp) + Hp + Hl:)m
subject to:

1
ET(p)] = Vudmissible
)y =0;  j=1,...k
- &1 —we,Np 1 ”

Teol= T el O

The reliability condition now is modified according to Eq.
(15). E[T(p)] must be determined numerically. Some more
details are given below. The reliability condition may also
be omitted. It is added formally as in the stationary case. The
second condition defines the feasible parameter space. The
third condition is the condition for saving human lives
efficiently. It needs to be added only if Hp# 0. If Hp 5 0,
there normally is no need to include the first condition.

According to Rackwitz and Balaji Rao [18] the following
two approaches for the determination of E[7(p)] can be
used. If, due to some deterioration, a monotonically decreas-
ing smooth state function g(x,p,7) can be assumed and, thus,
the first-passage time from the safe domain into the failure
domain is Pyr,p) = P(g.(X,p,t) = 0), we have in using the
well-known mean value formula for positive random
variables

M =J (1 — F)dt
0
E[T(p)] = J (1 = P(gX,p, ) = 0))dr (35)
0
where X is the vector of basic variables. If, on the other
hand, the failure probability must be determined by the

downcrossing approach it is:

E[T(p)] = J: exp[— JO v (p, 9)d6ldr

= L (1 — P(0,p) — L v (p, B)dt))d-r (36)

The first formula is a well-known asymptotic result. The
second upper bound result is valid under all conditions.
Frequently, the term Py(0,p), i.e. the probability that there
is failure already at time 7= 0, is neglected.

Integration can be performed by one of the simpler
integration formulas. In both cases one can conveniently
make use of modern FORM/SORM computation tools for
P(g(X,p,7) = 0) [9] or for

J7 v (p, 0)d6
0

[19]. For example, in the context of FORM, Eq. (35) reduces
to

ET@) = f : BB a7

Here, B(7) is the time-dependent reliability index.

Similarly, if non-stationary downcrossing rates must be
determined it is possible to approximately perform the
necessary inmer time-integration in Eq. (36) also using
FORM/SORM technology. Then, the mean number of
downcrossings can be written as

4
EIN*(p,0)] = I v (p, ndr
0

= (Z NBBp. T + L 0l r*)))

i=1

X CsormCrime (38)

with

Bp.™)y=min{ ||u]l) for {u: glu,p,m <0}

(39)

Crive is a factor taking into account the correction for the
time integration effects on the critical downcrossing rate at
7* given in the first parenthesis in Eq. (38). More details
about the techniques to compute outcrossing rates are given
in Rackwitz [19]. Unfortunately, most of these results are of
approximate and/or asymptotic nature.

The non-stationary case is difficult and numerically
involved. A two-level optimization scheme must be
employed. The most difficult part is the determination of
the mean time between failures as it may require many
reliability analyses for every given p. The corresponding
integral must be determined numerically. Some clever
device is needed in order to concentrate reliability analyses
in the region where reliability (as a function of time) effec-
tively decays and to avoid reliability analyses in regions
where it is either close to one or close to zero. The case of
smooth decreasing state functions as in Eq. (35) usually is
considerably less time-consuming than when the mean
failure time has to be determined by the downcrossing
approach.

Here again, the human safety condition is difficult to



276

{ulfil. For the determination of the gradient of 1/E[T(p)]
some approximations are given in Appendix A.

6. Examples

6.1. Example 1: Short reinforced concrete column
(stationary failure phenomenon)

_Consider a short quadratic reinforced concrete column
with state function

801, p) = (d°F, + AFy) — M (Ly(¢) + Lo(1) (40)

where the basic random variables F, F, and M, are
c{oncrete strength, yield stress, model uncertainty, respec-
tlvely: d (m) is side length, A, (m?) the steel area. Li(n) is
a stationary rectangular wave renewal load with (shifted)
Raxle{gh-distributed amplitudes, mean equal to 2, standard
deviation 0.5 and jump rate A = 10 [1/year]. Ly(r) is a
log-lnn_rmal differentiable process with mean 2, standard
deviation 0.5, auto-correlation  function exp[—m'zl,
a=0.1. Li(») and Ly(r) are independent processes.. The
ther variables are log-normally distributed with parameters
given in the following table

Variable

Mean Stand. Dev.

Concrete strength (MPa) 35 6

Yield stress (MPa) 460 30

Model uncertainty 1 0.1

The objective function is
b 2
—Z(d,Ay) = —; + Cy + Cid” + GA,
v'(d,Ay)

+(H+C+Cd* + GA,) 1

with b=0.1, y =0.05, Cy= 1, C, = 0.5, C, = 10, H = 10.
The reinforcement is between 0.5 and 8% of d°. The relia-
bility constraint in Eq. (31) is set as 10~ [1/year] and no
human life is endangered. The first optimum solution using
FORM-results is (d, A;) = (0.59, 0.0015). For this solution
one determines a downcrossing rate by SORM of
2.06 X 107 that is only some 20% larger than the one by
FORM. Therefore, a second iteration using the Hessian at
the solution point in fact reproduces the first result. Also, the
reliability constraint is fulfilled.

6.2. Example 2: Short reinforced concrete column (non-
Stationary failure phenomenon)

The same slightly modified example is used to demon-
strate a locally non-stationary case with monotonically
decreasing state function. Here, strength reduction may be
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due to some deterioration. The state function is

20 = (d°F, + AF)(1 + ar) — M, L 42)

where the basic random variables F., F, M, and L are
concrete strength, yield stress, model uncertainty and load,
respectively. d (m) is side length, A, (m?) the steel area
a= —0.001 [1/years] a constant and ¢ the parameter time’
measured in years. The lognormal load has mean 3.5 and
standard deviation 0.35. The other basic variables are as in
example 1. The objective function is:

b >
—Z(d,A,) = — ; + Gy + C1d” + A,

1
YE[T(d,A))]
43)

The same constants as in example | are chosen. The relia-
bility constraint in Eq. (34) is set as 107 (l/year). No
human life is endangered. The solution is (d, A,) = (0.55,
0.0015) using the gradient-free algorithm COBYLA [17]
and FORM for the time-dependent failure probabilities.
The algorithm searches only for side length d while the
minimum reinforcement is kept. The corresponding mean
time to failure is 2176 (years) implying an (asymptotic)
failure rate of 0.00046 (l/year) so that the reliability
constraint is fulfilled. The minimum should be negative
and is, in fact, negative at a value of —0.736. Therefore,
the design is acceptable. The same result is obtained with
the gradient-hased algorithm NLPQL [26] where Eq. (A2)
in the Appendix must be applied.

+(H+ Cy+ Cd* + CA,)

6.3. Example 3: Inclusion of cost for saving human lives

A final simple example is included illustrating the effect
of investments for saving lives. Here, formula (14) divided
by Cy is used. The cost for human lives is included and the
efficiency criterion Eq. (29) is added as a constraint,
Al il C

-—— + (1 + =p°
G 7G ¢ Cop)

(s ) o )i
G G G/ y + Pipa

subject to:

d C, g(1 —wye,Np d
— 1+ =—p = - YmF ©
dp( C(,p) e e (Pe(p)D) (44)
with
1+ V2
1 s
”(p\/ 1+ v,g)
Pi(p) = @] -

JIn((1 + V)1 + V&)

being one of the very few closed-form exact results in
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structural reliability for a failure function of the form
gx)=r—s. R and § are both log-normally distributed
with separation of the means equal to the design parameter
p (which equals the so-called central safety factor) and coef-
ficients of variation V and Vs, respectively. In particular,
assume Cy= 10°, C, = 10°, a = 1.25, Hp = 3 10°, Hg as in
Eq. (28) with g = 18000, e =70, ¢, = 35, w=0.125 and
Np=1, A =1 (I/year), Vy = 0.2 and V5 = 0.3, respectively.
Further, it is b= 0.05 (1/year) and y = 0.02 (1/year). All
monetary values are given in US$. Performing the optimi-
zation task (44) including the term H; yields p* = 3.488
corresponding to a yearly failure rate of 1.627x107*
while the safety condition Eq. (29) requires pjji = 5.214
corresponding to a failure rate 1.125 X 107°. Piimit 18 the
solution to the equality of the constraint in Eq. (44). In
this case, optimization including the term Hg in Eq. (28)
does not satisfy the safety criterion and the admissible
design parameter is pjy;. The failure rate corresponding to
Piimit decreases roughly inversely proportional with Ng.

7. Discussion

The above simple examples illustrate how to formulate
the concepts outlined in the theoretical part. None of them
claims to be already complicated as in realistic practical
applications. In fact, many numerical and technical aspects
are still under study and some results will be presented in a
subscquent paper. Most interesting is the last example
although optimization is performed only in one dimension
and with a relatively simple stochastic model. The optimum
failure rate from a purely economic optimization including
the cost for saving lives Hg suggests that this is in the order
of magnitude of what is considered acceptable in present
practice, at least for some outstanding structural facilities
like offshore platforms, long tunnels and long-span suspen-
sion bridges. For other buildings like normal houses and
office buildings one must expect smaller values because
the fictitious cost Hy for saving lives dominate and a higher
total damage cost H drags the optimum towards smaller
optimum failure rates. The LQI-criterion, however,
independent of an arbitrary interest rate and, to a certain
extent, arbitrary stochastic models for loads and resistances
yields an acceptable failure rate of two orders of magnitude
smaller. Similar findings have also been found for other
stochastic models and slightly more complicated failure
phenomena.

8. Summary

The renewal model proposed in Hasofer and Rackwitz [6]
and earlier is reviewed and a suitable objective function is
derived. The properties of the objective function are discussed.
Special emphasis is given to the damage term if human lives
are endangered. A criterion is derived based on a special social
index. The additional gradient condition, expressing efficiency

of safety related measures, is new. It is based on the life quality
index proposed by Nathwani et al. [15].

Differentiability of the objective function as well as of the
reliability measures has been assumed. Clearly, many
technical problems exist where reliability related measures
are not differentiable. Then, other optimization procedures
have to be applied.

Several results of the theory outlined before are concep-
tually important. Firstly, if a reliability constraint is set this
constraint should be formulated in terms of a failure rate
(yearly failure probability, renewal density, and failure
intensity) in contrast to failure probabilities related to
some intended service time. Such constraints, however,
are strictly not compatible with an overall optimization
approach where expected failure cost including the cost
for saving human life and limb are considered. The risk
associated with the optimum is a function of the benefit
derived from the facility, the construction cost, the damage
cost and the interest rate with which benefit and expected
damage are capitalized. Secondly, the risk acceptability
criterion is no more a criterion on failure probabilities or
failure rates. The new criterion is formulated in terms of
increments in the failure rate and the investment cost,
respectively. Finally and thirdly, if it is accepted that invest-
ments into human safety have a higher ethical value than
purely economic investments the new risk acceptability
criterion usually dominates an optimal solution of a project.

Appendix A
The derivatives of ¥ (p), AP(p) or I/E[T(p)] with respect
to p are required if human lives are endangered and

condition (29) or (30) must be fulfilled. To first order
there is:

didp 80 v, L.
o i e (;1\145( B + 277<p(/3(p)))

28 [t @ IBP)
= (z_l APBE) + mﬁ(p)cp(ﬁ(p))) %
(A1)
d _ 0 3 3 aB(p)
oy APHP) = S-OPBEN) = ~Ae(Bp) == (A2)
4 TIRtsTaig 1
api EITe] ~ dp; o (B, p)dt
o 0 = ap(t, p)
o fo E‘p(ﬁ(h[’))dl Y Io ‘P(B(ﬁ[’))‘%df
[ epa.pydr? L[5 B, pydr]’
(A3)

For the more complicated case of Eq. (36) we assume
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P{(0,p) = 0. Then,
ny : ')
01 F] 1 Jo J()(Z’\ T o= 3(19 P))QD(B(l‘} p)—— 'B 1)
BTG oy Jo( = [hr @padiar z B9
31— jo(ZMx B, p) + @(B(8,p)) |dd rds
\/_
The sensitivities of g(u,p,t) must be determined for and, thus: -
every time instant considered during integration. The P 1
or limit of ; aiia

u}l)pc‘r imit of the outer integration is whenever pip, (E[T(p)])
'[ v (9,p)dd =1 193( ) B

0 P, (7, P)
beyond which the derivative of 1/E[T(p)] is zero. Two 210 ol = ==dr [ ¢(Blt.p) ==
integrals need to be evaluated for every iteration in p. = &
The results in Eqgs. (A1)~(A4) may further be used if [ISO d’(B(I,p))dt:I
gradient-based algorithms have to be applied. The gradi-
ent of C(p) must be determined numerically. The 95(; ) oBt.p) TR
elements of the gradient of ||v*(p)|l, which then are J¢ eBa, p))(B(r ») B,y,,_p ,;Lj(,;,].)) )dt
necessary in Eq. (29), are + : 12 Bl

” Vor* (p)T(;- v, (p)) [ [s dw(l'p))d’]
O + o Pi

=S 19,v" ) Il (A5) (A8)

IV, v
and, similarly, for Eq. (30).

The second derivatives of Egs. (A1)-(A3) with respect to
p are lengthy. The second derivative of 1/E[T(p)] in Eq.
(A4) is not given herein

221 ={(i/\;ﬁ(p)+ \/“’i

ap;dp;

&
( 3 /3@)) Jéﬁ ) }su(ﬁ(p»
0P

2 ) 9B0) 3B(p)
(B(p) ) o

(A6)
FAP(p)) Bp) 3BPp) _ I BP)
—I— =
i, PBp »(B(p) v @ B ap,)
(A7)
Fa 1 F) 1
pidp; (E{T(p)] ) = a?(%(ﬂmn ))
_ 3 ( Np 1 Np) 3
p; ( D(]J)) D(ﬂ) r?]l Nipy + D(p)* dp, D(p)

where N(p) is the numerator in Eq. (A3) and D(p) the
denominator. Further it is:

) J == r9B(r 3B(L,p) 9Blt,p)
ap 0 i (9}7,'

+ PBap)

apidp, )w(ﬁ(r, p)dre

&D(p) i _0_ 00 2
;o (J 0 (p(B(t'p))d[)

- 2[ BB, ) J  #(B.p) B "’3(’ Py

In these equations a convenient asymptotic result by Hohen-
bichler and Rackwitz [8] for dB(z,p)/dp; can be used:
Be) 1 awp)

p; V.l ap;

The second derivative is also computed from this
approximation:

(A9)

FBp) _ 1 Fg(u,p)
apigp;  IIV.gp) Il dpip;
1 dg(u, p)

g ” Vug(“yp) ”’4 z9p,»

g ( $ #8p) Pewr)
5 Juy. Ip;

(A10)
The Hessians required in this equation have to be
determined numerically. The Hessians may be set to zero
initially and have to be determined at least once before a
new cycle starts.

Appendix B

In Table B1, a few data are collected for some industrial
countries. All data are from Steckel and Floud [27] except
those for 1998, which are taken from United Nations [28].
All monetary units are in US$ in 1985. The 1998 USS$ is
assumed to have only 62.5% of its value in 1985 due to
inflation. In order to obtain GNP and K in US$ of 1998 all
given values should be multiplied by 1.6. The value of K is
computed as in Eq. (27) with estimated w = 0.125 for 1998,
w=0.15 for 1950, w=0.188 for 1900 and w=0.25 for
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Table B1

Gross national product and life expectancy for some industrialized countries [GNP = gross national product; LE = life expectancy; K = constant in Eq. (27)]

Country 1850 1900 1950 1998
GNP LE K GNP LE K GNP LE K GNP LE K

United Kingdom 1943 39.5 2915 3792 48 8216 5628 69 15,950 12,650 714 44,280
United States 1179 295 1769 3824 47.8 8285 8588 68.2 24,330 18,550 78.1 64,930
France 1150 40 1725 2250 46.8 4875 4149 66.8 11,760 17,490 78.6 61,210
Netherlands 1551 373 2327 2842 49 6158 4706 71.3 13,330 17,590 77 61,580
Sweden 871 439 1307 1895 52.9 4106 5834 744 16,530 17,320 79.3 60,620
Germany 875 371 1313 1743 44.4 3777 2554 66.5 72,36 19,460 77.1 68,120
Australia 2517 46 3776 4100 55 8883 5931 69.5 16,800 13,680 80 47,860
Japan 606 38 909 947 44 2052 1563 58 4429 26,300 80.1 92,059
Average 1336 41.3 2005 2674 49 5794 4869 63.5 13,796 17,880 78.5 62,580

1850, respectively. No differentiation of w for the different
countries is made. This overestimates the K-value for Japan
by about 10% in 1998. Less developed countries with lower
GNP and LE but generally larger w have substantially
smaller K-value and thus less severe safety criteria.
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