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Reliability-oriented Design of Fatigue Experiments

bt
Hidetoshi Nakayasut and Rudiger Rackwitz 14

It is well known in the reliability analysis for
structural components subjected to cyclic random load that
apart from the usually model parameters uncertainties are
most important and significant for the final structural
design. The purpose of this study is to discuss several
problem in this area, and to develop a reliability-oriented
design philosophy of fatigue experiments. A brief account is
given of a residual strength model for the probabilistic
prediction of structural safety when a component is
subjected to cyclic random load. The formulation enables by
determining the sensitivity of structural safety against the
elements of the test plan to design tests in an optimal way.

Introduction
In practice most reliability analyses for structural

components subject to fatigue are performed by using the
phenomenological damage accumulation law of Palmgren-Miner

together with the information contained in empirical
S-N-curves. The "model uncertainty", however, is fairly
large in this approach and has to be accounted for

appropriately. More physically based approaches are under
study in various areas among which fracture mechanics for
the prediction of crack initiation, crack growth and crack
instability have found most attention. Yet, except under
special conditions, the latter approaches have not lead to
much better reliability estimates. The reason primarily is
the lack of knowledge of the specific values of the
parameters. Also, for certain materials there is little
justification to use approaches connected with the growth of

cracks at all. Real structural components also involve
certain additional phenomena such as the presence of
(random) initial stresses, spatial redistribution of "far

field" stresses or forces during damage accumulation or load
history effects which are extremely difficult to consider.
Sometimes, the fatigue lives of structural components can
differ from those predicted by theories and/or from the
usual small size test specimens by several orders of
magnitude. As a consequence, practice tends to rely on (full
scale) experiments under representative loading spectra or
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4 3 7 o C .
at least a combination of theoretical predictions and N = [R"(0) - 87)/f(8) (4)
experiments as far as possible. But the number of those
tests is always limited. This implies that there can be with which knowing the distribution of R(O) the distribution
significant statistical uncertainties which can affect of fatigue lives can be determined.
reliability predictions. It is somewhat surprising that this
aspect has attracted very little attention so far. The 4 o 2 ] C as L5
imi-pusv of this study, therefore, is to highlight several "N'(n) =TI S noE AR A0) S Bt SRS
important problems in this area.

= = P(R(O) ¢ {nf(8S + ."i{')]/('J

Although the proposed approach is rather general and not
even limited to fatigue deterioration it is developed for a A/C
special deterioration model. In the following a brief review n + ISC/f'{Sll
is given of a residual strength model proposed repeatedly in =1 - expl{ - — }
several contexts but, probably most thoroughly studied in a B /f(8)
series of papers [Yang/Liu, 19771 on fatigue of composite
structures. It, in fact, can be shown that this model is 3 A/C
also suitable for many other materials and types of “ 1 = expl ) (5)
structural components. Furthermore, it allows to bridge the : }?.E/f(f%)
gap between theoretical predictions and experiments because
statistical aspects can be incorporated in a rather c
straight-forward manner. Using this model an appropriate Note that B /f(S) is something 1like a characteristic
reliability formulation is presented. Given this fatigue life. Suppose that S-N-curves in the form
formulation, it is then shown how to plan experiments
opshma ity x sP Ny or N = (k 8%~} (6)

Yang's Deterioration Mode :
L odel are available. Then, an obvious choice for the yet unknown

= = E scale parameter in eq. (5) is:
For easy reference Yang's deterioration model (Yang/Liu, 4 =

1977)] is briefly reviewed. Assume that the residual strength

C , oD, -1 o
Ri(n) of a material is a monotonically decreasing function of B /f(8) = (K §8") (7)
n, the number of fatigue cycles. A reasonable starting point
for a suitable model of strength degradation is that the Eq. (2) becomes:
decrement of Rin) at the n-th cycle is inversely
proportional to some power C - 1 of the residual strength Rc(n} % RC(O) Al BC K c;l) % (8)
R{n) itself but proportional to some function of maximum
cycle stress S: while the final version of eq. (5) is obtained by inserting

Cc-1 in eq. (T):

dR(n)/dn = - £{S)/(C R (n)) (1)

g - D _A/C

F,{n) = 1 - ex { - In K S } 9
Integration from n = 0 to n = n yields: N P 2!

45 4 This also leads by combining eq. {3) and {(8) to the
y 1S - - = J C " €
R (n) = R (0) - f(38)n (2) distribution of residual strength:

If the initial strength is random so is R(n). For F (x) = P(R(n) < x)
example, the wvariability of the initial strength can be R(n) 3

model led by a two-parameter Weibull distribution:

: = P(R®(n) ¢ x%)
F (x) = 1 - expl- (x/B)"] (3)
R(O) C C D C
=P(R(0) ~-KB 8 n ¢ x)

At failure in a constant stress experiment it is R(n) = 8

and n = N. Hence, from eq. (2): = P(R(O) <« (x(" + k BS §P n)lﬂ")
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(10)

Many further details and discussions may be found in the
studies [Yang/Liu, 19771. At least for certain types of
composite structures and types of fatigue cases those
references also provide an excellent experimental
verification of the model. If tests under so-called spectrum
loading would have been performed, relation {6) should be
modified to

kK EtsPIN = M or N = M/(K Els”1) (11)

according to Palmgren-Miner's damage accumulation
hypothesis. Then, eq. (8) becomes:

#%n) = 8%0) - B k B1s®) n/ M (12)

Correspondingly, eq. (10) now reads:

C D C .-\f’(‘)

bt - I(x * KB EIS") n/M)/B") (13)

FRtn)‘x

Herein, the parameter M ought to be interpreted as a
model uncertainty variable. It takes account not only of the
randomness in the sequences of applied loads and, possibly,
associated retardation effects in damage accumulation. It
must also be interpreted as an adjustment factor to fit the
model to experimental results. For the validity of eq. (11)
it is required that N is large so that the variability of
Palmgren-Miner’'s damage indicator vanishes.

Reliability Formulation

Under stationary and ergodic 1loading there is for
high-reliable components

Pf(t) ~ 1 - expl- EIN(t)1] (14)
where
t
EIN(t)] = [ v (r)dr (15)
X
0
and
i .
vx(f? = 1lim = P{I(8(r) £ X(7r) N (8(r + 4) > X(r + 4)})) (16)
4-0

the uperossing rate above the threshold X(7). If, in

particular and without loss of generality, S(r) is a

Gaussian process with zero mean and unit standard deviation

?ggsghe threshold is given as in eq. (12) it 1is [Lindley,
i
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V(R(r) = vy exp| - v H2(r>1 [w “L;’ : &;;’ e~ “i;’n] (17)
with
R(r) = (rS(0) - BC k Ets®y r/m1/C (18)
and R{r) its time derivative. W, is the zero crossing
frequency of Si(r). Usually, the integration in eq. (15)  has

to be performed numerically. A simple approximation based on
the method of Laplace is given in Guers and Rackwitz
[Guers/Rackwitz, 19861].

In eq. (18) the parameters RUDY: B g aE S v DT s
however, must be assumed to be uncertain so that the total
failure probability is:

Pf[ti ~ 1 = I expl - E[N(t)|Q =z gll dFQ(g} (19)

Q@ collects the (non-ergodic) wuncertain parameters. An
evaluation of eq. (19) by numerical integration can become
rather laborous and, therefore, it is proposed to perform it
approximately by FORM or SORM (Rackwitz, 1985). In order to
formulate problem (14) such that these methods can be used

we introduce the equality:

b Lip )
P(Uy € ug) = PT < t) = Pe(t) (20)

Solving for T with Pf(t) in eq. (14) and ®(t) = EIN(t)|Q]
gives:

T =R - In e(-Up) |Q) (21)

Therefore, we can write

Pf(t) = PAT =~ & ¢ Q)

= P(rM - 1n 8(-Up) |R) - t < 0) (22)

A A 3 : 3 s e twd
which is the required formulation. The inversion of ® must
again be performed numerically, e.g. by Newton's algorithm
which here reads:
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Tk

é v(r|Q)dr + ln O{UT)
T 3 e E (23)
v(T |Q)

In accordance with the FORM-methodology we now have to
represent R(0) in eq. (18) by its Rosenblatt-transformation
which is [Hohenbichler/Rackwitz, 1981]):

1/A

R(O) = Bl- 1n ¢(- 1 (24)

Yr(0)’

If the parameters A, B, C, D, K and M were known the
probability computation could now be carried out in the
usual way. If this is the case one probably prefers to work
directly with eq. (14). Only it higher dimensional
probability integrations are necessary application of
FORM/SORM might be useful. However, those parameters usually
are unknown beforehand and little confidence 1is given in
theoretical predictions.

Statistical Considerations

The problem, then, is the planning and evaluation of the
tests for the estimation of the various parameters and,
furthermore, the quantification of their statistical
variability. Obviously, one can perform four types of tests.
Type 1 are static strength tests to determine the parameters
A, B in eq. (3). Type-II-tests are the usual tests for
S-N-curves. Pairs of measurements {Ni'si) can be used for

the estimation of the parameters in eq. (5). If in those
tests no failure is observed and/or if the number of cycles
in the tests are limited, the residual strength as in eq.
{10) is determined in type-III-tests. Finally, type-IV-tests
may be performed under spectrum loading especially for the
estimation of the parameter M. Again, if the number of
cycles in a text is limited and/or no failure is observed
one still can determine the residual strength.

) It_is proposed to use those tests jointly for a maximum
likelihood estimation. Other alternatives as estimation by
moments or quantiles appear to be discriminated by purely
statistical reasons. :

The densities of the Weibull-like distributions eq. (3),
{9), (10) and (13} are all easily determined but rather

lengthy. They are not given herein. The likelihood functions
are
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n,
J =
L(alx) = =& F(§i|g), Jis Ee kL y B L1 IV (25)
T i=1
where x is the observation matrix (note that in type
[I-1V-tests one has pairs or even triples of observations
per experiment, denoted by £y and g the unknown parameter

vector, here with dimension 6). The maximum likelihood
estimations are obtained from the system of (non-linear)
equations

aln L(g|x)
= 5 o B R RS (26)
3q,,
" 2 f A s £ R SR AR ” e
yielding the estimation vector g = (a;b;c,d,;k,m) . Eq. (26)

must be solved numerically by one of the methods suitable
for this task, e.g. a Newton-Kantorovich-Raphson algorithm.
Since the sample sizes are limited we have to consider also
statistical uncertainties. If the sample size is
sufficiently large, one can make wuse of the result that
maximum likelihood estimators are asymptotically normal with

mean value vector E[Q] = g and covariance matrix ;Q whose

elements are defined by:

azln L(x|q)

= e e e gy —u g 27)
Q aqr dqg r,s 1 {27

For any normal vector @ a Rosenblatt-transformation
Q= I(QQ] exists which if inserted into eq. (21) produces

the final reliability formulation amenable to FORM/SORM.

Since, by definition, none of our parameters can be
non-positive it 1is proposed to assume Q jointly log-normal
with the same means and covariances, instead. This

additional assumption does not only avoid certain numerical
problems but is believed to approximate the parameter
distribution more realistically for smaller sample sizes.

The approach so far assumes that any prior information on
the parameters is dominated by the actual data. A rigorous
application of Bayes' theorem for the incorporation of prior
information is actually avoided. In an earlier attempt the
rigorous formulation has been pursued which unfortunately
lead to serious numerical problems and considerable
computational effort. Instead, a simpler alternative for
practical applications is proposed. Prior information can be
quantified in terms of a prior point estimate for the
parameters associated with an equivalent sample size
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expressing the "degree of belief"” in those ec

Reliability-based Planning of Experiments

The considerations so permit to design an adaptive

the decisions on types and corresponding

scheme f sample
of 1

si < experiments. We assume that A reliability
constraint in terms of a failure probability "I‘ & -or A
-1
generalized safety index g = =@ il‘t. .1 is given. In rder
( y C
to meet the reliability requirement we need t« introduce a
design pare oter &5, e.g. a -section mod us, whicl
be used to modify the stresses according to &§ L where |

Initially, only the pr

is the load process
together with the e«

le sizes Are available,
eclally the covariance matrix of Q depends on

Note that esy

the equivalent sample sizes. A prior reliability wnalysis

now s perform such that the reliability requirement is
fulfilled by rying & together with an appropri

{pre-posterior} increase of the sample
types of experiments. Thi i
and the n. as auxiliasry ind

vanishing standard
iet n

sSl1zZes 1n the var

most easily done by treati

ent Gaus variables with

stic) value

state

iven

third reliability s which usual

one on the basis

analy

¥ updated
*eting the reli
for testing as well.

For brevity of presentation, we have cmitted any detail
both in the estimator updating procedure and the rel iabilit
analysis which are of a rather technical nature thol not
at all trivial.

A more interesting general problem is the assignment f

the budget for the tests to be carried out in each step
relative to a constraint on the total budget an secondly,
to build up a stopping rule"”, i.e. a rule which terminates
testing if the gain of infc rmation from further experiments

becomes uninterest ingly small. A principal question in
optim of those steps is whether the related
opti taskas are always convex. There 18 certain

numer i evidence that t

80 only with respect to some
special parameters. These and relat ed juestions are still
under study.
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Numerical Investigations
For the numerical verification of the st
experimental data of graphite/epoxy laminates
19771 were applied. Firstly, mean value vector ElQ] q and
rovariance matrix were calculated by the maximum
likelihood estimation with the jointly likelihood function
25) and its likelihood equation eq. (28).. The sample

of test are

20, n 2025, n

data of type I, 11, 111 tests are from
and the data of type IV test are gener:
vhe the condition of spectrum loading i
narrow-band Gaussian process with a(t) =0, standard
deviation o(t) = EIR(0)]1/8.67 = 60.26 MPa (8. ks i) and
w. = 2n. Thus,
0
D i~ D :
EIS '] =.(2 JZ o) r(i + b/2
The calculation results of mean value vector ElQ] = g
1 = 7.,0380, b =.68.2332, c = 4,.4468, d = 17.8 R= 2.8 1
and variance covariance matr z
=Q

where estimation parameter vector is 5 dimensional vector

= ‘u,w,ni.m)l. Since parameter K is extremely small, it

is imed that the value of K is a >onst val ue
-36

(R =5d x 10 ) because of numerical reason.

Secondly, in order to evaluate the parameter sensitivity,
when 1t 1s assumed the only 1 specimen was he
samples of each type tests corresponding to Tabel 1, each
mean value v tor EI[Q] and covariance matrix g wer

=Q
estimated respectively again to the cases »f Table 1.
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TABLE 1.-Combination of Case Study T
case 11: E[@} = (7.1025, 68.3689, 4.3853, 17.6599, 2.2826)
& 5 4h & Ny ASZ00  BETDA00 2300000 51I0-02 - 53470400
:L} 2 86780400 38340401 -, 71540-01 .11350-01 - 10440401
Basic 1 o 23200000  -.71590-01 LTT000 .34860-03 .76270-01
e & & “3 g .51810-02 11350-01 .94660-03 11000-02 552480-02
case I 13 20 25 8 - SUT00 - 10840401 77001 S0 48070401
Case 11 12 21 25 8 Case I11: ElQ] = (7.1532, 68.3958, 4.4500, 17.6552, 2.!457]T
C 1
i = e 4 i B0 BNDN00 2220000 6038007 -.43340000 |
C v Fi = .B3040+00 .37350+01 -, 10200+00 . 13210-01 -.BA14D+00
e & 0 22 2 ‘9. 22220400 -.10200+00 .35590+00 44330-03 . T8050-01
.80380-02 .13210-01 44330-02 . 11850-02 .51080-92
; i i = i = # 1 - 5 SANs001
The value of median point of the probability distribution v iy oo el 4
for each test is selected as a reasonable way how to
determine the additional sample data, that is, Case IV: E[Q] = (7.0896, 68.1815, 4.4628, 17.6568, 2.376117
¥l 5 - BERaEL
Type-I-test: ¢ = b(- 1/a 2450000 85370400 .Z22000+00  .56230-02  -.59130+00
2 3 At WL LI R {28 z. = | om0 e -9wm-01  L12360-01 - 11630401
Type-II-test: n' = —1 _ (- 1n 0.5)°/2 =S 000400 -.9470-01  3BM200  SISTD-03 . 1I4SDND0
3 2 % 56230-02  .12360-01  .SA9T0-03  .12080-02  .54538-02
K S, -59130+00  -.11630+01 1140400  .S4530-02 57720401
(under ifi
3 apooitieg SO) (29) Thirdly, for each normal vectors @ a Rosenblatt-
Type-III-test: x’ i gct_ - 0.5)6/3 g gc sd " )ilé transformation Q = 1(gg) exists which if inserted into eq.
o 0 4 (21) produces the final reliability formulation amenable to
(under specified Spr Ng) (30) FORM/SORM. It is assumed that @ is jointly log-normal with
the same means and covariances, since none of parameters can
Type-1V-test: be non-positive. This additional assumption does not only
% avoid certain numerical problems but is believed to

Pars c = = 2
(b%(- 1n 0.5)°/® _ x £%z2 /2 ao:d EO 3 d/2)NO/m)1/C.

(under specified o (31)

]
X =

0’ NOJ

method

In these cases, the results of maximum likelihood estimation

were
Rosenblatt-transformations @ = ItuQJ and eq. (24) into eq.
Case 1: EIQ] = [7.0890, 68.1880, 4.4696, 17.6560, 2.387111 (21). The time inversion technique in eq. (23) has been
carried out by requiring a relative precision which is
B2500+00 85290+ ; i ; y compatible with the precision in the FORM/SORM algorithm,
EQ — 85220400 3333? f;;gﬁ ?gﬁgf .ﬂggﬁ where the standard deviation of load process ait) and
=Q .g;gw -.95600-01 36430400 jﬂﬂ&m Jﬁmmu parameter K is treated as independent constants as:
.57560-02 -12630-01 .43540-03 .12210-02 . 53450-02 2
- 61400400 -, 12060+01 12170400 53450-02 1170401 olt) = E(R(O)l!?;g? = 60.26 MPa ( = 8.70 ksi),

K

inversion

with

The Tabel 2 presents the results
function eq.
the

the
algorithm

threshold

eq. (23) through

1.8285 x 10

obtained by

approximate the paramter distribution more realistically for
smaller sample sizes as these cases.

(18) and

FORM/SORM
time
insertion of
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Finally we can easily evaluate the sensitivity of 8 with

res C t- : : s : / - s npa .

ect o] Sﬂmp](‘ size n.(j = I,I11,I1I,1V) from the resul ts
spect j

of Table 2. Now, the sen%itivity of p is defined by

o (§ 2 9,1T,TI1,1V) (32)
3 an .,
J
which is represented as follows when the additional sample
size is equal to 4n

- S . (33)
§ o B an .

.+ 4n.) - p(n.)
ap ﬂ(nJ j J
n

b

Thus, we can formulate the simple decision rplv on.  the
allocation of sample size for the types of materials test as

AU (34)

TABLE Z2.-Reliability Calculation for Componental Fatigue
of Each Case

SERVICE TIKE 1 16,1016 .10 10 !
2.8
BASIC 2.362
2 23
2.359
cAsE 2.315
2.343
B
CASE | B
BETAI 2 2.382
CASE 111  BETAZ 1.344 2 2.401
£ 1 2.366
2.35%8
CASE 1V 2,315

~

FATIGUE EXPERIMENTS DESIGN 231
: 0
where n) is preferable sample size for the type-j-test e

X . i
ig the total sample size, and 1) 18 sensitivity ratio given

Zly .0
J

Table 3 shows the sensitivity v. which were calculated from

the result of Table 2, where 4n Xl With the

5 . » value of

{re sl o 3 A 5 3 *
sensitivity in Table &5 the sensitivity ratio « and
J

recommended allocation of sample size are given in Table 4
0 : 2

and 5, where n= = 100, which are corresponding to the value

of service time and reliability indices.

From the information of Table 5,

one can easily make ga
decision

for the allocation of sample size by some kinds of
criterion in line with his design target. For example, under
the service time criterion

TABLE 3.—Senﬁitivjty ?j for Service Time and Reliability

Indices




-
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¥
Sens ri ¢ for Service Time anc
TABLE 4.-Sensitivity Ratio 7. for er ol me and

Reliability Indices

13 134 L}
IEE LiR 419
455 448 419
u? (X!} 4
Q7 18 57 67 2 M
» = e =
145

TABLE 5.-Preferable Allocation of Sample Size

4
‘

47 4

4 47

43542

5 i 9 g

* 1 16 B

LR 14 15 7 17 7

V o o : !

(]
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sttt = 10.
% % % %
= = 18 = 57 ) = 1f
nl =11, h” 18, Is”[ oy r_i 19
7 o o [ ]:
¥z 14 4 = 2 ! 14 ¥ =:15
“l = ’ n” = (3 nI!I = 5 ni‘ = >
3
% il A~ 13 :
o ogs Y= 25 Y = 44 Y= 15
n, = v Mg 25, n;ipc y Dy = 15
2
at t-= 10 :
% % t %
= o —ien L 1 =-)a
T : ST ey FEV
at t = 10.
& e % et L
noxs 1, n;p = 24, 11 42, v T 1
at t = 1.:
x 3 3 %
- . = 23 = 2 = 8
ny 18 nyq nyor 42 Ny 1

On the other hand, the test plan to design materials test
will be decided when the optimal rule is based on the
averaged criterion as

L SR 15 T 5 £ 3 Z58 x o
rI] = 2 nll = ”Ill i nI\ - ©

Conclusions

The fatigue deterioration model by Yang used herein
no means superior to most physically based models. Ho
it is simple and captures the most significant
important is its capability to be easily refor
that reliabilities can be evaluated conveniently by
FORM/SORM even if there are substantial multi-dimensional
parameter uncertainties. This allows to plan experiments

such that those parameter uncertainties can be reduced in an
optimal manner together with a selection of suitable design
parameters. Essential is that there is a relatively simple
procedure for the Bayesian updating of prior or preliminary
information on unknown parameters in the model. It has been
found that asymptotic concepts in Bayesian analysis are very
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helpful. In particular, the well-known result that maximum
likelihood estimators are asymptotically normally
distributed with easily evaluated means and covariances is

used. Prior information, if available, is to be quantified
in terms of point est imates for the parameters associated

expressing the "degree of

with an "equivalent" sample s
belief" in those point estimates prior to testing.

The presented concept to design experiments on a
reliability basis should apply quite generally and
structural fatigue it is not restricted to Yang's fatigue
model studied in more detail herein. For example, approaches
based on crack growth laws together with stre intensity
ast into a similar formulation.

instability criteria can be

Yang's model is by its very nature empirical and, probably,
has in its |\|-w',~;wnlml form explanatory character only to a
limited degree. Although several points need further study
1t 18 believed that the suggested approach to the

riorating structural components

reliability of fatigue-d
will be soon ready for practical application.
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