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1. Introduction — Notions and Definitions

In general,a system is understood as a technical arrangement of clearly identifiable
(system—) components whose functioning depends on the proper functioning of all or a
subset of its components. A reliability analysis requires precise definitions. It is assumed that
the components can attain only two states, i.e. one functioning (safe, working, active,...)
and one failure (unsafe, defect, inactive,...) state. This is an idealisation which is not always
appropriate but we will maintain it throughout the text. If there is a natural multi—state
description of a component or a system we shall assume that this is reduced to a two—state
description in a sensible manner. In practice, this step of modelling might be not an easy
task. It is, nevertheless, mandatory in pratical system reliability analyses because the division
into only two states is crucial for any straightforward quantitative reliability statement.
Several attempts have been made to establish concepts for analysing systems with
multi—state components (see, for example, Caldarola, 1980; Fardis/Cornell, 1981). It should
be clear that system have also multiple states and the definition of safe or failure states
requires great care. Such relatively recent extensions of the classical concepts cannot be
dealt with herein.

A representation of component performance by only two states is called a Boolean
representation but we shall avoid the explicit use of Boolean algebra as far as possible. As a
consequence of the Boolean component representation, systems can only be either in the
functioning or the failure state. We shall only deal with so—called coherent systems, i.e.
systems which remain intact if an additional functioning component is added.

One can distinguish two basic types of systems, the series and the parallel system. Later, we
shall add other related types whose separate definition is useful for classsification and
calculation purposes. A series system consisting of n components is said to fail if any of its
components fail. Classical examples are the chain whose failure is a consequence of the
failure of any of its links or a four—wheel car where any flat tire prohibits further use of the
car (usually). A parallel system of n components is said to fail if all components fail. As an
example, assume that a town is supplied by several electrical life—lines and each one is
capable to deliver the required power. Or, in aircraft control, two computers are installed in
ideal stand—by redundancy. If the first fails the second takes over and can fulfill all demands
but only if this, too, fails no control is possible. Remember, however, that in most technical
systems such as structures failure of some components causes higher loads on the remaining
components. This problem will require some thought. A system is called redundant if it is
intact inspite of the failures of some of its components.

In general, systems are built up by many components in a complex logical arrangement of
series and parallel subsystems. Let F; = {X € V;} be the failure event of the i~th system
component. Denote by F the system failure event. Clearly, for a series system
("or"'—connection) we have F as the union of the individual failure events (see figure 1.1)
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Feoi=( Fi (1.1)

while for the parallel system ("and"—connection) F is the intersection of the Fs's (figure 1.2)
Fp=nF; (1.2)

Correspondingly, for parallel systems in series (unions of intersections) we have (figure 1.3)
F =unF;; (1.3)

whereas series systems in parallel (intersections of unions) are desribed by (figure 1.4)
F=nUFg (1.4)

For convenience, the same systems are also presented in figures 1.5 to 1.8 when the Fy's are
given by certain domains ion the space of uncertain basic variables X = (X, X2).

Of utmost importance in reliability theory is the fact that any system can be reduced to
either of the two forms in making extensive use of the distributive laws of set algebra

Fiﬂ(FJ’UFk)z(FiﬂFj)U(FiﬂFk) (1.5)
FiU(Fj n Fk)= (FiU Fj)ﬂ(FiU Fk) (1.6)

Furthermore, essential reductions are usually possible by applying the so—called absorption
rules, i.e. for F; C F; there is

FiUFJ':Fj and FinF; =F; (1.7a)
or for F; C Fj and Fx C F; thereis
(F; U Fy) ¢ Fj and (Fi N Fy) C F; (1.7b)

It also follows that the union or intersection of an event with itself is the event. The
absorption rules are important when making certain sets "minimal". If, in particular,
eq. (1.3) is a minimal set it is denoted by a "minimal cut set". Cut sets are minimal if they
contain no other cut set as a genuine subset. Analogously, representation (1.4) is called a
"tie set". Such sets are minimal if no tie set contains another tie set as a genuine subset.

The first step in an analysis of systems is the investigation of the logical structure of the
interaction of its components. In a second step which usually is a more formal one the
reduction to a minimal form is carried out. Only the third step includes probability
evaluations. A forth step may then be added which includes the determination of sensitivity
and importance measures of parameters, components and subsystems, respectively. The first
step involves classical engineering evaluations and, probably, is the most difficult task. It
requires much care and experience to model components and the system realistically and, in
a reliability sense, completely. It should be obvious that this modelling phase must not be
done without due consideration of the various consecutive steps. It cannot be a subject of
these considerations. The second step will be highly formalized. A few hints will be given
subsequently and the reader is referred to the vast literature in this area for additional
information. The third and to a lesser degree the forth step will be the main subject of these
notes.

lllustration 1.1: Water supply system
We consider a very simple life~line system as shown in figure 1. Two sources S1 and S2

supply two consumers (town areas) Al and A2. The arrows indicate the possible direction of
flow. The system fails, e.g. at an extraordinary event such as flood, earthquake or war
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action, if one of the two consumers is no more supplied. Here, it is easy to write down all
possible connections leading to system failure.

F= {[Fl N (F;\U F3) n (F3 UFsU Fs)] U
U[(F1UF5)ﬁ(FgUFq)ﬂ(FQUF:gU F{,)]} (1)

Complete Minimal Minimal
Blockdiagram Cut Tie
Set Set

System representations
The system can also be represented in terms of a block diagram in which one can easily
recognise the logical structure. As in eq. (1) one considers the supply of Al and A2
separately. For example, Al is not supplied if line 1 "and" line 2 "or" 3 "and" line 3 "or" 4
"or" 5 are broken.

This system of events in eq. (1) is not yet minimal. One may now apply the laws (1.5) and
(1.6) and obtains for the supply of Al

Fao= {(FinFanF3)U(FinFanFg)U(FinFanFs)u
U(Fln Fgﬂ Fﬂ) U(F1 n F3 n F5)} (2)

(Carry out all "cuts" in the upper half of the block diagram which make the system fail).
Next the absorption laws are applied. First all multiple events in a cut set are deleted except
one. Next, multiple cut sets are deleted exept one. Finally, all cut sets which are subsets of
other cut sets are deleted. In doing so one arrives at

F= {(FinF3)U(FsnFs)u(FsnFs)U
U(FinFsnFy) U(FynFsnFs)} (3)

Quite analogously, one can produce tie sets. We remember that according to de Morgan's
law, it is ANB=AUB and A UB = An B. Therefore, for the representations (1.3) and
(1.4) we have U N Fi_; = Q\(ﬂ U Fij) andNU Fij = Q\(U n Fij). Hence, having found the
minimal cut set for the failure events yields by passing over to the complementary events (by
reversing the set operators) the minimal tie set of safe events and vice versa. It is
recommended to do this as an exercise. The result is

F={(FilUF;)n(FiUF3UFg)Nn(F2UF3UFgN
N(FaUF3UFs)Nn(F3UF4UFs5)} (4)
#
2. Formal Logical Analysis of Systems
2.1 EVENT— AND FAILURE TREE ANALYSIS

Complex systems require more formal tools when assessing and reducing the logical structure
because a direct analysis can be rather error prone and lengthy.

A first possibility is a complete analysis of all possible sequences of events. This type of
analysis is called "event tree analysis". For larger systems this can become quite
cumbersome but it will be seen later that in a number of applications this is the only way to
arrive at a sound picture of the situation.

lllustration 2.1.1 (cont.): Water supply system

In our water supply system the time—sequence of failures of components is irrelevant for the
final system states (but not necessarily for the corresponding probabilities). Here, we develop
sequences of events starting from component one (compare figure 1). The reader may verify
that the same result is obtained by starting at another component. One observes that at the
end of each branch one arrives four types of events: Survival (S), Failure of supply of Al
(Fy), Failure of supply of A2 (F,), Failure of supply of Al and A2 (F; N Fs).

All survival and failure events constitute an exhaustive, disjoint system of events. In
applications one might wish to differentiate between the different failure types because they
are associated with different consequences. Usually only the failure branches of the event
tree are of interest. In this case the event tree may be called failure tree and it is sufficient
to investigate only those branches which lead to failure (failure branches, failure paths).

Another possibility of system analysis is by so—called fault trees which is a backwards
analysis technique of the failure branches of an event tree. System failure is the top event.
Then, a next level of subsystem and its logical connection is defined by "or" or and" gates.
In this manner one pursues all possibilities until one arrives at the componential basic events.
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lllustration 2.1.2 (cont.): Water supply system

Figure 1 demonstrates the fault tree of our water supply system which in view of the above
discussions does not need further explanations.

Fault Tree

o
=+

2.2 MINIMAL CUT SETS

Neither the result of the event tree nor of the fault tree has been reduced. Many formgf
algorithms exist for these reductions but they resemble each other to a large degree. Their
differences can frequently only be recognised for very large systems. An account of several

methods and some special tasks is given in Yen (1975). Here, we illustrate an algorithm
described in Barlow/Proschan (1975) and originally proposed by Fussell (1971).

lllustration 2.2.1: Minimal cut set of water supply system

The algorithm proceeds as follows. Starting with the top event of a fault tree each event of a
cut set ("and" connection) is treated as the input into the columns of a row of a matrix.
"Or'" connections form new rows. Each subsystem in parallel with others consisting of
components in series, therefore, produces as many new lines as the subsystem in parallel had
components in series. In our example, the development of the full matrix looks as in figure 1.

Herein, the absorptions have been made only at the last step by first deleting all multiple
Sets except one, and by deleting all those sets containing {1,3}, {3,5} and {4,5} because
unions of intersections of larger sets are included in the remaining ones. In practical
applications one, of course, might wish to carry out absorptions as early as possible. In a
similar manner the dual representation, the minimal tie set, could be derived with some

obvious modifications. The production of a minimal tie set of failure events probably is best

the minimal cut set of survival events is formed and herefrom, using de Morg_qn'§ law, the
corresponding tie set. On the other hand tie sets are difficult to handle probabilistically and,
therefore, will not be studied furtheron.

e e —————
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3. Elementary probabilistic evaluation of systems — Probability bounds

In this section we compute the failure probability of systems as analysed before under the
more or less restrictive assumption that the componential failure events are either
independent or fully dependent.

For a series system ("or'"—connection) we have for independent events in passing to the
complementary events

Pr,s = P(UFi) =1—P(n F_:-l)
=1 - I P(Fs) = 1 —TI(1 — P(F9) (3.1)

and, analogously, for the parallel system

Pe.pi= P(0 Fy)=H P(Fq) (3.2)

: |
In the fully dependent case it is

Prs = P(U Fi) = max {P(F;)} (3.3)

1 1

W@=P@Fﬂ=mm{ﬂﬁﬂ (3.4)

1 1




Systems with more complex structure are more difficult to handle. Assume that the cut sets
are disjoint. Then, the third Kolmogorovian theorem of probability theory applies directly.
Remember, that disjoint cut sets usually consist of failure and survival events which here are
denoted by F;*.

TS *
L P(U n Fij) = % P(ﬂ F ij) (3'5)
1403

If the cut sets are not disjoint one may use the well-known expansion formula for the
probability of unions of events, i.e.:

P(UF;) =2 P(F;) —X % P(Fi.n Fj)
i I 1<)

+¥ ¥ ¥ P(Fi n Fj n Fk) —...(-ml)“"l P(Fl i Fn) (3.6)
1<j<k

Several cut sets in a cut system representation can share the same components. Therefore,
cut set failures are no more mutually exclusive and a more detailed analysis as before is
required. The use of the sum of componential failure probabilities always provides an upper
bound Py as is easily verified. Additional consideration of the second term similarly always
produces a lower bound Pp. Of course, for larger systems one must observe
0 < Py < P(UF;) < Py < 1. Unfortunately, these bounds are unsiatisfactorily wide for larger
systems. Consideration of higher order terms in eq. (3.6) usually is rather laborous and it is
not obvious where to truncate the expansion since the terms first tend to increase in value
and then decrease and thus first widen the bounds established by considering sequential
sums and then sharpen them down to the exact result.

Figure 3.1: Derivation Ditlevsen's bounds

It is possible, however, to derive simple bounds of increasing order and increasing
narrowness. The idea can be deduced from figure 3.1. For the first two events we have

P(FI U FQ) - P(F[) + P(Fg) ot P(F[ n Fp)

For the third event in a union, an upper bound is obtained if the intersection with the larger
probability is substacted, i. e. P(F, n F3) or P(F2 n F3), from the additional term P(F3). A
lower bound is to substract the sum of these probabilities provided that they are not larger
than P(F3). Repeated application of this scheme for more than three events yields:

: CP(F)+3_ {P(F:) - max{P(Fs n F;))
P( U Fa)={ e L9 oo (3.7)
o= > P(F)) + £ max {O,P(F;) - £ P(Fin Fj)}




This elementary result has been derived repeatedly, in one or the other forms, e.g. by Konias
(1966), Hunter (1976,1977), Ditlevsen (1979). The narrowness of these bounds depends on
the ordering of the events. A different ordering may be necessary for the upper and the lower
bound. An algorithm for a best ordering is given by Dawson/Sankoff (1967). Hohenbichler
(1980) (see also Hohenbichler/Rackwitz (1983)) generalised these bounds to include more
than two—dimensional intersections (but not all higher dimensional intersections). It was
found by numerical studies that little is gained by those extensions except for smaller (!)
systems. The (two—dimensional) bounds become exact for fully dependent events, are very
close to the exact result for independent events, become less satisfactory with increasing
number of events but are generally of high quality for small probability events. :

Irrespective of the dependence structure of the events, we have, as mentioned shortly after
eq. (3.6), the so—called trivial bounds

n n n
max {P(F;)} <P(U F;))< X P(Fy) <1 (3.8)
| =1 == i=1
for the series system and
n n
0<P(n Fi)<min {P(F;)} (3.9)
2] jr

for the parallel system being direct consequences of the elementary probability theorem. The
bounds (3.8) become obsolete for larger systems and/or larger individual event probabilities.
The bound (3.9) generally is of little use. Slightly better is the following obvious relationship

n n
0<P(n F;)<min {P(FinF;)} (3.10)
i=1 1

which is of the same nature as eq. (3.7) since it involves the probability of the intersection
of any two events. As for eq. (3.7), higher order intersection terms could be included in
bounds of the type of eq. (3.10) but with moderate improvement of the upper bound and,
without further information about the dependence structure of the componential failure
events, no possibility to sharpen the lower limit. This is the reason why we shall not further
investigate tie sets of failure events. In addition, if the events F; and F; in eq. (3.10)
correspond to unions we have, for example, F; N F; = ( Uy Fir) N ( Us Fjs) whose probability
in turn is only easily computed if first a (minimal) cut set representation is found and one of
the formula (3.5) to (3.7) are applicable.

Example 3.1: Application to a water supply system (cont.)

The foregoing schemes are now used to compute failure probabilitties for the water supply
system introduced in section 2.1. For the complete (disjoint) event tree the calculation of
the failure probability is very easy but laborous. With p; = P(F;) = p, qi =1 —p; = q, and
independence of the events, it is for those branches which lead to system failure

P(F) = q3p2 + q%p2 + ... + p5 = p%(3 — 4p2 + 2p}?) (1)
The second exact way to compute the failure probability is by eq. (3.6). We start with the

minimal cut set representation in illustration 2.1.1 but any other representation of unions of
intersection could be used. Expansion yields:
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P(F) = P((FinFanF4) U (FinFanFs) U (FiNF3) U (F3nFs) U (F4nFs))
= P(FinFanF4) + P(FiNFaNFs) + P(FiNF3) + P(F3snFs) + P(F4NFs)
— (P(FinFanF4nFs) 4+ P(FNFaNF3nF4) + P(F NF2NF3NF4NF5)
+ P(F\nFanF4nFs) + P(FNFaNF3nFs) + P(FiNFaNF3NFs)
+ P(FnFanF4nF5)
+...+P(F3nF4nFs)
+ (P(FiNFNF3nF4NF5)+
+...4+P(FinNF3nF4nF5)) — (P(FnFoNF3nF 4NF5)+
+...4+P(FinFanF3nF4nF5)) + P(FiNF2NF3nF4NF) | (2)
Of course, all intersections are reduced, i.e. the first joint intersection
P((FinFanF4) n (FiNFaNF5)) to P(FiNFoNF4NF5) and similarly for all others. A rather
lengthy computation gives:
P(F) = (p3 + p3 + p2 + p? + p?)
SPTE P pltt DY Pt F Ut g0 gt 4 )
+(pS+ p5+ pt + pS+ pf 4 pB 4+ pt + pi + p® + pi)
“S{p+ pt ¥ pE £ pEipl) e pt
= p%(3 — 4p2+2p3) (3)

One can observe that the expansion theorem (3.6) requires the evaluation of 31 cut sets
which is more than the disjoint cut set of illustration 2.11 in which one counts 18 cut sets.

On the other hand, the trivial first—order bounds for the minimal cut set system according
to eq. (3.8) are

p2 < P(F) < 3p2? + 2p? (4)

The second—order bounds eq. (3.7) read (without ordering and using representation (3) of
illustration 2.1.1):

p2 + (p2 — max{0,p3 + p4+p3}) + (p2 — max{0,p* + p*}) + (p3 —p*) + p*
Tipe —Api < B(F) < p o+ (p2—p3) + (pt—pY) + (pd—pf) 4
= 3p2 + p3 — 2pt (5)
In order to get some feeling about the numbers we set p=0.1. The exact result then is
P(F)=0.02962. The trivial bounds become 0.02 < P(F) < 0.032 while the second—order

bounds are 0.0296 < P(F) < 0.0308. The upper bound for the tie set representation as in
eq. (2) of illustration 2.1.1 is 0.19 which demonstrates its inadequacy.

#
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4. First—order reliability methods for system analysis (FORM)
4.1 COMPONENTS

Let U = (Uy,...,U,)T be an independent standard normal vector and the failure domain be
iven as V = {g(U) < 0} = {aTVU + f< 0} with g(0) >0 and lal = 1. Then, the exact
ailure probability is

Ps = P(F) = P(U € V) = &(-5) (4.1.1)
u* = — B a the [—point, a its vector of direction cosines and [ the safety index
8=+ lu*l.

The standard normal integral ®(c) may be determined by one of the expansions given in the
literature. Note that we distinguished in eq. (4.1.1) the failure event F and the failure
domain V. This is formally correct but at the moment not really necessary. Therefore, we
shall use P(V) instead of P(U € V) for P(F) in the sequel.

Next, we generalize this result for non—linear, differentiable failure surfaces g(u) =0 by
expanding it to first—order in the so—called /—point which, for the moment, is defined as the
minimal distance of points u on g(u) =0 to the coordinate origin. For [ we use the
convention

8=

+llu*§i for g(0) > 0
{ (4.1.2)

—lu' | for g(0) < 0
while
lu*l = min {lul} for {u: g(u) < 0} (4.1.3)

Finding u* is a problem of optimization (minimizing lull) under an inequality constraint.
The inequality condition is written here only as a reminder that the failure surface g(u) = 0
resp. the failure domain V = {g(U) < 0} is assumed to be non—degenerate, i.e. that the
failure set in a sufficiently small neighbourhood of u* is non—empty and has non—zero
probability. Practically, the equality condition is sufficient. The search for u* will be
discussed later. Here, it is further assumed that g(u™) possesses all first—order derivatives so
that a tangent linear approximation of the failure surface is uniquely defined. Intuitively, this
expansion point is an obvious one since the multi—normal density drops off with exp[— 1/2
lull?] and in the f—point the function llull is not only minimum. Simultaneously, one has
max {p(u)} for u*. As a consequence, u* is also denoted as the "most likely failure point".
In the non—linear case, one, therefore, has

Ps x ®(—0) (4.1.4)

with, for the moment, unquantifiable error. But it is emphasised already here, that the
approximation is widely acceptable. Again, u* = —fa where _ax_g(u")/llg{u")ll the
normalized gradient of g(u‘)gxo in u* and the linear approximation to g(u) =0 is

h(u) = o¥(u—u*) = aTu + = 0.

4.2 UNIONS AND INTERSECTIONS

The failure event (domain) can also be given as a union or intersection of individual
(componential) failure domains. Let
m
V= N N¢
=1
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with Vi = Hj = {&TU + f; ¢ 0; = {Z; < —f}. If, originally, the individual failure domains
Vi are bounded by non—linear failure surfaces, we understand that these failure domains
have been replaced by linearly bounded half—spaces H; as described in section 4. The
covariance matrix for the vector Z is given by ¥z = {asT a5 ; i,j = 1,...,m} which is equal to
the correlation coefficient matrix R because Z is a zero mean, unit variance vector. The
failure probability becomes (Hohenbichler/Rackwitz, 1983):

P P(El{zi <—B}) = @u(~B: R) (4.2.1)

®,, is the multinormal integral. Similarly, for a union of events

P = P(U {Z:<=A) = 1-P( {2 > 6))

=1- F‘(rf;1 {Z;< Bi}) =1—-2,(8; R) (4.2.2)

The numerical evaluation of the standard multinormal integral ®5(c ; R) is essential for egs.
(4.2.1) and (4.2.2) to be of any practical use. Unfortunately, simple general and exact results
do not exist. The fact that the approximate evaluation of the general case just on the basis
of the first—order reliability methodis possible must be viewed as one of the prominent
applications of this approach.

4.3 CUT SET SYSTEMS

As outlined in section 2 more general failure domains (systems) must be given either in
terms of a disjoint or (minimal) cut set representation. In the first case the cuts can also
contain safe events and no additional difficulties will be met. The system failure probability
is simply the sum of all_cut probabilities. If, for example, a cut set is given by {V;,V;} where
Vi = {gi(U) < 0} and V; = {g;(U > 0} it is clear that by multiplyin g-(U% with 6*1) one
obtains V; = {—g;(U < 0} as required for formulae (4.1) and (4.2). In contrast to our
general assumption V; now is a large probability event but its intersection with small
probability events Vi may still yield small joint probabilities. In a first—order context the
multiplications of g;(U) by (—1) results in a sign—change of the original correlation
coefficient.

If the system is represented by minimal cut sets one straight forward calculation method is
to use the Ditlevsen bounds as derived in section 3 in eq. (3.7). They require the evaluation
of the intersection of any two intersections of failure domains, i.e. the probabilities

m; m;j
P(Vin V;) = P( ﬂlvr n DIVS) = (pm‘mj(ﬂi‘j;th) (4.3.1)
o ot :
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Alternatively, a formally exact result is also obtained when applying the expansion theorem
(4.6) but the numerical effort may become great for larger systems. The same is true for the
calculation of disjoint cut set probabilities so that, in practice, one might prefer the bounds
(4.7). These, in turn, may be weakened in that, after arranging the cut sets according to
their (descending) probabilities, the intersection probabilities of any two cut sets are only
computed for the k first few dominating sets while the rest of the cut sets is taken into
account by either their upper bound or their lower bound. Larger systems can actually
require rather detailed considerations as concerns the reasonable numerical effort involving
also the valuation of the various approximations. They cannot be presented herein.

lllustration 4.3.1 (cont.): Water supply system

We are ready to apply the above results to the water supply system discussed in section 2.
Assume that the componential failure events are now given by Vi = {X; — Y < 0} where the
X; represent some "resistance" variables which are assumed to be independent and normally
distributed with mean m; = m and standard deviation ¢; = 0. Y is a normal "loading"
variable with mean p and standard deviation 7. Therefore, the componential failure
probabilities are

P(Fi) = P(Vi) = P(Xi—Y < 0) = P(Z; < —f3;) = ®(—H1) (1)

It follows that g = f; = (m — p)(ro? + r?)"/2 and p = pij = Cov[Z3,Z;] = 7402 + 72)"L.
Let the parameters be chosen such that §=3 and p = 0.5. The state variables are
represented by

Z. = ypU + yT=pU; (2)

By conditioning first on the variable U = u one recognizes that the variables Z; are
conditionally independent and the results of section 3 apply. In particular, it can easily be
verified that

20

P(F) = [ [3p%(u) — 4p*(u) + 2p5(u)] ¢(u) du (3)

-

with p(u) = ®((—F — ypu)/(1 — p)"’?) and the term in square brackets the exact system
failure probability if the components were independent. Numerical integration yields
P(F) = 2.31 10-4 with component probability P(F;) = 1.35 10-3. Note that P(F) = 5.47
10-6 would have been obtained if the Fi's were independent. This emphasises the
significance of stochastic dependencies among componential failures.

The same system is used to illustrate the material in this section. One determines
Ps.sx = P(Fin Fy) = 8.19-10-5 and Pt.ijk = P(Fsn F; n Fx) = 1.561-10-5. The trivial
bounds for the system failure probability eq. (3.8) become

5
max {Ps.x} =8.1910-5< Pf <276 10-4 = ¥ Pg.y (4)
k=1

Ditlevsen’s bounds require the probabilities of the intersections of any two cut sets in the
system. These probabilities are collected in the following matrix P = {psj: i,j = 1,...,.5}:
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1.51-10-8 4.65-10-6 4.65-10-6 1.90-10-6 4.65-10-8
1.51-10-% 4.65-10-6 4.65-10-8 4.65-10-6

P= 8.19-10-5 1.561-10-5 4.65-10-6
symm 8.19-10-5 1.51-10-5

8.19-10-5

For example, the element p;o = P((F;n Fan Fg) n(F N FanF5)) =
=P(FinFanFgnFs) = &4({-3};{0.5}) = 4.65-10-6. Then, the sharper bounds eq. (3.7)
give

2.26 104 < Py < 2.42 10-¢

with essentially the same numerical values whatever sequence of the five cut sets is
considered. These bounds are appreciably narrower than the trivial bounds and, of course,
contain the exact result.

#H

i

4.4 PROBABILITY DISTRIBUTION TRANSFORMATIONS

The foregoing results are very special as they only apply to independent standard normal
variates. However, if the distribution of the original basic variables are continuous it is
always possible to find a probability distribution transformation

X = T(U) (4.4.1)
such that
Ps = P(h(X) < 0) = P(h(T(U)) < 0) = P(g(U) < 0) (4.4.2)

where we used the abbreviation h(T(U)) = g(U). Such transformations are well known from
simulation. Remember that if a random number generator is available producing uniformly
distributed  variables G; in  [0,1], then, we wuse the identity
P(G; < g) = Fo(g) = Fx(x) = P(X; < x) to produce random numbers for the variable X. By
solving for X; we obtain X; = Fx~1Gj] as random numbers distributed according to Fx. A
similar concept is applied to eq. (4.4.1). Let X be an independent vector with marginal
distribution functions X; ~ F(x). It follows that the identity
Fi(xs) = ®(u;) (4.4.3)

holds and, therefore (Rackwitz/Fiessler,1978),:

X; = Fi[®(U;)] (4.4.423)
or

Us = & F;i(X3)] (4.4.4b)
llustration 4.4.1: Transformation of Gumbel—distributed variables

The Gumbel—distribution is given by

F(x) = exp[—exp[—ax—u)]] % (1)
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where a is a dispersion— and u a location parameter. Applying eqgs. (3.4.4) we have

X=TWU)=u~—In(-nd(U))/a (2)

U = TY(X) = & "[exp[—exp[—a(X — u)]]] (3)
#
The multidimensional dependent case is more involved. If X has distribution function

Fx(x) = P(X < x) = P n;;y {X; < xi%). then it is always possible to represent this distribution
function as a product of conditional distribution functions, i.e.

Fx(x) = Fi(x;) Fa(x2|x1) ... Fa(xn|X1,...\Xn-1), where

X.
I
Fi(xilxl,---.Xi-1)= J. fi(xlu-...Xi—le) ds

fi_ I(Xl,.. vy Xi- 1)

s
and
+o 4o
fj(xl,....xj) == J J fx(xl,...,Xj.Sj+1.....Sn) de +1...dSp
— —w

This elementary result is used to construct a transformation which has been proposed by
Hohenbichler/Rackwitz (1981) following an idea by Rosenblatt (1952). It will be denoted by
the Rosenblatt—transformation in the sequel. We transform sequentially using the identities

i (e d'50)

B(un) = Falxn|X1eeeXn) (4.4.5n)
Hence,

X =T(U) = (Ty(Uy).To(U,U3),.... To(Uy,...,Up))T (4.4.6)
or

X, = Fi{&(U,)] (4.4.62)

Xz = F3'{®,)| Fi'[2(Uy)]] (4.4.6b)

X = F3(@(U3)|F5'[@(Us) | Fi'[(U )L Fi'[@(U )] (4.4.6¢)

and the inverse transformation

U = TX) = (T1X). T5(X1X2):.o Tt X ooees Xa))? (4.4.7)

Uy = &7 1[F (X,)] (4.4.72)
Us = & 1[Fo(Xs | X,)] (4.4.7b)
Uz = <I>"[F3(X3|X!,X2)] (447C)
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In wpr‘ds: In the first step the first variable is transformed. In the second step all variables
conditioned on the first are transformed, and so forth.

Wustration 4.4.2: Exponential distribution with uncertain parameter
Let X have an exponential distribution
Fx(x) = 1 — exp[-Ax] (1)

but with the parameter A = 1/E[X] unknown. Bayesian statistics tell us that given a sample
of size m the posterior distribution of the uncertain parameter A is gamma

FA(ipa) = 2{p:20) @

For the conditional distribution of X we write Fx(x|A). Therefore, with
XT = (A X) = (X,X2) we have

X1 =7 (p.2(Un)'(p))/q (3)

L In ®(-u,)
SRR LI T o) 4

#*

lllustration 4.4.3: Correlated normal variables

Let X~ Ny(m;X). We first standardise X by applying Y;= (X;—mj)/oii so that
Y ~ Ny(0:R) with ps; = 04j/(01305;) /2. We now transform according to

Y=AU (1)

where A ={ajj; 1<i,j< n} and aj;=0 for j>i. The aijj's are determined from

VardYi] = kf)_ a%k=1 and CovYs,X5] = kﬁ. aikajk = pij. Clearly, a;; = p;; = 1. One finds
=3 =1

with qi; = 1.

ai1 = pir; 2<i<n (2a)
51,

aii = (pii— X 3ik)1/2i 2¢<i<n (2b)
k=1
fe e

aij=(qij— Eajk)/ajj: 1<j<i5n (2C)
k=1

Obviously, the Rosenblatt—transformation precisely  corresponds to  Cholesky's
triangularization procedure for symmetric, positive definite matrices. If Y is only centralized
beforehand the pij's must be replaced by the oi's in which case we denote the
transformation matrix by C. Hence, the complete transformation is

X=CU+m (3)

#
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4.5 COMPUTATION OF THE MULTINORMAL INTEGRAL

In the general case one has to evaluate the multi—normal integral. Unfortunately there are
only a few analytical solutions. It is, however, possible to derive very good approximations
and an asymptotic formula. In view of its many applications to properties of a multi—normal
vector are discussed first. The density of the multi—normal vector Y = (Yy,...,Yn)T is

@n(y) = (27 det(E))-1/2 exp[— ,}_,[(y — m)TE (y — m)]] (4.5.1)

and after stadardization by X; = (Y; — pi)/0oi such that ¥ = DTRD with D = diag{oi} the
diagonal matrix of the standard deviations and R the matrix of the correlation coefficients:

@u(x) = 270/3(det(R))-V/2 exp[— 5[(xTR")] (4.5.2)
If R =1 (I = unit matrix), the vector Z is uncorrelated:
¢n(z) = (27)"v/2 exp[— % z12] (4.5.3)

This also implies independence of the components of the vector. Let now Y = AZ + m. The
covariances gjj are

n

CTij — COV[Yi,Yj] =Th dij dik E[Xr‘i’] ey mj mi
i=l

Consequently there is A = R. The multi—normal distribution function can now be written as:

X

®,(x;R) = f @n(t:R) dt (4.5.4)

-
It is symmetric in the sense that:

®n(x;R) = 1 — &5(x;R) (4.5.5)
An important property is that for {p;;} < {sij} (Slepian, 1962; Sidak, 1964)

®n(x;R) < dpn(x:K) (4.5.6)

Unfortunately only the two and three dimensional case have simpler solution (Owen, 1956,
Steck, 1958). If the variables can be represented by

Xi= i Yo+ (1 =22 Y, (4.5.7)

where Y,Y,...,Yy, are independent standard normal variables and, therefore, pi; = Kikj, it is
(Dunnet/Sobel, 1955):

Ba(xR) = | olyo) T S(L=A1Y0) gy, (4.58)
B g e

For the special case of equicorrelation we have yp = A; = Aj > 0. On the basis of eq. (4.5.8)
bounds can be constructed which, however, are not always sufficiently narrow.
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The two dimensional case is needed more frequently. It can be computed as a special case of
eq. (4.5.8) or by numerical integration according to

Ba(xyip) = B(x) B(y) + Z oixyit) dt (45.9)

with

; 1 1x2— 2pxy + y?
pax.yip) = o7 (1 — pI)I"? eXP["’Q 3 E %2 . ]

For the general case the following scheme has been proposed (Hohenbichler/
Rackwitz, 1985). Obviously there is:

@n(cR) = P( .fr;l {Zi< ci}) = P(Z1 < ¢;) P P] {Zi < ci}l{Z; < ci})

(4.5.10)
The Zi's have the Rosenblatt—transformation
n
Zi= ¥ aj Uj (4.5.11)
=1
with a;; = 1 and aj; = pj;. The condition in the second term of eq. (4.5.11) can be removed

by observing that it affects only the first variable. The distribution function of a new
conditional gtruncated) variable U, is for U; < ¢;

P00 = PUULS By ¢ e = PHULSBR 0 (0L ccl) _ 9650

(4.5.12)
Using Fgllcl(ﬁl) = ®(u;) with Uy a new auxiliary standard normal variable
Ui = & 1[&(U,)®(cy)] - (4.5.13)
in eq. (4.5.11), one obtains:
m m - I
PN {Zi<c|Ziced=P( N {ouli+ I aslisc))=
i=2 i=2 j=
m i
=P( n {ai®'[®U)®(c))] + & aij Uj € ci}
=2 j=2
m m
=P( n {gi(VU)<0}=P( n {a'2TU< ¢;/21}
=2 =2
= &y (c/2;R12)) ' (4.5.14)
such that eq. (4.5.10) can be written as
Pu(ciR) = ®(cy) Py-y(c'2;;R(2)) (4.5.15)

Hence the dimension of the multinormal integral has been diminished by one. In line 2 of
eq. (4.5.14) one recognizes that only the first variable enters non—linearly. The functions
gi(u) in the third line can be linearized in their respective [7—points. Repeated application of
this scheme leads to the approximation
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Pn(ciR) & $(cy) P(ca!2)...D(cp'm)) (4.5.16)
Several improvements are possible which cannot be discussed here. One special asymptotic
rr::fsult due to Ruben (1964) is given for its simplicity. If all ci's are negative and the solution
o

results in a vector 7y with positive elements than, for |c|| + o,
n
®(— cR) ~ g(c;R) (det(R))V2 (1T )" (4.5.18)
j=sil

The condition of negative ci's but positive 7i's restricts the domain of application to a
certain extent, however.

lllustration 4.1: Chain with n links (Ditlevsen, 1982)

Consider a chain with n links whose resistances X; are independently normally distributed
with mean m = m; and standard deviation o = o; and which is loaded by a normally
distributed load Y with mean u and standard deviation 7. Failure is for

F=.81{Zig0}=‘8 {X;—Y<0} (1)

One determines A= (m —p,)/ga2 - 7‘2)1/2 and p = ps3j = Corr[Z1,Z;] = a2f(a? + T2).
Therefore, using the simple correlation structure of the Zi's and the exact formula for the
multinormal integral with equicorrelation one determines

Pr=1-&,(8;p)=1 f w(u)@“(ﬁl%*) dv (2)

with A = +Jp and Ui = (21 — (m —u))/(g? <+ 7-2)1/2_
Alternatively, eq.(3.7) can be used. It receives the form

i1

(-0, + '2 max{0 , ®(—F;) — ')J ®(—Bi , =B : pij} < Ps

i=2 ]1=1
< ®(—py) + 2 &(—Ps) — max{®(—Fi . —0; ; pij)} (3)
i=2 j=1

where &, is the two—dimensional normal integral. Ditlevsen (1982) gave the following
bounds to ®,. For pi; > 0

max{@(—p)8(~ LL£iibi) | a(—p)a(- LL-L1il1y) (4)
g i

is a lower bound and the sum of the two terms in brackets an upper bound. For pi; < 0 the
"'max" operation has to be changed into ""min" to produce an upper bound while the lower
bound is zero in this case. For p = pij > 0 and [ = [J; we have
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B(—B)B(—=8 YL=L ) < $(—f~B;p) < 28(—B) (-4 L2 5
(=8)%( m) (=8,—B:p) (—B)2(-0 +p) (5)

Application to eq. (3) produces

d(—0) m:x {i[1 -(—-1)(-4

I=p P - nmnmlémﬁ
™ +p)]}5 £ < (=B)[(n —( )(ﬂm)]

(6)

The lower bound becomes largest for:
i = int{(1/8(-8YL=2) + 1)/2}
vito
#

~¢"{pf(8,p.n>]

10 ]l -__/
e 9.3
: ’ /’/ a1
8 / /
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Figure 4.5.1: Failure probability versus number of components and componental correlation
coefficients in series and parallel systems

In figure 4.5.1 the influence of the number of components and their correlation in a system
is demonstrated. The componental safety index is 7 = 4.75. The components are assumed
to be equicorrelated. The upper part of the figure presents the results for parallel systems
and the lower part for series systems. One can recognize that for series systems neither the
number of components in the system nor their correlation is very important unless the
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system becomes very large. The contrary is the case for parallel systems. Their failure
probability decreases dramatically with the number of components especially for small
correlation coefficients. We conclude that the study of parallel systems requires some effort
because correlations or more generally dependencies between the components must be taken
into account properly.

4.6 Search Algorithms

The mathematical basis for the search for the (—point given only one failure domain
(restriction) or a cut set of failure domains (several restrictions) is the existence of an
optimum point in the admissible domain. In the first order context, discussed before, the
optimum point corresponds to the maximum density of the standard normal vector in the
failure domain. Due to the rotational symmetry of the standard space the point is also the
point in V or on its boundary closest to the origin. The existence of such a point is defined
by Lagrange's theorem. The Lagrangian function is defined as:

L(u) = f(u) + 2 A gi(u) (4.6.1)

"1

and the necessary conditions for an optimal point u* are

VL(u*) = V(u*) + 2 X Vgi(u*) = 0 (4.6.2)
j=1

G )y =0frj=12...m (4.6.3)

m is the number of restrictions and the \; are the so called Lagrangian multipliers. If n is the
dimension of the vector u then egs. (4.6.2) and (4.6.3) form a non—linear system of
equations with n + m unknowns (the point u* and m A\*—values). For inequality restrictions
in the form g;(u) < 0 the first—order conditions are denoted by the Kuhn—T ucker conditions:

VL(u*) = Vf(u*) + Zt“ A Vgi(u*) =0 (4.6.4a)
izt

gi(uv*) =0 j=132..4 (4.6.4b)

A320 j=12..1 (4.6.4¢)

g(u*) <0 k=t+1,..m (4.6.4d)

t is the number of active restrictions in the point u*. The index k runs over all non—active
restrictions. If the Hessian of the Lagrangian function is positive definite and the point u*
fulfills the Kuhn—Tucker conditions then u* is a local optimum point.

On this basis suitable algorithms can be designed where it is required that they are globally
convergent when started from an arbitrary initial point. Furthermore convergence should be
sufficiently fast (see Gill et al., 1981; Hock/Schittkowski, 1983 and Arora, 1989). In the
following we can only outline the main features of a suitable algorithm.

The following function has to be minimized

u* = min{f(u)} = min{|| u |2} (4.6.5)

given the constraints:
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gi(u) <0 L e 7 el m (4.6.6)

The Lagrangian function with linearised constraints becomes:

I
L(uA) = ||ﬂ°||2 + 2 uT Au + AuT Au+ E A {gj(u°) + VgsT Au}

n
=1

(4.6.7)
and the Kuhn—Tucker conditions are:
t
TL(uA) = 2 w0 + 2 Aw +ZAJ- Vg0 = 0 (4.6.8a)
=1
gi(u) = gj(uo) + VgiT Au=0 j=1,2,.t (4.6.8b)

Let G be the matrix of the gradients of the (active) constraints and T' a vector with the
values of the constraint functions

G = [Vgy....Vgo....... Vg9lnxt (4.6.9)

Then the system of equations can be written in matrix form as
21 G
GT @

Au

A

._2 uo
-T (4.6.10)
Solution of this system yields the following iteration scheme:

uk*1 = Gy (Gf G;)* (GF uk —T,) (4.6.11)

The matrices G are given by:

Gr = Ax Ny (4.6.12)
with
Ax = [ak,..ak,......ak (4.6.13)

k (4.7.14)

and Ny = diagonal matrix with the norms of ||Vgk||. With these notations the algorithm can
be written as

ukt = Ay 571 (A uk — N;1T,) (4.6.15)

with By = Af Ay the covariance matrix of the linearised (active) constraint functions in the
point uk,

Specialization of this scheme to only one constraint yields the algorithm already given by
Hasofer/Lind (1974) and Rackwitz/FieBler (1978). This algorithm is not yet surely
convergent. It can easily be made convergent by introducing either a deceleration scheme or
a suitable step length procedure (see, for example, Abdo/Rackwitz, 1990). The convergence
rate can be made especially high if for this step length procedure at least approximate
information about the curvature properties of the Lagrangian function are used. This,
however, is suitable only if the problem dimension is not too high.
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5. Summary and Discussion

The purpose of this note was to develop some of the basic notions and mathematics for the
analysis of systems. It was shown that complex systems can be reduced to a minimal cut set
representation. Probability evaluations are only straight forward for either independent or
fully dependent componental failure events. Otherwise serious computational difficulties
arise. The easiest way to handle dependent failure events in complex systems is by use of
certain concepts of first order reliability $FORM). Those concepts require a probability
distribution transformation, an algorithm for the ‘most important region in the so called
standard space and some non—trivial evaluations of the multi normal integral. These results
have been improved in two ways. On the one hand a second order reliability method
(SORM) has been developed which could be shown to be asymptotically (P + 0 or Ps+ 1
exact (see Breitung, 1974; Hohenbichler et al., 1987; Breitung/Hohenbichler, 1989).
summary of the relevant results is given in the appendix. Very recently it has even been
proposed to apply those asymptotic concepts in the so called original space. Numerical
studies have shown that the corrections to FORM by SORM usually are insignificant in
practical applications so that the additional effort for SORM is not really necessary. The
other very recent route of improvements is based on importance sampling methods for which
quite a number of studies are already available. The idea is to locate important regions for
numerical Monte Carlo integration. The advantage of these methods is that they furnish
exact results for any probability level. The disadvantage is their considerable numerical effort
which prohibits the use for complex systems in high dimensional spaces.

Appendix: Asymptotic Approximations to Probability Integrals — A Summary of Results

Introductory scalar case

In 1820 the French mathematician P.S. de Laplace proposed to approximate the following
integral

b
I(A) = fa h(x) exp[— A f(x)] dx (A.1)

where f(x) and h(x) > 0 are certain sufficiently smooth functions. X is a parameter. Assume
that f(x) is a monotonically increasing function in the interval [a,b] and has a minimum in a
and thus there is f'(a) > 0. Obviously with increasing A the integral will be dominated by
values of the integrand in the vicinity of x = a. According to the mean value theorem the
function h(x) is represented by the term h(a) which is put in front of the integral and f(x) is
developed into a Taylor series truncated after the first non—vanishing term. Then

b
I(A) = fa h(x) exp[— A f(x)] dx
b
zh(a).f; exp[— A (f(a) + £'(a) (x —a) + ...) ] dx

b
= h(a) exp[~ A (f(a) — f(a) a)] [ exp[~ A (f(a)x +...)] dx

a
~ h(a) exp[— A (f(a) — f'(a) a)] (— A f'(a))_1 {exp[— A f'(a) b] — exp[— A f'(a) a]}
(A.2)

For a = 0 it is always possible to choose for arbitrary b < 0o a A such that

I(A) % h(0) exp[— A f(0)] |2 f:(0)! % (A3)
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In the second case it is assumed that f(x; has a minimum in [a,b] at x*. Without loss of

generality we assume that x* = 0 and h(0

> 0. \ﬂl\\%ain f(x) is developed into a Taylor series
truncated after the first non—vanishing term.

ith £(0) =0 and '(0) > 0 as well as

a=—¢and b = €y thereis
b +€2 1
i(A) = j; h(x) exp[— A f(x)] dx = h(0) f_ exp[— A (f(0) + 5 f"(0) x? + ...)] dx
= h(0) exp[— A 1(0)] [ +€2exp[—% A £1(0) x2] dx (A.4)
Zta

With the substitution

£ = V(3 7(0)) x
one obtains

+(A"(0)€2/2)
I(A) = h(0) exp[— A f(0)] (2/(A (0))) f exp[— £7] d¢
—J(Af"(0)e,/2)

Even if €; and €, are small it is always possible to choose a A such that the integration limits
can be set at £ 0o without to much error

+o
I(2) » h(0) exp[— Af(0)] V(2/(XF"(0))) [ exp[- €2 d¢

% h(0) exp[— X(0)] v((2)/(A £(0)) (A5)

These approximations can be shown to be asymptotically exact, i.e. for A = (Copson,
1965). For illustration, the integrand in eq. (A.5) is shown in fig. 1 indicating that the
dominating contribution to the integral comes in fact from the vicinity of the minimum
(critical) point for large A.

Figure Al: Integrand in eq. (A.5) for increasing A
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Figure A2: Scaling of integration domain

General Case

Not until very recently these results have been generalized to multivariate integrals of various
forms (Bleistein, 1975). A fairly general result for the integral

I(») = J“D h(y) exp[— A f(y)] dy (A.6)

fiir A » 0o where y = (yy, y2.....yn)T, and D a simply connected domain containing the origin
has been given in (Breitung/Hohenbichler, 1989). Herein f(y) is at least twice differentiable
and has a minimum at y = y* # 0. h(y) is a slowly varying function and there is h(0) # 0. D
is given by D = n%; D; with D; = {y: gi(y) < 0} and k € {1,2,....n}. f(y) as well as the
functions gi(y) are at least twice differentiable in y* and the function h(y§ is continuous in
y* and h y"{# 0. In y* there is gi(y*) =0 for i=1,2,...k. The gradients a; = Vgi(y*)
(i=1,2,....k) are linearly independent. This implies that aj;; =0 for i=1,2,...k and
j=k+1,...,n which always can be achieved by a suitable orthogonal transformation. It also
means that 8f(y*)/dy; = 0 for i=k+1,...,n and the gradient can be represented as

k
Vily*) = 'Ez x>
1=

with 73 < 0 for i=1,2,...,k. Then, it has been proved that

I(2) = J; h(y) exp[— A f(y)] dy
n—k _ n+k k
vhiyF) expl- Ay 21) 2 A 2 [det(A)l (n | 7171) 1det(D)

—1/2

(A.7)

for A + oo with A = {aij; i,j=1,2/....k} and D= {dij; i,j=k+1,...,n} with elements

ij = i dyj _q'sOyi Oyj

and det(D) = 1 for k = n.
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Application to probability integrals

Probability integrals can always be written in the following form
P(V) = J; Ux(x) dx = | expllngh(x)] dx = | exp[{(x)] dx (A.8)
% V

where 4x) = Ing(x) is the likelihood function of the probability density #(x). The
integration domain is given by V = N, }V; and there is g;(0) > 0 for at least one i € {1,...,n}.
The critical point is the point for which the log—likelihood function is maximal in V. The
essential idea to apply the above results to probability integrations is a central scaling by a
factor b as shown in fig. 2 (Breitung, 1984). We define

8= (—max{fx)})? = (- {x*))* for {x € V} (A.9)
and
f(x) = 672 4x) (A.10)
In x* it is f(x*) = 1. Also we assume {x*) < 0. We consider the integral
P(b) = J; exp[— b2 (x)] dx (A.11)
and apply eq. (7) with h(x) = 1 and A = b2

n—k K
P(b) » (27) © b X expl— b7 Idet(A)I L (11 14,177 Idet(D)i /2 (A.12)

In noting
T(x*) = 3—2 Vx*)
Vi) = 62 794x")

and by

k
Vix*)= X 7, 3.

and

with §; = -2 v; there is

det(D)| = F200K) | gey(L)]

where

k
024 x* 92g.( x* LR
L= =S S : e
{ E;gg;)i j 52175 B;E‘L'a_)i i i k41, .0 n }
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Hence

n—k
n—k k _
P(b) ~ (2W)T§m€ﬁ2“ expl— b2] |det(A)I L (igll«yil‘l) | det(L) 171/
(A.13)
and with b = (4 is already large)
n—k k
P(V) % (27) 2 expl— %] 1det(A)| ™2 (T1 14172y Idet(L)I 722
=1
(A.14)
In particular, for k = 1 we have
n—1
P(V) = (27) 2 expl— ) 1717 Idet(L)1 /2 (A.15)
with 7, = [IV4x* )l /I1Vgy(x*)Il. For k = n we have
P(V) ~ exp[— 4] |det(A)| (_PI 7 ey (A.16)

1

The special case of multinormal integrals yields nicely compact results. Let Y be a standard
normal vector with probability density ¢(y) = (27) /2 exp[— ||ul|2/2]. The scaling of the
integral

P(V) = J; oy) dy (A.17)

yields upon substitution with u = y b-t

P(bV) = g\"/ y) dy = b" J:/ obu) du = (21) " b" J; exp|— b2|[u]|2/2] du

(A.18)
where it is of course h(u) = 1, f(u) = ||u||2/2 and A = b2. The critical point u* has distance
B = lu*l to the origin.

Application of eq. (A.7) is again straightforward. Let the integration domain be given by
V = {n;.; Vi} with V; = {gi(u) < 0}. In the critical point u* it is gi(u) = a;T (u—v*) =0
fori =1,2,...,n. u* can be represented as u* = ¥.; 7; a; with a; = Vgj(u*). Then

P(V) = (det(R)) /2 '-%1 %(%:_)

(A.19)

This formula is a asymptotic approximation for the multinormal integral in noting that
fi = — a;Tu* and R = {a;Ta;} and therefore P(V) ~ &,(— # R) (Ruben, 1964). For k = 1
with g,(0) > 0 and V, = {g,(u < 0} one obtains (Breitung, 1984)

P(V) ~ lu* 172 1det(D)1 71/2 o (u*) » ®(—B) Idet(D)I"L/2 (A.20)

with
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S lo*l &gy (v"). . .
0 = {4 ~ TVglwyT goith S i = 2even)

In the second equation use was made of ®(—x) ~ ¢(x)/x and § = lu*l. Further there is now
gi(0) > 0 for at least one i € {1, 2,....m} and for the functions there is gi(u*) for i = 1,
2,...k it is gij(u*) =0, where k<m. For i=k+1,....m there is gij(u*) > 0. Then,
(Hohenbichler, 1984)

118 X
P(V) % |det(D)| P(N V) (A.21)
=1
with
o L S8 TR AR e

and for the cut set probability the result in eq. (A.19) with n =k or other suitable
computation schemes for the normal integral (Hohenbichler/Gollwitzer, 1987,
Gollwitzer/Rackwitz, 1986).

The terms with det(D) or det(L) are second order corrections which, in general, are small
compared to the leading remaining first order term. The two types of results are
mathematically absolutely equivalent. They reduce probability integration to a problem of
nonlinear programming (the search for the critical point) and some simple algebra.

Discussion

A first question when implementing this elegant theory is the accuracy question. Although
the probabilities computed by these formulae have asymptotically vanishing error doubts
have repeatedly been put forward about the accuracy in the non—asymptotic case and that
the theory as presented before does not provide means to quantify the error or at least error
bounds. Theoretically, the results given before are only the first term of an asymptotic
expansion. Consideration of higher order terms would give indications about the error
although still in an asymptotic setting. Only for the case k = 1 two more terms have been
computed so far (see Tvedt, 1983) and there is little hope that additional terms can easily
be computed for the other cases. However, the last five years have seen a very fruitful
development of special methods of importance sampling which can quantify the error of first
or second order probability estimates with some additional numerical effort or even to arrive
at arbitrarily exact results. It is not possible to review these results here and we refer the
reader to some references (Hohenbichler/Rackwitz, 1986, Gollwitzer/Rackwitz, 1986,
Fujita/Rackwitz, 1988). Practical applications have shown that usually there is no need to
worry about accuracy even with the first order results.

A second question is whether the formulation in the original space or in the standard space
should be chosen. Historically much more and positive experience has been gained with the
standard space formulation but a decision should involve several aspects. In the standard
space formulation all variables are suitably scaled, the objective function for the search
algorithm is very simple and the formulae (A.19) to (A.21) are easy to apply. The simplicity
of the objective function has even be used to design a special efficient and robust search
algorithm. But a probability distribution transformation must be performed (see, for
example, Hohenbichler/Rackwitz, 1981) which can be somewhat complicated. Also, the
probability distribution transformation can distort the original failure domain. However, this
generally is not a valid argument as it can make its boundary more or less curved depending
on the application at hand. In the original space formulation the lack of scaling can
introduce larger round—off errors and instabilities in the search algorithm and the objective
function is more complicated. While in the standard space the first and second derivatives of
the objective function are analytic, they must be determined numerically in the original
space.

29




References

Abdo, T.; Rackwitz, R.: A New [—Point Algorithm for Large Time—Invariant and
Time—Variant Reliability Problems, A. Der Kiureghian, P. Thoft—Christensen (eds.):
Reliability and Optimization of Structural Systems '90, Proc. 3rd WG 7.5 IFIP Working
Conf., Berkeley, March 2628, 1990, Springer, Berlin, 1991

Arora, J. S., Introduction to Optimum Design, McGraw—Hill, New York, 1989

Barlow, R.E., Proschan, F.: Statistical Theory of Reliability and Life Testing, Holt, Rinehard
and Winston, New York, 1975

Bleistein, N., Handelsman, R.A., Asymptotic Expansions of Integrals, Holt, Rinehart and
Winston, New York, 1975

Breitung, K., Asymptotic Approximations for Multinormal Integrals, Journ. of the Eng.
Mech. Div., Vol. 110, No.3, 1984, pp. 357—366

Breitung, K., Asymptotic Approximations for Probability Integrals, Technical Report,
Institut fur Statistik und Wissenschaftstheorie, Miinchen, 1989

Breitung, K., Hohenbichler, M., Asymptotic Approximations for Multivariate Integrals with
an Application to Multinormal Probabilities, Journ. of Multivariate Analysis, Vol. 30, No.1,
1989, pp. 80—97

Caldarola, L., Coherent Systems with Multistate Components, Nuclear Eng. and Design, Vol.
58, 1980, pp. 127-139

Copson, E.l., Asymptotic Expansions, Cambridge University Press, Cambridge, 1965

Dawson, D.A., Sankoff, D., An Inequality for Probabilities, Proc. Am. Math. Soc., 18, 1967,
pp. 504507

Ditlevsen, O., Narrow Reliability Bounds for Structural Systems, Journ. of Struct. Mech.,
Vol.7, No.4, 1979, pp. 453472

Ditlevsen, O., System Reliability Bounding by Conditioning, Journ. of the Eng. Mech.,
ASCE, Vol. 108, EM5, 1982, pp. 708—718

Dunnet, C.W., Sobel, M., Approximation to the Probability Integral and Certain Percentage
Points of Multivariate Analogue of Student's Distribution, Biometrika, Vol. 42, 1955, pp.
258-260

Fardis, M.N., Cornell, C.A., Analysis of Coherent Multistate Systems, IEEE Trans. on
Reliability, Vol. R-30, 2, 1981, pp. 117—122

Fujita, M., Rackwitz, R., UpdatinE First— and Second—Order Reliability Estimates by
a

Importance Sampling, Struct. Eng./Earthquake Eng. Vol. 5, No.1, pp 31-37, 1988, Japan
Society of Civil Engineers (Proc. of JSCE No.392/1-9)

Gill, P.E., Murray, W., Wright, M.H., Practical Optimization, Academic Press, London,
1981.

Gollwitzer, S., Rackwitz, R., Updating General First—Order Probability Integrals by
Importance Sampling, Berichte zur Zuverlassigkeitstheorie der Bauwerke, SFB 96,
Technische Universitat Miinchen, Heft 83, 1986




Gollwitzer, S., Rackwitz, R., An Efficient Numerical Solution to the Multinormal Integral,
Berichte zur Zuverlassigkeitstheorie der Bauwerke, SFB 96, Technische Universitit
Miinchen, Heft 80, 1986

Hasofer, A.M., Lind, N.C., An Exact and Invariant First Order Reliability Format, Journ. of
Eng. Mech. Div., ASCE, Vol. 100, No. EM1, 1974, p. 111-121

Hohenbichler, M.: Zur zuverlissigkeitstheoretischen Untersuchung von Seriensystemen, in:
Berichte zur Zuverlassigkeitstheorie der Bauwerke, SFB 96, Technische Universitit
Miinchen, Heft 48, 1980

Hohenbichler, M., An Asymptotic Formula for the Probability of Intersections, in: Berichte
zur Zuverl3ssigkeitstheorie der Bauwerke, Technische Universitit Miinchen, SFB 96, Heft
69, 1984, pp. 2148

Hohenbichler, M., Rackwitz, R., Non—Normal Dependent Vectors in Structural Safety,
Journ. of the Eng. Mech. Div., ASCE, Vol.107, No.6, 1981, pp.1227—-1240.

Hohenbichler, M., Rackwitz, R., First—Order Concepts in System Reliability, Struct. Safety,
1, 3, 1983, pp. 177188

Hohenbichler, M., Rackwitz, R., A bound and an approximation to the multivariate normal
distribution function, Math. Jap., Vol. 30, 5, 1985

Hohenbichler, M.; Rackwitz, R.: Improvement of Second—order Reliability Estimates by
Importance Sampling, Journal of Eng. Mech., ASCE, 114, 12, 1986, pp. 21952199

Hohenbichler, M., Gollwitzer, S., Kruse, W., Rackwitz, R., New Light on First— and
Second—Order Reliability Methods, Structural Safety, 4, pp. 267—284, 1987

Hunter, D., An Upper Bound for the Probability of a Union, J. Appl. Prob., 13, 1976, p. 597

Hunter, D., Approximating Percentage Points of Statistics Expressible as Maxima, TIMS
Studies in the Management Sciences, Vol. 7, 1977, pp. 25—36

Kounias, E.G.: Bounds for the Probability of a Union, with Applications, Ann. Math.
Statist., Vol. 39, 1968, pp. 2154—2158

Owen, D.B., Tables for Computing Bivariate Normal Probabilities, Ann. Math. Statist., Vol.
27, 1956, pp. 1075—-1090

Rackwitz, R., Fiessler, B., Structural Reliability under Combined Random Load Sequences,
Comp. & Struct., Vol. 9, 1978, pp. 484—494

Rosenblatt, M., Remarks on a Multivariate Transformation, Ann. Math. Statistics, Vol. 23,
1952, p. 470472

Ruben, H., An Asymptotic Expansion for the Multivariate Normal Distribution and Mill’s
Ratio, Journ. of Research NBS, Vol.68B, 1, 1964, pp.3—11

Schittkowski, K., Theory, Implementation and Test of a Nonlinear Programming Algorithm.
In: Eschenauer, H., Olhoff, N. (eds.), Optimization Methods in Structural Design,
Proceedings of the Euromech/Colloquium 164, University of Siegen, FRG, Oct. 12—14, 1982,
Zuerich 1983

Sidak, Z., On Multivariate Normal Probabilities of Rectangles, their Dependence and
Correlations, Ann. Math. Statist., Vol. 39, 1968, pp. 1425—1434

31




Slepian, D., The One-sided Barrier Problem for Gaussian Noise, Bell System Tech. Journ.,
Vol. 41, 1962, pp. 463-501

Steck, G.P., A table for computing trivariate normal probabilities, Ann. Math. Statist., Vol.
29, 1958, pp. 780800

Tvedt, L., Two Second—Order Approximations to the Failure Probability, Det Norske
Veritas, RDIV/20—004—83, 1983

Yen, J.Y.: Shortest Path Network Problems, Anton Hain, Meisenheim am Glan, 1975

32




