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Abstract

While reliability-oriented structural optimization under time-independent loading and resistances is suf-
ficiently well known, the same problem under time-dependent loads and resistances has found at most,
grossly simplified solutions. The main reason is that reliability calculations are far more complicated than
for time-invariant loading. In this paper, a first attempt is made to use the out-crossing approach for the
reliability part in structural optimization. In particular, reliabilities will be determined by the out-crossing
approach in the context of FORM. Two types of load models, stationary rectangular wave renewal pro-
cesses and differentiable processes, respectively, will be dealt with. As in time-invariant optimal design, a
one-level approach is pursued. © 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Optimal reliability-oriented structural design or structural optimization with reliability con-
straints has been the subject of research for many years. Different approaches have been studied,
all essentially assuming that the structural facility potentially will fail once loaded for the first
time (for example, see [1-4] for typical approaches). It turned out that this problem is numerically
much more involved than simple reliability analysis if standard methods of structural reliability
are maintained. Among the few contributions known to the authors which also deal with time-
variant aspects is one due to Rosenblueth/Mendoza [5] who, however, chose a rather simple
reliability model. They made it clear that capitalization aspects as well as the reconstruction pol-
icy are important factors. In this paper a first attempt is made to formulate the time-variant case
using standard reliability methodology. In particular, reliabilities will be determined by the out-
crossing approach in the context of FORM. Two types of load models, rectangular wave renewal
processes and differentiable processes, respectively, will be used. Only stationary cases will be
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dealt with. Both systematic reconstruction and “one mission” structures will be considered. A
Qne-le}/el Epproacil for the cost optimization will be investigated. This paper is an extended ver-
sion of a keynote lecture given by the second author at the 8th IFIP WG 7.5 i

i S .5 working conference

2. Basic formulations and classification of reliability problems
2.1. Time-invariant component failure probability

In orgler_to clarify terminology it is necessary to start with the well-known time-invariant compo-
nent rehabllity’ problem in the context of FORM. Let X = (X, ..., X,)" be a n-dimensional veclzor
of random Vgrlables with distribution law Py and distribution function Fx(x) and p a d-dimensional
vector of' des¥gn and cost parameters. It can involve deterministic parameters but also parameters of
the distribution function Fy(x). Further, define by g(x, p) a state (performance) function so that
g(x, p) > 0 denotes the safe state, g(x,p) =0 the limit state and g(x, p) < 0 the failure state
g(x, p) = 0 will also be denoted by failure surface. The time-invariant failure probability then is :

) =j Py(dx) = J S )

{xg(x,p)<0} g(x,p <0

provided that the probability density fi(x), exists which is assumed throughout. Moreover, it is
a§su1“ned. that the probability distribution functions are continuously differentiable. Let a probz;bilit
distribution transformation T: R" — R” exist which maps an arbitrary n-dimensional randon)ll
vector X = (X7,..., X,,)T into an independent standard normal vector U = (U3, ..., U, )T (see, for
examplp, Hohenbichler and Rackwitz, [7], Der Kiureghian and Liu [8], Winterstein axl;d Bjer;lger
[9]). With g(x, p) = Z(T(x), p) = £(u, p) and the failure domain F, = {u: g(u, p) <0}, it is:

pw=[ Pi@w=] g @
JFy £(u,p)<0
where P,(.) is the standard normal distribution law and i i
@a(u) is the standard normal d
Then, a first-order reliability estimate [10,11], is ; kgl

P(p) ~ ®(—pp),  with B, = min{|lull : g(u, p)<0} ®)

<1>'('.) is the standard normal integral. This approximation method is denoted by first-order relia-
bl!lty method (FORM). In principle, this result is valid for any state function but the estimated
failure probability is sufficiently accurate only for differentiable limit state functions. If the failure
surface is differentiable the solution point of 3, that is u* is a Kuhn-Tucker-point for which the
following theorem can be proved [3]:

Thef)re.m 1 (B-Point-Theorem in Time-Invariant Case). If w*, with u # 0, is the solution point of the
optimization problem in 3, then the following two statements hold for each p: :
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(a) g(u",p) =0,
(b) u TV, g, p) + ][ Vug(u, p)| =0
The solution point u* is commonly denoted by B-point. Its justification as a suitable expansion

point has been demonstrated by higher order methods (see, for example, [12]). Various methods
exist to improve this first-order estimate. In practice, such improvements are rarely necessary.

2.2. Time-variant component failure probability

Time-variant reliability is more difficult to compute than time-invariant component reliability.
Note that one is hardly interested in the time-dependent failure probability function Py(p, ) where ¢
is treated as a parameter but in quantities like the probability of first passage into the failure
domain, the total duration of exceedances into the failure domain, the duration of individual

exceedances and other related criteria.
Let T be the random time of first exit into the failure domain. Then,

PAt,p) = P(T<1|p)

where [0, 7] is the considered reference time interval. If the component does not fail at time £ =0
failure occurs at a random time. The distribution function of the random time T must be known.
Unfortunately, this is rarely the case in structural reliability. However, if it is possible to deter-
mine the crossing rate of the time-variant random process into the failure domain some useful
asymplotic results are available which are the basis for the formulations to come. For the purpose of
versatile modelling and with important consequences for the subsequent derivations we dislinguish
between three types of variables

e R is a ng-dimensional random vector as in time-invariant reliability. This vector is used to
model resistance variables and its most important characteristic is that it is non-ergodic.

e Qs a ng-dimensional vector of stationary and ergodic sequences. It is used to model long
term variations in time, e.g. traffic and sea states. These variables determine the fluctuating
parameters of the random process variables described next.

e S is a ng-dimensional vector of sufficiently mixing random process variables whose para-

meters can depend on @ and/or R.

As before, the safe state is defined for g(r, g, s(t), 7, p) < 0, the limit state for g(r,q,s(¢), ,p) =

0 and the failure state for g(r, q, s(f), t, p) <0, respectively.
The rate of out-crossings into the failure domain conditional on r, q and p can be defined as

.1
o e ) = lim 2P (atr. 450 7.9 > 0} ([str a5t + )7+ 8.9 <0}

where F = {(S(t),t) : g(r, q, S(7). 7, p) <0} denotes the failure domain conditional on r, ¢ and p.
The rate of out-crossings exists if the limiting operation can be performed. This is the case when
the random process of crossings is a regular point process, i.e. if the probability of more than one
crossings is negligibly small in a small time interval A.
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Let N*(11, #2)|r, q, p denote the number of crossings in the time interval 1}, 73] conditional on rq
and p. The mean number of stationary, regular crossings N* (¢, 2)[r, q, p in the time interval
[#1, 1] conditional on r, g and p can then be determined from

(%)
E(N* (. 13) | r.q p) = [ VH(F, ir, g, p)dr = v (FIr, 4. (2 — 1)

il

Further, if the random process S(¢) is strongly mixing (i.e. asymptotic independence of S(7) and
S(t+ 1) for T — oo) it has been shown that the failure time distribution is asymptotically expo-
nential implying a stationary Poisson process of outcrossings conditional on the vector R =r
[18,22] leading to the asymptotic failure time distribution

Py, talr, p) ~ 1 — Eg[exp[—Eo[v' (FIR, Q, p)](12 — 11)]] 4

This is the key result to be used later.

Assume now that a probability distribution transformation is performed such that the initial
vector of variables (R, Q, S)T is mapped into a standard normal vector (u, uf, u*)T, Of utmost
importance for optimal reliability-oriented structural design, then, is the fact that under quite
general conditions the B-point is also the “critical” point in time-variant problems as pointed out
already by Veneziano et al. [13] and proven in [14] for Gaussian processes and in [15] and [16] for
rectangular wave renewal processes. The B-point may be identified as the point of maximum
outcrossing rate implying that the distance of the failure surface to the origin also dominates the
local outcrossing rate. This statement is valid at least asymptotically. The B-point-problem in the
time-variant, stationary case has the following form:

(BP— TV —ST) minimize ||(u", u%, u$)"|
subjectto g(u", ut, u’, p)<0

The state function g(r,q,s, p) = g(T(u", u%, v*), p) = Z(u’, u4, v*, p) does not contain time as a
parameter. The solution point u* = (u™',u%’, u*) of the time-variant and stationary problem

(BP — TV — ST) defines the B-point. The first-order reliability index Bp is defined analogously

Be = llu*| = @, u¥, v*)

u* is a Kuhn-Tucker-point, as well. The following important corollary defines sufficient condi-
tions for the optimality of the solution u*. It parallels the time-invariant B-point-theorem. Its
proof is, in fact, identical to the proof of the time-invariant -point-theorem.

Corollary 2 (B-point-conditions in the time-variant, stationary case). If u* = (u”', u¥", u®"), with us£0, is
the solution point of optimization problem (8P — TV — ST), then the following two statements hold
Jor each p:

() E(u”, u¥, v, p) =0,
(b) (', u¥, u¥) V,&(u", u?, u¥, p) + || (", u, u¥)|[|| Vug (u™, u?, v, pf| = 0
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Note that the gradient of the state function surface is defined in the entire R — Q — S-space, i.e.
Vul) = Vi (), and similarly the norm of the optimal vector u* = (u”', u?’, u*')”

3. Out-crossing rates for two important, stationary random processes
3.1. Outcrossing rates and failure probabilities for rectangular wave renewal vector processes

Breitung and Rackwitz [15] have shown that stationary out-crossing rate can be calculated as
the product of the jump rate 4; and the probability that a component of the rectangular wave
jumps from the safe domain F into the failure domain F, summed up over all n, components of
the rectangular wave renewal process. Ignoring for the moment all R- and Q-variables the mean
outcrossing rate is:

vEe) = Tap({seF|Nist < 7))

= Y (PST € )~ P(ST € F)N[SF € F}))-
=1

where S; is the vector of jumping components just before a jump of the i-th component S;” and
S/ after a jump. It is assumed that at a jump of the component S; changes its position from a
random value to a new random value. As before, it is assumed that an appropriate probability
distribution transformation has been performed. Then, the out-crossing rate can be given for a
linear failure surfaces 8F = a’s + Bp = 0 as

Ny

VEE) = Lk (B Fp) = Pal—Fp —Byi )
i ®>(—By, —By; )
= ¢(—ﬂ)-2«~(1——--——)
= O(—By) 0
= ®-F) LA
< <1><—ﬁ.,)-iz’l;..»

with &(.,.;.) the two-dimensional normal integral. The correlation coefficient of the two state
variables before and after a jump equals p; = 1 — o%. Formally, the last factor in the second line
can be interpreted as a first-order correction to the jump rates then denoted by X’ in the third line.
For large B the probability of jumps from the failure domain into the failure domain can be
neglected and the correction term for 4: vanishes. This may be called a FORM-approximation
which is used later. The same result holds as a first order approximation if the failure surface is
linearized as 8F = als + B, = 0. The process of outcrossings conditional on R = r can be shown
to be asymptotically a Poisson process [16].
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3.2. Out-crossing rates and failure probabilities for Gaussian processes

The determination of out-crossing rates for Gaussian processes is well known by Rice’s for-
mula [17,18] and extensions to vector processes exist. For Gaussian vector processes S(1) L_h'elr
stochastic characteristics are fully defined by the mean vector mg(7) and a symmetric, positive
definite matrix Cs(t1, 1) = {aij(ll, )i L= Yomens n} of cova.riance functions. By a suitable
orthogonal transformation the matrix of auto-correlation functions R(1y, f2) can always be made
a diagonal matrix. The correlation matrix of the derivative processes R(11, 12) can be obtained by
twice differentiating the auto-correlation matrix. 53 .

The crossing rates are computed according to the genera_hzanon of Rice’s formula put forward
by Belyaev [23]. Belyaev’s formula for the stationary case 1s

v F((p) = [ E(~a‘;"(s)S'15(r) = S) “@u(s)dspr
Jor

where 3F = {(s) : g(s) <0}, as(s) = Vg(s)/[|Ve(s)| the surface normal and ds,» means surf.'ace
integration. The critical point is the usual B-point wh1lch has to be located bly an appropriate
search algorithm. If it is assumed that the integration with respect to .th'e Q-va.rla.bles can be per-
formed simultancously with the integration for the S-variables and it is admls‘snb']e to integrate
over the R-variables together with the other variables and the failure surface is linear, the out-
crossing rate can be given as

1
vH(F(P) = ¢(By) w0 o (6)

with
w? = —al(s) R -oys)

Here again, (6) can be used as a first order approximation if the failure surface is linearized as
8F ~als+ B, =0. The process of outcrossings conditional on R=r can be shown to be
asymptotically a Poisson process [18].

4. Reliability-oriented structural optimization
4.1. Objective functions for stationary, time-variant systems

Rosenblueth and Mendoza [5] distinguished between two reconstruction policies for Poissonian
failure processes, i.e. processes with outcrossing rate v*(F(p))- On the one hand they assumed
that the structural facility is to be used for one mission only and is abandoncq after fulfilling its
mission or after failure. Otherwise the structure has to fulfill its function continuously and thus
will be systematically reconstructed after failure. The recons.truction times will be assumed to be
negligibly short as compared to the interarrival times of failure. They started from the general

objective function

N. Kuschel, R. Rackwitz | Structural Safety 22 (2000) 113-127 119

Cost r
B(p)

f D(p)

Optimum
| Design
= | Parameter
Reasonable i
Domain

Fig. 1. Initial cost C, expected cost of failure D and benefit B over design parameter (after Rosenblueth and Esteva [19]).
Z(p) = B(p) — C(p) — D(p)

where B(p) is the benefit function, C(p) is the construction cost and D(p) is the damage cost.
All quantities are expected values. Because time is involved all expected cost terms have to be
capitalized down to the decision point at £ = 0. The (continuous) capitalization or discount function is

d(7) = exp|~y1]

with y the discount rate. For a yearly rate of discount y/, y = In(1 + 7).
If the structure is built only for one mission we have

Il

B(T,p)
D(T, p)

.,[oTb(f)d(l)R(t, p)dz
[, p)d(o H(p) Hdr

I

and therefore
T T
Z(p) = JO b(nd(DR(z, pydi — C(p) — Lﬂh pd()Hdt

Here, H(p) is the damage cost, R(z, p) the reliability, b(¢) the benefit per unit time derived from the
existence of the structure and f{#, p) the time to failure. For a Poisson process with intensity
vt (F(p)) [see Eq. (4)], constant benefit per unit time b(f) = b and a given time T, of anticipated use

b
Y+ Vv (F(p)
v (F(p))H(p)
Y+ vH(F(p))

B(T..p) = (1 —exp[—(y + V' (F(p)) T.])

D(T., p) (I = exp[—(v + v(FO)) T,))
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We have for Ty — oo
B(®) = Bloop)=———
Y +vi(F(p)

vH(F(P)H(p)

D* =
®) y +vH(F(p)

If vF(F(p)) depends on an uncertain parameter vector R and/or Q we have for 7, — oo

b — v (F(p)H(p)

Z(p) = ER.Q|: Y+ v*(f‘(p))

} —co @

This is a rather awkward objective function from a numerical point of view. It is easy to see that a
fairly good approximation for v (F(p)) < y is

b
2~ - o) - H(p)w ®

If, however, systematic reconstruction is chosen we have
b
B = B(oo) =—
¥
and, by considering infinitely many “‘renewals” (see, Rosenblueth and Mendoza [5])

D(p) = (@) -+ )

so that for v (F(p)) depending on an uncertain vector (R, Q)

Ep oV (F(p)] ©)
14

2@) = ; _ Clp) - (Cp) + Hp)

Note that the parameter time, i.e. some usually unknown life time of the structure, has dis-
appeared and the failure cost or the failure rate are formally increased by a factor of 1/y. Because
the benefit is assumed to be independent of p it is sufficient to consider the total cost

(10)

=
Ciotal(p) = C(p) + (Cp) + H(p))w
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when optimizing the design. It is seen that formulation (10) differs from (8) only by the damage
cost term. It should also be noted that the expectation operations with respect to R and Q in (4)
can be performed directly at the out-crossing rate in view of the corollary. Both (8) and (9) must,
of course, be positive at the optimum.

Based on Rosenblueth and Mendoza [5] the concepts briefly presented before have been thor-
oughly reviewed and extended in a companion paper by the second author [20]. In particular,
aspects of serviceability failure, of non-Poissonian failure processes, of obsolescence and of
inspection and maintenance modify the objective function and are not treated herein. It is impor-
tant to remember that the assumed Poissonian nature of the failure process has been shown to hold
under quite general conditions at least asymptotically, especially for the two special processes
considered above.

4.2. Cost optimization with reliability constraints

The reliability-based structural cost optimization problem is a problem where total cost,
including initial cost of design and expected cost of failure are minimized subject to the constraint
on reliability and constraints on structural performance and on cost parameters. Usually, the
reliability-based structural optimization is solved successively by two levels of optimization. The
first problem (top-level) is cost optimization. The second problem (sub-level) determines the
reliability of the structure which as seen from (3), (5) and (6) together with the corollary is
essentially also an optimization task. A new and promising approach for time-invariant compo-
nential optimization has been investigated in [3]. Instead of using a two-level approach the two
optimizations are combined into one optimization problem. This approach is now extended to
the time-variant, stationary case.

The necessary first-order optimality condition for design points from Corollary 2 are inserted
into the cost optimization problem. More precisely, the optimization problem must fullfil the
necessary optimality conditions for the B-point-problem in the time-invariant and stationary case.

minimize  Cio (", ¢, 0*, p)

subjectto g(u", uf,w’,p) =0
@, ut, &)V, g ul, uw, p) + |, ud, w)| | Vg, ut, ', p)| =0 (11)
constraints on random and cost vector
simple bounds for random and cost vector

In accordance with Eq. (10) the constraint related to reliability must be given in terms of a failure
rate as

Eg (EQ(v+(F(p)))) & v}naximum!

where u}““"i’“““‘ is some maximum allowable out-crossing rate selected by other criteria than
optimization.

Using the total cost formulation including a discount or actualization aspect of building and
failure cost of Eq. (10) therefore, leads to:
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minimize  C(p) + (C(p) + H(p)(Er (Eo(vH(F @) /¥
subjectto  Ep(Eg(vt(F(p)))) < ypimum
g ul,ut,p)=0
@ ul, ) Vg ul, e, p)+ |, w0, )| | Vg, ', p) | =0 12)
h(T(u", u?, u*), p) =0, i="1 0w
/;j(T(u’,zl‘l,u"),p)SO, j=m+1,....,m
(ot w), p) < (', u?, ), p) < (", w, )", pY),

where /1;(,-) denote m' equality constraints and ﬁ,-(-, ), denote m — m' inequality constraints for the
design vector and the parameters. ((u", u?, u“')],p’), ((«, w4, )", p*) are simple lower and upper
bounds for the standard normal vector ((u", 17, us)[, p') and the cost parameter is p. This is the
new result. The optimization problem must be solved by a suitable algorithm. The minimization
of total cost under time-variant constraints can be carried out conveniently by the non-linear
optimization algorithm NLPQL based on sequential quadratic programming (SQP, see [21]).
Other algorithms may also work. As in time-invariant problems an optimal solution usually can
easily be found if expected failure cost are not included. Then, a failure rate restriction must be
imposed. In this case the number of iterations are similar to or a little larger than for simple
reliability analysis. The optimization task is numerically more involved if expected failure cost are
included and the imposed reliability constraint is not active. The reason simply is that objectives
like 10 are extremely flat in the neighborhood of the optimum under realistic conditions. In the
following two illustration examples expected failure cost are included.

5. Numerical examples
5.1. Steel column

The first numerical example is a pinned-pinned steel column with cost parameter p = (u, fta, f44):

Symbol Unit

Parameter _Bounds
Mean of flange breadth b mm (200, 400)
Mean of flange thickness 177 mm (10, 30)

Mean of height of steel profile h mm (100, 500)

The steel column has a constant length of 7500 mm. The function of total cost C,(p, u) includes
failure cost of

H = 500000(CU)(CU = currency unit)

discounted continuously with rate y=1,5 and 10% per year and parameter-dependent cost:
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C(p) = (jppaqg + S(mm)-py)-(CU/mm?)

Systematic reconstruction is assumed.
The independent uncertain vector X = (Fy, Py, P2, P3, B, D, H, Fy, E) and its stochastic char-
acteristics are given by:

Variable Symbol  Distribution  Type  Mean\s.d. Unit  Jump rate
Yield stress F, LogN R 400/35 Mpa —
Flange breadth B LogN R /3 mm —
Flange thickness D LogN R Hd/2 mm -
Height of profile H LogN R Hi/5 mm e

Initial deflection F N R 30/10 mm =
Youngs modulus E Weibull R 21 000/4200 Mpa —

Dead weight load Py N R 500 000/50 000 N —
Variable load P, Gumbel S 600 000/90 000 N 0.111ycar]
Variable Load Py Gumbel S 600 000/90 000 N 10¢1/year)

Two loads P, and Ps, respectively, are modelled by rectangular wave renewal processes. The
limit state function in terms of the random vector X, the parameter (up, pg, y;) and auxiliary
functions A,, My, M;, &, P = Py + P, + P3 is defined by:

1 K &
Xp)=F—-Pl—+—— :
(X, p) } (.A_r M Ey—P
where
A =2BD (area of section)
M =BDH (modulus of section)
M; =4BDH? (moment of inertia)
& =ZEM (Euler buckling load)

It should be mentioned that the failure criterion is highly non-linear in the original as well as in
the transformed space and, therefore, is a good test for the chosen algorithm. The admissible
failure rate is vFm™m = 1074 /year. Formally, this condition is replaced by [see Eq. (5)]

i U}naximum
e (m) <[ 7))

No other constraints on cost and design parameters are given in the example. The results for
optimization problem are:
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Discount rate y 0.01 0.05 0.10

Optimal total cost 5168 CU 4972 CU 4888 CU
Optimal design vector p* (200, 22.72, 100) (200, 21.74, 100) (200. 21.32, 100)
Failure rate at optimum 2.4-10¢ 1.2:1073 2.4.107

In this case the reliability constraint is not active. The lower bounds for s, and fup are reta_ined
during iteration. The algorithm essentially iterates only in pg. As expected the optimum feplure
rate is approximately proportional to the discount rate. Th(_a same eff'ect qould have been achieved
by modifying the failure cost appropriately. The objecller function is rather flat and small
deviations from the optimum result only in small changes of the total cost.

5.2. Air gap design for offshore structures

For offshore structures a sufficiently large air gap above still water level is required. The cor-
responding state function is

§(X, p)=Hp)-W

where H is the air gap and W the wave height (half amplitude).
The Gaussian wave height (S-variable) depends on the sea state .and Athe sea spectrum.
According to standard theory the standard deviation of wave height is given in terms of the sig-

nificant wave height by

and the autocorrelation function of wave heights is derived from
jesl
R(1) = J G(w) cos(wr)dw
0

with Pierson/Moskowitz’s spectrum

H2 (27\* 1 1 2w\l
Gla) = 4 \T, > P Ty To) o
The autocorrelation function as well as its second derivative at 7 = 0 as required l?y [Eq..(6).] must
be determined numerically. The significant wave height is assumed to be a Weibull dxstributed
sequence (Q-variable) with location parameter wy, =35 m and scale parameter ky, = 13 The
wave period in [1/s] (Q-variable) is also Weibull distributed with parameters related to significant
wave height as
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wr, = 6.05exp(0.07H,) and kg, = 2.35exp(0.21 H,)

Finally, it is assumed that the height of the structure H (R-variable) can only be built with a
standard deviation of o4 =0.2 [m] due to uncertainties in the foundation conditions and con-
struction processes. The random deviations from the target p = puy are normally distributed.
Enlarging the air gap can be very costly depending on the type of offshore structure and water
depth. Also, failure, i.e. full impact of the wave on the deck structure, can be very costly. Eq. (10)
implying systematic reconstruction will be used. If it is assumed that the building cost equal
Cipy/Co =1+ (C1/Co)p =1+ 0.005uy, the failure costs including environmental impact are
H/Cy=2.5 and the effective interest rate is 0.025, one finds the optimal mean height at p* = uj; =
17.5m at a yearly failure rate of 610 > which is a little smaller than the admissible rate of
v}"“"i“’”"‘ =10"%. For differentiable loading this is imposed as [see Eq. (6)]

D) vmaximum
—2ln<ﬂ-—)>n T
wo

The total cost are Crotal/Co = 1.09 implying that in this case about 9% of the total cost should be
invested in order to avoid failure. In this example the physical model is simple but the stochastic
model is rather sophisticated as it involves all types of variables, partly highly dependent on each
other. This example has been made simple because it is an example with only one parameter and this
is a distribution parameter. The results obtained can easily be verified in a parameter study for pg.

6. Summary and conclusion

Based on an optimization scheme for structural components developed for time-invariant
reliability constraints the theory is generalized to time-variant reliability constraints within the
context of FORM. Reliabilities are computed by the outcrossing approach for rectangular wave
renewal processes and for Gaussian vector processes, at present for non-intermittent, stationary
processes, only. A unique fSp-point must exist and the failure process must be a Poisson process, at
least approximately and possibly conditional on other random variables. Therefore, our theory is
applicable to high reliability problems. Generalization to intermittent processes should be
straightforward but consideration of non-Poissonian failure processes originating, for example,
from fatigue or other deterioration requires further research. The optimization scheme is a one-
level scheme which requires second order derivatives of the structural limit function, a restriction
which limits general applications only very little, and a formulation of the reliability problem in the
so-called standard space. Capitalization of failure cost as well as benefits and the reconstruction
policy is considered. Reliability constraints must be given in terms of failure rates instead of failure
probabilities for arbitrary reference periods. Extension to more accurate second- or higher-order
reliability methods requires further development. Direct extension is hardly possible because the
optimization problem can no more be formulated as simple as in Eq. (12). Since some second-
order reliability results are already available a straightforward but time-consuming approach is
by iteration. Also, the presence of multiple failures modes must still be investigated. If the failure
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modes have different failure rate and different failure cost the objective function is likely to have
multiple optima even if unique f,-points can be found for each mode. Two example applications
illustrate theory and methods. Simple cost optimization with a reliability constraint requires
approximately the same numerical effort as simple reliability analysis. However, the numerical
effort in reliability-oriented optimization both with time-invariant and with time-variant relia-
bility, is significantly larger, i.e. roughly by a factor of 10, than for simple reliability analysis if
expected failure cost is included. If it is included the optimization problem often simplifies to an
unconstrained optimization problem.
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