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Zusammenfassung

Diese Dissertation fokussiert sich hauptsächlich auf die sukzessive Listen-Dekodierung
(SCL Dekodierung) von gewissen Klassen von binären Blockcodes. Es werden verschiedene
Codes für die verlässliche Kommunikation über gedächtnislose Kanäle mit binärer Eingabe
(BMSCs) und über gedächtnislose zeitveränderliche Kanäle untersucht.
Zuerst wird die SCL Dekodierung über den binären Auslöschungskanal (BEC) betra-

chtet. Eine sukzessive Auslöschungs- und Inaktivierungs-Dekodierung (SCI Dekodierung)
wird als effiziente Implementation von SCL Dekodierung vorgeschlagen. Falls es keine
Komplexitätbeschränkung gibt, dann ist die SCI Dekodierung äquivalent zur Maximum-
Likelihood (ML) Dekodierung. Für dieses Dekodierverfahren analysieren wir diverse Klassen
von Codes in Bezug auf die durchschnittlich benötigte Anzahl der Inaktivierungen um die
Leistungsfähigkeit de ML Dekodierung zu erreichen. Dynamische Reed–Muller Codes wer-
den vorgeschlagen, welche beinahe so leistungsfähig sind wie erweiterte Bose–Chaudhuri–
Hocquengham (eBCH) Codes sind und gleichzeitig unter der SCI Dekodierung eine kleinere
Dekodierungskomplexität aufweisen.
In dem zweiten Teil dieser Dissertation betrachten wir die SCL Dekodierung für die

Kommunikation über allgemeine BMSCs. Wir definieren die wichtigsten information-
stechnischen Grössen, welche einen Proxy für das Design von SCL Dekodern bilden. Die
vorgeschlagenen Codes übertreffen sowohl Polarcodes, welche als Standard für die 3GPP
5G Technologie gelten, als auch Codes nach aktuellem Forschungsstand, wie zum Beispiel
polarisationsangepasste Faltungscodes (PAC) mit praktischen Listengrössen. Dies bildet
einen wichtigen Schritt für das Konstruktive Design von modifizierten Polarcodes für SCL
Dekodierung.
Als nächstese präsentieren wir Produktcodes aus erweiterten Hammingcodes und/oder

einbit-Paritätsprüfcodes als (multi-Kernel) Polarcodes. Dies erlaubt es, die Werkzeuge von
Polarcodes für die Analyse und das Dekodieren von solchen Produktcodes zu benützen.
Zum Beispiel können die SCL und SCI Dekodierung erweitert werden und bieten damit
eine nahezu optimale Dekodierung. Numerische Resultate werden durch eine Analyse der
Weight-Enumerator ergänzt. Einige Produktcodes zeigen eine Leistung auf, die kompetitiv
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zu der Leistung von 5G Codes ist.
Schliesslich entwickeln wir nicht-kohärente Dekodierungsstrategien basierend auf SCL

Dekodierung für gedächtnislose zeitveränderliche Kanäle. Verschiedene Techniken zur
Verbesserung der Effizienz der pilotgestützten sowie pilotfreien Übertragung werden en-
twickelt. Die vorgeschlagenen Techniken resultieren in einer erheblichen Verbesserung
gegenüber standardmäßiger pilotgestützter Übertragung.
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Abstract

This thesis focuses mainly on successive cancellation list (SCL) decoding of certain classes
of binary block codes. Different codes are investigated for reliable communication over
binary-input memoryless symmetric channels (BMSCs) as well as memoryless block-fading
channels.
First, SCL decoding for communication over the binary erasure channel (BEC) is con-

sidered. Successive cancellation inactivation (SCI) decoding is proposed as an efficient
implementation of SCL decoding. SCI decoding is equivalent to maximum likelihood (ML)
decoding if there is no complexity constraint. Under SCI decoding, various code classes
are analyzed in terms of the average number of inactivations required to implement ML
decoding. Dynamic Reed–Muller codes are proposed, which perform close to extended
Bose–Chaudhuri–Hocquengham (eBCH) codes with much less decoding complexity under
SCI decoding.
Second, SCL decoding for communication over general BMSCs is studied. Information-

theoretic quantities are defined that provide a proxy to design codes for SCL decoding. The
proposed codes outperform the polar codes adopted by the 3GPP 5G cellular standard and
state-of-the-art codes, e.g., polarization-adjusted convolutional (PAC) codes, with practical
list sizes. This is an important step towards constructive designs of modified polar codes
for SCL decoding.
Next, product codes with extended Hamming and/or single parity-check (SPC) com-

ponent codes are represented as (multi-kernel) polar codes. This enables using the tools
of polar codes to analyze and decode such product codes. For example, SCL and SCI
decoding are extended and provide near-optimum decoding. Numerical results are com-
plemented by weight enumerator analyses. Some product codes yield a performance that
is competitive to that of 5G codes.
Finally, non-coherent decoding strategies are developed that use SCL decoding over

memoryless block-fading channels. Several techniques are proposed to improve the ef-
ficiency of pilot-assisted and pilot-free transmission. The proposed techniques provide
significant gains over classic pilot-assisted transmission methods.





1
Introduction

A point to point communication system has two parties: the transmitter and the receiver.
The transmitter sends a message over a noisy medium called a channel that has an input
and an output. The channel perturbs its input to produce its output, and the perturbation
is usually modeled probabilistically. To achieve reliable communication, the message com-
posed of K bits is mapped onto an N -dimensional codeword, where N ≥ K. This mapping
is referred to as encoding and the term code refers to the list of codewords. The receiver
tries to guess the codeword upon observing the channel output, which is referred to as
decoding. The rate of the code is measured in information bits per transmitted symbol,
i.e., it is K/N bits per channel use for the described scheme.
Shannon established the largest rate at which reliable communication is possible, the

channel capacity [1]. However, his work did not provide methods to design capacity-
achieving channel codes with low encoding/decoding complexity. Elias suggested to use
product codes [2] and he showed that one can achieve error probability close to zero1 with
a positive rate over the binary symmetric channel (BSC), a special type of binary-input
memoryless symmetric channel (BMSC). Although the rate of a product code is generally
far below the channel capacity, the result was novel at the time. Roughly one year later,
Elias extended the proof of [1] via randomly generated linear codes for transmission over
the BSC and the binary erasure channel (BEC), which is possibly the simplest noisy
channel [3]. The proof was still non-constructive but it showed the existence of capacity-

1Shannon’s proof showed that the block error probability can be made small while Elias’ construction
makes the bit error probability small, which is a weaker notion of reliability. These notions will be
clarified in Section 2.5.2.
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achieving codes with encoding complexity growing polynomially in N for transmission over
BMSCs although decoding complexity was still exponential in N [4] [5, Theorem 6.2.1].
More than 50 years after the channel capacity was introduced, Arıkan [6] provided the first
deterministic recipe to achieve the elusive goal of constructing codes, called polar codes,
provably achieving capacity with simple encoding and decoding (N logN complexity) for
BMSCs.
Arıkan proposed successive cancellation (SC) decoding. Unfortunately, at moderate

codeword lengths, the performance of polar codes under SC decoding is not competitive
with existing techniques such as low-density parity-check (LDPC) codes [7–9] and turbo
codes [10]. To improve decoding, Tal and Vardy [11] proposed successive cancellation
list (SCL) decoding, which achieves near-optimum decoding for a sufficiently large list
size. They also observed that, even under SCL decoding, the performance of short and
moderate-length polar codes is poor. The reason for this disappointing result can be found
in the poor distance properties of the codes. To address this issue, in [11] the authors
introduced a clever concatenation of an inner polar code with an outer error-detection
code, namely a cyclic redundancy check (CRC) code. This method was the key enabler
to improve the performance of polar codes. Thanks to this, polar codes were included
in the fifth generation of wireless telecommunication standard (5G) as coding scheme for
the control channel [12]. The beauty of the code structure combined with the practical
relevance brought much more attention to polar codes, e.g., see [13–20]. Several polar
code constructions were proposed, especially for small codeword lengths (up to N = 128).
However, for intermediate or large codeword lengths the complexity of SCL decoding makes
these methods non-competitive.
The adoption of polar codes in wireless communication systems calls for an analysis of

the performance achievable by polar code constructions on channels affected by fading, i.e.,
the channels where the received signal energy fluctuates over time and across frequency
bands. For example, wireless channels are often modelled by memoryless block-fading
channels where the channel state is the same for a fixed number of channel uses (a block)
and changes independently from block to block. These changes can be motivated by the
mobility of the transmitter and receiver, as well as of objects in the environment. At the
transmitter, knowledge of channel state information (CSI) allows the transmitter adapt its
transmission strategy based on the channel state. At the receiver, CSI allows the receiver
employ the correct decoding metric. Different assumptions on the availability of the CSI
at the transmitter and/or at the receiver lead to different channel capacities (see [21, 22]
and references therein for a thorough survey of the topic).
If the receiver cannot reliably estimate the current channel state, then communication is



1.1. Contributions of the Thesis 3

said to be non-coherent [23, Section 10.7]. A common approach to address the lack of CSI
is to embed in the transmitted frame training symbols (called pilots) that are known to
the receiver. At the receiver, the CSI is then estimated based on the pilots, and it is used
to decode the message. This approach is called pilot-assisted transmission (PAT) [24].
The performance of the decoder is highly impacted by the quality of the channel state
estimation obtained through the pilots. In a noisy channel, a large number of pilots may
be required to obtain an accurate estimation of the channel state [25]. Consider the case
where the channel state stays constant for N channel uses (the length of a frame). Suppose
that we allocate, e.g.,

√
N pilots to estimate the channel state accurately. The overhead

introduced by the pilots is
√
N/N = N−0.5 and it becomes negligible as N → ∞. Hence,

there is, asymptotically, no cost of estimating the channel state at the receiver, allowing
to achieve the rates of the coherent setup (see, e.g., [21, Page 2632] for more details). On
the contrary, when the frame length is small, the overhead required by a PAT scheme to
estimate the channel state accurately may become large, calling for a modification of the
plain PAT paradigm [22, 25–27]. Also, when channel changes rapidly, then periodic pilots
required.

1.1. Contributions of the Thesis

This thesis investigates the potential of SCL decoders in the context of short-packet com-
munications. First, we study SCL decoding of polar codes and their modifications and/or
generalizations for transmission over BMSCs. We design codes for specified decoding com-
plexities, that provide significant gains over the polar codes adopted by the 5G cellular
standard, and over other the state-of-art short codes. Second, list decoders are used to
address the problem of communicating over block-fading channels. We show that list
decoders allow to dramatically reduce the channel estimation overhead, approaching the
finite-length bounds on the block error probability (BLEP) for fading channels.
Most results in this thesis appeared in the following conference proceedings, journal

publications, patents and patent applications:

. M. C. Coşkun, J. Neu and H. D. Pfister, “Successive cancellation inactivation
decoding for modified Reed-Muller and eBCH Codes,” Proc. Int. Symp. Inf. Theory
(ISIT), 2020, pp. 437-442. [28]

. M. C. Coşkun and H. D. Pfister, “Bounds on the list size of successive cancellation
list decoding,” Proc. Int. Conf. Signal Process. and Commun. (SPCOM), 2020,
pp. 1-5. [29]
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. M. C. Coşkun and H. D. Pfister, “An information-theoretic perspective on succes-
sive cancellation list decoding and polar code design,” to appear IEEE Trans. Inf.
Theory, 2022. [30]

. M. C. Coşkun, T. Jerkovits and G. Liva, “Successive cancellation list decoding of
product codes with Reed-Muller component codes,” IEEE Commun. Lett., vol. 23,
no. 11, pp. 1972-1976, 2019. [31]

. M. C. Coşkun, G. Liva, A. Graell i Amat, M. Lentmaier and H. D. Pfister, “Suc-
cessive cancellation decoding of single parity-check product codes: Analysis and Im-
proved decoding,” IEEE Trans. Inf. Theory, minor revision, 2020. [32]

. M. C. Coşkun, G. Liva, J. Östman, and G. Durisi, “Low-complexity joint channel
estimation and list decoding of short codes” Proc. ITG Int. Conf. Syst., Commun.
and Coding, 2019, pp. 269-273. [33]

. M. Xhemrishi, M. C. Coşkun, G. Liva, J. Östman and G. Durisi, “List decoding
of short codes for communication over unknown fading channels,” Proc. Asilomar
Conf. Signals, Systems, and Computers, 2019, pp. 810-814. [34]

. P. Yuan, M. C. Coşkun and G. Kramer, “Polar-coded non-coherent communica-
tion,” IEEE Commun. Lett., vol. 25, no. 6, pp. 1786-1790, 2021. [35]

. M. C. Coşkun and T. Jerkovits, “Decoding method,” DE102019200941B4, 2020.

. M. C. Coşkun and G. Liva, “Process for the transmission of data,” DE1020192004 -
83A1, 2020.

1.2. Organization of the Thesis

Chapter 2 collects notation and basic definitions required for the remaining chapters.
Chapter 3 reviews binary linear error-correcting codes and their decoding. In particu-

lar, polar codes are reviewed in detail.
Chapter 4 deals with the BEC and block-wise maximum likelihood (ML) decoding for

linear codes. A new algorithm called successive cancellation inactivation (SCI) decoding
is introduced that is equivalent to ML decoding. An analysis of SCI decoding gives insight
on the performance/complexity trade-off for various code classes, e.g., polar, Reed–Muller
(RM), extended Bose–Chaudhuri–Hocquengham (eBCH) codes, as well as code ensembles
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based on polar transforms with dynamic frozen bits. The average number of inactivations is
characterized exactly via density evolution analysis. We also propose an accurate and easy-
to-compute characterization of the decoding dynamics by deriving a tight approximation
for the average number of unknown bits at each decoding stage. We introduce a new code
ensemble, called the dynamic Reed–Muller (dRM) ensemble, and we show that codes from
the dRM ensemble perform close to finite-length bounds even for short codeword lengths
and with much smaller decoding complexity than, e.g., eBCH codes under SCI decoding.
The results of this chapter are based on [28,30].
Chapter 5 deals with general BMSCs and analyzes the average rank of the decoding

path leading to the ML decision during SCL decoding with unbounded list size at each
decoding stage. Key information-theoretic quantities are defined that characterize the rank
by generalizing ideas from Chapter 4. Their calculation requires Monte-Carlo simulation,
so we introduce easy-to-compute upper and lower bounds. The lower bound seems to be
tight, especially for early decoding stages, and it can be used to guide the code design for
SCL decoding with practical list sizes. The resulting codes outperform the polar codes
adopted by the 3GPP 5G cellular standard and state-of-the art designs, e.g., polarization-
adjusted convolutional (PAC) codes, for the considered list sizes over the binary-input
additive white Gaussian noise channel (BAWGNC). The contributions of this chapter are
based on [29,30].
Chapter 6 focuses on a generalization of polar codes that bridges product codes with

RM and/or single parity-check (SPC) component codes and (multi-kernel) polar codes.
The code structure lets one use polar coding tools to describe, analyze and decode specific
classes of product codes. In particular, SCL and SCI decoding naturally extend to the
resulting product codes and their variants. This enables a low-complexity near-ML decod-
ing of certain product codes that outperforms belief propagation (BP) decoding, especially
when one concatenates the codes with high-rate outer codes. In addition, we propose a
method to compute input-output weight enumerators (IOWEs) of short product codes with
at least one SPC component code, which is particularly useful in choosing the outer code
by means of a serially-concatenated code-ensemble analysis. Concatenated SPC product
codes are competitive with polar codes, although they require larger list sizes, and they
may outperform 5G LDPC codes for short codeword lengths. The contributions of this
chapter are based on [31, 32]. The work presented in [32] extends my Master thesis that
introduced SC and SCL decoding of SPC product codes, by introducing the connection to
multi-kernel polar codes.
Chapter 7 deals with non-coherent block-fading channels. Joint channel estimation

and decoding techniques are developed for polar-coded transmission schemes using SCL
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decoding, as well as for general binary linear block codes with most reliable basis (MRB)
decoding, in the case of PAT. Simulations show that the proposed algorithms perform
close to the optimal decoder and to the best-known finite-length bounds. The results of
this chapter are based on [33–35]. In [34], the ideas presented in [33] are applied to polar
codes under SCL decoding to show gains over MRB decoding. For both [34] and [35], the
first two authors contributed equally to the technical content.

1.3. Contributions Outside the Scope of the Thesis

The publications of the author during the thesis period which are not included in the main
results of the thesis are as follows:

. J. Östman, G. Durisi, E. G. Ström, M. C. Coşkun and G. Liva, “Short packets
over block-memoryless fading channels: Pilot-assisted or noncoherent transmission?,”
IEEE Trans. Commun, vol. 67, no. 2, pp. 1521-1536, 2020. [27]

. M. C. Coşkun, G. Durisi, T. Jerkovits, G. Liva, W. Ryan, B. Stein, and F. Steiner,
“Efficient error-correcting codes in the short blocklength regime,” Elsevier Phys.
Commun., vol. 34, pp. 66-79, 2019. [36]

. J. Neu, M. C. Coşkun and G. Liva, “Ternary quantized polar code decoders: Anal-
ysis and design,” Proc. Asilomar Conf. Signals, Systems, and Computers, 2019,
pp. 1724-1728. [37]

. P. Yuan andM. C. Coşkun, “Complexity-adaptive maximum-likelihood decoding,”
Proc. Inf. Theory Workshop (ITW), 2021. [38]

. P. Yuan and M. C. Coşkun, “Successive cancellation ordered search decoding of
modified Gn-coset codes,” IEEE Trans. Commun., major revision, 2021. [39]

. M. C. Coşkun and G. Liva, “Method for encoding and decoding packets in random
access protocols,” DE102020101231A1, 2021.

In the order of publication date, [27] developed the bounds for PAT schemes for block-
fading channels and was the starting point for Chapter 7. The paper also implemented a
PAT scheme employing a general binary linear block code using MRB decoding to demon-
strate the accuracy of the bounds. In [36], we reviewed state-of-art channel codes and
compared their performance to finite-length bounds and to traditional coding schemes.
The work of [37] studied ternary-quantized SCL decoders for polar codes and proposed
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low-complexity techniques for coarsely quantized decoders. Such decoders are particularly
important for energy-efficient transceivers, e.g., for internet-of-things and wireless sensor
networks. Finally, [38] introduced successive cancellation ordered search (SCOS) decoding,
which is a complexity-adaptive tree search algorithm that implements an ML decoder. For
short instances of dRM ensembles and polar codes, its average complexity is close to that
of SC decoding for practical block error rates (BLERs). SCOS decoding is further studied
in [39] by applying a post-decoding threshold test to reduce the number of undetected
errors at the expense of coding gain as proposed in [40]. For more details, see [39].





2
Preliminaries

2.1. Sets, Vectors, and Matrices

The sets of natural and real numbers are denoted as N and R, respectively. We write F2

for the binary Galois field. We use [N ], N ∈ N, for the set of natural numbers up to N ,
i.e., [N ] , {1, 2, . . . , N}. We use calligraphic letters such as X for general sets. For any
two sets X and Y , their Cartesian product X × Y is defined as all tuples formed by the
sets, i.e.,

X × Y , {(x, y) |x ∈ X , y ∈ Y}. (2.1)

The N -fold Cartesian product of X is denoted as XN . For example, the set FN2 is the
N -dimensional binary vector space.
Throughout the thesis, we use two different notations for row vectors. Mostly, xji is

preferred to denote the vector (xi, xi+1, . . . , xj) where j ≥ i. If j < i, then xji is void.
We prefer lower-case bold letters such as x if the length is clear from the context or
when it is simply more convenient. Subvectors with indices in X ⊆ [N ] are denoted
by xX = (xi1 , . . . , xi|X|) where i1 < · · · < i|X | enumerates the elements in X with |X |
being the cardinality of the set X . The notation xji,m denotes the subvector with indices
{k ∈ [j] : i = k mod m}. For instance, x8

1,2 = (x1, x3, x5, x7). For the vector xN1 , the
notation x∼i refers to the vector where the i-th entry is removed, i.e., x∼i , x[N ]\{i}. For
a given set X , X (N) represents an intersection set defined as

X (N) , X ∩ [N ]. (2.2)
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The n-digit multibase representation of a decimal number a is denoted by (a1a2 . . . am)bm1 ,
where the left-most digit is the most significant, and the conversion is done according to

a =
m∑
i=1

ai
m∏

j=i+1
bj (2.3)

where bj is the base of the j-th digit aj with the left-most digit being the most significant
one, and with 0 ≤ aj < bj for all j. For example, the binary representation of a number is
obtained by setting bj = 2, j = 1, . . . ,m. Finally, we write 0 and 1 for all-zero and all-one
vectors, respectively, where the length is inferred from the context.

Let 1 : {false, true} → {0, 1} be the indicator function with 1(true) = 1 and 1(false) =
0. The Hamming weight of xN1 is defined as the number of its non-zero entries

wH
(
xN1
)
,

N∑
i=1
1(xi 6= 0). (2.4)

The Hamming distance between two binary vectors xN1 , yN1 ∈ FN2 is the number of entries
in which they differ, i.e.,

dH
(
xN1 , y

N
1

)
,

N∑
i=1
1(xi 6= yi) (2.5)

= wH
(
xN1 ⊕ yN1

)
(2.6)

where ⊕ is the element-wise addition in F2.

Capital bold letters, e.g., X = [xi,j], are used for matrices and IN refers to an N × N
identity matrix. For the transpose and inverse of X, we use XT and X−1, respectively.
The Kronecker product of two matrices X and Y is

X ⊗ Y ,


x1,1Y x1,2Y . . .

x2,1Y x2,2Y . . .

... ... . . .

 . (2.7)

The Kronecker product is non-commutative, i.e., in general we have

X ⊗ Y 6= Y ⊗X. (2.8)

The N -fold Kronecker product of X is denoted as X⊗N with X⊗0 , 1. The mixed-product
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identity states
(X ⊗Z)(Y ⊗ T ) = (XY )⊗ (ZT ). (2.9)

We define an ab×ab perfect shuffle matrix [41], denoted as Πa,b, by the following operation

(x1, x2, . . . , xab)Πa,b = (xab1,b, x
ab
2,b, . . . , x

ab
b−1,b, x

ab
b,b). (2.10)

In particular, for the 2N × 2N reverse shuffle permutation [6] matrix ΠN,2, we have

(s1, s2, . . . , s2N)ΠN,2 = (s2N
1,2 , s

2N
2,2 ) (2.11)

= (s1, s3, . . . , s2N−1, s2, s4, . . . , s2N). (2.12)

2.2. Probability

We denote random variables (RVs) with capital letters, e.g., X, and their realizations with
the lower-case counterparts, e.g., x. For a discrete RV X with alphabet X , the probability
mass function (PMF) PX assigns a probability that the variable takes on some value, i.e.,

PX(x) , Pr{X = x}, x ∈ X . (2.13)

For a continuous and real-valued RV X, the cumulative distribution function (CDF) FX
assigns the probability that X takes on a value less than or equal to some specified value,
i.e.,

FX(x) , Pr{X ≤ x}, x ∈ R. (2.14)

Then the probability density function (PDF) pX(x) is defined as

pX(x) , dFX(x)
dx (2.15)

if the derivative exists. For instance, if X is a zero-mean Gaussian RV with variance σ2,
i.e., X ∼ N (0, σ2), then its PDF is given as

pX(x) = 1√
2πσ2

exp
(
− x2

2σ2

)
. (2.16)

A PMF PX fulfills

PX(x) ≥ 0, ∀x ∈ X and
∑
x∈X

PX(x) = 1. (2.17)
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Similarly, a PDF pX fulfills

pX(x) ≥ 0, ∀x ∈ X and
∫
x∈X

pX(x)dx = 1. (2.18)

The support of X is defined as

supp(PX) , {x ∈ X : PX(x) > 0} and supp(pX) , {x ∈ X : pX(x) > 0}. (2.19)

The remaining notation will be given only for discrete RVs. Extensions to continuous RVs
follow by replacing PMFs by PDFs and summation by integration as for (2.18).

The joint PMF PXY for X and Y assigns a probability that the variables take on a value
tuple, i.e.,

PXY (x, y) , Pr{X = x, Y = y} (2.20)

and can be extended to an arbitrary number of RVs. The law of total probability is used
to obtain the marginal distributions from the joint one as

PX(x) =
∑
y

PXY (x, y). (2.21)

The conditional PMF PX|Y assigns the probability of observing an event x ∈ X conditioned
on another event y ∈ supp(PY ), i.e., we have

PX|Y (x|y) , PXY (x, y)
PY (y) with PY (y) > 0. (2.22)

Bayes’ rule translates PY |X into PX|Y as

PX|Y (x|y) = PY |X(y|x)PX(x)
PY (y) with PY (y) > 0. (2.23)

Remark 2.1. The RVs X and Y are stochastically independent if and only if

PX,Y (x, y) = PX(x)PY (y) or PX|Y (x|y) = PX(x) (2.24)

for all x and y for the first expression, and for all x and y with PY (y) > 0 for the second
expression.

The expected value of a real-valued function f : X → R with respect to a discrete RV
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X is its weighted average with the corresponding probabilities over supp(PX), i.e.,

EX [f(X)] ,
∑

x∈supp(PX)
f(x)PX(x). (2.25)

Usually, the range of the summation will be discarded when it is clear from the context.
The mean X̄ of X is computed by setting f(X) = X as

X̄ , EX [X]. (2.26)

Similarly, the variance V[X] of a real-valued X is defined by setting f(X) = (X − EX [X])2

as
V[X] , EX [(X − EX [X])2] = EX [X2]− EX [X]2. (2.27)

In the case of complex-valued X, V[X] is obtained as

V[X] = V[<{X}] + V[={X}] (2.28)

where <{X} and ={X} denote the real and imaginary parts of X.

Remark 2.2. From now on, the subscripts of PMFs, PDFs and expectations are omitted
when they are clear from the context. For example, we write P (x, y) instead of PXY (x, y).

Lemma 2.1 (Linearity of expectation). Let XN
1 be a sequence of RVs with finite means.

For any collection of functions fi : X → R, we have

E
[
N∑
i=1

fi (Xi)
]

=
N∑
i=1

E [fi (Xi)] . (2.29)

Corollary 2.2. For any constant c and any function f : X → R, we have

E[cf(X)] = cE[f(X)]. (2.30)

Next, the expectation of f conditioned on the event y ∈ supp(P (·|y)), i.e., conditional
expectation, is defined as

E[f(X)|Y = y] ,
∑
x

f(x)P (x|y). (2.31)

Remark 2.3. From (2.31) the conditional expectation E[f(X)|Y = y] is a function of y.
Hence, the expression E[f(X)|Y ] is a function of the RV Y .



14 2. Preliminaries

Combining Remark 2.3 with the definition (2.31), one obtains the following property.

Lemma 2.3 (Tower property).

E[E[f(X)|Y ]] = E[f(X)]. (2.32)

Proof.

E[E[f(X)|Y ]] =
∑
y

P (y)E[f(X)|Y = y] (2.33)

=
∑
y

P (y)
∑
x

f(x)P (x|y) (2.34)

=
∑
x

∑
y

f(x)P (x|y)P (y) (2.35)

= E[f(X)] (2.36)

which concludes the proof. �

Definition 2.1 (Martingale). A sequence of RVs X0, X1, . . . is called a martingale with
respect to the sequence Y0, Y1, . . . if, ∀N > 0, we have

1. XN is a function of Y N
0

2. E[|XN |] <∞

3. E[XN+1|Y N
0 ] = XN .

Example 2.1 (Doob’s martingale). A simple but important instance is formed by defining
a sequence of RVs via conditional expectations as follows: let Z be a positive-valued RV
with Z̄ <∞ and let Y0, Y1, . . . be a sequence of RVs. Then the sequence of RVs X0, X1, . . .

with Xi , E[Z|Y i
0 ], i = 0, 1, . . . , N , is a martingale. Condition 1 of a martingale follows

from the definition of Xi and condition 2 from Z̄ < ∞. The last condition follows by
writing

E[XN+1|Y N
0 ] = E[E[Z|Y N+1

0 ]|Y N
0 ] (2.37)

= E[Z|Y N
0 ] (2.38)

= XN (2.39)

where (2.37) and (2.39) follow from the definition of Xi. The equality (2.38) uses the tower
property (2.32).
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Concentration Inequalities

We review basic techniques to bound the probability that a RV takes values far from its
mean. The proofs can be found in standard textbooks [42].

Lemma 2.4 (Markov’s inequality). Let X be a nonnegative RV. Then we have

Pr{X ≥ a} ≤ X̄

a
, ∀a > 0. (2.40)

Markov’s inequality is a good bound if, for a non-negative RV, only the mean is known.
Chebyshev’s inequality is a special case of Markov’s inequality, and it is useful if both the
mean and the variance of a RV are known.

Lemma 2.5 (Chebyshev’s inequality).

Pr{|X − X̄| ≥ a} ≤ V[X]
a2 , ∀a > 0. (2.41)

Observing the Chebyshev’s inequality, the upper bound decays polynomial in parameter
a. We are often interested in an exponential decay rather than a polynomial one. One
family of bounds providing exponential decay is the one of Chernoff bounds [42, Chapter
4]. A related inequality is the Azuma-Hoeffding inequality, which applies to dependent
RVs.

Lemma 2.6 (Azuma-Hoeffding inequality). Let X0, X1, . . . , XN be a martingale that sat-
isfies

|Xi −Xi−1| ≤ ci for some ci > 0. (2.42)

We have

Pr{|Xn −X0| ≥ a} ≤ 2 exp
(
− a2

2∑n
i=1 c

2
i

)
, ∀n ∈ [N ] and ∀a > 0. (2.43)

The Azuma-Hoeffding inequality was used to analyze LDPC codes and decoding by
forming a Doob’s martingale [43–46]. For a list of applications, the reader is referred
to [47]. Martingales provide useful convergence properties under quite general conditions,
for example, without requiring (2.42), as stated next.
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Lemma 2.7 (Martingale convergence theorem). Let a sequence of RVs X0, X1, . . . form a
martingale. Then, the sequence converges almost surely (a.s.) to a RV X∞, i.e., we have

Pr
{

lim
t→∞

Xt −X∞ = 0
}

= 1. (2.44)

In addition, the sequence converges in the mean, i.e., we also have

lim
t→∞

E[|Xt −X∞|] = 0 (2.45)

and
E[X∞] = E[Xi], ∀i ∈ {0, 1, . . . , }. (2.46)

A fundamental concept called channel polarization [6] was proved using Lemma 2.7 after
forming a suitable martingale. Later on, the proof was generalized to arbitrary kernels
in [48] and to the mixture of kernels in [49] by following the same line of arguments, which
proved a conjecture of Arıkan posed in [6, Section XI.B].

2.3. Big-O Notation and Complexity

The Big-O notation simplifies complexity analysis by focusing on the dominating behavior
of a sequence. Let T (N) denote the running time of a sequential algorithm where N is the
size of the input. In particular, we are interested in upper-bounds on the complexity. To
this end, given the function f(·) define the function set

O(f(N)) , {g(·) : ∃ c,N0 > 0 such that 0 ≤ g(X) ≤ cf(N), ∀N > N0}. (2.47)

For a given T (N), we write T (N) ∈ O(f(N)) to indicate that T (N) can be upper-bounded
as in the definition of the set O(f(N)). For an algorithm with a running time of T (N) ∈
O(f(N)), we say it has a complexity of O(f(N)). In addition, we use the same notation
for the space complexity of an algorithm, which is defined as the memory required as a
function of the input size.

2.4. Information Measures

The amount of information revealed by an event can be measured by taking the logarithm
of its probability, i.e.,

i(x) = − log2 P (x) (2.48)
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where the logarithm base is chosen for convenience.
The entropy of a discrete RV X is the mean of i(X), i.e., we define

H(X) , E[i(X)] = E[− log2 P (X)]. (2.49)

For example, consider a binary RV X with distribution P (0) = 1−P (1) = p ∈ [0, 1/2]. We
define the binary entropy function H2 : [0, 1/2]→ [0, 1] as

H2(p) , −p log2 p− (1− p) log2(1− p). (2.50)

We used the domain [0, 1/2] so that the inverse H−1
2 : [0, 1] → [0, 1/2] is well-defined. Note

that H2(p) is symmetric around p∗ = 1
2 when the definition (2.50) is extended to p ∈ [0, 1].

The conditional entropy of a discrete RV X given the event y is defined as

H(X|Y = y) , E[− log2 P (X|Y )|Y = y]. (2.51)

Following Remark 2.3, it is clear that E[− log2 P (X|Y )|Y ] is a RV. The conditional entropy
of X given Y is defined as the expectation of E[− log2 P (X|Y )|Y ], i.e.,

H(X|Y ) , E[E[− log2 P (X|Y )|Y ]] = E[− log2 P (X|Y )]. (2.52)

The joint entropy of two discrete RVs X and Y is defined as

H(XY ) = E[− log2 P (X, Y )]. (2.53)

The following lemma stems from applying Bayes’ rule and the entropy definitions.

Lemma 2.8 (Chain rule for entropy).

H(XN
1 ) =

N∑
i=1

H(Xi|X i−1
1 ) (2.54)

Another interesting quantity is “how much information does X reveal about Y or vice
versa”. This is quantified by mutual information as

I(X;Y ) , H(X)−H(X|Y ) = H(Y )−H(Y |X). (2.55)

The conditional mutual information between X and Y given Z is defined similar to (2.52)
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Source Encoder

Channel

Sink Decoder

V K
1 ∈ {0, 1}K

V̂ K
1 ∈ {0, 1}K

X̂N
1 ∈ {0, 1}N

XN
1 ∈ {0, 1}N

Y N
1 ∈ YN

Figure 2.1.: Block diagram of a data transmission system.

as
I(X;Y |Z) ,

∑
z

P (z)I(X;Y |Z = z) (2.56)

where
I(X;Y |Z = z) = H(X|Z = z)−H(X|Y, Z = z). (2.57)

The chain rule for mutual information follows from (2.55) and (2.56).

Lemma 2.9 (Chain rule for mutual information).

I(XN
1 ;Y ) =

N∑
i=1

I(Xi;Y |X i−1
1 ). (2.58)

2.5. Transmission System

Consider the point-to-point communication problem depicted in Figure 2.1. The source
generates the K-bit source word V K

1 whose elements can be modelled as independent and
identically distributed (i.i.d.) RVs with PVi(0) = PVi(1) = 1/2. The encoder is a bijective
function E : FK2 → F

N
2 which maps V K

1 onto a length-N binary codeword XN
1 where

K ≤ N . The collection of all codewords associated to the 2K different source blocks
represents the binary block code C. The channel W maps XN

1 to Y N
1 ∈ YN according to a

conditional probability distribution P (yN1 |xN1 ). The decoder is the function D : YN → F
K
2

which puts out an estimate V̂ K
1 , or alternatively X̂N

1 if the encoder E is bijective.
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2.5.1. Error Probabilities and Rate

Several figures of merit are important for a transmission system. First of all, the BLEP

PB , Pr
{
V̂ K

1 6= V K
1

}
(2.59)

should be as small as possible. Sometimes a receiver rejects the decision and outputs an
erasure. Such events are called detected errors. For some applications, e.g., telecommand
systems, undetected errors are especially harmful. A decoder is called incomplete if it
has a mechanism to reject an estimate and is called complete otherwise. Although one
can always convert a complete decoder into an incomplete one, e.g., by applying an outer
error-detection mechanism or a threshold test [40], this comes at the cost of a higher overall
BLEP. Although we will focus (almost) always on the overall BLEP, the definition of error
probability naturally extends for the source and codeword bits as

Psb ,
1
K

K∑
i=1

Pr
{
V̂i 6= Vi

}
(2.60)

Pcb ,
1
N

N∑
i=1

Pr
{
X̂i 6= Xi

}
. (2.61)

Since any bit error implies a block error, we have

Psb ≤ PB ≤ KPsb (2.62)
Pcb ≤ PB ≤ NPcb. (2.63)

One way to assure a lower error probability is to map the source words onto longer code-
words, i.e., by adding redundancy, if the amount of redundancy is already larger than
a threshold dictated by the channel (this is related to the notion of the capacity, which
will be clear in Section 2.5.3). The amount of redundancy introduced by the encoder is
quantified by the rate

R ,
K

N
. (2.64)

Transmission is more efficient if it provides a lower error probability or a higher rate.
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2.5.2. Decision Rules

The bit-wise maximum a-posteriori (MAP) decoding rule maximizes the a-posteriori prob-
ability (APP) P (xi|yN1 ) for each codeword bit xi

x̂i = argmax
xi∈F2

P (xi|yN1 ). (2.65)

Bit-wise MAP decoding minimizes Pcb. However, the decoder is not guaranteed to provide
a sequence in C, i.e., the output might not be a valid codeword (the decoder is incomplete).
On the other hand, the bit-wise MAP decoding that maximizes the APP P (vi|yN1 ) for each
source bit vi

v̂i = argmax
vi∈F2

P (vi|yN1 ) (2.66)

is complete. Similarly, the bit-wise ML decoder evaluates

v̂i = argmax
vi∈F2

P (yN1 |vi). (2.67)

If the source bits vi are i.i.d. and uniform, i.e., P (vi) = 1/2, i ∈ [K], then (2.66) becomes

v̂i = argmax
vi∈F2

P (vi|yN1 )P (yN1 )
P (vi)

(2.68)

= argmax
vi∈F2

P (yN1 |vi) (2.69)

which means that the bit-wise MAP rule coincides with the bit-wise ML rule.

The block-wise MAP decoding rule maximizes the APP P (xN1 |yN1 ) for each codeword
xN1 ∈ C

x̂N1 = argmax
xN1 ∈C

P (xN1 |yN1 ) (2.70)

which minimizes the BLEP. Similarly, the block-wise ML decoding rule maximizes the
likelihood P (yN1 |xN1 ) for each codeword xN1 ∈ C

x̂N1 = argmax
xN1 ∈C

P (yN1 |xN1 ). (2.71)

If the input to the channel is uniformly distributed among all codewords, i.e., P (xN1 ) = 1/|C|,
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then (2.70) becomes

x̂N1 = argmax
xN1 ∈C

P (xN1 |yN1 )P (yN1 )
P (xN1 ) (2.72)

= argmax
xN1 ∈C

P (yN1 |xN1 ) (2.73)

which means that MAP decoding is equivalent to ML decoding. Throughout the thesis,
we consider a uniform distribution over the codewords so the MAP rule is the same as ML
rule. Hence, we use MAP and ML interchangeably.

Remark 2.4. Optimum decoding via (2.70) requires computing conditional probabilities
for all the codewords, and this requires in general exponential complexity in N .

2.5.3. Channel Coding Theorem

We wish to find encoder-decoder pairs that achieve the maximum rate R∗ for a given BLEP
PB and blocklength N . Although characterizing R∗ is difficult even for small values of N ,
Shannon realized that the problem simplifies significantly for vanishing BLEP (PB → 0) if
the blocklength tends to infinity, i.e., N →∞ [1]. He reported the following lower bound
on R∗.

Theorem 2.10 (Achievability for the channel coding theorem). There exists a sequence
of encoder-decoder pairs for which PB → 0 for N →∞ if R < maxPX I(X;Y ).

The proof relies on random coding arguments, i.e., each element of each codeword of
a code is generated i.i.d. according to a distribution PX . At the receiver, a suboptimal
decoder called a jointly typical decoder is used. The BLEP is analyzed for an ensemble of
codes consisting of all possible codes generated by the random coding experiment described
above. Typicality arguments such as the asymptotic equipartition property show that the
average BLEP decays to zero for large blocklengths and one concludes by observing that
there exists at least one code performing at least as good as the average. A formal proof
can be found, e.g., in [50, Chapter 7]. A simpler proof based on the law of large numbers
and Markov’s inequality can be found in [51]. We remark that Gallager used the notion of
error exponents in [52] and showed that the decay in the BLEP can be made exponential as
long as the rate is smaller than the mutual information [53]. The converse of Theorem 2.10
also holds, i.e., the BLEP is bounded away from zero as the blocklength increases if the rate
is larger than the mutual information, where the proof follows by using Fano’s inequality
and can be found in [50, Chapter 7]. Hence, for a given channel W , the maximum rate at
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which reliable communication is possible is called its capacity, denoted by C(W ), and it is
given by

C(W ) , lim
PB→0

lim
N→∞

R∗(W ) = max
PX

I(X;Y ). (2.74)

2.6. Binary-Input Memoryless Symmetric Channels

We review the channel models considered in the rest of the thesis. For all channels, we
assume a time discrete model where both the transmitter and receiver are synchronized.
The channels have a binary input alphabet, except for the channel in Chapter 7 .
A channel (without feedback) is memoryless if

P (yN1 |xN1 ) =
N∏
i=1

P (yi|xi). (2.75)

Following the notation of [6], we take the convention of indicating the channel conditional
probability distribution by the letter W . We write (2.75) as

WN(yN1 |xN1 ) =
N∏
i=1

W (yi|xi) (2.76)

where W (y|x) , P (y|x). The channel is (output) symmetric if there exists a permutation
π of the output alphabet Y such that

π(π(y)) = y and W (π(y)|0) = W (y|1) (2.77)

where the input alphabet is assumed to be F2.1 A channel is called BMSC if it is both
memoryless and symmetric. We define the symmetric information rate (SIR) of a binary-
input channel W as the mutual information achieved by uniform inputs, i.e.,

I(W ) ,
∑
y∈Y

∑
x∈X

1
2W (y|x) log2

(
W (y|0)

1
2W (y|0) + 1

2W (y|1)

)
. (2.78)

For BMSCs, the capacity is achieved by uniform inputs and C(W ) = I(W ). In addition,
we define the conditional entropy of uniform channel input X given the output Y as

H(W ) , 1− I(W ). (2.79)
1The choice of the input alphabet can be relaxed to any binary set. For example, we will make use of
X = {+1,−1} for the BAWGNCs.
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Figure 2.2.: The BEC with erasure probability ε, denoted as BEC(ε).

X +

Z ∼ N (0, σ2)

Y

Figure 2.3.: The BAWGNC with noise variance σ2, denoted as BAWGNC(σ).

2.6.1. Binary Erasure Channel

The BEC is illustrated in Figure 2.2. It is a BMSC with input alphabet X = F2, discrete
output alphabet Y = {0, 1, ?} and transition probabilities

W (0|0) = W (1|1) = 1− ε, W (?|0) = W (?|1) = ε. (2.80)

Here, ? denotes an erasure, which means that no information about the input is observed
by the receiver. The quantity ε is called the channel erasure probability. We write BEC(ε)
to denote the BEC with an erasure probability ε. As the channel is symmetric, the capacity
is computed via (2.78) as

C(BEC(ε)) = 1− ε. (2.81)

2.6.2. Binary-Input Additive White Gaussian Channel

Figure 2.3 illustrates a BAWGNC where Z ∼ N (0, σ2) is independent of the input RV X.
The channel is denoted as BAWGNC(σ). The input alphabet is X = {−1,+1} while Y is
real-valued. The input-output relation is Y = X + Z with transition densities

W (y|x) = 1√
2πσ2

exp
(
−(y − x)2

2σ2

)
. (2.82)
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The channel can be characterized by a quantity called the signal-to-noise ratio (SNR)
Es/N0 where Es is the average energy per transmitted symbol and N0 = 2σ2 is single-sided
noise power spectral density. For our alphabet, Es = E [X2] = 1, hence, Es/N0 = 1/2σ2.
Alternatively, one can use the ratio Eb/N0, where Eb is the average energy per transmitted
information bit, i.e., Eb = (N ·Es)/K = Es/R. Therefore, the relation between SNRs is

Eb
N0

= Es
2Rσ2 . (2.83)

An insightful discussion on when to prefer one characterization over the other can be found
in [54, Section 4.1.11].
Since the BAWGNC is symmetric, uniform inputs give the capacity [55, Equation 2.2]

C(BAWGNC(σ)) = 1−
∫ +∞

−∞
W (y|+ 1) log2

(
1 + exp

(
− 2
σ2y

))
dy. (2.84)
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Product Codes and Polar Codes

In this chapter, we show how imposing a structure on a channel code can reduce the
encoding and decoding complexity. We review a decoding algorithm called MRB decoding
that mimics optimal decoding by exploiting only the linearity of a code. We briefly describe
a class of linear codes, namely product codes, whose structure enables efficient decoding
in an iterative manner. Finally, we review polar coding which provides asymptotically
optimal performance with quasi-linear encoding and decoding complexity.

3.1. Binary Linear Codes

We here restrict attention to the binary field F2 and to binary codes.

Definition 3.1 (Linear codes). An (N,K) binary linear block code is defined as a K-
dimensional linear subspace of the N -dimensional space FN2 .

Let C be an (N,K) binary linear code with rate R = K/N . Since it is a linear subspace,
it can be described by a generator matrix G ∈ FK×N2 . The rows of G span the K-
dimensional subspace, i.e., the code space. Encoding can be performed as cN1 = vK1 G.
Thus, encoding requires approximately N2R operations, and the code description can be
conveniently summarized in N2R bits by storing the generator matrix.
Equivalently, a binary linear block code can be defined using its (N − K) × N parity

check matrix H as
C , {cN1 ∈ F2 : cN1 HT = 0}. (3.1)
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This means that the rows of H span the subspace orthogonal to C, which is called dual
code of C and denoted by C⊥. Note that the intersection C ∩ C⊥ is not necessarily empty.
If the generator matrix is in the form where a subset of columns forms IK , then it is

called a systematic generator matrix. Assume, without loss of generality, that the first K
columns of G forms IK

G = [IK ,P ]. (3.2)

Then a parity check matrix is obtained as H = [P T , IN−K ].

Remark 3.1 (Affine codes). An (N,K) binary affine block code C ′ is obtained by adding
a constant N -dimensional vector wN1 /∈ C to all codewords of a linear block code C, i.e.,
C ′ = C +wN1 . Most of the properties of a linear block code can be extended with (almost)
no effort to affine codes. However, for all the results in this thesis, linear codes suffice and
we will (mostly) restrict attention to them.

The minimum distance of a code is defined as the minimum Hamming distance between
two distinct codewords in the code, i.e.,

dmin(C) , min{dH
(
xN1 , y

N
1

)
: xN1 , yN1 ∈ C, xN1 6= yN1 }. (3.3)

A binary linear code C is closed under element-wise addition inF2 and scalar multiplication,
i.e., we have

αxN1 + βyN1 ∈ C, ∀xN1 , yN1 ∈ C and ∀α, β ∈ F2 (3.4)

(3.3) can thus be re-written as

dmin(C) = min
{
wH

(
xN1
)

: xN1 ∈ C, xN1 6= 0
}

(3.5)

which means that, for a linear code, the problem of finding the minimum distance reduces
to finding the codeword with minimum non-zero Hamming weight. There are many other
useful properties of linear codes that can be found in standard books (see for instance [56,
Chapter 1]).
Observe that a codeword cN1 that is obtained by systematic encoding of vK1 such that

wH
(
vK1
)

= 1 satisfies wH
(
cN1
)
≤ N − K + 1. We formally state the implication of this

observation through the following theorem (the statement can be generalized to non-linear
and/or non-binary codes [57, Theorem 1]).

Theorem 3.1 (Singleton bound). The minimum distance of an (N,K) binary code C
satisfies

dmin(C) ≤ N −K + 1. (3.6)
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Remark 3.2. A code whose minimum distance satisfies (3.6) with equality is called a
maximum distance separable (MDS) code. Among all binary codes, there are only two
classes of MDS codes: (N, 1) repetition codes and (N,N − 1) SPC codes. The former
repeats a single information bit N times and has a minimum distance of N , while the
latter adds a single parity bit so that all codewords have an even Hamming weight and
the minimum distance is 2.

More can be learned about a linear code if its weight enumerating function (WEF) is
known. By introducing the dummy variable z, the WEF of C is

AC(z) ,
N∑
i=0

Aiz
i (3.7)

where Ai is the number of codewords xN1 ∈ C of weight wH
(
xN1
)

= i. The sequence
A0,A1, . . . ,AN is called the weight enumerator (WE) or distance spectrum of the code.
WEs are particularly useful in deriving bounds on the performance of (binary) linear
codes under ML decoding [58]. In the following, we use the terminology WE and distance
spectrum interchangeably.
The input-output weight enumerating function (IOWEF) AIO

C (x, z) of an (N,K) code C
is defined as

AIO
C (x, z) ,

k∑
i=0

n∑
w=0

AIO
i,wx

izw (3.8)

where AIO
i,w is the number of codewords xN1 ∈ C with wH

(
uK1
)

= i and wH
(
xN1
)

= w. The
IOWEF generalizes the WEF since we have AIO

C (z, z) = AC(z).

3.2. Most Reliable Basis Decoding

MRB decoding is a generic algorithm [59,60] that does not exploit any code structure except
for linearity. The algorithm is tailored to channels that provide reliability information at
their output. An example of such channels is BAWGNC, that we will use next as reference
to describe MRB decoding.
Consider an (N,K) binary linear block code C with generator matrix G. The algorithm

works as follows. Suppose the codeword xN1 is transmitted over the channel which provides
yN1 as the outputs. Note that if |yi| > |yj|, then we say that the observation yi is more
reliable than yj [61, Section 10.2]. The outputs yN1 are permuted via a permutation π1, in an
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increasing order of reliabilities. This yields a vector π1(yN1 ) whose first K components are
the most reliable channel observations. The columns of G are permuted accordingly and
the permuted generator matrix, denoted as π1(G), is put in systematic form (3.2). If the
K left-most columns of π1(G) are not linearly independent, converting it to the systematic
form may require additional column permutations, denoted by π2. The permutation π2

shall be applied to π1(yN1 ) also, which yields an overall permutation π defined via π(yN1 ) =
π2(π1(yN1 )). Next, hard-decisions are made for the first K bits as

v̂i =

 0 if π(yN1 )i > 0
1 otherwise

(3.9)

for i = 1, . . . , K, where π(yN1 )i is the i-th element of the permuted vector π(yN1 ). The
permuted decision for the codeword is obtained by first encoding v̂K1 via π(G) and then
inverting the permutation, i.e., x̂N1 = π−1(v̂K1 π(G)). The complexity of this algorithm is
roughly O(N3), but it is highly sub-optimal even for codes as short as N = 24 bits [60,
Figure 4].

The algorithm can be enhanced to provide near-optimum decoding at the expense of
higher complexity. MRB decoding with reprocessing [60, Section IV.B] constructs a list
after finding v̂K1 . To this end, all K-bit error patterns of Hamming weight up to t, where
t is a predefined parameter, are added to v̂K1 , generating a set of vectors that are encoded
via the systematic form of π(G). yielding a list L of codewords with size

|L| =
t∑
i=0

(
K

i

)
. (3.10)

Now the rule (2.72) is applied to the members of the list to obtain a decision

x̂N1 = argmax
xN1 ∈L

P
(
yN1 |xN1

)
. (3.11)

Note that (3.11) approaches to ML decoding for sufficiently large t and becomes equivalent
if t = K. Observe that the list construction relies on the idea that, if one takes a hard
decision on the most reliable channel observations, only few errors are typically observed.
Recall Remark 2.4, which states that a naive implementation of optimal decoding has
exponential complexity in N . MRB decoding with reprocessing reduces the complexity by
limiting the search to the subset L of the codewords, controlled by the parameter t, by
accepting sub-optimality.
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MRB works remarkably well with short codes, enabling near-optimum decoding for even
small t. However, as N grows, t must be increased to keep the decoder performance close
to optimal. For instance, choosing t = 1 for the (24, 12) Golay code suffices to approach
the optimal performance [60, Figure 4] with |L| = 13. On the other hand, t needs to be as
large as 4 for close-to-optimum decoding when MRB decoding is applied to the (128, 64)
eBCH code [60, Figure 7] with |L| ≈ 7 · 105.

Remark 3.3. A version of MRB decoding was first proposed by Dorsch for discrete output
channels and applied to the quantized BAWGNC [59]. Approximately 20 years later,
Fossorier and Lin rediscovered the method, called it ordered statistics decoding, analyzed
it, and pointed out various directions to reduce complexity [60]. Since then MRB decoding
has been studied mostly to reduce its complexity, e.g., see [62, 63]. In addition, MRB has
been proposed as a part of hybrid schemes in the context of iterative decoding [64, 65].
The reader is referred to recent work [66] that reviews MRB decoding and suggests ways
to further reduce the complexity.

3.3. Product Codes

Product codes are the first class of codes possessing a well-defined structure which were
capable of achieving a vanishing bit error probability with a positive rate over the BSC [2].
The construction is based on smaller constituent codes, called component codes. The
original decoder of [2] treats the product code as serial concatenation of several component
codes. The component codesare decoded sequentially. Since the decoding task is divided
into decoding smaller codes, its complexity is low compared to ML decoding applied to
the whole product code. Much later, the suitability of product code constructions for
iterative decoding algorithms [10] led to powerful classes of codes [67–72]. For an overview
of product codes and their variants, we refer the reader to [73–75]. Product codes are
usually constructed with high-rate algebraic component codes for which low-complexity
soft-input soft-output (SISO) [68] or algebraic (e.g., bounded distance) [76–78] decoders
are available. In the following, we review some important properties of product codes.

3.3.1. Parameters and Encoding

An m-dimensional (N,K) product code C is obtained by requiring that an m-dimensional
array of bits satisfies a linear code constraint along each axis [2]. More precisely, denote
by C1, C2, . . . , Cm a set of linear block codes, where C` has parameters (N`, K`). The infor-
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mation bits are arranged in an m-dimensional hypercube, where the `-th dimension is K`.
Without loss of generality, encoding starts by encoding along the first dimension by replac-
ing each K1-bit vectors by its encoded version through the component code C1, yielding
an m-dimensional hypercube of dimensions N1 × K2 × . . . × Km. The K2-bit vectors in
second dimension is then encoded via the component code C2, resulting in the hypercube
wit dimensions N1×N2×K3× . . .×Km. The encoding proceeds recursively till the m-th
dimension, which outputs the hypercube with dimensions N1×N2× . . .×Nm. Hence, the
parameters of the resulting product code satisfy

N =
m∏
`=1

N`, and K =
m∏
`=1

K`. (3.12)

The rate of the product code is
R = K

N
=

m∏
`=1

R` (3.13)

where R` is the rate of the `-th component code. For example, a codeword of a 2-
dimensional product code can be seen as a 2-dimensional array, where each row is a code-
word of C1 and each column is a codeword of C2. Its structure is illustrated in Figure 3.1,
where systematic encoding is adopted for the component codes and where the information
bits vK1 are placed at the top left corner. A generator matrix of the m-dimensional product
code is

G = G1 ⊗G2 ⊗ . . .⊗Gm (3.14)

where G` is the generator matrix of the `-th component code.

3.3.2. Distance Spectrum

Characterizing the distance spectrum of an arbitrary product code is an open problem
even if the distance spectra of its component codes are known [79–82]. Fortunately, the
minimum distance and its multiplicity are known to be

d =
m∏
`=1

d`, and Ad =
m∏
`=1

A
(`)
d`
. (3.15)

Here d` and A(`)
d`

are the minimum distance of the `-th component code and its multiplicity,
respectively. Examples of minimum distances and multiplicities for some 2-dimensional
product codes based on SPC and extended Hamming codes are provided in Table 3.1.
Although it may not be possible to obtain complete distance spectrum of an arbitrary
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Figure 3.1.: Codeword structure of the product code C with component codes C1 and C2.

Table 3.1.: Minimum distances and multiplicities of some product codes (eH = extended
Hamming code).

(N,K) C1 C2 d Ad

(128, 77) eH (16, 11) SPC (8, 7) 8 3920
(128, 105) SPC (16, 15) SPC (8, 7) 4 3360
(256, 121) eH (16, 11) eH (16, 11) 16 19600
(256, 165) eH (16, 11) SPC (16, 15) 8 16800
(256, 225) SPC (16, 15) SPC (16, 15) 4 14400
(1024, 693) SPC (64, 63) eH (16, 11) 8 282240
(1024, 806) eH (32, 26) SPC (32, 31) 8 615040
(1024, 961) SPC (32, 31) SPC (32, 31) 4 246016
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product code, there are some exceptions. For instance, if both component codes are simplex
codes (i.e., the dual of Hamming codes), then the distance spectrum of the product code is
known [56, Page 571]. In addition, a closed-form expression for the WEF of 2-dimensional
product codes with SPC component codes, namely SPC product codes, is given in [83,
Appendix A]. Generalizing the result, the authors also propose a method to compute the
WEF of 2-dimensional short product codes where at least one of the component codes is an
SPC code. We will elaborate on the distance spectrum of SPC product codes in Chapter
6 and extend some of the previous results.

3.4. Polar Codes

Polar codes are the first class of provably capacity-achieving codes over any BMSC with low
encoding and decoding complexity [6]. In addition to the theoretical interest, polar codes
concatenated with an outer CRC code are attractive from a practical viewpoint [12, Chap-
ter 5] due to their excellent performance under SCL decoding [11] in the short and moderate
blocklength regime [36]. In the following, we review the concept of channel polarization
briefly, which leads to the capacity-achieving scheme. Before concluding, generalizations
of polar codes are reviewed, since the decoding algorithms under consideration naturally
generalize to them. Proofs are reviewed in Appendix 3.5 which helps to understand not
only polar codes but also the results presented in the thesis.
We motivate the underlying technique as follows. There are two types of channels over

which the communication is easy: useless and noiseless channels. A channel is said to be
useless if its output is independent from the input, i.e., if, for all y ∈ Y , we have

W (y|0) = W (y|1). (3.16)

The capacity of this channel is zero. A channel is said to be noiseless if its output deter-
mines the input, i.e., if, for all y ∈ Y , we have

W (y|0)W (y|1) = 0. (3.17)

The capacity of a noiseless channel is one, which means transmitting uncoded bits enables
error-free communication. For both channels, there is no need to code. Channel polariza-
tion converts (in the limit at large blocklengths) any BMSC to a mixture of easy channels
(plus vanishing-small fraction of mediocre channels). The main ingredients to achieve this
result are a simple transform and a successive cancellation decoding algorithm.
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Figure 3.2.: The basic transform.

3.4.1. The Basic Transform

Let U2
1 be uniform on F2

2 that is mapped onto X2
1 as X2

1 = U2
1 K2 where

K2 ,

1 0
1 1

 . (3.18)

The 2×2 matrix K2 is referred to as polarization kernel. Assume now that X1 and X2 are
transmitted over two independent copies of a BMSCW resulting in the observations Y1 and
Y2 (as in Figure 3.2). Since the channel is memoryless, we have I(X1;Y1) = I(X2;Y2) =
I(W ). The following lemma holds (see Appendix 3.5.1 for the proof).

Lemma 3.2. [6, Proposition 4]

I(U1;Y 2
1 ) + I(U2;Y 2

1 U1) = 2I(W ) (3.19)

I(U2;Y 2
1 U1) ≥ I(W ) ≥ I(U1;Y1Y2) (3.20)

with equality if and only if I(W ) ∈ {0, 1}.

Inspecting the first inequality in (3.20) suggest that an optimum receiver (say bit-wise
MAP) provides a more reliable estimate of U2 by observing Y 2

1 with the “knowledge” of
U1 than that of X2 by observing only Y2. Similarly, observing Y1 provides a more reliable
estimate of X1 than observing Y 2

1 for the estimate of U1 according to the second inequality
in (3.20). We then define two synthesized channels: the first has input U1 and output Y 2

1 ,
denoted as W 1

K2 : F2 → Y2, and the second has input U2 and output (Y 2
1 , U1), denoted as

W 2
K2 : F2 → Y2 × F2. The former channel has a lower capacity than the original channel

W , while the latter has a higher capacity. In the following, we will give the main results
by generalizing this basic idea.
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3.4.2. Recursive Application of the Basic Transform: Channel
Polarization

The transform of size-2 defined by K2 provides all the necessary ingredients to describe a
useful coding scheme and proving the main coding theorems.

A transform matrix of length-N = 2n is defined as K⊗n
2 , where n ∈ N and K⊗n

2 is the
m-fold Kronecker product with K⊗0

2 , 1. This form of the transform matrix suffices to
provide the desired results but it is tedious to describe. An alternative construction that
enables successive decoding in a natural order, i.e., from U1 to UN , is available. To this
end, the N ×N transform matrix G[n] is constructed recursively as

G[n] = (I2n−1 ⊗K2) Π2n−1,2
(
I2 ⊗G[n−1]

)
(3.21)

where the recursion starts from G[0] , 1 and Π2n−1,2 is the reverse shuffle permutation
(2.12). To see the relation between K⊗n

2 and G[n], we write

G[n] = Π2n−1,2 (K2 ⊗ I2n−1)
(
I2 ⊗G[n−1]

)
(3.22)

= Π2n−1,2
(
K2 ⊗G[n−1]

)
(3.23)

=
(

n∏
i=1

I2i−1 ⊗Π2n−i,2

)
(K2 ⊗K2 ⊗ . . .⊗K2) (3.24)

= B[n]K⊗n
2 (3.25)

where (3.22) follows by applying the identity

Π2n−1,2
(
I2 ⊗G[n−1]

)
=
(
G[n−1] ⊗ I2

)
Π2n−1,2 (3.26)

and (3.23) from the mixed-product identity (2.9). Then (3.24) follows by re-writing G[n−1]

through (3.21) and by applying similar steps recursively. Finally, defining bit-reversal
permutation matrix B[n] ,

∏n
i=1 I2i−1 ⊗Π2n−i,2 [6, Section VII.B] leads to (3.25), which

shows that K⊗n
2 and G[n] are equivalent up to a bit-reversed column permutation.

Let UN
1 be uniform on FN2 and let XN

1 = UN
1 G[n]. The transition probabilities of the

i-th synthesized channel, denoted by W i
G[n] : F2 → YN × Fi−1

2 , with the input Ui and the
output (Y N

1 , U i−1
1 ), are defined by

W i
G[n](yN1 , ui−1

1 |ui) ,
∑

uNi+1∈F
N−i
2

1
2N−1WG[n](yN1 |uN1 ) (3.27)
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Figure 3.3.: Size-N polar transform G[n], where N = 2n.

where WG[n](yN1 |uN1 ) , WN(yN1 |uN1 G[n]). This mapping is illustrated in Figure 3.3. Next,
we state the main theorem of channel polarization (the proof is given in Appendix 3.5.2).

Theorem 3.3. [6, Theorem 1] For any BMSCW , the synthesized channelsW i
G[n] , i ∈ [N ],

polarize, i.e, the fraction of channels with I
(
W i

G[n]

)
> 1− δ goes to I (W ) and the fraction

of channels with I
(
W i

G[n]

)
< δ to 1− I (W ) for any fixed δ ∈ (0, 1) as n→∞.

The theorem states that, in the limit at large blocklengths, the transform G[n] in con-
junction with definition (3.27) creates a sequence of almost useless and almost noiseless
channelsW i

G[n] out of several copies of a BMSCW . In other words, the fraction of mediocre
channels is vanishes with increasing N .

3.4.3. Polar Coding

We are now ready to define a first code construction that builds on Theorem 3.3. For any
δ > 0, define the two sets

Aδ ,
{
i ∈ [N ] : Pr

{
Ui 6= Ûi|Y N

1 = yN1 , U
i−1
1 = ui−1

1

}
< δ

}
(3.28)

Fδ , [N ] \ Aδ (3.29)



36 3. Product Codes and Polar Codes

where the error events Pr
{
Ui 6= Ûi|Y N

1 = yN1 , U
i−1
1 = ui−1

1

}
assume a MAP estimate Ûi of

Ui when observing (Y N
1 , U i−1

1 ).

Code Construction: For a blocklength N = 2n, n ∈ N, and any BMSC, determine the
set Fδ. Generate ui, i ∈ Fδ, uniformly at random and reveal the vector uFδ to the receiver.
A G[n]-coset code is defined by an offset uFδG

[n]
Fδ and a matrix G

[n]
Aδ , where G

[n]
S is the

matrix formed by the rows of G[n] indexed by the elements of set S.

Encoding: Generate ui, i ∈ Aδ, uniformly at random. Encode the message uAδ using
the (affine) code as

xN1 = uFδG
[n]
Fδ ⊕ uAδG

[n]
Aδ (3.30)

and transmit xN1 over the channel. Inspecting (3.21) and Figure 3.3 leads to a natural
recursive implementation of encoding (3.30), which has a time complexity of O(N log2N)
and a space complexity of O(N) [6, Section VII.C].

Note that Xi, i ∈ [N ], are i.i.d. RVs. Hence, we conclude using Theorem 3.3 that the
rate of the scheme satisfies

R = |Aδ|
N
→ I(W ) (3.31)

since I
(
W i

G[n]

)
→ 1 implies Pr

{
Ui 6= Ûi|Y N

1 = yN1 , U
i−1
1 = ui−1

1

}
→ 0.

Successive Cancellation Decoding: Upon observing the channel output yN1 , SC decoding
estimates the bit ui starting from i = 1 to i = N as

ûi(uN1 , yN1 ) =

ui if i ∈ Fδ
fi(yN1 , ûi−1

1 (uN1 , yN1 )) if i ∈ Aδ
(3.32)

by using the previously estimated bits ûi−1
1 in the function

fi(yN1 , ûi−1
1 (uN1 , yN1 )) ,

 0 if PUi|Y N1 ,U i−1
1

(0|yN1 , ûi−1
1 ) ≥ PUi|Y N1 ,U i−1

1
(1|yN1 , ûi−1

1 )
1 otherwise.

(3.33)

Note that the decision unit (3.32) seems to have uN1 as an input, but this is not the case
when (3.33) is inspected carefully. This notation is needed for the formalism in the error
analysis. Also, the decision metric used in fi is not even bit-wise MAP decoding (2.66)
since the probabilities PUi|Y N1 ,U i−1

1
(ui|yN1 , ûi−1

1 ) do not incorporate the knowledge of the
frozen bits uj, j > i and j ∈ Fδ, which are known to the receiver. The computation of the
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probabilities PUi|Y N1 ,U i−1
1

(ui|yN1 , ûi−1
1 ) assumes that all the bits Uj, j > i, are uniform RVs,

which enables an efficient computation. The notation will be refined when we explicitly
provide equations to look SC decoding in detail.

Error Analysis: We are interested in the probability of block error events under SC de-
coding defined as

B , {(uN1 , yN1 ) ∈ FN2 × YN : ûAδ 6= uAδ} (3.34)

since the decoder never makes an error in decoding uFδ . Let P (SC)
B , Pr{B} denote the

BLEPs of SC decoding described above, which is what one can implement at the receiver.
In addition, let P (GA)

B be the BLEPs of genie-aided SC decoding, which knows the bits
ui−1

1 no matter what the decoding outputs for ûi−1
1 are. The following lemma states an

equivalence between the block error events of implementable SC decoding and genie-aided
SC decoding, which will let us use the definition of set Aδ to bound P (SC)

B . The proof is
given as Appendix 3.5.3, which is valid for any BMSC.

Lemma 3.4. [84, Lemma 1], [85, Proposition 2.1] For any fixed Aδ, P (SC)
B = P

(GA)
B .

Using Lemma 3.4, we write

P
(SC)
B = P

(GA)
B (3.35)

= Pr
{

N⋃
i=1
B(GA)
i

}
(3.36)

≤
∑
i∈Aδ

Pr
{
B(GA)
i

}
(3.37)

≤ |Aδ|δ (3.38)
≤ Nδ (3.39)

where (3.36) follows by defining the bit-error event for ui under a genie-aided SC decoder
as

B(GA)
i , {(uN1 , yN1 ) ∈ T : fi(yN1 , ui−1

1 ) 6= ui} (3.40)

and the sample space T , {(uN1 , yN1 ) ∈ FN2 × YN : UFδ = uFδ}. The bound (3.37) follows
from the union bound and because SC decoding (3.32) does not make an error for bits
uFδ , (3.38) from the definition of the set Aδ as given in (3.28) and (3.39) from Aδ ⊆ [N ].
The upper bound (3.39) is not useful since δ is independent of N . Fortunately, [86,
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Theorem 1] proves that the definition (3.28) can be modified, for any 0 < β < 1/2, as

A2−Nβ ,
{
i ∈ [N ] : Pr

{
Ui 6= Ûi|Y N

1 = yN1 , U
i−1
1 = ui−1

1

}
< 2−Nβ

}
(3.41)

with Theorem 3.3 still holding. We now rewrite (3.39) as

P
(SC)
B ≤ N2−Nβ → 0 as N →∞. (3.42)

Remark 3.4 (Rate of polarization). In [6, Theorem 2], the definition (3.28) is modified
by setting δ = O(N− 5

4 ), which still suffices to conclude that P (SC)
B → 0 although the

convergence is slower than (3.42).

Note that the result (3.42) is derived for the G[n]-coset code ensemble where the bits
uF

2−Nβ
are generated uniformly at random. It is easy to see that there is at least one

choice of uF
2−Nβ

that leads to a capacity-achieving code.

Remark 3.5 (Polar code). The method above is still not constructive, even if one finds
the set A2−Nβ , since it is valid for a code ensemble. Fortunately, the selection of uF

2−Nβ

does not affect the error performance when transmission is over BMSCs [6, Corollary 1].
Hence, any selection leads to a capacity-achieving code. For any N , all codes defined by
the set A ⊂ [N ] minimizing the right-hand side (RHS) of (3.37) for a given channel W
are called polar codes. The predetermined bits uF , F , [N ] \ A, and free bits uA are
called frozen and information bits, respectively. Accordingly, the sets A and F are called
information and frozen sets, respectively. Note also that setting ui = 0, i ∈ F , leads to a
linear code. In this case, a generator matrix of the polar code is obtained by removing the
rows of G[n] with indices in F .

3.4.4. A Detailed Look at Successive Cancellation Decoding

SC decoding has been described briefly with the decoding functions (3.32) and (3.33). We
here rewrite these functions for an arbitrary information set A ⊆ [N ] as

ûi =

ui if i ∈ F
fi(yN1 , ûi−1

1 ) if i ∈ A
(3.43)

and

fi(yN1 , ûi−1
1 ) ,

 0 if P i
G[n](0|yN1 , ûi−1

1 ) ≥ P i
G[n](1|yN1 , ûi−1

1 )
1 otherwise

(3.44)
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where the quantities P i
G[n](ui|yN1 , ûi−1

1 ), ui ∈ F2, are computed recursively as

P 2j−1
G[n] (u2j−1|yN1 , u

2j−2
1 ) =

∑
u2j

P j

G[n−1](u2j−1 ⊕ u2j|yN/21 , u2j−2
1,2 ⊕ u

2j−2
2,2 )P j

G[n−1](u2j|yNN/2+1, u
2j−2
2,2 )

(3.45)

P 2j
G[n](u2j|yN1 , u

2j−1
1 ) =

P j

G[n−1](u2j−1 ⊕ u2j|yN/21 , u2j−2
1,2 ⊕ u

2j−2
2,2 )P j

G[n−1](u2j|yNN/2+1, u
2j−2
2,2 )

P 2j−1
G[n] (u2j−1|yN1 , u

2j−2
1 )

(3.46)

where the notation u2j
1,2 and u2j

2,2 correspond to the subvectors of u2j
1 with odd and even

indices, respectively, and the recursion continues down to length-1 computations as

P 1
G[0](0|yi) ,

W (yi|0)∑
xW (yi|x) and P 1

G[0](1|yi) ,
W (yi|1)∑
xW (yi|x) . (3.47)

The recursive functions (3.45) and (3.46) can be efficiently implemented with time and
space complexity O(N log2N).

To understand where the efficiency arises, consider an alternative representation of the
polar transform:

G[n] =
(
I2 ⊗G[n−1]

)
Π2,2n−1 (I2n−1 ⊗K2) (3.48)

which can be verified via similar steps to conclude (3.25) starting from (3.21). This rep-
resentation is illustrated in Figure 3.4. This decomposition is very similar to the efficient
recursive encoding (recall Figure 3.3) and leads to a recursive call for two polar decoders
of size-N/2 after performing a soft inversion of a single polar transform. Soft inversion
corresponds to using equations (3.45) and (3.46) to obtain probabilistic information about
the sequence S̃N1 . Note that the second operation (3.46) requires a decision on the former
bit. This implies that to decode the size-N/2 polar constituent code on the lower part of
Figure 3.4, the decisions for the upper size-N/2 polar constituent code should be made
first. Recursively, each polar decoder of size-N/2 calls two polar decoders of size-N/4. This
recursion goes down to single size-1 decoders. Each decoder makes a decision according
to the type of the bit, namely information or frozen bit, which either follows a simple
threshold-based rule or the constraint imposed by the frozen bit. The reader is referred
to [6, Section VIII.B] for more details on SC decoding and to [87] for efficient hardware
implementations.
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Figure 3.4.: Size-N polar transform G[n], where N = 2n, using (3.48).

3.4.5. Successive Cancellation List Decoding

The suboptimality of SC decoding in performance compared to ML decoding stems from
the fact that any hard decision made for information bits leads to a block error and this
cannot be corrected at a later stage. Fortunately, SCL decoding proposes a practical
solution to this problem, closing gap to ML decoding with sufficiently large list sizes. In
the following, we will briefly explain how the algorithm works.
For i = 1, . . . , N , one can recursively compute

pi
G[n](yN1 , ũi1) = pi−1

G[n](yN1 , ũi−1
1 )P i

G[n](ũi|yN1 , ũi−1
1 ) (3.49)

where the right-most term can be computed efficiently via the SC decoding operations
(3.45) and (3.46) for any partial input sequences ũi1 ∈ Ui ⊆ {0, 1}

i, with ũF(i) = uF(i) and
F (i) , F ∩ [i], by setting the initial value to

p0
G[n](yN1 , ũ0

1) , 1. (3.50)

Since they are computed by SC decoding operations, the quantities pi
G[n](yN1 , ũi1) facilitate

the knowledge of uF(i) , but they treat the future frozen bits UF\F(i) as uniform RVs.
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Therefore, we refer to pi
G[n](yN1 , ũi1) as the myopic probability of the sequence ũi1.1

The suboptimality of the SC decoding is overcome in practice by SCL decoding [11]
which computes the quantities pi

G[n](yN1 , ũi1) for several partial input sequences, also called
decoding paths, instead of making a hard decision directly after computing the quantities
P i

G[n](ui|yN1 , ûi−1
1 ), ui ∈ F2. More formally, let Ui−1 ⊆ {0, 1}i−1 be a subset satisfying

|Ui−1| = L and assume that pi−1
G[n](yN1 , ũi−1

1 ) is known for some ũi−1
1 ∈ Ui−1. For ũi ∈ F2,

one can compute pi
G[n](yN1 , ũi1) using (3.49). This gives the values pi

G[n](yN1 , ũi1) for 2L partial
sequences. One then prunes the list down to L sequences by keeping only the most likely
paths according to (3.49) for an SCL decoder with list size L. Note that if ui is frozen,
then the decoder extends all paths with the correct frozen bit. After the N -th decoding
stage, the estimate ûN1 is chosen as the candidate maximizing the function pN

G[n](yN1 , ũN1 ).
The efficient data structures introduced in [11] let one implement an SCL decoder with list
size L with time and space complexity of O(LN log2N). Hence, keeping the parameter L
small while having a good performance is one of the main targets for polar coding.

Lemma 3.5. For any ũi1 ∈ Fi2, SCL decoding implemented using the recursion (3.49)
provides

pi
G[n](yN1 , ũi1) = ciP

(
ũA(i)|yN1 , ũF(i)

)
(3.51)

where A(i) = A∩ [i] as defined by (2.2), i.e., the myopic probabilities are equivalent to the
APPs of the partial input sequence ũi1 given the channel observation yN1 and the previous
frozen bits ũF(i) up to a normalization factor ci > 0.

Proof. See [11, Equations (9)-(12)] as stated in [11, Section IV.C] for the case i = N . �

Corollary 3.6. Let γ denote the index of the last frozen bit, i.e.,

γ , maxF . (3.52)

Then for any i > γ and any ũi1 ∈ Fi2, the myopic probabilities become equivalent to the
APPs up to a normalization factor ci > 0.

Proof. See Lemma 3.5 since there are no more frozen bits after γ. �

The corollary implies that an SCL decoder with list size L = 2NR achieves a block-
wise MAP decoding with an exponential complexity. However, a modification of the SCL
decoding leads the same performance with a list size smaller than 2NR. The modified
SCL decoder works as follows: run an SCL decoder with unbounded list size until the

1We write the myopic probability of ũi1 rather than (yN1 , ũi1) since yN1 is fixed once the channel is observed.
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last frozen bit uγ and then, for each decoding path ũγ1 ∈ F
γ
2 , find the MAP extension

using nearest coset coding introduced in [88]. This leads to a list of candidates L such
that |L| = 2NR−(N−γ) = 2γ−N(1−R). The final decision is the codeword in the final list
with the largest probability. This decoder implements MAP decoding with a complexity
of O(2γ−N(1−R)N log2N).
This result on the required list size to achieve block-wise optimum decoding was first

given in [89, Theorem 1] for transmission over the BEC for standard SCL decoding and was
extended to the case of arbitrary BMSCs in [88] by introducing the hybrid SCL decoding
algorithm described above. This bound, however, has some disadvantages: first, it hinders
the dependency of γ to the blocklength and appear to be dependent only on the position of
last frozen bit.2 Second and more importantly, it is far from being practically relevant. In
particular, SCL decoding with list size L = 32 gets very close to the MAP performance of
(2048, 1024) polar codes [11, Figure 1], whereas 2γ−N(1−R) = 21795−1024 = 2771! In Chapter
5, we will relax our target by focusing on the average list size of SCL decoding to keep the
transmitted codeword in the final list, which provides a result for the average case only;
hence, SCL decoding whose list size is set to this average is not (even close to) a MAP
decoder. This relaxation, however, will enable us not only to characterize the average list
size at each decoding stage i ∈ [N ] for a given set A but also to provide heuristic guidelines
on polar code design for list decoding with practical list sizes.

3.4.6. Reed-Muller Codes

RM codes are closely related to polar codes. Both RM and polar codes can be described
using the Plotkin construction [90]. RM codes are named after Reed and Muller, where
the former introduced them [91] and the latter proposed a related decoding algorithm [92].
An r-th order RM code of length N = 2n and dimension K = 1 +

(
n
1

)
+
(
n
2

)
+ · · · +

(
n
r

)
,

denoted by RM(r, n) with 0 ≤ r ≤ n, is defined using the matrix G[n] as in the case of
polar codes. A generator matrix for the RM code is obtained by removing the rows of G[n]

with weight lower than 2n−r. This means they can be described by an information set A
that consists of the indices i ∈ [N ] of rows having Hamming weight at least equal to n− r
for the binary expansion of i− 1. Encoding can be performed as for polar codes by setting
uF = 0. For further similarities between polar and RM codes, see, e.g., [93].

Remark 3.6 (Minimum Distance). An upper bound on the minimum distance of RM(r, n)
is 2n−r. Indeed, it can be shown by exploiting the Plotkin structure [90] that the minimum

2We improve this bound in Theorem 4.2 for transmission over the BEC in a straightforward manner by
not restricting the analysis to the position of the last frozen bit.
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distance is 2n−r [56, Section 13.3, Theorem 3]. This means RM codes maximize the mini-
mum distance among the codes obtained by removing rows from G[n] for given parameters
N and K.

Although asymptotically unreliable under SC decoding [6, Section X], RM codes achieve
the capacity of the BEC under MAP decoding [94]. Motivated by this result with their
better distance properties as compared to the polar codes, there has been a significant
research effort recently to approach their MAP performance when transmission is over
BMSCs [95–98]. Note also that several variants of SC-based decoders are have been pro-
posed to decode RM codes in the past [99–102]. However, they are rather inefficient,
especially if N ≥ 256, because of the suboptimal selection of the frozen set F for SC
decoding.

3.4.7. Methods to Choose the Frozen Set

For a given channel W , constructing an (N,K) polar code requires one to find the indices
that minimize the upper bound (3.37) on the BLEP of SC decoding. The design is unfor-
tunately not universal, i.e., the polar code design differs depending on the channel quality.
There are several ways to obtain the indices. Monte Carlo-based designs were proposed
in [6,99], and a density evolution-based approach for the BEC channel was given in [6]. In
the case of the BEC(ε), the ensity evolution3 recursion is [6, Proposition 6]

ε2i−1
G[n] = 2εi

G[n−1] − (εi
G[n−1])2 (3.53)

ε2i
G[n] = (εi

G[n−1])2 (3.54)

where the recursion starts at ε1
G[0] , ε. It is not hard to derive these relations in 3.4.1: for

U1 to be erased, it suffices to observe one erasure in the channel output Y 2
1 ; hence, we have

ε1
G[1] = 2ε− ε2. On the other hand, U2 is erased if and only if Y 2

1 = (?, ?), which happens
with probability ε2; hence, we have ε2

G[1] = ε2. Recursive application of these equations as
for (3.45) and (3.46) results in (3.53) and (3.54), respectively. The underlying assumption
for these equations is the symmetry of the synthesized channels [6, Proposition 13]. Under
this assumption, the error events B(GA)

i , i ∈ [N ], are independent from the transmitted
codeword [6, Corollary 1] and we can assume transmission of the all-zero codeword. We
may compute εi

G[n] , i ∈ [N ], by writing the n-digit binary expansion bn1 of i − 1. Each 0

3In the case of the BEC, it suffices to track the evolution of a single parameter, namely the erasure
probability, rather than densities. However, as we shall soon see, one must track the evolution of
densities for general BMSCs.
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and 1 in the expansion corresponds to applying (3.53) and (3.54), respectively, with an
input erasure probability from the previous recursion. Note that the recursion starts and
continues in the bit-reversed order, i.e., starting from bn to b1.

Example 3.1. Consider N = 4 and ε2
G[2] when the channel erasure probability is ε = 0.5.

We have b2
1 = (0, 1); hence, we apply first (3.53) to obtain ε1

G[1] = 0.75. (3.54) is then
applied with an input erasure probability of 0.75 from the previous recursion, resulting in
ε2

G[2] = 0.5625.

For general BMSCs, a density evolution-based construction is introduced in [103]. In-
stead of tracking two densities, we define Li

G[n](yN1 ) as the logarithm of their ratio, i.e.,

Li
G[n](yN1 ) , log

P i
G[n](Ui = 0|yN1 , U i−1

1 = 0)
P i

G[n](Ui = 1|yN1 , U i−1
1 = 0)

. (3.55)

Accordingly, we use li
G[n] to denote the PDF of the RV Li

G[n](Y N
1 ). Extending the equations

(3.53) and (3.54) to general BMSCs, the densities can be computed recursively as

l2i−1
G[n] = li

G[n−1] � li
G[n−1] (3.56)

l2i
G[n] = li

G[n−1] � li
G[n−1] (3.57)

where � denotes the variable node convolution and � the check node convolution as defined
in [54, Chapter 4]. The probabilities Pr{Bi} can be computed via li

G[n] with i ∈ [N ] as

Pr{Bi} = lim
z→0

(∫ −z
−∞

l
(i)
G[n](x)dx+ 1

2

∫ +z

−z
l
(i)
G[n](x)dx

)
. (3.58)

The computation of (3.56), (3.57) and (3.58) can be carried out, for instance, via quantized
density evolution [104]. A more accurate implementation for quantized density evolution
is provided in [105] together with an analysis providing lower and upper bounds for the
reliabilities of the synthesized channels. A Gaussian approximation of the density evolution
for polar codes was proposed in [106], which approximates the densities li

G[n] as Gaussian
RVs enabling to track a single parameter, e.g., the mean µi

G[n] , rather than densities [107]
as for the BEC. In this case, the densities are assumed to be distributed as Li

G[n](Y N
1 ) ∼

N (µi
G[n] , 2µiG[n]), where the mean values are computed recursively as

µ2i−1
G[n] = φ−1

(
1−

[
1− φ

(
µi

G[n−1]

)]2)
(3.59)

µ2i
G[n] = 2µi

G[n−1] (3.60)
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where

φ(x) =

 1− 1√
4πx

∫+∞
−∞ tanh

(
u
2

)
exp

(
− (u−x)2

4x

)
du if x > 0

1 if x = 0.
(3.61)

The approximations for the function φ(x) can be used, e.g., see [107], or the equations
can be rewritten using the J-function [108], which admits a tight and easy-to-compute
approximation [109]. Note that a Gaussian approximation of density evolution can be
implemented with O(N log2N) time complexity.
Methods based on a partial order among the positions were first proposed in [110], and

later used and generalized in several other works, e.g. [93,111–113], to reduce the complex-
ity of polar code constructions. The basic idea is that ordering among some positions are
universal irrespective of the underlying channel type or quality. Facilitating such relations
enables sublinear complexity for finding the set A minimizing the RHS of (3.37) [112]. In
addition to the low-complexity construction, these methods allow one to design frozen bit
sequences that show a good behavior for a wide range of channel parameters and rates.
This has been of particular importance during 5G standardization [114] with its strong
emphasis on lowering the description complexity. A particularly efficient and compact
description is the polarization weight (PW) [111] construction. For a given index i ∈ [N ],
let bn1 be the binary representation of i − 1, where b1 is the most-significant bit and bn is
the least significant one. The PW of the i-th synthesized channel is defined for β > 1 as

wβ(i) ,
n∑
j=1

bjβ
j. (3.62)

In this case, A consists of the K indices with the largest PWs for an (N,K) polar code
constructed via PW. It has been observed in [111] that choosing β = 21/4 provides a robust
construction performing well for a wide range of channel qualities and code rates.
So far, the target was to construct a polar code that performs well under SC decoding,

and with low complexity. These techniques do not necessarily lead to codes performing well
under decoding algorithms that mimic MAP decoding, e.g., SCL decoding. The reason is
obvious: the MAP decoding performance of a code is highly related to the code distance
spectrum and the procedure for selecting F does not take this aspect into account.

Remark 3.7 (Minimum Distance). For a given set A, the minimum distance of the re-
sulting code is equal to the Hamming weight of the row i, i ∈ A, of G[n] with the lowest
weight [115, Lemma 3]. The proof follows from observing that any polar code can be
represented as a linear subspace4 of the RM code having that row with the lowest weight

4A linear subspace of a code C is called a subcode of C.
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as a codeword.

It is not surprising from the minimum distance point of view that RM codes perform
better than polar codes under MAP decoding [14] in general. The authors of [13] proposed
a hybrid code construction “between” polar and RM codes, which are called RM-polar
codes. The idea is as follows: to design an (N,K) RM-polar code, indices are chosen to
minimize the RHS of (3.37) by using the standard techniques above, among the indices
corresponding to that of RM(r, n) where r is the smallest integer such that

1 +
(
n

1

)
+
(
n

2

)
+ · · ·+

(
n

r

)
≥ K. (3.63)

In this way, the resulting code is guaranteed to have a minimum distance of 2n−r as it
is a subcode of RM(r, n). This method provides better performance under SCL decoding
with practical list sizes, e.g., L = 32, for some code parameters. For instance, (2048, 1024)
RM-polar codes with a minimum distance of 32 outperform (2048, 1024) polar codes with
a minimum distance of 16 by 1.2 dB at a BLER of 10−4 [13]. Although choosing F is an
interesting and (still) open problem, especially for SCL decoding, this limits the degrees
of freedom for code design. Next, we review methods to improve the distance spectrum of
polar codes, and more generally of G[n]-coset codes, via code concatenation.

3.4.8. Methods to Improve the Distance Spectrum

In addition to the efficient implementation of SCL decoding, one of the major contributions
of [11] was to introduce a practical solution to improve the distance spectrum of polar
codes via code concatenation. Remarkably, the resulting codes under SCL decoding with
considerably small list sizes, e.g., L = 32, outperform state-of-art codes for short- to
moderate-lengths [36]. The scheme works as follows: A systematic encoder5 of an outer
code, preferably a CRC code, is used to generate `-bits of redundancy using the message
vK1 . This leads to a vector wK+`

1 that has vK1 as then first K elements. The vector wK+`
1 is

then encoded via an (N,K + `) inner polar code, where uA = wK+`
1 and uF = 0, followed

by transmission. The received vector is decoded via an SCL decoding with list size L
of the inner code, which ignores the constraints imposed by the outer code. Among the
candidates fulfilling the outer code constraints, the one with the maximum probability
is output as the estimate. Depending on the list size L and the chosen outer code, the

5Although the proposed scheme of [11] works also with non-systematic encoders, this will enable us to
explain a generalization of the idea towards the end of this section.
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decoder may not be able to output a valid codeword. In this sense, the initial scheme
of [11] proposed an incomplete decoder. Later, researchers proposed methods to optimize
the outer code [18] and the interleaver before the inner polar code [116,117].

There is a simple modification to convert SCL decoding into a complete one as follows.
Let aK+`

1 be the vector, which contains the elements of A in an ascending order. Assuming
the outer encoder to be in the systematic form, SCL decoding works as before until the K-
th information bit uaK of the inner polar code. Then, all the decoding paths are extended
using the outer code constraints since the upcoming information bits uaK+`

aK+1
of the inner

polar code are parity bits imposed by the outer code. This requires the computation of
the probabilities for L paths according to (3.49) although the decisions are dictated by
the outer code. In this way, all of the resulting paths are valid codewords and the one
maximizing the probability (3.49) for i = N is chosen as the estimate. The authors of [16]
proposed to use ` parity-check bits not only at the end, but also scattered between the
information bits of the inner polar code with the modified SCL decoding described above.
This is a generalization of the modified polar codes of [11] with a complete decoder.

A careful reader will observe that the role of a parity bit imposed by the outer code in
the modified SCL decoding is the same as that of a frozen bit. The only difference is that
the value of a frozen bit is always set to a predetermined value, e.g., to 0, while that of a
parity bit ui varies depending on the preceding (information) bits uA(i−1) , where A(i−1) =
A∩ [i− 1]. This leads to the idea of dynamic frozen bits, which was proposed in [15,118].
A frozen bit ui is called dynamic if its value depends on a subset of (information) bits ui−1

1

preceding it. This concept unifies the concatenated polar code approach to improve the
distance spectrum of polar codes and also enables one to represent any linear code as a
polar code with dynamic frozen bits. Recently, there has been a significant research effort
into optimizing code constructions with dynamic frozen bits for near-optimum decoding
[18,20,119–122].

In particular, PAC codes received some attention due to their compact representation as
pre-transformed polar codes [119]. For the description of an (N,K) pre-transformed polar
code, one defines an upper-triangular N × N matrix T in addition to set A ⊂ [N ]. The
matrix T imposes the dynamic frozen bit constraints through the encoding process: the
vector uN1 is described as before, where uA carries the information and uF = 0. Encoding
is performed as

cN1 = uN1 T G[n]. (3.64)

Encoding efficiency is achieved in [119] by choosing T with an upper-triangular Toeplitz
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structure as

T =



t0 t1 . . . tm 0 . . . . . . . . . 0

0 t0 t1
. . . tm 0 . . . . . . ...

... . . . t0 . . .
. . . tm 0 . . . ...

... . . . . . . . . . . . . . . . 0 t0 t1

0 . . . . . . . . . . . . . . . . . . 0 t0


. (3.65)

Now the challenge is how to choose A and T such that the resulting code performs well
under decoding algorithms that mimic optimum decoding with practical complexity, e.g.,
SCL decoding with small to medium list sizes. In the rest of thesis, we use the name
concatenated or modified polar codes for the codes generated by an arbitrary selection of
the set A and an arbitrary selection of dynamic frozen constraints (or outer code).

3.4.9. A Generalization: Multi-Kernel Polar Codes

Arıkan already mentioned in [6, Section XI] that generalizations of polar codes are possi-
ble by choosing different binary kernels than K2 and those kernels can even be mixed.
Conditions for polarizing kernels were provided in [48] and corresponding error expo-
nents were derived. Note that the mixed-kernel polar constructions were first proposed
in [123] demonstrating gains over standard polar codes in error-correcting capability for
finite blocklengths. The paper [49] extended the error exponent derivation to the construc-
tion of mixing kernels, as suggersted in [6], while [124] provided examples of constructions
using this approach, namely multi-kernel polar codes.
The channel polarization of multi-kernel polar codes follows from the same ingredients

as given in Lemma 3.2 for the standard polar codes, where the proof follows by forming
a martingale similar to the one of Theorem 3.3. In Chapter 6, we will review the proof
of polarization for a special type of kernels used in the description of SPC product codes
using the tools of multi-kernel polar codes.
When it comes to SC/SCL decoding of the multi-kernel polar codes, the same principle

works as for Arıkan’s polar code; however, the complexity depends on the kernels chosen.
Usually, simple operations as in (3.45) and (3.46) are hard to provide for a given kernel
and a marginalization over all the upcoming bits within a local kernel is needed, see,
e.g., [125, Equation 2]. Even if they are provided, the operations must change at each
layer since the kernels are not necessarily the same. Therefore, we will not provide a
generic decoding algorithm here, but describe it for the kernels chosen for the codes of
interest in Chapter 6. Further results on the theory and applications of (modified) polar
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codes based on larger (and possibly arbitrary) binary kernels is given in, e.g., [126–130].

Remark 3.8. Stolte proposed to construct A to minimize the BLEP under SC decoding
in [99, Chapter 6] instead of choosing the set A of an RM code. This construction is
equivalent to that of polar codes. The target was to design codes with finite-length per-
formance superior to the one of RM codes under SC decoding. However, Stolte did not
show the capacity-achieving properties of his construction [6]. In addition, SCL decoding
was proposed in [102] and [99, Chapter 5]. However, SCL decoding became practically
relevant only after Tal and Vardy introduced the CRC-concatenated polar codes with a
more efficient implementation [11].
The SC decoding algorithm was provided in [6] by using log-likelihood ratios (LLRs),

as these are numerically more stable for hardware than APPs. Instead, [11] used log-
likelihoods (LLs) for SCL decoding since comparing different decoding paths in the pruning
stage is readily available upon sorting with respect to their LLs. Later, [131] introduced an
LLR-based SCL decoding of polar codes by introducing a quantity called path metric (PM)
to compare paths based on LLRs. This turned out to be more hardware-friendly [132] when
combined with the min-sum approximation [87].

3.5. Appendices

3.5.1. Proof of Lemma 3.2

The identity (3.19) follows via

2I(W ) = I(X2
1 ;Y 2

1 ) (3.66)
= I(U2

1 ;Y 2
1 ) (3.67)

= I(U1;Y 2
1 ) + I(U2;Y 2

1 |U1) (3.68)
= I(U1;Y 2

1 ) + I(U2;Y 2
1 U1). (3.69)

Since I(X2;Y2) = I(U2;Y2) ≤ I(U2;Y 2
1 U1), we have

I(U2;Y 2
1 U1) ≥ I(W ) ≥ I(U1;Y 2

1 ). (3.70)

By (2.50), there exists a unique p ∈ [0, 1/2] such that

p = H−1
2 (H(W )) . (3.71)
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Define pX|Y=y , H−1
2 (H(X|Y = y)) which we consider to be a realization of a RV denoted

as pX|Y (with abuse of notation), where the source of randomness is Y . We write

I(U1;Y 2
1 ) = 1− E

[
H2(pU1|Y1,Y2)

]
(3.72)

= 1− E
[
H2(pX1|Y1 ∗ pX2|Y2)

]
(3.73)

= 1− E
[
E
[
H2(pX1|Y1 ∗ pX2|Y2)

]
|Y2
]

(3.74)

= 1− E
[
E
[
H2

(
H−1

2

(
H2(pX1|Y1)

)
∗ pX2|Y2

)]
|Y2
]

(3.75)

≤ 1− E
[
H2

(
H−1

2

(
E
[
H2(pX1|Y1)

])
∗ pX2|Y2

)]
(3.76)

= 1− E
[
H2

(
p ∗ pX2|Y2

)]
(3.77)

= 1− E
[
H2

(
p ∗H−1

2

(
H2(pX2|Y2)

))]
(3.78)

≤ 1−H2 (p ∗ p) (3.79)

with equality if and only if p ∈ {0, 1/2}, i.e., H(W ) ∈ {0, 1}. The first step (3.72) follows by
(2.52) by defining pU1|Y 2

1 =y2
1
, H−1

2 (H(X|Y = y)), the step (3.73) because Y1 and Y2 are
independent and by writing a∗b , ab+(1−a)(1−b), (3.74) by reordering the expectation,
(3.74), (3.75), (3.77) and (3.78) from (3.71). Finally, (3.76) and (3.79) follow from Jensen’s
inequality using the convexity6 of H2

(
H−1

2 (x) ∗ p
)
in x ∈ [0, 1] for arbitrary p ∈ [0, 1/2].

We combine (3.71) with (3.19), and use (3.79) to obtain (3.20) with equality iff p ∈
{0, 1/2}, i.e., 1− I(W ) = H(W ) ∈ {0, 1}. �

3.5.2. Proof of Theorem 3.3

We map the synthesized channel index i ∈ [N ] onto the n-bit binary representation bn1 of
i − 1 and write, with slight abuse of notation, I

(
W

(bn1 )
G[n]

)
= I

(
W i

G[n]

)
. Define a random

process
IG[n] , I

(
W

(Bn1 )
G[n]

)
(3.80)

where IG[0] , I (W ) and the RVs Bi, i = 1, 2, . . ., are i.i.d. with PBi(0) = PBi(1) = 1/2.
Note that

IG[n] is a function of Bn
1 (3.81)

E[|IG[n]|] <∞ (3.82)
E[IG[n+1]|Bn

1 ] = IG[n] (3.83)

6This result is known as Mrs. Gerber’s Lemma [133].
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where (3.81) follows from (3.80), (3.82) because 0 ≤ IG[n] ≤ 1 and, finally, (3.83) by writing

E[IG[n+1]|Bn
1 ] =

∑
bn+1∈F2

P (bn+1)I
(
W

(Bn1 ,bn+1)
G[n+1]

)
(3.84)

= IG[n] (3.85)

where the last equality follows from (3.19) by replacing W by W (Bn1 )
G[n] . From Definition 2.1,

we conclude that the sequence IG[0] , IG[1] , . . . forms a martingale that converges a.s. to a
RV IG[∞] . Hence, (2.45) implies

E[|IG[n+1] − IG[n]|] = 1
2
(
E
[
IG[n] − I

(
W

(Bn1 ,0)
G[n+1]

)]
+ E

[
I
(
W

(Bn1 ,1)
G[n+1]

)
− IG[n]

])
→ 0 (3.86)

as n→∞. Now, replace W by W (Bn1 )
G[n] in (3.20) and observe (3.86). This quantity is non-

negative and equal to 0 if and only if IG[∞] ∈ {0, 1}. Using (2.46), we have E[IG[∞] ] = I(W )
which implies

Pr{IG[∞] = 1} = 1− Pr{IG[∞] = 0} = I(W ). (3.87)

�

3.5.3. Proof of Lemma 3.4

Let T , {(uN1 , yN1 ) ∈ FN2 × YN : UFδ = uFδ} be the sample space. Define the event of
having the first bit-error at the i-th bit (information bit) under SC decoding as

B(SC)
i , {(uN1 , yN1 ) ∈ T : ûi−1

1 (uN1 , yN1 ) = ui−1
1 , fi(yN1 , ûi−1

1 (uN1 , yN1 )) 6= ui}. (3.88)

The sets B(SC)
i are disjoint for i = 1, . . . , N and we have E =

N⋃
i=1
B(SC)
i . On the other hand,

the bit-error event for the same bit ui under a genie-aided SC decoder is

B(GA)
i , {(uN1 , yN1 ) ∈ T : fi(yN1 , ui−1

1 ) 6= ui}. (3.89)

Observe that B(SC)
i ⊆ B(GA)

i .7

7This is what is used in [6, Section V.B] to conclude P (SC)
B ≤ P

(GA)
B , which is enough to upper bound

P
(SC)
B .
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In the following, we show that

N⋃
i=1
B(SC)
i =

N⋃
i=1
B(GA)
i (3.90)

which concludes the proof. We use induction. Observe that B(SC)
1 = B(GA)

1 and assume
further that, for some ` ∈ [N ], we have

⋃̀
i=1
B(SC)
i =

⋃̀
i=1
B(GA)
i . (3.91)

Since the sets B(SC)
i are disjoint, it suffices to show B(SC)

`+1 = B(GA)
`+1 \

⋃̀
i=1
B(GA)
i . To this end,

we write

B(GA)
`+1 \

⋃̀
i=1
B(GA)
`+1 = B(GA)

`+1 \
⋃̀
i=1
B(SC)
i (3.92)

= B(GA)
`+1 \ {(uN1 , yN1 ) ∈ T : (f1(yN1 , u0

1), . . . , f`(yN1 , u`−1
1 )) 6= u`1} (3.93)

= B(SC)
`+1 (3.94)

where (3.92) follows from the induction hypothesis (3.91), (3.93) from the unions starting
from i = 1 to i = `, e.g., the first union is

B(SC)
1 ∪ B(SC)

2 = {(uN1 , yN1 ) ∈ T : (f1(yN1 , u0
1), f2(yN1 , u1

1)) 6= u2
1}. (3.95)

Finally, we have (3.94) by combining the definitions of B(SC)
`+1 and B(GA)

`+1 . �



4
Successive Cancellation List
Decoding over the BEC

The BEC is often used to model data networks where packets arrive either intact or are lost
due to network congestion or detected errors. We first revisit block-wise MAP decoding
of linear codes over the BEC and introduce code ensembles based on polar transform.
Then, the chapter studies SCL decoding of an arbitrary binary linear block code when
transmission is over the BEC. Thanks to the channel model, we then propose SCI decoding
as an efficient alternative for SCL decoding, which is equivalent to MAP decoding when
there is no complexity constraint. We rely on the average number of inactivations to
analyze the complexity of various code classes. Numerical results show that dRM codes
(one of the introduced ensembles) perform close to the Singleton bound for blocklengths
for various blocklengths. Although the channel model is quite simple, the insights helps
us to generalize some of the ideas to more general BMSCs in the next chapter.

4.1. Linear Codes under Block-wise MAP Decoding

Consider an (N,K) binary linear code C with generator matrix G. Suppose the channel
erases e ∈ [N ] symbols of the transmitted vector xN1 , yielding the output yN1 . Let E and
Ē denote the sets of indices of the erased and non-erased entries, respectively, so that
|E| = N − |Ē| = e. The vector cĒ collects the non-erased values of cN1 while the matrix
G:,Ē collects the columns of G corresponding to Ē . The following equation thus has at
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least one solution
vK1 G:,Ē = cĒ . (4.1)

The solution(s) can be found with O(N3) complexity using Gaussian elimination [134,
Section 1.3]. Define ρ , rank G:,Ē and observe that the solutions of (4.1) form an affine
subspace, denoted by L(yN1 ), where |L(yN1 )| = 2K−ρ. If ρ = K then (4.1) has a unique
solution that is output as the MAP estimate. Otherwise, under the assumption that
the a-priori distribution of the messages is uniform, each message in L(yN1 ) has the same
likelihood. A MAP decoder would hence pick a message at random in L(yN1 ). Alternatively,
when multiple solutions exist, we may declare a decoding failure. With slight abuse of
notation, we will still refer to the latter approach as block-wise MAP decoding.

Remark 4.1. An alternative approach to MAP decoding, which makes use of the code
parity-check matrix, works as follows [54, Section 3.2]. We group xN1 into subvectors xE
and xĒ . Similarly, the columns of parity-check matrix H of C are grouped to obtain H :,E

and H :,Ē . Since xN1 H = 0 by definition, we write the linear system

xEH
T
:,E = xĒH

T
:,Ē (4.2)

where the RHS is known. Again, we declare a failure if the system does not provide a
unique solution, i.e., if rank H :,E < e. In terms of complexity, it may make sense to
consider a generator matrix if R < 1/2 and a parity-check matrix otherwise.

4.1.1. The Singleton Bound

Consider transmission over a BEC(ε) with an (N,K) binary linear block code. A necessary
condition for having a unique solution for (4.1) is to have a number of equations (i.e., a
number of non-erased bits) at least as large as the number of unknowns K, that is, to have
N − e ≥ K. By exploiting this observation, we can conclude that a lower bound on the
BLEP achievable by any (N,K) binary linear block code over a BEC(ε) is

PB ≥
N∑

i=N−K+1

(
N

i

)
εi(1− ε)N−i (4.3)

where each summand corresponds the probability of having i erasures when xN1 is transmit-
ted. The bound (4.3) is commonly referred to as the Singleton bound, and it is achievable
only by MDS codes. Recall that the only binary linear block codes that are MDS are
(N, 1) repetition codes and (N,N − 1) SPC codes. Besides these two binary linear code
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classes, no other binary linear block code fulfills (4.3) with equality.

4.1.2. Berlekamp’s Random Coding Bound

A tight upper bound on the average BLEP of a random binary linear code is known as
Berlekamp’s random coding (BRC) bound [135]. BRC bound can be used to prove the
existence of binary linear block codes with a BLEP smaller than the average BLEP of
random binary linear codes, as illustrated by the following theorem.

Theorem 4.1. For transmission over the BEC(ε), there exists an (N,K) binary linear
code whose BLEP under MAP decoding satisfies

PB <
N∑

i=N−K+1

(
N

i

)
εi(1− ε)N−i +

N−K∑
i=1

(
N

i

)
εi(1− ε)N−i2−(N−K−i). (4.4)

The RHS of (4.4) is composed of two terms, where the first term is the Singleton bound
and the second term may be seen as the penalty paid by random linear codes with respect
to MDS codes. A proof can be found in Appendix 4.5.1.

4.1.3. Linear Code Ensembles based on Polar Transforms

We introduce ensembles of modified polar codes with random choices of dynamic frozen
bits after fixing the information set A.

Definition 4.1 (Dynamic RM ensemble). The dRM ensemble with parameters (r,m),
denoted by DRM(r,m), is the set of all codes, specified by set A of the RM(r,m) code
and choosing

ui =


∑
j∈A(i−1) vj,iuj if A(i−1) 6= ∅

0 otherwise
(4.5)

for i ∈ F with all possible vj,i ∈ {0, 1} and A(0) , ∅.

Recently, Arıkan introduced polarization-adjusted convolutional (PAC) codes [119] that
can be represented as a polar code with dynamic frozen bits [136, 137]. PAC code rate-
profiling is reflected in the frozen index set of its polar code representation [136]. Thus, if
A of an RM(r,m) code is chosen via rate-profiling [119] then the corresponding PAC code
becomes an instance from DRM(r,m). Another instance is the RM(r,m) code.
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Definition 4.2 (Uniform generator ensemble based on polar transforms). The uniform
generator ensemble G(N,K) based on polar transform with parameters N = 2n and K is
the set of polar codes specified by A = [K] and by choosing, for i ∈ F ,

ui =


∑
j∈A(i−1) vj,iuj if A(i−1) 6= ∅

0 otherwise
(4.6)

with all possible vj,i ∈ {0, 1} and A(0) , ∅.

4.2. SC and SCL Decoding

SC decoding works as in Section 3.4.4 with a slight modification in the decision function
(3.44) to declare an error whenever an erasure is output for an information bit. We rewrite
(3.44) for the BEC as

fi(yN1 , ûi−1
1 ) ,


0 if P i

G[n](0|yN1 , ûi−1
1 ) = 1

? if P i
G[n](0|yN1 , ûi−1

1 ) = 1
2

1 otherwise
(4.7)

by observing that the probabilities P i
G[n](ui|yN1 , ûi−1

1 ), ui ∈ F2, take values in a ternary
alphabet {0, 1/2, 1}. The decision unit (3.43) remains the same, namely:

ûi =

ui if i ∈ F
fi(yN1 , ûi−1

1 ) if i ∈ A.
(4.8)

The decoding process aborts with a frame error if ûi =? for any i ∈ A.

SCL decoding uses the same principles as in Section 3.4.5, where the difference is that
a BEC path is duplicated only if (4.7) provides an erasure for an information bit, i.e.,
for ui with i ∈ A [138, Section V]. This is called a branching event [139, Appendix A]
following the approach of [140]. Otherwise, the decoder follows the value ui ∈ F2 for which
P i

G[n](ui|yN1 , ûi−1
1 ) = 1. When the algorithm encounters a frozen bit ui, a path is pruned if

it is not valid [138, Section V] and

P i
G[n](ui|yN1 , ûi−1

1 ) = 0. (4.9)
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In this case, half of the existing paths are be pruned.1 Suppose that the SCL decoding
list size is L. We declare a frame error if, at any stage during the decoding process, the
number of active paths exceeds L or if more than one path is active at the end of the
process. SCL decoding with L = 2NR implements MAP decoding, i.e., it outputs all the
solutions for (4.1) in the final list L.

Remark 4.2 (MAP decoding for non-uniform inputs). For a non-uniform distribution of
the message bits uA, SCL decoding is modified as follows to implement MAP decoding.
Output the final list as before using standard SCL decoding, i.e., list all possible solutions
L of (4.1). Now choose the estimate that maximizes the a-priori probability in L. Suppose
without loss of generality that Pvi(0) = 1 − Pvi(1) = p with p > 1/2. Then the MAP
estimate is

v̂K1 = argmin
vK1 ∈L

wH(vK1 ). (4.10)

The question of “how large should L be for MAP decoding?” was addressed by [89,
Theorem 1] for the case of the BEC, as reviewed in Section 3.4.5. We improve this bound
with the following lemma that follows from a simple observation in Appendix 4.5.2.

Lemma 4.2 (Upper bound on the required list size for MAP decoding). Let L∗(C) be
the smallest list size for an SCL decoding that implements a MAP decoder for an (N,K)
binary linear code C. Let ζ be the index of the last frozen bit before the first information
bit, and let γ be the last (dynamic) frozen bit when C is represented as a polar code (with
dynamic frozen bits), i.e., we have

ζ , minA and γ , maxF . (4.11)

Then we have
L∗(C) ≤ min

{
2N(1−R)−(ζ−1), 2γ−N(1−R)

}
. (4.12)

Note that [89, Theorem 1] states that L∗(C) ≤ 2γ−N(1−R). Depending on the allocation
of the frozen bit indices, (4.12) can improve the previous result significantly. Consider,
for instance, the RM(5, 7) code with parameters N = 128 and K = 120 where ζ = 4 and
γ = 65. The previous result states that L∗ ≤ 257 while (4.12) gives L∗ ≤ 25. The previous
result is usually relevant for low rate codes, and simulations show its usefulness even for
transmission over general BMSCs [89, Figure 15].2 Lemma 4.2 tightens the bound for

1Although it might be difficult to see this here, it will be obvious after Proposition 4.3.
2The result does not hold for general BMSCs unless the SCL decoding is modified as suggested by [88],
see Section 3.4.5.
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high-rate codes. However, even this bound is far from being practical, especially for codes
with rates R ≈ 0.5. For instance, for the RM(3, 7) code the bound (4.12) is L∗ ≤ 249.
In addition, the bounds are obviously independent of the channel quality since we are
interested in exact MAP decoding. If ε is very low then one requires much shorter lists on
average to decode successfully.
Recall that SCL decoding branches out the paths not for each information bit but

whenever necessary. Therefore, we study the dynamics of SCL decoding with unbounded
list size. This relaxation gives more understanding on the complexity vs. performance
trade-offs on average. First, we provide a proposition that points towards a more efficient
implementation of SCL decoding.

Proposition 4.3. Recall from (2.2) that A(i) , A ∩ [i]. On the BEC, the list of all valid
partial input sequences um1 generated by SCL decoding with unbounded list size upon
observing yN1 form an affine subspace, denoted as S(i)

(
yN1
)
.

The proof is given as Appendix 4.5.3. Let Li
(
yN1
)
denote the list length after i-th

decoding stage of SCL decoding with unbounded list size, i.e., Li
(
yN1
)

=
∣∣∣S(i)

(
yN1
)∣∣∣.

The proposition provides an immediate corollary, which bridges between the introduced
quantity di

(
yN1
)
and the list length Li

(
yN1
)
of SCL decoding with unbounded list size

explicitly.

Corollary 4.4. At any decoding stage i, the list length Li
(
yN1
)
, yN1 ∈ {0, ?, 1}N , of SCL

decoding satisfies
log2 Li

(
yN1
)

= di
(
yN1
)
. (4.13)

Hence, Li
(
yN1
)
is a non-negative integer power of 2.

Next, another corollary is provided, which follows from the fact that Li
(
yN1
)
is a non-

negative integer power of 2 in combination with the error events of SCL decoding with
a fixed list size L defined in Section 4.2, i.e., either

∣∣∣S(i)
(
yN1
)∣∣∣ > L for any i ∈ [N ] or∣∣∣S(i)

(
yN1
)∣∣∣ 6= 1.

Corollary 4.5. SCL decoding with list size L has the same performance as SCL decoding
with L′ = 2blog2 Lc.

A more interesting outcome of Proposition 4.3 is the new decoding algorithm, namely
SCI decoding, which is introduced next. In essence, SCL decoding lists all possible se-
quences in an affine subspace of {0, 1}|A

(i)| after i decoding steps while SCI decoding stores
a basis for this vector subspace.
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4.3. Succesive Cancellation Inactivation Decoding

Suppose uN1 is encoded and transmitted over the BEC(ε) with channel output yN1 . Consider
the case where (4.7) provides an erasure for an information bit, i.e., ûi = ?, i ∈ A. Instead
of duplicating the path as in SCL decoding, the SCI decoder introduces a dummy variable
ũi and stores the decision as ûi = ũi. This is called an inactivation event. It continues
decoding with the next stages using the same schedule as for SC decoding. Now (4.7)
is allowed to be a function of the previous inactivated variable. For example, if there is
no other inactivation for the information bits in between, then it can output either an
erasure or a linear combination of ũ0 , 1 and the previous variable ũi, i.e., a0 ⊕ aiũi

with a{0,i} ∈ {0, 1}2, for all bits uj with j > i. We separate the cases where (i) uj is an
information bit and (ii) uj is a frozen bit. In case (i), if the function (4.7) outputs an
erasure, then the decoder inactivates another bit, namely ûj = ũj. Otherwise, it continues
by decoding the next bit knowing that ûj = a0 ⊕ aiũi. In case (ii), if the decoder outputs
an erasure or has a trivial combination, i.e., a{0,i} = 0, then it sets ûj = 0 and continues
with the next bit. However, if it outputs a combination where ai = 1, then it learns the
value of the previously inactivated bit as ũi = a0. The SCI decoder stores the equation
separately and continues decoding with ûj = a0 ⊕ aiũi. In the following, we initially do
not impose constraints on the number of inactivations during the decoding process.
In general, the decoder can have g inactivations for the information bits uI\{0} with
G , {0, i1, i2, . . . , ig}, 0 < i1 < i2 < · · · < ig < i before decoding ui, i.e., ûG\{0} = ũG\{0}.
For some binary vector aG, the function fi is rewritten as

fi(yN1 , ûi−1
1 ) ,

 aG · ũG if P i
G[n](aG · ũG|yN1 , ûi−1

1 ) = 1
? otherwise.

(4.14)

Suppose that the decoder inactivates g bits in total during a decoding attempt. Then the
final step of SCI decoding is to solve a system of linear equations in g unknowns. This
will have a unique solution only if the equations obtained from the frozen bits have rank
g. This algorithm is equivalent to an SCL decoder over the BEC with unbounded list size,
and it thus implements MAP decoding. Next, we study the average behaviour of the SCI
decoding with an unbounded number of inactivations.

4.3.1. Average Number of Inactivations for MAP Decoding

Let ûi−1
1 denote the output of SC inactivation decoding with possible inactivations before

estimating ui.
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Lemma 4.6. fi(yN1 , ui−1
1 ) = ? if and only if fi(yN1 , ûi−1

1 ) = ?.

The proof is provided in Appendix 4.5.4. Recall now that density evolution computes
the probabilities εi

G[n] exactly via (3.53) and (3.54), i.e., the erasure probabilities of the
genie-aided SC decoder. The following lemma, whose proof is left for Appendix 4.5.5,
characterizes the exact inactivation probabilities for ui, i ∈ [N ].

Lemma 4.7. Let bi be the probability of having an inactivation for ui in the SC inactiva-
tion decoder. Then we have

bi =

 0 if i ∈ F
εi

G[n] otherwise.

Corollary 4.8. Let G(Y N
1 ) be a RV equal to the total number of inactivations made by

the decoder during a decoding attempt. Then we have

E[G] =
∑
i∈A

εi
G[n] . (4.15)

Proof. The result follows from the expectation of inactivation indicator events and Lemma
4.7. �

Corollary 4.8 describes the average number of inactivations required for MAP perfor-
mance with a code defined by A when the transmission is over the BEC(ε), providing the
expected number of unknowns for the resulting linear system.3

Remark 4.3. The performance improvement under MAP decoding when interpolating
from polar to RM codes is driven by the weight spectrum improvement, e.g., the minimum
distance increases [13, 14]. This comes at the cost of a higher MAP decoding complexity.
The quantity E[G] is obtained from analyzing the inactivation decoder and this allows us
to quantify this complexity increase. Another way to improve the distance spectrum is to
embed dynamic frozen bits [15]. Although the number of inactivated bits remains unaf-
fected by the use of dynamic frozen bits, they might add extra complexity to the decoder,
especially for hardware implementations. Our analysis ignores this extra complexity, yet
according to the simulations, it is still accurate since the number of inactivations is the
dominating factor in the complexity.

3This relation was first observed in [139, Appendix A] for SCL decoding with unbounded list size, where
an inactivation event is replaced by a branching event as an SCL decoder branches paths if it encounters
an erasure.
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Figure 4.1.: BLER vs. ε for (128, 64) codes.

4.3.2. Numerical Results

In this section, we consider (i) polar codes, (ii) RM codes, (iii) eBCH-polar subcodes (with 7
dynamic frozen bits) of [18] as well as (iv) codes from the introduced ensembleDRM(r,m).
Numerical results are provided for rate R = 1/2 codes of length N ∈ {128, 512} using a
MAP decoding implemented via the SCI decoder. Note that the polar codes are designed
for the erasure probability ε = 0.4 via density evolution. The Singleton (4.3) and the BRC
(4.4) bounds are provided as benchmarks.
In Figures 4.1 and 4.2, the BLERs are shown for length 128 and 512 codes, respectively.

For any length, RM codes outperform polar codes. The (128, 64) eBCH code performs very
close to an instance from the G(128, 64) ensemble. The code is sampled from G(128, 64)
with the idea explained in Definition 4.2. The BLER of the (128, 64) eBCH-polar subcode
of [18] is also provided as a reference and it performs slightly better than RM(3, 7).
In the figures, the BLERs for two variants of RM codes with dynamic frozen bits are

provided. Codes are sampled randomly from the ensemble DRM(r, n) as given in Defini-
tion 4.1. For N = 128, their performance is close to that of the eBCH code. The second
variant, denoted as 7 − DRM(3, 7), is constructed by declaring all but the last 7 frozen
bits as static. The dynamic frozen bits are set to random linear combinations of the first
10 information bits since they are more likely to be erased. This code performs within an
erasure probability gap of 0.04 from the eBCH code at a BLER ≈ 10−6, which outperforms
the eBCH-polar subcode with 7 dynamic frozen bits also. For N = 512, the flattening in
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Figure 4.2.: BLER vs. ε for (512, 256) codes.

the curve of the RM code at BLER ≈ 10−5 is avoided by the instances of DRM(4, 9),
performing close to the Singleton bound down to a BLER ≈ 10−7.
In Figure 4.3, the expected numbers of inactivations E[G(Y N

1 )] from Corollary 4.8 are
provided together with the results obtained from simulations for N = 128, demonstrating
that the analysis is exact. MAP decoding of eBCH codes requires many more inactivations
compared to the others, which results in a higher average decoding complexity. For this
blocklength, surprisingly, E[GRM] is close to E[GeBCH−pol], where the eBCH-polar subcode
has a (small) additional complexity due to dynamic frozen bits. Introducing the dynamic
frozen bits does not affect the number of inactivations; hence, the complexity stays almost
the same, but it improves the performance significantly.

SCI Decoding with Maximum Number of Inactivations

To limit the worst-case complexity, SCI decoding is extended by imposing a maximum
number I of inactivations. An error is declared if the number of required inactivations
exceeds I or there is no unique solution at the end. The following corollary is a counterpart
of Theorem 4.2 for the SCI decoding with inactivation size I, where the proof follows by
observing the equivalence between a branching event in SCL decoding and an inactivation
event for SCI decoding.

Corollary 4.9 (Upper bound on the required number of inactivations for MAP decoding).
Let I∗(C) be the smallest number of inactivations allowed for SCI decoding which imple-
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1 )] vs. ε for the codes in Figure 4.1 with N = 128 (solid lines: from

Corollary 4.8, markers: Monte-Carlo simulation averages).

ments a MAP decoder for an (N,K) binary linear code C. Then I∗(C) is upper bounded
as

I∗(C) ≤ min {N(1−R)− (ζ − 1), γ −N(1−R)} . (4.16)

Remark 4.4 (SCL vs. SCI decoding). Let P (SCL)
B (L) and P

(SCI)
B (I) denote the BLEPs

for SCL decoding with list size L = 2I and SCI decoding with maximally I inactivations,
respectively. Then we have

P
(SCL)
B (2I) ≤ P

(SCI)
B (I) (4.17)

since SCL decoding can prune some invalid paths when it reaches a frozen bit. Note that
both decoders would perform the same if one allows at most I branching events for the
SCL decoding. Next, the SCI decoding is extended to solve for the inactivations along
the way to behave similar to SCL decoding, which forms a basis for the analysis of SCL
decoding.

4.4. SCI Decoding with Consolidations

We extend the inactivation decoder to include path pruning like in SCL decoding. The
decoder’s operation is unchanged whenever an information bit is encountered. For a frozen
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bit ui = 0, if (4.14) does not deliver an erasure, it provides the equation aG · ũG = 0.4 If aG
has a non-zero term, the equation is solved for ũij as ũij = aG\{ij} · ũG\{ij}, ij = max{i ∈
G : i 6= 0}, and stored. This is called a consolidation event. The decoder continues with
ûj = 0. We declare an error if there remains any unresolved ũi at the end. The pseudo
codes for the proposed decoder is provided as Appendix 4.5.6. The following analysis of
this decoder provides insights into the dynamics of the number of paths in SCL decoding
for the BEC.

4.4.1. Dynamics of the Subspace Dimension

Recall Proposition 4.3 stating that the set of valid information sequences after m decoding
stages is an affine subspace of {0, 1}|A

(m)|. For any yN1 , the subspace dimension, denoted
as dm(yN1 ), is equal to a conditional entropy, i.e,

dm(yN1 ) , H
(
UA(m)|Y N

1 = yN1 , UF(m)

)
(4.18)

and the corresponding RV is denoted as Dm that takes on the vaue dm(yN1 ) when Y N
1 = yN1 .

Consider the decoding of information and frozen bits given the observed vector and
preceding frozen bits. When an information bit um is decoded, one of following events
occurs:

. The information bit is decoded as an erasure and the subspace dimension increases
by one, i.e., dm(yN1 ) = dm−1(yN1 ) + 1. Averaged over all yN1 , the probability of this
event equals εm

G[n] (see Lemma 4.7).

. The information bit is decoded as an affine function of the previous information bits
and the subspace dimension is unchanged, i.e., dm(yN1 ) = dm−1(yN1 ). Averaged over
all yN1 , the probability of this event equals 1− εm

G[n] .

If a frozen um is decoded, one of following events occurs:

. The decoder returns an erasure for the frozen bit. In this case, revealing the true value
of the frozen bit allows decoding to continue, but no new information is provided
about preceding information bits. We thus have dm(yN1 ) = dm−1(yN1 ). Averaged over
all yN1 , the probability of this event equals εm

G[n] .

4If it is a dynamic frozen bit, the RHS of the equation is the linear combination defining it (see Section
3.4.8). For simplicity, assume it is not.
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. The frozen bit is decoded as an affine function of the previous information bits. Aver-
aged over all yN1 , the probability of this event equals 1− εm

G[n] . In this case, revealing
the true value of the frozen bit gives a linear equation for a subset of the preceding
information bits. If the linear equation is informative, then the subspace dimension
decreases by one via a consolidation event, i.e., we have dm(yN1 ) = dm−1(yN1 ) − 1.
Otherwise, the dimension is unchanged, i.e., dm(yN1 ) = dm−1(yN1 ).

At first glance, these rules might appear to tell the whole story. But the erasure rate
ε

(m)
N is averaged over all yN1 whereas predicting the value of Dm requires the conditional
probability of erasure events given all past observations. More importantly, to understand
consolidation events, one needs to compute the probability that the obtained equation is
informative.

Since we do not have expressions for these quantities, we use two simplifying approxi-
mations. First, we approximate the probability of decoding an erasure for a frozen bit as
independent of all past events, i.e., for any dm−1

1 , (d1
(
yN1
)
, . . . , dm−1

(
yN1
)
), we write

Pr
(
Pm

G[n](0|Y N
1 , Um−1

1 ) = 1/2
∣∣∣Dm−1

1 = dm−1
1

)
≈ ε

(m)
N . (4.19)

Second, we approximate the probability that an informative equation obtained from con-
solidation by 1− 2−Dm−1 , independent of sequence D1, . . . , Dm−2. This means, for m ∈ F ,
we write

Pr
(
Dm = dm−1

∣∣∣Dm−1
1 = dm−1

1 , Pm
G[n](0|Y N

1 , Um−1
1 ) 6= 1/2

)
≈ 2−dm−1 (4.20)

Pr
(
Dm = dm−1 − 1

∣∣∣Dm−1
1 = dm−1

1 , Pm
G[n](0|Y N

1 , Um−1
1 ) 6= 1/2

)
≈ 1− 2−dm−1 (4.21)

which comes from modeling the obtained equation and the subset using a uniform random
model. Under these assumptions, the random sequence D1, . . . , DN can be modelled by an
inhomogeneous Markov chain with transition probabilities P (m)

i,j , Pr (Dm = j |Dm−1 = i)
where

P
(m)
i,j ≈



εm
G[n] if m ∈ A, j = i+ 1

1− εm
G[n] if m ∈ A, j = i

εm
G[n] +

(
1− εm

G[n]

)
2−Dm−1 if m ∈ F , j = i(

1− εm
G[n]

) (
1− 2−Dm−1

)
if m ∈ F , j = i− 1.

(4.22)
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Consider decoding of frozen bit um based on this Markov chain approximation. We write

D̄m = E
[
Dm−1 −

(
1− ε(m)

N

) (
1− 2−Dm−1

)]
(4.23)

≈ D̄m−1 −
(
1− ε(m)

N

) (
1− 2−D̄m−1

)
(4.24)

where the last line follows from approximating E
[
2−Dm

]
as ≈ 2−D̄m . In the case of infor-

mation bit um, we have

D̄m = E
[
ε

(m)
N (Dm−1 + 1) +

(
1− ε(m)

N

)
Dm−1

]
(4.25)

= D̄m−1 + ε
(m)
N . (4.26)

By setting D̄0 , 0, (4.24) and (4.26) give the simple recursive approximation

D̄m ≈


D̄m−1 + ε

(m)
N if m ∈ A

D̄m−1 −
(
1− ε(m)

N

) (
1− 2−D̄m−1

)
if m ∈ F .

(4.27)

Remark 4.5. Observe that D̄m = H
(
UA(m)|Y N

1 , UF(m)

)
. We use this entropy to extend

some of the results presented in this chapter to more general BMSCs.

Before providing numerical results on the codes of, e.g., Figure 4.1, we study the stochas-
tic convergence properties of the RV Dm, which motivates the mean analysis further.

4.4.2. Concentration of the Subspace Dimension

We form a Doob’s Martingale by sequentially revealing information about the object of
interest (e.g., see [43,46]), which is the conditional entropy in our case as given in Proposi-
tion 4.10. In N consecutive steps, we reveal the random channel realizations. Irrespective
of the revealed realization, the change in the subspace dimension is bounded by some con-
stant. This lets us use the Azuma-Hoeffding inequality, i.e., Lemma 2.6, since the channel
under consideration is memoryless.

Remark 4.6. We assume, for the upcoming analysis, that the values of frozen bits are
also uniformly distributed and SCI decoding learns them causally. In the case of dynamic
frozen bits, uniform random constants are added, which are revealed causally as in the
case of other frozen bits.
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Proposition 4.10. The sequence of RVs H(m)
0 , H

(m)
1 , . . . , H

(m)
N where H(m)

i , E [Dm|Y i
1 ]

is a Doob’s Martingale, i.e., we have

H
(m)
i is a function of Y i

1 (4.28)
E [|Dm|] <∞ (4.29)
H

(m)
i−1 = E

[
H

(m)
i |Y i−1

1

]
. (4.30)

Proof. The statement (4.28) follows from the construction of the RVs H(m)
i and the defi-

nition of conditional expectation (recall Remark 2.3). The inequality (4.29) follows from
the non-negativity of Dm and E [Dm] = H

(
UA(m) |Y N

1 , UF(m)

)
. Finally, (4.30) follows by

E
[
H

(m)
i |Y i−1

1

]
= E

[
E
[
Dm|Y i

1

]
|Y i−1

1

]
(4.31)

= E
[
Dm|Y i−1

1

]
(4.32)

= H
(m)
i−1 (4.33)

where (4.31) and (4.33) follow from the definition of H(m)
i , and (4.32) from the tower

property, i.e., Lemma 2.3. �

Proposition 4.11. For transmission over the BEC, the subspace dimension satisfies the
Lipschitz-1 condition: for all i ∈ [N ] and all values yN1 and ỹN1 such that y∼i = ỹ∼i and
yi 6= ỹi, the subspace dimension satisfies

|dm(yN1 )− dm(ỹN1 )| ≤ 1. (4.34)

Proposition 4.11, whose proof is given as Appendix 4.5.7, will enable us to write the
following.

Corollary 4.12. The subspace dimension Dm concentrates around its mean dm for suffi-
ciently large block lengths, i.e., for any β > 0, we have

Pr
{ 1
N
|Dm − D̄m| > β

}
≤ 2 exp

(
−β

2

2 N
)
. (4.35)

Proof. Since the channel under consideration is memoryless, Yi, i ∈ [N ], are independent
due to the uniform UN

1 implied by Remark 4.6. Hence, Proposition 4.11 implies
∣∣∣H(m)

i −H(m)
i−1

∣∣∣ ≤ 1, i ∈ [N ]. (4.36)
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Then, we apply the Azuma-Hoeffding inequality, i.e., Lemma 2.6, by observing that the
first element in the martingale is the expectation of Dm and the last one is the RV itself,
i.e., H(m)

0 = D̄m and H(m)
N = Dm. �

Remark 4.7. Let ρ = dlog2me and N0 = 2ρ. Due to the recursive structure of the SCL
decoder, the statistics of Dm are the same for all N ≥ N0 if the first N0 frozen bits are the
same. Thus, Corollary 4.12 remains valid if we replace (4.35) by

Pr
{ 1
N0
|Dm − dm| > β

}
≤ 2 exp

(
−β

2

2 N0

)
. (4.37)

This provides a significant improvement when N0 � N .

Remark 4.8. Note that the bounds of the form (4.35) are typically loose (see [46, Section
IV] for a discussion on tightness of the concentration results for the performance of a
randomly chosen LDPC code around the ensemble average). Nevertheless, such analysis
shows that the mean D̄m under consideration is meaningful.

4.4.3. Numerical Results

Consider a dRM ensemble sequence, which is introduced as the sequence of rate-1/2 dRM
ensembles (see Definition 4.1). The `-th ensemble in the sequence is DRM(`, 2` + 1).
To understand the accuracy of the mean analysis and approximations, we simulated SCI
decoding with consolidations for instances of DRM(`, 2`+ 1), ` ∈ {4, 5, 6}. The results of
these simulations are realizations of the random process D1, . . . , DN and we compare their
mean to the theoretical predictions (4.22) and (4.27) in Figures 4.4-4.6. Note that as the
blocklength changes, a random instance from the corresponding ensemble is picked for the
simulations. The numerical results are quite similar for different instances chosen randomly.
These results show that for a random code in DRM(`, 2`+1) the simulation mean is close
to the analysis, where Markov approximation (4.22) matches the mean slightly better for
large values of m. With an increasing blocklength, (4.22) and (4.27) match the simulations
better for large values of m.
One weakness of these bounds is that the channel variation (e.g., in the number of

erasures) significantly increases the variation in DN
1 , especially for small to medium block-

lengths, e.g., N = 512. Consider a fixed-weight BEC that chooses a random pattern with
exactly round(Nε) erasures. To motivate this, note that density evolution naturally cap-
tures the typical behavior of the analyzed system [54]. Figure 4.7 shows simulation results
for realizations of DN

1 and compares these with their average and the theoretical prediction
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Figure 4.4.: D̄m vs. m at ε = 0.48 for an instance from DRM(4, 9).
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Figure 4.5.: D̄m vs. m at ε = 0.48 for an instance from DRM(5, 11).
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Figure 4.6.: D̄m vs. m at ε = 0.48 for an instance from DRM(6, 13).
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(4.27) for a random code in DRM(4, 9) as for Figure 4.4. The results show that even for
a random code in DRM(4, 9) the simulation mean is close to the analysis for the entire
range of m. The 15 random simulation traces lie largely within the 90% confidence range
of the Markov chain analysis.
Next, we study how the subspace dimension behaves as the blocklength increases for

the dRM codes. Let w , m
N
, m ∈ [N ], be the normalized decoding stage. Figure 4.8

provides the normalized dimension 1
N
D̄wN as a function of w for the samples of dRM en-

semble sequence with different blocklengths, from N = 29 up to N = 231. The match
between the approximation (4.27) and the simulation up to N = 213 shows the accuracy
of the analysis and we believe that the results for larger blocklengths are also accurate.
The asymptotic behavior of 1

N
D̄wN gives the asymptotic decoding complexity of an ML

decoder implemented via an SCI decoder. This provides insight into the asymptotic de-
coding complexity of RM codes to achieve the capacity over the BEC [94] for two reasons:
first, RM(`, 2` + 1) is a member of the ensemble, and second, the simulation results look
very similar for RM codes up to N = 213. Other decoding algorithms might improve the
complexity, but we are not aware of a lower-complexity ML decoder than SCI decoding for
RM codes. Figure 4.8 shows that the convergence is rather slow for the defined sequence.
Interesting directions include understanding what happens to 1

N
D̄wN as N → ∞ analyti-

cally and trying to find code sequences where maxw 1
N
D̄wN is significantly better than that

of dRM codes, but that still perform competitively.
Figure 4.9 provides the PMF for 1

N
D[0.4N ], where [wN ] is the nearest integer to wN , w ∈

(0, 1]. The parameter w is set to 0.4 since the mean analysis given in Figure 4.8 shows that,
for the considered codes, the mean reaches to its maximum around w = 0.4. Interestingly,
the PMFs concentrates around the mean 1

N
D̄[0.4N ] with increasing blocklength as suggested

by Corollary 4.12.
To further highlight the performance vs. complexity trade-off, Figure 4.10 shows the

average subspace dimension D̄m as the SCI decoder with consolidations proceeds from
m = 1 to m = N with N = 128 at ε = 0.4 for the polar and RM code of Figure 4.1. The
code with a better performance, i.e., RM code (see Figure 4.1), has more inactivations at
early stages due to more information bits at unreliable positions; hence, a larger decoding
complexity. The frozen bits placed at fairly reliable positions help resolve the inactivations,
yielding a better performance. The decoder is not able to resolve the inactivated bits for
the polar code because of the lack of frozen bits at reliable positions appearing after
inactivations. Hence, D̄m provides a measure to quantify performance vs. complexity
trade-off. On the one hand, many unresolved inactivations increase complexity. On the
other hand, too few inactivations to begin with do not make best use of the information
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Figure 4.10.: D̄m vs. m at ε = 0.4 for (128, 64) polar code and RM(3, 7).

provided by frozen bits when it comes resolving inactivations.
In Figure 4.11, D̄m is provided for codes with dynamic frozen bits. Observe the large

number of inactivations for the random code from G(128, 64) that are mostly resolved at
the end. The eBCH code and the instance from DRM(3, 7) provide a similar performance
(see Figure 4.1) with a lower complexity compared to the random code. In addition,
the eBCH-polar code has the lowest complexity but with a degraded performance (see
Figure 4.1). The instance from 7 − DRM(3, 7) is an exemplary construction for a code
performing halfway between the eBCH-polar and dRM codes (see Figure 4.1). An analysis
of the additional complexity due to dynamic frozen bits is left to future work.

4.5. Appendices

4.5.1. Proof of Theorem 4.1

Assume that a K × N generator matrix G is constructed by generating all the entries
{gi,j} uniformly at random over F2. Let PB (G) denote the block error probability of the
random code defined by G under MAP decoding, over the BEC(ε). We are interested in
upper-bounding the average BLEP, i.e., in upper-bounding E [PB (G)].
We start by computing the probability of having a rank P smaller than K when gener-

ating K × (N − e) random matrices with N − e ≥ K, where all the entries are generated
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Figure 4.11.: D̄m vs. m at ε = 0.4 for (128, 64) codes with dynamic frozen bits.

uniformly at random. We have [141]

Pr{P < K} = 1−
K−1∏
i=0

(1− 2−(N−i−e)). (4.38)

The result can be obtained recursively. We generate the K × (N − e) binary submatrix
of G induced by e erasures in row-by-row fashion and we compute the probability that a
newly generated row falls in the linear subspace spanned by the preceding rows. Denote
by G

(i)
:,Ē the matrix obtained after generating the first i rows, with G

(K)
:,Ē = G:,Ē . We have

that
Pr{rank G

(i)
:,Ē = i|G(i−1)

:,Ē = i− 1} = 1− 2i−1

2N−e (4.39)

with
Pr{rank G

(1)
:,Ē = 1} = 1− 1

2N−e . (4.40)

by applying (4.39) recursively, we obtain

Pr{rank G:,Ē = K} =
K−1∏
i=0

(
1− 1

2N−i−e

)
. (4.41)

from which (4.38) follows. One can use induction to obtain a tight bound [142, Proposition
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1] as
Pr{P < K} = 2−(N−K−e) (4.42)

which is easier to compute. We now write

E [PB (G)] ≤
N∑

i=N−K+1

(
N

i

)
εi(1− ε)N−i +

N−K∑
i=1

(
N

i

)
εi(1− ε)N−i2−(N−K−i) (4.43)

where the first term on the RHS follows by observing that if there are more than N −K
erasures, then a unique solution is not possible and noting that the probability of observing
i erasures is

Pr{E = i} =
(
N

i

)
εi(1− ε)N−i (4.44)

The second term follows from (4.38) and (4.44), where e is replaced by i in the former.
The result now follows by observing that there exists at least one code performing better
than the average. �

4.5.2. Proof of Lemma 4.2

The SCL decoder can branch up to maximally 2K−(N−γ) = 2γ−N(1−R) paths until the last
frozen bit uγ. Over the BEC, each path is equally likely and the only way to differentiate
between the paths is to cancel some of them whenever we obtain zero probability for the
paths. Now suppose that (a) the SCL decoder delivers a unique solution at the end and
suppose further that (b) there was a branching event after uγ. Since there is no frozen bit
left after uγ, (b) would mean that there are at least two solutions, hence contradicting (a).
Therefore, for an SCL decoder providing a unique solution, it is not possible to have a list
length larger than 2γ−N(1−R) at any decoding stage.
Observe also that bits uζ−1

1 are frozen and they appear before the first information bit.
This means they are of no use for cancelling any path. This would mean there are at most
N −K − (ζ − 1) = N(1−R)− (ζ − 1) frozen bits that have potential to prune half of the
existing paths. If there are more than 2N(1−R)−(ζ−1) paths at any decoding stage during
SCL decoding, then there will be at least 2 solutions at the end, concluding the proof. �

4.5.3. Proof of Proposition 4.3

Let E denote the set of erased positions in the realization yN1 . We can write

(uA(i) , uNi+1)G[n]
[N ]\F(i),Ē = y[N ]\E ⊕ uF(i)G

[n]
F(i),Ē (4.45)
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where G
[n]
S,Ē is the matrix formed by the rows of G[n] indexed in S and then removing its

columns indexed in E . This equation enables to use the frozen bits uF(i) as side information.
Let C denote the set of all possible solutions for (uA(i) , uNi+1), which is an affine subspace.
We are interested in all compatible partial information sequences uA(i) with (4.45) (hence,
ui1 as uF(i) is a linear transform of uA(i)). To this end, we define the mapping ΠA(i) :
FN−|F

(i)|
2 → F|A

(i)|
2 as

ΠA(i)(C) ,
{
v
|A(i)|
1 : vN−|F

(i)|
1 ∈ C

}
(4.46)

which is a linear mapping since it can be represented as a multiplication of the input by a
matrix formed by stacking an |A(i)|× |A(i)| identity matrix and an (N − i)×|A(i)| all-zero
matrix. The result now follows by noting that a linear transform of an affine subspace is
affine. �

4.5.4. Proof of Lemma 4.6

The case where ûi−1
1 does not contain any inactivation, i.e., ûi−1

1 = ui−1
1 , is trivial. Thus,

we assume that the decoder inactivated some information bits, i.e., ûj = ũj for some j,
1 ≤ j < i.
Now suppose that

fi(yN1 , ui−1
1 ) = ? −→ P i

G[n](ui|yN1 , ui−1
1 ) = 1/2 ∀ui ∈ F2. (4.47)

Suppose also that we have a vector aG such that

P i
G[n](aG · ũG|yN1 , ûi−1

1 ) = 1 −→ fi(yN1 , ûi−1
1 ) 6= ? (4.48)

But (4.48) implies
P i

G[n](aG · uG|yN1 , ui−1
1 ) = 1 (4.49)

by replacing inactivated bits with their values and having u0 = ũ0 (equivalently, u0 = 1).
This contradicts (4.47).
Now, consider the other direction, i.e., suppose that for some ui ∈ F2 we have

fi(yN1 , ui−1
1 ) = ui −→ P i

G[n](ui|yN1 , ui−1
1 ) = 1 (4.50)

and that
fi(yN1 , ûi−1

1 ) = ?. (4.51)
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Then, (4.50) implies that there exists a vector aG for which we have

P i
G[n](aG · ũG|yN1 , ûi−1

1 )
∣∣∣∣
aG ·ũG=ui,ûi−1

1 =ui−1
1

= 1 (4.52)

and this contradicts (4.51). �

4.5.5. Proof of Lemma 4.7

Let b′i = Pr
{
fi(yN1 , ûi−1

1 ) = ?
}
. We have

b′i
(a)= E[1{fi(yN1 , ûi−1

1 ) = ?}] (b)= E[1{fi(yN1 , ui−1
1 ) = ?}] (c)= εi

G[n] (4.53)

where (a) and (c) follow from the definition of expectation and (b) from Lemma 4.6. The
result follows from (4.8). �

4.5.6. Algorithms for SCI Decoding with Consolidations

We first provide the data structures required, where the space-efficient SC decoding of [11]
is followed closely. We first have vectors P [λ], for each layer λ ∈ [n + 1], of length
2n−λ+1, which consists of elements from the ternary alphabet {0, ?, 1}. Secondly, we have
2-dimensional bit arrays C [λ] of size 2n−λ+1×2, whose elements are from {0, 1}. For every
pair of λ ∈ [n+ 1] and β ∈ [2n−λ+1], we have binary sparse vectors L[λ][β] and R[λ][β, φ],
φ ∈ [2], of size N . Finally, we have bit vectors û and F [i], i ∈ [N ], of size N . They
can be initialized as in Algorithm 1 with the caveat that the initialization of the sparse
vectors F [i] should take into account the dynamic frozen bit constraints. In the following
we provide an example.

Example 4.1. Assume that we have an (N = 8, K = 4) polar code, where A = {4, 6, 7, 8}
and u5 = u4 is a dynamic frozen bit. Then, the sparse vectors F [i], i ∈ [8] \ {5}, are
initialized as the all-zero vectors of length 8, but F [5] has non-zero entry as its 4-th
element, i.e., F [5][4] = 1. This represents the dynamic frozen via a tuple (û[5], F [5]). In
other words, we have

u5 = û[5]⊕ uN1 F [5]T (4.54)

where F [5]T is the transpose of F [5].

Algorithm 2 is the main loop of SCI decoding with consolidations. In addition to the
representation of the data structures as sparse vectors, the main difference of the algorithm
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Algorithm 1: initializeDataStructures()
1 û = zeros(N)
2 for i = 1, . . . , N do
3 F [i] = sparse (N) // initiated according to dynamic frozen bit constraints

4 for λ = 1, . . . , n+ 1 do
5 P [λ] = array(2n−λ+1)
6 C[λ] = array(2n−λ+1, 2)
7 for β = 1, . . . , 2n−λ+1 do
8 L [λ] [β] = sparse (N)
9 for φ = 1, 2 do

10 R [λ] [β, φ] = sparse (N)

from SC decoding is due to the inactivation event as given in line 16 and the subroutine
consolidate(i) given as Algorithm 3. For any i ∈ A, if P [n+1][1] is computed as an erasure,
then the decoder inactivates its value as ui by setting F [i][i] = 1. As in Example 4.1, ui is
represented by a tuple (ûi, F [i]), which simply reads as

ui = û[i]⊕ uN1 F [i]T . (4.55)

For any i ∈ F , if the combination provided by the data structures P [n + 1] and L[n + 1]
do not match that of û[i] and F [i] in the case that the decoder does not provide an
erasure, this means that the frozen bit provides information about the former inactivations
since there cannot be any error over the BEC. Then, the subroutine consolidate(i) solves
the equation for the unresolved variable with the smallest index5 and updates the data
structures affected by previous inactivations. The variable d initiated as the all-zero vector
in line 5 of Algorithm 2 and d[m] is equivalent to the subspace dimension dm

(
yN1
)
. This

means there is a unique solution if d[N ] = 0, i.e., if dN
(
yN1
)

= 0, but the decoder outputs
an error in case there is more solutions.6

Algorithms 4-5 operates recursively as usual for SC decoding [11], where the former is
responsible of computing P [λ] and L[λ] and the latter updates the decisions C[λ] and R[λ]
including the inactivations. An important aspect to note is that if P [λ][β] is computed
as erasure one does not need to update L[λ][β] (see lines 10 and 23 of Algorithm 4). The
reason is that the tuple (P [λ][β], L[λ][β]) represents an erasure in this case no matter what

5The equation can be solved for any unresolved variable at this point. We choose to solve it for the
smallest by assuming that it has higher probability to be involved in many data structures.

6The algorithm can be modified to output the tuple (û, F ), representing the solution set compactly.
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Algorithm 2: SCI Decoding with Consolidations
1 Input: yN1
2 Output: ûN1
3 for i = 1, . . . , N do
4 P [1] [i] = yi

5 d = zeros(N)
6 for i = 1, . . . , N do
7 recursivelyCalcPL(n+ 1, i− 1)
8 if i /∈ A then
9 if P [n+ 1] [1] 6=? then

10 if P [n+ 1] [1] 6= û[i] || L[n+ 1][1] 6= F [i] then
11 consolidate(i)
12 d[i] = d[i− 1]− 1

13 else
14 if P [n+ 1] [1] 6=? then
15 û [i] = P [n+ 1] [1]
16 F [i] = L[n+ 1][1]
17 else
18 F [i][i] = 1 // inactivate ui
19 d[i] = d[i] + 1

20 C [n+ 1] [1, (i− 1) mod 2 + 1] = û [i]
21 R [n+ 1] [1, (i− 1) mod 2 + 1] = F [i]
22 if i mod 2 = 0 then
23 recursivelyCalcCR(n+ 1, i− 1)

24 if d[N ] = 0 then
25 return û
26 else
27 return erasures(N)
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Algorithm 3: consolidate(i)
1 û [i] = û [i]⊕ P [n+ 1][1]
2 F [i] = F [i]⊕ L[n+ 1][1]
3 t = firstNonZeroElement(F [i])
4 for j = 1, . . . , N do
5 if F [j] [t] = 1 then
6 û [j] = û [j]⊕ û [i]
7 F [j] = F [j]⊕ F [i]

8 a = i
9 while a 6= 0 do

10 λ = n+ 1− blog2 ac
11 for β = 1, . . . , 2n−λ+1 do
12 if L [λ] [β] [t] = 1 then
13 P [λ] [β] = P [λ] [β]⊕ û [i]
14 L [λ] [β] = L [λ] [β]⊕ F [i]
15 for φ = 1, 2 do
16 if R [λ] [β, φ] [t] = 1 then
17 C [λ] [β, φ] = C [λ] [β, φ]⊕ û [i]
18 R [λ] [β, φ] = R [λ] [β, φ]⊕ F [i]

19 a = a− 2blog2 ac

20 F [i] [t] = 0

L[λ][β] is.

Remark 4.9. We consider upper-bounding the number of XORs required by the algorithm
for a given channel output yN1 . This means, for example, we are interested in the number
of XORs due to lines 12, 13, 20 and 21 of Algorithm 4, but the assignments like in lines 10,
16 and 17 are omitted. The number of XORs required CSCI

N

(
yN1
)
by the proposed decoder

is upper bounded as

CSCI
N

(
yN1
)
≤ 3

2
(
1 + dmax

(
yN1
))
N log2N +

∑
m∈F ,
cons.

happens

(3m+N + 1)
(
1 + dm−1

(
yN1
))

(4.56)

where dmax
(
yN1
)
, maxm dm

(
yN1
)
. The first term follows from observing that SC decoding

operations are introduced for the sparse vectors which can have at most dmax
(
yN1
)
non-zero

entries at any stage of decoding and observing that standard SC decoding requires at most
3
2N log2N XORs over the BEC. The second term stems from subroutine consolidation(m),
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Algorithm 4: recursivelyCalcPL(λ, i)
1 Input: λ and i
2 if λ = 1 then
3 return
4 ψ = bi/2c
5 if i mod 2 = 0 then
6 recursivelyCalcPL(λ− 1, ψ)
7 for β = 1, . . . , 2n−λ+1 do
8 if i mod 2 = 0 then
9 if P [λ− 1] [2β − 1] =? || P [λ− 1] [2β] =? then

10 P [λ] [β] =?
11 else
12 P [λ] [β] = P [λ− 1] [2β − 1]⊕ P [λ− 1] [2β]
13 L [λ] [β] = L [λ− 1] [2β − 1]⊕ L [λ− 1] [2β]
14 else
15 if P [λ− 1] [2β] 6=? then
16 P [λ] [β] = P [λ− 1] [2β]
17 L [λ] [β] = L [λ− 1] [2β]
18 else
19 if P [λ− 1] [2β − 1] 6=? then
20 P [λ] [β] = P [λ− 1] [2β − 1]⊕ C [λ] [β, 1]
21 L [λ] [β] = L [λ− 1] [2β − 1]⊕R [λ] [β, 1]
22 else
23 P [λ] [β] =?

Algorithm 5: recursivelyCalcCR(λ, i)
1 Input: λ and i
2 ψ = bi/2c
3 for β = 1, . . . , 2n−λ+1 do
4 C [λ− 1] [2β − 1, ψ mod 2 + 1] = C [λ] [β, 1]⊕ C [λ] [β, 2]
5 R [λ− 1] [2β − 1, ψ mod 2 + 1] = R [λ] [β, 1]⊕R [λ] [β, 2]
6 C [λ− 1] [2β, ψ mod 2 + 1] = C [λ] [β, 2]
7 R [λ− 1] [2β, ψ mod 2 + 1] = R [λ] [β, 2]
8 if ψ mod 2 = 1 then
9 recursivelyCalcCR(λ− 1, ψ)
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which can be seen as a form of backward substitution. If called, it requires to update 3m
tuples between lines 9 and 19, where each tuple consists of, e.g., P [λ][β] or C[λ][β, φ], and
a binary vector, e.g., L[λ][β] or R[λ][β, φ], of at most dmax

(
yN1
)
non-zero entries. Hence,

this update requires at most 3m
(
1 + dm−1

(
yN1
))

XORs. In addition, lines 1 and 2 require
at most

(
1 + dm−1

(
yN1
))

XORs and the number of XORs between lines 4 and 7 might
update N tuples, which require at most N

(
1 + dm−1

(
yN1
))

XORs. Hence, we have an
upper bound (4.56). Then, we write

CSCI
N

(
yN1
)
≤3

2
(
1 + dmax

(
yN1
))
N log2N + g

(
yN1
)

(4N + 1)
(
1 + dmax

(
yN1
))

(4.57)

where g
(
yN1
)
denotes the total number of inactivations during decoding. Then, the RHS

follows by noting that there can be at most as many consolidations as inactivations. By
observing that dmax

(
yN1
)
≤ g

(
yN1
)
≤ NR, the bound (4.57) scales at most cubic in N

independent of the code, which gets typically loose for wide range of codes, e.g., polar
codes.

When no constraint on the list size is imposed, the worst-case complexity CSCL
N

(
yN1
)
of

SCL decoding is upper bounded as

CSCL
N

(
yN1
)
≤ 3

22dmax(yN1 )N log2N (4.58)

where the RHS scales exponentially in dmax
(
yN1
)
. For dmax

(
yN1
)

= 0, bounds (4.57) and
(4.58) both become 3

2N log2N as expected. For large values of dmax
(
yN1
)
, two bounds

behave differently in favour of the former.

Figure 4.12 provides the probabilities Pr
(

1
N
dmax

(
Y N

1

)
≤ d

)
, d ∈ [0, NR], for instances

from dRM code ensembles with different block lengths over the BEC with erasure proba-
bility ε = 0.48. For N = 213, we have Pr

(
1
N
dmax

(
Y N

1

)
≤ 0.065

)
≈ 0. This means, for an

SCL decoder with list size L < 2532, the list length would exceed the list size with very
high probability, which yields block error rates close to 1. For the same case, we have
Pr
(

1
N
dmax

(
Y N

1

)
≤ 0.074

)
≈ 0.5 and Pr

(
1
N
dmax

(
Y N

1

)
≤ 0.083

)
≈ 1. This means that the

list length of SCL decoding with unbounded list size would reach 2606 roughly half of the
time and to 2680 with a non-zero probability, which may not be feasible to implement due
to its complexity.

For completeness, Figure 4.13 provides the ML performance for instances of dRM codes
of Figure 4.12, obtained via SCI decoding. For N ∈ {211, 213}, they perform remarkably
close to the Singleton bound.
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4.5.7. Proof of Proposition 4.11

It suffices to consider the case where yi is not erased but ỹi is an erasure (i.e., yi = xi

and ỹi = ?). Observe that SCI decoding with consolidations over the BEC is equivalent
to solving a system of linear equations with side information depending on the decoding
stage. In other words, the decoder knows the frozen bits uF(m) after decoding stage m
as side information. Now recall the linear system given as (4.45). All compatible vec-
tors (uA(m) , uNm+1), m ∈ [N ], with (4.45) form an affine subspace. The dimension of this
subspace is

d′N(yN1 ) = N − |F (m)| − rank(G[n]
[N ],Ē). (4.59)

Since removing one more column of G
[n]
[N ],Ē (and also of G

[n]
F(m),Ē) cannot decrease the rank

by more than one, we have

d′N(yN1 ) ≤ d′N(ỹN1 ) ≤ d′N(yN1 ) + 1. (4.60)

Hence, the number of compatible vectors (uA(m) , uNm+1) with (4.45) is (at most) doubled or
unchanged.
We are interested in the subspace dimension dm(yN1 ). This is equal to the number of

different subvectors uA(m) of all compatible (uA(m) , uNm+1) with (4.45). Using (4.60), one
concludes that the number of different vectors uA(m) either increases by a factor of 2 or
does not change, resulting in (4.34). �



5
Successive Cancellation List
Decoding over General BMSCs

This chapter develops an information-theoretic perspective for analyzing the SCL decoding
of polar codes when transmission is over BMSCs by generalizing the ideas presented in
Chapter 4 for the BEC. An important property of SCL decoding is that, if the correct
codeword is on the list at the end of decoding, then the BLEP is upper bounded by that
of the MAP decoder. We study how large the list should be on average at each decoding
stage on average so that the correct codeword is likely to be on the list. Intuitively, such
an average list size would be small for codes which are more suited for SC decoding, e.g.,
polar codes, while large for others, e.g., RM codes. A closed form approximation for this
average, that is easy to compute, provides a first-order proxy for good code designs for
SCL decoding over general BMSCs.
The performance of random codes from the dRM ensemble RM(3, 7) is close to the

random coding union (RCU) bound [143, Theorem 16] down to the BLER 10−5 under
SCL decoding with list size L = 128. The analysis shows how to modify the design to
improve the performance when a more practical list size (e.g., L = 32) is adopted, while
keeping the performance with L = 128 unchanged. For a blocklength of N = 512, a
design performing within 0.4 dB from the RCU bound down to the BLER 10−6 under
an SCL decoder with list size L = 1024 is provided. The design is modified using the
new guidelines derived in this chapter, so that the performance improves with practical
list sizes (e.g., L ∈ {8, 32, 128}), outperforming the polar codes included in the 3GPP 5G
cellular standard.
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5.1. Information-Theoretic Analysis of SCL Decoding

Consider a length-N polar code with SCL decoding after the m-th decoding stage. Since
SCL decoding does not use future frozen bits, we focus on the subset of length-m input
patterns that have significant conditional entropy given the channel observation. An im-
portant insight is that, after observing Y N

1 , the uncertainty in Um
1 is quantified by the

entropy
H
(
Um

1 |Y N
1

)
=

m∑
i=1

H
(
Ui|U i−1

1 , Y N
1

)
(5.1)

where UN
1 is assumed to be uniform over {0, 1}N . This is exactly true if the first m bits

are all information bits, i.e., if [m] ⊆ A. If [m] contains also frozen indices, however, then
the situation is more complicated.
Recall that A(m) = A ∩ [m] and F (m) = F ∩ [m], i.e., these are the sets containing

information and frozen indices within the first m input bits, respectively. Now consider an
experiment where the frozen bits Ui with i ∈ F (m) are uniform and independent of U i−1

1 .
Using (5.1) naively with the assumption that UF(m) is not known to the receiver would
cause an overestimate of H

(
Um

1 |Y N
1

)
by an amount of at least ∑i∈F(m) H

(
Ui|U i−1

1 , Y N
1

)
.

In addition, the frozen bits UF(m) may reveal additional information about the previous
information bits.
To better understand the uncertainty of the first m input bits during SCL decoding,

recall the quantity
D̄m = H

(
UA(m)

∣∣∣Y N
1 , UF(m)

)
(5.2)

and define a difference sequence

∆m , D̄m − D̄m−1. (5.3)

Observe that, if Um is an information bit, then we have

∆m = H
(
UA(m) |Y N

1 , UF(m)

)
−H

(
UA(m−1) |Y N

1 , UF(m−1)

)
= H

(
UA(m) |Y N

1 , UF(m−1)

)
−H

(
UA(m−1) |Y N

1 , UF(m−1)

)
= H

(
UA(m) , UF(m−1)|Y N

1

)
−H

(
UA(m−1) , UF(m−1)|Y N

1

)
= H

(
Um−1

1 |Y N
1

)
+H

(
Um|Y N

1 , Um−1
1

)
−H

(
Um−1

1 |Y N
1

)
= H(Um|Y N

1 , Um−1
1 ) (5.4)

which is exactly what one would expect from the naive analysis given by (5.1).
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If Um is a frozen bit, then consider a model where Um is not known to the receiver at
the time of transmission.1 The act of revealing Um to the receiver changes the conditional
uncertainty about UA(m−1) by

∆m = H
(
UA(m) |Y N

1 , UF(m)

)
−H

(
UA(m−1) |Y N

1 , UF(m−1)

)
= H

(
UA(m−1) |Y N

1 , UF(m−1) , Um
)
−H

(
UA(m−1) |Y N

1 , UF(m−1)

)
= −I

(
Um;UA(m−1) |Y N

1 , UF(m−1)

)
= H

(
Um|Y N

1 , Um−1
1

)
−H

(
Um|Y N

1 , UF(m−1)

)
≥ H

(
Um|Y N

1 , Um−1
1

)
− 1. (5.5)

This expression quantifies the effect of revealing the new frozen bit as a reduction in the
conditional entropy of the information bits preceding it. A large reduction may occur
when the channel Wm

G[n] has low entropy (i.e., a low-entropy effective channel is essentially
frozen) and the reduction will be small if the channel entropy is high (i.e., the input is
unpredictable from Y N

1 and Um−1
1 ).

For BMS channels, we can combine (5.4) and (5.5) to understand the dynamics of D̄m.
This gives a proxy for the uncertainty in the SCL decoding after m steps. We have

∑
i∈A(m)

H
(
W i

G[n]

)
−

∑
i∈F(m)

(
1−H

(
W i

G[n]

))
≤ D̄m (5.6)

≤
∑

i∈A(m)

H
(
W i

G[n]

)
. (5.7)

The lower bound assumes that frozen bits (when perfectly observed) always reduce the
entropy. The following theorem, whose proof is left for Appendix 5.2.1, provides a tighter
upper bound than (5.7).

Theorem 5.1. Upon observing yN1 when uN1 is transmitted, the set of partial sequences
ũm1 with a larger likelihood than some fraction, determined by a positive number α ≤ 1,
of that for true sequence um1 after m stages of SCL decoding is given by

S(m)
α

(
um1 , y

N
1

)
, {ũm1 : pi

G[n](yN1 , ũm1 ) ≥ αpi
G[n](yN1 , um1 )}. (5.8)

1This reflects how the SCL decoder operates, i.e., it does not use the knowledge of any frozen bit Um until
reaching the end of its decoding stage m. The soft estimate pm

G[n](yN1 , um−1
1 ) provides an additional

information to separate the hypotheses (i.e, paths) although the hard estimate is chosen as ûm = um
independent of pm

G[n](yN1 , um−1
1 ).
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On average, the logarithm of its cardinality is upper bounded by

E
[
log2 |S(m)

α |
]
≤ D̄m + log2 α

−1 (5.9)

= H
(
UA(m) |Y N

1 , UF(m)

)
+ log2 α

−1. (5.10)

Note that α is used as a tuning parameter to catch near misses. Making it too small will
keep many partial sequences with low probabilities in the set while choosing it as α = 1
will exclude those with probabilities close to (but slightly smaller than) that of the correct
path. For Monte-Carlo simulations validating (5.10), we choose it as close as possible to
1, but still keeping E

[
log2 |S(m)

α |
]
close to D̄m especially for small values of m. Observe

that making α too small will keep many partial sequences with low probabilities in S(m)
α

and choosing it as α = 1 misses.
Now consider an SCL decoder whose list size is Lm during the m-th decoding step. Then

the decoder should satisfy Lm ≥ |S(m)
1 | for the true um1 to be in the set S(m)

1 . Using (5.10)
and (5.7) yields the simple upper bound

E
[
log2 |S(m)

α |
]
≤

∑
i∈A(m)

H
(
W

(i)
N

)
+ log2 α

−1. (5.11)

Remark 5.1. The analysis in terms of log2 Lm has two weaknesses. First, the entropy
D̄m characterizes only typical events, e.g., ensuring that the correct codeword stays on the
list at least half of the time, whereas coding typically focuses on rarer events, e.g., BLERs
less than 10−2. Second, the sequence D̄m is averaged over Y N

1 but the actual decoder
sees a random realization Dm(yN1 ) = H

(
UA(m) |Y N

1 = yN1 , UF(m)

)
. Nevertheless, we believe

the results provide a useful step towards a theoretical analysis of SCL decoding. In the
following, we provide numerical results that illustrate the accuracy of the analysis. After
the numerical results, we study the convergence properties of the RV Dm as for the BEC
to motivate further analysis.

Remark 5.2. The results have significance for code design. To achieve good performance
with under SCL decoding whose list size is Lm during the m-th decoding step, a reasonable
first-order design criterion is that log2 Lm ≥ D̄m. This observation implies, in principle,
that frozen bits should be allocated to prevent D̄m from exceeding log2 Lm. Since comput-
ing D̄m requires simulations with huge list sizes (if not unbounded) and the upper bound
(5.7) ignores the affect of frozen bits, we use the lower bound (5.6) as the proxy for designs.
Exemplary designs are provided in Section 5.1.2.

Figure 5.1 shows simulation results for a random instance from RM(3, 7) under SCL
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Figure 5.1.: D̄m vs. m at Eb/N0 = 0.5 dB for an instance from DRM(3, 7).

decoding with L = 214 at an SNR of Eb/N0 = 0.5 together with the lower bound (5.6) and
the upper bound (5.7) on D̄m. The figure validates the bounds (5.6), (5.7) and (5.10). Note
that we set the parameter α = 0.94 in (5.10) to provide a robust estimate by capturing the
near misses, which happen if there are decoding paths with probabilities slightly smaller
than that of the correct path. To understand this better, consider the proposed design
where u1 is an information bit. If one sets α = 1, we get

E
[
log2 |S

(1)
1 |
]
≈ 0.5 log2 1 + 0.5 log2 2 = 0.5 (5.12)

which follows from D̄m ≈ 1. Observing Figure 5.1, we obtain E
[
log2 |S

(1)
0.94|

]
≈ 1. There-

fore, tightness of (5.10), especially at early decoding stages, is impacted by the choice of
α.2 Our numerical results show that the curve for E

[
log2 |S(m)

α |
]
is more robust to changes

in α at late decoding stages, i.e., for larger values of m. This means that the near misses
happen at early decoding stages more often. In addition, observe that (5.6) closely tracks
the simulation for m ≤ 50 and it is easy to compute via standard methods, e.g., we used
Gaussian approximation of density evolution (see Section 3.4.7), which further motivate
using it for code design.

2One may further reduce the threshold α for inclusion to find a better match of E
[
log2 |S

(m)
α |

]
to D̄m

for the entire range.
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5.1.1. Concentration of the Required Entropy in the List

We follow the steps of Section 4.4.2 to show that the required uncertainty accumulated
by an SCL decoder to keep the correct path on the list concentrates around its mean
D̄m for sufficiently large block lengths. Observe that the sequence H(m)

0 , H
(m)
1 , . . . , H

(m)
N

defined by Proposition 4.10 forms a Doob’s Martingale independent of the channel under
consideration.

Proposition 5.2. Consider transmission over a BMSC satisfyingW (y|x) ≥ δ > 0,∀y ∈ Y ,
∀x ∈ {0, 1}. Then for all i ∈ [N ] and all values yN1 and ỹN1 such that y∼i = ỹ∼i and yi 6= ỹi,
the conditional entropy satisfies

∣∣∣dm(yN1 )− dm(ỹN1 )
∣∣∣ ≤ 4 |log2 δ| . (5.13)

As a result of Proposition 5.2, the following corollary provides a concentration for the
logarithm of the list size required to achieve the performance of a code under MAP decoding
when the transmission is over discrete output BMSCs. More precisely, we consider the
normalized (with respect to the block length) deviation of the logarithm of the random
list size, required to keep the correct codeword in the list.

Corollary 5.3. For transmission over a BMS channel satisfying W (y|x) ≥ δ > 0,∀y ∈ Y ,
∀x ∈ {0, 1}, the RV Dm, m ∈ [N ], for a particular random realization Y N

1 concentrates
around its mean D̄m for sufficiently large block lengths, i.e., for any β > 0, we have

Pr
{ 1
N
|Dm − D̄m| > β

}
≤ 2 exp

(
− β2

32 |log2 δ|
2N

)
. (5.14)

Proof. As for Corollary 4.12, apply the Azuma-Hoeffding inequality [42, Theorem 12.6]
via Proposition 5.2 since the channel is memoryless. �

For the case where W (y|0) is a continuous probability density function on a compact
set Y ⊂ R, the same proof applies with δ = miny∈YW (y|0). The proof does not extend to
unbounded output alphabets.
Note also that the same idea in Remark 4.7 can also be applied to Corollary 5.3, but

the value of δ must be modified as well. Still, the bounds of the type (5.14) are expected
to be loose as mentioned in Remark 4.8.
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5.1.2. Numerical Results

This section provides simulation results for some constructions with dynamic frozen bits.
Figure 5.2 shows simulation results for a random instance fromRM(3, 7) (as in Figure 5.1)
and a novel design (based on suggestions in Remark 5.2) under SCL decoding with L = 214

and Eb/N0 = 0.5 together with the upper bound (5.7) and the lower bound (5.6) on D̄m.
The proposed code takes the set ARM of the (128, 64) RM code and obtains a new set as
A = (ARM \ {30, 40})∪{1, 57}, i.e., u{30,40} are frozen and u{1,57} are unfrozen, where each
frozen bit is still set to a random linear combination of preceding information bit(s). This
helps especially for the considered list size L = 32 by inspecting Figure 5.3. The reason is
illustrated by the lower bounds on D̄m in Figure 5.2. In addition to having a smaller peak
value, this peak occurs for the proposed design later than for the instance from RM(3, 7).
This helps the proposed code to not loose the correct path at early decoding stages, and
hence, to keep the correct path in the list towards the end for small list sizes, e.g., L = 32.
We choose a relatively small Eb/N0 for the analysis, e.g., close to the Shannon limit (∼ 0.189
dB) for rate-1/2 codes, since we are after the events where the channel realization is not
good enough to keep the correct path in the list with small list lengths, which happen
rarely. If the list size is further decreased, then having u1 as information bit can cause a
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Figure 5.3.: BLER vs. SNR for (128, 64) codes.

degradation.3

Figure 5.3 compares the performance of an instance from RM(3, 7) and the proposed
code. When an SCL decoder with L = 128 is considered, both codes perform within
0.15 dB of the RCU bound [143, Theorem 16] at a BLER of 10−5 and they almost match
the simulation-based ML lower bounds [11], denoted as ML LB in the figure. When a
smaller list size, e.g., L = 32, is adopted, the proposed code outperforms the instance
from RM(3, 7) especially at higher SNR values. This validates the analysis illustrated
in Figure 5.2. The performance for the 5G design employing the CRC-11 defined by the
generator polynomial g(x) = x11 + x10 + x9 + x5 + 1 [12, Section 5.1], [114] under SCL
decoding with L = 32 is 0.4 dB worse than the proposed design at a BLER around 10−4.
When SCL decoding with L = 128 is considered, both codes outperform the 5G design
by no less than 0.25 dB at all BLERs considered. Note that the PAC code perform very
close to the dRM code under SCL decoding with L ∈ {32, 128} [122, Figure 1]. The
metaconverse (MC) bound [143, Theorem 28] is also provided.
Next, consider moderate-length codes, e.g., (512, 256) codes, which are more challenging

to design if the decoders are restricted to be of low- to moderate-complexity, i.e., L ≤ 1024

3In particular, if L = 1, (5.12) suggests that the correct path would be lost roughly half of the time
already after first decoding stage.
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Figure 5.4.: Lower bound (5.6) on D̄m at Eb/N0 = 0.5 dB for (512, 256) codes.

[36, Section 5.2] [144]. Figure 5.4 provides the bounds (5.6) for instances from RM(4, 9)
and three novel designs. The peak of the lower bound corresponding to the RM(4, 9) gets
close to 25 and recall that this quantity is related to the logarithm of the required list
size. This explains why SCL decoding needs very large list sizes for a good performance
when used for the RM(4, 9) code (or any other instance from RM(4, 9)) [14]. At the
other extreme, the lower bound is provided for the construction based on the PW method
with β = 21/4 [111], which is more suitable for SCL decoding with small list sizes. The
idea behind the designs is similar to the length-128 case: we start from the information
positions of an RM code, modify the positions to lower the peak value and keep the curve
flat so that there is enough entropy kept on the list to make use of reliable frozen positions
for a good performance. To this end, we also introduced u1 as information bit in all three
designs. This would harm the performance if the list size is very small, e.g., L ≤ 4. In
modifying the designs, we used the information positions from the PW construction. The
information positions for the designs are provided in Appendix 5.2.

Figure 5.5 compares the performance of three designs under different list sizes. Code-
1 requires the largest list size to get closer to its ML performance. When a large list
size is adopted, e.g., L ∈ {512, 1024}, it performs within 0.4 dB of the RCU bound at
BLERs around 10−6, outperforming the non-binary LDPC code defined over F256 which
has a higher decoding complexity [144]. Nevertheless, even with L = 1024, there is a non-
negligible gap to the ML lower bound at BLERs above 10−6. Code-2 is competitive for a
wide range of list sizes, i.e., L ∈ {8, 32, 128, 1024}. In particular, it performs within 0.75
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Figure 5.5.: BLER vs. SNR for (512, 256) codes.

dB from the RCU bound down to the BLER of 10−6 under SCL decoding with L = 32.
When an even smaller list size considered, e.g., L = 8, Code-3 performs the best, which is
expected to perform well under small list sizes (see Figure 5.4), at all SNR values shown.
With a relatively small list size, e.g., L = 32, Code-3 reaches to its ML performance at a
BLER of 10−5 or less.
Figure 5.6 compares Code-1 to a polar code concatenated with the CRC-16 specified

in [12, Section 5.1] with the generating polynomial g16(x) = x16 + x12 + x5 + 1. For the
considered list sizes, Code-1 outperforms the modified polar code. In addition, Code-1
performs very similar to the 5G design when L = 128, and it provides sizeable gains, e.g.,
0.35 dB, at BLERs close to 10−6 when L = 1024.
Figure 5.7 compares Code-2 to the 5G design based on PW with CRC-11, defined by

polynomial g(x) = x11 + x10 + x9 + x5 + 1 [145, 146], where the former outperforms the
latter under SCL decoding with the same list size L ∈ [8, 1024] at all BLERs considered
(down to 10−6). Remarkably, Code-2 provides small improvement, (around 0.1 dB) even
if the considered list size is L = 32 compared to the 5G code under SCL decoding with
L = 128 at a BLER of 10−6.
In Figure 5.8, Code-3 is also compared to a polar code concatenated with the CRC-7

with the generator polynomial g7(x) = x7 + x6 + x5 + x2 + 1. The polynomial is taken
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Figure 5.6.: BLER vs. SNR for (512, 256) concatenated polar codes with CRC-16 com-
pared to Code-1.
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Figure 5.7.: BLER vs. SNR for (512, 256) 5G codes compared to new designs.
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Figure 5.8.: BLER vs. SNR for (512, 256) concatenated polar codes with CRC-7 compared
to Code-3.

from [18] as it provides the best performance for the (128, 64) case although it may not
be optimal for the (512, 256) code. Note finally that for all polar codes (irrespective of
the chosen CRC length) provided as reference in this work the indices of frozen bits are
selected according to the 5G standard [12, Section 5.1], [114].

5.2. Appendices

5.2.1. Proof of Theorem 5.1

Assume, w.l.o.g., that uN1 and yN1 are transmitted and observed, respectively. Then we
have

log2 |S(m)
α | = log2

∑
ũm1

1(P (ũA(m) |yN1 ,uF(m) )≥α·P (uA(m) |yN1 ,uF(m) )) (5.15)

≤ − log2 α · P
(
uA(m) |yN1 , uF(m)

)
(5.16)

where (5.15) follows from Lemma 3.5, i.e., pm
G[n](yN1 , ũm1 ) ∝ P

(
ũA(m)|yN1 , ũF(m)

)
, and Bayes’

rule, and (5.16) because if there are more than
(
α · P

(
uA(m)|yN1 , uF(m)

))−1
sequences ũA
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with probability α · P
(
uA(m)|yN1 , uF(m)

)
then the total probability exceeds 1. As the in-

equality is valid for any pair uN1 and yN1 , taking the expectation over all um1 and yN1 yields
the stated result. �

5.2.2. Proof of Proposition 5.2

In the following, the probabilities are denoted as

p
(
um1 , x

N
1 , y

N
1

)
= Pr

{
Um

1 = um1 , X
N
1 = xN1 , Y

N
1 = yN1

}
.

The proof starts by writing

P
(
uA(m) |yN1 , uF(m)

)
P (uA(m) |ỹN1 , uF(m))

=
p
(
um1 , y

N
1

)
p (yN1 , uF(m))

·
p
(
ỹN1 , uF(m)

)
p (um1 , ỹN1 ) (5.17)

=
∑
xN1
p
(
um1 , x

N
1 , y

N
1

)
∑
xN1
p (yN1 , xN1 , uF(m))

·
∑
xN1
p
(
ỹN1 , x

N
1 , uF(m)

)
∑
xN1
p (um1 , xN1 , ỹN1 ) (5.18)

=
∑
xiW (yi|xi)

∑
x∼i p

(
um1 , x

N
1 , y∼i

)
∑
xiW (ỹi|xi)

∑
x∼i p (um1 , xN1 , y∼i)

·
∑
xiW (ỹi|xi)

∑
x∼i p(y∼i, xN1 , uF(m))∑

xiW (yi|xi)
∑
x∼i p(y∼i, xN1 , uF(m))

(5.19)

=
∑
xiW (yi|xi)p(um1 , xi, y∼i)∑
xiW (ỹi|xi)p(um1 , xi, y∼i)

·
∑
xiW (ỹi|xi)p (y∼i, xi, uF(m))∑
xiW (yi|xi)p (y∼i, xi, uF(m))

(5.20)

where (5.17) follows from Bayes’ rule, (5.18) and (5.20) from the law of total probability,
and (5.19) from rearranging the sum, Bayes’ rule and noting that Yi−Xi− (Um

1 , X∼i, Y∼i)
forms a Markov chain. We now take the logarithm and absolute value of both sides in
(5.20). Applying the triangle inequality |a+ b| ≤ |a|+ |b| and upper bounding∣∣∣∣∣log2

∑
xi

W (yi|xi)p(um1 , xi, y∼i)
∣∣∣∣∣ ≤ max

y
|log2W (y|0)| (5.21)

we conclude that ∣∣∣∣∣∣log2
P
(
uA(m) |yN1 , uF(m)

)
P (uA(m) |ỹN1 , uF(m))

∣∣∣∣∣∣ ≤ 4 max
y
|log2W (y|0)| . (5.22)

(5.22) is valid for any um1 , and averaging over all um1 , combined with the Jensen’s inequality,
leads to (5.13) since W (y|0) ≥ δ,∀y ∈ Y . �
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5.2.3. Code Designs

Let APW denote the set of information positions of the (512, 256) polar code designed
according to PW with β = 21/4 [111]. The sets A1, A2 and A3 corresponding to Code-1,
Code-2 and Code-3, respectively, are given as follows:

A3 = (APW \ {449, 450, 451, 453, 457, 465, 481}) (5.23)
∪ {1, 64, 118, 122, 159, 200, 284}, (5.24)

A2 = (A3 \ {122, 421, 425, 433}) ∪ {32, 174, 272, 280}, (5.25)
A1 = (A2 \ {64, 96, 125, 180, 418, 419}) (5.26)

∪ {48, 56, 94, 108, 122, 152}. (5.27)

For all codes, each frozen bit is set to a random linear combination of the preceding
information bit(s). The performance curves will also be available on the website [145].



6
Successive Cancellation List
Decoding of Product Codes

In this chapter, we focus on product codes based on RM and/or SPC component codes
by establishing connections to (multi-kernel) polar codes. Product codes based on RM
component codes, namely RM product codes, have been considered in [68, 147] where the
component codes are extended Hamming and SPC codes whose length is a power of 2.
This choice of component codes has been considered in wireless communication systems
(see, e.g., [73, 148, 149]) thanks to the availability of low-complexity SISO decoders for
SPC and extended Hamming codes.1 Product codes with SPC component codes, namely
SPC product codes, are considered in [83, 150, 151], where the interest was mainly their
performance and WEs.

6.1. A First Connection: Recursive Encoding

Recall the generator matrix of an m-dimensional product code given by (3.14). Alterna-
tively, we can define a generator matrix similar to (3.48) recursively as follows. Let the
binary vectors vK1 and xN1 be the K-bit message to be encoded and the corresponding
N -bit codeword, respectively, where the relation between them is xN1 = vK1 G[n], where G[n]

is the generator matrix of the product code with dimension n. We obtain G[n] recursively

1Extended Hamming codes can be efficiently decoded by exploiting their trellis representation or by
employing the sub-optimum Chase-Pyndiah decoder proposed in [68].
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Figure 6.1.: Encoding using an (N,K) product code with m dimensions.

as
G[n] = (IK[n−1] ⊗Gn) ΠK[n−1],Nn

(
INn ⊗ G[n−1]

)
(6.1)

where G[0] , 1, K [m−1] ,
∏m−1
i=1 Ki with K [0] = 1 (observe that K [m] = K) and Πa,b is the

ab × ab perfect shuffle matrix as defined by (2.10). Note also that N = N [m] ,
∏m
i=1Ni

with N [0] = 1. Figure 6.1 depicts the encoding with product codes where the encoding
recursion is based on (6.1).

To see the relation between G and G[m], write

G[m] = (IK[m−1] ⊗Gm)
(
G[m−1] ⊗ INm

)
ΠN [m−1],Nm (6.2)

=
(
G[m−1] ⊗Gm

)
ΠN [m−1],Nm (6.3)
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=
(
(IK[m−2] ⊗Gm−1)

(
G[m−2] ⊗ INm−1

)
ΠN [m−2],Nm−1 ⊗Gm

)
ΠN [m−1],Nm (6.4)

=
(
G[m−2] ⊗Gm−1 ⊗Gm

) (
ΠN [m−2],Nm−1 ⊗ INm

)
ΠN [m−1],Nm (6.5)

= (G1 ⊗G2 ⊗ . . .⊗Gm)
m∏
i=1

(
ΠN [i−1],Ni ⊗ IN [m]/N [i]

)
(6.6)

where (6.2) follows from applying the identity

ΠK[m−1],Nm

(
INm ⊗ G[m−1]

)
=
(
G[m−1] ⊗ INm

)
ΠN [m−1],Nm . (6.7)

Equation (6.3) follows from the mixed-product identity and (6.4) from writing G[m−1]

as (6.1). Equations (6.5) and (6.6) follow by applying similar steps recursively. Since
the product of an arbitrary number of permutation matrices yields another permutation
matrix, we conclude that G and G[m] are equivalent up to a column permutation for all
m ≥ 1.

Remark 6.1. An inspection of Figure 6.1 suggests an SC-based decoding of product codes
by using their recursive structure combined with local decoding operations imposed by the
component codes.2 The motivation is because the SCL decoding with large list size (or
SCI decoding for the BEC) enables near-optimum decoding of polar codes [11]. This was
demonstrated by computing a numerical lower bound on the ML decoding BLEP via Monte
Carlo simulation, where the correct codeword is introduced artificially in the final list prior
to the final selection. If the simulated BLEP is close to the numerical ML decoding lower
bound, then increasing the list size L would not yield much improvement. We shall see
in Sections 6.2 and 6.3 that the same principle applies to SCL decoding of product codes.
In particular, we start with RM product codes, which can be represented as subcodes of
larger RM codes, and then we study SPC product codes and their relations to multi-kernel
polar codes.

The relation between G as described in (3.14) and G[m] is similar to the relation between
the polar transform matrices K⊗n

2 and G[n], which are equivalent up to the bit-reversal
permutation of the columns. This means that they can be both used to describe polar
codes as discussed in Section 3.4.2. In the description of RM product codes, we use K⊗n

2

for notational convenience.

2The efficiency of such SC decoding depends on the component code structure. In general, it is not
efficient to decode a linear block code using SC decoding [152] or even a polar code based on an
arbitrary kernel, e.g., see [125] and references therein.
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6.2. Reed-Muller Product Codes

In this section, our main interest is RM product codes. This class of codes includes
product codes with extended Hamming component codes, which are used for high-rate
applications requiring very low bit or block error rates [147]. Remarkably, a 2-dimensional
product code with a rate ≈ 0.981 with simple Hamming component codes was already
suggested in [67] and operates 0.27 dB away from the Shannon limit, and this code can be
seen as a punctured RM product code.
We mention that RM product codes were studied by [153] explicitly. The authors showed

that the resulting product code is a subcode of a longer RM code, which enabled methods
to modify the product code to obtain higher rate codes with the same minimum distance.
In the following, we revisit this representation, that we call a polar code representation, to
introduce SCL decoding for RM product codes, which approaches the ML performance of
the codes with small to moderate list sizes up to blocklength in the order of 1024 bits. The
simulation results are given for plain RM product codes and also for concatenations via
high-rate outer codes. The simulations are accompanied by a distance spectrum analysis
restricted to the minimum distance terms.
The results in this section can be extended to product codes with polar component codes,

which are studied, e.g., in [154, 155]. In [154], the authors proposed a construction that
allows interpreting a polar code as a 2-dimensional product code. The construction allows
using SC decoders row- and column-wise to reduce the complexity/latency with respect
to the case where SC decoding is performed over the larger polar code. Similarly, [155]
proposed product code designs where the component codes are polar codes. The focus was
on reducing the latency by proposing a two-stage decoding where the SC decoder of the
large polar code is used only if the iterative product code decoder does not converge to a
valid codeword.

6.2.1. Polar Code Representation

Consider an RM(r, n) code and let wK1 contain the indices of its frozen set F in an ascending
order, i.e., w1 < w2 < . . . < wK . We define the entry at the ith row and jth column of the
K ×N matrix F as

Fi,j =


1 if j = wi

0 otherwise.
(6.8)
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A generator matrix G of RM(r, n) is

G = F K⊗n
2 . (6.9)

The 2n-dimensional frozen bit vector f , where fi = 0 for all i ∈ F and fi = 1 otherwise,
is also obtained by summing all the rows of F , i.e.,

f = eF (6.10)

where e is the length-K all-ones vector.
Consider an m-dimensional product code where the `-th component code C` is an

RM(r`, n`) code with the corresponding row-selecting matrix F ` (frozen bit vector f `).
This is a subcode of the RM(r1 + r2 + . . . + rm, n1 + n2 + . . . + nm) code [153, Corollary
2]. For the `-th component code, the generator matrix is obtained via (6.9) as

G` = F `K
⊗n`
2 . (6.11)

The frozen bit vector for the resulting product code is determined by those of the compo-
nent codes, as stated next.

Proposition 6.1. The generator matrix of the product code obtained by iterating m RM
codes RM(r1, n1), . . ., RM(rm, nm) is given by

G = F K
⊗(n1+...+nm)
2 (6.12)

where F = F 1 ⊗ F 2 ⊗ . . .⊗ Fm, resulting in

f = f 1 ⊗ . . .⊗ fm. (6.13)

Proof. Apply the mixed-product property (2.9) to the combination of (3.14), (6.10) and
(6.11):

(F 1K
⊗n1
2 )⊗ · · · ⊗ (FmK⊗nm

2 ) = (F 1 ⊗ · · · ⊗ Fm)(K⊗n1
2 ⊗ · · · ⊗K⊗nm

2 ). (6.14)

�

Example 6.1. Consider a two-dimensional product code with a (2, 1) repetition code and
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a (4, 3) SPC code as component codes with F 1 =
[
0 1
]
yielding f 1 = (0, 1) and

F 2 =


0 1 0 0
0 0 1 0
0 0 0 1

 (6.15)

yielding f 2 = (0, 1, 1, 1). The product code generator matrix is obtained via (6.12) where

F =


0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

 (6.16)

with f = (0, 0, 0, 0, 0, 1, 1, 1) via (6.13).

Proposition 1 provides an interpretation of RM product codes as RM subcodes, where
the frozen bit positions are given as (6.13). This enables using the SC-based decoding
algorithms for RM and polar codes, e.g., SCL, SCI or SCOS decoding [6, 11, 28,38,99], to
decode this class of product codes.

Remark 6.2. Equivalent codes, defined by different frozen bit vectors, can be obtained
via the Kronecker product which is not commutative. The definition of the different frozen
bits vectors is related to the order with which the component codes’ generator matrices
are iterated in (3.14). We follow Remark 5.2 and choose a representation that exhibits
good performance under SCL decoding with small list sizes to decode the resulting code.

Numerical Results

We provide simulation results for two RM product codes over the BAWGNC. As a ref-
erence, the performance under BP is provided with a maximum number of iterations set
to 100. The component codes are decoded by MAP SISO decoding over the component
code trellis. The truncated union bound (TUB) in the tighter form of [147, Equation 3]
is also provided. Note that when using an RM product code to transmit over a BMSC,
the BLEP under ML decoding can be well approximated by the TUB already at moderate
BLERs [147].
The first product code is the (128, 77) code from Table 3.1, whose performance is depicted

in Figure 6.2. In particular, the component codes C1 and C2 are (16, 11) extended Hamming
and (8, 7) SPC codes, respectively. List decoding with L = 4 suffices to approach the
performance of BP decoding. With L = 8, the SCL decoder tightly matches the ML lower
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Figure 6.2.: BLER vs. SNR under SCL decoding with various list sizes for the (128, 77)
product code (with the (16, 11) extended Hamming and the (8, 7) SPC com-
ponent codes) compared with BP decoding. As reference, the performance of
a (128, 77) polar code is also provided under SCL decoding with various list
sizes.

bound below BLER 10−2. The gap to the RCU bound is limited to 2 dB at BLER 10−6. In
the same figure, the performance of a (128, 77) polar code under SCL decoding is provided.
While the ML decoding performance of the polar code and of the product code are very
close, the polar code requires a smaller list size to saturate.
A longer (1024, 693) product code has been constructed by choosing C1 and C2 to be

the (16, 11) extended Hamming and the (64, 63) SPC codes, respectively. The results of
the product codes are shown in Figure 6.3. In particular, the required list size increases
due to the sub-optimal choice of a large number of non-frozen bits enforced by the specific
product code construction for long blocklengths.

6.2.2. Concatenation with a High-Rate Outer Code

Following [11], we analyze the performance under SCL decoding of RM product codes
concatenated with a high-rate outer code. One reason to analyze such concatenation is
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Figure 6.3.: BLER vs. SNR under SCL decoding with various list sizes for (1024, 693)
product code (with the (16, 11) extended Hamming and the (64, 63) SPC com-
ponent codes), compared with the BP decoding.

(besides in the obviously expected performance improvement) because practical schemes
employing product codes make use of an error detection code to protect the product code
information message. We may hence sacrifice (part of) the error detection capability for
a coding gain. Following the construction adopted in the IEEE 802.16 standard [149], we
consider product codes with systematic encoding.
For the product codes we consider, large gains are expected by adding a high-rate outer

code, especially at moderate to low BLERs. This follows because RM product codes have a
fairly large multiplicity of minimum weight codewords, as already observed in Table 3.1. By
a suitable choice of the outer code, the multiplicity of minimum weight codewords is lowered
considerably. This can yield significant gains with sub-optimum BP/SCL decoding. We
analyze the impact of the outer code for a concatenated ensemble by studying the weight
distribution and focusing on the minimum weight terms only.

Average Weight Distribution of Concatenated Ensembles

Consider the concatenation of an (Ni, Ki) inner product code Ci with an (No, Ko) high-rate
outer code Co. Note that Ki = No. Let d be the minimum distance of the inner product
code. We further define the generator matrices of Ci and Co as Gi and Go, respectively.

Definition 6.1 (Concatenated Ensemble). The (serially) concatenated ensemble C (Co, Ci)
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is the set of all codes with a generator matrix of the form G = GoΠGi, where Π is an
No ×No permutation matrix.

Suppose the outer code WE Ao
j and the IOWE of the inner product code AIO,i

j,w are
known. We are interested in the WE of the concatenated code for a given permutation
matrix Π (e.g., Π = INo) that interleaves the output of the outer encoder. This requires
enumerating all possible input vectors of length Ko, which is not possible in practice. For
this reason, the outer code is typically analyzed for a concatenated ensemble by assuming
that the interleaver is distributed uniformly over all possible

(
No
i

)
permutations [156]. The

average WE of the ensemble is then

Āw =
No∑
j=0

Ao
j · A

IO,i
j,w(

No
j

) (6.17)

where Āw is the average multiplicity of codewords x with w(x) = w.
For the considered product codes, the IOWEs AIO,i

j,w are not known in general.3 For-
tunately, the minimum-weight IOWE AIO,i

j,d is easily computed from the IOWEs of the
component codes if Gi is in systematic form [82, Theorem 1]. Then, the expected multi-
plicity of weight-d codewords Ād can be used in TUB to obtain an estimate of the ensemble
average BLEP in the low BLEP regime.

Example 6.2. Consider the (128, 77) systematic product code with (16, 11) extended
Hamming and (8, 7) SPC component codes, which has minimum distance 8 with a mul-
tiplicity of 3920. The code is concatenated with an outer CRC−7 code with generator
polynomial g(x) = x7 +x3 +1. The resulting code is a member of a concatenated ensemble
with an expected number of weight-8 codewords given by Ā8 ' 26.4, i.e., the multiplicity
of weight-8 codewords is reduced, on average, by two orders of magnitude. The contribu-
tion of these codewords to the ensemble average BLEP is reduced significantly. Hence, the
TUB shall be approached only at low BLERs.

The generator matrix of the product code constructed according to Proposition 6.1 is
not in systematic form. Suppose the inner code generator matrix Gi is systematic. The
overall code generator matrix can be written as

G = GoΠGi = GoΠSGi,nsys = GmoGi,nsys (6.18)

3For short product codes where at least one of the component codes is an SPC code, we will develop an
efficient method to compute the IOWEs in Section 6.3.5.
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where Π is the interleaver matrix, S is a Ki×Ki non-singular matrix and Gi,nsys = S−1Gi

is the non-systematic generator matrix according to Proposition 6.1. Furthermore, Gmo

is defined to be the product GoΠS. Thus, the SCL decoding can be used for the inner
product code, where the modified outer code with generator matrix Gmo is used to test
the codewords of the final list prior to a decision.

Numerical Results

Figure 6.4 shows the performance by concatenating the (128, 77) product code of Figure 6.2
with an outer CRC code with generator polynomial g(x) = x7+x3+1, leading to a (128, 70)
code. The performance of the concatenated scheme is provided for two interleavers between
the inner and outer code. The label “no interleaver” denotes the trivial interleaver, i.e., Π
is chosen to be the Ki×Ki identity matrix, while in the second case a random interleaver is
used. The concatenation with the trivial interleaver performs remarkably well under SCL
decoding. At a BLER of 10−6, SCL decoding of the concatenated code achieves gains up
to 1.4 dB over the original product code. The gains attained by SCL decoding over BP
decoding4 range from 1 dB at a BLER of 10−2 to 1.4 dB at a BLER ≈ 10−5. The gap to the
RCU bound is 0.5 dB at a BLER ≈ 10−7. In this case, omitting an interleaving stage yields
a code performing better than the ensemble average. For the sake of completeness, we also
provide the performance of a concatenation employing a randomly generated interleaver.
The performance tightly approaches, in this case, the expected ensemble performance
approximated by the TUB.

Figure 6.5 shows the performance by concatenating the (1024, 693) product code of
Figure 6.3 with an outer CRC code with generator polynomial g(x) = x10 +x9 +x5 +x4 +
x + 1, leading to a (1024, 683) code.5 The concatenated schemes needs a larger list than
the one required by the product code alone to approach the ML lower bound, especially
at high BLERs.

4BP decoding of the concatenated scheme operates on the Tanner graph modified by adding a check node
representing the outer code constraints (as for the component codes, the outer code is decoded within
the node by a MAP SISO decoder).

5The performance under BP is not provided. The reason is that the addition of the outer code check node
in the product code Tanner graph resulted in large performance degradation due to the emergence of
a number of small trapping sets for the BP decoder.
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6.3. SPC Product Codes

The rate of product codes tends to be low if there are many component codes, see (3.13).
SPC product codes provide the maximum possible overall rate. Moreover, SPC product
codes perform close to the channel cutoff rate, as shown by Battail [157]. He argued
that a better criterion for a code to perform well is having a distance spectrum close
to that of random coding rather than a good minimum distance [158]. Later, it was
shown that the distance spectrum of SPC product codes approaches that of a random
code if each component code length tends to infinity [83, 159]. Since then, SPC product
codes and their variants have been studied for BECs [160], BAWGNCs [150, 151, 161–
163], and Rayleigh fading [161]. The main interest was on large blocklengths (with a few
exceptions, e.g., [163] suggests MRB decoding of short SPC product codes). Recently, an
instance of SPC product codes was shown to attain channel capacity with a vanishing
bit error probability under MAP decoding relying on the code structure rather than the
distance spectrum [164] although the query for capacity-achieving SPC product codes with
vanishing BLEP remains open.
In the following, we bridge SPC product codes and multi-kernel polar codes so that the

advanced tools of the latter can be used to obtain good performance using the former when
short blocklengths considered. We start with a multi-kernel polar code representation of
the SPC product codes similar to Section 6.2.1 for the RM product codes. Then the SC
decoding equations are formalized for the multi-kernel polar representation of the code.
SPC product codes are analyzed under SC decoding for transmission over the BEC and
general BMSCs for asymptotic as well as finite-length cases. SCL decoding [165] is revisited
by using the new equations and SCI decoding is introduced. The numerical results are
provided together with a distance spectrum analysis.
In [83], a closed form expression is provided to compute the WE of 2-dimensional SPC

product codes, relying on the MacWilliams identity for joint weight enumerators (JWEs)
[56, Page 147] [166]. In [167], a closed form solution is extended to compute the IOWE
of 2-dimensional SPC product codes by converting the dual code into a systematic form.
This method does not seem applicable for higher-dimensional constructions as it is not
trivial how to get to a systematic form of the dual code in such cases. We will present
an alternative approach to that of [83] to compute the WE that avoids using JWEs. This
approach is then extended to accommodate the IOWE of 2-dimensional product codes
where one component code is an SPC code. The method is used to compute the IOWE of
the exemplary short 3-dimensional SPC product code that can be seen as a 2-dimensional
product code where one component code is an SPC code. By combining this result with
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the uniform interleaver approach, the average IOWE of the concatenated code ensemble is
computed, which is then used to compute tight bounds on the BLEPs [168, 169], e.g., via
the Poltyrev tangential-sphere bound (TSB).

6.3.1. Multi-Kernel Polar Code Representation

Consider (N` ×N`) kernels KN` , N` ≥ 2, ` ∈ [m], of the form

KN` =



1 0 . . . 0
1
... IN`

1

 (6.19)

with K` = N` − 1. Similar to (3.21), an N [m] × N [m] transform matrix G[m] is obtained
recursively as

G[m] = (IN [m−1] ⊗KNm) ΠN [m−1],Nm

(
INm ⊗G[m−1]

)
(6.20)

where G[0] , 1. Recall the synthesized channels W i
G[m] defined in (3.27). The proof of the

following lemma is given as Appendix 6.4.1.

Lemma 6.2. The multi-kernel construction (6.20) with a sequence of kernels of the form
(6.19) polarizes. More formally, the fraction of channels with I

(
W i

G[m]

)
> 1 − δ goes to

I (W ) and the fraction of channels with I
(
W i

G[m]

)
< δ to 1 − I (W ) for any δ ∈ (0, 1) as

m→∞ for any selection of {N1, N2, . . .} where each Ni is finite, i.e., Ni <∞.

Note that Lemma 6.2 shows that polarization occurs, but it is not sufficient to claim a
capacity-achieving multi-kernel polar code. For a capacity-achieving construction, one may
show that the rate of convergence is positive when the indices for frozen bits are chosen
according to the rule imposed by [6, section I.C.4], i.e., showing that δ can be chosen as
δ = 2−Nβ with β > 0. The exponent β can be computed via [49, Theorem 2] after fixing the
relative frequencies of kernels in the construction. In the following, however, we provide
a selection procedure for the frozen bit indices yielding an SPC product code, which does
not take into account the quality of the synthesized channels. This hinders the possibility
to achieve capacity for the SPC product codes under SC decoding.
Recall the multibase representation (2.3) of a decimal number i, denoted by

(i1i2 . . . im)N1N2...Nm . (6.21)
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The generator matrix G[m] is obtained by removing the rows of G[m] with indices in set
FPC ⊂ [N ] of frozen bits, which is chosen as

FPC = [N ] \ {i+ 1 ∈ [N ] : ij 6= 0, ∀j = 1, 2, . . . ,m} . (6.22)

Encoding can be done either by using (6.1) as xN1 = vK1 G[m], or by using (6.20) as xN1 =
uN1 G[m] with ui = 0 for all i ∈ FPC and the remaining positions are allocated for the
information bits as for polar codes. In other words, (6.20) generalizes (3.21) to generate
the mother code for multi-kernel polar codes generated by m kernels KN` in dimensions
` ∈ [m]. Observe that (6.20) recovers (3.21) by setting N` = 2 for all ` ∈ [m].

Example 6.3. Consider the (3× 3) kernels

KN1 = KN2 =


1 0 0
1 1 0
1 0 1

 . (6.23)

We construct G[2] by using (6.20):

G[2] =



1 0 0 0 0 0 0 0 0
1 0 0 1 0 0 0 0 0
1 0 0 0 0 0 1 0 0
1 1 0 0 0 0 0 0 0
1 1 0 1 1 0 0 0 0
1 1 0 0 0 0 1 1 0
1 0 1 0 0 0 0 0 0
1 0 1 1 0 1 0 0 0
1 0 1 0 0 0 1 0 1



. (6.24)

The generator matrix is

G[2] =



1 1 0 1 1 0 0 0 0
1 1 0 0 0 0 1 1 0
1 0 1 1 0 1 0 0 0
1 0 1 0 0 0 1 0 1

 (6.25)

by removing the rows with indices given by (6.22), i.e., APC = {1, 2, 3, 4, 7}, as depicted in
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Figure 6.6.: How to choose the frozen bits to obtain a SPC product code, where red edges
show those carrying frozen bit values and red variables are set to 0.

Figure 6.6. Equivalently, G[2] can be formed by using (6.1) after removing the first rows of
the kernels to get the generator matrices G1 and G2 defining SPC component codes, i.e.,

G1 = G2 =
1 1 0

1 0 1

 . (6.26)

6.3.2. SC Decoding

Consider transmission over a BMSC W using an m-dimensional (N,K) systematic SPC
product code C. Suppose we interpret the SPC product code by the multi-kernel polar code
perspective discussed in Section 6.3 and depicted in Figure 6.6. SC decoding then follows
the schedule of Section 3.4.4 for polar codes. Explicitly, decision ûN1 is made successively
as

ûi =

ui if i ∈ FPC

fi(yN1 , ûi−1
1 ) if otherwise

(6.27)
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Figure 6.7.: The frozen bits and the corresponding edges are removed, providing a graphical
representation of a 2-dimensional SPC product code as in Figure 6.1.

and

fi(yN1 , ûi−1
1 ) ,

 0 if P i
G[m](0|yN1 , ûi−1

1 ) ≥ P i
G[m](1|yN1 , ûi−1

1 )
1 otherwise.

(6.28)

where the quantities P i
G[m](ui|yN1 , ûi−1

1 ), ui ∈ F2, 1 ≤ i ≤ N are computed as follows. For
any m ≥ 0, N = N [m], 1 ≤ j ≤ N [m−1], 1 ≤ k ≤ Nm, t , Nm(j − 1), the terms

P t+k
G[m]

(
ut+k|yN

[m]

1 , ut+k−1
1

)
(6.29)

are computed recursively as

∑
ut+Nm
t+k+1

P j

G[m−1]

(⊕t+Nm
`=t+1 u`|yN

[m−1]
1 ,

⊕Nm
`=1 u

t
`,Nm

)∏Nm
`=2 P

j

G[m−1]

(
ut+`|y`N

[m−1]

(`−1)N [m−1]+1, u
t
`,Nm

)
∏k−1
`=1 P

t+`
G[m]

(
ut+`|y`N

[m−1]

(`−1)N [m−1]+1, u
t+`−1
1

)
(6.30)

where the denominator is set to 1 if k = 1. The notation ut`,Nm denotes the subvector of
ut1 with indices in set {k ∈ [t] : ` = k mod Nm} and the recursion (6.30) continues down
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to length-1 computations as

P 1
G[0](0|yi) ,

W (yi|0)∑
xW (yi|x) and P 1

G[0](1|yi) ,
W (yi|1)∑
xW (yi|x) . (6.31)

A block error event occurs if ûN1 6= uN1 .
To gain insight on (6.30), consider the simple case of a length-5 kernel K5 with a single

dimension, i.e., m = 1 and G[m] = K5. Suppose we are interested in P 3
G[1] (u3|y5

1, u
2
1), for

every u3 ∈ {0, 1}, by assuming that the previous bits are given as u2
1 = (1, 0). Using (6.30),

the computation is performed as

P 3
G[1]

(
u3|y5

1, u
2
1

)
=
∑
u5

4
P 1

G[0]

(⊕5
`=1 u`|y1

)∏5
`=2 P

1
G[0] (u`|y`)∏2

`=1 P
`
G[1]

(
u`|y5

1, u
`−1
1

) (6.32)

=
∑
u5

4
P 1

G[0]

(
1⊕⊕5

`=3 u`|y1
)
P 1

G[0] (0|y2)∏5
`=3 P

1
G[0] (u`|y`)

P 1
G[1] (1|y5

1)P 2
G[1] (0|y5

1, 1) (6.33)

where (6.33) follows by inserting the values of bits u2
1.

The block error event of the SC decoding is equal to that of the genie-aided SC decoding
for the SPC product codes as stated in Lemma 3.4. A proof follows from Appendix 3.5.3
by suitably modifying the definition of the error events. The BLEP under SC decoding is
thus bounded as

P
(SC)
B ≤

∑
i∈APC

Pr
{
B(GA)
i

}
(6.34)

where the upper bound follows by applying the union bound as for (3.37).

6.3.3. Binary Erasure Channel

Over the BEC, ties are not broken towards any decision by revising (6.27) as (4.7). This
means that we declare an error whenever an erasure is output for an information bit. In
the following, we analyze the SC decoder of SPC product codes over the BEC. To this end,
we derive general density evolution equations for the multi-kernel constructions (6.20) with
kernels of the form (6.19) and analyze the performance when the frozen set is restricted
to the choice FPC. We do so to gain a deeper understanding on the behavior of the SC
decoder when applied to the code construction under investigation.
We start by analyzing the behavior of the erasure probabilities of the synthesized chan-

nels when a kernel KN is used for the BEC(ε). We denote by εiKN
the erasure probability

for the i-th bit after SC decoding conditioned on the knowledge of the i−1 preceding bits,
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i = 1, . . . , N . We distinguish two cases. The first bit, i.e., u1, is not erased only if there is
no erasure at the output vector, i.e., we have

ε1KN
= 1− (1− ε)N . (6.35)

When the knowledge of the i− 1 preceding bits is available, then decoding the i-th bit is
successful either when yi 6=? or there is no erasure in the subvector (y1, y

N
i+1). Hence, the

relationship between the input-output erasure probabilities, for i ∈ {2, . . . , N}, is

εiKN
= ε

(
1− (1− ε)N−i+1

)
. (6.36)

Based on the relation given in (6.36), we can derive the erasure probability εi
G[m] associ-

ated with bit ui of the multi-kernel construction (6.20) under the genie-aided SC decoding
by iterating (6.36). More precisely, for anym ≥ 0, N = N [m], 1 ≤ j ≤ N [m−1], 1 ≤ k ≤ Nm,
t , Nm(j − 1), we have the recursion in m as

εt+k
G[m] =


(

1−
(
1− ε(j)

G[m−1]

)Nm) if k = 1

ε
(j)
G[m−1]

(
1−

(
1− ε(j)

G[m−1]

)Nm−k+1
)
otherwise.

(6.37)

Observe that the recursion can be implemented similar to the density evolution equations
of polar codes with (3.53) and (3.54) as illustrated via Example 3.1. The only difference is
that we use the m-digit multi-base representation (2.3) of i− 1, say im1 , to compute εi

G[m] ,
i ∈ [N ]. Then we apply the operation (6.37) according to the values of i` in the digit
reversed order, i.e., starting from im to i1, where k = i` + 1.

Example 6.4. Consider the size-9 transform in Figure 6.6. Suppose we want to compute
ε5

G[2] where the channel erasure probability is ε = 0.5. Then i21 = (1, 1) and we apply (6.37)
with input erasure probability 0.5 by setting k = 2 two times recursively, which yields
ε5

G[2] ≈ 0.228.

Remark 6.3 (Ordering of kernels). For a given sequence of kernels, the order in which
they are used in the transform (6.20) affects the reliabilities of the synthetic channels [170,
Section II.B] as implied by (6.37). Numerical evaluations suggest to use these in descending
order according to the rate of polarization for the kernels, i.e., the kernel with the largest
rate of polarization is used in the first level (see Figure 6.6). The rate of polarization for
a given kernel is easily computed via [48, Theorem 11]. For kernels of the form (6.19),
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the larger the size of the kernel, the lower the rate of polarization. Therefore, the largest
kernel is used in the first level and the smallest is used in the last level (see Figure 6.6).
The rate of polarization in an asymptotic setting for the resulting multi-kernel polar code
is indifferent to this ordering.

Remark 6.4 (Ordering of component codes). Given the blocklength and rate of an SPC
product code, there is a unique sequence of component codes satisfying the parameters
(3.12). For this sequence, when the blocklengths of component codes are different, an
important question is what decoding order should be adopted. The natural approach
is to start the decoding from the lowest rate SPC component code, i.e., to treat this
code as the component code in the first level as in Figure 6.7, because a code with a
lower rate has a higher error-correction capability. This ordering has been verified via
numerical computation for an exemplary construction provided in Example 6.5, where
a larger threshold is obtained if the decoding is performed in the reverse order of the
component code rates. This observation is in line with Remark 6.3.

As stated, we are interested in the behaviour of SPC product codes under SC decoding.
In particular, we proceed by bounding the performance of an (N,K) SPC product code
C via (6.34). Hence, we restrict attention to computing the erasure probabilities corre-
sponding to the set APC. This means that the density evolution equation corresponding
to the case where k = 1 in (6.37) is never activated for the computation (see (6.22)). Since
the RHS of (6.37) is monotonically increasing in the input erasure probability εj

G[m−1] and
monotonically decreasing in k ∈ {2, . . . , Nm}, the largest information bit erasure probabil-
ity is equal to that of the first decoded information bit, i.e., we have

εmax , max
i∈APC

εi
G[m] = εα

G[m] (6.38)

where α , minAPC. By rewriting (6.34) in terms of εi
G[m] , we obtain

P
(SC)
B ≤

∑
i∈APC

εi
G[m] . (6.39)

A loose upper bound follows by tracking only the largest erasure probability for i = α:

P
(SC)
B ≤ Kεmax. (6.40)

Figure 6.8 illustrates the simulation results for the 3-dimensional (125, 64) SPC product
code, obtained by iterating (5, 4) SPC codes, over the BEC. The results are provided in
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Figure 6.8.: BLER vs. ε over the BEC for the (125, 64) product code under SC decoding.

terms of BLER vs. channel erasure probability ε. The upper bounds on SC decoding,
computed via the RHS of (6.39) and (6.40), are also provided. The former turns out to be
tight while the latter is loose as expected.

Asymptotic Performance Analysis

We now consider the asymptotic performance of SPC product codes. We analyze the
BLEP of a product code sequence defined by an ordered sequence of component code sets

C [m] = {C1, C2, . . . , Cm} (6.41)

where we constrain
∣∣∣C [m]

∣∣∣ = m, i.e., the number of component codes for the m-th product
code in the sequence is set to m, and the component code rates satisfy Ri ≤ Rj for i < j.
Let C[m] be the m-th product code in the sequence corresponding to the set C [m]. We study
the behavior of the BLEP as the dimensionm tends to infinity when the SC decoding starts
from C1 up to Cm. We remark that, as m changes, the component codes used to construct
the product code are allowed to change, i.e., the sequence of product codes is defined by
the set of component codes employed for each value of m. Observe that the rate of C[m]

may vanish as m grows large if the choice of the component codes forming the sets C [m] is
not performed carefully.
We proceed by analyzing the limiting behavior in terms of block erasure thresholds for
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different product code sequences with positive rates under SC decoding. Recall that we
consider m-dimensional systematic SPC product code constructions where the frozen set
FPC is given by (6.22) after specifying the kernels KN1 , . . . ,KNm of the form (6.19).

Definition 6.2. The SC decoding block erasure threshold of an SPC product code se-
quence defined by the component code sets C [1], . . . ,C [m] is the largest channel erasure
probability ε? for which the BLEP P

(SC)
B

(
C[m]

)
converges to 0 asymptotically in m if the

limit exists, i.e.,
ε? = sup

ε∈[0,1)
{ε : lim

m→∞
P

(SC)
B

(
C[m]

)
= 0}. (6.42)

As it is not possible to evaluate P (SC)
B

(
C[m]

)
exactly, we rely on the upper bound (6.40)

to obtain a lower bound ε?LB on the block erasure threshold in the form

ε?LB = sup
ε∈[0,1)

{ε : lim
m→∞

K
(
C[m]

)
εmax

(
C[m]

)
= 0} (6.43)

where K
(
C[m]

)
and εmax

(
C[m]

)
are the dimension of code C[m] and the maximum informa-

tion bit erasure probability after SC decoding, respectively, which depend on the sequence
of product codes. We next provide two examples of product code sequences whose rates
converge to a positive value. The first sequence exhibits a positive block erasure threshold
(lower bound), which is however arguably far from the Shannon limit. We then analyze
a product code sequence that achieves the BEC capacity under bit-wise MAP decod-
ing [164,171].

Example 6.5 (Euler’s infinite-product representation of the sine function as an SPC
product code). Consider an SPC product code sequence with an (a2`2, a2`2 − 1) SPC
component code at the `-th dimension, yielding R` = (1− (a`)−2), with ` = 1, . . . ,m.
The asymptotic rate is computed via Euler’s infinite-product representation of the sine
function:

sin
(
π

a

)
= π

a

∞∏
`=1

(
1− 1

a2`2

)
(6.44)

yielding an asymptotic rate R = a
π

sin
(
π
a

)
. Different product code sequences can be

obtained for various choices of the parameter a.
The lower bounds on the block erasure thresholds are provided in Table 6.1 for several

values of a. The second column in Table 6.1 provides the asymptotic rate of the SPC
product code sequence defined by the parameter a (whose squared value is reported in the
first column). The third column reports the lower bound on the block erasure threshold.
The fourth column gives the Shannon limit for the given asymptotic rate, while the last
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Table 6.1.: Lower bounds on the block erasure thresholds for some SPC product code
sequences based on Euler’s infinite-product representation of the sine function

a2 R ε?LB Limit, ε = 1−R ε?LB/ε

2 0.3582 0.3308 0.6418 0.5154
4 0.6366 0.1440 0.3634 0.3963
8 0.8067 0.0681 0.1933 0.3523
16 0.9003 0.0332 0.0997 0.3331
32 0.9494 0.0164 0.0506 0.3241
64 0.9745 0.0081 0.0255 0.3176

column shows the fraction of the Shannon limit achieved by each construction. The thresh-
olds achieved by the different product code sequences lie relatively far from the Shannon
limit. In relative terms, the lowest-rate construction (obtained for a2 = 2) achieves the
largest fraction (above 1/2) of the limit, while the efficiency of the sequences decreases as
the rate grows.

Example 6.6 (Product of (m,m − 1) SPC product codes in m dimensions). Consider
the product code obtained by iterating (m,m − 1) SPC codes in m dimensions, i.e., the
resulting code is an (mm, (m − 1)m, 2m) code. The rate of the m-th product code in the
sequence is

R
(
C[m]

)
=
(

1− 1
m

)m
(6.45)

which converges to e−1 for m → ∞. As presented in [164], this product code sequence is
capacity-achieving over the BEC under bit-wise MAP decoding. This observation follows
from results derived in [171]. Unfortunately, the block-wise erasure threshold under SC
decoding turns out to be zero. This negative result is provided by the following theorem,
whose proof is given in Appendix 6.4.2.

Theorem 6.3. Under SC decoding, the block erasure threshold of the product code se-
quence defined by the component code sets C [m] = {C1, C2, . . . , Cm}, where Ci, i = 1, . . . ,m,
are (m,m− 1) SPC codes, is zero.

6.3.4. Binary Memoryless Symmetric Channels

In the following, the BLEP of SPC product codes is upper bounded using density evolution
when the transmission takes place over a BMSC. Due to the channel symmetry and the
linearity of the codes, we assume that the all-zeroes codeword is transmitted. Recall the
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definition (3.55) of the LLR Li
G[m](yN1 ) for ui where all the previous bit-values are provided

as zeros to the decoder. Similarly, recall that li
G[m] is the PDF of the RV Li

G[m](Y N
1 ).

Extending the equations (6.36) and (6.37) to general BMSCs, the densities, for any m ≥ 0,
N = N [m], 1 ≤ j ≤ N [m−1], 1 ≤ k ≤ Nm, t , Nm(j − 1), can be computed recursively as

lt+k
G[m] =


(l(j)

G[m−1])�Nm if k = 1

l
(j)
G[m−1] �

(
l
(j)
G[m−1]

)�Nm−k+1
otherwise

(6.46)

The RHS of (6.34) can be computed as

∑
i∈APC

lim
z→0

(∫ −z
−∞

li
G[m](x)dx+ 1

2

∫ +z

−z
l
(i)
G[m](x)dx

)
. (6.47)

The computation of (6.46) and (6.47) can be carried out, for instance, via quantized density
evolution [104] as discussed in Section 3.4.7, yielding an accurate estimate of the RHS of
(6.34).
In Figure 6.9, we provide simulation results for the (125, 64) SPC product code over

the BAWGNC. The SC decoding performance is compared to the performance under BP
decoding. BP decoding with a maximum number of iterations set to 100 outperforms
the SC decoding significantly, which motivates us to introduce SCL decoding in the next
section. The upper bound on the SC decoding, computed via (6.34) and (6.47), is also
provided and appears to be tight.

6.3.5. SCI and SCL Decoding

While the asymptotic analysis provided in Section 6.3.3 provides insights on the SPC prod-
uct codes with many component codes, we are ultimately interested in the performance
of product codes in the practical setting where the number of component codes is small
and the blocklength is moderate (or small). Like polar codes, SC decoding of SPC prod-
uct codes performs poorly in this regime, e.g., see Figure 6.9. Hence, following [11], we
investigate the BLEP of SPC product codes under SCL decoding.
The SCL decoding of SPC product code works the same as for polar codes described

in Section 3.4.5 with the frozen set F , where the myopic probabilities pi
G[m](yN1 , ũi1) are

computed using (3.49) with recursive functions (6.30) instead of (3.45) and (3.46) in the
case of polar codes. Similarly, SCI decoding of SPC product codes can be described as
in Section 4.3. In addition, the analysis of Chapter 4 for the SCI decoding of polar codes
naturally extends to the SCI decoding of SPC product codes.
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Figure 6.9.: BLER vs. SNR over the BAWGNC for a (125, 64) product code under SC
decoding, compared to a BP decoding with 100 iterations.

Following Remark 6.1, we first study the performance of SPC product codes under ML
decoding by developing a weight enumerator analysis. Similarly, inspired by the concate-
nated RM product code construction of Section 6.2.2, we also study the performance of a
concatenation of a high-rate outer code with an inner SPC product code under ML decod-
ing. For both cases, the analysis is complemented by the SCL decoding simulations. We
will see that the ML decoding performance is attainable for some short product codes by
SCL decoding with small list sizes, e.g., L ≤ 8, while larger list sizes, e.g., 128 ≤ L ≤ 1024,
are required when SPC product codes are concatenated with an outer code.

Finite-length Performance Analysis via Weight Distribution

Computing the weight enumerator of SPC product codes for small constructions is feasible
using the method presented in [83, Appendix A]. We first provide an alternative derivation
to the WEF of a 2-dimensional product code C with systematic arbitrary binary linear
component code C1 and systematic (ν, ν − 1) SPC code Sν as the second component code.
The proof does not require an explicit use of MacWilliams identities, and is presented in
Appendix 6.4.3.

Theorem 6.4. Let C1 and Sν be an arbitrary (N1, K1) systematic code with a generator
matrix G and a length-ν systematic SPC code, respectively. Then the WEF of the product
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code C with component codes C1 and Sν is

AC(z) = 2−K1
∑

v∈{0,1}K1

 ∑
u∈{0,1}K1

(−1)u·vT
zwH(uG)

ν . (6.48)

Thanks to Theorem 6.4, one can compute the WEF of short and moderate-length SPC
product codes, by simply choosing one component code to be a SPC product code C1 and
the other one to be a SPC code Sν . Given the weight enumerator of a product code, upper
bounds on the ML decoding error probability can be obtained. For example, a tight bound
on the BLEP over the BAWGNC is provided by Poltyrev’s TSB [169]. Another example of
a tight bound on the BLEP of a code based on its weight enumerator is Di’s union bound
over the BEC [168, Lemma B.2]. We refer the interested reader to [58] for an extensive
survey on performance bounds under ML decoding.

We next provide simulation results for the 3-dimensional (125, 64) SPC product code
under ML decoding implemented over the BEC via SCI decoding with I =∞. The results
are shown in Figure 6.10. As a reference, simulation results for a (125, 64) punctured polar
code [172] are also provided, where the selection of frozen bits for the polar code design
follows the guidelines of the 5G standard (without outer CRC code) [114]. The polar code
slightly outperforms the considered SPC product code. Note that Di’s union bound tightly
approaches the performance of the SPC product code.

The same (125, 64) SPC product code is simulated over the BAWGNC under SCL de-
coding with various list sizes. The results are given in Figure 6.11. The TSB is computed
using the weight enumerator analysis. Remarkably, SCL decoding with L = 4 suffices to
operate close to the TSB and to outperform BP decoding. With L = 8, the SCL decoder
approaches the ML lower bound, which is not the case for BP decoding. The RCU and
the MC bounds are here plotted as references. The gap to the RCU bound reaches to 1.7
dB at BLER 10−3.

The performance of SPC product codes is compared to that of the (125, 64) polar code
in Figure 6.12. For L = 4, the performance of the polar code matches its ML lower bound
and outperforms the SPC product code by approximately 0.3 dB at BLER 10−3. The
gap between their ML performance is about 0.25 dB. Note that the polar code requires a
smaller list size to approach its ML performance.
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Figure 6.10.: BLER vs. ε over the BEC for the (125, 64) product code under ML decod-
ing, implemented via SCI decoding with I = ∞, compared to a (125, 64)
punctured polar code.
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Figure 6.11.: BLER vs. SNR under SCL decoding for the (125, 64) product code with
various list sizes, compared to a BP decoding with 100 iterations.
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Figure 6.12.: BLER vs. SNR over the BAWGNC for the (125, 64) product code under SCL
decoding with various list sizes, compared to a (125, 64) punctured polar code.

Finite-length Performance Analysis via Average Weight Distribution of
Concatenated Ensembles

Motivated by the results of Section 6.2.2, we now concatenate SPC product codes with
a high-rate outer code to improve the distance profile. To analyze the ML decoding
performance of such a concatenation, we first derive the weight enumerator of product
codes concatenated with an outer code. The weight enumerators are then used to derive
the TSB which helps to choose an outer code based on an ensemble analysis.
Computing (6.17) requires knowing the input-output weight enumerator of the inner

SPC product code. Therefore, we extend the result of Theorem 6.4 to derive the IOWEF
in Appendix 6.4.4.

Theorem 6.5. Let C1 and Sν be a (N1, K1) systematic code with generator matrix G

and a systematic SPC code, respectively. Then the IOWEF of the product code C with
component codes C1 and Sν is

AIO
C (x, z) = 2−K1

∑
v∈{0,1}k1

 ∑
u∈{0,1}k1

(−1)u·vT
xwH(u)zwH(uG)

ν−1 ∑
u∈{0,1}k1

(−1)u·vT
zwH(uG)

 .
(6.49)

Similar to the WEF, one can compute the IOWEF of short and moderate-length SPC
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Figure 6.13.: BLER vs. SNR over the BAWGNC for a (125, 64) product code concatenated
with a (64, 56) CRC code under SCL decoding with various list sizes. The
performance is compared to the one of a (125, 56) CRC-concatenated polar
code with various list sizes, where the generator polynomial of the outer code
is optimized for SCL decoding [18], and the one of the (128, 64) 5G-NR LDPC
code (base graph 2, see [36]) under BP decoding where the maximum number
of iterations is set to 100.

product codes, by choosing one component code to be a SPC product code and the other
one to be a SPC code. Given the average weight enumerator of a concatenated ensemble,
upper bounds on the ML decoding error probability can be obtained as in Section 6.3.5.
Figure 6.13 shows the performance of concatenating the (125, 64) product code with a

8-bit outer CRC code with generator polynomial g(x) = x8 + x6 + x5 + x4 + x2 + x + 1,
where the interleaver between the codes is the trivial one defined by an identity matrix.
This concatenation leads to a (125, 56) code. Since the code distance properties are im-
proved (observed directly via the TSB on the average performance of the code ensemble),
the performance improvement under ML decoding is expected to be significant. The CRC
polynomial is selected to provide the best TSB, obtained using the average weight enu-
merator of a concatenated ensemble with a uniform interleaver. The gain achieved by SCL
decoding is remarkably large, operating below the TSB. At a BLER of 10−2, SCL decod-
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ing of the concatenated code achieves gains up to 1.25 dB over the original product code,
reaching up to 1.5 dB at a BLER ≈ 10−4. The gap to the RCU bound is approximately
0.7 dB at a BLER of 10−4 and less for higher BLERs, providing a competitive performance
for similar parameters [36]. For example, the performance of a (128, 64) 5G-NR LDPC
code (base graph 2, see [36]) is reported. The code is decoded with BP by setting the
maximum number of iterations to 100. The concatenation of the outer CRC code with
the inner SPC product code yields a remarkable gain of ≈ 0.6 dB with respect to the 5G-
NR LDPC code (it shall be noted, however, that the concatenated SPC code possesses a
slightly lower code rate). It is not always possible to attain a performance close to the ML
performance of concatenated codes using BP decoding (see, e.g., Section 6.2.2 or [173]).
In that sense, SCL decoding provides a low-complexity solution to approach the ML per-
formance of the concatenated SPC product code scheme. As another reference, a (125,
56) CRC-concatenated polar code is constructed by using the (125, 64) polar code with an
8-bit outer CRC code optimized using the guidelines of [18], which takes into account the
exact code concatenation under SCL decoding rather than an ensemble performance. The
generator polynomial of the CRC code is g(x) = x8 + x7 + x6 + x5 + 1. The gap between
the ML performance of two codes is less than 0.5 dB in the considered regime. A careful
optimization of the interleaver of the CRC-concatenated SPC product code might provide
further gains as for polar codes [116], but this is not in the scope of this thesis.

6.4. Appendices

We first provide a proposition, which will be used to prove Lemma 6.2.

Proposition 1. Let H2 : [0, 1/2] → [0, 1] be the binary entropy function and a ∗ b ,
a(1− b) + (1− a)b. Then, for all a, b ∈ [0, 1/2], it satisfies

(1−H2(a))H2(b) ≥ H2(a ∗ b)−H2(a) ≥ (1−H2(a))H2
2 (b) (6.50)

with equality at the left-hand side (LHS) of (6.50) if and only if a ∈ {0, 1/2} or b ∈ {0, 1/2}
and with equality at the RHS if and only if a = 1/2 or b ∈ {0, 1/2}.

Proof. We define a function fb : [0, 1]→ [0, 1] parameterized by b ∈ [0, 1/2] as

fb(x) = H2
(
H−1

2 (x) ∗ b
)

(6.51)

which is convex in x for all b due to Mrs. Gerber’s Lemma [133]. Then, for a Bernoulli
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RV X satisfying a = H−1
2 (P (X = 1)), we write

H2(a ∗ b) = fb (E [X]) (6.52)
≤ E [fb(X)] (6.53)
= (1−H2(a))H2(b) +H2(a) (6.54)

where (6.52) follows from (6.51) and E[X] = H2(a) and (6.53) from the Jensen’s inequality
with equality if and only if X is deterministic, i.e., a ∈ {0, 1/2}, or fb is linear, i.e.,
b ∈ {0, 1/2}. This concludes the proof for the LHS of (6.50).
To find a lower bound, we observe that the Taylor expansion around a = 1/2 gives

H2(a) =
∞∑
i=1

ci
[
1− (1− 2a)2i

]
(6.55)

where ci = (2i(2i− 1) ln 2)−1. Since 1− 2(a ∗ b) = (1− 2a)(1− 2b), (6.55) yields

H2(a ∗ b) =
∞∑
i=1

ci
[
1− (1− 2a)2i(1− 2b)2i

]
. (6.56)

Then, we write

H2(a ∗ b)−H2(a) =
∞∑
i=1

ci(1− 2a)2i
[
1− (1− 2b)2i

]
(6.57)

≥
[
1− (1− 2b)2

] ∞∑
i=1

ci(1− 2a)2i (6.58)

= 4b(1− b) (1−H2(a)) (6.59)
≥ (1−H2(a))H2

2 (b) (6.60)

where (6.58) follows from (1 − 2b)2 ≥ (1 − 2b)2i for i > 1 with equality if and only
if b ∈ {0, 1/2} and (6.59) from combining (6.55) to the convergent series ∑∞i=1 ci = 1.
Finally, (6.60) is due to the inequality H2(b) ≤ 2

√
b(1− b) with equality if and only if

b ∈ {0, 1/2} [6, Prop. 11]. Both (6.58) and (6.60) become equality if and only if a = 1/2 or
b ∈ {0, 1/2}, which concludes the proof. �

Note finally that the proposition still holds for all a, b ∈ [0, 1] when the preimage of
the binary entropy function is extended to [0, 1] since H2(a) = H2(1 − a) and a ∗ b =
1− ((1− a) ∗ b). Now, we are ready to prove Lemma 6.2.
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6.4.1. Proof of Lemma 6.2

Let UN`
1 be a-priori uniform on XN` and let XN`

1 as XN`
1 = UN`

1 KN` . Due to [49, Theorem
1], it is sufficient to show that there exists α, β > 0 for all i ∈ [N`] such that

∣∣∣I (W i
KN`

)
− I (W )

∣∣∣ ≥ I (W )α (1− I (W ))β (6.61)

which can be translated to
∣∣∣H (

Ui
∣∣∣Y N`

1 , U i−1
1

)
−H(W )

∣∣∣ ≥ (1−H(W ))αHβ(W ). (6.62)

Note that H
(
Ui
∣∣∣Y N`

1 , U i−1
1

)
is decreasing in i for i ≥ 2 due to the kernel structure. This

means we have, for i ∈ {2, . . . , N`},

H
(
Ui
∣∣∣Y N`

1 , U i−1
1

)
≤ H

(
U2

∣∣∣Y N`
1 , U1

)
. (6.63)

We no focus on the RHS of (6.63). We have U1 = X1⊕ . . .⊕XN` and U2 = X2 and setting
S = U1 ⊕X2 = X1 ⊕X3 . . .⊕XN` , we write the RHS of (6.63) as

H
(
X2

∣∣∣Y N`
1 , S ⊕X2

)
= H(X2|Y N`

1 ) +H(S ⊕X2|Y N`
1 , X2)−H(S ⊕X2|Y N`

1 ) (6.64)

= H(X2|Y2) +H(S|Y∼2)−H(S ⊕X2|Y N`
1 ) (6.65)

where (6.64) follows from the chain rule of entropy and (6.65) because X2 − Y2 − Y∼2 and
T −Y∼2−Y2 form Markov chains with Y∼i being the random vector where the i-th element
is removed. A lower bound on the last term in the RHS of (6.65) is

H(S ⊕X2|Y N`
1 ) ≥ H2

(
H−1

2 (H(S|Y∼2)) ∗H−1
2 (H(X2|Y2))

)
(6.66)

≥ H(S|Y∼2) + [1−H(S|Y∼2)]H2 (X2|Y2) (6.67)

where (6.66) is due to the Jensen’s inequaltiy applied twice via Mrs. Gerber’s Lemma [133]
by noting that (S, Y∼2) and (X2, Y2) are mutually independent, and (6.67) follows from the
RHS of (6.50). Then, we subtract H(W ) from the both sides of (6.65) to obtain

H
(
X2

∣∣∣Y N`
1 , S ⊕X2

)
−H(W ) ≤ H(S|Y∼2)−H(S ⊕X2|Y N`

1 ) (6.68)

≤ −[1−H(S|Y∼2)]H2(W ) (6.69)
= −[1−H(X1 ⊕X3 ⊕ . . .⊕XN` |Y∼2)]H2(W ) (6.70)
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where (6.69) follows from (6.67), and (6.70) by recalling S = X1⊕X3⊕ . . .⊕XN` . For an
upper-bound on (6.70), we write

H(X1 ⊕X3 ⊕ . . .⊕XN` |Y∼2) =
∑
y∼2

p(y∼2)H(X1 ⊕X3 ⊕ . . .⊕XN` |Y∼2 = y∼2) (6.71)

=
∑
y∼2

p(y1)p(yN`3 )H2
(
pX1⊕X3⊕...⊕XN` |Y∼2=y∼2

)
(6.72)

=
∑
y∼2

p(y1)p(yN`3 )H2

(
pX1|Y1=y1 ∗ pX3⊕...⊕XN` |Y

N`
3 =yN`3

)
(6.73)

≤ H(X1|Y1) + [1−H(X1|Y1)]H(X3 ⊕ . . .⊕XN` |Y
N`

3 )
(6.74)

= H(W ) + [1−H(W )]H(X3 ⊕ . . .⊕XN` |Y
N`

3 ) (6.75)

where (6.72) and (6.73) follows by defining quantities pX|Y=y , H−1
2 (H(X|Y = y)) and

the independence of {Yi}, i ∈ [N`], and (6.74) from the LHS of (6.50). Since X2 = U2 and
U1 = S ⊕X2, combining (6.75) and (6.70) gives

H
(
U2

∣∣∣Y N`
1 , U1

)
−H(W ) ≤ −

[
1−

(
H(W ) + [1−H(W )]H(X3 ⊕ . . .⊕XN` |Y

N`
3 )

)]
H2(W )
(6.76)

= −
(
1−H(X3 ⊕ . . .⊕XN` |Y

N`
3 )

)
[1−H(W )]H2(W ) (6.77)

where (6.77) follows from algebraic manipulation. Now recall (6.63). By recursively ap-
plying the steps to reach (6.77), one obtains

H
(
Ui
∣∣∣Y N`

1 , U i−1
1

)
−H(W ) ≤ −[1−H(W )]N`−1H2(W ) (6.78)

for i = 2, . . . , N`.

Using the chain rule for conditional entropy, we have

N∑̀
i=1

[
H(Ui|Y N`

1 , U i−1
1 )−H(W )

]
= H(UN`

1 |Y N`
1 )−N`H(W ) = 0. (6.79)

Combining (6.78) and (6.79) gives

H
(
U1

∣∣∣Y N`
1

)
−H(W ) ≥ (N` − 1)[1−H(W )]N`−1H2(W ) (6.80)

≥ [1−H(W )]N`−1H2(W ) (6.81)
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where (6.81) follows because N` ≥ 2. We obtain (6.62) by setting α = N` − 1 and β = 2,
which concludes the proof. �

6.4.2. Proof of Theorem 6.3

The proof uses the following idea: For a product code with (m,m − 1) SPC component
codes in m dimensions over the BEC, the largest information bit erasure probability εmax

under SC decoding is the channel erasure probability ε ∈ (0, 1), i.e., εmax = ε as m→∞,
which is proved below. Since εmax is a lower bound on the BLEP under SC decoding (see
(6.39)), we have ε? = 0.
We rewrite the recursion (6.37), for any m ≥ 0, N = N [m], 1 ≤ j ≤ N [m−1], 1 ≤ k ≤ Nm,

t , Nm(j − 1), as a mutual information:

I t+k
G[m] =


1−

(
1−

(
Ij

G[m−1]

)Nm) if k = 1

1−
(
1− Ij

G[m−1]

)(
1−

(
Ij

G[m−1]

)Nm−k+1
)
otherwise.

(6.82)

Note that I i
G[m] = 1 − εi

G[m] where I i
G[m] is the mutual information of the BEC with an

erasure probability of εi
G[m] with uniform inputs. We are interested in

Imin , 1− εmax = 1− εα = Iα (6.83)

for BEC(ε), with ε ∈ [0, 1), which can be calculated recursively via (6.82). To simplify the
recursion, observe that the multi-base binary representation αm1 of α − 1 is the length-m
all-ones vector (recall (6.22) and (6.38)). We now rewrite the first (and single) recursion,
using the RHS of (6.82) with Nm = m as

f(I) , 1− (1− I)
(
1− Im−1

)
(6.84)

= I + Im−1 − Im (6.85)

by setting I = 1 − ε. This recursion is illustrated in the “EXIT chart” in Figure 6.14 for
N` = m, ` ∈ [m], m = 10, and ε = 0.37. For the considered construction, the top curve
in the figure shifts down for a larger m, resulting in a narrower tunnel between the two
curves, although the number of recursions m increases. One must have Imin → 1, i.e., one
reaches the (1, 1) point with m recursions in the figure for P (SC)

B → 0. In the following,
we provide an answer for the question on the dominating effect (narrower tunnel or more
recursions) with increasing m.
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Figure 6.14.: Decoding trajectory for the bit uα of the 10-dimensional SPC product code,
where the component codes are (10, 9) SPC codes, over the BEC(0.37).
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Using (6.85) and αm1 = 1, we know that the mutual information after m iterations is
Iα = f ◦m (I) where f ◦m (I) = f (f ◦m−1 (I)) denotes the m-th iteration of function f with
f ◦1 (I) , f (I). We are interested in the smallest channel mutual information for which
the block error rate converges to zero asymptotically in m, i.e.,

I? = inf
I∈(0,1]

{I : lim
m→∞

P
(SC)
B → 0}. (6.86)

Consider an arbitrary δ > 0. For any positive γ < 1, there is a sufficiently large m such
that mγm−2 ≤ δ. Then for any non-negative I ≤ γ, we write

f(I) = I + Im−1 − Im (6.87)
≤ I

(
1 + Im−2

)
(6.88)

≤ I

(
1 + δ

m

)
(6.89)

where (6.88) follows because I ≥ 0 and (6.89) because I ≤ γ. Combined with mγm−2 ≤ δ,
this leads to Im−2 ≤ δ

m
. For any initial Ich ≤ e−δγ and any m′ ≤ m, we have

f ◦m
′(I) ≤ e−δγ

(
1 + δ

m

)m′
≤ γ (6.90)

which ensures that the condition I ≤ γ for (6.89) is not violated with m′ iterations.
Therefore, for any positive γ < 1, any δ > 0 and any Ich ≤ e−δγ, we have

lim
m→∞

f ◦m(I) ≤ Ieδ. (6.91)

The result follows by choosing δ small and γ close to 1. �

6.4.3. Proof of Theorem 6.4

Let f(Z) = ∏ν
i=1 fi(zi,1, . . . , zi,N) be a multinomial in the variables Z = {zi,j}, 1 ≤ i ≤ ν,

1 ≤ j ≤ N , where each factor fi is a multinomial only in the variables zi,1, . . . , zi,N .
Assume that each variable zi,j appears with exponent either 0 or 1 in the multinomial
fi(zi,1, . . . , zi,N), and, hence, in f(Z). Suppose that we wish to remove from f(Z) all the
terms in the form ∏

i∈T
zi,j (6.92)
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where |T | is odd. The remaining terms can be obtained by computing

1
2

∑
y∈{+1,−1}

ν∏
i=1

fi(zi,1, . . . , zi,j−1, yzi,j, zi,j+1, . . . , zi,N). (6.93)

Similarly, to remove all the terms in the form

∏
i∈Tj

zi,j, j ∈ [N ] (6.94)

where |Tj| is odd, it suffices to evaluate

2−N
∑

y∈{+1,−1}N

ν∏
i=1

fi(y1zi,1, . . . , yNzi,N). (6.95)

For a given (N,K) binary linear block code C, its complete weight enumerating function
(CWEF) is

AC(z) ,
∑
x∈C

zx (6.96)

where zx ,
∏n
i=1 z

xi
i . Consider first a product code composed of ν×N1 arrays whose rows

and columns are codewords of C1 and a trivial rate-1 code I with a generator matrix Iν ,
respectively. Generalizing the definition (6.96), the CWEF AC1⊗I(Z) of the product code
uses the dummy variables Z = {zi,j}, 1 ≤ i ≤ ν, 1 ≤ j ≤ N1, to track bits by their (i, j)
coordinate in the codeword. This is obtained simply by multiplying the CWEFs given as
(6.96) for the codes corresponding to each row i, i.e., we have

AC1⊗I(Z) =
ν∏
i=1

AC1(zi,1, . . . , zi,N1). (6.97)

Recall now that the codewords of C are ν×N1 arrays whose rows and columns are codewords
of C1 and Sν , respectively. Then the CWEF AC(Z) of the product code C is derived from
AC1⊗I(Z) by requiring that each column word has even weight, i.e., we have

AC(Z) = 2−N1
∑

y∈{+1,−1}N1

ν∏
i=1

AC1(y1zi,1, . . . , yN1zi,N1). (6.98)

The WEF of the product code C is obtained by setting zi,j = z, yielding

AC(z) = 2−N1
∑

y∈{1,−1}N1

(AC1(y1z, . . . , yN1z))ν (6.99)
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= 2−N1
∑

y∈{1,−1}N1

∑
x∈C1

zwH(x)
N1∏
i′=1

y
xi′
i′

ν (6.100)

= 2−N1
∑

y∈{0,1}N1

∑
x∈C1

zwH(x)(−1)x·yT

ν (6.101)

= 2−N1
∑

y∈{0,1}N1

 ∑
u∈{0,1}K1

zwH(uG)(−1)uGyT

ν (6.102)

= 2−N1
∑

y∈{0,1}N1

 ∑
u∈{0,1}K1

zwH(uG)(−1)uGH̃yT

ν (6.103)

= 2−N1
∑

y
N1−K1
1

∑
v∈{0,1}K1

 ∑
u∈{0,1}K1

zwH(uG)(−1)uGH̄
T

vT

ν (6.104)

with H̃ ,
[
HT, H̄

T] where H and H̄ are the parity-check matrix of C1 and a complemen-
tary matrix such that H̃ is non-singular, respectively, and v , yN1

N1−K1+1. Equation (6.100)
follows from (6.96) by noting that (y1z, . . . , yN1z)x = zwH(x)yx, (6.101) from re-defining
the dummy vector y, (6.102) from x = uG and performing the sum over u ∈ {0, 1}K1

instead of x ∈ C1, (6.103) from the nonsingularity of H̃ and the sum being over all pos-
sible y ∈ {0, 1}N1 , and (6.104) from dividing the outer sum into two parts, namely over
yN1−K1

1 ∈ {0, 1}N1−K1 and v ∈ {0, 1}K1 , and because the product GHT results in the all-
zeroes matrix. Finally, (6.48) follows because the outer sum can be removed by multiplying
the remaining term by 2N1−K1 and because the product GH̄

T is non-singular.6 �

6.4.4. Proof of Theorem 6.5

Recall (6.98) and assume, without loss of generality, that the component code generator
matrices are of the form [Iki |P i]. We set zi,j = xz for 1 ≤ i ≤ K1 and 1 ≤ j ≤ K2 = ν−1,
and zi,j = z otherwise, to obtain

AC(x, z) = 2−N1
∑

y∈{1,−1}N1

 ∑
u∈{0,1}K1

xwH(u)zwH(uG)yuG

ν−1 ∑
u∈{0,1}K1

zwH(uG)yuG


(6.105)

which follows by applying similar steps as in the proof of Theorem 6.4. �

6The rows of H̄
T are linearly independent of the rows of H by definition.





7
List Decoding over Block-Fading
Channels

This chapter deals with non-coherent communications over fading channels, where the
CSI is known neither at the transmitter nor at the receiver. The lack of CSI is usually
addressed via PAT so that the receiver can operate as if communication was coherent
by replacing the CSI with a noisy estimate. The quality of the channel state estimation
impacts the performance significantly. For a reasonably good estimate, one may require
embedding large number of pilots. When the system requires using short block, i.e., fading
is fast, embedding large number of pilots costs large overhead, which causes a reduction in
the resources allocated for error correction. Hence, classic PAT methods perform poorly
when short blocks are used [22,25,26]. The rates achievable without CSI were investigated
in [174–176]. Bounds on the BLEPs are provided in [27,177,178] not only for non-coherent
transmission but also for various PAT strategies.
This chapter extends the work of [176] by introducing a PAT scheme that, thanks to

the use of list decoders, drastically reduces the pilots overhead. More specifically, the pilot
symbols are used to obtain a (potentially rough) channel estimate which is then employed
by a list decoder to explore the neighborhood (in the codebook) of the channel observation,
i.e., to construct a list of candidate codewords that achieve a large likelihood given the
available channel estimate. The final decision is performed by selecting the codeword in
the list according to a suitably defined non-coherent decoding metric. The pilot symbols
thus enable the construction of a good list – a task that is less challenging than deriving
directly a decision on the transmitted codeword. This principle can be applied to list
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decoders in general and to various slow fading channels. The effectiveness of the method
is illustrated via polar codes under SCL decoding and for general short binary linear block
codes under MRB decoding, providing large gains compared to traditional PAT schemes
over single-input single-output Rayleigh block-fading channels.
The second part of the chapter proposes a pilot-free two-stage polar-coded transmission

(PCT) scheme to jointly estimate the CSI and data with an adjustable complexity that can
be made comparable to PAT, especially when the number of diversity branches is small. In
the first stage, SCL decoding and the polar code constraints are used to estimate the CSI.
In the second stage, mismatched SCL decoding proceeds with this estimate. Remarkably,
PCT performs within a few tenths of a dB form the performance of a coherent receiver
with perfect CSI.
Although the ideas extend to higher-order modulation as well as to transmission over

various fading channels, e.g., Rician block-fading channel, our focus will be on the quadra-
ture phase-shift keying (QPSK) and Rayleigh fading channels.

7.1. Notation and System Model

This section requires extra notation: the natural logarithm is denoted as log(·). We use C
for the field of complex numbers. For a given x ∈ C, <{x} and |x| denote the real part and
the magnitude of x, respectively. Let x,y ∈ CN . We use ‖x‖ for the l2-norm of x, 〈x,y〉
for the inner product. We write CN (µ, σ2) to denote a complex Gaussian distribution with
mean µ and variance σ2. A bold letter with underline (e.g., X) is used for random vectors.
We consider a single-input single-output block-fading channel, where the fading coef-

ficient H is constant for Nc channel uses and changes independently across B coherence
blocks that are called diversity branches. The frame size is thus N = BNc symbols. Such
a setup is relevant, for instance, for orthogonal frequency-division mutiplexing (OFDM)
systems. The channel output of the i-th coherence block is

yi = hixi + zi, i = 1, . . . , B (7.1)

where xi ∈ XNc and yi ∈ CNc are the transmitted and received vectors, hi ∈ C is a
realization of Hi and zi is an additive white Gaussian noise (AWGN) term whose entries
are i.i.d. as CN (0, σ2). We assume that the noise variance σ2 is known to the receiver;
this may be justified by the slow time scale of receiver device variations as compared to
fading due to mobility. The mutually independent RVs Hi and N i are assumed to be
independent over i. A vector without subscripts denotes a concatenation of vectors or
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scalars, e.g., y = (y1, . . . ,yB), x = (x1, . . . ,xB) and h = (h1, . . . , hB).
Consider QPSK with Gray labeling where the energy per symbol is normalized to 1.

This means that the input alphabet is

X = {±∆± j∆} , ∆ = 1√
2
, (7.2)

and we map the binary vector (a codeword) c2m
1 to xm1 ∈ Xm via χ : {0, 1}2m 7→ Xm as

χ
(
c2m

1

)
= (χg(c1, c2), χg(c3, c4), . . . , χg(c2m−1, c2m)) (7.3)

where
χg (c1, c2) = (−1)c1∆ + j(−1)c2∆. (7.4)

The mapping (7.3) is symmetric, i.e., if χ (c2m
1 ) = x, then χ (c2m

1 ⊕ 1) = −x.

7.2. Decoding Rules over Fading Channels

We revisit various block-wise decoding rules for different assumptions on the availability
of the CSI and on the frame structure. This will help us understand the relevant finite-
length performance bounds used as benchmarks, as well as possible ways to improve the
performance.

7.2.1. Decoding with Perfect CSI

If the channel coefficients are known to the receiver, the (coherent) ML decoding rule is

x̂ = argmax
x∈C

pY |X,H(y|x,h) (7.5)

= argmax
x∈C

B∏
i=1

pY i|Xi,Hi
(yi|xi, hi) (7.6)

= argmin
x∈C

B∑
i=1
||yi − hixi||2 (7.7)

= argmax
x∈C

B∑
i=1

2<{〈yi, hixi〉} − |hi|2 ‖xi‖2 (7.8)
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where C is the set of transmitted signal vectors induced by the chosen channel code and
modulation. When ‖xi‖ is constant across codewords and blocks, we have

x̂ = argmax
x∈C

B∑
i=1
<{〈yi, hixi〉} (7.9)

which is the case, for instance, if the modulation is QPSK.

7.2.2. Decoding without CSI

Assume next that the decoder does not have access to the channel coefficients. We refer
to this setting as non-coherent.

Blind Approach

if no pilots are embedded in the transmitted sequence, we rely on a blind approach. If
the receiver does not possess information on the distribution of the channel coefficients
then the problem can be tackled by designing a generalized likelihood-ratio test (GLRT)
as in [179] yielding

x̂ = argmax
x∈C

max
h

pY |X,H(y|x,h) (7.10)

= argmin
x∈C

B∑
i=1

min
hi
||yi − hixi||2 (7.11)

= argmax
x∈C

B∑
i=1

|〈yi,xi〉|2

‖xi‖2 . (7.12)

where (7.12) follows by observing that the ML channel estimate (7.23) given yi and xi

minimizes the objective function at RHS of (7.11). For QPSK, (7.12) reduces to

x̂ = argmax
x∈C

B∑
i=1
|〈yi,xi〉|2. (7.13)

If the receiver knows the channel coefficients distribution, then the non-coherent ML
estimate is

x̂ = argmax
x∈C

B∏
i=1

EHi [pY i|Xi,Hi
(yi|xi, Hi)] (7.14)



7.2. Decoding Rules over Fading Channels 141

= argmax
x∈C

B∑
i=1

pY i|Xi
(yi|xi). (7.15)

Example 7.1 (Non-coherent decoding metrics for Rician and Rayleigh block-fading chan-
nels). Suppose the channel coefficients are distributed as Hi ∼ CN (µH, σ

2
H), i ∈ [B].

Observe that pY i|Xi
(yi|xi) is the PDF of a conditionally Gaussian distribution with mean

µyi|xi , E [yi|xi] and covariance matrix Cyi|xi , E
[
yH
i yi|xi

]
; hence, we rewrite (7.15) as

x̂ = argmax
x∈C

B∏
i=1

1
πNc

∣∣∣Cyi|xi

∣∣∣ exp
(
−
(
yi − µyi|xixi

)
C−1

yi|xi

(
yi − µyi|xixi

)H
)

(7.16)

= argmax
x∈C

B∑
i=1

σ2
H |〈yi,xi〉|2 + 2σ2<{〈yi, µHxi〉}+ σ2 |µH|2 ‖xi‖2

σ2 (σ2 + σ2
H‖xi‖2) − log

(
1 + σ2

H
σ2 ‖xi‖2

)
(7.17)

where (7.17) follows from taking the logarithm of the objective, inserting µyi|xi = µHxi,
Cyi|xi = σ2

HxH
i xi+σ2INc in (7.16) and applying algebraic manipulations. Note that

∣∣∣Cyi|xi

∣∣∣
can be found using matrix determinant lemma [180, Lemma 1.1] as

∣∣∣Cyi|xi

∣∣∣ = σ2Nc
(

1 + ‖xi‖2σ
2
H
σ2

)
(7.18)

and C−1
yi|xi via the formula [181, Equation 2] as

C−1
yi|xi = 1

σ2

(
INc −

σ2
H

σ2 + σ2
H‖xi‖2 xH

i xi

)
. (7.19)

The model (7.1) yields a Rician block-fading channel when µH =
√
κ/1+κ and σ2

H =
(1 + κ)−1, κ ≥ 0, and Rayleigh block-fading if κ = 0. With increasing κ, the channel
behaves like a standard additive white Gaussian noise channel (AWGNC), and exactly so
for κ = ∞. In the following, we mainly investigate Rayleigh fading. For κ = ∞, (7.17)
recovers (7.8). For κ = 0, (7.17) yields

x̂ = argmax
x∈C

B∑
i=1

|〈yi,xi〉|2

σ2 (σ2 + ‖xi‖2) − log
(

1 + 1
σ2‖xi‖2

)
. (7.20)

For QPSK, we recover (7.13).
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Nc = Np +Nd Np Nd

N = BNc

Figure 7.1.: A PAT frame structure with B = 2 coherence blocks. Dark and white boxes
represent pilot and coded symbols, respectively.

Pilot-Assisted Channel Estimation

The idealized setting described in Section 7.2.1 is often approximated by including pilot
symbols in the transmitted sequence which are used to estimate the channel coefficients.
Consider, without loss of generality, PAT as shown in Figure 7.1 where the first Np symbols
in each coherence block are pilot symbols xp

i and the remaining Nd = Nc−Np symbols xd
i

are coded. Upon observing y, an ML estimate of the CSI is

ĥi = argmax
h∈C

pY p
i |X

p
i ,Hi

(yp
i |xp

i , h) (7.21)

= argmin
h∈C

‖yp
i − hixp

i‖2 (7.22)

= 〈y
p
i ,x

p
i〉

‖xp
i‖2 . (7.23)

where (7.23) follows from taking the derivative of the objective in (7.22) with respect to
h and setting it to 0. This estimate ĥ is treated as ideal by the decoder, yielding the
mismatched decoding rule

x̂d = argmax
xd∈C

pY d|Xd,H(yd|xd, ĥ) (7.24)

= argmin
xd∈C

B∑
i=1

2<{〈yd
i , ĥix

d
i〉} −

∣∣∣ĥi∣∣∣2 ‖xd
i‖2. (7.25)

For QPSK, this reduces to

x̂d = argmax
xd∈C

B∑
i=1
<{〈yd

i , ĥix
d
i〉}. (7.26)

To keep the overall rate fixed, the (N,K) code is punctured suitably so that the code
length after puncturing is Npunc = N − 2BNp = 2BNd with QPSK. The pilot and coded
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symbols have the same energy. The rate in terms of bits per channel use (BPCU) is

R = K

BNc

(7.27)

where K is the number of information bits encoded by C. with QPSK modulation, the
rate of the code C is instead denoted by

R0 = K

2B(Nc −Np)
. (7.28)

A traditional PAT scheme initiates a standard decoding algorithm (e.g., Viterbi decoding
for convolutional codes, SCL decoding for polar codes, etc.) after estimating the channel
with mismatched probabilities. In particular, note that the knowledge of the correct values
of h1, . . . , hB allows to factorize as

pY i|Xi,Hi
(yi|xi, hi) =

Nc∏
j=1

pY |X,hi(yi,j|xi,j, hi), i ∈ [B] (7.29)

where xi,j and yi,j are the j-th element of xi and yi, respectively. This factorization is
typically required by standard decoders. Even with imperfect channel estimations, we can
factorize the mismatched likelihoods as

pY i|Xi,Hi
(yi|xi, ĥi) =

Nc∏
j=1

pY |X,Hi(yi,j|xi,j, ĥi), i ∈ [B] (7.30)

which enables the use of standard decoders designed for memoryless channels. Note also
that, for a fixed rate R and a fixed blocklength BNc, a large number of pilots provides
a relatively accurate channel estimate at the cost of an increase in the code rate R0, and
thus a reduction of the error correction capability. This yields a trade-off between resources
allocated to channel estimation and error correction (see, e.g., [26]).

If the receiver knows the channel coefficients’ distribution, the decoding metric can be
modified to account for the optimum estimate, minimizing the BLEP, by jointly processing
the y and xp as [182, Equation (9)]

x̂d = argmax
xd∈C

B∏
i=1

EHi
[
pY i|Xi,Hi

(yi|xi, Hi)
]

(7.31)

= argmax
xd∈C

B∏
i=1

EHi
[
pY d

i |X
d
i ,Hi

(yd
i |xd

i , Hi)pY p
i |X

p
i ,Hi

(yp
i |xp

i , Hi)
]

(7.32)
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where (7.32) follows because given Hi, Xp
i and Xd

i , the received random vectors Y p
i and Y d

i

are independent. Equation (7.32) discards estimating the channel explicitly and focuses
on the optimum decoding of the codeword by treating the pilots as part of the codebook.
There is an intermediate approach, which explicitly estimates the channel as in (7.23)

and then uses the channel estimates to derive a conditional Gaussian distribution for
pY d

i |X
d
i

(
yd
i |xd

i ; ĥi
)
, where ĥi is used as a parameter for the distribution. Then, an ML

decision is

x̂d = argmax
xd∈C

B∏
i=1

EHi|Ĥi=ĥi
[
pY d

i |X
d
i ,Hi

(
yd
i |xd

i , hi; ĥi
)]

(7.33)

= argmax
xd∈C

B∏
i=1

pY d
i |X

d
i

(
yd
i |xd

i ; ĥi
)
. (7.34)

Observe that this approach requires knowing the channel coefficients’ distribution in order
to provide the true distribution for pY d

i |X
d
i

(
yd
i |xd

i ; ĥi
)
.

Remark 7.1. The metrics (7.32) and (7.34) are the same for Rayleigh block-fading chan-
nels. This can be checked using the results of [182] for the case where B > 1 (see,
e.g., [27, Equation (43)] for (7.34)). If one further assumes QPSK modulation, then we
again get (7.13), where in the evaluation of terms in the summation (7.13) one has to use
xi = (xp

i ,x
d
i) and yi = (yp

i ,y
d
i ).

7.3. Finite-Length Performance Bounds

We review converse and achievability bounds on the average BLEP for finite-blocklengths
that will be used to benchmark the coding schemes introduced. The converse bound is
based on the MC theorem in [143, Theorem 28] and the achievability bounds are based on
the random coding union bound with s parameter (RCUs) [178, Theorem 1].
Let q : CNc × CNc → R+ be a block-wise decoding metric and let (X̄ i,X i,Y i) ∼

pXi
(x̄i)pXi

(xi)pY i|Xi
(yi|xi), i = 1, . . . , B, be independent across coherence blocks. The

generalized information density is defined [178, Equation (3)] as

is(xi,yi) , log q(xi,yi)s

E
[
q
(
X̄ i,yi

)s] (7.35)

where s ≥ 0. The RCUs states that, for a given rate R, the average BLEP over of a
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random code can be upper-bounded as

PB ≤ inf
s≥0

E

exp
− [ B∑

i=1
is(X i,Y i)− log(2RNcB − 1)

]+ . (7.36)

The bound in (7.36) is evaluated for the following combinations of input distributions and
decoding metrics:

i) Input symbols uniformly distributed on a shell in CNc with ‖xi‖2 = Nc, and ML
decoding, i.e., q(xi,yi) = pY i|Xi

(yi|xi) as in (7.15);

ii) a pilot-assisted scheme as in Section 7.2.2 with the Nc −Np data symbols uniformly
distributed on a shell in CNc−Np with ‖xd

i‖2 = Nd and ML decoding, i.e., q(xi,yi) =
pY d

i |X
d
i
(yd

i |xd
i ; ĥi) as for (7.34);

iii) input distribution as in ii) and mismatched decoding, i.e., q(xi,yi) = −‖yd
i − ĥixd

i‖2

as for (7.25).

See [27, Section III.A-III.D] for details on how to evaluate (7.36) for each of these cases.
The converse bound is based on the MC theorem. For a given average BLEP PB, the

maximum code rate R∗ is upper-bounded as

R∗ ≤ RMC (PB) (7.37)

, inf
λ≥0

1
BNc

λ− log
[
Pr
{

B∑
i=1

i1(X i,Y i) ≤ λ

}
− PB

]+ . (7.38)

For a given rate R∗, a lower bound on PB, denoted as PMC
B , can be obtained from (7.38)

by finding the PMC
B for which RMC (PMC

B ) = R∗. For more details on this converse bound,
the reader is referred to [27, Section III.E].

Remark 7.2. The achievability bound based on i) is relevant for non-coherent schemes
using (7.15), which becomes relevant for (7.13) for Rayleigh fading channels, see Remark
7.1. For PAT, any decoder using (7.34) can use the bound based on ii) as a benchmark.
Furthermore, approach iii) is relevant for the mismatched decoding based on the channel
estimates. Finally, the converse bound is valid for all the schemes, and is optimistic
especially for PAT irrespective of the decoding metric.
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7.4. Joint Channel Estimation and List Decoding of
Short Codes

By inspecting (7.13), (7.20) or (7.34), we see that the decoding metric does not admit a
trivial factorization, which seems to preclude efficient decoders such as Viterbi decoding
over the code trellis, and on any decoding algorithm that relies on factorizing the channel
likelihood (such as BP decoding for turbo/LDPC codes or SCL decoding of polar codes).
A pragmatic solution to this problem is to use a few pilots in the transmitted sequence to

bootstrap iterative decoding and channel estimation algorithms [183–189]. In Section 7.4.1,
we discuss how iterative decoding and channel estimation can be applied to list decoders
via MRB decoding. The scheme is based on the expectation-maximization (EM) algo-
rithm [190] that uses the probabilities from the list of the previous iteration. Section 7.4.2
shows that list decoders in general, and SCL decoding in particular, allow for an alternative
approach to PAT by using a non-coherent decoding metric. This improves the error cor-
rection capability and reduces the decoding complexity as compared to iterative schemes.
This method is useful if the number of diversity branches is large and is well-suited for
existing systems that already have pilots in the frames [24].

7.4.1. Iterative Channel Estimation and List Decoding via EM

We next reduce the number of pilots (and hence allow using a lower-rate code) by iterating
channel estimation and decoding. In the following, we combine the EM algorithm with a
list decoder, e.g., MRB or SCL decoding. The algorithm works as follows:

1. Initialize ĥ(0)
i as in (7.23) for i = 1, . . . , B, and construct the list L(0) using the

channel estimates.

2. At iteration j, construct the list L(j) using the updated channel estimates ĥ
(j). We

have

a. Expectation step:

Q
(
h, ĥ

(j−1)
)

=
∑

xd∈L(j−1)

−PXd|Y d,H

(
xd|yd, ĥ

(j−1)
)
× ‖yd

i − hxd
i‖2 (7.39)
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where we approximate PXd|Y d,H

(
xd|yd, ĥ

(j−1)
)
as

PXd|Y d,H

(
xd|yd, ĥ

(j−1)
)
≈

pY d|Xd,H

(
yd|xd, ĥ

(j−1)
)

∑
x̃d∈L(j−1) pY d|Xd,H

(
yd|x̃d, ĥ

(j−1)
) . (7.40)

b. Maximization step:
ĥ

(j)
i = argmax

h
Q
(
h, ĥ

(j−1)
)
. (7.41)

After performing Step 2 for a predetermined number ` of iterations, the final decision is
obtained as in (7.26) by replacing ĥ and L by ĥ

(`) and L(`), respectively.

7.4.2. List Decoder with in-List GLRT

We use the channel estimate (7.23) to form a list L of codewords. Each codeword in the
list is modified by re-inserting the pilot symbols, which yields a modified list L′. The final
codeword is chosen from L′ according to the GLRT rule (7.13), i.e., we choose

x̂ = argmax
x∈L′

B∑
i=1
|〈yi,xi〉|2 (7.42)

= argmax
x∈L′

B∑
i=1
<
{
〈yd

i , ĥix
d
i〉
}

+ 1
2np
|〈yd

i ,x
d
i〉|2 (7.43)

where x̂d is x̂ without the pilots. Note that the decoding metric has two contributions: A
first term that resembles a coherent metric based on the estimate ĥ, and a second term
that is related to the non-coherent correlation. The second term is weighted by the inverse
of the number of pilots; hence it becomes negligible when np is large, i.e., when the channel
estimate is reliable.
The metric (7.43) lends itself to an alternative interpretation. Suppose the distribution

of the channel coefficient for the i-th coherence block given its estimate ĥi given via (7.23)
is a complex Gaussian distribution with mean ĥi and variance σ2

‖xp
i ‖2 , i.e., pHi|Ĥi=ĥi =

CN
(
ĥi,

σ2

‖xp
i ‖2

)
. Then, similar to (7.33), we obtain

x̂ = argmax
x∈C′

B∏
i=1

EHi|Ĥi=ĥi [pY d|Xd,Hi
(yd

i |xd
i , Hi; ĥi)] (7.44)
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= argmax
x∈C′

B∑
i=1
<
{
〈yd

i , ĥix
d
i〉
}

+ 1
2‖xp

i‖2 |〈y
d
i ,x

d
i〉|

2 + 1
2
∣∣∣ĥi∣∣∣2 ‖xd

i‖2 − σ2

2
‖xd

i‖2

‖xp
i‖2 log

(
1 + ‖x

d
i‖2

‖xp
i‖2

)
(7.45)

where C ′ is the modified channel code obtained by re-inserting the pilot symbols in each
codeword. For QPSK we recover (7.43) as ‖xp

i‖2 = Np and ‖xd
i‖2 = Nd.

Numerical Results: PAT

We use Monte Carlo simulations to compute the BLER and express the SNR as Es/N0. The
results are compared with the bounds of Section 7.3. We consider Rayleigh block-fading
channels with B = 4 coherence blocks and different code rates. For the specified codes,
a pseudo-random interleaver is applied to the codeword bits after encoding. We consider
different numbers of pilot symbols (Np ∈ {1, 2, 3}) per coherence block, where puncturing
adapts the blocklength to the number of channel uses available after pilot insertion. The
symbols are taken from a QPSK constellation.
We first compare the performance achieved by the PAT scheme proposed in Section

7.4.2 using MRB decoding to the two baseline decoders, namely mismatched MRB de-
coding of Section 7.2.2 and the iterative EM-based MRB decoding of Section 7.4.1. Each
coherence block has 13 channel uses, which results in 52 channel uses per message. For
the simulations, we considered K = 32 information bits within each codeword, yielding
a rate R = 32/52 ≈ 0.62 bits per channel use. A (96, 32) quasi-cyclic code is used and
a suitable number of codeword bits is punctured (in case Np > 1) to accommodate the
pilot symbols within the 52 channel uses. The code is obtained by a tail-biting termina-
tion of a rate−1/3 non-systematic convolutional code with a memory 17 and generators
[552137, 614671, 772233] [191, Table 10.14]. The minimum distance of the quasi-cyclic code
is upper-bounded by the free distance of the underlying convolutional code, which is 32.
The MRB decoding order t is set to 3, which provides a reasonable trade-off between
performance and decoding complexity.
For the iterative EM-based MRB decoding, we set the number of iterations to m = 1.1

Figures 7.2-7.4 show that the gains achieved by the proposed decoder is up to 1.2 dB
as compared to mismatched MRB decoding. The performance of the iterative EM-based
MRB decoding is only marginally better than the one obtained by the mismatched one.
Remarkably, the proposed approach performs close to the RCUs for PAT and ML decoding
except for Np = 1. In the simulated setting, the proposed approach provides the best

1There is a diminishing return in the gain with larger number of iterations and MRB decoding has high
complexity with a larg number of iterations.
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Figure 7.2.: BLER vs. SNR for the PAT schemes using MRB decoding with Np = 1.
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Figure 7.3.: BLER vs. SNR for the PAT schemes using MRB decoding with Np = 2.
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Figure 7.4.: BLER vs. SNR for the PAT schemes using MRB decoding with Np = 3.

performance with Np = 2, with a slight degradation visible when Np = 3.
We next compare the performance of a polar code with the modified list decoders pro-

posed in Section 7.4.2 to that of a quasi-cyclic code using MRB decoding as above. Each
coherence block has 17 channel uses.2 This results in 68 channel uses per message. For the
simulations, we transmit k = 32 information bits within each codeword, yielding a rate
R = 32/68 ≈ 0.47 BPCU. The (128, 32) quasi-cyclic code used in the simulations is ob-
tained by a tail-biting termination of a rate−1/4 non-systematic convolutional code with
a memory 14 and generators [47633, 57505, 66535, 71145] [191, Table 10.14]. The minimum
distance of the quasi-cyclic code is upper-bounded by the free distance of the underlying
convolutional code, which is 37. In addition, we designed a (128, 32) polar code using the
Gaussian approximation of density evolution (see (3.59) and (3.60)) with a design SNR
of Es/N0 = 3 dB. For the polar code, quasi-uniform puncturing (QUP) [172] is adopted
while the quasi-cyclic code is punctured randomly. The MRB decoding order is set to 3
as before. With this choice, it builds a list L of 5489 candidate codewords. For the polar
code, the list size of SCL decoding is set to 1024.
Figures 7.5-7.7 show that the gains of the proposed technique are no less than 1 dB as

compared to mismatched PAT decoding at a BLER ≈ 10−3. Remarkably, the polar code
under SCL decoding outperforms the quasi-cyclic code under MRB decoding despite the

2This choice is because the blocklengths for polar codes are suited for powers of 2 and we embed the
firsts pilots to each block without puncturing.
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Figure 7.5.: BLER vs. SNR, where MRB decoding is used for the quasi-cyclic code and
SCL decoding for the polar code in PAT with Np = 1.
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Figure 7.6.: BLER vs. SNR, where MRB decoding is used for the quasi-cyclic code and
SCL decoding for the polar code in PAT with Np = 2.
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Figure 7.7.: BLER vs. SNR, where MRB decoding is used for the quasi-cyclic code and
SCL decoding for the polar code in PAT with Np = 3.

much smaller list size, attaining a performance close to the RCUs bound ii) for PAT under
ML decoding.

7.4.3. Polar-Coded Non-Coherent Communication

The finite-length performance bounds show that there is a fundamental performance degra-
dation due to using pilot symbols even when optimum decoding is employed [27, Figure
5]. Therefore, we next propose a pilot-free two-stage PCT scheme to jointly estimate the
CSI and data with an adjustable complexity that can be made comparable to mismatched
decoding in PAT. In the first stage, SCL decoding and the polar code constraints are used
to estimate the CSI. In the second stage, mismatched SCL decoding proceeds with with
this estimate. This scheme is of low-complexity especially when the number of diversity
branches is small and is promising for future communication systems that require short
frames and high efficiency in terms of rates [22].
A related method to estimate CSI uses the parity-check constraints of an LDPC code

[192]. However, SCL decoding of polar codes naturally provides soft estimates of frozen
bits. Moreover, polar codes are usually used with a high-rate outer code [11, 12] that can
resolve CSI ambiguities, e.g., the phase ambiguity when using QPSK and Gray labeling
[192]. Of course, one may consider outer codes for LDPC codes as well. Other low-
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complexity methods for non-coherent channels are described in, e.g., [179,192–195].

The Algorithm

This section presents a low-complexity joint channel estimation and decoding scheme for
polar codes when there are no pilot symbols embedded in the frames, i.e., we have Np = 0
and xi = xd

i . A random interleaver Π permutes the encoded bits c2N
1 and is followed by

the mapping (7.3). The channel model is (7.1).
Let hi = rie

jθi where ri ∈ [0,∞) and θi ∈ [0, 2π), i ∈ [B]. We begin by replacing the
amplitudes ri = |hi| via the estimates

r̂i =
√

1
Nc

‖yi‖2 − σ2, i = 1, . . . , B. (7.46)

Let β be a number of input bits, and recall the definitions A(β) = A∩[β] and F (β) = F∩[β].
We use the polar code constraints to obtain an ML estimate of the phase as

{
θ̂1, . . . , θ̂B

}
= argmax
{θ1,...,θB}

pY |UF(β) ,H (y |uF(β) ,h) (7.47)

= argmax
{θ1,...,θB}

∑
uA(β)

pY ,UA(β) |UF(β) ,H (y, uA(β) |uF(β) ,h) (7.48)

= argmax
{θ1,...,θB}

∑
uA(β)

pi
G[n+1](y, uβ1 ; h) (7.49)

where hi = r̂ie
jθi , i ∈ [B] and (7.49) follows from Lemma 3.5 and independent Uβ

1 and H ,
β ∈ [2N ]. The quantities pi

G[n+1](y, uβ1 ; h) denote the myopic probabilities obtained by SC
decoding, see Lemma 3.5. Hence, the sum in (7.49) can be computed by SCL decoding up
to decoding stage |F (β)| with a list size Le = 2|A(β)|. To reduce complexity at the expense
of accuracy, one can approximate the calculation with SCL decoding and Le satisfying
1 ≤ Le < 2|A(β)|. In fact, simulations in Section 4.4.3 show that small list sizes such as
Le = 8 give BLER curves close to those of the coherent receiver.

Remark 7.3. Observe that if the estimator (7.49) is set to use all the frozen bits, i.e.,
β = γ, then the phase estimate is optimum in the ML sense based on the code structure.

Remark 7.4. The search space in (7.49) grows exponentially in the number of diversity
branches B. There are several approaches to reduce complexity and we consider only the
symmetry of the likelihood function due to the channel (7.1) and mapping (7.3) that halves
the search space. We further adopt a coarse-fine search [192,196] as an efficient optimizer.
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The proofs of the following results are given in Appendix 7.5.

Lemma 7.1. Polar-coded modulations with the mapping (7.3) and the channel (7.1) have
a sign ambiguity for the channel coefficients, i.e., for all y, h and u2N−1

1 , we have

pY |U2N
1 ,H

(
y
∣∣∣(u2N−1

1 , 0),h
)

= pY |U2N
1 ,H

(
y
∣∣∣(u2N−1

1 , 1),−h
)
. (7.50)

Lemma 7.1 implies that if a polar code is considered for (7.1) then the decoder cannot
resolve the ambiguity on bit uN . This ambiguity occurs for any binary linear block code
that has a generator matrix with an all-ones row, which is reflected in the bit uN for polar
codes.

Theorem 7.2. Polar-coded modulations with the mapping (7.3) and the channel (7.1)
satisfy

pY |U i1,H
(
y
∣∣∣ui1,h) = pY |U i1,H

(
y
∣∣∣ui1,−h

)
(7.51)

for all y, h and ui1, i ∈ [2N − 1].

Corollary 7.3. Polar-coded modulations with the mapping (7.3) and the channel (7.1)
satisfy

pY |UF(β) ,H (y |uF(β) ,h) = pY |UF(β) ,H (y |uF(β) ,−h) (7.52)

for all y and h.

Corollary 7.3 implies that the PCT estimator outputs two solutions for (7.49), namely
{θ̂1, . . . , θ̂B} and {θ̂1 + π, . . . , θ̂B + π} where addition is modulo 2π. An outer code can
resolve this ambiguity by optimizing over the set [0, 2π)B−1 × [0, π) to obtain {θ̂1, . . . , θ̂B}
by using the inner code constraints. The demodulator then feeds the SCL decoder with
the LLRs. Let L be the list of words uA output by the decoder and define

L′ = {(uA(2N−1) , u2N ⊕ 1) : uA ∈ L}. (7.53)

The outer code now eliminates invalid words in L ∪ L′. Among the survivors, if any, the
estimate û2N

1 is chosen to maximize pY |U2N
1 ,H(y|u2N

1 , ĥ) if uA ∈ L or pY |U2N
1 ,H(y|u2N

1 ,−ĥ)
if uA ∈ L′.

Remark 7.5. An outer code with a minimum distance of at least two can resolve the
phase ambiguity.
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Numerical Results: PCT

This section provides Monte Carlo simulation results to compare the performance of PAT
and PCT. The inner code is a (128, 38) polar code and the outer code is a 6-bit CRC
code with generator polynomial x6 + x5 + 1, resulting in a (128, 32) code. For the QPSK
modulator (7.3) we have N = BNc = 64 channel uses and an overall rate of R = 0.5 BPCU.
For PAT, the (128, 32) code is punctured to obtain BNp pilot bits in total, resulting in a
(2N − 2BNp, 32) code. All curves shown in the figures below are for SCL decoding with
a list size of L = 8 after estimating the CSI. The optimization (7.49) uses a coarse-fine
search with 8 levels in both the coarse and fine search parts [196]. The performance is
compared for various estimator parameters β and Le and to the coherent receiver with
perfect CSI. No puncturing is required for the coherent receiver. As discussed below, the
gains of our scheme are similar for B ∈ {1, 2} and with or without fading.
Consider the channel (7.1) with B = 1, r1 = 1, and uniformly distributed phase Θ1 ∼
U [0, 2π). Figure 7.8 compares PAT and PCT. The best PAT performance for the BLERs
of interest was achieved with Np = 14, i.e., 14 pilot symbols gave the lowest SNR for
BLERs ranging from 10−2 to 10−4 in Figure 7.8. For smaller Np the quality of the channel
estimate limits performance, and for larger np the puncturing weakens the polar code and
limits performance. PCT performs within 0.3 dB of the receiver with perfect CSI if the
estimator is run with Le = 8 and up to the last frozen bit with β = 113. It thereby
outperforms PAT by about 1.5 dB at a BLER of 10−4. Observe that if the estimator is run
up to the last frozen bit before the first information bit, i.e., β = 47, then the performance
is worse than for PAT. The parameters β = 113 and Le = 1 provide a good trade-off
between complexity and performance when combined with a second-stage SCL decoding
with a list size L = 8.
Table 7.1 compares the number of visited nodes per frame in the polar decoding tree

along with the BLER at Es/N0 = 1 dB. Each visited node corresponds to an input bit
(including the frozen bits) visited by the algorithm [197, Remark 4]. For PCT, we state
the sum of the number of nodes visited by the estimator and the number of nodes visited
by the decoder. The number of visited nodes with PAT and perfect CSI is thus the same.
Observe that PCT with β = 113 and Le = 1 visits a similar number of nodes as PAT with
a list size L = 32 (the difference is less than 10%) and it reduces the error probability
by one order of magnitude. We remark that measuring the complexity by the number of
visited nodes is pessimistic for PCT since most of the visited nodes are frozen bits. Hence,
simplified SC decoders [198,199] can significantly reduce complexity.

We next consider B = 2 coherence blocks. Figure 7.9 shows the BLER for ri = 1
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Figure 7.8.: Performance of PAT and PCT for the channel (7.1) with B = 1, r1 = 1, and
Θ1 ∼ [0, 2π). A (128, 32) polar code was used with QPSK so that n = nc = 64
and the overall rate is R = 0.5 BPCU. SCL decoding uses a list size of L = 8
for all cases.

Table 7.1.: Number of Visited Nodes per Frame at Es/N0 = 1 dB
Method FER Visited Nodes

PAT (np = 14, L = 8) 8.43× 10−3 631
PAT (np = 14, L = 32) 3.16× 10−3 2223

PCT (β = 47, Le = 1, L = 8) 3.36× 10−2 1383
PCT (β = 61, Le = 8, L = 8) 3.20× 10−3 2151
PCT (β = 113, Le = 1, L = 8) 3.50× 10−4 2439
PCT (β = 113, Le = 8, L = 8) 1.00× 10−4 8807

Perfect CSI (L = 8) 2.40× 10−5 631
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Figure 7.9.: Performance of PAT and PCT for the channel (7.1) with B = 2, ri = 1, and
Θi ∼ [0, 2π) for i ∈ {1, 2}. A (128, 32) polar code was used with QPSK so
that n = 2nc = 64 and the overall rate is R = 0.5 BPCU. SCL decoding uses
a list size of L = 8 for all cases.

and Θi ∼ U [0, 2π), i ∈ {1, 2}. Figure 7.10 shows the BLER for a Rayleigh block-fading
channel with Hi ∼ CN (0, 1), i ∈ {1, 2}. The best performance for PAT was achieved with
np = 7 pilot symbols per coherence block for both cases. Observe that, in both cases,
PCT outperforms PAT by about 2 dB at a BLER ≈ 10−4. Moreover, PCT approaches the
performance of a coherent receiver with perfect CSI.

7.5. Appendices

7.5.1. Proof of Lemma 7.1

For all x, y, h and s ∈ {−1,+1}B, we have

pY |X,H (y|x,h) =
B∏
i=1

pY i|Xi,Hi
(yi|sixi, sihi) (7.54)
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Figure 7.10.: Performance of PAT and PCT for a Rayleigh block-fading channel and B = 2.
A (128, 32) polar code was used with QPSK and the overall rate is R = 0.5
BPCU. SCL decoding uses a list size of L = 8 for all cases.
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as s2
i = 1. Recall that c2N

1 = Π−1(χ−1(x)) so that c2N
1 ⊕ 1 = Π−1(χ−1(−x)). By choosing

s = −1, we have

pY |C,H
(
y|c2N

1 ,h
)

= pY |C,H
(
y|c2N

1 ⊕ 1,−h
)
. (7.55)

Let u2N
1 be the vector such that c2N

1 = u2N
1 G[n+1]. We have c2N

1 ⊕1 = (u2N−1
1 , u2N⊕1)G[n+1]

because the last row of G[n+1] is 1. �

7.5.2. Proof of Theorem 7.2

For i ∈ [2N − 1], we have

pY |U i1,H
(
y|ui1,h

)
=
∑
u2N
i+1

P
(
u2N
i+1

)
pY |U2N

1 ,H

(
y|u2N

1 ,h
)

(7.56)

=
∑
uN−1
i+1

P
(
uN−1
i+1

) [∑
uN

1
2pY |U2N

1 ,H

(
y|u2N

1 ,h
)]

(7.57)

=
∑
uN−1
i+1

P
(
uN−1
i+1

) [∑
uN

1
2pY |U2N

1 ,H

(
y|u2N

1 ,−h
)]

(7.58)

=
∑
u2N
i+1

P
(
u2N
i+1

)
pY |U2N

1 ,H

(
y|u2N

1 ,−h
)

(7.59)

where step (7.56) follows by the law of total probability and the mutual independence of
U i

1, U2N
i+1 and H ; steps (7.57) and (7.59) follow by rearranging the sums and noting that

UN is uniform; step (7.58) follows by Lemma 7.1.

7.5.3. Proof of Corollary 7.3

We expand

pY |UF(β) ,H (y |0,h) (a)=
∑
uA(β)

P (uA(β)) pY |Uβ1 ,H
(
y|uβ1 ,h

)
(7.60)

(b)=
∑
uA(β)

P (uA(β)) pY |Uβ1 ,H
(
y|uβ1 ,−h

)
(7.61)

where step (7.60) follows by the law of total probability and mutually independent UA(β) ,
UF(β) and H ; step (7.61) follows by Theorem 7.2.





8
Conclusions and Outlook

The thesis has investigated SCL decoding for the BEC, the BAWGNC and block-fading
channels in the context of short-packet communications. In the following, we summarize
our contributions and comment on future research directions.
Chapter 4 analyzed SCL decoding over the BEC and described an efficient modification

called successive SCI decoding. For a given code, density evolution characterizes the
average number of inactivations for ML decoding. Furthermore, we provided a simple
and accurate approximation for the average number of unknown bits (or the logarithm
of number of valid decoding paths) at each decoding stage. Numerical results over the
BEC showed the potential of dynamic Reed–Muller (dRM) codes, which perform close to
the Singleton bound for blocklengths N ≥ 512. Even for short blocklengths such as N =
128, these codes are competitive with respect to extended Bose-Chaudhuri-Hocquengham
(eBCH) codes, and with less decoding complexity under SCI decoding. We showed that
the number of unknown bits normalized by the blocklength concentrates around its mean,
which is supported by the numerical results. A promising direction is to extend SCI
decoding for codes over q-ary erasure channels. Note that, under SCL decoding, an erasure
in decoding an information bit yields a multiplication by a factor q of the number of active
paths.
Chapter 5 extended the analysis of SCL decoding to general BMSCs for code design. The

proposed designs outperform the polar codes adopted by the 3GPP 5G cellular standard
and other state-of-art designs for lengths up to N = 512 bits. A future work should
provide a constructive design recipe based on the combination of the proposed analysis
and of the distance properties of polar codes with dynamic frozen bits, especially for
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moderate blocklengths 256 ≤ N ≤ 1024. Furthermore, an open (theoretical) problem is
to provide tight upper bounds on the required list size for near-ML decoding over general
BMSCs. To this end, a relevant question is if Theorem 4.2, which is valid for the BEC,
can be extended to general BMSCs, improving an existing result [88] for high-rate codes.
Numerical results support this conjecture.
Chapter 6 studied classes of product codes through the polar coding lens, where it was

shown that a structured choice of frozen bits in (multi-kernel) polar code constructions
yields a family of product codes. This enables applying the SCL and SCI decoding al-
gorithms for such product codes, resulting in low-complexity close-to-ML decoding. A
research problem is how to embed the random dynamic constraints for the frozen bits
entailed by the product code’s structure. In fact, suboptimal choices of frozen bits for
SC decoding (as for the case of product codes) may significantly improve the finite-length
performance under SCL decoding when such constraints are embedded. In addition, one
may investigate permutation-based SCL and SCI decoding of SPC product codes to further
reduce the complexity as for RM codes.
Chapter 7 studied the potential of SCL decoding in the case of block-fading channels

for both pilot-assisted and pilot-free schemes. The proposed PAT scheme showed how
(modified) list decoders in general, and SCL decoding in particular, can reduce the pilot
overhead, resulting in gains of more than 1 dB over traditional PAT schemes. For a small
number of coherence blocks, a pilot-free non-coherent transmission scheme is proposed
where the channel state is estimated using the knowledge of frozen bits via SCL decoding.
The imperfect CSI is then used to decode the message. The scheme performs almost as well
as a receiver with the perfect knowledge of the channel state and provides gains of up to 2
dB over traditional PAT schemes. A first direction to extend the work would be to combine
both methods by embedding a single pilot per coherence block and using the knowledge
of the frozen bits to refine the channel estimate during decoding. This approach has the
potential to be used in polar-coded schemes over block-fading channels with a very large
number of coherence blocks. In addition, both schemes could be extended to operate over
multiple antenna systems, as well as in combination with high-order modulation. For the
pilot-free polar-coded scheme, a tailored code design should lead to interesting optimization
problems since freezing reliable bit positions could improve the channel estimation, and
this may be reflected in an overall performance gain.



A
Acronyms

a.s. almost surely

APP a-posteriori probability

AWGN additive white Gaussian noise

AWGNC additive white Gaussian noise channel

BAWGNC binary-input additive white Gaussian noise channel

BEC binary erasure channel

BLEP block error probability

BLER block error rate

BMSC binary-input memoryless symmetric channel

BP belief propagation

BPCU bits per channel use

BRC Berlekamp’s random coding

BSC binary symmetric channel

CDF cumulative distribution function



164 A. Acronyms

CRC cyclic redundancy check

CSI channel state information

CWEF complete weight enumerating function

dRM dynamic Reed–Muller

eBCH extended Bose–Chaudhuri–Hocquengham

EM expectation-maximization

GLRT generalized likelihood-ratio test

i.i.d. independent and identically distributed

IOWE input-output weight enumerator

IOWEF input-output weight enumerating function

JWE joint weight enumerator

LDPC low-density parity-check

LHS left-hand side

LL log-likelihood

LLR log-likelihood ratio

MAP maximum a-posteriori

MC metaconverse

MDS maximum distance separable

ML maximum likelihood

MRB most reliable basis

OFDM orthogonal frequency-division mutiplexing

QPSK quadrature phase-shift keying

QUP quasi-uniform puncturing
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PAC polarization-adjusted convolutional

PAT pilot-assisted transmission

PCT polar-coded transmission

PDF probability density function

PM path metric

PMF probability mass function

PW polarization weight

RCU random coding union

RCUs random coding union bound with s parameter

RHS right-hand side

RM Reed–Muller

RV random variable

SC successive cancellation

SCI successive cancellation inactivation

SCL successive cancellation list

SCOS successive cancellation ordered search

SIR symmetric information rate

SISO soft-input soft-output

SNR signal-to-noise ratio

SPC single parity-check

TSB tangential-sphere bound

TUB truncated union bound

WE weight enumerator

WEF weight enumerating function
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