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ABSTRACT

Reliability updating by inspections has become
widely used in the offshore industry. The theoretical
concepts and basic numerical techniques are well es-
tablished. Practical applications indicated that sim-
ple FORM estimates based on individual linearizations
of the fajlure surface and the observation equations
or observation inequalities are rather inaccurate. Full
FORM/SORM techniques implying a search for the
joint S-point need to be applied. However, certain al-
gorithmic difficulties can occur. This is especially true
for reliability updating in the presence of structural fa-
tigue (crack propagation and instability) but the prob-

. lem appears to exist whenever conditional probabilities
are 10 be calculated. Most frequently the algorithms
will fail because they iterate into physicaliy or mathe-
matically inadmissible domains. New and widely suc-
cessful sirategies to select appropriate starting points
for the B-point search as well as strategies partly based
on heuristic arguments to avoid physically inadmissible
domains are proposed. These strategies are designed
to work independently of the special search algorithm
used. They are illustrated at a typica! example in which
it is also demonstrated that the simpler crude FORM
approaches are inadequate.

INTRODUCTION

One of the most important applications of FORM/
SORM methods in offshore technology is reliability up-
dating using observations on variables or states of the
svstem. The following equation states the formula for

111

ASME 1996
Stephan Gollwitzer
RCP GmbH
Miinchen, Germany
conditional probabilities or Bayes’ rule
_ P(FNB)
P(F|B)= ~FE {1

in which F denotes the failure event and B the obser-
vation event, be it the event that the structure has sur-
vived up to the observation time, a crack length obser-
vation, wave height observations etc. or combinations
and multiplicities thereof. Numerator and denomina-
tor are calculated separately. Especially for more com-
plex events FORM/SORM methods have been success-
fully applied (see, for example, Madsen, 1985, and Fu-
jita et al., 1989, or more recently Goyet et al., 1994).
The computational details are described in Madsen et
al. (1989), Gollwitzer and Rackwitz (1987), and Goll-
witzer and Rackwitz (1988), where special emphasis is
given to the case when observation events are given as
equality constraints. The computational tasks in re-
liability updating by the classical methods of FORM
and SORM consist of the search for the so-called joint
B-point(s) both for the numerator and the denomina-
tor in (1} and the subsequent probability evaluation.
While the latter only requires some simple algebraic
manipulations and the computation of the multinormal
integral (Gollwitzer and Rackwitz, 1388), the search of
the joint S-point can be quite involved and can fail
under conditions which are not at all unusual. For con-
venience, those computiational tasks are ail formulated
in the transformed standard space (Hohenbichler et al.,
1987). Given a set of constraints to be fulfijled simul-
taneously, the 3-point is defined to be the one with the
minimai distance from the coordinate origin to the lim-




iting curve of the constraining domain, thus leading to
the optimization problem

lu*ll = min{|lu|} (2}
g;(u) = 0 i=1,..m, (3)
gi{u) £ 0 J=Meyy,en,m (4)

Uow U £ u,, {5)

where u is the vector of basic variables, limited by its
lower and upper bounds u,,, and U, , Tespectively,
u® is the location vector of the joint S-point, and the
g; (u) are equality and inequality constraints, respec-
tively, which are assumed to be at least twice differen-
tiable. g; (1) is denoted by state function in the se-
quel. Additionally, it is assumed that the optimization
problem is unique, i.e. there exists only one such joint
B-point. For stmple component reliability it can be re-
duced to a single inequality constraint.

A variety of programs applying different concepts
and algorithms are available to handle the optimiza-
tion problem. One of the most sophisticated and ef-
ficient among them appears to be the NLPQL code
(Schittkowski, 19831994} which is based on successive
solutions of quadratic programming subproblems with
subsequent one-dimensional line searches to determine
the iteration step length with the help of a suitable
merit function. During iteration the Hessian matrix of
an augmented Lagrangian function will automatically
be updated. However, many alternative algorithms ex-
ist which serve the purpese equally well in most cases.

There are certain well-known circumstances under
which they can fail. In most cases this is due to tak-
ing numerical derivatives of the non-linear constraints.
This problem can usually be solved by using more in-
volved differentiation formulae. If the code still does
not find a solution many computer codes then provide
usually time consuming devices to enforce convergence
if the underlying problem has a solution at all. These
devices include modification of the numerical constants
of the algorithm, presetting of the Hessian with values
different from the unit matrix, different methods for
the line searches but, first of all, appropriate starting
points need to be selected. In some cases it may even
be necessary to switch to another algorithm which is
better suited to the particular optimization problem.
If only inequality constraints are present convergence
is usually achieved more easily than in case of equal-
ity constraints constituting a more difficult problem for
most algorithms. All in all, if there is a sofution to the
optimization problem under the conditions mentioned
above, it can be found. Here we wish only to empha-
size that sometimes optimization even in the specialized
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form required by FORM/SORM can require some skill,
experience and insider knowledge. Those convergence
problems which are somehow inherent in any optimiza-
tion are not dealt with hersin. .

Unfortunately and almost independent of the par-
ticular algorithm used, several other serious difficulties
are met in practical applications. In the following some
of these other sources of algorithmic instabilities will
be discussed and appropriate solution strategies will be
proposed. A typical example from the field of inspec-
tion 2nd maintenance planning for ships will illustrate
the effect of these solution strategies.

SOURCES OF NON-ALGORITHMICALLY BASED
CONVERGENCE PROBLEMS

The domain defined by formujae {3) to (4) is de-
noted by the (algorithmically) feasible domain. [t is
assumed that the functions g; (u) also exist in the algo-
rithmically infeasible domain but physically admissible
domain, i.e. the safe domain, Usually the algorithm is
started in this domain at some central value for which
it is known that all constraint functions exist.

It is generally true that one constraint problems
can be solved much more reliably. Therefore, a num-
ber of authors have proposed a simplified version of
the rigorous scheme described before. The proposal is
to individually linearize all constraints in their respec-
tive 3-point. Then, the origina) problem of working
in n-dimensional spaces with m non-linear constraints
(n > m) can be reduced to a problem in m dimen-
sions with m linear constraints. The remaining prob-
lem then is to find the joint F-point of the linearizations
and the solution of the m-dimensional multinormal in-
tegral. This method will be denoted by crude FORM
in the following. However, depending on the shape of
the state functions the final probability resuits for the
numerator and/or the denominator in equation (1) can
differ considerably from the more exact values obtained
by the FORM and SORM methods. Moreover. the con-
ditional probabilities can be in error by several orders
of magnitude as can be demonstrated easily (see also
the example iater on). It is therefore mandatory to ap-
pty the rigorous theory. But this fails in some cases.
The reason is primarily due to the fact that the state
functions are not or cannot be properly formuiated.

In fact, the most serious failure of any search algo-
rithm occurs if during iteration a point is found which is
mathematically and/or physically inadmissible and this
can occur in spite of defining admissibility windows in-
dividually for the variables. For example, at some dis-
tance from the origin mathematica! singularities may
exist, root finding implemented in the state function




results in complex solutions, determinants may become
negative which are admitted only positive from phys-
ical considerations, etc.. Very disturbing is the fact,
that the domain which is mathematically and/or phys-
ically admissible, as depicted in figure i, can hardly be
defined in advance in terms of additional constraints.
Even if this is possible in special cases it can require
enormous inteliectual and numerical effort. If no pro-
vision is taken, the algorithm will either stop with a
mathematical error or iterate in wrong directions and
convergence to a valid solution cannot be achieved.

In the following we will discuss mainly three points
to cope with the situation:

1. Constraint formulation: The performance of the
optimization algorithm strongly depends on the
mathematical formulation of the state functions.
Often several constraint representations are possi-
ble, each infiuencing the S-point search in a differ-

ent way.

Starting points: In many cases the selection of suit-
able starting points is vital for successful optimiza-
tion.

Admissible domain: The shape of the admissible
domain itself can be a reason for convergence prob-
lems. Depending on the state functions the opti-
mization algorithm can have a more or less strong
tendency to leave the admissible domain which
usually ieads to a fatal error during a computa-
tional run.

SOLUTION STRATEGIES

Constraint Formulation

The specific formulations of the state functions play
an important role for the stability and efficiency of the
algorithm. In most cases large gradients of the state
functions are beneficial and some care must be taken
to scale these functions appropriately. Also, the op-
eration of differentiation in a state function can make
function and gradient evaluation unstable whereas the
operation of integration or summation has a smoothing
effect. Considering for example crack propagation in a
structural component several possibilities of representa-
tion are conceivable. One of these would be formulating
the state functions in the so-called event space referring
to the crack sizes involved. A second possibility is to
perform reliability investigations in the time space by
comparing expected observation or service times with
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certain target values. As a third alternative stresses
related to the propagation process could be considered
which leads to formulations in the stress space. Evi-
dently, additional alternatives can be formulated each
resulting in a different algorithm performance. For gen-
eral reliability problems it is found that only tests can
determine which way of constraint representation ap-
peats to be most advantageous.

Improved Starting Solutions

Each optimization algorithm requires a suitable ini-
tial value. The natural starting point is the mean or
median of the basic variables vector which usually also
checks the validity of the constraint formuiations. At
least some point should be selected which lies in the
safe (infeasibie but admissible) domain so that neces-
sary presettings for the algorithm can be performed.
It certainly is desirable to start already in the neigh-
bourhood of the final solution. This is practical for
low-dimensional variable spaces only and if already suf-
ficient knowledge about the shape and location of the
state functions exists.

An often good guess of the loeation of the final joint
B-point is obtained by calculating the joint 3-point u©;,
of the linearizations which have previously been deter-
mined as tangent hyperplanes going through the indi-
vidual f-points. The individual S-points u; of all the
constraints g; {u) with ; = 1,...,m are generally de-
termined rather reliably. Equality constraints are tem-
porarily treated as inequality constraints. The final
joint S-point is denoted as u;,, as illustrated in figure
2 which depicts an example with two constraints in a
two-dimensional variables space.

It is possible to use more information especially if
the gradients of the true constraints are evaluated in
this new point. Note also that the true equality con-
straints will usually not be fulfilled. The choice of this
starting point makes the algorithms considerably better
convergent. Besides it can provide the so-called crude
FORM solution at very little additional computational
effort.

Linear Approximation of the Admissible Domain

First of all informative error messages must be pro-
vided if mathematically and/or physically inadmissi-
ble domains are entered. Restart of the algorithm at
another admissible {and, possibly, feasibie) point then
sometimes will lead to convergence. The question is
how to choose an appropriate restarting point. An effi-
cient strategy to stabilize the J-point search is based on
2 successive approximation of the limiting curve of the
admissible domain by enveloping tangent hyperplanes.




For this purpose additional linear constraints are acti-
vated whenever the optimization algorithm leaves the
admissible domain. These hyperplanes are perpendic-
ular to their direction cosines. Thus they make use of
all information available at that time. They are also
referred to as dummy constraints in the sequel as they
are not taken into account if the algorithm remains in
the admissible domain. Consider for example an iter-
ation point, as denoted by number 1 in figure 3. In
this case a check in the program routine evaluating the
state functions would report an error as point 1 is in
the inadmissible domain. Instead of interrupting the
reliability analysis completely, only the optimization is
stopped and restarted with additional information after
the following two steps.

Step 1 includes a bisection procedure on the line
connecting point 1 with the coordinate origin. The
stretch between the origin and the very last bisection
point is repeatedly halved until the current bisection
point falls into the admissible domain (point 4 in fig-
ure 3). Then a durmmy constraint, given as a linear hy-
perpiane through the last inadmissible point (point 3
in figure 3) and perpendicular to the bisection line, is
activated.

Step 2 is characterized by another bisection proce-
dure, taking the final result and the last inadmissible
point of step 1 (points 4 and 3 respectively in figure 3)
as a basis. Now the stretch between the base point
of the activated dummy constraint (point 3) and the
last bisection point is repeatedly halved until the cur-
rent iterate lies in the inadmissible domain (point 7 in
figure 3). Finally the activated dummy constraint can
be impraved by moving it parallelly into that bisection
point.

Taking account of the additional constraint and uti-
lizing the admissible bisection point of step 1 (point 4
in figure 3) as an initial solutior:, the optimization algo-
rithm for the 8-point search is restarted. The described
procecdure is repeated until the admissible domain is
enveloped by a polyhedron formed by the hyperplanes
whose individual -points all lie in the inadmissible do-
main. The optimization algorithm is stopped either
when convergence is accompiished or until an arbitrary
maximum number of dummy constraints is reached.

It is clear that this strategy is purely heuristic.
There is no proof of tonvergence which may be difficult
to assess unless for special cases. It can only work in
the rotationally symmetric standard normal space. The
strategy may cut out domains which are still admissible
and, in the extreme, are infeasibie thus changing and
reducing the effective safe domain. For example, this is
rather likely if the state functions are only defined in the
infeasible (safe) domain. Failure probabilities will thus

114

be overestimated. And there is still a possibility that
the algorithm will not converge. Several alternatives
for the chosen bisection strategy and different algorith-
mic details appear possible and are under study. T'heir
discussion is bevond the scope of this paper. Neverthe-
less, the proposed strategy is an attempt to overcome
certain mathematical and/or physical problems which
can show up during optimization and which are usuaily
overlooked when formulating the state functions or, in
the worst case, cannot be taken care of at all.

EXAMPLE

The convergence problems during the S-point search
have been found particularly severe in investigations
for inspection and maintenance for ship and offshore
Structure components subject to fatigue damage. The
expected failure probability of a structuraj component
after a service time ¢, needs to be computed depending
on observations of the crack size before ¢,. The state
functions can be expressed by

F = {acri: -a (t,) < O} (6)
B {€ 2, — a{ty,) =0} {7)
or B = {egu —alt,) <0} (8)

where a.,.,, is the critical crack length and g (t;) is the
expected crack length at ¢,. @05, denotes the observed
crack size, ¢ the measurement error, and a (t,,) the
expected crack size at ¢,,,. In the following we con-
centrate on the simple case of only one observation
of type equation (7). The above formulation of the
constraints is in the so-called event space as actual
crack sizes are directly compared with each other. Ap-
other possibility to represent the reliability probiem is
to transform the equations into the time space, thus re-
ferring to corresponding crack propagation time inter-
vals. Crack growth is described by the Paris/Erdogan
relationship (Paris and Erdogan, 1963)

% =Cv [As \/ﬁY(a)]m (%)

with the mean valye Uperossing rate v of the stress pro-
cess, the stress range As a geometry function ¥(a) de-
pending on the crack shape, and the material constants
Cand m. By integrating equation (9) the crack lengths
a(t,)ora (tabs) can be obtained. One of the physical
restrictions limiting the admissible domain can be de-
termined by investigating the a(t)-curve. For m > 2
and ¥(a) = Y = const it can be shown that at a certain
time a (t) gets singular, for greater times even negative.
This time ¢t,,,, called crack explosion time, is given by




2—m

LS.
2y

(10)

feep = 2 Cr® ElAsm™] vym
with the initial crack size ey and the m-th power of
the equivalent stress range E [As™]. For cases with
Y(a) # const no analytical solution for a (t) can gen-
erally be obtained. Hence to guarantee fairly accurate
results for ¢,.,, ¥™ in the denominator is replaced by
Y(ay)™ and an additional safety factor Foap < lisin-
troduced into the numerator. Evidently, further phys-
ical restrictions can be found for this example, but a
more detailed description wouid go beyond the scope
of this paper.

In a numerical investigation an example with the
stochastic model given in table 1 was considered. The
analyzed crack is a one-dimensional edge crack in a
plate with a width of 1000 mm, described by its geom-
etry function according to Broek (1986).

The effect of the different solution strategies has
been studied for several observation times. Ranges
where one strategy still succeeds while another fails can
be determined. Whenever FORM results were obtain-
able the respective SORM results were calculated, too.
Figure 4 shows the results of the parameter study in
tops - As the differences between FORM and SORM re-
sults are negligibly small no separate curve for SORM
is shown.

It can be seen that crude FORM (individual lin-
earization) finds solutions for each abservation time in
the considered interval. In no case dummy constraints
are activated. However, for t,,, > 16.0 notable discrep-
ancies can be detected between the crude FORM and
FORM results revealing the crude method as rather
inaccurate in this range. Examples can be constructed
in which these differences between crude FORM and
a correct first order solution are even larger. The fact
that SORM does not produce much better results than
FORM for all probability ievels also implies for this
example that it is more important 1o locate the exact
Joint B-point than to take into account curvatures of
the state functions.

It can further be seen that FORM without any spe-
cial strategies and state functions formulated in the
event space Jeads to solutions only for observation times
in the small interval 12.0 <ty < 16.5. Bevond these
limits the optimization algorithm leaves the admissi-
bie domain and stops with a fatal error. Using state
functions transformed into the time space the solv-
able interval increases slightly to 12.0 < ¢, < 17.0.
Continuing the investigation in the time space the fol-
lowing observations can be made. Activation of ad-
ditional linear constraints to approximate the admis-
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sible domain yields two more S-values at tops = 11.5
and 1., = 17.5. Additional constraints combined with
an improved starting solution by taking account of the
Joint B-point of the individual linearizations completes
the missing values for ¢,,, > 17.5. For toss < 11.5 nore-
sults can be obtained by FORM. In this case “normal?
non-convergence occurs with the applied algorithm and
special strategies do not help. Alternatjve algorithms
may, however, be successful.

Table 2 contains the numerical results for five se-
lected observation times, each characteristic for one of
the ranges discussed above.

Finally, it is mentioned that the new strategies are
somewhat more expensive than crude FORM. It also is
worth noting that the example chosen is not an extreme
one.

CONCLUSIONS

Based on the presented non-algorithmic sources of
non-convergence and their proposed solution strategies
in reliability updating, it can be concluded that in the
development of a general program code for reliability
analysis not only good optimizers have to be chosen
but various extreme scenarios have to be considered
to achieve maximum stability. A first possibility is to
investigate convergence properties in different formula-
tion spaces. A second somewhat laborious but in diffi-
cult cases necessary strategy is the selection of a start-
ing value for the algorithm which is found as the joint
B-point of the constraints linearized previously in their
respective individual B-points. A third strategy con-
sists of adding dummy constraining hyperplanes which
sequentially envelop the admissible domain such that
their individual S-points are in the inadmissible but
otherwise feasible domain.
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APPENDIX: FIGURES AND TABLES
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Figure 2: Improved starting sofution after individyal
linearization of the constraints
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Figure 3: Activation (a) and improvement (b) of an additional constraint to approximate the admissible domain
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Figure 4: G-curves for different solution strategies
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Variable | Distribution Mean Coefficient of
function variation
Qg Rayleigh 1 {mm] 0.5
C Lognermai | 1.13- 16-% -] 0.4
m Constant 3 -
€ Lognormai if- 0.2
Qops Constant 3 [mm] -
ElAs| Constant 30 [MPa] -
v Constant 0.1]1/s] -
Cor iy Constant 50 [mm] -
t, Constant 25 [years] -
F.., Constant 0.9 [] -

Table 1: Stochastic model of the example

tots Methad Solution strategy Number of Ji] Py
const. | impr. | dum. | active iter. | func.
form. | start | const. dum, | num. | calls
6.0 | crude FORM ts no no - 8 49 -1.756 | 0.9605
12.0 | crude FORM ts no no - & 36 [ -0.1194 | D.5475
FORM es no no - 4 73 { -0.1167 { 0.54B%
FORM ts no no - 4 73 -0.1167 | 0.5465
SORM ts no no - 4 115 | -0.1167 | 0.5465
17.5 | crude FORM ts no no - 8 48 1.218 0.1116
FORM ts no yes 1 6 106 1.857 0.0361
SORM ts no yes 1 6 157 1.833 [ 0.0334
20.0 | crude FORM ts no ne - 8 48 1.720 0.0427
FORM ts yes yes 1 24 221 4.400 | 5.0E-05
SORM ts yes yes 1 24 272 | 4343 [ 7.0B-05
220 [ crude FORM ts nc no - g 48 2.079 0.0188
FORM ts yes yes 2 17 142 | 7.627 | L.OE-12
SORM ts | yes | yes ) 17 [ 193 [ 7520 [ 1 OE13

Table 2: Results with different solution strategies for Gve characteristic observation times {const. form = constraint
formulation, impr. start = improved starting solution, dum. const, = dummy constraints, active dum. = active

dummy constraints, iter num. = iterations for numerator probability, fune. calls = state function calls, ts = time

Space, es = event space)
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