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Abstract

Digital memories constitute an inevitable component of a vast share of novel technologies. The
demand for ever increasing capacities and reliability fuels a continuous effort in increasing the
efficiency of current storage systems as well as the development of innovative storage strategies.

This dissertation deals with information and coding theory for modern data storage systems. We
propose and analyze models that abstract different aspects of digital memories with a particular
focus on reliability and efficiency of the underlying systems. Many of our models find, amongst
others, application in DNA-based data storage systems, which constitute a novel candidate for
long-term archival data storage.

In the first part of this dissertation, we propose and investigate a channel model whose input and
output are several unordered sequences. During transmission, these may be perturbed by errors
or can even be completely lost. We design zero-error channel codes, viz. codes that guarantee
error-free transmission under the assumption of limited severity of the channel. Our analysis
is supported by existential and converse bounds which exhibit the theoretical limits for reliable
transmission over this channel. We further explore the special case of indexing the sequences
and propose a novel efficient code construction that achieves high information rates close to the
maximum possible, in particular for a moderate number of errors.
In the second part of this dissertation, we derive the information capacity of the unordered

parallel multinomial channel. This probabilistic channel comprises two stages. First, many parallel
input sequences are permuted in an arbitrary manner and, second, these sequences traverse noisy
channels, whose nature is controlled by a joint random process. We derive the capacity for a broad
class of probability distributions on the channels in the second stage. The results are substantiated
at the example of the noisy drawing channel, where input sequences are randomly drawn with
replacement and received with errors. We show that all information rates below capacity are
achievable using a decoder which clusters output sequences according to their distance. Conversely,
we prove that reliable transmission at rates above the capacity is not possible.

The last part of this dissertation treats cost constrained channels, which are described by directed
graphs with labeled and costly edges. Our main results include an easy-to-use algebraic framework
to formulate the precise asymptotic growth rate of the number of fixed and variable-length paths
with a limited weight for arbitrary strongly connected graphs. We develop new theorems regarding
the spectral properties of the cost-enumerator matrices of costly constrained channels and connect
these to the theory of analytical combinatorics in several variables. This novel connection creates
the basis for a variety of new results ranging from the precise characterization of the subsequence
spectrum of a periodic sequence to the exact calculation of the maximum information rate per
cycle of array-based DNA synthesis.
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Chapter 1

Introduction

The amount of digital data stored on devices around the globe has exploded in recent years. It is
expected that the current growth continues in years to come. This trend is accompanied by the
ever-growing importance of digital data in personal and professional life. Not only private devices,
such as smartphones or personal computers, but also professional systems, such as communication
systems or robotics are build on a digital architecture that heavily relies on digital memories.
This digitization comes with the necessity to cope with the increasing demands for capacity
and reliability of data storage systems. To meet these demands, researchers and industry are
permanently improving existing storage technologies and designing new systems with desirable
properties. To date, most of the existing long-term data storage solutions rely on magnetic media.
The entertainment industry, for example, archives more than three quarters of their data on either
hard disk drives or tapes [Cou19]. Such storage devices offer reliable storage at maximum over
a couple of years for the case of hard disk drives [Bea13] or over a few decades for the case of
tapes [VB95]. In case the storage time exceeds the lifetime of the storage media, it is therefore
inevitable to maintain the archive and copy the data in regular intervals to guarantee the integrity
of the stored data. Novel storage technologies that may overcome the need for such maintenance
are therefore the core of uncountable recent experiments and research studies.

In this dissertation, we analyze modern storage technologies from an information-theoretic
perspective. Our main focus are DNA-based data storage systems. We propose and study novel
channel models that abstract the main properties of DNA-based data storage. Being relatively
general in nature, several of these models apply to a larger range of applications. Our particular
attention lies in evaluating fundamental limits with respect to reliability and cost efficiency. We
further study novel information-theoretic problems that model the DNA synthesis process and
derive results that enable a cost and material efficient synthesis, while still maintaining high
information rates.

1.1 Outline

Chapter 2 introduces and discusses DNA-based data storage systems. We review current DNA-
storage experiments and present the structure of typical DNA storage systems with a separate
discussion on information theory in DNA-based data storage.

Part I of this dissertation presents and analyzes a novel channel model that comprises the
process of synthesizing, sequencing and reconstructing DNA strands. The model incorporates
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Chapter 1 Introduction

insertion, deletion, and substitution errors within the strands and further allows losses of whole
sequences. In comparison to previous work, we incorporate the fact that the DNA strands are
stored in a disordered manner by considering the input and output of the channel to be represented
by sets of sequences. In Chapter 3, we study zero-error codes for this channel and discuss its
general properties and characteristics. In particular, we derive existential Gilbert-Varshamov-type
bounds on the size of error-correcting codes, which guarantee the capability of correcting certain
error patterns. These results are completed conversely by deriving upper bounds on the size of
such codes. We further propose code constructions that are particularly designed for the channel.
Among these are novel set-based constructions that avoid the usage of an index to combat the
disorder of the sequences. Instead, we use a vectorial representation of a set that allows the
employment of standard error-correcting codes. We proceed by shifting our attention towards
coding schemes that employ indices in Chapter 4. A refined channel model that distinguishes
between errors within the indices and the remaining part of the sequences is introduced, allowing
to highlight the effect of errors within the different parts of the sequences. We derive existential
and converse results under the restriction of using a code that employs an indexing scheme. We
complement the results by presenting an explicit code construction which employs anchors that
allows to correct errors within the indices with little redundancy.

In Part II we turn our attention towards a probabilistic channel, namely the unordered parallel
multinomial channel. In contrast to standard communication scenarios, this channel is fed with a
large number of parallel sequences. In a first stage, the sequences are arbitrarily permuted with
each other. Afterwards, each of the resulting sequences passes through a multinomial channel
that repeats the input sequence a given number of times and perturbs the result according to a
symmetric channel. The number of repetitions in all channels follows a joint random distribution,
meaning that the number of repetitions of different channels can possibly be correlated. Through
the permutation, the original order of the output sequences is unknown to the receiver, which
is a key challenge within this channel. In Chapter 5 we compute the Shannon capacity of this
channel, i.e., the supremum of achievable information rates under vanishing error probability.
This is achieved by deriving a converse bound based on the mutual information between the input
and output and further by proving achievability of all information rates below capacity using
an argument that is based on a random choice of the codebook. Chapter 6 deals with a related
channel that is derived from an abstraction of DNA-based data storage. In a random fashion, the
output sequences are drawn from a set of input sequences and are received, possibly with errors.
We show that this channel is a degraded unordered parallel multinomial channel, establishing a
converse on the capacity of this channel. We further prove that any rate below the one defined by
the converse is achievable by analyzing a decoder that clusters the output sequences and decides
on a codeword based on a novel measure of typicality between estimated clusters and a codeword.
Costly constrained channels are the object of study in Part III. These are described by a

directed graph, whose edges are weighted and labeled. Such a graph defines an associated
language comprised of words that are generated by paths of limited weight through this graph.
The main property of interest of these systems is the size of the language, whose exponential growth
rate is termed capacity. In Chapter 7 we establish a comprehensive theory, building on classical
results of Perron and Frobenius, that allows to associate graph properties with characteristics
of the singularities of the generating functions of the language size. This builds the first bridge
between the literature on analytic combinatorics in several variables and costly graphs bringing a
new perspective and a set of powerful results to the literature of costly constrained channels. We
use this connection to deduce results on the asymptotic behavior of the size of the limited-cost

12
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language. As part of our analysis, we identify and analyze key properties of graphs that result in
a well-behaved expression of the capacity. We use these results in Chapter 8 to solve a problem
related to cost-efficient DNA synthesis. That is, we study a popular array-based synthesis process
and show that the maximum amount of information that can be synthesized per synthesis cycle is
characterized precisely by the capacity of a costly constrained channel. We show how to construct
the graph representing the system for arbitrary synthesis sequences, which allows to compute the
maximum number of bits that can be synthesized per cycle. We further extend our results to
the case, where the synthesized sequences need to fulfill certain constraints. Representing these
constraints in form of a directed and labeled graph, we define a novel graph product that allows
to compute the information capacity per synthesis cycle for constrained sequences. Finally, we
show that it is possible to compute the number of subsequences of an arbitrary supersequence
using costly constrained channels, implying results on the asymptotic behavior of the subsequence
spectrum of arbitrary periodic sequences.

Further publications by the author that resulted from his work as a doctoral candidate are
summarized in Chapter 9. Chapter 10 concludes this manuscript.

1.2 Notation

This section provides a concise overview of the notation that is used within this dissertation. For
chapter-specific notation, we refer the reader to the introduction of the respective chapter and
the glossary in Appendix B.

1.2.1 General Notation

We start by introducing the basic notation that is used throughout the dissertation. Sets are
highlighted by calligraphic letters, such as A,B. For two sets A,B we write |A| as the cardinality
of A, A \ B = {x : x ∈ A ∧ x /∈ B} as the set difference and A × B = {(a, b) : a ∈ A, b ∈ B} as
their Cartesian product. We denote by N, N0, and Z the sets of integer numbers, where the former
consists of the numbers {1, 2, 3, . . . }, N0 additionally contains 0 and the latter also contains the
negative integers. The set [n] = {1, 2, . . . , n} contains all positive integer numbers up to n ∈ N.
The rational numbers are depicted by Q, the real numbers by R and the complex numbers by C.
Σq is a finite alphabet with q elements. In particular, we write Σ2 = {0, 1} for binary sequences
and Σ4 = {A,C,G,T} for DNA sequences. Multisets are sets which can contain an element
multiple times and are highlighted by {{•}}.
Vectors are written as lowercase bold font letters and matrices as uppercase bold font letters.

Their entries are depicted in standard font, such that, for example, x = (x1, x2, . . . , xn) ∈ Σn
q is

a vector of length n with symbols xi ∈ Σq. For two vectors x ∈ Σn
q ,y ∈ Σm

q we write (x,y) as
the concatenation of x and y which has length n +m. The number of non-zero symbols in a
vector x ∈ Σn

q are called the Hamming weight of x and denoted by wtH(x) = |{i ∈ [n] : xi ̸= 0}|.
For another vector y ∈ Σn

q of the same length, we define dH (x,y) = |{i ∈ [n] : xi ̸= yi}| as their
Hamming distance, i.e., the number of positions, in which the vectors disagree.

Throughout this dissertation, we denote the binary logarithm of a real number a ∈ R+ by
log(a), the natural logarithm by ln(a) and the logarithm with respect to base b ∈ R+ by logb(a).
For an integer n ∈ N, we write n! = n · (n− 1) . . . 2 · 1 as the factorial. For m ∈ N, m ≤ n, the

binomial coefficient is denoted by
(
n
m

)
= n·(n−1)...(n−m+1)

m! .
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Chapter 1 Introduction

We denote random variables by standard letters, such as x and their realization is usually
highlighted with a typewriter font, such as x. The probability of the event x = x is denoted
by Pr (x = x) and, where it is clear from the context, we abbreviate it with Pr (x). We denote
the entropy of a random variable by H(x) and the conditional entropy and mutual information
of two variables by H(y|x) and I(x; y), respectively. The q-ary entropy function is denoted by
Hq(p) = −(1− p) logq(1− p)− p logq(

p
q−1).

1.2.2 Asymptotic Statements

For the asymptotic behavior of functions, we use the Bachmann-Landau notation, i.e., for
f(n), g(n) : N 7→ R, we write

• f(n) = o(g(n)), if lim
n→∞

f(n)
g(n) = 0,

• f(n) = ω(g(n)), if lim
n→∞

∣∣∣f(n)g(n)

∣∣∣ =∞,

• f(n) = O(g(n)), if lim sup
n→∞

∣∣∣f(n)g(n)

∣∣∣ <∞,

Based on this, we may slightly abuse notation and may, for example, write f(n) = g(n) +O(h(n))
to denote f(n)− g(n) = O(h(n)). Further, we use inequalities involving this notation as follows.
Writing, for instance, f(n) ≤ g(n) +O(h(n)) means that f(n) ≤ g(n) + h̃(n), for some function
h̃(n) with h̃(n) = O(h(n)).
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Chapter 2

Archival Data Storage in DNA

Data storage in synthetic DNA molecules is a novel technology for archival storage of digital data.
Paved by substantial progress in synthesis and sequencing technologies, it has attracted significant
attention due to recent demonstrations of the viability of storing information in macromolecules.
Offering unique properties and advantages over alternative storage systems, it has become a
competitive archiving technology [Mil+18]. To date, DNA-based archival data storage is being
explored by both industrial and scientific teams in various aspects. First, basic features required
for digital storage in DNA are developed and tested. Such features include reading and writing
data, but also more elaborate processes such as random access, rewriting data or erasing data.
Second, efficiency aspects are core to make the storage technology commercially competitive. Here,
the main bottlenecks are the synthesis and sequencing of DNA molecules, i.e., reading and writing
of data. Finally, reliability is one of the main aspects that is considered for DNA-based data
storage, because the reading and writing process, as well as the storage of the DNA molecules is
prone to errors. Therefore, adequate mechanisms to protect the data from damage in its integrity
or loss of some parts need to be developed and analyzed.
The main advantages of DNA-based storage over classical storage technologies are very high

data densities due to the fact that data is stored on a molecular level. This allows theoretical
storage densities of up to 215 petabytes per gram of DNA [EZ17]. DNA-based storage further
provides long-term reliability without electrical supply due to the stable nature of the DNA
molecules. From the study of fossils, it is known that the DNA of some organisms has a half-life
of up to 500 years [All+12] and experiments [Gra+15] have shown that also in synthetic DNA it
could be possible to store data thousands of years without loss of data. Finally, the information
stored in DNA-based archives is easily replicable. This is by means of polymerase chain reactions
that allow to create thousands of copies of DNA strands using biochemical processes.

On the other hand, DNA-based archival storage still features some difficulties that need to be
overcome before it becomes commercially competitive. One aspect is the high costs associated
with synthesizing and sequencing DNA. Currently, the price for sequencing 106 DNA bases is
roughly US$0.01 [Wet], which relates to US$0.04 per Megabyte of digital data, assuming a reading
rate of 2 bit per DNA base. Even more expensive is the synthesis of DNA, which can cost hundreds
of dollars per Megabyte [Hec18], depending on the technology applied. However, given the current
focus that is put towards more and more efficient DNA synthesis [Ant+20] and improved storage
architectures [Tab+20], it is not unlikely that these costs will drop significantly over the next
years. Another challenge for DNA-based data storage is the speed of the sequencing and synthesis
process. While magnetic tapes can be read and written at several Megabytes per second, typical
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Chapter 2 Archival Data Storage in DNA

sequencing and synthesis processes take several minutes to hours. Therefore, DNA is currently
considered as a possible candidate for archival data storage, where data is written and read in
non time-critical situations. For more background on the synthesis and sequencing process, we
refer the reader to the essay [Car13] and the surveys [FL18; Hao+21; KC14].

2.1 History of DNA Storage Experiments

The rapid growth of research related to DNA-based storage has been guided by many experiments
that have demonstrated the viability and the open problems of DNA-based data storage. In
this section, we review some of these experiments and highlight their contributions with respect
to archival storage systems. Many scientists agree that the first mentioning of data storage in
macromolecules dates back to Richard Feynmans famous speech “There’s Plenty of Room at
the Bottom: An Invitation to Enter a New Field of Physics” in 1959 [Fey59]. To that date,
manipulating molecules and arranging them such that they contain predetermined information
was an idea that should be brought to life few decades later. In another article, Neiman [Nei65]
discussed microminiaturization in electronics and also published considerations about the feasibility
of information storage in DNA molecules. Three decades later, Eric Baum [Bau95] concretized
some aspects of data storage in DNA. As an example, he already mentioned that the DNA strands
will be replicated in many copies, which is the case for almost all current experiments.

In his artwork Microvenus [Dav96], Joe Davis incorporated 35 bits of digital data inside the
DNA of living Escherichia coli bacteria. The data represented a 7 × 5 pixel bitmap of the
Microvenus image, where each pixel was either white or black. In the context of secrecy, Clelland
et al. [CRB99] stored a message of 23 letters in a synthetic DNA oligonucleotide of 69 nucleotides.
Their research was motivated by microdots, which are in size reduced photographs that were
used in the Second World War to convey secret messages. Due to the enormous length of human
DNA, they believed that a short synthetic DNA message could be well hidden within the vast
amount of biologic human DNA. Two years later, Bancroft et al. published their experiment and
ideas regarding archival storage using DNA [Ban+01]. They highlighted important considerations,
such as the inherent interest of humanity in writing and reading DNA and the ease of mitigating
possible losses of information by replicating the molecules many times. In their experiment, they
stored two lines of text with a total of 109 characters. In the following years, numerous studies
showed how to synthesize digital information into DNA. Among those, Gustafsson published a
successful experiment involving art by storing the poem Tomtem by Viktor Rydberg in DNA
[Gus09]. Writing artificial watermarks, each having a length of roughly 1,000 nucleotides, into the
DNA of Mycoplasma mycoides, Gibson et al. [Gib+10] further showed that synthesis, assembly
and transplantation of synthetic genomes is possible, reporting the largest project to that date.

Among the first large-scale experiments was that conducted by Church et al. in 2012 [CGK12],
where 0.66MB of digital information were stored, split onto many short DNA strands. They
encoded the binary data such that each bit is either mapped to A or C, if the bit is zero and to
G or T, if the bit is one. This flexibility allowed the resulting DNA strands to be designed such
that they have preferable properties for reading and writing. While this comes at the cost of
redundancy, they were able to avoid errors in synthesis and sequencing, counting a total number
of 10 bit errors after sequencing and decoding the whole stored archive. Shortly after, Goldman
et al. [Gol+13] used a similar set up to store 0.65MB and managed to read the data without
errors. They addressed scalability and reliability of DNA-based data storage systems. To ensure
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2.1 History of DNA Storage Experiments

Table 2.1: Summary of parameters in large-scale DNA storage experiments. The data size is
depicted as the information content of the data after compression. The strand length L
counts the number of consecutive nucleotides used to store information. This includes
the index and possible redundancy from error-correcting schemes. However, we exclude
the length of eventual primers that are appended to the strands. We further present
the number of DNA strands M on which the data is synthesized, as well as a quantity
called density, which will be elaborated on in Section 3.1.

Work Data Size Strand Length L Strands M Density β = log4 M
L

[CGK12] 0.66MB 115 54, 898 0.0685

[Gol+13] 0.75MB 117 153, 335 0.0736

[Gra+15] 83KB 117 4, 991 0.0525

[Yaz+15b] 0.017MB 960 32 0.0026

[Bor+16] 0.15MB 120 45, 652 0.0645

[Bla+16] 22MB 190 900, 000 0.0521

[EZ17] 2.14MB 152 72, 000 0.0531

[YGM17] 0.003MB 1000 17 0.0020

[Org+18] 200.2MB 150− 154 13, 448, 372 0.0769− 0.0789

[Cha+19] 0.22MB 100 12, 026 0.0939

[Lop+19] 1.67MB 110 111, 499 0.0762

[Ana+19] 6.4MB 151 172, 000 0.0572

[Ant+20] 1.3MB 60 196, 596 0.147

[Cha+20] 0.01MB 108 1, 466 0.0487

[Cho+20] 0.135MB 120 5299 0.0515

[Pan+21] 0.36MB 156 11, 826 0.043
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Chapter 2 Archival Data Storage in DNA

error-free decoding, the DNA strands have been encoded such that each two consecutive DNA
strands overlap in 75 out of a total of 100 base pairs. Thus, each data segment was synthesized
with 4-fold coverage. To identify the position of each DNA strand in the whole archive, a short
index was appended to each strand.
Manifold experiments followed that addressed different aspects of archival data storage, such

as reliability, scalability, random access and rewriting of data. A method for random access,
i.e., accessing a specific file or part inside the archive without reading the full archive has been
proposed in [Yaz+15b]. Yazdi et al. used specific primers that allow for amplification of selected
DNA strands. They carefully designed the primers such that they have desirable properties, such
as a large Hamming distance and a constant GC content. They also showed that rewriting of
data is possible using DNA editing and mutating techniques. Using an exclusive-or operation
at the strand level for error correction, [Bor+16] showed in their experiment that controllable
redundancy can help to improve the archive’s data density. Grass et al. [Gra+15] employed a
concatenated coding scheme using inner and outer Reed-Solomon codes and simulated an aging
process, hinting that DNA-based archives could provide reliable storage for several thousands of
years. Another successful experiment storing 22MB with concatenated codes has been reported
by [Bla+16]. The binary data was modulated to oligos with a short inner code that consists
of 5 nucleotides and a has dimension of 8 bits. For error detection, the strands were further
encoded with a cyclic redundancy check code. An outer Reed-Solomon code then was used to
protect against loss of sequences or burst errors. Erlich and Zielinski [EZ16; EZ17] opted to
use outer fountain codes for their experiment. While the coding scheme did not allow for error
correction inside the strands, an inner Reed-Solomon code was used for error detection. This way,
erroneous strands could be detected and missing oligos were corrected using the outer fountain
code. Most of the experiments to that date relied on accurate sequencing technologies and error
detection together with a high reading coverage. Potential sequencing errors were detected using
an inner code and erroneous strands were discarded. In contrast, Yazdi et al. [YGM17] used a
nanopore sequencer, which has a higher error rate, however allows for a portable system. The
resulting larger number of errors was approached by aligning multiple reads of the same strand
and performing a majority decision of the aligned parts. The remaining errors were corrected by
a new error-correcting scheme for deletions. Organick et al. [Org+18] stored 200MB using an
outer Reed-Solomon code, performing the largest published experiment to date. Their decoder
acted in several stages, clustering the sequenced strands based on similarity, then reconstructing
the clusters via sequence alignments and finally decoding the inner and outer code.

Most of the works to that date mainly focused on write information rates, i.e., the total number
of data bits divided by the total number of synthesized nucleotides. In contrast, Chandak et al.
[Cha+19] explored the trade-off between the write rate and read rate, i.e., the total number of
information bits obtained after decoding divided by the total number of sequenced nucleotides.
In their experiment, they employed low-density parity check codes and inner marker codes to
maintain synchronization. Lopez et al. [Lop+19] presented a strategy optimized for nanopore
sequencing. They concatenated several shorter DNA oligonucleotides to longer strands of about
5000 basepairs which allows for faster sequencing. An end-to-end automatic system from data
storage to data retrieval has been presented in [Tak+19]. Another DNA-based storage architecture
on physically separated spots of dehydrated DNA has been investigated in [New+19]. Antkowiak
et al. explored low-cost synthesis for DNA-based data storage [Ant+20]. The resulting higher error
rates were overcome using a sufficiently strong concatenation of Reed-Solomon codes together with
clustering and multiple sequence alignment. In [Cha+20], the decoder of an inner convolutional
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User Binary Data

100100011110101
101000111110100

Storage Container

DNA strands

TGAACTAC
ATTGCTGA
GGCATAGC
ACGGGAAT

DNA Synthesizer

DNA strands

ATTGCTGGT
GGCATAGC
AGCATAGCT
ACGAGAGT
ATTGCTG

DNA Sequencer

EncodingDecoding

Figure 2.1: Illustration of a DNA-based data storage system. The text decoration of the sequenced
strands highlight the original sequence. Errors in the sequences, which either occurred
during synthesis, storage, or sequencing, are underlined.

code was adapted to match the channel imposed by nanopore sequencing. It has been shown
that it is possible to use soft information from the nanopore readout to decode the convolutional
code with an appropriate Viterbi decoder. Image processing on pictures stored in DNA has been
investigated in [Pan+20; Pan+21]. Using little redundancy in the encoding procedure, it has
been shown that machine learning algorithms can be used for error correction. A summary of the
parameters used in recent large-scale experiments is presented in Table 2.1.

2.2 DNA-Based Storage Systems

Most recent DNA-based data storage systems exhibit a similar structure as the one we present
and comment on in the following. An illustration of such systems is displayed in Figure 2.1.

A DNA-based data storage system usually consists of the following components: an encoder, a
synthesizer, a storage medium, a sequencer, and a decoder. First, binary user data is encoded
via an appropriate encoding algorithm to a set of multiple DNA strands. This encoder maps the
binary data to vectors over the alphabet {A , C , G , T} such that each vector represents a DNA
strand that will be synthesized later. Note that crucially, the encoder has to include appropriate
mechanisms that allow to restore the original order of the DNA strands and correct possible
errors that arise during synthesis or sequencing. The encoded strands are then synthesized by
a synthesis machine that physically produces the DNA strands, as described by the encoder.
Common synthesis processes synthesize each strand many times, resulting in many copies of
the original strands. Additionally, the DNA strands can be duplicated using polymerase chain
reactions. After synthesis, the resulting strands are transferred into a storage container that

19



Chapter 2 Archival Data Storage in DNA

preserves the strands and protects them from potential damage or loss. When accessing the data,
the stored strands are sequenced, yielding reads of the original synthesized strands. It is possible
that an original strand is read multiple times due to the fact that multiple copies of each strands
are present in the storage medium. Using the read DNA sequences, it is the task of the decoder
to estimate the original binary user data using an appropriate algorithm.

While the system described above is one of the most common ones to date, there have been
proposals of a variety of other DNA systems, which we highlight shortly. In [Tab+20], information
is encoded via nicking existing DNA strands at certain positions. This way, costly DNA synthesis
is circumvented, allowing for more cost-efficient DNA-based data storage systems. Another
approach is to modify the existing DNA of living organisms, such as bacteria. This way it is
possible to encode digital data into the modified parts, which has been verified experimentally
in, e.g., [KMC17; Shi+17; TL18]. Other works have pursued the idea of storing information also
in the density of certain molecules. More precisely, composite letters that use mixtures of DNA
sequences have been proposed in [Ana+19; PYA21], resulting in fewer synthesis cycles. Recently,
it has been shown [Tab+21] that it is possible to extend the alphabet of nucleotides used in DNA
molecules, improving the density and recording time of DNA-based storage systems.

2.3 Information Theory in DNA-Based Data Storage

From a coding- and information-theoretic perspective, there are several aspects of DNA-based
data storage that differentiate such systems from conventional data storage systems. The most
studied aspect is reliability, i.e., forward error correction to combat possible errors that arise
during synthesis, sequencing, and aging. There are several error models that are relevant for
DNA-based data storage. To start with, zero-error insertion- and deletion-correcting codes have
been studied extensively for the case of unique decoding [BGH17; BGZ18; GS19; GW17; Hae19;
HF02; Lev65; Lev66; Lev67; Maz17; SB19; Ten84; Yaz+18] and list decoding [GHS20; HSS18;
HY20; LL17; Wac18]. Codes protecting against combinations of insertion and deletion errors
with substitution errors are studied in [Cai+21; Sma+20; Son+21] While the previous works
mainly employ non-linear codes, linear codes have been discussed in [Che+21; CST21]. Segmented
channels depict the case with occurrence of at most a given number of errors per segment and
have been discussed in [AVF18; HB21; LM10]. Especially, during in vivo DNA-based data storage,
insertion and deletion errors can occur in bursts, i.e., consecutive positions, which has been
investigated in [Che+14; GYM18; LP20; Sch+17]. On the other hand, studies on codes over
probabilistic insertion and deletion channels date back to the early works of [Dob67; Gal61]. More
recently, also due to their relevance in DNA-based data storage, new codes and decoders have
been proposed for such channels, such as low-density parity check codes [BSW10; DM01; SHY19],
polar codes [KK19; Tal+19], or convolutional codes [BF15; MB09]. For a comprehensive survey
on channels with insertion and deletion channels, we refer the reader to [Mit09].

Due to the fact that DNA-based storage systems contain multiple copies of each strand, an
important line of work is that on sequence reconstruction, which, for the combinatorial worst-case
setting, has originally been introduced by Levenshtein [Lev01]. In his paradigm, a sequence is
repeatedly transmitted over an erroneous adversarial channel and the classical goal is to analytically
quantify, as a function of the sequence length, the number of sequences that are required to
guarantee correct reconstruction of the transmitted sequence with zero-error probability. Recent
work includes sequence reconstruction for coded sequences [Abr+19; GY18; Sal+17] and extension
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to a broader class of channels, also allowing substitution errors [SY19] or duplications [YS18]. In
the computer science community, the sequence reconstruction is often studied in a probabilistic
setting with the goal of analyzing the number of sequences required for possible reconstruction
with high probability [AKN14; BLS20; Che+20; KM05; MPV14]. Reconstruction from shotgun
sequences, i.e., short reads of longer DNA strands, has been discussed in [Ach+15; KPM16;
MBT13; MY20] and reconstruction from compositions of sequence prefixes and suffixes that were
generated by mass spectrometry readouts is subject of [GPM20; GPM21; PGM19]. More recently,
the trace reconstruction problem has also been formulated for a fixed number of sequences with
a larger focus on algorithmic aspects [Sab+20; Sri+19; Sri+20; SYY20]. Finally, in [AVF18]
Varshamov-Tenegolts codes have been proposed for error correction over multiple channels that
introduce a fixed number of deletions.

Certain DNA molecules exhibit a more stable structure when certain patterns of nucleotides are
avoided [Ros+13; Xu+21]. For example, balancing the number of times the bases G and C occur
in a DNA strand is possible using constrained codes [SIC19; Son+18; Wan+19]. The runlengths
of homopolymers can be limited with appropriate encoding mechanisms [Kov19a; SIC18], which
have been extended with additional error-correction capabilities [LK21; Ngu+21]. For topological
DNA-based data storage, [Aga+20] studied constrained codes with runlength limitations.

During DNA replication, it is not uncommon that certain substrings of the DNA are erroneously
repeated and inserted into the DNA strand, causing duplication errors. Zero-error codes for
duplication errors have been studied in [Che+18; DA10; Jai+17a; Jai+17b; Kov19b; KT18a;
LJW18; LWY17; LWY19; Tan+19], and have also been addressed in a reconstruction scenario
[YS18; YS21]. Classical coding theorems and the channel capacity for probabilistic duplication
models have been analyzed in [Mit08; RA13].
One unique characteristic of DNA-based data storage is the disordered nature in which the

strands are stored in the medium. Information-theoretic studies addressing this property include
[Gab+20; Hec+17; KT18b; Len+20c; Len+20d; MSG15; SCSI19; SH19; SH21; SRB20; SRB21;
WM21], addressing error correction over unordered vectors. Error-correcting codes and information
theory for permutation channels have been discussed in [LSY17; Mak18; WG08], together with
explicit code constructions, which have been presented in [Hof+13].
There are manifold other studies treating coding- and information-theoretic aspects of DNA-

based archival storage and the list of associated publications is long. However, their discussion
is beyond the scope of this dissertation and is treated in several recent survey papers, such as
[Car+19; CNS19; HA21; TBK20; Xu+21; Yaz+15a].
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Combinatorial DNA Storage Channel
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Chapter 3

Zero-Error Codes for the Combinatorial DNA
Storage Channel

DNA is a medium for digital data storage that is fundamentally different from conventional storage
systems due to its following unique properties. First, DNA strands are stored and retrieved in
an unordered fashion.1 Next, the data is synthesized on many relatively short strands due to
limitations from the synthesis technologies. Finally, the synthesis and sequencing is prone to errors,
such as insertion, deletion, and substitution errors. These novel properties fueled theoretical
investigations of channel models and reliability in DNA-based data storage systems. Among those,
most related to our study are codes over unordered multisets of sequences that have been studied
recently [KT18b] under errors that affect whole sequences. In that channel model, a sequence can
either be inserted, deleted or completely corrupted to another sequence. Similarly, reconstruction
of DNA sequences from their unordered sequence profiles has been analyzed in [KPM16]. It has
been shown that, with appropriate error correction mechanisms, it is possible to combat errors
within the profiles, such as errors within the sequences or a loss of some of the profile pieces.

We begin this chapter by introducing in Section 3.1 a novel combinatorial channel model
for sets of DNA sequences that incorporates the main properties of DNA-based data storage
systems. That is, we model the channel input and output by sets of sequences, incorporating the
unordered nature in which the strands are synthesized and sequenced. Next, the sequences can
be perturbed by errors, or may be completely lost. We proceed in Section 3.2 with highlighting
the technical contributions and challenges arising when analyzing the proposed channel model. In
Section 3.3, we prove existence of zero-error codes, i.e., codes that guarantee error correction under
the combinatorial channel model, over that channel, using a proof technique that was originally
introduced by Gilbert and Varshamov [Gil52; Var57]. Conversely, in Section 3.4, we prove lower
bounds on the redundancy using sphere-packing arguments. We compare the resulting bounds
and identify parameter regimes in which both bounds are close and others, in which there is a gap.
Finally, we present code constructions suitable for the presented channel model in Section 3.5.

The results in this chapter have previously been published in [Len+18; Len+20d].

1There are studies [Yaz+15b; YGM17] that have developed methods for random access and for sequencing of
specific strands. This was accomplished by designing primers that are appended to the DNA strand. Here we
are studying the raw system without the usage of such additional primers.
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TGAACTAC
ATTGCTGA
GGCATAGC
ACGGGAAT

S

ATTGCTGGT
GGCATAGC
AGCATAGCT
ACGAGAGT
ATTGCTG

Sequenced strands

{
GGCATAGC
AGCATAGCT

}
{

ATTGCTGGT
ATTGCTG

}
{

ACGAGAGT
}

Clustered sequences

GGCATAGC
ATTGCTGG
ACGAGAGT

S ′

I. Draw & Distort

II. Cluster
sequences

III. Reconstruct

Figure 3.1: DNA storage channel model. Sequences with the same text decoration stem from the
same original sequence. Errors are underlined.

3.1 Channel Model

Based on the main aspects of recent DNA storage experiments, we present a combinatorial channel
that models the relationship between stored and received DNA sequences. To start with, DNA
consists of four types of nucleotides: adenine (A), cytosine (C), guanine (G), and thymine (T).
A single DNA strand, also called an oligonucleotide, or sequence is an ordered sequence of some
combination of these nucleotides. Although DNA consists of two complementary strands, for the
purposes of digital data storage usually we only consider a single strand, since the complementary
strand does not contain additional information. We therefore view a DNA strand as a vector
over the alphabet of nucleotides {A,C,G,T}. The channel comprises the process of synthesizing,
storing and sequencing DNA strands and is visualized in Figure 3.1. In a DNA-based data storage
system, data is synthesized and stored in an unordered set

S = {x1,x2, . . . ,xM} ⊆ ΣL
q ,

of M distinct DNA sequences xi ∈ ΣL
q , i.e. xi ̸= xj for i ̸= j. Each sequence xi has length L.

Here and in the rest of Part I whenever we write the set S we assume it is a set of M sequences
as defined above. We refer to the vectors xi by sequences or strands and to S by data sets or
words. Representing data words as unordered sets is inherently natural, due to the following two
reasons. First, any information about ordering of the data sequences is lost during the storage and
second, in the reading process it is not easily possible to distinguish exactly how many times each
sequence was stored, since the sequences are multiplied in the storage medium and not necessarily
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all of them are read. For more details on the channel model, see [HMG19; SH21; Yaz+15a].
Any such stored data set S of M sequences is a possible input of the DNA storage channel.

Hence, the input space, which comprises all possible data sets is denoted by

XL
M = {S ⊆ ΣL

q : |S| = M}.

The DNA storage channel can be split into the three following stages, as visualized in Figure 3.1.

I. Random sequences are drawn with replacement from the storage medium S and sequenced,
possibly with substitution, insertion or deletion errors.

II. The sequenced strands are clustered according to their Levenshtein distance or other
similarity measures.2

III. The clustered sequences are reconstructed by performing an estimate x′ for each cluster,
resulting in the received estimates S ′. If two or more reconstructions result in the same
estimate x′, we only output a single sequence x′ to avoid possible duplicates of a single
stored sequence. Therefore, S ′ is a set with distinct elements.

In this work we consider the combination of the above three stages, from the stored sequences
S to the reconstructed sequences S ′, as the DNA storage channel. Note that in principle it is
also possible to exclude the reconstruction step from the channel model. In this case however,
a probabilistic channel model is more appropriate, which we will discuss in detail Chapter 6 of
this dissertation. Each sequence x ∈ S is therefore either reconstructed correctly, without errors
(x ∈ SC), never drawn or its cluster is not identified and thus lost in the storage medium (x ∈ SL),
or reconstructed with errors (x ∈ SE), where (SC,SL,SE) is a partition of S, i.e., SC ∩ SL = ∅,
SC ∩ SE = ∅, SL ∩ SE = ∅, SC ∪ SL ∪ SE = S.
According to the above three cases, we thus associate the following four parameters (s, t, u)T

that characterize the DNA storage channel. We denote by s the maximum number of sequences
that are never drawn (or whose clusters are not identified), by t the maximum number of sequences
that have been reconstructed with errors, and by u the maximum number of errors of type T in
each of the latter. Notice that we naturally assume throughout the subsequent discussion that
s+ t ≤M and t > 0 if and only if u > 0. Typical error types T after the reconstruction step are
various combinations of insertions, deletions and substitutions, where the latter two are the most
prominent ones in DNA storage systems [HMG19].
In order to define a precise channel model, we proceed with defining the error balls, i.e., the

sets of words that can be obtained through the channel. We start with the characterization of
point errors inside single sequences.

Definition 3.1. The error ball BT(x, u) of radius u around a sequence x ∈ ΣL
q is defined to be

the set of all possible outcomes x′ ∈ BT(x, u), after u (or fewer) errors of type T in x. Possible
types of errors are insertions (I), deletions (D), substitutions (S), or combinations of the above,
denoted by, e.g., ID for the case of insertions and deletions. We use the abbreviation L ≜ IDS for
insertions, deletions, and substitutions. Similarly, we define the error sphere ST(x, u) as the set

2This technique has been used in [Org+18], exploiting the fact that sequences are drawn several times. Other
groups have either clustered the sequences according to their indices (as in [Gra+15]), or used specifically
designed primers to control, which strands shall be read [YGM17]. Some works simply discarded sequences of
incorrect length to avoid the challenging task of dealing with insertion and deletion errors.
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of possible results after exactly u errors of type T. For uniform error balls and spheres, where the
size does not depend on the center x ∈ ΣL

q we use the abbreviations BT(L, u) ≜ |BT(x, u)| and
ST(L, u) ≜ |ST(x, u)|, respectively. In particular we have

• SI(L, u) =
∑u

i=0

(
L+u
i

)
(q − 1)i (c.f. [Lev01; Lev74]),

• BI(L, u) =
∑u

i=0 S
I(L, i),

• SS(L, u) =
(
L
u

)
(q − 1)u,

• BS(L, u) =
∑u

i=0

(
L
i

)
(q − 1)i.

Note that for the case of deletions, such a closed-form expression does not exist, since the size
of the deletion ball and sphere depends on the center x. The following example illustrates the
definitions of error balls for different error types.

Example 3.2. Consider the sequence x = (AC) ∈ Σ2
4 of length L = 2 and a single error, u = 1.

The substitution error ball is given by BS(x, 1) = {(AC), (CC), (GC), (TC), (AA), (AG), (AT)}.
Similarly, the deletion ball around x is given by BD(x, 1) = {(AC), (C), (A)} and the dele-
tion ball around y = (CC) is given by BD(y, 1) = {(CC), (C)}, where the former has size
3 and the latter has size 2. The insertion sphere around the center x is given by the set
SI(x, 1) = {(AAC), (CAC), (GAC), (TAC), (ACC), (AGC), (ATC), (ACA), (ACG), (ACT)}.

In a similar fashion it is possible to define the error ball of a data set, as the set of possible
received sets after the DNA storage channel.

Definition 3.3. For S = {x1, . . . ,xM} ∈ XL
M , the error ball BT(S, s, t, u) is defined to be the

set of all possible received sets S ′ after s (or fewer) sequences have been lost and t (or fewer)
sequences of the remaining sequences have been distorted by u (or fewer) errors of type T each.

More precisely, let Parts,t(S) be the set of all partitions (SC,SL,SE) of S with |SL| ≤ s, |SE| ≤ t.
We then define BT(S, s, t, u) to be

BT(S, s, t, u) =

S ′ =
M⋃
i=1


{xi}, if xi ∈ SC,
∅, if xi ∈ SL,
{x′

i}, if xi ∈ SE

∣∣∣∣∣∣x′
i ∈ BT(xi, u), (SC,SL,SE) ∈ Parts,t(S)

 .

We denote by S ′E = {x′
i : xi ∈ SE} the set of erroneous received sequences, which satisfies

|S ′E| ≤ |SE|. Similarly we define ST(S, s, t, u) to be the set of all words S ′ ∈ BT(S, s, t, u) obtained
from S by a loss of exactly s sequences and exactly u errors of type T in each of t sequences.

The erroneous sequences x′
i are not necessarily distinct from each other or from the correct

sequences in SC and therefore it is possible that two erroneous sequences or one error-free and
one erroneous sequence agree with one another, resulting in a loss of a sequence. The number of
distinct received sequences |S ′| therefore satisfies M − t− s ≤ |S ′| ≤M .

Example 3.4. Consider the example in Figure 3.1 for the DNA storage channel with M =
4 stored sequences, x1 = (TGAACTACG), x2 = (ATTGCTGAA), and x3 = (GGCATAGCT),
x4 = (ACGGGAATC) each of length L = 8, i.e., S = {x1,x2,x3,x4} ∈ X 8

4 . The sequenced
strands are clustered and reconstructed, resulting in the three estimates y1 = (GGCATAGCT),
y2 = (ATTGCTGGT), and y3 = (ACGAGAGTC). The received set is therefore S ′ = {y1,y2,y3}.
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TGAACTACx1

ATTGCTGAx2

GGCATAGCx3

ACGGGAATx4

ATTGCTGGx′
2

GGCATAGCx3

ACGAGAGTx′
4

Perturb by

≤ u errors

Perturb by

≤ u errors

GGCATAGCx3

ATTGCTGGx′
2

ACGAGAGTx′
4

S S ′

Figure 3.2: Illustration of the (s, t, u)T channel model. Out of the M input sequences, t sequences
are perturbed by u errors of type T each. Out of the remaining sequences, s are
lost and not observed in the received set. Errors are underlined. In this example
s = 1, t = 2, u = 2, and T = S. The vectors in both the input S and output S ′ are not
ordered, resulting in possible permutations of the sequences.

Hereby x3 was received correctly as y1, x1 was lost, x2 was received in error as y2 and x4 was
received in error as y3. It follows that the set of correct, lost and erroneous sequences is given by

SC = {x3} = {(GGCATAGCT)},
SL = {x1} = {(TGAACTACG)},
SE = {x2,x4} = {(ATTGCTGAA), (ACGGGAATC)}.

It follows that s = |SL| = 1 and t = |SE| = 2, where there were u = 2 substitution errors in x2

and x4. Therefore, S ′ ∈ BS(S, 1, 2, 2).

The combinatorial channel is thus the entity that, given the input S ∈ XL
M outputs a random set

S ′ ∈ BT(S, s, t, u). It is visualized in Figure 3.2. Throughout, we refer to the following definition
of an error-correcting code in DNA storage systems.

Definition 3.5. A code C ⊆ XL
M is called an (s, t, u)T-correcting code, if it can correct a loss

of s (or fewer) sequences and u (or fewer) errors of type T in each of t (or fewer) sequences, i.e.,
for any pair S1,S2 ∈ C with S1 ̸= S2, it holds that

BT(S1, s, t, u) ∩BT(S2, s, t, u) = ∅.

We say C ⊆ XL
M is an (s, t, •)T-correcting code if the number of errors u per erroneous sequences

can be arbitrarily large.

Note that by this definition, a code is a set of codewords, where each codeword is again a set of M
sequences, each of length L. Further, by definition, this code is a zero-error code in the following
sense. If any codeword S ∈ C of an (s, t, u)T-correcting code is transmitted over the combinatorial
channel, it is possible to uniquely recover S, given any received word S ′ ∈ BT(S, s, t, u). The
redundancy of a code is defined as follows.
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Definition 3.6. The redundancy of a code C ⊆ XL
M is

r(C) = log |XL
M | − log |C| = log

(
qL

M

)
− log |C|.

We present the results in this work for binary sequences (q = 2), however most or all of them
can be extended to the non-binary case (and, in particular, the quaternary case).

3.1.1 Discussion of the Channel Model

Designing and analyzing codes over sets allows to efficiently combat several important aspects
of DNA-based data storage. These include the loss of the ordering information of the sequences
and the loss or erroneous reception of some of the stored sequences as described in our channel
model. Especially when not all sequences are received with errors (i.e. some sequences are received
correctly), it is not obvious at all, whether, e.g., prepending an index to each sequence is optimal
and how the stored sequences should be protected from errors. This is due to the following
considerations. Assume, for the sake of the argument, that the DNA strands are encoded in a
concatenated manner, which is in fact the standard procedure used in most experiments to date.
That is, the digital data to be stored in the archive is encoded using an outer, e.g., Reed-Solomon,
code and afterwards sliced into short fragments, such that each fragment corresponds to a DNA
strand. Every such fragment, respectively strand is then protected individually with an error-
correcting code. We will discuss and modify such constructions in Sections 3.5.1 and 3.5.2. On
the one hand this allows for a simpler code design, as the inner code must be designed to only
protect a single sequence. However, in such a coding scheme, those sequences which have been
received error-free would not have had to be protected against errors. On the other hand, if a
weaker inner code were to be used, the outer code has to be very strong in order to cope with
many wrong fragments. In fact, the main challenge in this paradigm is that the sequences that
will suffer from errors are not known a priori, and the distribution of errors over the sequences
after reconstruction is considerably non-uniform due to the fact the number of times a strand is
sequenced can vary heavily. This makes coding over sets, an approach to code over all sequences
inside the archive jointly, necessary for efficient error correction. Therefore, discussing the channel
model from stored sets to received sets is of relevance when aiming for efficient and error-free
data storage in DNA. Such a discussion is not possible when only the channel from a single stored
sequence to a single received sequence is analyzed. The following remarks summarize two further
observations about the channel model.

Remark 3.7. While in practical DNA-based storage systems, the length of the sequences L is
moderate, e.g., in the order of a few hundreds, M is significantly larger. In general, we say that
M = qβL for some 0 < β < 1. Typical values for the parameters M,L and β can be found in
Table 2.1 on Page 17.

Remark 3.8. In view of the underlying DNA storage system, which is visualized in Figure 3.1, the
parameters s, t, u of the channel model depend on the number of sequences that are drawn from the
storage medium and also the reconstruction algorithm. Using an efficient reconstruction algorithm,
it can be assumed that s, t, u decrease as the number of draws increases, since the reconstruction
can be performed more accurately. In particular, when many more than M sequences are drawn
from the storage medium, it can be assumed that there are enough draws per sequence that the
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sequencing errors are corrected by the reconstruction algorithm. Consequently there only remain
errors which have been introduced when synthesizing the sequences. However, this dependence of
the channel parameters on the clustering and reconstruction algorithm is quite cumbersome to
analyze and we therefore directly define the channel based on these parameters.

3.1.2 Relationship of Insertion- and Deletion-Correcting Codes

In this section, we investigate the relationship between (s, t, u)I-insertion-correcting and (s, t, u)D-
deletion-correcting codes. It is known [Lev66] that for the case of standard blockcodes, any code
can correct u insertions if and only if it can correct any u insertions and deletions. Interestingly
such an equivalence does not hold for our channel model. Here we show a counterexample that
an (s, t, u)D-correcting code is not necessarily an (s, t, u)I-correcting code.

Example 3.9. Consider the code C = {S1,S2}, with

S1 = {(AACCA), (AACAA), (GGTTG)},
S2 = {(ACCAA), (GGTGG), (GTTGG)}.

We can verify that C is (0, 3, 1)D-correcting. It is however not (0, 3, 1)I-correcting, since the word
{(AACCAA), (GGTTGG)} ∈ BI(S1, 0, 3, 1) by editing both the sequences (AACCA) and (AACAA) to
become (AACCAA) and (GGTTG) to become (GGTTGG). Similarly, the same word can be obtained
from S2, i.e., {(AACCAA), (GGTTGG)} ∈ BI(S2, 0, 3, 1), since we can edit (ACCAA) to become
(AACCAA) and both (GGTGG) and (GTTGG) to become (GGTTGG).

The main reason for this non-equivalence is due to the following. While for two sequences x1,x2

it holds that BI(x1, u)∩BI(x2, u) = ∅ if and only if BD(x1, u)∩BD(x2, u) = ∅ [Lev66], a generaliza-
tion of such a statement to three or more sequences does not hold anymore. An example of this fact
are the sequences chosen in the above example, x1 = (GGTTG), x2 = (GGTGG), x3 = (GTTGG).
They all share a common supersequence (GGTTGG) of length 6, i.e., (GGTTGG) ∈ BI(xi, 1) for
all i ∈ {1, 2, 3}. However, it can be verified that they do not have a common subsequence of
length 4. Analogously, based on the same fact, it is possible to find a counterexample for the
other direction, i.e., an (s, t, u)I-correcting code is not necessarily an (s, t, u)D-correcting code.

3.2 Overview over Technical Contributions and Methods

General techniques of bounding the size of optimal zero-error codes are well-established. On the
one hand, the arguments used by Gilbert and Varshamov to prove existential results, i.e., upper
bounds on the redundancy of optimal codes, have been generalized to a broad class of channels
[GF93; Tol97]. In fact, the only ingredient required to directly establish lower bounds in that
fashion is the following. Given some channel input, we require an estimate - or more precisely,
an upper bound - on the average number of other channel inputs that are potentially confusable
with the original input at the receiver. The main contribution in this chapter is thus mostly of
combinatorial nature together with adequate limiting techniques for the case of large parameters.
For the textbook example of u-substitution-correcting codes, this quantity is precisely the number
of words that have Hamming distance at most 2u from the input, see, e.g., [Lin99, Ch. 5.1],
[Bos14, Ch. 6.3]. However, for the channel under discussion, this derivation is more involved
due to the fact that first, the number of confusable words depends on the channel input, and
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second, by Definition 3.3, different channel realizations might lead to the same channel output.
The general procedure to obtain a valid bound in most cases will be to first bound the number of
possible channel outputs for a given channel input and then, for each such output, bound the
number of possible inputs that might have produced this output. By a union bound argument,
this also bounds the total number of confusable words. We will refine this procedure in some
cases to obtain tighter bounds.

On the other hand, a well-known technique, originating from the seminal work of Hamming
[Ham50], to conversely derive lower bounds on the redundancy of optimal codes is based on
sphere-packing arguments. The generic way to obtain such bounds is to analyze the set of possible
channel outputs obtained from a given channel input. Based on the zero-error property of the
code, those sets, also called spheres, need to be distinct. Then, dividing the size of the output
space by the size of these sets one obtains a valid upper bound on the size of a zero-error code.
While this procedure is generally applicable, there are cases that require more elaborate arguments.
If the sphere sizes depend on their centers, as is the case for our channel model, it is not obvious
how to obtain a valid bound, as the sphere sizes depend on the choice of codewords. In principle,
there are three common ways in such scenarios. First, divide by the minimum possible sphere
size. Second, generalized sphere packing bounds [FVY15; KK13] can be derived based on a
transversal on a hypgergraph associated with the channel. Third, in case that with growing
channel parameters, most spheres sizes approach a common size, it is possible to derive asymptotic
bounds. We follow the first approach for reasons of simplicity and tractability in this chapter
and switch to the third approach in cases where the first approach yields unsatisfactory results.
The asymptotic results using the third approach are, intuitively speaking, derived as follows.
Split the channel inputs S ∈ XL

M into two sets X1 and X2, such that X1 contains words with
a large number of possible channel outputs and X2 has small size. Splitting the codebook C
accordingly into words from X1 and X2, it is immediate that any zero-error code has size at most
|C| = |C ∩ X1|+ |C ∩ X2| ≤ |X1|

Bmin
+ |X2|, where Bmin is the minimum number of possible channel

outputs over all words in X1. To obtain a good bound it is hereby desirable to choose X1 and X2

such that Bmin is large and |X2| is small compared to |X1|
Bmin

. Recall to this end from Definitions
3.3 and 3.5 that in our channel model, the channel input is a set of sequences, where a subset of
sequences can be lost, and another can be distorted by point errors. We will make use of the fact
that sets of outspread sequences, i.e., sequences whose individual error spheres intersect in few
or no points, have a large number of channel outputs. Conversely, sets with sequences that are
clumped together have small number of possible channel outputs, as many different error events
yield the same result. Figure 3.3 visualizes such sets in both cases. We will combine these facts
with the observation that a very large fraction of sets do have the property that the sequences
are well spread and thus their number of possible channel outputs is close to the maximum. The
technical challenges hereby are as follows. First, it is necessary to extract an easy-to-analyze
property of channel inputs that allows to bound the number of possible channel outputs from
below. We will identify this property as the size of the largest subset of input sequences that are
well spread. For a formal definition, we refer the reader to Lemmas 3.21 and 3.26. Second, we
need a quantitative criterion for the partition of sets into X1 and X2. We split the sets based on
their number of channel outputs and carefully choose a threshold such that both Bmin is large
and the second set is very small. Our results about upper and lower bounds on the optimal
redundancy are summarized in Table 3.1.
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x1

x2

x3

u

(a) Example of a set S = {x1,x2,x3} with a
large number of possible channel outputs.

x1

x2

x3

(b) Example of a set S = {x1,x2,x3} with a
small number of possible channel outputs.

Figure 3.3: Illustration of sets with many and few channel outputs. Sequences that are close to
each other have a small distance in the appropriate metric (e.g. Hamming, Levenshtein)
and, similarly, sequences that are far apart have a large distance.

3.3 Existential Gilbert-Varshamov-type Upper Bounds

We start by deriving Gilbert-Varshamov lower bounds on the size of optimal (s, t, •)L, (s, t, u)S,
(s, t, u)I and (s, t, u)D-correcting codes. These bounds imply upper bounds on the optimal
redundancy of such codes. The central quantity for the derivation of the Gilbert-Varshamov
bounds is, for a given S ∈ XL

M , the set of words S̃ ∈ XL
M , which have intersecting error balls with

S. It is formally defined as follows.

Definition 3.10. For a set S ∈ XL
M , we denote by V T(S, s, t, u) the set of all sets S̃ ∈ XL

M , which
have intersecting error balls with S, that is,

V T(S, s, t, u) = {S̃ ∈ XL
M : BT(S, s, t, u) ∩BT(S̃, s, t, u) ̸= ∅}.

Hereby, |V T(S, s, t, u)| is called the degree of S. The average degree of all sets is denoted by

V
T
(s, t, u) =

1

|XL
M |

∑
S∈XL

M

|V T(S, s, t, u)|.

The generalized Gilbert-Varshamov bound (cf. [GF93; Tol97]) is derived using a graph rep-
resentation of an error-correcting code. We will use this representation to find the generalized
Gilbert-Varshamov bound for the DNA storage channel. Consider the simple graph G with
the set of vertices XL

M . Two vertices S1,S2 ∈ XL
M are connected if they cannot be confused

after transmission over the DNA storage channel, i.e., if BT(S1, s, t, u) ∩ BT(S2, s, t, u) = ∅, or
equivalently, S2 /∈ V T(S1, s, t, u). Note that this definition is slightly different from [GF93; Tol97]
due to the lack of a distance measure in our case. By construction, a clique in G (collection of
vertices, where each pair of vertices is connected) is an (s, t, u)T-correcting code. Now, it can
directly be shown that the total number of edges G coincides with [Tol97, eq. (2)]. Analogously
to [Tol97], it is therefore possible to establish a lower bound on the size of a clique in G (and
therefore an (s, t, u)T-correcting code).
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Table 3.1: Lower and upper bounds on the redundancy of optimal (s, t, u)T-correcting codes. Low
order terms are omitted.

Error correction Gilbert-Varshamov bound [Sec. 3.3] Sphere packing bound [Sec. 3.4]

(s, t, •)L (s+ 2t)L+ (s+ 2t) logM [Thm. 3.12] (s+ t)L+ t logM [Cor. 3.18]

(σM, τM, •)L (σ + 2τ)(L− logM) [Thm. 3.12] (σ + τ)M(L− logM) [Cor. 3.18]

(s, t, u)I sL+ (s+ t) logM + 2tu logL [Thm. 3.14] sL+ tu logL [Thm. 3.20]

(s, t, u)D sL+ (s+ t) logM + 2tu log(L/2)[Thm. 3.16] sL+ tu logL [Thm. 3.27]

(s, t, u)S sL+ (s+ 2t) logM + 2tu logL [Thm. 3.13]sL+ t logM + tu logL[Thm. 3.23]

(s,M − s, u)D 2Mu logL [Thm. 3.16] Mu logL [Thm. 3.28]

(s,M − s, u)S 2Mu logL [Thm. 3.13] Mu logL [Thm. 3.24]

Theorem 3.11 (cf. [GF93; Tol97]). There exists an (s, t, u)T-correcting code C ⊆ XL
M of size at

least

|C| ≥
(
2L

M

)
V

T
(s, t, u)

.

Such a code can be constructed by successively selecting words S(i) with minimum degree from
XL
M as codewords and removing all words V T(S(i), s, t, u) as possible candidates for the succeeding

codewords. Bounding the denominator in Theorem 3.11 from above will be the main challenge
throughout this section.

3.3.1 Arbitrary Number of Edit Errors per Sequence

We start with the case of a loss of s sequences and an arbitrary number of edit errors in at most t
sequences. The main theorem for this case is proven in the following.

Theorem 3.12. There exists an (s, t, •)L-correcting code C ⊆ XL
M of cardinality at least

|C| ≥
(
2L

M

)(
M

s+2t

)(
2L

s+2t

) .
Hence, for fixed s, t ∈ N0 and fixed 0 < β < 1, there exists an (s, t, •)L-correcting code C ⊆ XL

M

with redundancy

r(C) ≤ (s+ 2t)L+ (s+ 2t) logM − log((s+ 2t)!2) + o(1),

when M →∞ with M = 2βL.
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SS̃

S ′

≜ S ∩ S̃ ∩ S ′
≜ S ∩ S ′
≜ S̃ ∩ S ′

Figure 3.4: Illustration for the proof of Theorem 3.12

Proof. We will find an upper bound on V
L
(s, t, •) by bounding |V L(S, s, t, •)| from above for all

S ∈ XL
M . In the following, let S̃ ∈ V L(S, s, t, •) ⊆ XL

M be a set which has an intersecting error ball

with S. Start by observing that for any such S̃, there exists S ′ ∈ BL(S, s, t, •)∩BL(S̃, s, t, •) with
|S ′| ≤M − s, since BL(S, s, t, •) ∩BL(S̃, s, t, •) ̸= ∅ and for all S ′′ ∈ BL(S, s, t, •) ∩BL(S̃, s, t, •)
with |S ′′| > M − s it is possible to construct S ′ ∈ BL(S, s, t, •) ∩BL(S̃, s, t, •) with |S ′| = M − s
by removing any |S ′′| −M + s sequences from S ′′. By Definition 3.3, |S ∩ S ′| ≥M − s− t and
also |S̃ ∩ S ′| ≥M − s− t. Further, for any such S ′,

|S ∩ S̃| ≥ |S ∩ S̃ ∩ S ′|
(a)

≥ |S ∩ S ′|+ |S̃ ∩ S ′| − |S ′|
≥ 2(M − s− t)− (M − s) = M − s− 2t,

where we used in (a) that |S ∩ S̃ ∩S ′| = |S ∩S ′|+ |S̃ ∩S ′|− |(S ∪S̃)∩S ′| ≥ |S ∩S ′|+ |S̃ ∩S ′|− |S ′|
(for an illustration, refer to Figure 3.4). Therefore, any S̃ has an intersection of size at least
M − s−2t with S. Note that for 2L ≥M + s+2t this bound is tight, i.e., it is possible to find sets
S, S̃ ∈ XL

M with BL(S, s, t, •) ∩BL(S̃, s, t, •) ̸= ∅ and |S ∩ S̃| = M − s− 2t. Each S̃ can thus be
constructed by removing s+2t sequences from S and adding s+2t arbitrary sequences. The total

number of elements S̃ is thus at most |V L(S, s, t, •)| ≤
(

M
s+2t

)(
2L

s+2t

)
. It follows by Theorem 3.11

that there exists an (s, t, •)L-correcting code C of size at least

|C| ≥
(
2L

M

)(
M

s+2t

)(
2L

s+t

) .
By Definition 3.6, there exists an (s, t, •)L-correcting code C with redundancy at most

r(C) = log

(
2L

M

)
− log |C| ≤ log

(
M

s+ 2t

)(
2L

s+ 2t

)
(a)
= (s+ 2t)L+ (s+ 2t) logM − log((s+ 2t)!2) + o(1),

where in equation (a) we used Lemma A.2 from Appendix A.1.

3.3.2 Substitution Errors

We will now establish the existence of a code for the case of a loss of s sequences and a fixed
number of u substitution errors in t sequences. As before, we will use Theorem 3.11, however,
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bounding |V S(S, s, t, u)| is slightly more involved in this case. In principle our arguments will
be as follows. First, we bound the number of sets S ′ ∈ BS(S, s, t, u). Then, we will bound the
number |{S̃ ∈ XL

M : S ′ ∈ BS(S̃, s, t, u)}| of sets that contain S ′ in their error ball for all such S ′.
Multiplying these two quantities, one obtains an upper bound on the number of sets |V S(S, s, t, u)|.
This procedure is formalized in the following theorem.

Theorem 3.13. There exists an (s, t, u)S-correcting code C ⊆ XL
M with cardinality at least

|C| ≥
(
2L

M

)(
M+s
s

)(
M
t

)(
M+t−1

t

)(
2L

s

)
(BS(L, u))2t

.

Hence, for fixed s, t, u ∈ N0 and fixed 0 < β < 1, there exists an (s, t, u)S-correcting code C ⊆ XL
M

with redundancy

r(C) ≤ sL+ (s+ 2t) logM + 2tu logL− log(s!2t!2u!2t) + o(1),

when M →∞ with M = 2βL.

Proof. We will find an upper bound on |V S(S, s, t, u)| for all S ∈ XL
M . We can directly bound

|BS(S, s, t, u)|
(a)

≤
s∑

i=0

(
M

i

)(
M − i

t

)
(BS(L, u))t

(b)

≤
(
M + s

s

)(
M

t

)
(BS(L, u))t,

where (a) holds as we can choose at most s out of M sequences to be lost, t out of the remaining
sequences to be erroneous and there are BS(L, u) error patterns for each erroneous sequence. In-
equality (b) follows from the fact that

(
M−i
t

)
≤
(
M
t

)
for all i ≥ 0 and the bound

∑s
i=0

(
M
i

)
≤
(
M+s
s

)
.

Given S ′ ∈ BS(S, s, t, u), we count the number of possible S̃ with S ′ ∈ BS(S̃, s, t, u) as follows.
For each of the t erroneous sequences it is possible to either add u errors to a sequence x ∈ S ′ or
to create a new sequence inside the error ball BS(x, u). There are

(
M+t−1

t

)
(BS(L, u))t possible

error patterns for this procedure. Finally, the s lost sequences can be arbitrary sequences x ∈ ΣL
2 ,

and there are at most
(
2L

s

)
choices for these sequences. Thus,

|V S(S, s, t, u)| ≤
(
M + s

s

)(
M

t

)
(BS(L, u))t

(
M + t− 1

t

)
(BS(L, u))t

(
2L

s

)
,

for all S ∈ XL
M . Therefore, also the average degree V

S
(s, t, u) is bounded by the same quantity

and we can apply Theorem 3.11. By Definition 3.6, there exists an (s, t, u)S-correcting code C
with redundancy at most

r(C) = log

(
2L

M

)
− log |C| ≤ log

(
M + s

s

)(
M

t

)(
M + t− 1

t

)
(BS(L, u))2t

(
2L

s

)
(a)
= sL+ (s+ 2t) logM + 2tu logL− log(s!2t!2u!2t) + o(1),

where the equality (a) follows from Lemma A.2 in the Appendix A.1.
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3.3 Existential Gilbert-Varshamov-type Upper Bounds

3.3.3 Insertion Errors

We now turn to the case of insertions and deletions. We can use similar arguments as in the case
of substitution errors to obtain the following result for insertion errors.

Theorem 3.14. There exists an (s, t, u)I-correcting code C ⊆ XL
M with cardinality at least

|C| ≥
(
2L

M

)(
M
s

)(
M−s

t

)(
2L

s

)
(SI(L, u))t

(
L
u

)t .
Hence, for fixed s, t, u ∈ N0 and fixed 0 < β < 1, there exists an (s, t, u)I-correcting code C ⊆ XL

M

with redundancy

r(C) ≤ sL+ (s+ t) logM + 2tu logL− log(s!2t!u!2t) + o(1),

when M →∞ with M = 2βL.

Proof. We will find an upper bound on |V I(S, s, t, u)| for all S ∈ XL
M . Let S ′ ∈ BI(S, s, t, u) be

such that exactly s sequences were lost and there were exactly u insertions in each of t sequences.
The number of such elements S ′ is at most

(
M
s

)(
M−s

t

)
(SI(L, u))t, as we can choose s out of M

sequences to be lost, t out of the remaining M −s sequences to be erroneous and there are SI(L, u)
error patterns for each erroneous sequence. Given S ′ ∈ BI(S, s, t, u), we count possible S̃ with
S ′ ∈ BI(S̃, s, t, u) as follows. From each of the t erroneous sequences we can delete u symbols.

There are
(
L
u

)t
possible deletion patterns. Then, the s lost sequences can be arbitrary sequences

x ∈ ΣL
2 , and there are at most

(
2L

s

)
choices for these sequences. Thus,

|V I(S, s, t, u)| ≤
(
M

s

)(
M − s

t

)
(SI(L, u))t

(
2L

s

)(
L

u

)t

for all S ∈ XL
M .3 Therefore, also the average V

I
(s, t, u) is bounded by the same quantity and we

can apply Theorem 3.11 to prove existence of an (s, t, u)I-correcting code C with size as given in
the theorem statement. The result on the redundancy follows from Definition 3.6 and a repeated
application of Lemma A.2 from Appendix A.1.

3.3.4 Deletion Errors

For the case of deletion errors, we slightly adapt our arguments since the size of the deletion
sphere is non-uniform [Lev66]. As stated in Theorem 3.11, it is sufficient to find an upper bound

on the average degree V
D
(s, t, u). We will therefore show how this can be used to derive a bound

that depends only on the average deletion sphere size, defined as follows.

Definition 3.15. The average of the t-th power of the deletion sphere size |SD(x, u)| is defined
to be

S
D,t

(u) =
1

2L

∑
x∈ΣL

2

|SD(x, u)|t.

3We note that here we chose only those sets S ′ that have been obtained by a loss of exactly s sequences and by
exactly u errors in each of t sequences. This choice can be justified by the fact that it can be shown that for
any S, S̃ ∈ XL

M with BI(S, s, t, u) ∩BI(S̃, s, t, u) ̸= ∅ there exists a word S ′ ∈ BI(S, s, t, u) ∩BI(S̃, s, t, u) that is
obtained by a loss of exactly s sequences and by exactly u errors in each of t sequences. Therefore, we count all
sets S̃ ∈ V I(S, s, t, u) using the arguments in this proof.

37



Chapter 3 Zero-Error Codes for the Combinatorial DNA Storage Channel

Based on this definition we can formulate the following theorem about the existence of (s, t, u)D-
correcting codes.

Theorem 3.16. There exists an (s, t, u)D-correcting code C ⊆ XL
M with cardinality at least

|C| ≥
(
2L

M

)(
M
s

)(
M−s

t

)(
2L

s

)
(SI(L− u, u))tS

D,t
(u)

.

Hence, for fixed s, t, u ∈ N0 and fixed 0 < β < 1, there exists an (s, t, u)D-correcting code C ⊆ XL
M

with redundancy

r(C) ≤ sL+ (s+ t) logM + 2tu logL− tu− log(s!2t!u!2t) + o(1),

when M →∞ with M = 2βL.

Proof. We derive an upper bound on the average degree V
D
(s, t, u). Recall that SD(S, s, t, u) is

the set of all words S ′ ∈ BD(S, s, t, u) obtained from S by a loss of exactly s sequences and exactly
u deletions in t sequences4. The number of such words is at most

|SD(S, s, t, u)| ≤
∑

SE⊆S,|SE|=t

∏
x∈SE

|SD(x, u)|
(
M − t

s

)
.

This can be illustrated by the following consideration. First, fix SE ⊆ S with |SE| = t. There are
|SD(x, u)| possible error patterns for each x ∈ SE and

(
M−t
s

)
choices of s lost sequences among

the remaining M − t error-free sequences. Summing over all possible choices SE ⊆ S of erroneous

sequences yields the bound. Then, for each such set S ′, there are at most
(
2L

s

)
(SI(L− u, u))t sets

S̃ with S ′ ∈ BD(S̃, s, t, u). This is because each erroneous sequence x′ ∈ S ′ has length L− u and
requires exactly u insertions to become a sequence of length L and the s lost sequences can be
arbitrary words in S̃. Therefore,

|V D(S, s, t, u)| ≤ |SD(S, s, t, u)|
(
M − t

s

)(
2L

s

)
(SI(L− u, u))t.

Taking the average of |SD(S, s, t, u)| over all sets S ∈ XL
M yields

∑
S∈XL

M

|SD(S, s, t, u)|(
2L

M

) ≤
(
M−t
s

)(
2L

M

) ∑
S∈XL

M

∑
SE⊆S,|SE|=t

∏
x∈SE

|SD(x, u)| (a)=
(
M
t

)(
M−t
s

)(
2L

t

) ∑
|SE|=t

∏
x∈SE

|SD(x, u)|

(b)

≤
(
M
s

)(
M−s

t

)(
2L

t

) ∑
|SE|=t

∑
x∈SE

|SD(x, u)|t

t

(c)
=

(
M

s

)(
M − s

t

)
S
D,t

(u),

where the sum over |SE| = t runs over all sets SE ⊆ ΣL
2 with |SE| = t. Here, for the equality (a)

we used that each set SE with |SE| = t is contained in exactly
(
2L−t
M−t

)
sets S ∈ XL

M together with

the equality
(
2L−t
M−t

)(
2L

t

)
=
(
M
t

)(
2L

M

)
. Further, in inequality (b), a combination of the arithmetic-

geometric mean inequality and Jensen inequality [Jen06], [CT06, Thm. 2.6.2] has been used

4Regarding the restriction to sets S ′ obtained by a loss of exactly s sequences and by exactly u errors in each of t
sequences, we are using the analog argument as in the proof of Theorem 3.14, adapted to the case of deletions.
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3.4 Sphere-Packing Lower Bounds

to show that for any non-negative a1, . . . , at ≥ 0 it holds that a1 · . . . · at ≤ 1
t (a

t
1 + . . . + att).

Equality (c) follows from the fact that each x ∈ ΣL
2 is contained in

(
2L−1
t−1

)
sets SE ∈ XL

t . Finally,

to bound S
D,t

(u) from above, we use the well-known result |SD(x, u)| ≤
(||x||+u−1

u

)
≤ (||x||+u−1)u

u!
from Levenshtein [Lev66], which results in

S
D,t

(u) ≤ 1

2L

∑
x∈ΣL

2

(||x||+ u− 1)tu

u!t
(a)
=

1

u!t

L−1∑
i=0

(
L−1
i

)
(i+ u)tu

2L−1

(b)
=

1

u!t

(
L

2

)ut

(1 + o(1)).

In equation (a), we used that the number of words x ∈ ΣL
2 with ||x|| = i is 2

(
L−1
i−1

)
. For the

asymptotic approximation (b), we identify the sum as the (tu)−th decentralized moment of a
binomial distribution with L− 1 trials and success probability 1

2 . Combining [Kno08, eq. (4.1)]
and [Kno08, eq. (4.6)], one obtains the asymptotic behavior for fixed u, and t, when L→∞.

3.4 Sphere-Packing Lower Bounds

A well-known method to find upper bounds on the cardinality of error-correcting codes is the
sphere-packing bound. In this section we derive sphere-packing bounds for (s, t, u)T-correcting
codes. These bounds directly imply lower bounds on the redundancy of such codes. One particular
observation of the considered DNA storage channel is that it is non-uniform, i.e. the sizes of the
error balls BT(S, s, t, u) depend on the channel input S for all types of errors T, which hinders
the computation of sphere packing bounds. A practical method to find sphere packing bounds
for non-uniform error balls is the generalized sphere packing bound [FVY15; KK13]. However,
due to the complex expressions of the error ball sizes, this method does not yield tractable
expressions for the considered channel. Another possibility is to derive the sphere packing bound
by finding an upper bound on the error ball size, which we will do in Section 3.4.1. We will
also show that for large M most of the error balls have a similar size, which allows to formulate
tighter asymptotic sphere packing bounds in Sections 3.4.3 and 3.4.4. Note that together with
the lower bounds on the achievable size of (s, t, u)T-correcting codes from the previous section
and concrete code constructions in Section 3.5, it can be shown that the sphere packing bounds
are asymptotically tight for many channel parameters. Even when the bounds are not tight, they
can provide important insights into the nature of the DNA channel as well as allow to evaluate
coding schemes.

3.4.1 Arbitrary Number of Edit Errors per Sequence

We start by finding an upper bound for (s, t, •)L-correcting codes, which depicts the case of a loss
of s sequences and an arbitrary number of insertion, deletion, and substitution errors in each of t
erroneous sequences.

Theorem 3.17. The cardinality of any (s, t, •)L-correcting code C ⊆ XL
M satisfies

|C| ≤
(

2L

M−s

)(
M
t+s

)(
2L−M

t

) .
In particular, the redundancy of any (s, t, •)L-correcting code C ⊆ XL

M is therefore at least

r(C) ≥ (s+ t) log(2L −M − t) + t log(M − s− t)− log(t!(s+ t)!).
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Proof. We prove the theorem by finding a subset of BL(S, s, t, •), which gives a lower bound on
the sphere size |BL(S, s, t, •)| for all S ∈ XL

M . Let S ′ ∈ BL(S, s, t, •) with S ′ ⊆ ΣL
2 denote an

element from the error ball of S, which contains only sequences of length L and let SC,S ′E denote
the corresponding error-free, respectively erroneous outcomes of the sequences, i.e. S ′ = SC ∪ S ′E,
according to Definition 3.3. We construct such distinct S ′ in the following way. Choose M − s− t
error-free sequences SC ⊆ S and choose the t erroneous sequences in S ′E to be distinct elements out
of the 2L −M sequences in ΣL

2 \ S and let S ′ = SC ∪ S ′E. For any such SC ⊆ S and S ′E ⊆ ΣL
2 \ S

one obtains a unique element from the error ball BL(S, s, t, •), since S ′ = SC ∪ S ′E and SC,S ′E are

both subsets of two distinct sets. There are in total
(
M
s+t

)
ways to choose the set SC and

(
2L−M

t

)
ways to choose S ′E and thus |BL(S, s, t, •)| ≥

(
M
s+t

)(
2L−M

t

)
. All such constructed received sets

have |S ′| = |SC|+ |S ′E| = M − s sequences of length L. By Definition 3.5 of an (s, t, •)L-correcting
code C, for any two S1,S2 ∈ C with S1 ̸= S2, we need to have BL(S1, s, t, •) ∩BL(S2, s, t, •) = ∅.
We thus obtain by a sphere packing argument, that any (s, t, •)L-correcting code C satisfies

|C| ≤
(

2L

M−s

)(
M
t+s

)(
2L−M

t

) .
Therefore, the redundancy is at least

r(C) = log

(
2L

M

)
− log |C| ≥ log

(2L −M + s)!(M − s)!

(2L −M − t)!(M − s− t)!(s+ t)!t!

(a)

≥ (s+ t) log(2L −M − t) + t log(M − t− s)− log(t!(s+ t)!).

where in (a) we used that for any a, b ∈ N with a ≤ b, it holds that a!
b! =

1
b(b−1)...(a+1) ≥

1
bb−a .

This non-asymptotic bound directly implies an asymptotic bound, when M →∞ and M = 2βL

for fixed 0 < β < 1.

Corollary 3.18. For fixed s, t ∈ N0 and fixed 0 < β < 1, the redundancy of any (s, t, •)L-correcting
code C ⊆ XL

M is asymptotically at least

r(C) ≥ (s+ t)L+ t logM − log(t!(s+ t)!) + o(1),

when M → ∞ and M = 2βL. Further, for any fixed σ, τ with σ > 0, τ > 0 and σ + τ < 1, the
redundancy of any (σM, τM, •)L-correcting code C ⊆ XL

M satisfies

r(C) ≥ (σ + τ)M(L− logM) +O(M).

Proof. The first statement directly follows from Theorem 3.17,

r(C) ≥ (s+ t) log(2L −M − t) + t log(M − t− s)− log(t!(s+ t)!)

= (s+ t)L+ (s+ t) log(1− (M + t)/2L) + t logM + t log(1− (t+ s)/M)− log(t!(s+ t)!)

(a)

≥ (s+ t)L+ t logM − log(t!(s+ t)!) + o(1),
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3.4 Sphere-Packing Lower Bounds

where in inequality (a) we used log(1 + x) ≥ x
1+x for any x > −1. The second statement is proven

as follows. We start from the upper bound on the cardinality of any (σM, τM, •)L-correcting
code from Theorem 3.17 and obtain

r(C) = log

(
2L

M

)
− log |C| ≥ log

(
2L

M

)(
M

(σ + τ)M

)(
2L −M

τM

)
− log

(
2L

(1− σ)M

)
(a)

≥ log

(
2L

M

)(
2L −M

τM

)
− log

(
2L

(1− σ)M

)
(b)
= M log

e2L

M
+ τM log

e(2L −M)

τM
− (1− σ)M log

e2L

(1− σ)M
+ o(M)

(c)
= (σ + τ)M(L− logM) +O(M),

where for inequality (a) we dropped the term log
(

M
(σ+τ)M

)
since it is positive and also asymptotically

negligible. Equality (b) follows from applying Lemma A.3 to each of the individual terms. Finally,
to prove equality (c), we identified the terms of order O(M) together with an application of
Lemma A.1 on the term log(2L −M) = L+ log(1−M/2L).

This result is particularly interesting, due to the following consideration. Both lost sequences
and erroneous sequences do not carry any useful information, since the erroneous sequences can
be distorted by an arbitrary number of errors. However, unlike a lost sequence, the erroneous
sequence cannot directly be detected by the decoder and therefore, compared to a loss of sequence,
requires additional redundancy of roughly logM bits to be corrected. This result is analogous to
the case of standard binary substitution-correcting block-codes of length n, where erasures require
a redundancy of only a single symbol, and errors require roughly log n symbols of redundancy to
be corrected. This analogy becomes particularly visible when sequences are indexed and protected
by a standard substitution-correcting code, similarly to Construction 3.30 (see Section 3.5.1), but
also holds for the general case of any (s, t, •)L-correcting code. However, this seems to be not the
case, when the number of lost sequences and erroneous sequences scales with M , since in that
case the redundancy only depends on σ + τ .

3.4.2 Insertion Errors

In the following, we find code size upper bounds for the case of having a combination of a loss of
s sequences and only u insertion errors inside t arbitrary sequences. The sphere packing bound is
derived in the following theorem.

Theorem 3.19. The cardinality of any (s, t, u)I-correcting code C ⊆ XL
M satisfies

|C| ≤
(

2L

M−s−t

)(
2L+u

t

)(
M
s+t

)(
SI(L,u)

t

) .

Proof. We prove the theorem by bounding the error ball size |BI(S, s, t, u)| from below for all S,
which yields an upper bound on the cardinality of (s, t, u)I-correcting codes by a sphere packing
argument. Distinct elements S ′ ∈ BI(S, s, t, u) of the error ball can be found in the following
way. First, choose two distinct sets SL,SE = {xf1 , . . . ,xft} ⊆ S with |SL| = s and |SE| = t.
Further choose the set of erroneous sequences S ′E = {x′

f1
, . . . ,x′

ft
} such that x′

fi
∈ SI(xfi , u). The
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Chapter 3 Zero-Error Codes for the Combinatorial DNA Storage Channel

received set S ′ is then constructed by S ′ = SC ∪ S ′E, where SC = S \ (SL ∪ SE) are the error-free

sequences, as in Definition 3.3. Let SL,SE,S ′E and S̃L, S̃E, S̃ ′E be chosen according to the above

described procedure and let S ′ and S̃ ′ be the corresponding received sets. We will show that if
SL ∪ SE ̸= S̃L ∪ S̃E or SE ̸= S ′E, then S ′ ≠ S̃ ′. We discuss first the case when SL ∪ SE ̸= S̃L ∪ S̃E.
Here it directly follows that S ′ ̸= S̃ ′, since the error-free sequences SC = S \ (SL ∪ SE) and
S̃C = S \ (S̃L ∪ S̃E) of length L are different. In the other case, if SL ∪ SE = S̃L ∪ S̃E, it follows
that S ′E ̸= S̃ ′E. Therefore, two different choices of the sets SL ∪ SE and S ′E yield different elements

in BI(S, s, t, u). The number of possible sets SL ∪SE is
(
M
s+t

)
. For each xfi ∈ SE, we have SI(L, u)

choices for x′
fi
∈ SI(xfi , u). Note that in general the spheres SI(xfi , u) are not necessarily distinct

over different i, however we can still bound the number of choices for the set S ′E from below as
follows. A conservative argument suggests that the smallest number of choices for S ′E is attained

when the SI(xfi , u) perfectly agree for all i and in this case, we have exactly
(
SI(L,u)

t

)
choices for

S ′E. Hence, in total, there are at least
(
M
s+t

)(
SI(L,u)

t

)
ways to choose SL ∪ SE and S ′E and therefore

|BI(S, s, t, u)| ≥
(
M
s+t

)(
SI(L,u)

t

)
for all S ∈ XL

M . Each such constructed received set S ′ consists of
M − s− t sequences of length L and t sequences of length L+u. There are in total

(
2L

M−s−t

)(
2L+u

t

)
such sets, which yields the theorem by a sphere packing argument.

Note that Theorem 3.19 provides a valid upper bound for any parameter M,L, s, t, u. For the
case of deletion errors or combinations of insertions and deletions, formulating a sphere packing
bound based on the minimum error ball size yields a weak bound, since the minimum deletion
ball size is |BD(0, u)| = u+ 1, obtained by, e.g., the all-zero word 0. Therefore, a conservative
analysis similar to Theorem 3.19 would yield unsatisfactory results. However, an asymptotic
analysis, which yields asymptotically tighter bounds is possible, as we will see in Theorem 3.27.
Further, Theorem 3.19 can be used to infer the following asymptotic statement.

Corollary 3.20. For fixed s, t ∈ N0 and fixed 0 < β < 1, the redundancy of any (s, t, u)I-correcting
code C ⊆ XL

M is asymptotically at least

r(C) ≥ sL+ tu(logL− 1)− log(s+ t)! + o(1),

when M →∞ and M = 2βL.

Proof. The statement directly follows from Theorem 3.19 as follows.

r(C) = log |XL
M | − log |C| ≥ log

(
2L

M

)(
M

s+ t

)(
SI(L, u)

t

)
− log

(
2L

M − s− t

)(
2L+u

t

)
Thus, expanding the binomial coefficients

(
2L

M

)
and

(
2L

M−s−t

)
, we obtain

r(C) ≥ log
(2L −M + s+ t)!(M − s− t)!

(2L −M)!M !
+ log

(
M

s+ t

)(
SI(L, u)

t

)
− log

(
2L+u

t

)
.

We proceed with bounding the factorials as follows. It is immediate that for any a, b ∈ N with
a ≤ b, it holds that a!

b! ≥
1

bb−a and when a ≥ b, it holds that a!
b! ≥ bb−a. Therefore

r(C) ≥ (s+ t) log
(2L −M)

M
+ log

(
M

s+ t

)(
SI(L, u)

t

)
− log

(
2L+u

t

)
(a)

≥ (s+ t)(L− logM) + (s+ t) logM + tu logL− t(L+ u)− log(s+ t)! + o(1)

= tL+ tu(logL− 1)− log(s+ t)!
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where in inequality (a) we additionally used Lemma A.1 on the first summand and Lemma A.2
on the remaining binomial coefficients.

3.4.3 Substitution Errors

We now derive asymptotic sphere packing bounds on the code size for (s, t, u)S-correcting codes.
This depicts the case of only substitution errors inside the sequences. We will mainly focus our
attention towards large number of sequences M . As discussed before, the error ball sizes depend
on the center S. However, as it turns out, asymptotically the error balls have similar sizes. We
will start by finding a lower bound on the error ball size for a set S.

Lemma 3.21. Let Y ⊆ S ∈ XL
M be an u-substitution-correcting code, i.e. BS(y1, u)∩BS(y2, u) = ∅

for all y1,y2 ∈ Y and y1 ̸= y2. Further, let s+ t ≤ |Y|. Then,∣∣∣{S ′ ∈ BS(S, s, t, u) : |S ′| ≤M − s
}∣∣∣ ≥ (|Y|

s

)(
|Y| − s

t

)(
BS(L, u)− 1

)t
.

Proof. The lower bound will be proven by identifying and counting specific patterns of a loss of
sequences and errors in sequences of S that lead to distinct channel outputs S ′ ∈ BS(S, s, t, u)
with |S ′| ≤M − s. Let Y = {y1, . . . ,y|Y|}. The sets of stored sequences in the error balls around

the elements in Y are denoted by Si ≜ S ∩BS(yi, u). Similarly, the sets of received sequences in
these error balls are S ′i ≜ S ′ ∩BS(yi, u). Note that the sets BS(yi, u) and thus also the sets Si
are pairwise distinct, since Y is an u-substitution-correcting code. We further define the selector
function for sequences a, b,x ∈ ΣL

2 as

ISx(a, b) =
{

a, if x /∈ S
b, otherwise

.

Distinct channel outputs S ′ ∈ BS(S, s, t, u) are obtained in the following manner. First, choose
two distinct sets L = {l1, . . . , ls} ⊆ [|Y|] with |L| = s and F = {f1, . . . , ft} ⊆ [|Y|] with |E| = t
and a collection of error vectors e1, e2, . . . , et, where ej ∈ ΣL

2 are non-zero vectors of weight at
most wtH(ej) ≤ u. We will show that by for each choice of L,F , e1, e2, . . . , et we can construct a
unique word S ′ ∈ BS(S, s, t, u) in the following manner. First, all sequences SL = {yl1 , . . . ,yls}
are lost. Denote y′

fj
≜ yfj + ej , 1 ≤ j ≤ t. The set SE of erroneous sequences is then chosen as

SE =
t⋃

j=1

{
ISy′

fj

(yfj ,y
′
fj
)

}
.

In other words, if y′
fj

/∈ S we choose the sequence, which will be distorted by errors to be yfj and

otherwise we choose it to be the sequence y′
fj
∈ S. The erroneous outcomes of the sequences in

SE are now constructed by

S ′E =
t⋃

j=1

{
ISy′

fj

(y′
fj
,yfj )

}
.

That is if y′
fj

/∈ S, we have yfj ∈ SE and we add ej to that sequence to obtain y′
j ∈ S ′E. If

y′
j ∈ S, y′

fj
∈ SE is the sequence which is distorted and we add −ej , resulting in yfj ∈ S ′E. It is

important to note that by this choice of error patterns, the erroneous sequence y′
fj
∈ BS(yfj , u)
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yi

x1x2

Yi

(a) No errors.

x1x2

Y ′
i

(b) yi is lost.

y′
i

x1x2

Y ′
i

(c) yi is erroneous,
y′
i ̸= xj .

yi

x2

Y ′
i

(d) xj ̸= yi is erroneous,
x′
j = yi.

Figure 3.5: Cases for error patterns in Lemma 3.21.

and therefore will never be present in another error ball BS
u(y),y ∈ Y \ {yfj}, since Y is an

u-substitution-correcting code. The received set is now S ′ = SC∪S ′E, where SC = S \ (SL∪SE) are
the error-free sequences, as in Definition 3.3. We will show now that two choices L,F , e1, . . . , et
and L̃, F̃ , ẽ1, . . . , ẽt yield different received sets S ′ and S̃ ′, if (and only if) they differ in at least one
of the components, i.e., L ≠ L̃, F ̸= F̃ , or ej ̸= ẽj for some j. For each i ∈ [|Y|], we distinguish
between the following three different cases (visualized in Figure 3.5) and state the composition of
the resulting received parts S ′i = S ∩BS(yi, u) .

• i /∈ (L ∪ F) : S ′i = Si

• i ∈ L : S ′i = Si \ {yi}

• i ∈ F : S ′i = (Si \ {yi}) ∪ {y′
i} or

S ′i = Si \ {y′
i}.

Here y′ ∈ BS(yi, u) \ S is the erroneous outcome of the sequence yi. Comparing the outputs S ′i
for these three cases, it is verified that each case yields different S ′i. Now, if L ≠ L̃ there is at least

one i such that i ∈ L and i /∈ L̃ and if F ̸= F̃ there is at least one i such that i ∈ F and i /∈ F̃ .
Therefore, in both cases it follows that S ′i ≠ S̃ ′i for some i and consequently S ′ ̸= S̃ ′. Further,

if both L = L̃ and F = F̃ , there exists some j such that ej ̸= ẽj . Therefore, the corresponding

results y′
fj

will be different and thus S ′fj ≠ S̃ ′fj according to the third case above. This proves that

each SL,SE, e1, . . . , et yields a unique word in BS(S, s, t, u). Finally, by construction, all S ′ satisfy
|S ′| ≤M − s and there are

(|Y|
s

)(|Y|−s
t

)
possible choices for the sets L and F and (BS(L, u)− 1)t

non-zero error patterns e1, . . . , et.

This means, that if a set S ∈ XL
M contains an u-substitution-correcting code Y with cardinality

|Y|, the error ball has size at least |BS(S, s, t, u)| ≥
(|Y|

s

)(|Y|−s
t

)
(BS(L, u)− 1)t. Interestingly, for

an appropriate choice of parameters, most of the sets S ∈ XL
M have the property of containing

a large u-error-correcting code of size that is close to M . To establish this fact, we need the
following lemma that proves an upper bound on the number of sets that do not contain a large
error-correcting code.

Lemma 3.22. Let Y ⊆ S be the largest u-error-correcting code (error type T), with the property
BT(y1, u) ∩BT(y2, u) = ∅ for all y1,y2 ∈ Y and y1 ̸= y2. The number of sets S ⊆ XL

M with
|Y| ≤ K, denoted as D(K), is at most

D(K) ≤
(
2L

K

)(
KV T

u

M −K

)
,
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where
V T(u) = max

x∈ΣL
2

|{y ∈ ΣL
2 : BT(x, u) ∩BT(y, u) ̸= ∅}|

is the maximum over the number of sequences y ∈ ΣL
2 that have intersecting error balls with

x ∈ ΣL
2 .

Proof. Consider the following procedure on a set S ∈ XL
M whose largest u-error-correcting subset

Y ⊆ S has size at most K. Write S(1) ≜ S. Take an arbitrary word x(1) ∈ S(1) and remove
all words y ∈ ΣL

2 with intersecting error balls, i.e. BT(x(1), u) ∩ BT(y, u) ̸= ∅ from S(1). Then
select an arbitrary sequence from the resulting set S(2), and, again, remove all elements with
intersecting error balls. Continue this procedure until S(j+1) = ∅. This procedure will stop after
at most j ≤ K steps, since otherwise x1, . . . ,xK+1 would form an u-error-correcting code. Hence,
each such set S can be constructed by first selecting K arbitrary, distinct words x1, . . . ,xK and
then choosing the remaining M −K words to have intersecting error balls with at least one of the
x1, . . . ,xK .

While the bound from Lemma 3.22 may not seem particularly strong, it can be used to show that
the number of sets that do not contain an u-substitution-correcting code of large size is negligible
with respect to the sets that do contain an u-substitution-correcting code. We will elaborate this
result and use it in the following to prove an upper bound on the size of (s, t, u)S-correcting codes.

Theorem 3.23. For fixed s, t, u ∈ N0 and 0 < β < 1, any (s, t, u)S-correcting code C ⊆ XL
M

satisfies

|C| ≤
(

2L

M−s

)(
M
s

)(
M−s

t

)(
L
u

)t (1 + o(1)),

when M →∞ with M = 2βL. The redundancy is at least

r(C) ≥ sL+ t logM + tu logL− log
(
s!t!u!t

)
+ o(1),

Proof. Denote by B(S) ≜ {S ′ ∈ BS(S, s, t, u) : |S ′| ≤M − s} the set of possible received words
with at most M − s sequences. Denote further by Xe ⊆ XL

M the set of all S ∈ XL
M , which contain

some u-substitution-correcting code Y ⊆ S of size larger than |Y| > M − y(M), where we define
y(M) = M/ logM . The remaining sets are comprised in X c

e = XL
M \ Xe. With the partition

Xe ∪ X c
e = XL

M , it follows that the cardinality of any (s, t, u)S-correcting code C ⊆ XL
M is at most

|C| = |C ∩ Xe|+ |C ∩ X c
e | ≤

∣∣∣∣∣ ⋃S∈Xe

B(S)

∣∣∣∣∣
min
S∈Xe

|B(S)|
+ |X c

e |.

The first term follows from a sphere packing bound on all sets S ∈ Xe. The numerator counts the
total number of possible channel outputs, when an arbitrary S ∈ Xe is the input. The denominator
is a lower bound on the error ball size for all sets S ∈ Xe. Since each channel output is a set of
sequences of size M − s− t up to M − s, we have∣∣∣∣∣ ⋃

S∈Xe

B(S)

∣∣∣∣∣ ≤
t∑

i=0

(
2L

M − s− i

)
.
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From Lemma 3.21 it is known that

min
S∈Xe

|B(S)| ≥
(
M − y(M)

s, t

)
(BS(L, u)− 1)t,

and applying Lemma 3.22, we find that |X c
e | ≤ D(M − y(M)). It follows that

|C| ≤
∑t

i=0

(
2L

M−s−i

)(
M−y(M)

s

)(
M−y(M)−s

t

)
(BS(L, u)− 1)t

+D(M − y(M))

=

∑t
i=0

(
2L

M−s−i

)(
M−y(M)

s

)(
M−y(M)−s

t

)
(BS(L, u)− 1)t

(1 + ∆),

where ∆ accounts for D(M − y(M)) and is defined implicitly as in the following equation. We
will show that for our choice of y(M), the first summand dominates the bound, i.e. ∆→ 0 for
M →∞. We obtain

log∆ = log
D(M − y(M))

(
M−y(M)

s

)(
M−y(M)−s

t

)
(BS(L, u)− 1)t∑t

i=0

(
2L

M−s−i

) (a)

≤ log
D(M − y(M))∑t

i=0

(
2L

M−s−i

) +O(L)

(b)

≤

(
2L

M−y(M)

)((M−y(M))BS(L,2u)
y(M)

)(
2L

M−s

) +O(L)
(c)

≤ −1− β

β
M + o(M),

where for inequality (a) we used log
(
M−y(M)

s

)(
M−y(M)−s

t

)
= O(logM) = O(L) and further

the fact that t log(BS(L, u) − 1) = O(logL). Inequality (b) follows from Lemma 3.22 together
with V S(u) = BS(L, 2u). Inequality (c) can be shown by an application of Lemma A.6 with
z(L) = 2L/((M − y(M))BS(L, 2u)). Therefore, ∆→ 0, as M →∞ and henceforth D(M − y(M))
is asymptotically negligible. We obtain for any (s, t, u)S-correcting code C ⊆ XL

M

|C| ≤
∑t

i=0

(
2L

M−s−i

)(
M−y(M)

s

)(
M−y(M)−s

t

)
(BS(L, u)− 1)t

(1 + o(1)) =

(
2L

M−s

)(
M
s

)(
M−s

t

)(
L
u

)t (1 + o(1)).

The redundancy is asymptotically at least

r(C) = log

(
2L

M

)
|C|
≥ log

(
2L

M

)(
M
s

)(
M−s

t

)(
L
u

)t(
2L

M−s

) + o(1)

≥ s log(2L −M) + t log (MLu)− log(s!t!u!t) + o(1)

= sL+ t logM + tu logL− log
(
s!t!u!t

)
+ o(1),

where we used Lemma A.2 to simplify the asymptotic behavior of the binomial coefficients.

In particular, for s = 0 and u = 1, the redundancy of any (0, t, 1)S-correcting code C ⊆ XL
M

is at least t log(ML) − log t! bits. Note that this coincides with the results from [SRB21] for
t = 1. Comparing the bound on the redundancy stated in Theorem 3.23 with the well known
sphere packing bound for conventional u-substitution-correcting block codes, logBS(L, u), yields
an interesting interpretation of the (0, t, 1)S channel. While it seems intuitive that the redundancy
required is at least t log(ML)− log t! bits, since there are t errors inside a total of ML symbols,
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it is interesting that from a sphere packing point of view, the fact the sequences are not ordered
does appear to require as much redundancy as not knowing the distribution of the errors in an
ordered array. While Theorem 3.23 is formulated for a fixed number of errors s, t, we will find a
bound for the case, when number of erroneous sequences t is scaling with M in the following.

Theorem 3.24. For fixed s, u ∈ N0 and fixed 0 < β < 1, any (s,M − s, u)S-correcting code
C ⊆ XL

M satisfies
r(C) ≥Mu logL+O(M),

when M →∞ with M = 2βL.

Proof. We follow a similar outline as in the proof for Theorem 3.23. Denote the set of possible
received words with at most M − s sequences by B(S) ≜ {S ′ ∈ BS(S, s, t, u) : |S ′| ≤M − s}.
Further denote Xe ⊆ XL

M as the set of all S ∈ XL
M , which contain an u-substitution-correcting

code Y ⊆ S of size |Y| > M − y(M), where we define y(M) = M/ log logM and X c
e = XL

M \ Xe.
Allowing only t = M − s− y(M) erroneous sequences, we can apply Lemma 3.21 and obtain

|B(S)| ≥
(
M − y(M)

s

)
(BS(L, u)− 1)M−y(M)−s,

for all S ∈ Xe. It follows that

|C| ≤
∑M−y(M)−s

i=0

(
2L

M−s−i

)(
M−y(M)

s

)
(BS(L, u)− 1)M−y(M)−s

(1 + ∆),

using arguments analogous to those in the proof of Theorem 3.23. We will show that ∆→ 0 for
M →∞. We obtain

log∆ = log

(
M−y(M)

s

)
(BS(L, u)− 1)M−y(M)−sD(M − y(M))∑M−y(M)−s

i=0

(
2L

M−s−i

)
(a)

≤ log

(
2L

M−y(M)

)((M−y(M))BS(L,2u)
y(M)

)(
2L

M−s

) +Mu logL+O(L)

(b)

≤ −ML(1− β)

log logM
+Mu logL+ o

(
M

log logM

)
= −ML(1− β)

log(βL)
+O(M logL),

where in inequality (a) we used log
(
M−y(M)

s

)
= O(L). For inequality (b) we applied Lemma A.6

with z(L) = 2L/((M − y(M))BS(L, 2u)). Therefore, ∆ → 0, as M → ∞. We obtain for any
(s,M − s, u)S-correcting code C ⊆ XL

M

|C| ≤
∑M−y(M)−s

i=0

(
2L

M−s−i

)(
M−y(M)

s

)
(BS(L, u)− 1)M−y(M)−s

(1 + o(1)) ≤
(
2L+M
M−s

)
(
M
s

)(
L
u

)M−y(M)−s
(1 + o(1)),

where we used that
∑m

i=0

(
n
m

)
≤
(
n+m
m

)
for any n,m ∈ N to bound the numerator. Therefore, the

redundancy satisfies

r(C) = log

(
2L

M

)
|C|
≥ log

(
2L

M

)(
M
s

)(
L
u

)M−y(M)−s(
2L+M
M−s

) + o(1)

= log
(2L)!(2L + s)!

(2L −M)!s!(2L +M)!
+ (M − y(M)− s) log

(
L

u

)
.
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In order to bound the first term, we use that for any a, b ∈ N with a ≤ b, it holds that a!
b! ≥

1
bb−a

and when a ≥ b, it holds that a!
b! ≥ bb−a. We obtain

r(C) ≥M log
2L −M

2L +M
+ s log(2L +M) + (M − y(M)− s) log

(
L

u

)
.

Finally, applying Lemma A.1, we see that the first term is of order o(M) and using that
y(M) logL = O(M), we obtain

r(C) ≤Mu logL+O(M).

3.4.4 Deletion Errors

We will now turn to derive an asymptotic bound on the cardinality of (s, t, u)D-correcting codes.
Note that in general it is also possible to use the technique that we present here for insertion
errors. However, we already obtained a bound in Theorem 3.19 and therefore focus on the case of
deletions in the sequel. Since the deletion ball is non-uniform, i.e., the balls around different words
can have different sizes and it is thus not directly possible to use an analogue of Lemma 3.21 as
in Theorem 3.23. We will therefore slightly adapt our arguments and use the fact that, although
the deletion ball size is non-uniform, most of the deletion balls have a similar size. In, particular,
it has been shown in [Lev66] that

|SD(x, u)| ≥
(
||x|| − u+ 1

u

)
and most words x ∈ ΣL

2 have roughly L/2 runs. We will elaborate this result in the following.

Lemma 3.25. Let ρ ∈ N. The number of words with less than L/2− ρ runs satisfies∣∣∣∣{x ∈ ΣL
2 : ||x|| < L

2
− ρ

}∣∣∣∣ ≤ 2L

e
2ρ2

L

.

Proof. The number of words x ∈ ΣL
2 with exactly i runs, i.e., ||x|| = i is given by 2

(
L−1
i−1

)
.

Therefore, the number of words with less than L/2− ρ runs is given by

|{x ∈ ΣL
2 : ||x|| < L/2− ρ}| = 2

L/2−ρ−1∑
i=1

(
L− 1

i− 1

)
(a)

≤
L/2−ρ∑
i=1

(
L

i

)
(b)

≤ 2L

e
2ρ2

L

,

where we used
(
L−1
i−1

)
≤ 1

2

(
L
i

)
for i ≤ L

2 in inequality (a) and Hoeffding’s inequality [Hoe63] (see
[Ver18, Thm 2.2.2] for an application to binomial tails) on the binomial sum in (b).

Next, we find a lower bound on the ball size BD(S, s, t, u), for sets, which contain a deletion-
correcting code.

Lemma 3.26. Let Y ⊆ S ∈ XL
M be an u-deletion-correcting code, i.e. BD(y1, u) ∩BD(y2, u) = ∅

for all y1,y2 ∈ Y and y1 ̸= y2. Further, let s+ t ≤ |Y|. Then,

|BD(S, s, t, u)| ≥
∑

SE,SL⊆Y,SE∩SL=∅,
|SL|=s,|SE|=t

∏
y∈SE

|SD(y, u)|,
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Proof. We will find a lower bound on the number of words inside the error ball |BD(S, s, t, u)|
by counting distinct elements S ′ ∈ BD(S, s, t, u) in the following way. Choose two arbitrary
distinct sets SL,SE = {ye1 , . . . ,yet} ⊆ Y with |SL| = s and |SE| = t and choose a set of erroneous
outcomes S ′E = {y′

e1 , . . . ,y
′
et}, where y′

ei ∈ SD(yei , u). Note that we delete exactly u symbols

from each yei and thus y′
ei ∈ ΣL−u

2 . Denote by SL,SE,S ′E and S̃L, S̃E, S̃ ′E two different choices of

error realizations and let S ′ and S̃ ′ be the corresponding received sets. If SL ∪ SE ̸= S̃L ∪ S̃E, then
S ′ ̸= S̃ ′, as the resulting error-free sequences in S ′ and S̃ of length L are different. In the case
SL ∪SE = S̃L ∪ S̃E and SE ̸= S̃E, it follows that S ′E ̸= S̃ ′E, as the erroneous outcomes are chosen out

of the radius u deletion spheres from an u-deletion-correcting code. Finally, if SL ∪ SE = S̃L ∪ S̃E
and SE = S̃E it follows that SL = S̃L and thus S ′E ̸= S̃ ′E as we chose SL,SE,S ′E and S̃L, S̃E, S̃ ′E to
be different. Hence, for each choice of error realizations SL,SE,S ′E, we obtain a unique element in
BD(S, s, t, u). Counting the number of choices yields the lemma.

This allows to formulate the following theorem.

Theorem 3.27. For fixed s, t, u ∈ N0 and 0 < β < 1, any (s, t, u)D-correcting code C ⊆ XL
M

satisfies

|C| ≤
(

2L

M−s−t

)(
2L−u

t

)(
M
s

)(
M−s

t

)(
L/2
u

)t (1 + o(1))

when M →∞ with M = 2βL. The redundancy is thus at least

r(C) ≥ sL+ tu logL− log(s!u!t) + o(1).

Proof. We abbreviate by B(S) ≜ {S ′ ∈ BS(S, s, t, u) : |S ′ ∩ΣL
2 | = M − s− t, |S ′ ∩ΣL−u

2 | = t} the
set of possible received words that consist of M − s− t sequences of length L and t sequences of
length L− u. Denote by Xr ⊆ XL

M , the set of all S ∈ XL
M , which contain more than M − y(M)

sequences x ∈ ΣL
2 with ||x|| ≥ L/2−ρ(L), where we choose y(M) = M/ logM and ρ(L) =

√
L lnL.

Further, let Xe ⊆ XL
M be all sets S ∈ XL

M that contain an u-deletion-correcting code Y ⊆ S of size
|Y| > M − y(M) and let X = Xr ∩ Xe. The remaining sets are comprised in X c = XL

M \ X . Since
X and X c partition XL

M , every (s, t, u)D-correcting code C ⊆ XL
M satisfies

|C| = |C ∩ X |+ |C ∩ X c| ≤

∣∣∣∣ ⋃
S∈X

B(S)
∣∣∣∣

min
S∈X
|B(S)|

+ |X c|.

The number of received sets after a loss of exactly s sequences and t sequences with exactly u
deletions each is at most ∣∣∣∣∣ ⋃

S∈X
B(S)

∣∣∣∣∣ ≤
(

2L

M − s− t

)(
2L−u

t

)
,

as each received set consists of M − s− t error-free sequences and t sequences of length L− u.
Each S ∈ X contains less than y(M) sequences, which do not belong to the u-deletion-correcting
code Y and less than y(M) (possibly different) sequences with ||x|| < L/2− ρ(L). Thus, at least
M − 2y(M) sequences form an u-deletion-correcting code and satisfy ||x|| ≥ L/2− ρ(L) and by
Lemma 3.26, we have

|B(S)| ≥
(
M − 2y(M)

s

)(
M − 2y(M)− s)

t

)(
L/2− ρ(L)− u

u

)t
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for each S ∈ X . The number of remaining sets S /∈ X is |X c| = |XL
M \ X | ≤ |XL

M \ Xr|+ |XL
M \ Xe|.

Each such set in XL
M \ Xr contains at least y(M) sequences with ||x|| < L/2 − ρ(L) and each

set in XL
M \ Xe does not contain an u-deletion-correcting code of size more than M − y(M). By

Lemma 3.25, we have that

|XL
M \ Xr| ≤

(
2L

M − y(M)

)(
2L/L2

y(M)

)
,

as each S ∈ XL
M \Xr can be constructed by choosing y(M) sequences to have less than L/2− ρ(L)

runs and the remaining sequences are chosen arbitrarily. Further, using Lemma 3.22, it follows
that

|XL
M \ Xe| ≤

(
2L

M − y(M)

)(
(M − y(M))V D(u)

y(M)

)
,

where V D(u) = maxx∈ΣL
2
|{y ∈ ΣL

2 : BD(x, u)(x) ∩BD(y, u) ̸= ∅}|. It follows that the size of any

(s, t, u)D-correcting code C ⊆ XL
M is at most

|C| ≤
(

2L

M−s−t

)(
2L−u

t

)(
M−2y(M)

s

)(
M−2y(M)−s

t

)(
L/2−ρ(L)−u

u

)t + ( 2L

M − y(M)

)((
2L/L2

y(M)

)
+

(
(M − y(M))V D(u)

y(M)

))

=

(
2L

M−s−t

)(
2L−u

t

)(
M−2y(M)

s

)(
M−2y(M)−s

t

)(
L/2−ρ(L)−u

u

)t (1 + ∆r +∆c),

where ∆r and ∆c are defined implicitly by the above equation. We will show now that ∆r → 0
for M → ∞. First, by an application of Lemma A.2 we find that log

(
M−2y(M)

s

)
= O(L),

log
(
M−2y(M)−s

t

)
= O(L), log

(
2L−u

t

)
= O(L), and log

(
L/2−ρ(L)−u

u

)t
= O(logL). It follows that

log∆r = log

(2L/L2

y(M)

)(
2L

M−y(M)

)(
2L

M−s−t

) +O(L).

An application of Lemma A.6 with z(L) = L2 then implies that

log∆r ≤ −
M

logM
log logM +O

(
M

logM

)
.

Hence, ∆r → 0 for M →∞. We now turn to ∆c. First, note that V D(u) ≤
(
L
u

)
SI(L−u, u), which

can be explained as follows. For any x ∈ ΣL
2 an arbitrary y ∈ ΣL

2 with BD(x, u) ∩BD(y, u) ̸= ∅
can be constructed from x by removing u symbols from x and inserting u symbols in the result.
Together with the trivial fact that SD(x, u) ≤

(
L
u

)
, the statement follows. Analogous to the proof

of Theorem 3.23, it can then be shown that ∆c → 0 for M →∞. We obtain for the maximum
size of a (s, t, u)D-correcting code,

|C| ≤
(

2L

M−s−t

)(
2L−u

t

)(
M
s

)(
M−s

t

)(
L/2
u

)t (1 + o(1)).

The redundancy is consequently at least

r(C) = log

(
2L

M

)
− log |C| ≥ log

(
2L

M

)(
M
s

)(
M−s

t

)(
L/2
u

)t(
2L

M−s−t

)(
2L−u

t

) + o(1) = sL+ tu logL− log(s!u!t) + o(1).
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3.4 Sphere-Packing Lower Bounds

The result of Theorem 3.27 is particularly interesting when compared with Theorem 3.23,
which depicts the case of substitution errors inside the sequences. It can be seen that correcting
substitutions requires t logM − log t! more bits of redundancy as compared to insertion or deletion
errors only. While this seems surprising, there is a practical reason for this phenomena. For
the case of only insertion or only deletion errors, it is directly possible to identify erroneous
sequences, by checking their length to be different from L. This is not possible for substitution
errors, and erroneous sequences can be confused with correct sequences, which means that
additional redundancy is required for detecting the erroneous sequences. In fact, we will show in
Construction 3.50, how to constructively exploit the identification of erroneous sequences for the
case of (0, 1, 1)D deletion errors and obtain a code that asymptotically achieves the bound from
Theorem 3.27. In the following we derive a sphere packing bound for the case when the number
of erroneous sequences scales with M .

Theorem 3.28. For fixed s, u ∈ N0 and fixed 0 < β < 1, any (s,M − s, u)D-correcting code
C ⊆ XL

M satisfies

r(C) ≥Mu logL+O(M),

when M →∞ with M = 2βL.

Proof. The proof is similar to that of Theorem 3.27 and we use the same notation of received
words B(S) ≜ {S ′ ∈ BS(S, s,M − s, u) : |S ′ ∩ ΣL

2 | = 0, |S ′ ∩ ΣL−u
2 | = M − s} with no sequences

of length L and with M−s sequences of length L−u. Further, we adopt the notation X = Xr∩Xe

for sets that contain an u-deletion-correcting code of size |Y| > M − y(M) and more than
M − y(M) sequences with at least ||x|| ≥ L/2 − ρ(L) runs, where y(M) = M/ log logM and

ρ(L) =
√
L/2 lnL log2 L. With Lemma 3.26, it follows

|B(S)| ≥
(
M − 2y(M)

s

)(
L/2− ρ(L)− u

u

)M−2y(M)−s

for all S ∈ X . By the same sphere packing argument as in Theorem 3.27, it follows that the size
of any (s, t, u)D-correcting code C ⊆ XL

M is at most

|C| ≤

(
2L

2y(M)

)(
2L−u

M−2y(M)−s

)
(
M−2y(M)

s

)(
L/2−ρ(L)−u

u

)M−2y(M)−s
(1 + ∆r +∆c),

where ∆r and ∆c are given by

∆r =

(
M−2y(M)

s

)(
L/2−ρ(L)−u

u

)M−y(M)−s(2L/Llog2 L

y(M)

)(
2L

M−y(M)

)(
2L

2y(M)

)(
2L−u

M−2y(M)−s

) ,

∆c =

(
M−2y(M)

s

)(
L/2−ρ(L)−u

u

)M−y(M)−s(M−y(M)V D(u)
y(M)

)(
2L

M−y(M)

)(
2L

2y(M)

)(
2L−u

M−2y(M)−s

) .

We will show now that ∆r → 0 and ∆c → 0 for M → ∞. By Lemma A.2 it is immediate that
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log
(
M−2y(M)

s

)
= O(M) and we obtain

log∆r ≤ log

(
L/2
u

)M(2L/Llog2 L

y(M)

)(
2L

M−y(M)

)(
2L

2y(M)

)(
2L−u

M−2y(M)−s

) +O(M) = log

(2L/Llog2 L

y(M)

)(
2L

M−y(M)

)(
2L

2y(M)

)(
2L−u

M−2y(M)−s

) +Mu logL+O(M)

(a)

≤ log

(2L/Llog2 L

y(M)

)(
2L

M−y(M)

)(
2L

M−s

) +Mu logL+O(M)
(b)

≤ −M log3 L

log(βL)
+O(M logL)

where for inequality (a) we used that

log

(
2L

M−s

)(
2L

2y(M)

)(
2L−u

M−2y(M)−s

) = O(M)

and applied Lemma A.6 in inequality (b). Hence, ∆r → 0 for M →∞. Analogous to the proof of
Theorem 3.24, it can be shown that ∆c → 0 for M →∞. We obtain for the maximum size of a
(s,M − s, u)D-correcting code

|C| ≤

(
2L

2y(M)

)(
2L−u

M−2y(M)−s

)
(
M
s

)(
L/2−ρ(L)−u

u

)M−y(M)−s
(1 + o(1)).

The redundancy is consequently at least

r(C) ≥ log

(
2L

M

)(
M
s

)(
L/2−ρ(L)−u

u

)M−y(M)−s(
2L

2y(M)

)(
2L−u

M−2y(M)−s

) + o(1) ≥Mu logL+O(M).

3.5 Code Constructions over Sets of DNA Sequences

In this section we will present several different code constructions that will be suitable for different
error types and for different parameter regimes. First, in Sections 3.5.1 and 3.5.2 we start by
presenting constructions that use indices to combat the loss of ordering and then employing an
outer maximum-distance-separable (MDS) code whose symbols are the DNA sequences. Such
schemes are particularly suitable for the case when there are many errors per sequence, as,
independently of the number of errors occurring in one sequence, it only accounts for a single
error inside the MDS code. We proceed by constructing codes using a binary constant-weight
representation of sets in Section 3.5.3. This construction comes at the advantage of improved
redundancy due to avoiding explicit indexing at the cost of increased complexity. We then proceed
with concatenated and tensor-product code constructions, achieving optimal (up to lower order
terms) redundancy in Sections 3.5.4 and 3.5.5. A summary of the redundancy achieved by the
code constructions in this section can be found in Table 3.2.
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3.5 Code Constructions over Sets of DNA Sequences

Table 3.2: Redundancies achieved by the construction presented in this chapter. Low order terms
are omitted.

Error corr. Construction Sphere packing bound

(s, t, •)L

M log e + (s+ 2t)(L− logM) [Const. 3.30]

(s+ t)L+ t logM [Cor. 3.18]

(1−c)
2 M c logM

[Const. 3.33]
+(s+ 2t)M1−c (L− logM)

(s+ 2t)L [Const. 3.38]

(0,M, 1)D M logL [Const. 3.44] M logL [Thm. 3.28]

(0,M, u)S Mu logL [Const. 3.47] Mu logL [Thm. 3.24]

(0, 1, 1)D logL [Const. 3.50] logL [Thm. 3.27]

3.5.1 Index-Based Construction using MDS Codes

We start by presenting code constructions that use an MDS code5 of length M over the sequences.
That is, each sequence xi is a symbol of the MDS codeword. In order to restore the ordering
information of the sequences, or, equivalently, the MDS codeword symbols at the receiver, we
prepend an index to each sequence that holds the position of the sequence in the codeword.

The following function, which collects all indices of a set of sequences, will be useful for our
constructions that are based on indexing.

Definition 3.29. For any set S ⊆ ΣL
2 we define

I(S) =
⋃
x∈S
{pref⌈logM⌉(x)}

to be the set of indices of the sequences in A.

The following construction is based on adding an index in front of all sequences xi and using a
Reed-Solomon code, or more generally an MDS code, over the M sequences for error correction.
For all M and k, where k ≤M we denote by MDS[M,k] an MDS code over some field of size at
least M − 1. We do not explicitly specify the field over which the code is defined as it will be
clear from the context.

In the following Construction 3.30, the sequences xi = (I(i),ui) of each codeword set are
constructed by writing a binary representation of the index, I(i), of length ⌈logM⌉ in the first

5While the construction works in principle with any MDS code, in practice one would employ a Reed-Solomon code
for which many different efficient decoding algorithms are known. For a background on MDS and in particular
Reed-Solomon codes, we refer the reader to [Rot06, Ch. 5 and 11].
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Chapter 3 Zero-Error Codes for the Combinatorial DNA Storage Channel

part of each sequence. Then, the remaining part ui is viewed as a symbol over the finite field
F2L−⌈logM⌉ , and (u1, . . . ,uM ) will form a codeword in a MDS code.6

Construction 3.30. For all M,L, and a positive integer δ, let C1(M,L, δ) be the code defined by

CMDS(M,L, δ) = {S ∈ XL
M : xi = (I(i),ui), (u1, . . . ,uM ) ∈ MDS[M,M − δ]}.

This code provides a direct construction to correct a loss of sequences and erroneous sequences
with an arbitrary amount of errors each. The error correction capability for several types of errors
is summarized in the following statement.

Proposition 3.31. For all M,L, δ, the code CMDS(M,L, δ) is

• (s, t, •)L-correcting for all s+ 2t ≤ δ,

• (s, t, •)I-correcting for all s+ t ≤ δ,

• (s, t, •)D-correcting for all s+ t ≤ δ.

Proof. Let S ∈ CMDS(M,L, δ) denote the transmitted set and S ′ be the received set after a loss
of sequences and errors. We will prove the lemma by presenting a decoding algorithm and start
with proving the lemma for the case of arbitrary edit errors. According to Definition 3.3, we
write SC,SL,SE as the sets of error-free, lost, and erroneous sequences, and S ′E are the erroneous
outcomes of the sequences in SE. First, we observe that if we can recover the MDS codeword
(u1,u2, . . . ,uM ), we can also recover S by prepending the index I(i) in front of each ui. Given
S ′, the decoder creates the estimate (u′

1,u
′
2, . . . ,u

′
M ) by declaring all positions i with

|{x′ ∈ S ′ : pref⌈logM⌉(x
′) = I(i)}| ≠ 1,

i.e., for which there is not exactly one index in S ′, as erasures. For the remaining positions i
there exists exactly one x′ ∈ S ′ with x′ = (I(i),u′

i) and the corresponding symbols u′
i are filled

as symbols into the MDS codeword. We will show that the number of erasures s′ and the number
of errors t′ in (u′

1,u
′
2, . . . ,u

′
M ) satisfy s′ + 2t′ ≤ δ by the following consideration. Intuitively,

each lost sequence accounts for an erasure and each erroneous sequence either accounts for one
error, if its erroneous index is not present in the received set yet or for at most two erasures, if
its index agrees with one of the indices present in the set. We will elaborate on and rigorously
prove this intuition in the following. Recall that according to Definition 3.29, I(SC), I(SL), and
I(S ′E) are the sets of indices of the correctly received sequences, lost sequences, and erroneous
sequences, respectively. Then the set of erroneous positions T ′7 in (u′

1,u
′
2, . . . ,u

′
M ) is a subset

T ′ ⊆ I(S ′E) \ I(SC), as the erroneous sequences that have an index in I(SC) result in erasures.
Further, the set of positions with erasures E ′ is a subset E ′ ⊆ I(SL) ∪ I(SE) ∪ I(S ′E). Using that
T ′ and E ′ have to be distinct by definition, it follows that

s′ + 2t′ = |E ′|+ 2|T ′| = |E ′ ∪ T ′|+ |T ′| ≤ |I(SL) ∪ I(SE) ∪ I(S ′E)|+ |I(S ′E) \ I(SC)|.
6We assume that M ≤

√
2L or, equivalently, β ≤ 1

2
, in this section to guarantee the existence of the MDS code

[Rot06, Ch. 11]. However, the case M >
√
2L can always be realized by employing non-MDS codes.

7Although the elements in T ′ are binary vectors of length at most ⌈logM⌉, we will treat them as their corresponding
decimal integer numbers, according to the mapping I(i), in the sequel.
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3.5 Code Constructions over Sets of DNA Sequences

We now make use of the fact that SE and SL are distinct by definition and we arrive at

s′ + 2t′ ≤ |I(SL)|+ |I(SE)|+ |I(S ′E)| − |I(SE) ∩ I(S ′E)| − |I(SL) ∩ I(S ′E)|+ |I(S ′E) \ I(SC)|
= s+ 2t− |I(SE) ∩ I(S ′E)| − |I(SL) ∩ I(S ′E)|+ |I(S ′E) ∩ (I(SL) ∪ I(SE))| = s+ 2t ≤ δ.

The correction capability then follows from employing any standard unique erasure-error decoding
algorithm [LC04, Ch. 7.7] on the estimate (u′

1,u
′
2, . . . ,u

′
M ).

For the case of only insertion (I) and only deletion (D) errors, it is possible to identify the
erroneous sequences by checking their length to be larger (respectively smaller) than L. If these
sequences are discarded, there are in total s+ t erasures inside the MDS codeword, which can be
corrected, if s+ t ≤ δ.

For the practically important case of a loss of sequences and combinations of substitution and
deletion errors, CMDS(M,L, δ) can correct all errors, if s+ 2tS + tD ≤ δ, where tS is the number of
sequences suffering from substitution errors only and tD is the number of sequences with deletion
errors. The same also holds for combinations of substitution and insertion errors. However, this
is not true for combinations of substitutions, insertions and deletions as a sequence that contains
insertions and deletions might have length exactly L and therefore cannot be erased. In this case,
as elaborated in the proof, s+2t ≤ δ has to hold. More generally, the MDS codeword requires two
redundancy symbols to correct erroneous sequences, which have length exactly L, and requires
only a single redundancy symbol for sequences, which have a length that is different from L, as
these can be detected as erroneous and thus they can be erased.

The redundancy of Construction 3.30 is stated in the following theorem.

Theorem 3.32. For all M,L, δ, the redundancy of the code CMDS(M,L, δ) is

r(CMDS(M,L, δ)) = r(ILM ) + δ(L− ⌈logM⌉).

Proof. First, indexing the sequences requires a redundancy of r(ILM ), which is derived in Lemma 4.3
below. Second, the MDS code has δ redundant symbols over a field of size 2L−⌈logM⌉, which
corresponds to a total of δ(L− ⌈logM⌉) additional redundancy bits.

While the redundancy of Construction 3.30 can be large, especially when M ≫ L, it provides
some very useful features. First, it is possible to efficiently encode and decode this code using
standard encoders and decoders for MDS codes. Second, it is not necessary to design the code
for a specific number of errors s and t, but rather their sum s+ 2t, which allows for a flexible
decoding procedure.

3.5.2 Construction with Shortened Indices and MDS Codes

Construction 3.30, presented in the previous section, uses indexing and is beneficial for its
simplicity in the encoding and decoding procedures and flexibility in the types of errors that
occur. However, especially for small δ the redundancy is away from the sphere-packing lower
bound in Corollary 3.18 by a term that scales linearly in M . This is due to the use of an index,
which has by itself a redundancy of roughly M log e as shown in Lemma 4.3. We therefore will
now propose a construction that uses less bits for indexing and thus allocates multiple sequences
with the same index. This reduces the redundancy required for indexing and allows a trade-off
in redundancy with respect to L and M , as we will show in the following. To start with, we
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define the shortened indices Ic(i) ∈ Σc logM
2 to be the binary representation of ⌊ i−1

2(1−c)M ⌋, which
has length c logM . Note that by this definition I1(i) = I(i). To simplify notation, we assume in
the sequel that c logM is integer.

Construction 3.33. For 1 ≤ i ≤M c, abbreviate by the set of distinct sequences with the same
index Ic(i), where uj ∈ ΣL−c logM

2 . For δ ≥ 0, let CSIMDS(M,L, c, δ) be the code defined by

CSIMDS(M,L, c, δ) = {S ∈ XL
M :xi = (Ic(i),ui), (U1, . . . ,UMc) ∈ MDS[M c,M c − δ]8,

Ui = {u(i−1)M1−c+1, . . . ,uiM1−c}}.

To guarantee existence of the MDS code, we require M c ≤
(
2LM−c

M1−c

)
. For M = 2βL, for example

c ≤ 1 + (log 1−β
β )/(βL) is sufficient.

Note that Ui = {u(i−1)M1−c+1, . . . ,uiM1−c} comprises all vectors that share the same shortened
index. In total, there are M c groups of sequences which use the same index and each group
contains M1−c sequences. For c = 1 this construction is equal to the one presented in the previous
section. The error-correction capability is summarized in the following proposition.

Proposition 3.34. For all M,L, δ, the code CSIMDS(M,L, c, δ) is

• (s, t, •)L-correcting for all s+ 2t ≤ δ,

• (s, t, •)I-correcting for all s+ t ≤ δ,

• (s, t, •)D-correcting for all s+ t ≤ δ.

Proof. The proof follows the same idea as that for Proposition 3.31. We will show that the
MDS codeword U = (U1,U2, . . . ,UMc) can be recovered from U ′ = (U ′

1,U ′
2, . . . ,U ′

Mc), where
U ′
i = {suffL−c logM (x′) : x′ ∈ S ′, prefc logM (x′) = Ic(i)} collects all sequences in S ′ which have the

same index i. Given S ′, we create the received estimate word U ′ by declaring all positions i with
|U ′

i | ≠ M1−c as erasures. The remaining positions in U ′ are filled with the corresponding symbols
U ′
i . Proving that the number of erasures s′ and the number of errors t′ in U ′ satisfy s′ + 2t′ ≤ δ is

completely analogous to Proposition 3.31 and is omitted for brevity.
For the case of only insertion (I) and only deletion (D) errors, it is possible to identify the

erroneous groups by checking the length of the respective sequences to be larger (respectively
smaller) than L. If these sequences are discarded, which results in erasures in the corresponding
positions, there are in total s+ t erasures inside the MDS codeword. These can be corrected by a
standard erasure correction decoding algorithm, if s+ t ≤ δ.

The redundancy of Construction 3.33 is stated in the following theorem.

Theorem 3.35. The redundancy of Construction 3.33 is given by

r(CSIMDS(M,L, c, δ)) = log

(
2L

M

)
− (M c − δ) log

(
2LM−c

M1−c

)
.

8We treat each set Ui as an element of a field of size
(
2LM−c

M1−c

)
and for simplicity we assume that this number is

a prime power such that the finite field exists. For the case when this size is not exactly a prime power, it is
possible to use a slightly smaller field and restrict the choices for the sequences inside Ui accordingly, causing
only a negligible loss in redundancy.
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For fixed 0 < c < 1, δ ∈ N0 and 0 < β < 1, the redundancy of CSIMDS(M,L, c, δ) is asymptotically

r(CSIMDS(M,L, c, δ)) =
(1− c)

2
M c logM +

log 2π

2
M c + δM1−c (L− logM + log e)

+ o(M c +M1−c),

when M →∞ with M = 2βL.

Proof. The cardinality of Construction 3.33 can be computed as follows. Each group Ui consists of
M1−c unordered, distinct sequences, which share the same index Ic(i). In total, there are M c − δ
information groups, since δ groups are redundancy symbols of the MDS codeword. Therefore, the
redundancy is

r(CSIMDS(M,L, c, δ)) = log

(
2L

M

)
− log

(
2LM−c

M1−c

)Mc−δ

.

Applying Stirling’s approximation [Rob55] onto the binomial coefficients yields

r(CSIMDS(M,L, c, δ)) = log

(
2L

M

)
− (M c − δ) log

(
2LM−c

M1−c

)
=

1− c

2
M c logM +

M c − 1

2
log

(
1− M

2L

)
− γ2M

c + γ1

+ δ

(
M1−cL−M1−c logM − 1− c

2
logM −

(
2LM−c −M1−c +

1

2

)
log

(
1− M

2L

)
+ γ2

)
,

where γ1 = − log
√
2π + o(1) and γ2 = − log

√
2π + o(1), when c < 1. Note that it can be verified

that for c = 1, γ2 has a different asymptotic behavior, i.e., γ2 = − log e+o(1). Therefore, for c = 1,
the expression for r(C3(M,L, c, δ)) yields the same redundancy as in Theorem 3.32. Employing
Lemma A.1 onto the two logarithmic terms yields

r(CSIMDS(M,L, c, δ)) =
1− c

2
M c logM +

log 2π

2
M c + δM1−c (L− logM + log e)

+ o(M c +M1−c).

Note that the last summand in the asymptotic expression for CSIMDS(M,L, c, δ) in Theorem 3.35
quantifies the redundancy from the MDS construction, since it is multiplied by δ, the number of
redundant symbols of the MDS code. The two remaining terms therefore quantify the redundancy
required for indexing. This shows that, asymptotically, for c > 0.5 the redundancy needed for
indexing dominates, as the terms for indexing scale as M c and the term for the MDS construction
scales as M1−c and for c < 0.5 the redundancy from the MDS construction dominates the
redundancy of the overall construction.

3.5.3 Construction of Set Codes with Constant-Weight Codes

We continue with a construction that uses the fact that a set can be represented by a binary
indicator vector. Employing constant-weight error-correcting codes, we will then construct a code
that efficiently corrects errors within the DNA sequences. To this end, we impose an ordering
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(e.g., lexicographic) onto the sequences in ΣL
2 . Thus, every data set S ∈ XL

M can be represented
by a binary vector v(S) of length 2L, where each non-zero entry in v(S) indicates that a specific
sequence is contained in the set S. The set of possible data sets XL

M can therefore be represented9

by constant-weight binary vectors of length 2L

VLM = {v ∈ {0, 1}2L : wtH(v) = M},

where wtH(v) denotes the Hamming weight of v, i.e., the number of non-zero entries inside the
vector v. That is, the mapping v defines a bijection between XL

M and VLM and thus v−1 is
well-defined. Using this representation, a loss of a sequence x ∈ S corresponds to an asymmetric
1→ 0 error inside v(S) at the position corresponding to x. Substitution errors inside a sequence
x ∈ S translate a single 1→ 0 at the corresponding position of the original sequence x, and a
single 0→ 1 error at the position of its erroneous outcome x′. In case, the erroneous outcome
x′ is already present in S ′, the 0 → 1 error is omitted and there is only a single asymmetric
1→ 0 error at the position of the original sequence x, similar to a loss of a sequence. Note that
the combination of a 1→ 0 and 0→ 1 error is sometimes called an error in the Johnson graph.
For codes in the Johnson graph, the reader is referred to, e.g., [Bro+90; Joh72]. We start by
presenting an example about this new representation.

Example 3.36. Consider the following M = 3 stored sequences S = {(001), (010), (110)}, each of
length L = 3. We choose v(S) to map each sequence x ∈ S to its decimal equivalent by standard
base conversion and let v(S) be non-zero at exactly these indices. Hence, e.g., the sequence (110)
is mapped to 1 · 22 + 1 · 21 + 0 · 20 = 6 and thus v(S) will be non-zero at index 7. Note that we
additionally add 1, since we index vectors starting by 1. Therefore, v(S) = (01100010). Assume
now, the set S is transmitted over a (1, 1, 2)S channel, resulting in S ′ = {(001), (111)}, where
the sequence (110) was lost and the sequence (010) has been perturbed by two substitution errors.
The corresponding binary representation is v(S ′) = (01000001), where there was a single 1→ 0
at position 7 due to the loss of the sequence (110) and 1 → 0 and 0 → 1 errors at positions 3,
respectively 8, since the sequence (010) was distorted to the sequence (111).

With this principle in mind, we define a code that can correct asymmetric errors and errors in
the Johnson graph.

Definition 3.37. For all M,L and positive integers s, t, we define VCW(M,L, s, t) ⊆ VLM to be a
code of length 2L that consists of codewords with constant Hamming weight M , which corrects s
asymmetric 1→ 0 errors and t errors in the Johnson graph.

With such a code VCW(M,L, s, t) ⊆ VLM at hand that can correct asymmetric errors and errors
in the Johnson graph, we can construct a code for the DNA storage channel.

Construction 3.38. For all M,L, s, and t we define the following code

CCW(M,L, s, t) = {S ∈ XL
M : v(S) ∈ VCW(M,L, s, t)}.

By this construction, given a constant-weight code VCW(M,L, s, t), we construct the DNA stor-
age code C2(M,L, s, t) by mapping each c ∈ VCW(M,L, s, t) to its corresponding set S = v−1(c).
Note that this mapping can be efficiently implemented, by, e.g., a decimal to binary mapping of
the non-zero positions in c, as illustrated in Example 3.36. The correctness of the construction is
established in the following statement.

9A similar representation has been used as a proof technique in [Hec+17].
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Proposition 3.39. For all M,L and positive integers s, t, the code CCW(M,L, s, t) is an (s, t, •)L-
correcting code.

Proof. Denote by S ′ the received set after a loss of at most s sequences and errors in at most t
sequences. Let s′ be the number of asymmetric errors and t′ be the number of errors in the Johnson
graph that occurred in v(S). Clearly, s′ + t′ ≤ s+ t and t′ ≤ t. Note that s′ = M − wtH(v(S ′))
is detectable by the decoder. If s′ ≤ s, then the decoder can directly decode the loss of s′ ≤ s
sequences and t′ ≤ t errors in the Johnson graph. If s′ > s, the decoder adds s′ − s (arbitrarily
placed) ones to v(S ′), resulting in exactly s asymmetric errors and at most t′ + s′ − s ≤ t errors
in the Johnson graph.

To obtain a code based on Construction 3.38, we use the fact that an asymmetric error can be
represented by a single substitution error and an error in the Johnson graph can be represented
by two substitution errors. Having a code with an appropriate minimum Hamming distance, it is
therefore possible to employ standard codes, which will be done in the following theorem.

Theorem 3.40. There exists a construction of the code CCW(M,L, s, t) with redundancy at most

r(CCW(M,L, s, t)) ≤ (s+ 2t)L.

Proof. By Proposition 3.39, it is sufficient to find a sufficiently large M -constant-weight code which
can correct s+ 2t substitution errors. This is since each loss in S causes an 1→ 0 asymmetric
error in v(S) and can be represented as a single substitution error and every error in a sequence
in S will cause at most one 1→ 0 and one 0→ 1 error in v(S) and thus can be represented by
two substitution errors. Next, it is known, that there exists a τ -substitution-correcting binary
alternant code of length 2L and dimension 2L − τL, cf. [Rot06, Ch. 5.5]. Due to the pigeonhole
principle and since the alternant code has at most 2τL cosets, there is one coset of the alternant

code that contains at least
(
2L

M

)/
2τL words with constant weight M , and therefore there exists a

code C2(M,L, s, t) of cardinality at least
(
2L

M

)/
2τL. With this alternant code, the redundancy of

Construction 3.38 is therefore at most

r(CCW(M,L, s, t)) ≤ log

(
2L

M

)
− log

(
2L

M

)
2(s+2t)L

= (s+ 2t)L.

Using τ = s+ 2t yields the theorem.

3.5.4 Concatenated Constructions

We now proceed with a discussion of concatenating codes to obtain codes for the combinatorial
DNA storage channel. We further prove error-correction capabilities of the concatenation based
on the properties of the two component codes. Assume we are given two codes, an outer code
Co ⊆ XLo

M , where Lo < L, and an inner code Ci ⊆ ΣL
2 of dimension Lo and length L. Notably the

outer code is a code over sets and the inner code is a code over vectors. We then concatenate the
two codes by encoding each sequence xo ∈ So of a codeword So ∈ Co of the outer code with the
inner code, resulting in sequences x ∈ ΣL

2 of length L such that the resulting set S ∈ XL
M . This

procedure is formalized in the following construction.
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Construction 3.41. For all M,L, Lo < L and positive integers s, t, let Co ⊆ XLo
M be an outer code

and Ci ⊆ ΣL
2 be a standard block-code of dimension Lo and length L. Further, enc(·) : ΣLo

2 7→ ΣL
2

is an encoder of the code Ci. We define the concatenated construction as

CCon(M,L, Ci, Co) =

{
S ∈ XL

M : S =
⋃

xo∈So

enc(xo),So ∈ Co

}
.

As outer code Co it is in principle possible to use any set code over XLo
M . Using the proposed

Construction 3.30, 3.33, or 3.38 it is possible to enhance the inner code to additionally correct a
loss of sequences. This is done as follows.

Proposition 3.42. Let Co ⊆ XLo
M be an (s, 0, 0)-correcting code and Ci ⊆ ΣL

2 be a block-code that
can correct u errors of type T. Then, CCon(M,L, Ci, Co) is a (s,M − s, u)T-correcting code.

Proof. The proof is immediate, since the inner code can correct all errors of type T inside the
sequences. After correcting these errors, the lost sequences can be corrected using the outer
code.

Note that such concatenated constructions are highly relevant in practice, as there might be a
few sequences, which experienced more than u errors, which can then be corrected by the outer
code, since Construction 3.30, 3.33, and 3.38 can correct both a loss of sequences and errors in
sequences, as long as s + 2t ≤ δ. Such a construction has been used for example in [Gra+15],
where a Reed-Solomon code has been used as inner code and an indexed Reed-Solomon code has
been used as outer code.

We now present two constructions that use the trivial outer code Co = XLo
M , which is a (0, 0, 0)-

correcting code. The first construction is applicable to single insertion or deletion errors and uses
the well-known Varshamov-Tenengolt’s (VT) [VT65] code as inner code. The VT code is defined
as all binary vectors of length L which admit the same checksum a, that is defined as follows.

Definition 3.43. The Varshamov-Tenegolts checksum sVT(x) of x ∈ ΣL
2 is defined by

sVT(x) =
L∑
i=1

ixi.

It is well-known [Lev66] that the knowledge of sVT(x) modulus L+1 is sufficient to reconstruct
x from a single insertion or deletion. For a comprehensive survey on VT codes, see [Slo00]. Using
this VT checksum, we propose the following construction, which we will prove to be (0,M, 1)ID-
correcting. That is, the code can correct a single deletion or insertion in every sequence.

Construction 3.44. Let a ∈ N0, with 0 ≤ a ≤ L. Then,

CMID(M,L, a) = {S ∈ XL
M : sVT(xi) ≡ a mod (L+ 1), ∀ 1 ≤ i ≤M}.

Based on this construction we can immediately prove its following correction capabilities.

Proposition 3.45. The code CMID(M,L, a) is n (0,M, 1)ID-correcting code.

Proof. All erroneous sequences can be detected by checking their length to be either L + 1 or
L− 1. If a sequence is erroneous, it can be corrected by decoding in the VT code with checksum a.
Note that two distinct sequences cannot have the same erroneous outcome since they are different
and belong to a single-deletion-correcting code.
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3.5 Code Constructions over Sets of DNA Sequences

By Construction 3.44, all sequences xi have the same checksum a, which allows to correct a
single insertion or a single deletion in each sequence. The redundancy of Construction 3.44 is
computed in the following lemma.

Theorem 3.46. For fixed 0 < β < 1, the redundancy of the code CMID(M,L, 0) satisfies asymp-
totically

r(CMID(M,L, 0)) ≤M log(L+ 1) + o(M),

when M →∞ with M = 2βL.

Proof. It is known [Mar96; Slo00] that the number of binary words x ∈ ΣL
2 that satisfy

sVT(x) = 0 mod (L+ 1) is at least 2L/(L + 1). Each codeword of CMID(M,L, 0) is a subcode
of size M of the VT code {x ∈ ΣL

2 : sVT(x) ≡ 0 mod (L + 1)}. Therefore the redundancy of
Construction 3.44 with a = 0 is at most

r(CMID(M,L, 0)) ≤ log

(
2L

M

)
− log

( 2L

L+1

M

)
≤ML−M log

(
2L

L+ 1
−M

)
(a)

≤ M log(L+ 1) +
M2 log e

2L/(L+ 1)−M
,

where we factored out 2L/(L+1) from the logarithm and used the inequality log(1− x) ≥ −x log e
1−x

for all x < 1 to prove inequality (a). For M = 2βL, 0 < β < 1 the second term is o(M), which
concludes the proof.

Interestingly, as we have shown in Theorem 3.28, the redundancy of this construction is
asymptotically optimal in terms of scaling with the parameters M and L. Note that the proof of
Theorem 3.46 above contains a non-asymptotic expression for the redundancy.

The second construction uses a similar concept and can be used to correct u substitution errors
in each sequence.

Construction 3.47. Let Csub(L, u) ⊆ ΣL
2 be a binary u-substitution-correcting code of length L.

For all L, u, and M ≤ |Csub(L, u)| we define the code

CMS(M,L, u) = {S ∈ XL
M : S ⊆ Csub(L, u)}.

Proposition 3.48. The code CMS(M,L, u) is a (0,M, u)S-correcting code.

The proof is immediate, since every sequence is a codeword of a code that can correct u
substitutions. Using binary alternant codes, it is possible to find a lower bound on the redundancy
of Construction 3.47.

Theorem 3.49. There exists a construction for the code CMS(M,L, u) with fixed u ∈ N0 and
0 < β < 1 which has an asymptotic redundancy of at most

r(CMS(M,L, u)) ≤Mu⌈logL⌉+ o(M),

when M →∞ with M = 2βL.

61



Chapter 3 Zero-Error Codes for the Combinatorial DNA Storage Channel

Proof. For Csub(L, u) in Construction 3.47 we use a binary u-substitution-correcting alternant
code of length L, which has redundancy at most u⌈logL⌉, cf. [Rot06, Ch. 5.5] and thus obtain a
code CMS(M,L, u) with redundancy at most

r(C7(M,L, u)) ≤ log

(
2L

M

)
− log

(
2L−u⌈logL⌉

M

)
≤ML−M log

(
2L−u⌈logL⌉ −M

)
≤Mu⌈logL⌉+ M2 log e

2L−u⌈logL⌉ −M
,

where we factored out 2L−u⌈logL⌉ from the logarithm and used the inequality log(1− x) ≥ −x log e
1−x

for all x < 1 to prove inequality (a). For M = 2βL, 0 < β < 1 the second term is o(M), which
concludes the proof.

Note that Theorem 3.24 implies that for fixed u this construction is close to optimality.

3.5.5 Tensor-Product Construction for a Single Insertion or Deletion

We now present a construction that is capable of correcting a single insertion or deletion in
the whole set S. The following (0, 1, 1)ID-correcting code is based on VT codes, which have
been introduced in Definition 3.43. Our construction now employs the idea of using a single-
erasure-correcting code over the checksums of all sequences. The insertion or deletion can then be
corrected by first recovering the checksum of the distorted sequence and then using this checksum
to correct the insertion/deletion. Note that this idea is similar to the concept of tensor product
codes [Wol06].

Construction 3.50. For an integer a, with 0 ≤ a ≤ L, the code construction CSID(M,L, a) is
given by

CSID(M,L, a) =

{
S ∈ XL

M :
M∑
i=1

sVT(xi) ≡ a mod (L+ 1)

}
.

Note that the code can be extended to an arbitrary alphabet size q by applying non-binary VT
codes [Ten84].

Proposition 3.51. For all M,L, a, the code CSID(M,L, a) is a (0, 1, 1)ID-correcting code.

Proof. We prove the proposition by presenting an appropriate decoding algorithm. Assume
S ∈ CSID(M,L, a) has been transmitted and S ′ has been received with a single insertion or
deletion in the k-th sequence, for 1 ≤ k ≤ M . After the reading process, the M − 1 error-free
sequences SC can be identified as they have length exactly L. The checksum of the erroneous
sequence xk can therefore be computed by

sVT(xk) = a−
∑
i∈SC

sVT(xi) mod (L+ 1).

The error in xk is corrected by decoding in the VT code with checksum sVT(xk).

The redundancy of Construction 3.50 is established in the following theorem.
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3.6 Conclusion

Theorem 3.52. There exists 0 ≤ a ≤ L such that the redundancy of Construction 3.50 is at most

r(CSID(M,L, a)) ≤ log(L+ 1).

Proof. The codes CSID(M,L, a), 0 ≤ a ≤ L form a partition over XL
M since for each set S ∈ XL

M ,
the sum over the VT checksums of the individual sequences admits precisely one value. Since
there are L+1 distinct values for a, based on the pigeonhole principle there exists 0 ≤ a ≤ L such

that the cardinality of the code CSID(M,L, a) satisfies |CSID(M,L, a)| ≥
(
2L

M

)/
(L+ 1) and thus its

redundancy is at most log(L+ 1).

We have shown in Theorem 3.27 that the redundancy of any (0, 1, 1)ID-correcting code is at least
log(L)+ o(1), and thus Construction 3.50 is asymptotically optimal. Note that a generalization to
t > 1 sequences, each with a single insertion or deletion error, is non-trivial. This is because the
VT checksum of a single erroneous sequence can be retrieved even without knowing the order of
the remaining sequences. However, for multiple sequences this is not necessarily the case anymore,
since standard erasure correcting codes require the knowledge of the ordering of the symbols.
Finally, even when the VT checksums could be retrieved, it is not obvious how to assign the
checksums with the erroneous sequences. We therefore conclude with the remark that this case
remains an interesting open problem for now.

3.6 Conclusion

In this chapter we have introduced a novel combinatorial channel that models the relationship
between synthesized and sequenced strands in DNA-based data storage systems. Upper and lower
bounds on the optimal size of zero-error codes have been derived using Gilbert-Varshamov-type
and sphere-packing arguments. We also proposed several constructions which can be either with
or without indices or a reduced version of the indices. Lastly, we derived several more special
constructions for a specific set of parameters. It has been illustrated that many of the proposed
constructions are close to optimal, such as for the case of substitution, respectively single insertion
or deletion errors inside all of the strands. We further have proposed several constructions that
can cope with combinations of a loss of sequences and errors inside the sequences. By analyzing
the sphere packing bounds and comparing them to our constructions, we have found important
insights about the nature of the DNA storage channel. These include the maybe surprising fact
that for zero-error codes and a fixed number of errors, correcting insertions or deletions requires
less redundancy than correcting substitution errors inside the sequences.

Following our initial publication [Len+18] there appeared several follow-up papers treating
similar channel models. Codes over sets of sequences that can correct a given number of arbitrarily
placed substitutions haven been constructed recently [SRB21]. Another slight adaptation of the
combinatorial channel model has been proposed in [SCSI19], where the sequence-subset distance
has been introduced and analyzed and Singleton-like and Plotkin-like code size upper bounds
have been derived. More recently, Wei and Schwartz [WS21] derived new converse bounds and
proposed several new code constructions for different parameter ranges, using, among others,
novel insights for codes correcting insertions and deletions [SB19].

Despite this progress there remain several interesting open questions on this channel. First,
the case, where the number of errors scales linearly with the sequence numbers and sequence
length has, apart from Corollary 3.18, barely been discussed until now. Second, a construction to
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Chapter 3 Zero-Error Codes for the Combinatorial DNA Storage Channel

combat the fully general case of (s, t, u)T is still to be found. While most cases with s = 0 are
relatively well covered, incorporating error correction against an additional loss of sequences is
challenging. Finally, generalizations of this channel model, such as allowing different number of
errors in different strands or incorporating other error types, could be of interest.
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Chapter 4

Error Correction in Indexed Sets

Several modern storage and communication systems face the particularity that information is
conveyed over several sequences, whose order may be arbitrarily permuted. For example, unless
equipped with specifically designed primers, the sequences in DNA-based data storage are stored
and retrieved in an unordered manner. Similarly, transmitting several information packets over
computer networks can result in permutations of the packets. One efficient and practical way to
combat the loss of ordering of sequences is to prepend an index to each sequences that denotes
the position of the strand in the archive. This approach has been discussed in different settings,
such as codes over multisets [KT18b]. For a probabilistic DNA storage channel [Hec+17; SH21]
over unordered sequences that are perturbed by substitutions, it has been shown that a simple
indexing and error correction scheme over the individual strands is asymptotically rate-optimal.
In the context of random access for DNA-based data storage, robust primers with incorporated
indices have been developed [Yaz+18]. These primers were designed to meet various properties,
such as a large mutual Hamming distance, balanced GC content, and avoiding mutual correlation.

In the sequel we will analyze the approach of indexing sequences in the presence of errors inside
the strands. Note that the employment of indices is not a necessity and the more general setup of
storing an arbitrary set of sequences has been analyzed in Chapter 3. However, the discussion
of index-based schemes is practically important due to its simplicity. We start the discussion
by refining the channel model from Section 3.1 to differentiate between errors in the indices
and in the remaining part of the sequences in Section 4.1. Based on this refinement, we derive
Gilbert-Varshamov (Section 4.2) and sphere-packing bounds (Section 4.3) that provide rigorous
evidence that, for certain channel parameters, correcting errors inside the indices (asymptotically)
requires less redundancy as compared to errors inside the remaining sequence.1 We propose a
new construction in Section 4.4 that efficiently copes with errors in indexed sets. To this end, we
introduce a novel mechanism, called anchoring, and show that it is possible to combat the ordering
loss of sequences using indices that are protected with only a small amount of redundancy. This
allows to use standard coding techniques, such as tensor-product codes to correct errors within
the sequences. We focus here on the case of substitution errors, while insertion and deletion errors
are deferred for future work. As the model defined in this section builds on that from Chapter 3,
we encourage the reader to familiarize with Section 3.1 before reading this chapter.

The results in this chapter have previously been reported in [Len+19b; Len+20d].

1Note that such a statement is not directly transferable to probabilistic channels with random errors or combinatorial
channels, where the number of errors scales linearly with the archive dimension, as shown in [SH19].

65



Chapter 4 Error Correction in Indexed Sets

4.1 Combinatorial DNA Storage Channel with Indexed Sets

Consider the combinatorial DNA storage channel from Section 3.1. We now refine that channel
model to distinguish between errors in different parts of each strand. This is motivated, first, by
the fact that sequencing technologies often report different error rates, depending on the location
inside the sequence and, second, by this distinction, we can analyze the effect of errors depending
on where they appear. To get a suitable model for the transmission of codes using indices, we
particularly distinguish between errors in the first logM symbols2 of each sequence and in the
remaining part. Denoting by I(i) the binary representation of i− 1 of length logM , the set of all
indexed sets is given by

ILM = {S = {(I(1),u1), (I(2),u2), . . . , (I(M),uM )} : ui ∈ ΣL−logM
2 , i ∈ [M ]},

with sequences xi = (I(i),ui) ∈ ΣL
2 . We will call the sets S ∈ ILM indexed sets. Each sequence

in an indexed set consists of two parts. It starts with a prefix I(i) ∈ ΣlogM
2 , also referred to

as index, of length logM and ends with a suffix ui ∈ ΣL−logM
2 . The prefix is a unique binary

representation of the index i and designates the position of this specific sequence in the data set S.
The second part of each sequence, ui ∈ ΣL−logM

2 , is referred to as the data part of a sequence
and can be filled arbitrarily by either user information or redundancy from an error-correcting
code, as illustrated later. Accordingly, we refine the combinatorial channel to distinguish between
errors in the index and suffix as follows. Let S ∈ XL

M be the channel input. Let (SC,SL,SE) form
a partition of the sequences in S with |SL| ≤ s and |SE| ≤ t as in Definition 3.3. Then, for each
erroneous sequence xi ∈ SE the prefix xI

i ≜ pref logM (xi) of length logM is affected by at most u1
errors and the suffix xD

i ≜ suffL−logM (xi) of length L− logM is affected by at most u2 errors of
type T. The received set S ′ is thus obtained by

S ′ =
M⋃
i=1


{xi}, if xi ∈ SC,
∅, if xi ∈ SL,
{(yI

i,y
D
i )}, if xi ∈ SE

,

where yI
i ∈ BT(xI

i, u1) and yD
i ∈ BT(xD

i , u2) are the erroneous outcomes of the prefix and suffix
of xi. With this definition, the (s, t, u1, u2)T channel will refer to the entity which, given an input
set S ∈ XL

M , outputs a received set S ′ resulting from arbitrary SC,SL,SE and yI
i,y

D
i as described

above. This set of all possible channel outputs is denoted by BT(S, s, t, u1, u2), analogous to
Definition 3.3. Note that the erroneous received sequences are not necessarily distinct from each
other or from the error-free sequences and in this case these sequences adjoin and appear as a
single sequence at the receiver. Therefore the number of received sequences |S ′| can be less than
M − s, i.e., M − t− s ≤ |S ′| ≤M . An illustration of the channel is depicted in Fig. 4.1.
We will discuss codes that prepend an index of length logM to each sequence within this

section. The corresponding zero-error codes are defined as follows.

Definition 4.1. A code C ⊆ ILM is called an (s, t, u1, u2)T-correcting indexed code, if it can
correct a loss of s (or fewer) sequences and u1, u2 (or fewer) errors of type T within the prefix and
suffix of each of t (or fewer) sequences, i.e., for any pair S1,S2 ∈ C with S1 ̸= S2, it holds that

BT(S1, s, t, u1, u2) ∩BT(S2, s, t, u1, u2) = ∅.
2Within this section we assume for simplicity that logM is integer. The case of non-integer logM can be dealt
with analogously.
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Figure 4.1: Illustration of the (s, t, u1, u2)T channel model. Out of the M input sequences, t
sequences are perturbed by at most u1 errors of type T in xI

i and at most u2 errors
of type T in xD

i . Out of the remaining sequences, s are lost and not observed in the
received set. In this example s = 1, t = 2.

4.1.1 Relationship to Non-Indexed Codes

The notable differences between Definition 3.5 and 4.1 are that the indexed codes are subsets
of ILM and they are defined over the slightly refined channel model, that distinguishes between
errors in the prefix and suffix of the sequences. By this definition, an indexed-set code is a set
of codewords for which, for each channel output S ′, there exists at most one codeword which
could have resulted in this exact channel output S ′. We distinguish between errors in the index
of sequences and data part of the sequences due to the following reasons. It is observed that
the sequencing error rates at the beginning of DNA strands are lower with several sequencing
technologies [EZ17; HMG19; Org+18]. Second, from a theoretical point of view, errors inside
the indices have a different character than those in the data part, as they do not affect data
directly but hinder the correct identification of the strand order. We will also elaborate that, for a
moderate number of errors, the redundancy required to correct errors in the indices is significantly
smaller than that in the data part of sequences. Finally, the channel model is strongly connected
to the model presented in Section 3.1 as follows.

Proposition 4.2. For any s, t ∈ N0 the following statements hold.

1. Every (s, t, u)T-correcting code is a (s, t, u1, u2)T-correcting code, if u1 + u2 ≤ u.

2. Every (s, t, u1, u2)T-correcting code is a (s, t, u)T-correcting code, if u ≤ min(u1, u2).

Proof. The lemma directly follows from Definitions 3.5 and 4.1.

4.1.2 Redundancy of Indexing

Since each sequence starts with an index of ⌈logM⌉ bits that cannot contain any information, the
maximum number of information bits that can be stored this way is M(L−⌈logM⌉), assuming no
redundancy from error correction. While this solution is attractive for its simplicity, it introduces
already a redundancy, which increases linearly in M , which is stated in the following lemma.
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Lemma 4.3. For fixed 0 < β < 1
2 , the redundancy required for indexing sequences is given by

r(ILM ) = M(⌈logM⌉ − logM + log e)− 1

2
logM + o(1),

when M →∞ with M = 2βL.

Proof. From M = 2βL with 0 < β < 1
2 , we have that M = o(2L) and M = ω(1), when M →∞.

Therefore, we can use Lemma A.3 from Appendix A.1 to approximate the binomial coefficient. In
fact, we use a slightly stronger result obtained from the proof of Lemma A.3 to arrive at

r(ILM ) = log

(
2L

M

)
−M(L− ⌈logM⌉) = M log

e2L

M
− 1

2
log(2πM) +O

(
M2

2L

)
(a)
= M(⌈logM⌉ − logM + log e)− 1

2
log(2πM) + o(1),

where we used that M2

2L
= 2(2β−1)L = o(1), if β < 1

2 .

This means that every construction which uses indexing already incurs a redundancy of at best
roughly M log e bits. Note that this amount can be significant, as the number of sequences M is
usually significantly larger than their length L, as explained in Remark 3.7. However, in terms of
code rate, it has been shown in [Hec+17] that for the case of no errors inside the sequences, the
indexing approach is capacity achieving for a probabilistic version of the DNA storage channel.

4.2 Gilbert-Varshamov Bound for Indexed Codes Under Substitution
Errors

We start with deriving lower bounds on the achievable size of error-correcting indexed-set codes
based on Gilbert-Varshamov sphere covering arguments. Note that we cannot use results from
Section 3.3, as indexed codes are defined as subsets of ILM instead of XL

M , where ILM ⊆ XL
M and

thus involve a larger redundancy. Therefore we now derive Gilbert-Varshamov bounds for the case
when the codes are subsets of ILM . We hereby focus on the case s = 0 and substitution errors. For

convenience, in the following we denote by V T(S, s, t, u1, u2) the set of indexed sets S̃ ∈ ILM which

have intersecting errors ball with a given S ∈ ILM , i.e., BT(S, s, t, u1, u2) ∩BT(S̃, s, t, u1, u2) ̸= ∅.

Theorem 4.4. There exists a (0, t, u1, u2)S-correcting indexed code C ⊆ ILM with cardinality at
least

|C| ≥ 2M(L−logM)(
M
t

)2
(BS(L− logM,u2))2t(t!2 +

t
M−t(B

S(logM,u1) + t)2t)
.

Therefore, for fixed t, u1, u2, 0 < β < 1, there exists a (0, t, u1, u2)S-correcting indexed code C ⊆ ILM
with redundancy at most

r(C) ≤ r(ILM ) + 2t logM + 2tu2 logL− 2t log u2! + o(1),

when M →∞ with M = 2βL.
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Proof. Analogous to Theorem 3.11 it can be shown that there exists a (0, t, u1, u2)S-correcting
indexed code C ⊆ ILM with

|C| · max
S∈IL

M

|V S(S, 0, t, u1, u2)| ≥ |ILM |.

Bounding |V S(S, 0, t, u1, u2)| from above for all S ∈ ILM will be the main task in the fol-
lowing. Abbreviate BI(S) ≜ BS(S, 0, t, u1, u2) ∩ ILM as the set of erroneous sets which are
indexed sets and BN(S) ≜ BI(S) ≜ BS(S, 0, t, u1, u2) \ BI(S) as the remaining possible re-
ceived words. Further distinguish between sets that have an intersection with BI(S), i.e.,
VI(S) ≜ {S̃ ∈ ILM : BI(S) ∩BS(S̃, 0, t, u1, u2) ̸= ∅} and sets which have an intersection with BN(S),
i.e., VN(S) ≜ {S̃ ∈ ILM : BN(S) ∩BS(S̃, 0, t, u1, u2) ̸= ∅}. We first bound |VI(S)| from above. To
begin with, |BI(S)| ≤

(
M
t

)
t!(BS(L− logM,u2))

t, as there are
(
M
t

)
ways to choose the erroneous

sequences SE. For one fixed SE, there are at most t! error patterns for the errors in the indices
that yield indexed sets, as only permutations of the erroneous sequences are potentially possible.
For each such choice there are at most (BS(L − logM,u2))

t ways to distribute the errors in
the data fields of the t erroneous sequences. From each S ′ ∈ BI(S), there are again at most

|BI(S ′)| ways to arrive at a valid set S̃ ∈ ILM and thus |VI(S)| ≤
(
M
t

)2
t!2(BS(L − logM,u2))

2t.
Next we bound |VN(S)| from above. The number of elements in the error ball is at most
|BN(S)| ≤

(
M
t

)
BS(logM,u1)B

S(L− logM,u2), as this is the number of possible error patterns.
Let S ′ ∈ BN(S) and denote by τ ′ the number of indices that are not present in S ′. Then the
number of sets S̃ ∈ ILM with S ′ ∈ BN(S̃) is at most (BS(logM,u1)+ t)t

(
M

t−τ ′

)
(BS(L− logM,u2))

t.
This is because, first, τ ′ sequences must be distorted such that their indices match the missing
indices and there are at most BS(logM,u1) + t candidate sequences in S ′ for each missing index.
Hence, there are are at most (BS(logM,u1) + t)τ

′
possible choices for the errors in the indices

to match to missing sequences. The remaining erroneous sequences can be chosen and distorted
arbitrarily, resulting in at most (BS(logM,u1) + t)t−τ ′

(
M

t−τ ′

)
(BS(L − logM,u2))

t possibilities.

Using τ ′ ≥ 1 for all S ′ ∈ BN(S) and |ILM | = 2M(L−logM) yields the first part of the theorem.
Therefore, there exists a (0, t, u1, u2)S-correcting code C ⊆ ILM with redundancy at most

r(C) = log

(
2L

M

)
− log |C|

(a)

≤ log

(
2L

M

)
2M(L−logM)

+ log

(
M

t

)2

(BS(L, u2))
2t + 2 log t! + o(1)

(b)
= r(ILM ) + 2t logM + 2tu2 logL− 2t log u2! + o(1),

where inequality (a) holds, because t
M−t(B

S(logM,u1) + t)2t = o(1) as M →∞. For equality (b)

we used Lemmas A.2 and A.1 to prove the asymptotic behavior of
(
M
t

)
and BS(L, u2).

The redundancy in Theorem 4.4 is composed of the redundancy required for indexing r(ILM )
and some terms for error correction. Interestingly, for the chosen parameter regime, the terms
depending on the number of errors inside the indices, u1 vanish as M → ∞ and are thus
asymptotically negligible. However, analyzing the non-asymptotic bound of Theorem 4.4, we see
that for the case when t is not fixed, i.e., scales with M the terms depending on u1 will become
more apparent. Summing up, we conclude that for this existential construction, when the number
t of erroneous sequences and the number of errors within the sequences is fixed, the redundancy
required to correct errors inside the indices is asymptotically negligible. We will exhibit a similar
behavior for the case of the converse sphere-packing bound presented in the next section.
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4.3 Sphere Packing Bound for Indexed Codes under Substitution
Errors

We now present a sphere-packing upper bound on the size of an indexed set code C ⊆ ILM . Note
that in principle Theorem 3.23 provides a valid bound even for the case when C ⊆ ILM , however
the bound can be strengthened using the restriction C ⊆ ILM . Further note that in contrast to
Theorem 3.23 we present the results here on the refined channel model presented in Section 4.1.
The main result is as follows.

Theorem 4.5. The cardinality of any (0, t, u1, u2)S-correcting indexed code C ⊆ ILM is at most

|C| ≤ 2M(L−logM)(
M
t

)
(BS(L− logM,u2)− 1)t

.

Therefore, for fixed t, u1 ≥ 0, u2 ≥ 1, 0 < β < 1, the redundancy is at least

r(C) ≥ r(ILM ) + t logM + tu2 log(L− logM)− log(t!u2!
t) + o(1),

when M →∞ with M = 2βL.

Proof. Let C ⊆ ILM be a (0, t, u1, u2)S-correcting indexed code. We consider received sets S ′ that
have not experienced errors in the indices, corresponding to the case that u1 = 0. Therefore all
such erroneous outcomes are again indexed sets, i.e., S ′ ∈ ILM . Since the error balls of any two
codewords in C must be distinct, every code C ⊆ ILM satisfies

|C| ≤
|ILM |

min
S∈IL

M

|BS(S, 0, t, u1, u2) ∩ ILM |

Using this inequality we bound the code size |C| from above. Specifically, for all S ∈ ILM , we
bound the number of erroneous outcomes which are again indexed sets, |BS(S, 0, t, u1, u2) ∩ ILM |,
from below. Distinct elements S ′ ∈ BS(S, 0, t, u1, u2) ∩ ILM can be constructed as follows. For
u1 = 0 the indices of each sequence can be omitted and the stored set can be viewed as a binary
array of M rows and LM columns, where each row corresponds to one sequence. The number of
possible error patterns is therefore

|BS(S, 0, t, u1, u2) ∩ ILM | ≥
(
M

t

)
(BS(L− logM,u2)− 1)t,

as there are
(
M
t

)
ways to choose the erroneous rows and BS(L− logM,u2)− 1 possible non-zero

substitution patterns per sequence. Finally, the case of no errors within the indices is possible,
even when u1 > 0, as there are up to u1 errors inside the indices and thus the above bound also
holds for arbitrary u1 > 0. This concludes the proof.

Note that by the definition of the channel it is possible that errors occur in the index of a
sequence. However considering these errors for the sphere packing bound does not noticeably
improve the bound, as we will illustrate in the following. Let us for simplicity assume that there
has only been one error in the i-th sequence, and compare the two cases, where first, the error is in
the data part, i.e., t = 1, u1 = 0 and u2 = 1, and second, the error is in the index, i.e., t = 1, u1 = 1
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and u2 = 0. In the first case, it is easy to see that a redundancy of at least log(M(L− logM)) is
necessary due to the standard sphere-packing bound on a vector of length M(L− logM). On
the other hand, when the error occurs inside the index of sequence i, resulting in index j, the
receiver will see two sequences with the same index j and no sequence with index i. In this case,
the receiver only has to decide which of the two sequences with index j originates from position i.
As this is merely a binary decision, from a sphere packing point of view, a redundancy of roughly
a single bit is necessary to correct this error. This coincides with the previous observation that
for a small number of erroneous sequences and errors per sequence, errors within the indices of
sequences appear to be less harmful as compared to those inside the data fields.

Remark 4.6. The fact that for certain channel parameters correcting errors in the indices requires
less redundancy than in the data part can be rigorously concretized as follows. Fix t = 1, β = 1

2
and an arbitrary positive integer u. Then, using Construction 3.30 with a Reed-Solomon code
and δ = 1 gives a (0, 1, u, 0)S-correcting indexed code with redundancy r(ILM ) + βL/2.3 This
redundancy is, for large L, smaller than this required for a (0, 1, 0, u)S-correcting indexed code,
which is at least r(ILM ) + βL/2 + u log(L/2)− log(u!) + o(1), by Theorem 4.5. This holds for any
fixed u. However, other parameter regimes might behave differently.

4.4 Anchor-based Codes

Constructing codes that can correct errors from the combinatorial DNA-storage channel, one faces
the following challenge. To begin with, errors that are solely in the data part of the sequences
can be corrected by standard error-correcting schemes, such as tensor-product codes [Wol06],
which we will discuss in more detail later. However, errors in the indices of sequences corrupt
the ordering of the sequences, which hinders the direct employment of tensor-product codes. We
therefore construct a code that first allows us to reconstruct the correct ordering of the sequences
using so called anchors, and then uses a tensor-product code to correct the errors in the data
part of the sequences. As in the previous two sections, we will focus on the case of no losses of
sequences, s = 0, and substitution errors inside the sequences. The anchors are defined as follows.

Definition 4.7. Let ℓ, t, u1, u2 ∈ N0 and a1, . . . ,aM ∈ Σℓ
2 be M vectors of length ℓ with ℓ ≥ logM .

The set of anchor vectors A(ℓ, t, u1, u2) is defined to be

A(ℓ, t, u1, u2) =

(a1, . . . ,aM ) :
ai ∈ Σℓ

2,
∀i, j ∈ [M ] with dH (I(i), I(j)) ≤ 2u1 : dH (ai,aj) > 2u2,
(a1, . . . ,aM ) ∈ MDS[M,M − 2t]

 .

That is, if two indices I(i), I(j) have distance at most 2u1, the corresponding anchors ai,aj have
to be at distance more than 2u2. Further, the equivalents of the vectors a1, . . . ,aM in the finite
field F2ℓ are a codeword of an MDS code with minimum distance 2t+ 1.

3To verify the correctness of this statement, denote by i the index of the erroneous sequence, by j its corrupted
index, and by (u1, . . . ,uM ) the transmitted Reed-Solomon codeword. If ui = uj the two sequences adjoin with
one another and the decoder can reconstruct the original codeword by declaring an erasure at position i. If
ui ̸= uj , the decoder receives two sequences with index j and has to assign them to position i and j. He can
uniquely decide for the correct assignment, due to the following. Denote the code locators of the Reed-Solomon
code at positions i and j by αi and αj . Computing the syndromes, the codeword that is obtained by permuting
ui with uj is only a codeword if αiui+αjuj = αiuj +αjui (the vectors are treated as elements of the finite field
F2L/2 and the operations are within this field), which implies ui = uj , which is a contradiction. Consequently,
only the correct association of ui and uj with the positions i and j yields a valid codeword.

71



Chapter 4 Error Correction in Indexed Sets

This definition implies that the anchor vectors together with the sequence indices have both
a large intra-anchor distance between sequences of one anchor, i.e., the distance between two
strands i ̸= j is at least dH ((I(i),ai), (I(j),aj)) ≥ 2min(u1, u2), and a large inter-anchor distance
between two anchors, i.e., two different anchor vectors (a1, . . . ,aM ), (a′

1, . . . ,a
′
M ) ∈ A(ℓ, t, u1, u2)

differ in at least 2t+ 1 positions i ∈ [M ] due to the MDS code. Note that for 2u1 = logM and
t = 0 this definition is equivalent to a standard error-correcting code, which corrects u2 errors.
The redundancy required to force such a constraint will be calculated later. For the case of t = 0,
the set A(ℓ, 0, u1, u2) is called clustering-correcting code, and explicit constructions which require
only one bit of redundancy and can be encoded and decoded efficiently can be found in [Shi+19;
Shi+22]. The anchoring property will be used to reconstruct the ordering of the sequences. After
the ordering of sequences is restored, it is possible to correct the errors in the sequences using
tensor-product codes [Wol06], which are defined as follows.

Definition 4.8. Let C1 ⊆ ΣL1
2 be a linear binary code of length L1, redundancy r1 and parity-check

matrix H1 ∈ Σr1×L1
2 and let C2 ⊆ FL2

2r1 be a linear code over the field F2r1 . The tensor-product
code is then defined to be

TPC(C1, C2) =
{
(u1, . . . ,uL2) : ui ∈ ΣL1

2 , (u1H
T
1 , . . . ,uL2H

T
1 ) ∈ C2

}
,

i.e., the equivalents of the syndromes si = uiH
T
1 in the finite field F2r1 are a codeword of C2. The

overall redundancy of the tensor-product code is r1r2 bits.

Correcting errors using the tensor-product code is done as follows [Wol06]. Assume that C1 can
correct u2 substitutions and C2 can correct t substitutions. Now a codeword (u1, . . . ,uL2) of the
tensor product code is transmitted and the word (u′

1, . . . ,u
′
L2
) is received, where at most t vectors

u′
i have been affected by at most u2 errors each. The receiver first computes the syndromes

s′i = u′
iH

T
1 of all vectors. Since there are at most t syndromes corrupted, the correct syndromes

si can be recovered using the code C2. Now, in each row, u2 errors can be corrected using the
knowledge of the correct syndrome si and the code C1. Combining the anchoring property with
the tensor-product code leads to the following construction.

Construction 4.9. Let ℓ, t, u1, u2 ∈ N with ℓ ≥ logM . Denote by C1 a binary u2-substitution-
correcting code of length L− logM and redundancy r1 and by C2 a t-substitution-correcting code of
length M and redundancy r2 over the field F2r1 . We define the code Canc(M,L, ℓ, t, u1, u2) ⊆ ILM
by

Canc(M,L, ℓ, t, u1, u2) =


S = {(I(1),a1,v1), . . . , (I(M),aM ,vM )} :

(a1, . . . ,aM ) ∈ A(ℓ, t, u1, u2),
((a1,v1), . . . , (aM ,vM )) ∈ TPC(C1, C2)

 .

Note that Construction 4.9 depends on the explicit choice of the component codes C1 and
C2, however we do not explicate this dependence for ease of notation. Regarding encoding into
Construction 4.9, it is possible to impose the anchoring constraint and the tensor-product code on
the vectors (ai,vi) simultaneously by either a systematic encoding of the tensor-product code or by
choosing appropriate cosets of A(ℓ, t, u1, u2) and TPC(C1, C2). Notably, within Construction 4.9,
the anchors a1, . . . ,aM also contain user data. The correctness of Construction 4.9 and its
decoding algorithm are presented in the following.

Theorem 4.10. Construction 4.9 is an (s, t, u1, u2)S-correcting indexed code.
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I(1) a1 v1

I(2) a2 v2

...

I(M − r2) aM−r2 vM−r2

I(M − r2 + 1) aM−r2+1 vM−r2+1

...

I(M − 1) aM−1 vM−1

I(M) aM vM

x1

x2

xM−r2

xM−r2+1

xM−1

xM

Index Anchor TPC

logM ℓ r1

r2

Figure 4.2: Schematic of Construction 4.9

Proof. We will prove the correctness of Construction 4.9 by providing an algorithm that can be
used to correct errors from the (s, t, u1, u2)S channel. The decoding algorithm can be split into
the following two steps.

1. Retrieve the correct order of sequences using the anchoring property of a1, . . . ,aM .

2. Correct errors inside the sequences using the tensor-product code TPC(C1, C2).

Assume S = {x1, . . . ,xM} ∈ CA has been stored and S ′ = {x′
1, . . .x

′
M} ∈ BS(S, s, t, u1, u2) has

been received after transmission over the (s, t, u1, u2)S channel. Hereby x′
i = (I(i′),a′

i,v
′
i) are the

received sequences, which are either x′
i = xi, if a sequence was received correctly, i.e., xi ∈ SC, or

x′
i = xi + ei, if a sequence was received in error, i.e., xi ∈ SE. This correct ordering of received

sequences is however only used to simplify notation and is not known to the receiver, as the
indices I(i′) can be erroneous. Note that due to the anchoring property, it is guaranteed that an
erroneous sequence can never adjoin with another sequence and therefore |S ′| = M .

The anchors can be fully recovered using their MDS property as follows. Declare all positions
i ∈ [M ], where there is not exactly one index present, i.e., i : |{j : I(j′) = I(i)}| ≠ 1 as erasures,
and fill all remaining positions with the corresponding anchors a′

i. Although some anchors might
have the wrong position, decoding the resulting vector of length M with a unique decoding
algorithm yields the correct anchors a1, . . . ,aM (cf. Construction 3.30 and its proof of correctness
in Proposition 3.31). Using the anchors, it is possible to assign each sequence x′

j to its correct

position i by finding the single sequence x′
j ∈ S ′ with dH (I(i), I(j′)) ≤ u1 and dH

(
ai,a

′
j

)
≤ u2.

There is exactly one sequence j = i with that property. Assume to the contrary, that there is more
than one sequence (apart from the correct sequence x′

i), which fulfills this property. Then, there

would be a sequence x′
j , j ̸= i with dH (I(i), I(j′)) ≤ u1 and dH

(
ai,a

′
j

)
≤ u2, which implies that
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dH (I(i), I(j)) ≤ 2u1 and also dH (ai,aj) ≤ 2u2, which contradicts the anchoring property. We
therefore can reconstruct the array ((a′

1,v
′
1), . . . , (a

′
M ,v′

M )) in the correct order.

Since each row (a′
1,v

′
1) has at most u2 errors, these errors can be corrected using the tensor-

product code, which completes the proof of the correctness of Construction 4.9.

The redundancy of Construction 4.9 can be decomposed into the redundancy required for the
anchoring property and the redundancy of the tensor-product code and is given as follows.

Theorem 4.11. For any ℓ, t, u1, u2, ℓ ≥ logM the redundancy of Canc(M,L, ℓ, t, u1, u2) is

r(Canc(M,L, ℓ, t, u1, u2)) ≤ r(ILM ) + ranc + r1r2,

where ranc ≤ 2tℓ −M log(1 − 2−ℓBS(logM, 2u1)B
S(ℓ, 2u2)). Therefore, for fixed t, u1, u2, when

M →∞, the construction has redundancy

r(Canc(M,L, ℓ, t, u1, u2)) ≤ r(ILM )+4t(logM+(u1+u2) log logM)+2tu2⌈log(L−logM)⌉+1+o(1).

Proof. We start by computing the size of A(ℓ, t, u1, u2). To begin with, the number of anchors
without the MDS code constraint (corresponding to t = 0) is at least

|A(ℓ, 0, u1, u2)| ≥ (2ℓ −BS(logM, 2u1)B
S(ℓ, 2u2))

M .

This is because we can construct such anchors as follows. First, choose a1 arbitrarily. Then, suc-
cessively choose ai, starting from i = 2, such that none of the previously selected sequences j with
dH (I(i), I(j)) ≤ 2u1 satisfy dH (ai,al) ≤ 2u2. As this removes at most BS(logM, 2u1)B

S(ℓ, 2u2)
possible sequences, each such chosen sequence has at least 2ℓ−BS(logM, 2u1)B

S(ℓ, 2u2) options.
For more details, see also [Shi+19]. Now, the MDS code with redundancy 2t over F2ℓ has 22tℓ

cosets. Since these cosets form a partition of the space FM
2ℓ
, there exists one coset of the MDS

code with

|A(ℓ, t, u1, u2)| ≥
1

22tℓ
|A(ℓ, 0, u1, u2)|

by the pigeonhole principle. From this follows the redundancy ranc required for the anchoring
property. Next, the redundancy of the tensor-product codes is r1r2. Using alternant codes [Rot06,
Ch. 5] C1 and C2, we obtain for that the redundancy of C1 is at most r1 ≤ u2⌈log(L − logM)⌉
as it is a binary code of length L − logM of minimum distance 2u2 + 1. The code C2 is of
length M over the field F2r1 and has minimum distance at least 2t+ 1. Choosing it as a subfield
subcode of a Reed-Solomon code (such codes are also known as alternant code [Rot06, Ch. 5.5]) of

length M over a field of size 2
⌈ logM

r1
⌉r1 , its redundancy is at most r2 ≤ 2t⌈ logMr1 ⌉, if r1 ≤ logM . If

r1 > logM , we can directly use an MDS code for C2 and obtain r2 = 2t. Using ⌈ logMr1 ⌉ ≤
logM
r1

+1,
we obtain for the redundancy of the tensor-product code r1r2 ≤ 2t logM + r1. Therefore, using
an appropriate coset for the MDS code of the anchors, as discussed above, yields

|Canc(M,L, ℓ, t, u1, u2)| ≥ = |A(ℓ, t, u1, u2)|
2M(L−logM−ℓ)

2r1r2

≥ 2−2tℓ(2ℓ −BS(logM, 2u1)B
S(ℓ, 2u2))

M 2M(L−logM−ℓ)

22tu2⌈log(L−logM)⌉+2t logM
.
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The redundancy can then be computed to

r(Canc(M,L, ℓ, t, u1, u2)) ≤ r(ILM ) + 2tℓ−M log(1− 2−ℓBS(logM, 2u1)B
S(ℓ, 2u2))

+ 2tu2⌈log(L− logM)⌉+ 2t logM.

Using ℓ = logM + 2(u1 + u2) log logM , we can bound the third term by

−M log(1− 2−ℓBS(logM, 2u1)B
S(ℓ, 2u2))

(a)

≤ −M log
(
(1− 2−ℓ(logM + 2u1)

2u1(ℓ+ u2)
2u2)

)
(b)
= M2−ℓ(logM + 2u1)

2u1(ℓ+ u2)
2u2 + o(1) = 1 + o(1),

where we additionally used BS(L, u) ≤
(
L+u
u

)
≤ (L + u)u/u! for any L, u ∈ N in inequality (a)

and Lemma A.1 in equation (b). Finally, we obtain

r(Canc(M,L, ℓ, t, u1, u2)) ≤ r(ILM )+4t(logM+(u1+u2) log logM)+2tu2⌈log(L−logM)⌉+1+o(1),

as stated in the theorem.

Note that for t = 1, the construction can be improved by using a Hamming code for C and an
MDS[M, 1] code with redundancy 1 for the anchors is sufficient.

4.5 Conclusion

In this chapter, we have analyzed the approach of indexing sequences for transmission over the
combinatorial DNA storage channel. We have refined the channel model to differentiate between
errors in the indices and within the sequences, allowing to compare these types of error events
and derived lower and upper bounds on the optimal size of indexed zero-error codes over this
channel. We have discovered that for a fixed number of erroneous sequences and errors within
the sequences, the errors within the indices of sequences appear to be less harmful as compared
to those outside the sequences. This observation has been substantiated for a concrete example
of channel parameters. We have further developed a novel code construction using anchors that
allows to efficiently restore the correct ordering of the sequences, even in the presence of errors.

There are still several interesting open questions within this area of research. Those include the
discussion of other error types, such as insertions and deletions and also the incorporation of a
possible loss of sequences, as in Chapter 3.
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Chapter 5

Unordered Parallel Multinomial Channel

The unordered parallel multinomial channel is a probabilistic model that originates from information-
theoretic studies of DNA-based data storage [Hec+17]. The channel has an input of many parallel
sequences and comprises two stages. In the first stage, the input sequences are permuted with
a uniformly random permutation. In the second stage, each of the resulting sequences is trans-
mitted over an individual channel in parallel. Each such channel comprises a random selection
of repetitions followed by a repeated transmission of the input sequence over a q-ary symmetric
memoryless channel, where the number of repetitions is according to the previous random selection.
In other words, this stage is the parallelization of multiple discrete channels, where each channel
is randomly selected out of the family of multinomial channels.1

Several variants of this channel have been studied in previous works. Originally, a noiseless
channel has been studied [Hec+17], where individual sequences are drawn uniformly and indepen-
dently from input sequences, resulting in output sequences, whose original sequences are unknown
to the receiver. The capacity has been derived for this case and it has been shown that a simple
indexing and erasure correction scheme can achieve capacity. Further, the capacity for the case
where each sequence is drawn exactly once and transmitted over a binary symmetric channel has
been derived in [SH19]. Interestingly, also in this case, it has been proven that a coding scheme
that indexes each sequence and protects the whole sequence with a capacity achieving code for
the binary symmetric channel can achieve capacity. The results in [SH19] have been extended to
the case of transmission over erasure channels [SHS20]. Recently, the capacity has been found for
the case where each sequence is drawn according to a Bernoulli distribution and transmitted over
a binary symmetric channel [SH21]. In that work it has further been shown that a concatenated
code with an outer erasure code and an inner indexing and error correction code can achieve
capacity. Another line of work on channels that permute several parallel input sequences is that
on arbitrarily permuted parallel channels [Hof+13; WG08]. In their setup, a fixed number of
parallel sequences is arbitrarily permuted and then transmitted over known constituent channels.
In principle such a communication scenario is similar to ours, differing in the fact that the nature
of the constituent channels is deterministic and the number of parallel channels is fixed, while in
our work the number of parallel channels is growing with the sequence length and each channel is
a random channel, chosen out of a family of possible discrete memoryless channels. A different

1The term multinomial channel is derived from [Mit06] and terms a channel that has a single input sequence and
multiple output sequences, where each output sequence is the result of transmitting the input sequence over a
q-ary symmetric memoryless channel.

79



Chapter 5 Unordered Parallel Multinomial Channel

type of permutation channels, where the symbols of a single sequence can be permuted have been
discussed in [LSY17; Mak18].

In this chapter, we study the unordered parallel multinomial channel for a broad class of
drawing distributions and for the case of transmission over independent memoryless symmetric
channels. We start by defining the channel model in Section 5.1. We proceed with presenting the
result about the capacity of this channel together with necessary definitions in Section 5.2. The
presentation is enriched with a discussion of an intuitive interpretation of the capacity formula
and with thoughts regarding practical code constructions over the channel. Sections 5.3 and 5.4
are devoted to proving the capacity result by showing that the capacity is an upper bound on
achievable information rates and a proof of the existence of codes that have information rates
arbitrarily close to capacity, while maintaining vanishing error rates.

Preliminary results to this work have been published in [Len+19a; Len+20c; Len+21f].

5.1 Channel Model

Let x1, . . . ,xM ∈ ΣL
q , xi = (xi,1, . . . , xi,L) be M sequences, each of length L, comprising the

input of the channel. Further, let pd(y|x), d ∈ N0 be a family of probability matrices, i.e., discrete
conditional distributions for memoryless channels, where Σq is the common input alphabet, i.e,
x ∈ Σq and y ∈ Yd are the output symbols that reside in possibly different, discrete output
alphabets Yd. We will concretize the conditional distributions and output alphabets according
to multinomial channels later. The input sequences are shuffled with a random permutation
s = (s1, . . . , sM ) ∈ [M ]M , drawn uniformly from the set of all possible permutations and
independently from the channel input x1, . . . ,xM . The resulting sequences are z1, . . . ,zM , with

zi = xsi .

Let d = (d1, . . . , dM ) with di ∈ N0 be a random variable, called drawing composition, with joint
distribution Pr (d = d), where d denotes the realization of the random variable d. We assume
that d is independent of x1, . . . ,xM and the permutation s. Each zi is transmitted over the
discrete channel di, i.e., according to the conditional probability matrix pdi(y|x), resulting in
yi = (yi,1, . . . , yi,L), yi,ℓ ∈ Ydi such that

Pr (yi|zi, di) =
L∏

ℓ=1

pdi(yi,ℓ|zi,ℓ).

The sequences y1, . . . ,yM are the output of the channel. The overall input output relationship
from input x1, . . . ,xM to the output y1, . . . ,yM is thus

Pr (y1, . . . ,yM |x1, . . . ,xM ) =
∑
d,s

Pr (d, s)Pr (y1, . . . ,yM |x1, . . . ,xM ,d, s)

=
∑
d,s

Pr (d)Pr (s)
M∏
i=1

pdi(yi|xsi),

where we abbreviate pdi(yi|xsi) =
∏L

ℓ=1 pdi(yi,ℓ|xsi,ℓ) due to the memoryless property of the
individual channels. We will denote X = (x1, . . . ,xM ) as the vector of length ML containing all
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Figure 5.1: Visualization of the transmission scheme over the unordered parallel multinomial
channel. A total of M transmit sequences xi are arbitrarily permuted with each other,
producing zi = xsi . The resulting vectors zi are transmitted over parallel discrete
memoryless channels, where the channel probability matrix is chosen out of the family
of channels pdi(y|x) according to the drawing composition d.

input sequences, Z = (z1, . . . ,zM ) containing the shuffled input sequences and Y = (y1, . . . ,yM )
as the permuted output vector of length ML. We will frequently refer to Y as output clusters.
Figure 5.1 visualizes the transmission scheme over the unordered parallel multinomial channel.

Remark 5.1. For drawing distributions that are permutation invariant, i.e., for which the
probability Pr (d1 = ds1 , . . . , dM = dsM ) is invariant over all permutations s, the permutation and
drawing stage can be swapped in order. That means, a channel, where the input sequences first
traverse the M parallel discrete memoryless channels and the results are permuted afterwards has
an equivalent input-output relation. However, for drawing distributions that are not permutation
invariant, the channels are not necessarily equivalent.

5.1.1 Multinomial Channel

In this work, we choose the constituent discrete memoryless channel pd(y|x) to be the multinomial
channel with d ∈ N0 draws. The multinomial channel has been proposed and discussed first by
Mitzenmacher [Mit06] for binary inputs under the name of the binomial channel. Here we refer
to the channel as the multinomial channel as we discuss the channel for larger input alphabet
sizes which results in multinomial distributions, as we will see later. The channel is a discrete
memoryless channel with input x ∈ Σq and output2 y = (y1, . . . , yd) ∈ Yd with Yd = Σd

q . To this
end, we will regard Σq as an Abelian finite group over the integers {0, 1, . . . , q− 1}. For simplicity
and explicitness, we will use the standard addition operation of integers modulo q. Each yi is
then obtained from x by transmission over an independent q-ary symmetric channel with error
probability p such that

(y1, . . . , yd) = (x+ e1, x+ e2, . . . , x+ ed),

2Although, strictly speaking, y is a vector of length d over the alphabet Σq, we view y as a symbol of the output
alphabet Yd and thus do not highlight it in bold.
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GGCATAGC

GACATAGC

GGTATAGG

GGCTTAGC

Figure 5.2: Visualization of the multinomial channel with d = 3 draws for a sequence x of length
8 over the DNA alphabet Σ4 = {A,C,G,T}. Each received symbol is an element of
Σ3
4 and consists of 3 DNA symbols. Errors are underlined.

for identically distributed and independent ei ∈ Σq with distribution

Pr (ei = ei) =

{
1− p, if ei = 0
p

q−1 , if ei ̸= 0
.

Recall that the addition should be performed in the Abelian group of integers Σq, e.g., modulo q.
The resulting channel probability matrix is thus

pd(y|x) =
d∏

i=1

{
1− p, if yi = x
p

q−1 , if yi ̸= x
.

Figure 5.2 displays an exemplary realization of the multinomial channel. Since the channel falls
in the class of discrete memoryless channels, Shannon’s coding theorem [Sha48] applies and we
can find the capacity3 of the multinomial channel by maximization of the symbol-wise mutual
information. For a detailed derivation and discussion of Shannon’s theorem, we refer the reader to
[CT06, Ch. 7]. The following lemma is a generalization of the capacity formula derived in [Mit06]
to non-binary alphabets.

Lemma 5.2. The capacity of the q-ary multinomial channel with d draws and error probability p
is given by

CMul(d, p, q) =

1

q

∑
t0,...,tq−1:

t0+···+tq−1=d

(
d

t0, . . . , tq−1

) q−1∑
i=0

(1− p)ti
(

p

q − 1

)d−ti

logq

 (1− p)ti
(

p
q−1

)−ti

1
q

∑q−1
j=0(1− p)tj

(
p

q−1

)−tj

 ,

where
(

d
t0,...,tq−1

)
= d!

t0!·t1!...tq−1!
is the multinomial coefficient. The capacity achieving input distri-

bution is the uniform distribution.

Proof. We begin by noticing that the multinomial channel is a discrete and memoryless channel.
Therefore, the capacity can be found by maximizing the symbol-wise mutual information

CMul(d, p) = max
Pr(x)

I(x; y).

3For discrete memoryless channels, we refer to their capacity by the supremum of information rates for which
there exists a code with vanishing error probability, see, e.g. [CT06, Sec. 7.5].
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We start by finding the maximizing input distribution Pr (x) and then compute the mutual
information for this distribution. To this end we first show that the channel exhibits symmetry,
as defined in [Gal72, Ch. 4.5], which allows to use [Gal72, Thm. 4.5.2] to conclude that the
uniform input distribution maximizes the mutual information. Using our notation, a channel
is called symmetric4 if there exists a partition Σd

q(1), . . . ,Σ
d
q(P ) of Σd

q such that for each part

j ∈ [P ] it holds that the multiset {{pd(y|x) : x ∈ Σq}} is invariant over all y ∈ Σd
q(j) and the

multiset
{{
pd(y|x) : y ∈ Σd

q(j)
}}

is invariant over all x ∈ Σq. In our case, we will partition Σd
q

into parts for which the set of all numbers of symbol occurrences is the same. More precisely, let
ctx(y) = |{i ∈ [d] : yi = x}| be the number of occurrences of the symbol x ∈ Σq in y and we define
the count spectrum

ctspec(y) = {{ctx(y) : x ∈ Σq}}

as the multiset of the number of occurrences of each symbol in y. We then partition Σd
q into

Σd
q(1), . . . ,Σ

d
q(P ) according to ctspec(y), i.e., the partition is such that for all y1 ∈ Σd

q(j1), and

y2 ∈ Σd
q(j2), ctspec(y1) = ctspec(y2) holds if and only if j1 = j2. Therefore ctspec(y) is constant

over all y in one part Σd
q(j). Using the fact that

pd(y|x) = (1− p)t
(

p

q − 1

)d−t

,

where t = |{i ∈ [d] : yi = x}| is the number of symbols in y that are equal to x, we have

{{pd(y|x) : x ∈ Σq}} =

{{
(1− p)t

(
p

q − 1

)d−t

: t ∈ ctspec(y)

}}
,

which is invariant over all y ∈ Σd
q(j) in one part. Further, for all x ∈ Σq, the number

|{y ∈ Σd
q(j) : ctx(y) = t}|

of words y ∈ Σd
q(j) with a given ctspec(y) that have exactly t symbols, which are equal to

a given x ∈ Σq only depends on j and t and does not depend on x. It follows that the set{{
pd(y|x) : y ∈ Σd

q(j)
}}

does not depend on x and thus the multinomial channel is symmetric.

Due to the symmetry, we know that the uniform input distribution Pr (x) = 1
q for all x ∈ Σq

maximizes mutual information [Gal72, Thm. 4.5.2]. We thus proceed with computing the entropies
H(y) and H(y|x) for uniform inputs. We obtain for the output distribution

Pr (y) =
∑
x∈Σq

pd(y|x)Pr (x) =
1

q

∑
a∈Σq

(1− p)cta(y)
(

p

q − 1

)d−cta(y)

,

where we used that the multiset {{pd(y|x) : x ∈ Σq}} does not depend on x as shown above and
we thus can express Pr (y) only as a function of the number of appearances of each symbol a ∈ Σq

4In other words, if we view pd(y|x) as a matrix, whose rows are indexed by x and whose columns are indexed by
y, then a channel is symmetric if there exists a partition of the columns of the matrix pd(y|x) such that each
submatrix, obtained by restricting pd(y|x) to the columns corresponding to a part, has the property that the
rows are permutations of each other and the columns are permutation of each other.
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in y. In order to compute the output entropy, we now use the fact the number of y ∈ Σd
q with a

given symbol composition t0, . . . , tq−1 ∈ N0, t0 + t1 + · · ·+ tq−1 = d, is given by

|{y ∈ Σd
q : cta(y) = ta ∀ a ∈ Σq}| =

(
d

t0, . . . , tq−1

)
=

d!∏q−1
i=0 ti!

,

where ti is the number of times the i-th symbol in Σq appears in y and
(

d
t1,...,tq

)
is the multinomial

coefficient. Combining all words y with a given composition in the computation of the output
entropy, we obtain

H(y) = −1

q

∑
t0,...,tq−1:

t0+···+tq−1=d

(
d

t0, . . . , tq−1

) q−1∑
i=0

(1−p)ti
(

p

q − 1

)d−ti

logq

1

q

q−1∑
j=0

(1− p)tj
(

p

q − 1

)d−tj

 ,

where the sum over t0, . . . , tq−1 is over all possible compositions of a vector in Σd
q . Finally, we

compute the conditional entropy to

H(y|x) = −
∑
y∈Σd

q

∑
x∈Σd

pd(y|x)Pr (x) logq pd(y|x)

= −1

q

∑
y∈Σd

q

∑
a∈Σq

(1− p)cta(y)
(

p

q − 1

)d−cta(y)

logq

(
(1− p)cta(y)

(
p

q − 1

)d−cta(y)
)
,

where we used that {{pd(y|x) : x ∈ Σq}} is independent of x, as shown before and could thus
replace the sum over x by a sum over the symbol count spectrum of y. Combining those y with
the same composition t0, . . . , tq−1, we arrive at

H(y|x) = −1

q

∑
t,...,tq−1:

t0+···+tq−1=d

(
d

t0, . . . , tq−1

) q−1∑
i=0

(1− p)ti
(

p

q − 1

)d−ti

logq

(
(1− p)ti

(
p

q − 1

)d−ti
)
.

Notice that the conditional entropy H(y|x) = dHq(p), where Hq(p) is the q-ary entropy function,
however here we prefer to express the entropy in the above form as this way it can compactly be
combined with H(y). The lemma then follows from the fact that I(x; y) = H(y)−H(y|x) with
uniformly distributed inputs x.

The computation of the capacity in Lemma 5.2 can be quite computationally intensive, especially
for large d and q. However, it is possible to further simplify the computation using that the
outer sum over t0, . . . , tq1 can be reduced to a sum over possible multisets {{t0, . . . , tq−1}} as the
corresponding summands have the same value. The capacity of the binary multinomial channel
can be simplified to the expression

CMul(d, p, 2) =
d∑

t=0

(
d

t

)
(1− p)d−tpt log

(
2

1 + pd−2t(1− p)2t−d

)
,

which is known from [Mit06]. For d = 1, the capacity expression simplifies to

CMul(1, p, q) = 1− p logq(q − 1) + p logq p+ (1− p) logq(1− p) = 1−Hq(p),

84



5.1 Channel Model

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

0.2

0.4

0.6

0.8

1

p

C
M
u
l(
d
,p
,q
)

d = 1
d = 2
d = 5
d = 10
d = 100
d→∞

Figure 5.3: Capacity of the multinomial channel for q = 4 and different number of draws d over
the channel error probability p.

which is precisely the capacity of the standard q-ary symmetric channel. Figure 5.3 shows the
capacity of the multinomial channel for the DNA alphabet Σ4 = {A,C,G,T} for different number
of draws over the channel error probability.
As the multinomial channel is a discrete memoryless channel it is possible to define the

well-known notion of joint typicality [CT06, Ch. 7.6] over the channel as follows.

Definition 5.3. Consider the q-ary multinomial channel with error probability p, d draws and
uniform input x ∈ Σq with corresponding output y ∈ Σd×L

q . We define the set of ϵ-jointly typical

sequences x ∈ ΣL
q and y ∈ Σd×L

q by

T L,ϵ
Mul(d, p, q)≜

{
(x,y) ∈ ΣL

q × Σd×L
q :

∣∣∣∣− logq Pr (y)

L
−H(y)

∣∣∣∣<ϵ,

∣∣∣∣− logq Pr (x,y)

L
−H(x, y)

∣∣∣∣<ϵ

}
.

Note that usually joint typicality includes also a condition on the input Pr (x), however in our
case this is trivially fulfilled for all input sequences since we consider uniformly distributed input
sequences. The following result can be proven using standard methods for typical sequences and
will be useful for the derivation of the converse bound.

Lemma 5.4. Let the parameters d, p, q of the multinomial channel be arbitrary and fixed. Further,
let ei = (ei,1, . . . , ei,L) ∈ ΣL

q , 1 ≤ i ≤ d be random error vectors with identically and independently
distributed entries

Pr (ei,ℓ = ei,ℓ) =

{
1− p, if ei,ℓ = 0
p

q−1 , if ei,ℓ ̸= 0
,
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for all 1 ≤ i ≤ d and 1 ≤ ℓ ≤ L. For an arbitrary ϵ > 0, let Fϵ be the event that the sequence

e′ ≜ (e2 − e1, . . . , ed − e1) ∈ Σ
(d−1)×L
q is an ϵ-typical sequence,5 Then, the number of ϵ-typical

sequences e′ is at most qL(CMul(d,p,q)+dHq(p)−1+ϵ) and there exists an integer Ld(ϵ) that depends on
d, p, q and ϵ, such that for all L ≥ Ld(ϵ), it holds that Pr (Fϵ) ≥ 1− ϵ.

Proof. To start with, define the single letter variable e′ = (e2 − e1, . . . , ed − e1), where ei ∈ Σq,
1 ≤ i ≤ d are identically and independently distributed variables with

Pr (ei = ei) =

{
1− p, if ei = 0
p

q−1 , if ei ̸= 0
.

Notice that with this definition, e′ is a sequence of vectors over Σd−1
q , where each vector is

identically and independently distributed according to Pr (e′ = e′). We can thus define set of
ϵ-typical sequences T L,ϵ

QSC(d, p, q) as

T L,ϵ
QSC(d, p, q) ≜

{
e′ ∈ Σ(d−1)×L

q :

∣∣∣∣− logq
Pr (e′)

L
−H(e′)

∣∣∣∣ < ϵ)

}
.

By the asymptotic equipartition property [CT06, Thm. 3.1.2], it follows that Pr (Fϵ) ≥ 1− ϵ
for all L ≥ Ld(ϵ), where Ld(ϵ) is a constant that depends only on d, p, q and ϵ. Further, the
asymptotic equipartition property implies |T L,ϵ

QSC(d, p, q)| ≤ |2
L(H(e′)+ϵ)| for any L. It remains to

compute the entropy H(e′). We will do so by relating the entropy H(e′) with the output entropy
of the multinomial channel. To this end, let x ∈ Σq be a uniformly distributed random variable
that is independent of e1, . . . , ed, which will be used as the input of the multinomial channel.
Denote further by y = (x+ e1, . . . , x+ ed) the corresponding output. Then, as the uniform input
distribution maximizes the mutual information between x and y, we know from Lemma 5.2 that

H(y) = I(x; y) +H(y|x) = CMul(d, p, q) + dHq(p).

We can also show that e′ is independent of e1 + x using the following sequence of equations,

Pr
(
e′ = e′|e1 + x = y1

)
=

Pr (e′ = e′, e1 + x = y1)

Pr (e1 + x = y1)

(a)
= qPr

(
e′ = e′, e1 + x = y1

)
(b)
=
∑

e1∈Σq

qPr
(
e′ = e′, e1 = e1, x = y1 − e1

)
(c)
=
∑

e1∈Σq

Pr
(
e′ = e′, e1 = e1

)
where we used in equality (a) that Pr (e1 + x = y1) = 1/q for all y1, as the sum with a uniform
distribution absorbs the other distribution, i.e., the sum of x with any independent variable e1 is
again uniformly distributed over Σq. In equality (b), we demarginalized with respect to x and in
equality (c), we used the independence of x from e1, . . . , ed and Pr (x = y1 − e1) =

1
q due to the

uniform distribution of x. This proves that e′ is independent of e1 + x. It follows that

H(e′) = H(e′|e1+x)
(d)
= H(e2+x, . . . , ed+x|e1+x) = H(y)−H(y1) = CMul(d, p, q)+dHq(p)−1,

where we used [CT06, Prob. 2.14] on the conditional entropy of a sum in inequality (d).
5By typical sequences, we refer to sequences whose log-probability is ϵ-close to the negative entropy, as introduced
by Shannon [Sha48]. For more details, see [CT06, Ch. 3].
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5.1.2 Drawing Composition and Frequency

An important entity of to the unordered parallel multinomial channel is the drawing frequency,
which counts how often a channel with d draws has been chosen. It is derived from the drawing
composition d and is defined as follows.

Definition 5.5. We define the drawing frequency n = (n0, n1, . . . ), where nd ∈ N0, d ≥ 0, as
the numbers of occurrences that a sequence has been drawn d times, i.e.,

nd = |{i ∈ [M ] : di = d}|.

The drawing frequency counts the number of times the sequence zi is transmitted over the
q-ary symmetric channel. Since the drawing composition d is a random variable, so is the drawing
frequency n. The probability mass function of n can thus directly be derived from that of d.
We will make three restrictions on the distribution of d for our capacity result that will both
simplify the derivation of the bounds and ensure that the involved quantities are well-defined.
The restrictions are as follows.

Definition 5.6. Let Pr (d = d) be a given family of permutation-invariant probability mass
functions6 for the drawing composition and n = (n0, n1, . . . ), nd = |{i ∈ [M ] : di = d}| be the
derived drawing frequency. We say that the distribution Pr (d = d) is regular if it fulfills the
following conditions.

1. Frequency convergence: The distribution converges to ν = (ν0, ν1, . . . ), νd ∈ R, d ≥ 0 in
frequency, i.e., for every ϵ > 0,

lim
M→∞

Pr

∑
d≥0

∣∣∣nd

M
− νd

∣∣∣ > ϵ

 = 0.

2. Bounded draws: There exists some constant c ∈ R such that for all M ∈ N

Pr

(
M∑
i=1

di ≤ cM

)
= 1.

3. Balanced draws: For every ϵ > 0, there exists Dϵ ∈ N such that for all M ∈ N∑
d≥Dϵ

E [nd] d ≤ ϵM

First, we restricted to convergent drawing frequencies, meaning that the relative number of
times, a channel with d draws is selected converges to a deterministic value. In other words, we
call a distribution convergent in frequency, if the relative frequencies nd

M jointly converge to ν in
probability, when M goes to infinity. One example of a distribution that converges in frequency is
that of identical and independent draws as illustrated in the following example.

6Through the term family, we highlight that the drawing composition has a probability mass for each M ∈ N.
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Example 5.7. Consider a drawing composition d, where the draws are identically and inde-
pendently distributed with probability mass function Pr (di = d) = νd. Consequently, the joint
distribution is given by Pr (d = d) =

∏M
i=1 νdi . The fact that the associated drawing frequency con-

verges to ν = (ν0, ν1, . . . ) basically follows from an application of the weak law of large numbers on
the individual distributions nd, which are binomial distributed with M trials and success probability
νd. However, as we need to prove the joint convergence of an infinite number of random variables
nd, d ≥ 0, we require slightly more elaborate arguments as we show in the following.

Fix an arbitrarily small ϵ > 0. Due to the fact that νd, d ≥ 0 define a valid probability mass,
we can find a D0(ϵ) ∈ N0 such that

∑
d≥D0(ϵ)

νd < ϵ/4. We now bound the total deviation of the
drawing frequency nd

M from the distribution νd by

∑
d≥0

∣∣∣nd

M
− νd

∣∣∣ = D0(ϵ)−1∑
d=0

∣∣∣nd

M
− νd

∣∣∣+ ∑
d≥D0(ϵ)

∣∣∣nd

M
− νd

∣∣∣ ≤ D0(ϵ)−1∑
d=0

∣∣∣nd

M
− νd

∣∣∣+ ∑
d≥D0(ϵ)

(nd

M
+ νd

)
.

Notice that each nd is binomial distributed with M trials and success probability νd. As D0(ϵ) is
fixed and finite, we have, using a union bound argument,

Pr

D0(ϵ)−1∑
d=0

∣∣∣nd

M
− νd

∣∣∣ > ϵ

2

 ≤ D0(ϵ)−1∑
d=0

Pr

(∣∣∣nd

M
− νd

∣∣∣ > ϵ

2D0(ϵ)

)
M→∞−→ 0,

which goes to 0 as M →∞ due to the fact that each individual summand goes to zero by the weak
law of large numbers and there are a finite number of summands. On the other hand, we can
use that

∑
d≥D0(ϵ)

nd is binomial distributed with M trials and success probability
∑

d≥D0(ϵ)
νd.

Applying Lemma A.4 on its binomial tail, we obtain

Pr

 ∑
d≥D0(ϵ)

(nd

M
+ νd

)
>

ϵ

2

 ≤ Pr

 ∑
d≥D0(ϵ)

nd

M
>

ϵ

4

 ≤ e
−2M( ϵ

4
−
∑

d≥D0(ϵ)
νd)

2 M→∞−→ 0,

which also goes to 0, as M → ∞, since ϵ/4 >
∑

d≥D0(ϵ)
νd by the choice of D0(ϵ) and thus the

exponent is negative and tends to −∞. Putting everything together, we obtain that

Pr

∑
d≥0

∣∣∣nd

M
− νd

∣∣∣ > ϵ

 ≤ Pr

D0(ϵ)−1∑
d≥0

∣∣∣nd

M
− νd

∣∣∣ > ϵ

2

+ Pr

 ∑
d≥D0(ϵ)

(nd

M
+ νd

)
>

ϵ

2

 M→∞−→ 0,

which shows that the drawing composition d converges in frequency to ν0, ν1, . . . as desired.

The second property states that the total number of draws is at most cM for a constant
c ∈ R. Note that this property is quite common as it is directly fulfilled for the case of drawing
distributions that result from drawing cM times from the input sequences. This property entails
several useful properties through the fact that the total number of channel outcomes is limited by
qcML, simplifying the analysis at several instances.

The following example illustrates that this property is fulfilled for drawing composition with
marginal distributions that have only a finite support.
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5.2 Capacity of the Unordered Parallel Multinomial Channel

Example 5.8. Consider a drawing composition d, where the individual draws have a marginal
distribution with Pr (di > d) = 0 for some fixed d ∈ N for all 1 ≤ i ≤M . Then,

Pr

(
M∑
i=1

di > dM

)
≤

M∑
i=1

Pr (di > d) = 0,

and the total number of draws is thus at most dM .

Finally, the third property is a technical restriction that facilitates the derivation of the converse
bound, as we will see in Section 5.3.

5.2 Capacity of the Unordered Parallel Multinomial Channel

A famous quantity that gives a fundamental limit on the maximal information rate such that
reliable communication over a channel is still possible is the capacity. As introduced by Shannon
[Sha48], the capacity of a probabilistic channel is the supremum of code rates for which we can
asymptotically transmit with vanishing error probability. In the following, we first specify the
notion of code rates and error probabilities for the unordered parallel multinomial channel and
then proceed with stating our main result about its capacity.

5.2.1 Error-Correcting Codes

Before we state the capacity of the unordered parallel multinomial channel, we introduce the
notion of error-correcting codes and code rates over the unordered parallel multinomial channel.
The input of the channel is the sequences x1, . . . ,xM , each of length L. Thus, a code is a set
C ⊆ ΣM×L

q such that each codeword consists of M sequences, each of length L over the alphabet

Σq. Consequently, the rate of a code C ⊆ ΣM×L
q is given by

R =
logq |C|
ML

.

Note that this definition of rate is slightly different from that in Part I, where we related the size

of the code with respect to logq
(
qL

M

)
. However, both notions directly translate into each other

with a straightforward conversion.

Each code C is equipped with an encoder

encC : [qMLR] 7→ C

that maps a message W ∈ [qMLR] to a codeword and a decoder

decC :

⋃
d≥0

ZL
d

M

7→ [qMLR]

that outputs an estimate Ŵ of the original message W given the received sequences y1, . . . ,yM .
Note that the input space of the decoder is the set of all possible output clusters that could
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Chapter 5 Unordered Parallel Multinomial Channel

potentially be received, taking into account the fact that the output alphabets of the constituent
channels might differ. The error probability of a code C ⊆ ΣM×L

q and a decoder decC is given by

Pr (Err|C) = 1

qMLR

qMLR∑
W=1

Pr (decC(y1, . . .yM ) ̸= W|W = W) ,

where y1, . . .yM is the random result of transmitting encC(W ) = (x1, . . .xM ) over the unordered
parallel multinomial channel. Here we assumed that the messages are chosen uniformly from the
set of all messages W ∈ [qMLR], i.e., Pr (W = W) = 1

qMLR .

5.2.2 Coding Theorem

As the capacity of a channel is an asymptotic bound on achievable rates, we need to specify how
the channel parameters grow to infinity. We consider the regime, where M →∞ and M = qβL

for some fixed 0 < β < 1. This choice is motivated by the following two facts. First, the case
where M is exponential in L is the interesting case, as for M ≥ qβL it has been shown in [Hec+17]
through counting arguments that no positive rate is achievable (even in the error-free case). For
the case where M is subexponential in L, the total number of symbols required for indexing
M logq M all sequences is thus sub-linear in ML and thus a simple scheme that indexes every
sequence and protects each sequence with a strong error-correcting code is rate-optimal. Second,
this parameter regime is practically relevant for the case, where one wishes to transmit many
relatively short sequences, as is the case in DNA-based archival storage. We use the standard
notion of achievable rates and channel capacity as follows.

Definition 5.9. Fix 0 < β < 1, 0 < p < 1, q ∈ N and let Pr (d) be a a regular drawing distribution
that converges in frequency to ν. Then, a code rate R is achievable, if there exists a family of
codes C(M,L) ⊆ ΣM×L

q with |C(M,L)| = qRML together with a decoder that has vanishing error

probability Pr (Err|C(M,L))→ 0 as M →∞, where M = qβL.

The Shannon capacity CUPM(ν, β, p, q) is the supremum of achievable rates.

With this definition, for any code rate R < CUPM(ν, β, p, q) there exists a family codes with
rate R that has vanishing error probability as M →∞. Conversely, every family of codes with
code rate R > CUPM(ν, β, p, q) has an non-vanishing error rate. With these prerequisites we are in
the position to formulate the main theorem on the capacity of the unordered parallel multinomial
channel. Recall to this end the definition of regularity for the probability mass function of the
drawing composition d from Definition 5.6, which implies convergence in distribution, a bounded
number of draws, and balanced draws.

Theorem 5.10. Fix the parameters 0 < β < 1, q ∈ N, 0 < p < q−1
2q with 2β < 1−Hq(2p) and let

the distribution Pr (d) be a given regular distribution that converges in frequency to ν. Then, the
capacity of the unordered parallel multinomial channel is given by

CUPM(ν, β, p, q) =
∑
d≥0

νdCMul(d, p, q)− β(1− ν0).
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5.2 Capacity of the Unordered Parallel Multinomial Channel

5.2.3 Interpretation and Discussion

Conceptually, the unordered parallel multinomial channel is composed of two sub-channels, as it
has been illustrated in Figure 5.1. In the first sub-channel, the input sequences xi, i = 1, . . . ,M
are randomly shuffled according to a permutation, which is chosen uniformly from the set of all
permutations of [M ]. For the second sub-channel, each resulting sequence is transmitted over one
of M parallel multinomial channels. The i-th sequence is drawn di times, where the draws are
chosen according to the realization of the random variable d = (d1, . . . , dM ).

Capacity of the Ordered Parallel Multinomial Channel

We start by discussing the capacity of the second sub-channel and will refer to this sub-channel,
i.e., the channel from z1, . . . ,zM to y1, . . . ,yM as the ordered parallel multinomial channel.
Lemma A.7, which is derived in Appendix A.3, states that the capacity of this sub-channel is

COPM(ν, p, q) =
∑
d≥0

νdCMul(d, p, q).

The intuition of the result is as follows. Recall that the drawing frequency converges to ν. This
means that the relative number of times a multinomial channel with d draws occurs within the
M channels converges to nd

M → νd as M → ∞. Since the multinomial channel with d draws
has capacity CMul(d, p, q) and its relative frequency of occurrence converges to νd, the channel
has a capacity of COPM(ν, β, p, q). The interested reader finds the rigorous proof of this result
in Lemma A.7 in Appendix A.3. Noteworthily, this capacity result requires that the capacity
achieving input distribution is the same over all constituent channels, which holds for the case of
the multinomial channel, since the uniform distribution is the capacity-achieving input distribution
for any number of draws. If the input distributions were to differ among the constituent channels,
the problem of finding the capacity would require a deeper analysis using methods similar to
those for coding for compound channels [BBT59; Wol59] or random state channels [Ahl86; CS99;
GP80]. For an overview of related results, see, e.g., [CK11].

Influence of the Permutation

We now turn to discuss the influence of the first sub-channel, which permutes the sequences.
There are in total only M − n0 sequences i which have been drawn at least once, i.e., with di > 0.
As the channel randomly permutes the sequences, the receiver has an uncertainty of M !

n0!
options

to associate the M − n0 output clusters with M input sequences. Note that the receiver does
not have to associate those outputs with di = 0 with input sequences as those do not carry any
useful information. A random coding argument then suggests that the rate loss induced by this
uncertainty is roughly

log M !
n0!

ML
=

M logM − n0 log n0 +O(M)

ML
→ β − βν0,

in probability as M →∞. Here we used that n0 = Mν0 + o(M) with high probability due to the
assumed convergence of the drawing frequency. Note that the rigorous derivation of the capacity
is more involved since a precise analysis of the effect of the permutation operation on the capacity
is non-trivial. We will provide a rigorous proof of Theorem 5.10 in Sections 5.3 and 5.4.
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Chapter 5 Unordered Parallel Multinomial Channel

Practical Aspects for Code Design with Rates Approaching Capacity

Interestingly, in contrast to the information-theoretic results, it is still an open problem to find
efficiently encodable and decodable schemes that achieve capacity on the noisy drawing channel.
This is mainly due to the apriori incertitude how often each input sequence is drawn combined
with the loss of ordering of sequences. We will break down these two aspects and existing solutions
for each of the aspects in the following.

Channel uncertainty: The amount of information that a receiver may deduce about an input
sequence increases with the number of times the input sequence is observed at the output. Since
this number is random in the noisy drawing channel, the encoder cannot choose appropriate code
rates for each sequence in advance. Thus, in order to operate close to capacity, the input strands
must be coded with appropriate cross-correlation such that input sequences with more draws
may help in the decoding of those with less (or no) draws. For the case, where the ordering of
the output sequences is known to the receiver, rate-matching codes [Hof+13; WG08] provide a
solution to construct this correlation. Explicit constructions of rate-matching codes exist [WG08],
for example based on erasure codes.

Loss of ordering: Through the random drawing of sequences, the receiver has no immediate
information about how the output sequences may be associated with input sequences. This loss
of ordering can be combat with indexing, i.e., each input sequence Xi is prepended with a field
that designates its index i. However, due to channel noise, also these indices require appropriate
protection from errors. As explained in the previous paragraph, indices of sequences with more
draws are easier to decode, which implies that also the efficient decoding of the indices requires
rate-matching techniques.

The crux of the noisy drawing channel is that the combination of these two techniques in an
efficient manner is non-trivial. On the one hand, the rate-matching techniques require a correct
ordering of sequences, on the other hand an efficient decoding of the indices requires rate-matching.

For the case of Bernoulli drawing compositions this code design issue could be elegantly solved
[SH19] using a scheme, which equips each sequence with an index and a capacity-achieving code
on the q-ary symmetric channel, together with an outer erasure code. Here, the erasure code takes
the roll of the rate-matching code and a rate-matching decoding of the indices is not necessary,
as sequences may be drawn at most once. For drawing distributions with more than one draw
per sequence, it remains however an open problem to design codes that protect against channel
uncertainty and loss of ordering. One possible solution could be the usage of rate-matching
techniques that do not require knowledge of the sequence ordering.

Application to Different Drawing Distributions

The general result of Theorem 5.10 implies a capacity result for a variety of drawing distributions
of interest. In particular, we show that Theorem 5.10 recovers the results of [SH21] for Bernoulli
drawing compositions.

Example 5.11. Consider a drawing composition, where the draws are identically and independently
distributed Bernoulli variables with success probability 1− r, 0 ≤ r ≤ 1. That is, di ∼ Ber(1− r).
It is straight-forward to verify that this distribution is regular according to Definition 5.6, as it
converges in frequency to ν where ν0 = 1− ν1 = r and νd = 0 for all d ≥ 2, by the weak law of
large numbers, as shown in Example 5.7. Further, the total number of draws is limited to M and
we see that the distribution is balanced in the sense of Definition 5.6 by choosing, e.g., Dϵ = 2.
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We conclude that the capacity of this channel is thus

CBerUPM(r, p, q) = (1− r)(1−Hq(p)− β),

for all parameters satisfying p < q−1
2q and 2β < 1−Hq(2p), which is precisely the result in [SH21].

5.3 Converse Bound

We begin with a concise overview of the ideas employed when proving a converse bound, i.e., an
upper bound on achievable rates, for the unordered parallel multinomial channel. The starting
point is Fano’s inequality [FH61], which allows to derive an upper bound on achievable code rates
by means of the mutual information between the channel input and output. Hence, an upper
bound on the mutual information implies an upper bound on all achievable rates. The main
difficulty when deriving upper bounds on the mutual information I(X;Y ) = H(Y )−H(Y |X) is
that both the output entropy H(Y ) and the conditional entropy H(Y |X) depend on the input
distribution Pr (X) in a non-trivial way. This is because the effect of the permutation s on
the entropy H(Y |X) depends on the similarity of the sequences x1, . . . ,xM . In particular, for
input distributions that favor similar input sequences, the output clusters y1, . . . ,yM are also
similar to each other and thus a permutation has a smaller effect on the entropy as compared
to the case, where the input distribution favors dissimilar input sequences. On the other hand,
input distributions that favor similar input sequences x1, . . . ,xM entail output distributions with
smaller entropy H(Y ). Thus, Pr (X) affects both H(Y ) and H(Y |X) and it is not immediately
clear, which distribution maximizes the mutual information. Figure 5.4 illustrates the two cases
of similar and dissimilar input and output sequences. To overcome this difficulty, [SH19] showed
that introducing a statistic that measures the similarity of the output sequences by means of
their Hamming distances helps to find the maximal mutual information.7 A precise definition of
this statistic follows in Definition 5.13. We formalize and adopt this approach for the unordered
parallel multinomial channel. The converse bound is formulated in the following lemma.

Lemma 5.12. Fix 0 < β < 1, q ∈ N, 0 < p < q−1
2q with 2β < 1−Hq(2p) and let the distribution

Pr (d) be a regular distribution that converges in frequency to ν. Then, any achievable rate R
over the unordered parallel multinomial channel satisfies

R ≤ CUPM(ν, β, p, q).

Proof. Let C ⊆ ΣM×L
q be a code of rate R =

logq |C|
ML . The code C has an encoder encC : [qMLR] 7→ C

and decoder decC . Denote by W ∈ [qMLR] a uniformly random message to be transmitted over

the channel and Ŵ = decC(Y ) the output of the decoder, where Y is the result of transmitting
X = encC(W ) over the unordered parallel multinomial channel. The error probability of this

scheme is Pr (Err|C) = Pr(W ̸= Ŵ ) and Fano’s inequality implies that

R ≤ Pr (Err|C)R+
1 + I(X;Y )

ML
.

Here we use Lemma 5.14, derived in the sequel, which gives an upper bound on I(X;Y ) to obtain

R ≤ CUPM(ν, β, p, q) + Pr (Err|C)R+ o(1),

7An analogous quantity, defined on the channel input, has been employed in [Len+18] to evaluate the number of
possible words obtained from a given channel input in the combinatorial setting.
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xs1

y1

xs2

y2

xs3

y3

(a) Example of an input x1,x2,x3 for which
each permutation of the sequences x1,x2,x3

results in a distinct channel outcome.

xs1

y1

xs2

y2

xs3

y3

(b) Example of an input x1,x2,x3 for which per-
mutations of the sequences x1,x2,x3 result
in a similar or the same channel outcomes.

Figure 5.4: Illustration of the effect of the similarity of input sequences on the entropy after
permutation. Sequences that are close to each other have a small Hamming distance
and, similarly, sequences that are far apart have a large distance.

as M →∞. By the definition of achievable rates, Pr (Err|C)→ 0, as M →∞, and thus

R ≤ CUPM(ν, β, p, q).

We proceed with bounding the mutual information I(X;Y ) from above in a step-by-step
fashion. The following statistic of the output sequences is the key ingredient for deriving an
analytically tractable upper bound on the entropy terms of the mutual information.

Definition 5.13. Consider the output Y of the unordered parallel multinomial channel and recall
that the number of draws of the i-th output cluster yi is given by di. Write each yi as

yi =

y
(1)
i
...

y
(di)
i

 .

such that each y
(j)
i ∈ ΣL

q corresponds to one sequence of the multinomial channel. For some α > 0,
we define U ⊆ [M ] to be the largest subset of [M ] such that

1. For all i ∈ U : di > 0.

2. For all i, j ∈ U with i ̸= j: dH

(
y
(1)
i ,y

(1)
j

)
> αL.

If the largest subset is not unique, we choose the first according to some (arbitrary) ordering of
subsets. We further denote the conditional expectation of |U| given d = d by Ud ≜ E [|U| |d = d].
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Note that only the size of U will be of importance later, and we can choose U arbitrarily (but
deterministic) in the case of ties between several subsets. We further remark that U is defined
only based on the first sequence of each cluster. This is because, given that the first sequence
in a cluster is close to that of another cluster, this automatically also restricts the remaining
sequences of the cluster, as all sequence stem from the same original sequence. We start with a
short explanation of how U can be used to bound the output entropy H(Y ). The main idea is
the following. Conceptually, we will split the output into free clusters, which are contained in U
and into those which are not contained in U . Then, with some careful analysis, the entropy of the
free clusters U is bounded simply by the sum of maximum output entropies of the corresponding
multinomial channels. On the other hand, the entropy of those clusters, which are not in U can be
bounded more severely, as their first sequence has to be close to at least one of the sequences in
the clusters in U , resulting in a smaller entropy as compared to the free clusters. This means that,
if the input distribution is chosen such that it favors sequences that are close in Hamming distance,
which corresponds to the case of small U , also the bound on the output entropy H(Y ) will be
smaller. Note that there are a couple of subtleties that need to be overcome when rigorously
applying such an argument. One important difference with respect to the derivation of [SH21] is
that, the entropy of the non-free clusters is not trivially bounded by L and we thus apply careful
combinatorial arguments using Lemma 5.4.

Lemma 5.14. Fix the parameters 0 < β < 1, q ∈ N, 0 < p < q−1
2q with 2β < 1−Hq(2p) and let

the distribution Pr (d) be a given regular distribution that converges in frequency to ν. Then, the
mutual information over the unordered parallel multinomial channel satisfies

I(X;Y ) ≤MLCUPM(ν, β, p, q) + o(ML).

Proof. We start by incorporating the permutation s into the mutual information I(X;Y ) as
follows. To start with, we have

I(X;Y ) = H(Y )−H(Y |X).

The drawing composition d is a function of Y , as we can directly infer it from the size of the
clusters and thus we can compute the mutual information by

I(X;Y ) = H(Y ,d)−H(Y ,d|X) = H(Y |d) +H(d)−H(Y |X,d)−H(d|X)

= H(Y |d)−H(Y |X,d) = I(X;Y |d).

This means that the condition on d does not change the mutual information. On, the other hand
we can express the conditional mutual information as

I(X;Y |d) (a)
= H(Y |d)−H(Y |X, s,d)−H(s|X,d) +H(s|X,Y ,d)

(b)
= H(Y |d)−H(Y |X, s,d) +H(s|X,Y ,d)−M logq M +O(M),

where we applied the chain rule of entropy twice in equality (a). In equality (b), we used
that H(s|X,d) = H(s) due to the permutation invariance of the drawing distribution and
that a random uniform permutation of M elements has an entropy of H(s) = logq(M !) =
M logq M +O(M). Expanding the condition on d, we obtain

I(X;Y |d) =
∑
d

Pr (d) (H(Y |d = d)−H(Y |X, s,d = d)+H(s|X,Y ,d = d))−βML+O(M).
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Recall from Definition 5.13, the notation Ud ≜ E [|U| |d = d] for conditional expectation of the
size of the random variable U . Plugging in the bounds on the conditional entropy terms H(Y )
and H(Y |X) from Lemma 5.15, Lemma 5.16 and 5.17, we obtain

H(Y |d = d)−H(Y |X, s,d = d) +H(s|X,Y ,d = d)− βML ≤ L
∑
d≥0

nd(CMul(d, p, q))

+ (M − n0 − Ud)(logq Ud + L(Hq(α)− 1))− Ud logq Ud + L
∑
d≥D

dnd + o(ML) (5.1)

for any p < 2δ < α < q−1
q , D ∈ N and large enough M . To start with, we show that the last sum

over d is asymptotically negligible due to the following. For an arbitrary ϵ > 0 Choose D = Dϵ,
where Dϵ is the constant guaranteed from Definition 5.6 such that

∑
d≥Dϵ

E [nd] d ≤ ϵM for all
M . Then, averaging over the drawing composition d, one obtains

L
∑
d

Pr (d = d)
∑
d≥Dϵ

dnd = L
∑
d≥Dϵ

dE [nd] ≤ ϵML.

We are now in the position to maximize the mutual information in terms of a maximization over
the variable Ud as follows. Denote by f(Ud) the terms in the mutual information expression (5.1)
that do not vanish and depend on Ud, i.e.,

f(Ud) = (M − n0 − Ud)(logq Ud + L(Hq(α)− 1))− Ud logq Ud.

Taking the derivative with respect to Ud, we see that

f ′(Ud) = −(logq Ud + L(Hq(α)− 1)) + logq(e)
M − n0 − Ud

Ud
− logq Ud − logq(e)

> L(1−Hq(α)))− 2 logq Ud − 2 logq(e).

Therefore, f ′(Ud) > 0 if

Ud < e−1qL/2(1−Hq(α))) = e−1M
1−Hq(α)

2β .

Hence, if 2β < 1−Hq(α), the exponent of M is larger than 1 and f ′(Ud) > 0 for all 0 ≤ Ud ≤M ,
provided that M is large enough. This means that f(Ud) is strictly increasing and using further
Ud ≤ M − n0, as U consists of sequences, which have been drawn at least once, we obtain for
2β < 1−Hq(α) and large enough M ,

f(Ud) ≤ f(M − n0) = −(M − n0) logq(M − n0).

We proceed with introducing the event Nϵ for an arbitrary ϵ > 0 as the event on the random
variable d that

∑
d≥0

∣∣ nd
M − νd

∣∣ ≤ ϵ/4. Splitting the sum over d in the computation of I(X;Y |d)
according to this event, we obtain

I(X;Y |d) =
∑
d

Pr (d) I(X;Y |d = d) =
∑
d/∈Nϵ

Pr (d) I(X;Y |d = d) +
∑
d∈Nϵ

Pr (d) I(X;Y |d = d)

(c)

≤ (Pr (d /∈ Nϵ)+ϵ)ML+L
∑
d∈Nϵ

Pr (d)
∑
d≥0

ndCMul(d, p, q)− (M − n0) logq(M − n0)+o(ML),
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where we used that I(X;Y |d = d) ≤ H(X|d = d) ≤ML to bound the mutual information in
the first term in inequality (c). Analyzing the term inside the sum, we find that for all d ∈ Nϵ, it
holds that

L
∑
d≥0

ndCMul(d, p, q) ≤ML
∑
d≥0

νdCMul(d, p, q) +MLϵ/4.

On the other hand, we can bound

−(M − n0) logq(M − n0) ≤ −M(1− ν0 − ϵ/4) log(M(1− ν0 − ϵ/4))

≤ −βML(1− ν0) + βMLϵ/4 +O(M)

for all d ∈ Nϵ. Using that Pr (d /∈ Nϵ)→ 0 as M →∞ by the definition of frequency convergence
from Definition 5.6, we obtain

I(X;Y |d) ≤MLCUPM(ν, β, p, q) + o(ML),

as we can choose ϵ as small as desired. As we can choose any α with α > 2p and α < q−1
q , this

yields the statement of the lemma.

We proceed with a rigorous derivation of the bound on the output entropy H(Y |d = d) and
will bound the entropy terms H(Y |X, s,d = d) and H(s|X,Y ,d = d) afterwards.

5.3.1 Output Entropy Bound

We start with deriving an upper bound on the output entropy, which is given in the following
lemma. Recall from the discussion in the beginning of the section, the main proof idea is to split
the output clusters according to clusters that are either contained in U or not and then bound
the entropy of both individual parts.

Lemma 5.15. Fix 0 < β < 1, q ∈ N, 0 < p < 1. For any constant D ∈ N and 0 < α < q−1
q , the

output entropy satisfies

H(Y |d = d) ≤ L
∑
d≥0

nd(CMul(d, p, q) + dHq(p)) + (M − n0 − Ud)(logq Ud + L(Hq(α)− 1))

+ L
∑
d≥D

dnd + o(ML).

Proof. We start by investigating the distribution of Y given d and we show that it is equal to
the output distribution of an ordered parallel multinomial channel with d draws, whose input
distribution is the shuffled input distribution.

Pr (Y|d) =
∑
Z

Pr (Z|d)Pr (Y|Z,d) (a)
=
∑
Z

Pr (Z)
M∏
i=1

pdi(yi|zi),

where in equality (a), we expanded the conditional output probability according to the channel
model and used that Z is independent of d. Here, Z has the probability distribution

Pr (Z = Z) =
∑
s

Pr (s)Pr (xs1 = z1, . . . ,xsM = zM |s = s) .
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This means that Y given d is distributed as M parallel multinomial channels with d draws and a
shuffled input distribution. We will continue with splitting the computation of the output entropy
into two parts. One, in output clusters yi with i ∈ U and in those which i /∈ U . We again use the
fact that marginalization reduces entropy, and obtain

H(Y |d = d) ≤ H(Y ,U|d = d) = H(Y |d = d,U) +H(U|d = d).

Since U is a subset of [M ], it has at most 2M different possible outcomes and, henceforth, the
second entropy term is at most H(U|d = d) ≤ logq(2)M . We thus have

H(Y |d = d) ≤ H(Y |d = d,U) +O(M) =
∑

u⊆[M ]

Pr (U = u|d = d)H(Y |d = d,U = u) +O(M).

We are now in the position to use the chain rule of entropy to perform the above mentioned
splitting. To this end, for an arbitrary subset A ⊆ [M ], we introduce the notation YA = (yi : i ∈ A)
as the vector containing all output clusters yi with i ∈ A. The clusters are ordered according to
ascending indices such that the vector is well-defined. We now split the clusters according to the
partition u and [M ] \ u. We obtain by the chain rule of entropy

H(Y |d = d,U = u) = H(Yu|d = d,U = u) +H(Y[M ]\u|d = d,U = u,Yu). (5.2)

We proceed with bounding the first term in (5.2) using the fact that the joint entropy is bounded
by the sum of marginal entropies

H(Yu|d = d,U = u) ≤
∑
i∈u

H(yi|d = d,U = u). (5.3)

Now, fix an arbitrary ϵ > 0 and, to simplify the subsequent analysis, we introduce the random
binary indicator variable Fi, i ∈ [M ] that is equal to 0, if the error vectors of the i-th clusters are
ϵ-typical as defined in Lemma 5.4 and 1, otherwise. We arrive at

H(yi|d = d,U = u) ≤ H(yi, Fi|d = d,U = u)

(b)

≤ 1 +
∑

fi∈{0,1}

Pr (Fi = fi|d = d,U = u)H(yi|d = d, Fi = fi,U = u)

(c)

≤ 1 +H(yi|d = d, Fi = 0,U = u) + Pr (Fi = 1|d = d,U = u) diL, (5.4)

where we used that the entropy of a Bernoulli random variable is at most 1 in (b). Inequality (c)
follows from splitting the sum over fi into two terms and bounding Pr (Fi = 0|d = d,U = u) ≤ 1
as well as H(yi|d = d, Fi = 1,U = u) ≤ diL. The latter bound is due to the fact that the cluster yi

consists of diL symbols over Σq and thus its entropy is directly bounded by diL. Denoting the

di sequences of the i-th cluster by y
(1)
i , . . . ,y

(di)
i ∈ ΣL

q as in Definition 5.13, we can rewrite the
above entropy as

H(yi|d = d, Fi = 0,U = u) = H
(
yi

∣∣∣d = d, Fi = 0,U = u,y
(1)
i

)
+H

(
y
(1)
i

∣∣∣d = d, Fi = 0,U = u
)
.

The first summand can be bounded using Lemma 5.4, as follows. To start with, for the sake

of the argument, consider the distribution of yi given y
(1)
i and d without the condition on Fi
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5.3 Converse Bound

and U first. To this end, denote by e
(j)
i ≜ y

(j)
i − xi the error vectors of the i-th cluster. As we

have seen in the beginning of the proof, without the condition on Fi and U those are distributed
according to the multinomial channel model, independent from the input. Now, we can express
the conditional distribution of yi as

Pr
(
yi = yi

∣∣∣d = d,y
(1)
i = y

(1)
i

)
= Pr

(
e
(2)
i − e

(1)
i = y

(2)
i − y

(1)
i , . . . , e

(di)
i − e

(1)
i = y

(di)
i − y

(1)
i

∣∣∣di = di,y
(1)
i = y

(1)
i

)
as that of the error vectors e

(j)
i − e

(1)
i . By Lemma 5.4, given that Fi = 0, i.e., the error

vectors are ϵ-typical sequences, the number of possible options for the error vectors is at most
qL(CMul(di,p,q)+diHq(p)−1+ϵ). Since further conditioning can only decrease the number of possible

options, we have H(yi|d = d, Fi = 0,U = u,y
(1)
i ) ≤ L(CMul(di, p, q) + diHq(p) − 1 + ϵ) and

together with the trivial bound H
(
y
(1)
i

∣∣∣d = d, Fi = 0,U = u
)
≤ L, we obtain for all i ∈ u

H(yi|d = d, Fi = 0,U = u) ≤ L(CMul(di, p, q) + diHq(p) + ϵ). (5.5)

We now bound the second entropy term in (5.2) using again the fact that the joint entropy is at
most the sum of the individual entropies and obtain

H(Y[M ]\u|d = d,U = u,Yu) ≤
∑

i∈[M ]\u:di>0

H(yi|d = d,U = u,Yu), (5.6)

where we used that H(yi|d = d,U = u,Yu) = 0 for all i ∈ [M ] \ u with di = 0. Performing the
analogous steps as above to introduce the conditioning on the random variable Fi, we obtain for
all i ∈ [M ] \ u

H(yi|d = d,U = u,Yu) ≤ 1 +H(yi|d = d, Fi = 0,U = u,Yu) + Pr (Fi = 1|d = d,U = u) diL.
(5.7)

Using the same notation as in the derivation of the first term, we obtain for all i ∈ [M ] \ u

H(yi|d = d, Fi = 0,U = u,Yu)

= H
(
yi

∣∣∣d = d, Fi = 0,U = u,y
(1)
i ,Yu

)
+H

(
y
(1)
i

∣∣∣d = d, Fi = 0,U = u,Yu

)
(d)

≤ L(CMul(di, p, q) + diHq(p)− 1 + ϵ) + logq |u|+ LHq(α), (5.8)

where the first summand in inequality (d) has been bounded using the same arguments as above.
The second summand has been bounded using the fact that, given U = u and Yu, there are only

|u|qLHq(α) options for y
(1)
i , as y

(1)
i has to have distance at most αL to one of the sequences in Yu.

Note that this entropy bound on the size of the Hamming ball is only valid if α < q−1
q . Plugging
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Chapter 5 Unordered Parallel Multinomial Channel

Table 5.1: Illustration of the bounds on the entropy used used for different types of output clusters
in the proof of Lemma 5.15

Notation Meaning Entropy Bound

Fi = 1
The cluster’s error vectors are not typical

sequences.
diL

i ∈ u ∧ Fi = 0
The cluster’s error vectors are typical

sequences and the cluster is free.
(CMul(di, p, q) + diHq(p))L

i /∈ u ∧ Fi = 0
The cluster’s error vectors are typical
sequences and the first sequence in the

cluster is not free.

(CMul(di, p, q) + diHq(p))L−
(1−Hq(α))L+ logq |u|

(5.6), (5.7), (5.8) and (5.3), (5.4), (5.5) into (5.2), we conclude that

H(Y |d = d,U = u) ≤
M∑
i=1

L(CMul(di, p, q) + diHq(p) + ϵ) +
∑

i∈[M ]\u:di>0

logq |u|+ L(Hq(α)− 1)

+
M∑
i=1

Pr (Fi = 1|d = d,U = u) diL+M

(e)
=
∑
d≥0

Lnd(CMul(d, p, q) + dHq(p) + ϵ) + (M − n0 − |u|)(logq |u|+ L(Hq(α)− 1))

+
M∑
i=1

Pr (Fi = 1|d = d,U = u) diL+M,

where in equality (e) we replaced the sum over i by a sum over d. We further used that the
number of terms in the sum over i ∈ [M ] \ u with di > 0 is precisely M − n0 − |u|. The different
cases according to which we computed the entropy of the output clusters have been summarized
in Table 5.1. As a reminder we note that the above inequality holds for all 0 < ϵ < 1, where Fi

is the random variable that depends on ϵ through the ϵ-typical sequences from Lemma 5.4. We
continue with bounding the last summand from above.

L
∑
u

Pr (U = u|d = d)
M∑
i=1

Pr (Fi = 1|d = d,U = u) di = L
M∑
i=1

Pr (Fi = 1|d = d) di.

Note that by Lemma 5.4, Pr (Fi = 1|d = d) < ϵ for all L ≥ Ldi(ϵ). Since we cannot guarantee
that L ≥ Ldi for all i ∈ [M ], we restrict on a large but constant number of draws. To this end,
denote by D ∈ N the arbitrary constant from the Lemma statement. We split the sum over i
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5.3 Converse Bound

according to terms with more or less than D draws and obtain

L
M∑
i=1

Pr (Fi = 1|d = d) di = L
∑

i:di<D

Pr (Fi = 1|d = d) di + L
∑

i:di≥D

Pr (Fi = 1|d = d) di

(f)

≤ ϵL
∑

i:di<D

di + L
∑

i:di≥D

Pr (Fi = 1|d = d) di
(g)

≤ ϵcML+ L
∑

i:di≥D

di,

where we used that Pr (Fi = 1|d = d) < ϵ for all L ≥ Ldi(ϵ) and thus inequality (f) holds for
all L ≥ max0≤d<D Ld(ϵ). We further used in inequality (g) that the total number of draws is
bounded by cM , according to Definition 5.6. We are now in the position to compute the overall
entropy

H(Y |d = d,U) =
∑

u⊆[M ]

Pr (U = u|d = d)H(Y |d = d,U = u)

≤ L
∑
d≥0

nd(CMul(d, p, q) + dHq(p)) + E[(M − n0 − |U|)(logq |U|+ L(Hq(α)− 1))|d = d]

+ L
∑

i:di≥D

di + ϵcML+O(M)

(h)

≤ L
∑
d≥0

nd(CMul(d, p, q) + dHq(p)) + (M − n0 − Ud)(logq Ud + L(Hq(α)− 1))

+ L
∑

i:di≥D

di + ϵcML+O(M),

where inequality (h) is due to Jensen inequality and the fact that −|U| logq |U| is a concave function
in |U|. Note that this inequality holds for any constant D and large enough L ≥ max0≤d<D Ld(ϵ).
The claim of the lemma follows as we can choose ϵ arbitrarily small.

5.3.2 Ordered Conditional Entropy Bound

Next, we compute the conditional output entropy, conditioned on the permutation s.

Lemma 5.16. Fix 0 < β < 1, q ∈ N, 0 < p < 1. Then,

H(Y |X, s,d = d) =
∑
d≥0

nddHq(p).

Proof. We can use the fact that Z is a function of X and s, since zi = xsi to obtain that the
conditional output entropy is given by

H(Y |X, s,d = d) = H(Y |X, s,Z,d = d)
(a)
= H(Y |Z,d = d),

where in step (a) we used that Y is independent of X and s given Z. This allows to compute
the entropy by

H(Y |Z,d = d)
(b)
=

M∑
i=1

H(yi|Z,d = d)
(c)
=

M∑
i=1

H(yi|zi, dsi = di)
(d)
=

M∑
i=1

diHq(p) =
∑
d≥0

nddHq(p),
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Chapter 5 Unordered Parallel Multinomial Channel

where equality (b) follows from the independence of the variables yi given the input Z and drawing
distribution d. In equation (c) we used that, given zi and di, the variable yi is independent of all
zj and dj with j ̸= i due to the fact that yi can be expressed as the sum of the di-fold repetition
of zi and an error vector that is chosen independently, as presented in Section 5.1.1. Note that
H(yi|xi, di = di) = diHq(p) is precisely the channel entropy of the multinomial channel, which
has been shown in Lemma 5.2 to be independent of the input distribution of zi and thus is only
dependent on di, which we used in equality (d).

5.3.3 Permutation Entropy Bound

The last ingredient that is missing to prove Lemma 5.14 is to bound the entropy of the permutation
given the input and output sequences. Note that our proof is motivated by the idea of [SH21],
where a similar statement has been proven for the case, where the drawing composition is a
Bernoulli random variable.

Lemma 5.17. Fix the parameters 0 < β < 1, q ∈ N, 0 < p < 1. Then for any α with 2p < α < 1,

H(s|X,Y ,d = d) ≤M logq M − Ud logq Ud + o(ML).

Proof. To start with, we observe that

H(s|X,Y ,d = d) = H(s|X,Y ,U ,d = d), (5.9)

as U is a function of Y and we thus can introduce the condition without changing the entropy.
We can further expand the entropy to

H(s|X,Y ,U ,d = d) ≤
∑
u

Pr (U = u|d = d)
M∑
i=1

H(si|X,Y ,U = u,d = d). (5.10)

On the one hand, for each i ∈ [M ] with di = 0, we can trivially bound the entropy of the
permutation by H(si|X,Y ,U = u,d = d) ≤ logq M , as there are at most M options for si. On
the other hand, we fix an arbitrary δ > p and introduce for each i ∈ [M ] with di > 0, the Bernoulli

variable Ei, which is equal to one, if dH

(
xsi ,y

(1)
i

)
≥ δL and 0, otherwise. Here y

(1)
i ∈ ΣL

q is the

first sequence in the cluster according to the nomenclature of Definition 5.13. As the Hamming

distance between xsi and y
(1)
i is binomial distributed with success probability p and L trials, we

know from Lemma A.4 that

Pr (Ei = 1|d) ≤ e−2L(δ−p)2 (5.11)

This allows to derive the following upper bound on the individual entropy terms.

H(si|X,Y , U = u,d = d) ≤ H(si, Ei|X,Y ,U = u,d = d)

≤ H(Ei|X,Y ,U = u,d = d) +H(si|X,Y , Ei,U = u,d = d)

(a)

≤ 1 +
∑

ei∈{0,1}

Pr (Ei = ei|U = u,d = d)H(si|X,Y , Ei = ei,U = u,d = d)

(b)

≤ 1 + Pr (Ei = 1|U = u,d = d) logq M +H(si|X,Y , Ei = 0,U = u,d = d), (5.12)
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where we used in inequality (a) that the entropy of a Bernoulli random variable is at most 1.
Inequality (b) follows from the fact that Pr (Ei = 0|U = u,d = d) ≤ 1 and the fact that we can
again trivially bound the entropy H(si|X,Y , Ei = 1,U = u,d = d) by logq M . It remains to
bound H(si|X,Y , Ei = 0,U = u,d = d) from above. To this end, we will set δ = α/2 and for all
i ∈ u, we introduce the sets

Ai =
{
j ∈ [M ] : dH

(
xj ,y

(1)
i

)
< δL

}
of input sequences that have distance less than δL to the first sequence in the i-th output cluster.

This set contains all input sequences that could potentially have produced y
(1)
i , given that Ei = 0.

Note that by definition of Ei and Ai, we directly have si ∈ Ai, given Ei = 0. Further, the sets Ai

are disjoint, as for any i, k ∈ u and any sequence j ∈ Ai it holds by the triangle inequality,

dH

(
xj ,y

(1)
k

)
≥ dH

(
y
(1)
i ,y

(1)
k

)
− dH

(
xj ,y

(1)
i

)
> (α− δ)L = δL,

implying that each j ∈ [M ] can be contained in at most one set Ai. For all i ∈ u with Ei = 0,
si ∈ Ai, and si can thus assume at most |Ai| values, limiting its entropy to at most logq |Ai|.
Bounding the entropy for all other terms i /∈ u by logq M , we obtain∑

i:di>0

H(si|X,Y , Ei = 0,U = u,d = d) ≤
∑

i/∈u:di>0

logq M +
∑
i∈u

logq |Ai|

= (M − n0 − |u|) logM +
∑
i∈u

logq |Ai|
(c)

≤ (M − n0 − |u|) logM + |u| logq(M/|u|)

= (M − n0) logM − |u| log |u|, (5.13)

where inequality (c) is due to
∑

i∈u |Ai| ≤M due to the disjointedness of the sets Ai. Thus, the
sum is bounded from above by setting |Ai| = M/|u| by Jensen’s inequality and the concavity of
the logarithm. Plugging (5.13) and (5.12) into (5.10) and taking also those i with di = 0 into
account, we obtain

H(s|X,Y ,U ,d = d) ≤M logq M +
∑
u

Pr (u|d)

(
−|u| logq |u|+

∑
i:di>0

(1 + Pr (Ei = 1|d, u) logq M)

)

≤M logq M − E
[
|U| logq |U| |d = d

]
+ logq M

M∑
i:di>0

Pr (Ei = 1|d) +O(M)

(d)
= M logq M − Ud logq Ud + o(ML), (5.14)

where we used Jensen’s inequality in (d) together with the bound (5.11) on the probability
Pr (Ei = 1|d), which proves the claim of the lemma with (5.9).

5.4 Achievable Rates

We proceed by deriving achievable rates for the unordered parallel multinomial channel. We derive
these results using standard random coding techniques [Sha48]. For a thorough introduction into
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this area, we recommend the reader to familiarize with [CT06]. The basic idea is as follows. Choose
a random codebook C of rate R with identically and independent distributed codewords, which are
drawn from some given input distribution Pr (X = X). Then, define some generic, easy-to-analyze
decoder and proceed with computing the average error probability over all codebooks. If one can
prove that for a given rate R, the average error probability tends to zero, we can deduce that
there exists at least one codebook of rate R whose error probability also tends to zero. This is
because the infimum of an ensemble is always bounded from above by its average.

In our case we will use a decoder that is based on jointly typical sequences [CT06; Mac15] over
the multinomial channel. It is known that for any discrete memoryless channel, and thus also for
the multinomial channel, the input and output sequences are jointly typical with respect to the
input distribution with high probability. Conversely, another input sequence, chosen independently
from the same input distribution is jointly typical with the previous output sequence with very
small probability. We will use this fact and define a new kind of typicality over the unordered
multinomial channel as follows. Roughly speaking, we will say that the M input sequences
x1, . . . ,xM are jointly typical with the M output clusters y1, . . . ,yM , if there exists a matching
between the input sequences and output clusters, whose size is large, i.e., close to M . We hereby
match an input sequence xi and an output cluster yj , if they are jointly typical with respect
to the multinomial channel. Note that the output clusters, which are empty can be matched
to any input sequence, as they are jointly typical with respect to any input sequence. Given a
channel output y1, . . . ,yM , the decoder then decides for a codeword if it is jointly typical in the
above sense with a unique codeword and fails in any other case. Analyzing this decoder will
show that for any rate R below the capacity of the unordered parallel multinomial channel, the
probability that the correct transmitted codeword is jointly typical with the received word with
high probability and any other codeword is jointly typical with small probability. We now turn
to a rigorous derivation of achievable rates. We will devote the rest of this section to prove the
following result about achievable rates in a step-by-step fashion. We will proceed by presenting
the final results first and wrap up the necessary ingredients towards the end of the section.

Lemma 5.18. Fix β > 0, q ∈ N, 0 < p < q−1
2q , and let the distribution Pr (d) be a regular

distribution that converges in frequency to ν. Then, any rate R with

R < CUPM(ν, β, p, q).

is achievable over the unordered parallel multinomial channel.

We start with setting up the necessary definitions required for the following expositions and
assume that the conditions of Lemma 5.18 are fulfilled throughout the remainder of this section.
We will prove the results using the conventional random coding argument. To this end recall the
communication setup presented in Section 5.2.1. Let now C = {X(1), . . . ,X(qMLR)} ⊆ ΣM×L

q

be a randomly chosen codebook of code rate R, where each codeword X(i) ∈ ΣM×L
q is selected

independently and uniform over all possible words in ΣM×L
q , i.e., each symbol in X(i) is chosen

independently and uniformly over Σq. We will write X(i) = (x1(i), . . . ,xM (i)). In order to define
the decoder, we fix an 0 < ϵ < 1 and will use the notion of jointly typical sequences as described
in the following definition. To this end, recall Definition 5.3 of jointly typical sequences over the
multinomial channel.

Definition 5.19. We define the largest typicality matching T ϵ
UPM(X,Y) between the input

X = (x1, . . . ,xM ) and output Y = (y1, . . . ,yM ) as the largest integer T such that there exist two
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sequences of integers i1, . . . , iT and j1, . . . , jT , with it, jt ∈ [M ] for all 1 ≤ t ≤ T , each sequence
composed of distinct integers, such that (xit ,yjt) ∈ T

L,ϵ
Mul(djt , p, q) for all 1 ≤ t ≤ T , where djt is

the size of the cluster yjt . We further define the set of jointly typical sequences over the unordered
parallel multinomial channel as

T M,L,ϵ
UPM (p, q) =

{
((x1, . . . ,xM ), (y1, . . . ,yM )) ∈ ΣM×L

q ×
(
Σd1×L
q × · · · × ΣdM×L

q

)
:

d1, . . . , dM ∈ N0 ∧ T ϵ
UPM((x1, . . . ,xM ), (y1, . . . ,yM )) ≥ (1− ϵ)M

}
.

In other words, an input X and output Y is jointly typical over the unordered parallel
multinomial channel, if there exist many (distinct) pairs of input sequences and output clusters
(xi,yj) that are jointly typical with respect to the multinomial channel. The decoder decC(Y )

decodes to Ŵ , if X(Ŵ ) is the unique codeword that is jointly typical with Y = (y1, . . . ,yM ) with

respect to the unordered multinomial channel as in Definition 5.19, i.e., (X(Ŵ ),Y ) ∈ T M,L,ϵ
UPM (p, q).

If there is none or more than two codewords that are jointly typical with Y , than the decoder
outputs a failure, resulting in a decoding error. The following event will be helpful throughout
this section. Denote by Ji the event that the i-th codeword X(i) is jointly typical with Y , i.e.,
(X(i),Y ) ∈ T M,L,ϵ

UPM (p, q) and by J c
i the complement event.

Proof of Lemma 5.18. The average probability of a decoding error, averaged over all codebooks,
is given by

Pr (Err) =
∑
C

Pr (C)Pr (Err|C) = Pr (Err|W = 1) ,

where the last equality is due to the symmetry of the choice of random codebooks, see, e.g., [CT06,
Ch. 7.7]. The two possible error events are that either X(1) is not jointly typical with Y or that
one of the other codewords is jointly typical with respect to Y . By the union bound we obtain

Pr (Err|W = 1) ≤ Pr

J c
1 ∪

qMLR⋃
i=2

Ji

∣∣∣∣∣W = 1

 ≤ Pr (J c
1 |W = 1) + Pr

qMLR⋃
i=2

Ji

∣∣∣∣∣W = 1

 .

By Lemmas 5.20 and 5.21, for any 0 < ϵ < 1 and R < CUPM(ν, β, p, q) − 5ϵ the probability of
both the error events above converges to zero as M →∞. Since we can choose ϵ arbitrarily small,
it follows that for each R < CUPM(ν, β, p, q), the error probability Pr (Err|W = 1)→ 0 vanishes
as M → ∞. Since the average error probability over all codebooks vanishes, for all code rates
R < CUPM(ν, β, p, q), there exists at least one codebook of rate R that has vanishing error rate
and thus R is an achievable rate.

We proceed with bounding the error probability of both error events.

5.4.1 Decoding Probability for the Correct Codeword

We start with bounding the probability that the correct codeword is not within the decoding radius.
The following lemma proves that the transmitted codeword is jointly typical to its corresponding
output with high probability.

Lemma 5.20. Fix the parameters 0 < β < 1, q ∈ N, 0 < p < 1 and let the distribution Pr (d) be a
regular distribution. Then, for any 0 < ϵ < 1, the probability Pr (J1|W = 1) that the transmitted
codeword is jointly typical with the channel output satisfies Pr (J1|W = 1)→ 1, as M →∞.
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Proof. We bound Pr (J1|W = 1) from below. The proof follows a similar outline as the second
part of the proof of Lemma A.7. For an arbitrary ϵ > 0 denote by Nϵ the event on the random
variable n that

∑
d≥0

∣∣ nd
M − νd

∣∣ ≤ ϵ/4. We demarginalize with respect to the drawing composition
d and obtain

Pr (J1|W = 1) =
∑
d

Pr (d)Pr (J1|W = 1,d = d) ≥
∑
d∈Nϵ

Pr (d)Pr (J1|W = 1,d = d) ,

where we used that the drawing composition d is independent of the message W . Note that the
event Nϵ is defined as an event on the drawing frequency n, however since n is a function of d, one
can also view it as an event on the drawing composition d. Denote by Z(1) = (z1(1), . . . ,zM (1))
the permuted input sequences. We will analyze the number

T ϵ
OPM(Z(1),Y ) ≜

∣∣∣{i ∈ [M ] : (zi(1),yi) ∈ T L,ϵ
Mul(di, p, q)

}∣∣∣
of jointly typical pairs over the multinomial channel. This is because the unordered typicality
is at least as large as the ordered typicality, i.e., T ϵ

UPM(X(1),Y ) ≥ T ϵ
OPM(Z(1),Y ) due to the

fact that Z(1) is simply a permutation of X and we thus can match yi to xsi(1) for all pairs
of sequences that contribute to T ϵ

OPM(Z(1),Y ). Note that this matching could also be larger,
however this bound is sufficient for our analysis as this implies that

Pr (J1|W = 1,d = d) = Pr (T ϵ
UPM(X(1),Y ) ≥ (1− ϵ)M |W = 1,d = d)

≥ Pr (T ϵ
OPM(Z(1),Y ) ≥ (1− ϵ)M |W = 1,d = d) .

For a given number of draws d = d the size of the largest typical matching T ϵ
OPM(Z(1),Y )

is the sum of M independent random Bernoulli random variables with success probabilities
πi ≜ Pr((zi(1),yi) ∈ T L,ϵ

Mul(di, p, q)|W = 1, di = di). From the results about jointly typical
sequences [CT06, Thm. 7.6.1] we know that for all ϵ > 0 and i ∈ [M ], it holds that πi > 1− ϵ/2 for
all L ≥ Ldi , as yi is the result of transmitting zi(1) over the multinomial channel. As maxi∈[M ] Ldi

might increase with M , we focus our attention to a subset of multinomial channels whose number
of draws is bounded from above by a large, but finite quantity. To this end, let Dϵ be the smallest
integer such that

∑
d≥Dϵ

νd < ϵ/4. We have that for all d ∈ Nϵ, the number of positions i ∈ [M ]
with di < Dϵ is at least

Dϵ−1∑
d=0

nd ≥M

Dϵ−1∑
d=0

νd −
Mϵ

4
> M

(
1− ϵ

2

)
.

Thus, at least M(1− ϵ/2) Bernoulli variables have success probability at least πi > 1− ϵ/2 for all
L ≥ max0≤d<Dϵ Ld (which is finite) and we obtain

Pr (J1|W = 1,d = d)

≥
M−Mϵ

2∑
i=M−Mϵ

(
M − Mϵ

2

i

)(
1− ϵ

2

)i ( ϵ
2

)M−Mϵ
2

−i
=

Mϵ
2∑

i=0

(
M − Mϵ

2

i

)(
1− ϵ

2

)M−Mϵ
2

−i ( ϵ
2

)i

= 1−
M−Mϵ

2∑
i=Mϵ

2
+1

(
M − Mϵ

2

i

)(
1− ϵ

2

)M−Mϵ
2

−i ( ϵ
2

)i (a)

≥ 1− e
−2(M−Mϵ

2 )
(

ϵ2

4−2ϵ

)2

,
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for all 0 < ϵ < 1 and large enough L. Here we used Lemma A.4 to bound the binomial tail in
inequality (a). Thus, finally, for any ϵ > 0 and large enough L,

Pr (J1|W = 1) ≥

(
1− e

−2(M−Mϵ
2 )

(
ϵ2

4−2ϵ

)2
)
Pr (d ∈ Nϵ) ,

where the first term approach 1 as M →∞ for any 1 < ϵ < 0 and the second term approaches 1 as
well by assumption of convergence of the drawing frequency. It follows that Pr (J1|W = 1)→ 1.

5.4.2 Decoding Probability for the Wrong Codewords

The next lemma proves that the probability that any other codeword is jointly typical with respect
to the output that stems from the correct codeword is small.

Lemma 5.21. Fix the parameters 0 < β < 1, q ∈ N, 0 < p < 1 and let the distribution Pr (d) be a
given regular distribution that converges in frequency to ν. Then, for any 0 < ϵ < 1, and any rate
R < CUPM(ν, β, p, q)− 5ϵ, the probability that at least one other codeword X(i), 2 ≤ i ≤ qMLR is
jointly typical with the channel output of the transmission of X(1) over the unordered parallel
multinomial channel satisfies

Pr

qMLR⋃
i=2

Ji

∣∣∣∣∣W = 1

→ 0,

as M →∞.

Proof. We again denote by Nϵ the event for n that
∑

d≥0

∣∣ nd
M − νd

∣∣ ≤ ϵ/4. Similar as in the proof
of Lemma 5.20 we demarginalize with respect to the drawing composition d and obtain

Pr

qMLR⋃
i=2

Ji

∣∣∣∣∣W = 1

 ≤ Pr (d /∈ Nϵ) +
∑
d∈Nϵ

Pr (d)Pr

qMLR⋃
i=2

Ji

∣∣∣∣∣W = 1,d = d


(a)

≤ Pr (d /∈ Nϵ) + qMLR
∑
d∈Nϵ

Pr (d)Pr (J2|W = 1,d = d) , (5.15)

where in inequality (a) we used the union bound together with the fact that Pr (Ji|W = 1,d = d)
is invariant over all 2 ≤ i ≤ qMLR due to the identical and independent choice of codewords. To
start with, denote Z(2) = (z1(2), . . . ,zM (2)) as the random variable, which is the permutation
of the codeword X(2). We observe that T ϵ

UPM(X(2),Y) = T ϵ
UPM(Z(2),Y) since the size of the

largest matching is invariant to permutations of the sequences and thus

Pr (J2|W = 1,d = d) = Pr (T ϵ
UPM(Z(2),Y ) ≥M(1− ϵ)|W = 1,d = d) .

For an arbitrary n ∈ [M ] denote by P(M,n) = {m = (m1, . . . ,mn) ∈ [M ]n : mi ≠ mj ∀ i ̸= j}
the set of length-n partial permutations of the set [M ]. Denote further by Tm,j a Bernoulli random

variable, which is equal to 1, if (zm(2),yj) ∈ T L,ϵ
Mul(dj , p, q) and 0, otherwise. This allows to rewrite
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the above probability as

Pr (J2|W = 1,d = d) = Pr

∃m ∈ P(M,M) :
M∑
j=1

Tmj ,j ≥M(1− ϵ)

∣∣∣∣∣W = 1,d = d


(b)
= Pr

∃m ∈ P(M,M) :
∑

j:dj>0

Tmj ,j ≥M(1− ϵ)− n0

∣∣∣∣∣W = 1,d = d

 ,

where (b) is due to the fact that Tm,j = 1 with probability 1 for all empty clusters, i.e., for
all j ∈ [M ] with dj = 0. Denote by j1, . . . , jM−n0 precisely those indices with djt > 0 for all
1 ≤ t ≤M − n0. Then, we can simplify the above expression by

Pr (J2|W = 1,d = d) = Pr

(
∃m′ ∈ P(M,M − n0) :

M−n0∑
t=1

Tm′
t,jt
≥M(1− ϵ)− n0

∣∣∣∣∣W = 1,d = d

)
(c)

≤
∑

m′∈P(M,M−n0)

Pr

(
M−n0∑
t=1

Tm′
t,jt
≥M(1− ϵ)− n0

∣∣∣∣∣W = 1,d = d

)
,

where inequality (c) is due to an application of the union bound. We will bound the above probabil-
ity as follows. To start with, since X(2) is chosen independently from Y , also Z(2) is independent
of Y and it follows that, given d = d, for all i, j ∈ [M ], πj ≜ Pr (Ti,j = 1|W = 1,d = d), it holds
that πj < q−L(CMul(dj ,p,q)−ϵ) for L ≥ Ldj [CT06, Thm. 7.6.1], where Ldj are integers that depend
on ϵ and the channel dj . Since at least M(1− ϵ)− n0 of the Bernoulli variables Tm′

t,jt
must be

equal to 1, we can use these definitions to bound the above probability

Pr

(
M−n0∑
t=1

Tm′
t,jt
≥M(1− ϵ)− n0

∣∣∣∣∣W = 1,d = d

)
≤

∑
I⊆[M−n0]:|I|=M(1−ϵ)−n0

∏
t∈I

πjt

(d)

≤
∑

I⊆[M ]:|I|=M(1−ϵ)

∏
j∈I

πj ≤
(

M

M(1− ϵ)

)
max

I⊆[M ]:|I|=M(1−ϵ)

∏
j∈I

πj .

Note that in inequality (d) we factored those j into account with dj = 0 into the product, for which
πj = 1. This will simplify the subsequent notation and analysis. Mathematically, inequality (d)
holds, as each set I1 in the first sum is contained in some set I2 of the second sum such that the
positions j ∈ I2 \ I1 are exactly those positions with dj = 0 and πj = 1 and thus each term in
the first sum is accounted for by at least one term in the second sum. In order to use the above
bound on πj , we restrict our attention to those channels j with at most a finite but large number
of draws, such that the maximum over Ldj is guaranteed to be constant in M . To this end, let
Dϵ be the smallest integer such that

∑
d≥Dϵ

νd < ϵ/4 and abbreviate D(ϵ) = {j ∈ [M ] : dj < Dϵ}.
We can then bound the product over πj to∏

j∈I
πj ≤

∏
j∈I∩D(ϵ)

πj <
∏

j∈I∩D(ϵ)

q−L(CMul(dj ,p,q)−ϵ) = q−L
∑

j∈I∩D(ϵ)(CMul(di,p,q)−ϵ)

for all L ≥ max0≤d<Dϵ Ld, which is constant and not a function of M or L, as desired. Analyzing
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the exponent of the error probability expression above, we find that

∑
j∈I∩D(ϵ)

(CMul(dj , p, q)− ϵ) =

 M∑
j=1

(CMul(dj , p, q)− ϵ)−
∑

j /∈I∩D(ϵ)

(CMul(dj , p, q)− ϵ)


(e)

≥

 M∑
j=1

(CMul(dj , p, q)− ϵ)− 3Mϵ

2

 =
∑
d≥0

ndCMul(d, p, q)−
5Mϵ

2

≥M
∑
d≥0

νdCMul(d, p, q)−
7Mϵ

2
,

where in inequality (e) we bounded the second sum using CMul(dj , p, q) ≤ 1 together with the fact
that by definition of Dϵ and for all d ∈ Nϵ,

|D(ϵ)| =
Dϵ−1∑
d=0

nd ≥M

Dϵ−1∑
d=0

νd −
Mϵ

4
> M

(
1− ϵ

2

)
,

and thus

|{j ∈ [M ] : j /∈ I ∩ D(ϵ)}| ≤M − |I|+M − |D(ϵ)| < 3Mϵ

2
,

where we used that |I| = M(1− ϵ) for the considered sets. For any 0 < ϵ < 1 and large enough
M , and any d ∈ Nϵ, the resulting upper bound Pr (J2|W = 1,d = d) is henceforth

Pr (J2|W = 1,d = d) ≤ |P(M,M − n0)|
(

M

M(1− ϵ)

)
q−ML(

∑
d≥0 νdCMul(d,p,q)−7ϵ/2)

(f)

≤ 2Mq−ML(
∑

d≥0 νdCMul(d,p,q)−β(1−ν0)−9ϵ/2), (5.16)

where we used
(

M
M(1−ϵ)

)
≤ 2M and |P(M,M − n0)| = M !

n0!
≤MM−n0 ≤ qβLM(1−ν0+ϵ) for all d ∈ Nϵ

in inequality (f). Plugging (5.16) into the average code error probability (5.15), we obtain

Pr

qMLR⋃
i=2

Ji

∣∣∣∣∣W = 1

 ≤ Pr (d /∈ Nϵ) + q−ML(−R+CUPM(ν,p,q)−9ϵ/2−logq(2)/L).

In the above expression, it holds that Pr (d /∈ Nϵ)→ 0 as M →∞ by assumption of a drawing
distribution that converges in frequency. Further, logq(2)/L → 0 as M → ∞ and thus, fur
any R < CUPM(ν, p, q) − 9ϵ/2, the exponent of q will be negative for large enough M and the
sought-after error probability converges to 0 as M →∞, which proves the claim of the lemma.

5.5 Conclusion

The main topic of this chapter was a probabilistic channel whose input comprises many parallel
sequences and the output is obtained by shuffling these sequences and transmitting each individual
sequence over a multinomial channel with a random number of draws. We have presented
conditions on the drawing distribution and the channel parameters that allowed to derive an
explicit closed form expression for the channel capacity. We have presented the capacity formula
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and given an intuitive interpretation of the involved terms together with a rigorous proof of a
converse and an achievablity bound.
The converse bound for the unordered parallel multinomial channel has, as in other works

on permutation channels [Len+20d; SH19; SH21], been derived using an auxiliary statistic that
characterizes the similarity of the sequences. As the presented statistic based on mutual Hamming
distances only enables us to derive the capacity for a limited number of parameters, one intriguing
question is, whether other measures of similarity allow to derive converse bounds for a larger
range of parameters. Further, while this technique allows an elegant, tractable analysis of the
channel statistics, a natural open question is also whether other techniques can be used to derive
converse bounds. On the other hand, achievable rates have been derived using standard random
coding techniques together with a novel measure of typicality over parallel channels. It appears
that the technique presented here naturally generalizes to other constituent channels, which is
however out of scope of this dissertation.

There are other possible generalizations of this work, which are interesting and non-trivial. One
is the generalization to asymmetric channels instead of the symmetric channel discussed here.
This would likely require a sharper, or possible soft metric, as the Hamming distance might not
be the appropriate measure due to the asymmetry of the channel. Another interesting direction is
the incorporation of insertions and deletions into the channel model. Notice however that this
direction is particularly challenging due to the fact that even for standalone insertion and deletion
channels, an explicit capacity formula remains unknown to date.
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Chapter 6

Probabilistic DNA Storage Channel

Consider a DNA-based data storage system, where information is stored on many short DNA
sequences, which are transferred into a liquid storage medium. One of the most striking properties
of such systems is the unordered nature in which DNA strands reside in the storage medium.
Together with the fact that usually each strand is contained several times in the medium, these
systems are the basis for a unique communication model in which the received sequences are
erroneous samples of the original sequences and the origin of the sequences is unknown to the
receiver. The first information-theoretic studies of such a communication system have been
conducted in [Hec+17; MSG15]. Based on a sequence sampling model, where the output sequences
are obtained through independent and uniform draws from the input sequences, the capacity was
derived for the case of no errors within the sequences. Other works [SH19; SH21] have derived
the capacity for noisy sequences, however with a different sampling model that either assumes
that each sequence is drawn exactly once [SH19] or according to a Bernoulli distribution [SH21].
Building on these works, we generalize the results of [Hec+17; MSG15] for the independent and
uniform drawing model to the case, where errors can occur in the sequences.

This chapter is organized as follows. We start with a precise definition of the probabilistic DNA
storage channel in Section 6.1. Next are the definitions and our result on the channel capacity
in Section 6.2. For the derivation of the capacity, we show in Section 6.3 that the probabilistic
DNA storage channel is equivalent to a degraded unordered parallel multinomial channel. We
use this relationship to derive an upper bound on all achievable information rates in Section 6.4.
This bound is complemented with a result that proves the attainability of all information rates
below the converse bound in Section 6.5. We conclude with numerical evaluations of the presented
capacity formulae and a discussion on cost-efficient system design in Section 6.6.

The probabilistic DNA storage channel is closely related to the unordered parallel multinomial
channel, that has been presented in Chapter 5. While this chapter is intended to be self-contained,
we will use results from Chapter 5 and adopt notation in some places. We therefore advise the
interested reader to familiarize with the contents of Chapter 5 for an in-depth understanding of
the presented materials in the following.

Parts of the results within this chapter have been published in [Len+19a; Len+20c; Len+21f].
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6.1 Channel Model

The input of the DNA storage channel is M sequences x1, . . . ,xM where each xi = (xi,1, . . . , xi,L),
xi ∈ ΣL

q , i ∈ [M ], is a vector of length L over the q-ary alphabet Σq. From these input sequences,
a total of N sequences are drawn with replacement, each uniformly and independent of other
draws, and received with errors. Denote by I = (I1, . . . , IN ), Ij ∈ [M ] the drawing indices, i.e. in
the j-th draw, the input sequence xIj has been drawn. The realization of I and Ij are denoted
by I and Ij , respectively. We assume that the draws Ij are i.i.d. uniform random variables with
Pr (Ij = i) = 1

M for all j ∈ [N ] and i ∈ [M ] that are independent from the input x1, . . . ,xM . The
output of the channel are N sequences rj = (rj,1, . . . , rj,L) ∈ ΣL

q , j ∈ [N ], each of length L. Each
sequence rj is obtained by drawing a random input sequence xIj and transmitting it over a q-ary
symmetric channel with error probability p. That is, the output sequences are given by

rj = xIj + ej ,

for all j ∈ [N ], where the sum is performed over the finite Abelian group of integers, i.e., modulo q.
Hereby, ej = (ej,1, . . . , ej,L) are random error vectors with i.i.d. entries

Pr (ej,ℓ = ej,ℓ) =

{
1− p, if ej,ℓ = 0
p

q−1 , if ej,ℓ ̸= 0
.

for all j ∈ [N ] and ℓ ∈ [L] that are independent of the input x1, . . . ,xM . Hence, the overall
input-output relationship can be summarized as

Pr (r1, . . . , rN |x1, . . . ,xM ) =
∑
I

Pr (I)Pr (r1, . . . , rN |x1, . . . ,xM , I)

=
∑
I

Pr (I)
N∏
j=1

Pr
(
rj , |xIj

)
,

where Pr
(
rj , |xIj

)
is according to the q-ary symmetric channel described above. For notational

convenience, we stack all input and output sequences to matrices X = (x1, . . . ,xM ) ∈ ΣM×L
q

and R = (r1, . . . , rN ) ∈ ΣN×L
q , such that each sequence is a row of the corresponding matrix.

Here we choose to define the input and output sequences as matrices of sizes M × L, and N × L
respectively, for notional convenience. However, it can directly be verified that by defining the
input and output as multi-sets of M , respectively N vectors, each of length L, one obtains an
equivalent channel. Figure 6.1 illustrates an exemplary realization of this channel.
Throughout the section, we will adopt the notation from Chapter 5 and use the following

random variables. The drawing composition d = (d1, . . . , dM ) with di = |{j ∈ [N ] : Ij = i}|,
i ∈ [M ], which counts the number of times the i-th input sequence has been drawn and the
drawing frequency n = (n0, n1, . . . ) with nd = |{i ∈ [M ] : di = d}|, d = 0, . . . , N , which denotes
the number of input sequences that have been drawn a total of d times.

6.2 Capacity of the Probabilistic DNA Storage Channel

The term capacity goes back to the seminal work of Shannon [Sha48] and states a limit on the
maximal information rate at which it is possible to reliably communicate over a communication
channel. We rigorously define the notions of information rate and reliability and state the main
theorem on the channel capacity, which will be proven in the subsequent sections.
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GACTACGT

AATCCGGT

ACAGGTAC

x1

x2

x3

GACTCCGT

ACTCCGGA

GACTACGT

GAGTACGT

r1

r2

r3

r4

X

Draw & Perturb
R

Figure 6.1: Exemplary realization of the DNA storage channel with M = 3 and N = 4. Each
sequence rj is obtained by drawing a random input sequence and sending it through a
q-ary symmetric channel with crossover probability p. The arrows indicate the origin
of each output sequence. Here, (I1, I2, I3, I4) = (1, 2, 1, 1). Errors are underlined.

6.2.1 Codes for the DNA Storage Channel

The definition of codes over the probabilistic DNA storage channel is similar to that for codes
over the unordered parallel multinomial channel in Section 5.2.1. We concisely highlight the
main points and differences with respect to those codes. As for the case of the unordered parallel
multinomial channel, a code is a set C ⊆ ΣM×L

q such that each codeword is M sequences, each of
length L over the alphabet Σq and its rate is given by

R =
logq |C|
ML

.

Each code C is equipped with an encoder encC : [qMLR] 7→ C that maps a message W ∈ [qMLR]
to a codeword and a decoder

decC : ΣN×L
q 7→ [qMLR]

that estimates the original message Ŵ of the original message W given the received sequences
r1, . . . , rN . The error probability of a code C ⊆ ΣM×L

q and a decoder decC is given by

Pr (Err|C) = 1

|C|

qMLR∑
W=1

Pr (decC(r1, . . . rN ) ̸= W|W = W) ,

where r1, . . . rN is the result of transmitting encC(W ) = (x1, . . .xM ) over the probabilistic DNA
storage channel, and the message is chosen uniformly from the set of all messages W ∈ [qMLR].

6.2.2 Main Result

To begin with, the notion of achievable rates and channel capacity is an asymptotic result for
large code lengths. Since the DNA storage channel consists of several code dimensions M,L and
N we specify the precise asymptotic regime for which we derive the capacity. We consider the
case, where M →∞ and M = qβL for some fixed 0 < β < 1. Next, we set N = cM for some fixed
parameter c > 0. Note that this choice is motivated by the following two facts. First, M = qβL is
the interesting case from an analytical perspective and from a practical perspective for systems,
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where many short sequences are transmitted, as pointed out in Section 5.2.2. Further, c is a
parameter controlling the recovery rate of the DNA storage systems, i.e., the average number of
times each stored nucleotide is sequenced. From an efficiency perspective, it is advisable to choose
this parameter such that the number of read nucleotides scales linearly with the number of stored
nucleotides. We use the following standard notion of achievable rates and channel capacity.

Definition 6.1. Fix 0 < β < 1, 0 < p < 1, c > 0, q ∈ N. A code rate R is achievable, if there
exists a family of codes C(M,L,N) ⊆ ΣM×L

q with |C(M,L,N)| = qRML and a decoder that has

vanishing error probability Pr (Err|C(M,L,N))→ 0 as M →∞, where M = qβL and N = cM .
The Shannon capacity CDNA(c, β, p, q) is the supremum of achievable rates.

By this definition, it is possible to communicate reliably at information rates below the capacity.
Conversely, transmitting at rates above the capacity is not possible with vanishing error probability.
We are now in the position to formulate the main theorem on the capacity of the probabilistic
DNA storage channel.

Theorem 6.2. Fix the parameters 0 < β < 1, 0 < p < q−1
2q , c > 0 q ∈ N with 2β < 1−Hq(2p).

Then, the capacity of the probabilistic DNA storage channel is given by

CDNA(c, β, p, q) =
∑
d≥0

Poic(d)CMul(d, p, q)− β(1− ν0),

where Poic(d) =
e−ccd

d! is the probability mass function of the Poisson distribution and CMul(d, p, q)
is the capacity of the multinomial channel from Lemma 5.2.

6.3 Probabilistic DNA Storage Channel as Degraded Unordered
Parallel Multinomial Channel

We proceed with proving Theorem 6.2. A core part of the proof of Theorem 6.2 is that of
identifying the probabilistic DNA storage channel as a degraded unordered parallel multinomial
channel. That is, the output of the probabilistic DNA storage channel can be interpreted as a
permutation of the sequences in the output clusters from the unordered parallel multinomial
channel. Therefore, the receiver looses the information about the clusters, i.e., the groups of
sequences, which originate from the same input sequence. We use this connection to prove a
converse bound and achievable rates over the DNA storage channel. The converse bound is based
on the fact that a degraded channel cannot have a capacity that exceeds the original channel.
The achievable rates are derived via the analysis of a random code with a decoder that clusters
the output sequences and then decides on a codeword based on a typicality measure between the
clusters and codeword sequences similar to that used in Lemma 5.18.
Recall the notion of the unordered parallel multinomial channel from Chapter 5, which has

input X and output Y and let its drawing composition d be according to the drawing model
presented in Section 6.1. This section is devoted to showing that if we define an auxiliary channel
that is comprised of an unordered parallel multinomial channel followed by a permutation channel,
we obtain a channel that has the same input-output relationship as the DNA storage channel.
More precisely, the auxiliary channel has input X and output R′, where R′ is obtained as
follows. First, X is transmitted over an unordered parallel multinomial channel with drawing
composition d that is derived from the independent and uniform draws I, resulting in Y . Now,
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the N = d1 + · · · + dM sequences of all clusters are permuted according to a uniform random
permutation s′. The resulting permuted sequences comprise the channel output R′. The auxiliary
channel is visualized in Figure 6.2. Note that intuitively this equivalence is immediate to the
fact that the random drawing of the DNA storage channel effectively results in a permutation
of the output sequences and the multinomial channels of the unordered parallel multinomial
channel represent the repeated usage of q-ary symmetric channels due to the drawing. However,
we will provide more rigorous arguments of this equivalence and will show in the following that
the overall input-output relationship of auxiliary channel is equivalent to that of the probabilistic
DNA storage channel. By definition of the probabilistic DNA storage channel, we have

Pr
(
R′|X

)
=
∑
s′

Pr
(
R′, s′|X

)
=
∑
s′

Pr
(
s′
)
Pr
(
R′|X, s′

)
The effect of the permutation s′ can be illustrated as follows. Let the permutation s′ be defined
such that s′i,j = k means that the j-th output of the i-th cluster yi is permuted to r′k. With this
notation, r′s′i,1

, . . . , r′s′i,di
are the output sequences that correspond to the i-th output cluster yi.

We can then rewrite the conditional output probability as

Pr
(
R′|X

)
=
∑
s′

Pr
(
s′
)
Pr

(
y1 =

(
r′s′1,1

, . . . , r′s′1,d1

)
, . . . ,yM =

(
r′s′M,1

, . . . , r′s′M,dM

) ∣∣∣X, s′
)

=
∑
d,s,s′

Pr (d)Pr (s)Pr
(
s′
) M∏
i=1

pdi

((
r′s′i,1

, . . . , r′s′i,di

) ∣∣∣xsi)

=
∑
d,s,s′

Pr (d)Pr (s)Pr
(
s′
) M∏
i=1

di∏
j=1

p1

(
r′s′i,j

∣∣∣xsi) (a)
=
∑
I

Pr (I)
N∏
j=1

p1(r
′
j |xIj ),

where p1(y|x) is the transition matrix for the q-ary symmetric channel with a single output
sequence. In equality (a) we introduced the drawing variable I. Due to the uniformity of the
permutations, an output sequence r′j is the result of an input sequence xIj with uniform probability
and thus the variables Ij are also uniformly distributed. This establishes the equivalence of the
auxiliary channel and the probabilistic DNA storage channel as desired.

6.4 Converse Bound

We rigorously prove the converse result in the following using the auxiliary channel model presented
in Section 6.3.

Lemma 6.3. Fix the parameters 0 < β < 1, 0 < p < q−1
2q , c > 0 q ∈ N with 2β < 1 −Hq(2p).

Then, any achievable rate R over the probabilistic DNA storage channel satisfies

R ≤ CDNA(c, β, p, q).

Proof. In Section 6.3 it has been illustrated that there exists an auxiliary channel, which has
the same input-output relationship as the DNA storage channel. As two channels with the same
input-output relationship have the same capacity, the auxiliary channel has the same capacity as
the DNA storage channel. This auxiliary channel has been chosen as a degraded unordered parallel
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Figure 6.2: The probabilistic DNA storage channel as a degraded unordered parallel multinomial

channel. Each cluster yi consists of the di individual sequences y
(1)
i , . . . ,y

(di)
i . The

N = d1 + · · ·+ dM individual sequences of all clusters are permuted, resulting in the
output sequences r′1, . . . , r

′
N .

multinomial channel with input X, intermediate result Y and output R′, where X − Y −R′

form a Markov chain by construction. Thus, by the data processing inequality, the capacity of the
auxiliary channel is at most the capacity of the unordered parallel multinomial channel, where the
latter has a drawing composition d that is derived from the draws I. It remains to prove that we
can apply Theorem 5.10 for the capacity of the unordered parallel multinomial channel. To this
end, we show that the drawing distribution is regular as defined in Definition 5.6. By Lemma 6.4,
the distribution is regular and thus the converse result of the lemma holds by the data processing
inequality.

Lemma 6.4. The distribution Pr (d = d) that is induced by di = |{j ∈ [N ] : Ij = i}|, i ∈ [M ]
with i.i.d. uniform random variables Ij with Pr (Ij = i) = 1

M for all j ∈ [N ] and i ∈ [M ] is a
regular distribution in the sense of Definition 5.6 that converges to νd = Poic(d) in frequency.

Proof. We start by showing that the drawing frequency nd = |{i ∈ [M ] : di = d}| converges
to νd = Poic(d) in frequency. To this end, for an arbitrary ϵ > 0 denote by Nϵ the event
that

∑
d≥0 |nd −Mνd| ≤ ϵM . We will use the effect of Poissonization [Mit96] of the drawing

distribution. Denote by d̃i, i ∈ [M ] independent and identically distributed random variables with

mean c, i.e., Pr
(
d̃i = d

)
= νd. It has been shown [Mit96, Corollary 2.12] that any event on the

exact distribution has probability at most
√
2πeN times the probability of the event for the case

of i.i.d. Poisson variables. It follows that

Pr (d /∈ Nϵ) ≤
√
2πeNPr

(
d̃ /∈ Ñϵ

)
, (6.1)
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where Ñϵ is the event that
∑

d≥0 |ñd−Mνd| ≤ ϵM , where ñd = |{i ∈ [M ] : d̃i = d}| is the drawing
frequency derived from the i.i.d. Poisson variables. We split the probability in sequences with
many draws and few draws,

Pr
(
d̃ /∈ Nϵ

)
≤ Pr

M1/3−1∑
d=0

|ñd −Mνd| ≥
ϵM

2

+ Pr

 ∑
d≥M1/3

|ñd −Mνd| ≥
ϵM

2

 . (6.2)

We now use that ñd is binomial distributed with M trials and success probability νd and thus

Pr

(
|ñd −Mνd| ≥

ϵM2/3

2

)
(a)

≤ 2e−
ϵ2

2
M1/3

,

where we used Lemma A.4 on the two-sided binomial tail distribution in inequality (a). Therefore,
by the union bound, the first summand in (6.2) is at most

Pr

M1/3−1∑
d=0

|ñd −Mνd| ≥
ϵM

2

 ≤ M1/3−1∑
d=0

Pr

(
|ñd −Mνd| ≥

ϵM2/3

2

)
≤ 2M1/3e−

ϵ2

2
M1/3

. (6.3)

Next, we bound the second summand in (6.2). By the triangle inequality, |ñd−Mνd| ≤ ñd +Mνd
and we thus bound the second summand by

Pr

 ∑
d≥M1/3

|ñd −Mνd| ≥
ϵM

2

 ≤ Pr

 ∑
d≥M1/3

ñd ≥M

 ϵ

2
−

∑
d≥M1/3

νd

 .

To begin with, we see that
∑

d≥M1/3 ñd is a binomial distribution with M trials and success
probability

∑
d≥M1/3 νd. The tail of the Poisson distribution has exponential decay, see, e.g.,

[JLR00, Thm. 2.1], or, more precisely, ∑
d≥M1/3

νd ≤ e−M1/3

for all M ≥ (7c)3 by the result of [JLR00, Eq. 2.11]. It follows that we can derive the following
upper bound on the outage probability

Pr

 ∑
d≥M1/3

ñd ≥M

 ϵ

2
−

∑
d≥M1/3

νd

 ≤ e
−M

(
ϵ/2−2e−M1/3

)2

, (6.4)

where we used the bound on the binomial tail from Lemma A.4. Note that this inequality only
holds for large enough M , as we require M ≥ (7c)3 and also ϵ/2 > 2e−M1/3

in order for Lemma A.4
to apply. Plugging (6.4), (6.3), and (6.2) into (6.1), we obtain

Pr (d /∈ Nϵ) ≤
√
2πecM

(
2M1/3e−

ϵ2

2
M1/3

+ e
−M

(
ϵ/2−2e−M1/3

)2
)
→ 0,

as M → ∞, as the first exponent scales at least as −ϵ2M1/3 and the second exponent scales
as −ϵ2M . Thus, the polynomial scaling factors, which become logarithmic summands in the
exponent, are asymptotically negligible.
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Next, the total number of draws is preciselyN = cM by the definition of the drawing composition
and thus also the condition on the maximum number of draws from Definition 5.6 applies.

We finally verify that the drawing frequency is balanced, as defined in Definition 5.6. The
expected value of the drawing frequency is given by [KSC78; SC64]

E [nd] = M

(
N
d

)
Md

(
1− 1

M

)N−d (b)

≤ M
cd

d!
,

where in inequality (b) we used that
(
n
m

)
≤ nm

m! for any integer n,m ∈ N and also that the
exponential is less than 1. Denote by Dϵ an integer to be chosen later and ϵ > 0 an arbitrary
positive constant. We can bound the sum over the weighted expected values by

∑
d≥Dϵ

E [nd] d ≤M
∑
d≥Dϵ

cd

(d− 1)!
= cMec

∑
d≥Dϵ−1

νd
(c)

≤ cMece−Dϵ ,

where we used [JLR00, Eq. 2.11] in inequality (c), which holds for all Dϵ ≥ 7c+ 1. Consequently,
if we strive to have a sum of at most ϵM , we can choose Dϵ = max{7c+ 1, ln

(
cec

ϵ

)
}, and the sum

over the expected values is at most ϵM for all M as desired. This proves that the distribution is
regular in the sense of Definition 5.6.

6.5 Achievable Rates

We proceed with proving that all rates R < CDNA(c, β, p, q) over the probabilistic DNA storage
channel are achievable. The main idea for the proof is that, given that the number of sequences is
not too large, it is relatively easy to construct a deterministic clustering algorithm that groups all
sequences, that stem from the same input sequence, to a cluster. Clearly, it is not possible to
achieve perfect clustering, as some sequences might have had too many errors such that it is not
possible to identify their cluster. However, we can show that a greedy clustering algorithm clusters
almost all sequences correctly. We can then define a measure of typicality between the estimated
clusters and the codewords, similar to this used for the achievable rate results in Lemma 5.18.
That is, we count the largest matching between input sequences and clusters such that each pair
in the matching is jointly typical with respect to the multinomial channel. Since most clusters are
estimated correctly, the number of typical pairs between estimated clusters and a codeword will be
close to that of the unordered parallel multinomial channel, which we have shown in Lemma 5.18
to be a decoding metric that results in vanishing error probabilities for all rates below capacity.

We proceed with setting up the necessary definitions required for the definition of the decoder.
Our results will be proven with a random coding argument. Note that we use again the auxiliary
equivalent channel model presented in Section 6.3. Let now C = {X(1), . . . ,X(qMLR)} ⊆ ΣM×L

q

be a randomly chosen codebook of code rate R, where each codewordX(i) ∈ ΣM×L
q is selected inde-

pendently and uniform over all possible words in ΣM×L
q . We will write X(i) = (x1(i), . . . ,xM (i)).

Further, R′ is the output of the auxiliary channel. In order to define the decoder, we fix an α > 2p
and 0 < ϵ < 1. The decoder consists of two parts. The first part is a clustering algorithm and the
second is a stage that matches jointly typical between codewords and estimated clusters. Next is
a description of the decoding algorithm and the clustering algorithm.
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Algorithm 1 Clustering algorithm

1: Input: N received sequences r′1, . . . , r
′
N ; cluster radius αL

2: Output: M Clusters ŷ1, . . . , ŷM

3: i← 0
4: R ← {{r′1, . . . , r′N}}
5: while R ≠ ∅ do
6: i← i+ 1
7: for r′ ∈ R do
8: if (ŷi is empty) or

(
dH

(
r′, ŷ

(1)
i

)
< αL

)
then

9: append r′ to ŷi

10: R ← R \ {r′}
11: if i > M then discard ŷM+1, . . . , ŷi

12: if i < M then add empty clusters ŷi+1, . . . , ŷM

6.5.1 Clustering Algorithm

Let in the following α > 2p be the clustering radius. Consider Algorithm 1, which greedily picks
an output sequence and adds other output sequences, such that their distance with respect to the
first pick is less than αL. These sequences are combined to a cluster ŷ1 and all elements in ŷ1

are removed as candidates for succeeding clusters. The procedure successively continues to form
clusters ŷ2, . . . , ŷM̂

on the remaining sequences with the same procedure until no more sequences
are present. Afterwards, the algorithm adds empty clusters or removes excess clusters, such that
the total number of estimated clusters is M . It is evident that this clustering algorithm is neither
efficient in computational complexity or accuracy, however it is easy to analyze and will suffice for
our purposes.1 Interestingly, under some mild conditions, this naive clustering algorithm produces
many correct clusters. More precisely, we have the following. Consider the bipartite graph Gcluster

with vertices yj , j ∈ [M ] on the left and ŷi, i ∈ [M ] on the right. We draw an edge from yj to
ŷi, if the multiset of sequences in yj is equal to the multiset of sequences in ŷi. We define the
number G of correct clusters as the size of the largest matching2 in Gcluster.

Lemma 6.5. Fix 0 < β < 1 and α with 2p < α < q−1
q and β < 1−Hq(α) and an arbitrary ϵ > 0.

Then, the probability of having at least M(1− ϵ) correct clusters satisfies

lim
M→∞

Pr (G ≥M(1− ϵ)) = 1.

Proof. Denote by Gi, i ∈ [M ] a binary indicator variable that is equal to 1, if di > 0 and yi has

been clustered correctly and 0, otherwise. Further, let M̂ be the number of non-empty clusters
produced by Algorithm 1, before removing clusters or adding empty clusters. To start with,
it holds that G ≥

∑M
i=1Gi + min{n0,M − M̂}, since we can construct a matching, where we

arbitrarily match the M − M̂ empty clusters and we match each cluster yi with Gi = 1 to the
correct cluster produced by the algorithm. Note that the edges of this matching share no common
vertices, since the matching of empty clusters is arbitrary and the non-empty clusters, produced
by Algorithm 1, are disjoint by construction of the algorithm. The bound further covers the case,

1A more elaborate clustering algorithm, designed for DNA-based data storage, can be found in, e.g., [Ras+17].
2A matching in a bipartite graph is a set of edges such that no two edges share common end points.
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where M̂ > M where we possibly remove some of the correct clusters. Thus, by the union bound,
the probability on the number of correct clusters is at least

Pr (G ≥M(1− ϵ)) ≥ 1− Pr

(
M∑
i=1

Gi ≤M − n0 −Mϵ/2

)
− Pr

(
M − M̂ ≤ n0 −Mϵ/2

)
. (6.5)

We proceed with showing that the sum over the variables Gi in (6.5) is close to M − n0 with high

probability and M − M̂ is close to n0 with high probability.
We start with the second term. To this end, denote by Fj , j ∈ [N] the binary indicator, which

is equal to 1, if dH

(
xIj , r

′
j

)
≥ αL/2 and 0, otherwise, where Ij is the original input sequence that

corresponds to r′j . With this definition, we observe that M̂ ≤M − n0 +
∑N

j=1 Fj . This is because
whenever the clustering algorithm selects a sequence r′j with Fj = 0, the remaining sequences j′

from this cluster with Fj′ = 0, that have not been clustered yet, will be contained in the estimated
cluster. Thus, each sequence r′j with Fj = 1 can produce at most one extra cluster. Since Fj ,
j ∈ [N ] are identical and independent Bernoulli random variables with success probability at most
e−2L(α/2−p)2 (see Lemma A.4), it holds that

Pr
(
M − M̂ ≤ n0 − ϵM/2

)
≤ Pr

 N∑
j=1

Fj ≥Mϵ/2

 ≤ e
−M

(
ϵ/(2c)−e−2L(α/2−p)2

)2

= o(1),

for all ϵ > 0, as L→∞.
We turn towards the first summand in (6.5). Recall that according to Definition 5.13, we denote

by y
(1)
i , . . . ,y

(di)
i the sequences of a cluster yi. We can estimate the probability Pr (Gi = 1) for all i

with di > 0 as follows. A cluster yi is guaranteed to be estimated correctly, if dH

(
xsi ,y

(j)
i

)
≤ αL/2

for all sequences j ∈ [di] and also if there exists no other output sequence y
(j′)
i′ from another cluster

i′ ≠ i that has distance less than αL to one of the sequences in the cluster yi. Demarginalizing
with respect to the drawing composition, we obtain

Pr (Gi = 1) =
∑
di

Pr (di)Pr (Gi = 1|di)
(a)

≥
∑
di≥1

Pr (di)
(
1− die

−2L(α/2−p)2 −Ndiq
−L(1−Hq(α))

)
(b)

≥ Pr (di ≥ 1)− ce−2L(α/2−p)2 − c2q−L(1−Hq(α)−β)

where in inequality (a) we used the union bound and Lemma A.4 on the binomial tails together
with the fact that there are at most N other output sequences, where each of these sequences has
a marginal distribution that is uniformly random over all sequences of length L. In inequality (b),
we used that

∑
di≥1 Pr (di) di ≤ E [di] = c and M = qβL. Next, we compute

E

[
M − n0 −

M∑
i=1

Gi

]
≤M

(
ce−2L(α/2−p)2 + c2q−L(1−Hq(α)−β)

)
,

where we used that E [n0] =
∑M

i=1 Pr (di = 0). Using Markov’s inequality, we conclude that the
probability of the first summand in (6.5) is at most

Pr

(
M − n0 −

M∑
i=1

Gi ≥Mϵ/2

)
≤ 2ce−2L(α/2−p)2 + 2c2q−L(1−Hq(α)−β)

ϵ
,

which approaches 0 as M →∞ for any β < 1−Hq(α) and α > 2p and the claim follows.

120



6.5 Achievable Rates

X

x1

x2

x3

x4

x5

x6

Y

y1

y2

y3

y4

y5

Ŷ
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Figure 6.3: Illustration of the tripartite matching graph in the proof of Lemma 6.6. The solid
lines highlight edges, which contribute to the joint typicality T ϵ

UPM(X, Ŷ ).

6.5.2 Typicality Matching

Recall Definition 5.19 of jointly typical sequences over the unordered parallel multinomial channel
and denote by Ŷ the estimated clusters from the clustering algorithm. Similar to the decoder
presented in Section 5.4, we will define a decoder based on the joint typicality T ϵ

UPM(X, Ŷ )
between clustered sequences and a codeword. We will establish in the following a connection
between the typicality of the estimated clusters T ϵ

UPM(X, Ŷ ) and the typicality of the actual
correct clusters T ϵ

UPM(X,Y ).

Lemma 6.6. The joint typicality of X and Ŷ satisfies

|T ϵ
UPM(X, Ŷ )− T ϵ

UPM(X,Y )| ≤M −G.

Proof. First note that the ordering of the sequences in an estimated cluster ŷi is arbitrary and
thus might be different from that of the original cluster yj , even if the multisets of sequences
are the same. However this does not affect the joint typicality over the multinomial channel, as
it is invariant to permutations of the output sequences. Consider now the tripartite graph Gtri

with vertices xi, i ∈ [M ] on the left, yi, i ∈ [M ] in the middle and ŷi, i ∈ [M ] on the right. We
connect two vertices xi and yj , if (xi,yj) ∈ T L,ϵ

Mul(d, p, q). We further draw an edge from yj to ŷk,
if the multiset of sequences in yj is equal to the multiset of sequences in ŷk. This tripartite graph
is illustrated in Figure 6.3. Let G ⊆ [M ] be the vertices in the middle which belong to the largest
matching between the middle and right vertices, i.e., that correspond to the correct clusters, and
let H ⊆ [M ] be the vertices in the middle which belong to a matching between the middle and
left vertices. With this definition,

T ϵ
UPM(X, Ŷ ) ≥ |H ∩ G| = |H|+ |G| − |H ∪ G|

(a)

≥ |H|+ |G| −M = |H|+G−M,

where in inequality (a) we used that bothH and G are subsets of [M ]. Choosing |H| = T ϵ
UPM(X,Y )

as the largest matching between left and middle vertices, yields an upper bound on the sough-after
difference from the lemma statement. On the other hand,

T ϵ
UPM(X, Ŷ ) ≤ |H ∩ G|+ |[M ] \ G| ≤ T ϵ

UPM(X,Y ) +M −G,
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Figure 6.4: Capacity of the probabilistic DNA storage channel for q = 4, β = 1
20 and different

number of draws c over the channel error probability p.

since the number of correct clusters which can be matched to an input sequence is at most the
size of the largest matching on the left |H ∩ G| ≤ T ϵ

UPM(X,Y ) and the |[M ] \ G| incorrect clusters
could potentially also add to the joint typicality.

We conclude with our lemma on achievable rates over the probabilistic DNA storage channel.

Lemma 6.7. Fix 0 < β < 1, 0 < p < q−1
2q , q ∈ N with β < 1−Hq(2p). Then, any rate

R < CDNA(c, β, p, q).

is achievable over the probabilistic DNA storage channel.

Proof. The statement directly follows from a random coding argument as in Lemma 5.18 using
Lemmas 6.5 and 6.6 to show that for any ϵ > 0, |T ϵ

UPM(X, Ŷ )− T ϵ
UPM(X,Y )| < Mϵ with high

probability, together with Lemmas 5.20 and 5.21.

6.6 Discussion and Efficiency Considerations

We start by discussing the capacity of probabilistic DNA storage channel for q = 4, which
corresponds to the DNA alphabet and β = 1

20 , which is a typical value for current experiments (see
Table 2.1 on page 17). Figure 6.4 shows the capacity CDNA(c, β, p, q) for different number of draws
c over the error probability p. The left-most points on the curves correspond to the error-free case
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Figure 6.5: Storage and recovery rate trade-off for β = 1
20 and different channel error probabilities.

The graphs are generated by computing Rs and Rr for different values of c. On each
curve, c decreases with increasing recovery rates Rr.

p = 0, where the capacity is equal to CDNA(c, β, 0, q) = (1− β)(1− e−c), as presented in [Hec+17].
For the discussion of efficient system design, we define the notions of storage rate and recovery
rate. Assume C ⊆ ΣM×L

q is a code used to store data in a DNA storage system. We define its
storage rate to be the number of bits that can be stored per synthesized nucleotide, i.e.,

Rs =
log2 |C|
ML

.

Note that here we choose the logarithm with respect to the base 2 such that the storage rate
measures the number of information bits per stored nucleotide. Accordingly, if N sequences are
drawn from the storage medium in order to recover the data, we define the recovery rate of a code
C as the number of information bits that can be retrieved per nucleotide that is sequenced, i.e.,

Rr =
log2 |C|
NL

.

With this definition, Rs = cRr. Most publications to date focus on the storage rate Rs to evaluate
the efficiency of their results. More recently, however, the interest in efficient design with respect
to both storage rate Rs and recovery rate Rs has increased [Cha+19; Hec+17]. In this regard,
Figure 6.5 shows the regions of achievable (Rr, Rs) rate pairs for different error probabilities p and
β = 1

20 . Notably, the achievable region significantly flattens out for recovery rates Rr ≈ 0.2bit/nt,
which corresponds to c ≈ 10, which should be considered for efficient system design. In particular,
it becomes evident that an average sequencing depth of more than N

M ≈ 10 sequences does not
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Figure 6.6: Storage and recovery rates of current experiments. The rates are accumulated from
[EZ16; Org+18; Xu+21] and display the rates without taking eventual primers into
account. We display the recovery rates as the largest rates for which the authors
reported almost error-free decoding, if applicable. The recovery rates are visualized in
a logarithmic scale in order to accommodate all recent experiments.

significantly improve the achievable storage rate. Note that this insight can be beneficial for the
design of DNA-based data storage systems that are efficient with respect to both storage rates
and recovery rates. Figure 6.6 displays the storage and recovery rates of current experiments.

6.7 Conclusion

This chapter was devoted to a probabilistic channel that originates from DNA-based data storage.
In this channel, there are M input sequences, out of which N are drawn with replacement and
received through a q-ary symmetric channel. We have shown that such a channel is a degraded
unordered parallel multinomial channel, which allowed us to directly deduce a converse bound.
On the other hand, we have introduced a novel notion of typicality between output sequences
and a codeword. This typicality has been established using a greedy clustering algorithm that
combines similar output sequences to one cluster and then matches estimated clusters with input
sequences of a codeword. Using our capacity result, we have discussed the storage and recovery
rate trade-off, which can be used for the design of DNA-based storage systems that are both
storage and recovery efficient. An intriguing open problem that remains is the construction of a
practical code operating close to the theoretical optimum. Another significant open problems is
the generalization to channels that allow insertion and deletion errors.
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Precise Asymptotic Analysis of Cost
Constrained Channels
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Chapter 7

Multivariate Singularity Analysis for Cost
Constrained Channels

In the previous chapters, we have analyzed the transmission of information over erroneous channels.
We now turn to a different subject, i.e., the analysis of discrete noiseless channels. The first work
on cost constrained channels dates back to Shannon’s seminal paper [Sha48]. Representing a cost
constrained channel by a directed graph with labeled and costly edges, their capacity, i.e., the
exponential growth rate of the number of limited-cost paths, was computed in [Sha48, Thm. 1].
Shannon showed that the capacity of a cost constrained channel is determined by the smallest
singularity of a generating function that arises from the cost structure of the graph’s edges. It
was further shown in Theorem 8 that the capacity relates to the maximum entropy of a Markov
chain that is defined based on the graph associated with the cost constrained channel. Shannon’s
results were later generalized to non-integer costs [BJP10; Böc+10; KMR00]. In this context,
[KMR00] established a connection to analytic combinatorics in a single variable, and we build
on this direction. The recent works [Liu+20; Sor05; SS06] treated the case of limited-cost and
fixed-length paths. These studies showed the equivalence of the maximum entropy of an average
cost constrained Markov chain and the fixed-length capacity, i.e., the exponential growth rate of
the number of limited-cost and fixed-length paths.

In this chapter we derive the exact asymptotic expansion of the number of variable-length
and fixed-length paths that have limited cost using recent results from analytical combinatorics
in several variables [Mel21; PW13]. We start in Section 7.1 by introducing the notion of cost
constrained channels and their capacity. We define generating functions that will serve as the
basis for the multivariate singularity analysis later. Section 7.2 presents our main results of
this chapter. In particular, we present novel and explicit theorems on the precise asymptotic
growth of the size of limited-cost paths. While previous results on the capacity of cost constrained
channels were mainly focused towards the probabilistic scenario, i.e., the maximization of the
entropy of an associated Markov chain, our results include an explicit and easy-to-use algebraic
formulation that can be used to compute the combinatorial capacity of cost constrained channels.
We further exhibit with cost-diversity the precise property of costly graphs that differentiates
between degenerate and smooth behavior of the fixed-length capacity. For the reader’s convenience,
we have summarized the roadmap with the main technical ideas and ingredients to prove our
statements in Section 7.3. For our derivations, we build a comprehensive theory that extends the
well-known results from Perron-Frobenius on irreducible matrices to costly matrices in Section 7.4
and derive their implications for cost-diverse graphs in Section 7.5. We use these results to infer
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A|1 C|2

(a) Exemplary directed, labeled and costly graph

A|1

C|1

C|2

A|3

(b) Graph with period 2 and cost period 3

Figure 7.1: Exemplary directed graphs describing cost constrained channels with Σ2 = {A,C}.
The edges e are marked by their labels and costs σ(e)|τ(e).

properties on the singularities of the generating functions in Section 7.6, allowing to invoke a set
of powerful results from the theory of analytical combinatorics in several variables that prove our
main results. Our discussion is enriched with a concise exposition on multivariate singularity
analysis. For an in-depth study of analytical combinatorics in several variables, however, we refer
to the textbook [Mel21].

The results within this chapter have been published in [Len+20a; Len+21d].

7.1 Preliminaries

We start by setting up basic notation. In particular, we give a short overview over weighted and
labeled graphs, followed by an introduction to generating functions of general integer series and a
presentation of the generating function of the number of paths with limited cost.

7.1.1 Weighted and Labeled Graphs

Consider a labeled, directed graph G = (V, E , σ, τ) that has vertices V and edges E . Each edge
e ∈ E has an initial vertex init(e) ∈ V and a terminal vertex term(e) ∈ V. Further, the edges are
labeled with σ : E 7→ Σq and have weights τ : E 7→ N. A path p = (e1, . . . , en) of length n is
a sequence of edges e1, . . . , en ∈ E such that for all i ∈ {1, . . . , n − 1}, the final vertex term(ei)
of the i-th edge is the same as the initial vertex init(ei+1) of the next edge. The path starts in
init(e1) and ends in term(en). A path generates a word σ(p) = (σ(e1), . . . , σ(en)) ∈ Σn

q and has
cost τ(p) = τ(e1) + · · ·+ τ(en). Figure 7.1 shows a graph with edge labels and costs.

Definition 7.1. A directed graph G = (V, E , σ, τ) is strongly connected if for any two vertices
vi, vj ∈ V, there exists a directed path that connects vi with vj.

A key graph property is that all distinct paths emerging from a vertex generate distinct
words. This is guaranteed by the following notion of a graph being deterministic, also known as
right-resolving [LM95].

Definition 7.2. A labeled, directed graph G = (V, E , σ, τ) is deterministic if for all vertices v ∈ V,
the labels of all edges e ∈ E with the same initial vertex init(e) = v are distinct.

Here, we confine our analysis to deterministic graphs. Notice that known algorithms for the
construction of a deterministic representation [MRS01, Prop. 2.2] may not directly work for costly
graphs. We continue with presenting periodicity properties of graphs that are essential for the
subsequent analysis. We start with the notion of the period of a graph.
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Definition 7.3. Let G = (V, E , σ, τ) be a strongly connected graph. We say G has period d, if for
each pair of vertices vi, vj, the lengths of all paths p connecting vi and vj are congruent modulo d.

With this definition, a graph can have several periods. In particular, if a graph has period d,
all divisors of d are also periods of the graph. Note that our definition slightly differs from that
in [MRS01, Section 3.3.2], as therein the period is defined as the greatest common divisor of all
cycle lengths. However, as proven in Lemma A.8 in Appendix A.5, any graph that is periodic in
the sense of Definition 7.3 is also periodic as defined in [MRS01]. We next establish the notions of
uniformity and periodicity of the path costs in a strongly connected graph.

Definition 7.4. A strongly connected graph G = (V, E , σ, τ) is cost-uniform if for each pair of
vertices vi, vj and each length m, the costs of all length-m paths p connecting vi and vj are the
same. If G is not cost-uniform, then we say that G is cost-diverse.

Examples illustrating cost-uniformity and cost-diversity are displayed in Figure 7.2 on Page 140.
For cost-diverse graphs, we further introduce the following notion of cost periodicity.

Definition 7.5. Let G = (V, E , σ, τ) be a strongly connected graph. We say that G has cost period
c ∈ N, if for each pair of vertices vi, vj and each length m, the costs τ(p) of all length-m paths p
connecting vi and vj are congruent modulo c.

For convenience, we will in some cases use the convention that congruence modulo 0 means
equivalence. We may then say that a cost-uniform graph is a graph with cost period 0, as in
the cost-uniform case the costs of same-length paths connecting two vertices are equivalent. We
proceed with a novel property that significantly facilitates our analysis and which we will prove
to be equivalent to the cost period in Lemma 7.29 on Page 140.

Definition 7.6. A strongly connected graph G = (V, E , σ, τ) satisfies the c-periodic coboundary
condition if there exists a function B : V → Q and a constant b ∈ Q such that if e ∈ E is an edge
from vertex vi to vertex vj, then the edge cost satisfies

τ(e) ≡ b+B(vj)−B(vi) (mod c).

We say that a graph satisfies the coboundary condition, if the congruence above holds without the
modulo operation.

A labeled and weighted graph G induces a costly language [KMR00; Sha48], which comprises all
words that are generated by paths through the graph G of some limited cost. We thus use the term
cost constrained channel to refer to a labeled, directed, weighted graph G that is deterministic
and strongly connected. For many of our results, we analyze the spectrum of an adjacency
matrix associated with the graph. In fact, we consider a family of adjacency matrices PG(x),
parameterized by a value x, which is also known as cost-enumerator matrix.

Definition 7.7. Given a strongly connected graph G = (V, E , σ, τ) with vertices V = {v1, . . . , v|V|},
we define the cost enumerator matrix PG(x) of G as the |V| × |V| matrix with entries

[PG(x)]ij =
∑

e∈E: init(e)=vi,
term(e)=vj

xτ(e).

We also define the spectral radius of PG(x) by

ρG(x) = max{|λ(x)| : λ(x) is Eigenvalue of PG(x)}.
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Throughout this chapter, we may treat x as either real-valued or complex-valued, depending
on the context. Later we will see that ρG(x) plays a central role in the asymptotic behavior of
the number of limited weight paths through G. An important quantity is the number of distinct
words that are contained in the language of a system.

Definition 7.8. Given a graph G = (V, E , σ, τ), for an arbitrary vertex v ∈ V, we define LG,v(t)
to be the cost-t follower set of v, i.e., the set of all words that are generated by some path of cost
at most t that starts in v. The size of the cost-t follower set is denoted as NG,v(t) ≜ |LG,v(t)|.
Accordingly we define LG,v(t, n) ≜ LG,v(t) ∩ Σn to be the fixed-length follower set with size
NG,v(t, n) ≜ |LG,v(t, n)|.

The central quantity of interest of a cost constrained channel is the exponential growth rate of
the size of the follower set. This term is often referred to as capacity. The capacity of a strongly
connected system is independent of the starting vertex, and we omit this in the definition.

Definition 7.9. The variable-length capacity of a cost constrained channel G is defined to be

CG = lim sup
t→∞

log(NG,v(t))

t
.

and similarly the fixed-length capacity is defined as

CG(α) = lim sup
t→∞

log(NG,v(t, ⌊αt⌋))
t

.

7.1.2 Generating Functions

The methods of analytic combinatorics derive asymptotic properties of a sequence from analytic
properties of its generating function [FS09; Mel21]. Throughout this chapter, the sequences of
interest are the bivariate1 sequences NG,v(t, n). We will denote their generating functions by

FG,v(x, y) =
∑
n≥0

∑
t≥0

NG,v(t, n)x
tyn,

where x, y ∈ C. As the sequence NG,v(t, n) admits a linear recursion in the variables t and n,
which we will elaborate on in Section 7.6.1, the generating function FG,v(x, y) is a fraction of
polynomials, which we will denote by

FG,v(x, y) =
QG,v(x, y)

HG(x, y)

for some polynomials QG,v(x, y), HG(x, y). Since NG,v(t) =
∑

n≥0NG,v(t, n), for the variable-

length case, we will regularly abbreviate FG,v(x) ≜ FG,v(x, 1) as the generating function of the
integer series NG,v(t) with numerator QG,v(x) ≜ QG,v(x, 1) and denominator HG(x) ≜ HG(x, 1).
The next lemma presents the generating function of the series NG,v(t, n).

Lemma 7.10. Let G be a deterministic graph, and let v be a vertex. The generating function
FG,v(x, y) of NG,v(t, n) is given by the entry of

FG(x, y) =
1

1− x
· (I − yPG(x))

−11T,

corresponding to the vertex v, where 1 = (1, . . . , 1) ∈ R|V| and I is the |V| × |V| identity matrix.

1Bivariance refers to the fact that the integer series NG,v(t, n) depend on two variables t and n.

130



7.2 Main Results

We will prove Lemma 7.10 in Section 7.6.1. Notice that I − yPG(x) is not always invertible.
However, the singularities, i.e., the values of x and y for which I− yPG(x) is singular are precisely
the objects of interest that determine the asymptotic behavior of the integer series NG,v(t, n).

Example 7.11. Consider the graph in Figure 7.1a on Page 128. In this case, PG(x) = x+ x2

and thus the generating function of the single vertex is given by

FG(x, y) =
1

(1− x)(1− y(x+ x2))
.

7.2 Main Results

Our core results comprise the precise characterization of the number of limited-cost followers
inside a given costly graph. For both the case of fixed-length and variable-length paths we find
explicit expressions for the first order approximation of the number of followers in Theorem 7.14
and 7.16. This directly implies the exponential growth rate of the sequences, or capacity, which is
stated in Theorems 7.12 and 7.15. We begin with a characterization of the fixed-length capacity
for arbitrary strongly connected and cost-diverse graphs.

Theorem 7.12. Let G be a strongly connected, deterministic, and cost-diverse graph. Abbreviate
αlo
G ≜ ρG(1)/ρ

′
G(1) and αup

G ≜ lim
x→0+

ρG(x)/(xρ
′
G(x)). For all α with 0 ≤ α ≤ αlo

G, we have

CG(α) = α log ρG(1).

For all α with αlo
G < α < αup

G ,

CG(α) = − log x0 + α log ρG(x0),

where x0 is the unique real solution to αxρ′G(x) = ρG(x) in the interval 0 < x < 1. For all
α > αup

G , CG(α) = 0.

Theorem 7.12 improves over previous work [JH84; KMR00; MR83; SS06] in several ways. First,
the results of [JH84; KMR00; MR83] are only on the cost-constrained probabilistic capacity.
Next, none of them explicitly recognizes the role of cost-diversity. Moreover, they do not address
the full domain of the cost-constrained capacity. In contrast, our results explicitly determine
the fixed-length capacity, they can be readily evaluated for cost-diverse graphs, and we consider
the entire domain of the capacity function. Specifically, we identify a region for small α in
which the capacity exhibits a linear scaling, we determine the exact slope in that region, and we
explicitly find the threshold between the linear and non-linear regions. For examples illustrating
Theorem 7.12, we refer to Proposition 8.10 in Chapter 8.

Remark 7.13. Our results extend to the case of counting the number of followers of cost exactly
t instead of at most t. In that case, the factor (1 − x) in the numerator of the generating
function FG(x, y) is not present anymore, which has several effects on the results. First, the
lower threshold αlo

G decreases to αlo
G = limx→∞ ρG(x)/(xρ

′
G(x)). Next, for all α outside the two

thresholds, CG(α) = 0. This means that the linear region in α disappears.

Theorem 7.12 is a direct consequence of the following stronger result, which gives the precise
asymptotic behavior of NG,v(t, αt). In the statement, we mean by largest period d and largest cost
period c the largest integers such that the graph G has period d and cost period c, respectively.
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Theorem 7.14. Let G be a strongly connected, deterministic, and cost-diverse graph with largest
period d and largest cost period c. Denote by b and B(vj) the quantities from the c-periodic
coboundary condition.

For all α with 0 < α < αlo
G and for any v ∈ V, NG,v(t, αt) has the asymptotic expansion

NG,v(t, αt) =

d−1∑
j=0

(λj(1))
αt[uT

j (1)vj(1)1
T]v +O

(
δt
)
,

where 0 < δ < (ρG(1))
α and uj(x),vj(x), vj(x)u

T
j (x) = 1 are the right and left Eigenvectors of

PG(x), corresponding to the Eigenvalues λj(x) = ρG(x)e
2πij/d.

For all α with αlo
G < α < αup

G and t with αt ∈ N,

NG,v(t, αt) =
c−1∑
k=0

d−1∑
j=0

(
(e2πibk/cλj(x0))

α

x0e2πik/c

)t
t−1/2√

2παH(x0)

(
[D−1

k uT
j (x0)vj(x0)Dk1

T]v

(1− x0e2πik/c)
+O

(
1

t

))
,

where H(es) = ∂2

∂s2
ln ρG(e

s), x0 is the unique positive solution to αxρ′G(x) = ρG(x) and the Dk

are diagonal matrices with [Dk]jj = e2πikB(vj)/c.

For all α > αup
G , NG,v(t, αt) is eventually 0.

To the best of our knowledge this, is the first first-order approximation of the number of limited-
cost and fixed-length paths through arbitrary strongly connected graphs. Notably, disregarding
the O(1/t) term, the term following t−1/2 is independent of t. We further present the results for
the case of variable-length sequences. The following theorem is part of Shannon’s famous results
on discrete noiseless channels [Sha48] .

Theorem 7.15. Let G be a strongly connected and deterministic graph and denote by x0 the
unique positive solution to ρG(x) = 1. Then, the combinatorial capacity of G satisfies

CG = − log x0.

For this theorem, we do not require the graph to be cost-diverse, as we are counting limited-cost
paths of arbitrary lengths. We also obtain an exact expression for the size of the costly constrained
language NG,v(t). This uses a univariate singularity analysis of the generating function FG,v(x).

Theorem 7.16. Let G be a strongly connected and deterministic graph and denote by x1, . . . , xm
the solutions to (1− x) det(I − PG(x)) = 0. Then, for any vertex v ∈ V, there exist polynomials
ΠG,v,i(t), calculable from the generating function FG,v(x), such that

NG,v(t) =

m∑
i=1

ΠG,v,i(t)x
−t
i .

The degree of the polynomial ΠG,v,i(t) is equal to the multiplicity of the root xi minus one.

The following example illustrates that the polynomials ΠG,v,i(t) can easily be computed with a
partial fraction decomposition of the generating function.
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Example 7.17. Consider the graph from Figure 7.1 on Page 128. The cost-enumerator matrix
of the graph is given by P (x) = x+ x2 and thus the generating function of N(t) is equal to

F (x) =
1

(1− x)(1− x− x2)
.

The poles of this function are given by x1 = 1, x2 = −
√
5+1
2 , x3 =

√
5−1
2 . The coefficients of this

generating function may be found by partial fraction decomposition [FS09], and we obtain

F (x) = − 1

1− x/x1
+

1− 2
√
5

5

1− x/x2
+

1 + 2
√
5

5

1− x/x3
,

such that Π1(t) = −1, Π2(t) = 1 − 2
√
5

2 and Π3(t) = 1 + 2
√
5

2 . Using this decomposition, the
sequence N(t) is precisely

N(t) = −1 +

(
1− 2

√
5

5

)(
1−
√
5

2

)t

+

(
1 +

2
√
5

5

)(
1 +
√
5

2

)t

.

Since the last summand is asymptotically dominant, the capacity of this constrained system is

C = log
(
(1 +

√
5)/2

)
, which can alternatively be derived from the positive solution x0 =

√
5−1
2 to

ρG(x) = 1, where ρG(x) = x+ x2, confirming Theorem 7.15.

7.3 Technical Overview

We provide an overview of the ingredients required to prove Theorems 7.12, 7.14, 7.15, and 7.16.
To begin with, we concisely highlight the main steps of a multivariate singularity analysis [Mel21]
that connects properties of specific singularities to the asymptotic expansion of the diagonal
coefficients NG(t, αt). Afterwards, we discuss how we use the theory on irreducible matrices
[HJ12] to show the implications of strong connectivity and cost-diversity on the spectral properties
of cost-enumerator matrices and thus on the singularities of the generating functions.

7.3.1 Analytical Combinatorics in Several Variables

Analytic combinatorics [FS09] is a branch in mathematics that uses complex analysis to deduce
the asymptotics of an integer sequence N(t) from its generating function F (x). Similary, analytic
combinatorics in several variables (ACSV) [Mel21] treats multivariate integer sequences N(t1, t2)
(this discussion is specialized to the bivariate case we consider) and their generating functions
F (x, y) (see Section 7.1.2). The multivariate analysis resembles the univariate case, translating
properties of the generating function near singularities to an asymptotic expansion of the integer
series. Due to the multivariate nature of the series, there are several ways how the coefficients
(t1, t2) can grow to infinity. Thus, usually, one sets (t1, t2) = (tα1, tα2) and lets t→∞, as this
entails a uniform asymptotic behavior of N(α1t, α2t), and (α1, α2) is referred to as the diagonal.
Similar to the case of the univariate analysis, the singularities closest to the origin determine
the asymptotic behavior of the diagonal. In the multivariate case, however not all of those are
relevant for the asymptotics. The two following properties of singularities thus come into play.
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Minimal points are those singularities for which H(x, y) has no other root with strictly smaller
coordinate-wise modulus.2 A minimal point is strictly minimal if no other singularity has the
same coordinate-wise modulus, and finite minimal only a finite number of other singularities have
the same coordinate-wise modulus. Critical points, for the case of rational generating functions
F (x, y) = Q(x, y)/H(x, y), are those satisfying H(x, y) = α2xHx(x, y) − α1yHy(x, y) = 0. For
the generating function that we treat in our analysis, there are two types of critical points. First,
the smooth points, where at least one of the partial derivatives does not vanish. Second, the
non-smooth multiple points [PW04], where the singularity set is the union of two smooth surfaces
that intersect in this point, meaning that both partial derivatives vanish.

Under a few additional conditions, the existence of minimal critical points means asymptotics
of N(tα1, tα2) can be determined from local properties of the generating function F (x, y) near
these points. For more details, see Section 7.6.2

7.3.2 From Cost-Diverse Graphs to Multivariate Analytical Combinatorics via
Spectral Analysis

The starting point of our ACSV analysis is the generating function derived in Lemma 7.10.
Before we can invoke the general results of ACSV however, we need to establish a comprehensive
theory about cost constrained channels and their associated cost-enumerator matrix to gather the
necessary understanding of the singularities. To start with, through the restriction to cost-diverse
graphs (Definition 7.4), we avoid certain degenerate cases. Previous work [KMR00] observed that
graphs with constant edge cost have the very specific property that the cost of any path is a linear
function of its length, meaning that the capacity is simply determined by the number of paths
through the graph of a given length. Generalizing this observation, we introduce the notion of
cost-uniform and cost-diverse graphs (Definition 7.4). We show that if a graph is not cost-diverse,
i.e., it is cost-uniform, then the cost of any path is an affine linear function in the path length and
thus the average cost of any path approaches a constant. Hence, the fixed-length capacity is only
non-zero if the graph is cost-diverse or if we restrict to a very specific path length α.

Focusing on cost-diverse and strongly connected graphs, we derive a variety of interesting
properties of such graphs. To start with, due to the fact that the cost-enumerator matrix PG(x)
of a strongly-connected graph is irreducible (see Definition 7.18) for positive x ∈ R+, we start
in Section 7.4 by deriving general properties of irreducible matrices. To this end, we use the
famous Perron-Frobenius Theorem (Theorem 7.19) and a refinement [MRS01, Thm. 3.18] (see
Theorem 7.20) to deduce properties of the parametrized cost-enumerator matrix. These results
will serve us in Section 7.5 to derive spectral properties of the cost-enumerator matrix of a
cost-diverse graph. A key milestone for our results is Lemma 7.29, which provides an equivalence
between cost-diversity and the coboundary condition (Definition 7.6) and their implication on
the cost-enumerator matrix, i.e., a nice behavior of the spectral radius under rotations, and the
log-log-linearity or log-log-convexity of the spectral radius along the real axis.

Our equivalence result in Lemma 7.29 establishes key properties of the cost-enumerator matrix
PG(x) and is the basis for a derivation of the attributes of the generating function. This appears in
Section 7.6. At a high level, we need to find the minimal singularities of our generating functions
FG(x, y) and characterize the critical points in order to apply the ACSV theorems in Section 7.6.2.
More concretely, in Lemma 7.48, we identify the minimal singularities of FG(x, y) and express

2We use the terms modulus, absolute value, and magnitude of a complex variable interchangeably in this dissertation.
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them as a function of the graph period d, the cost period c and the spectral radius ρG(x0). Due
to the Perron-Frobenius Theorem, ρG(x0) is the single real Eigenvalue of maximum modulus of
PG(x), which we use to show that (x0, 1/ρG(x0)) are minimal singularities. Next, we prove in
Lemma 7.49 that the minimal points that we have found Lemma 7.48 are smooth points. We
further derive a condition based on α, the spectral radius ρG(x) and its derivative ρ′G(x) that
determines criticality of the minimal singularities. A key component of the proof is Lemma 7.32,
which shows that the rotation of x by multiples of 2π/c along the complex circle results in similar
cost-enumerator matrices. Diving deeper into the critical point condition, Lemma 7.50 guarantees
a unique smooth critical point when α is in a certain interval. The proof uses the strict log-log
convexity of ρG(x) proven in Lemma 7.39. The final component of our multivariate singularity
analysis is Lemma 7.51, which proves that the singular set near the smooth critical points has
non-degenerate geometry. For an overview over this roadmap, see Figure 7.3 on Page 141.

To establish Theorem 7.14, we then apply results from [Mel21] and use the spectral properties of
PG that we have derived from the graph properties. When (x0, 1/ρG(x0)) is a smooth point of the
singular set of the generating function asymptotic behaviour is determined using Theorem 7.46,
while in the non-smooth case it follows from an application of Theorem 7.47.

7.4 Perron-Frobenius Theory

In this section, we shortly revisit the central statements of the famous Perron-Frobenius theorem
and derive associated results on irreducible matrices P (x), which are parametrized by a variable
x. These results are key ingredients to prove our main statements.

7.4.1 Known Results from Perron-Frobenius Theory

The Perron-Frobenius Theorem is a well-known result about the spectral properties of irreducible
matrices. For the following definition of irreducible matrices, recall the notion of strong connectivity
of a graph from Definition 7.1.

Definition 7.18. Let P ∈ RM×M be a square real matrix with nonnegative entries. Associate
with P the directed graph G with M vertices which is constructed by connecting state i to j if and
only if [P ]ij > 0. We call P irreducible if G is strongly connected.

Perron [Per07] and Frobenius [Fro12] revealed important properties on the spectral properties,
i.e., the nature of the Eigenvalues, of irreducible matrices. Among those, they showed that
irreducible matrices admit a single positive real Eigenvalue, which is equal to the spectral radius,
i.e., the largest magnitude assumed by any Eigenvalue. In the following statements, which are
an excerpt of the original Perron-Frobenius theorem, we collect those properties of irreducible
matrices that are most relevant for our purposes.

Theorem 7.19 ([Fro12; Per07]). Let P be an irreducible matrix with spectral radius ρ. Then,

1. ρ is an Eigenvalue with multiplicity one.

2. There exist positive right and left Eigenvectors u > 0 and v > 0 corresponding to the
Eigenvalue ρ such that PuT = ρuT and vP = ρv.
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By the Perron-Frobenius theorem, for an irreducible matrix with spectral radius ρ, there is a
unique Eigenvalue λ, which is is equal to the spectral radius. We will refer to this Eigenvalue as
the Perron root in the sequel. In fact, the structure of the Eigenvalues on the spectral circle are
precisely known for irreducible matrices. To characterize these Eigenvalues, recall the definition
of periodicity of a graph from Definition 7.3. If the largest period of an irreducible matrix P
is d,3 then P has precisely d simple Eigenvalues of maximum modulus. More precisely, those
Eigenvalues precisely divide the complex circle into d equally sized segments. The following
theorem summarizes this property.

Theorem 7.20 ([MRS01, Thm. 3.18]). Let P be an irreducible matrix with largest period d.
Then P has precisely d simple Eigenvalues of maximum modulus. Denoting ρ as the spectral
radius of P , those Eigenvalues have the form ρe2πij/d, where j ∈ {0, 1, . . . , d− 1}.

Notice that our definition of periodicity slightly differs from that in [MRS01], however it is
possible to verify that periodicity in the sense of [MRS01] follows from our definition of periodicity,
which we prove in Lemma A.8 in Appendix A.5. Another very useful result for irreducible matrices
is Wielandt’s theorem [Wie50]. We present the theorem in the following, as we will require it in
several places of our subsequent derivations.

Theorem 7.21 ([Wie50]). Let P ∈ RM×M be an irreducible matrix and Q ∈ CM×M be a matrix
with |[Q]ij | ≤ [P ]ij. Then ρ(Q) ≤ ρ(P ). Further, equality holds (i.e., ρ(P )eiϕ is an Eigenvalue
of Q for some ϕ) if and only if there exist θ1, . . . , θM such that

Q = eiϕD−1PD,

where D is a diagonal matrix with entries [D]jj = eiθj .

The power of this theorem lies in the exact characterization under which conditions, the
spectral radii of two matrices, where one matrix is component-wise smaller than the other, agree.
For a detailed proof of this theorem and for more details on irreducible matrices, including a
comprehensive section on the Perron-Frobenius Theorem, we refer the reader to the textbooks
[Mey00, Section 8.3] and [HJ12, Section 8.4].

7.4.2 Essentials on Irreducible Matrices

We proceed with establishing basic results on irreducible matrices, which will be used in the
derivation of our main statements. Assume that P is an irreducible matrix with period d. We
start with a simple result on the rank of the adjoint matrix ρe2πij/dI −P , where ρ is the spectral
radius of the irreducible matrix P .

Lemma 7.22. Let P be an irreducible matrix with period d and spectral radius ρ. Then, the
adjoint matrix adj(ρe2πij/dI − P ) has rank one for all j ∈ {0, 1, . . . , d− 1}.

Proof. Note that the result can be deduced from, e.g., [Mey00, Prob. 6.2.11] and we provide a
short proof for the readers convenience. Denote by M the number of rows (and columns) of P
and abbreviate for convenience θj ≜ 2πj/d. We first show that rank(ρI − P ) = M − 1. The
Eigenvalues of ρeiθjI−P are given by (ρeiθj−λi) , i ∈ {1, . . . ,M}, where λi are the (not necessarily

3We say a matrix P has period d if the associated directed graph (see Definition 7.18) has period d.
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distinct) Eigenvalues of P . Since P is irreducible and has period d, by the Perron-Frobenius
Theorem 7.19 and Theorem 7.20 ρeiθj , j ∈ {0, 1, . . . , d − 1} are Eigenvalues of multiplicity one
and thus exactly one of the Eigenvalues ρeiθj − λi will be zero and all other non-zero. Therefore
rank(ρeiθjI−P ) = M−1. Next, we observe that adj(ρeiθjI−P )(ρeiθjI−P ) = det(ρeiθjI−P )I = 0
and thus adj(ρeiθjI − P ) spans a subspace of the left nullspace of (ρeiθjI − P ). Since ρeiθjI − P
has rank M −1, it follows that rank(adj(ρeiθjI−P )) ≤ 1. On the other hand, ρeiθjI−P has rank
M − 1 and thus there exists an (M − 1)× (M − 1) submatrix of ρeiθjI −P , which is non-singular
[Mey00, Ch. 4.5], and it follows that at least one entry of adj(ρeiθjI − P ) is non-zero. It follows
that adj(ρeiθjI − P ) cannot have rank zero and thus has rank one.

Next, we establish a useful characterization of the adjoint matrix adj(ρI − P ). In particular,
we will show that we can represent this adjoint matrix as the outer product of the right and left
Eigenvector associated with the Perron root ρ.

Lemma 7.23. Let P be an irreducible matrix with period d. Then, there are d Eigenvalues
ρe2πij/d, j ∈ {0, 1, . . . , d− 1} of maximum modulus and we denote their corresponding right and
left Eigenvectors by uj and vj, which are normalized to vj(x)u

T
j (x) = 1. The adjoint matrix

adj(ρe2πij/dI − P ) is given by

adj(ρe2πij/dI − P ) = cj · uT
j vj ,

where cj ̸= 0 is a linear scaling factor. Thus, adj(ρI − P ) is either all-positive or all-negative.

Proof. Abbreviate for convenience θj ≜ 2πj/d. By Lemma 7.22, the adjoint matrix has rank one.
It follows that adj(ρeiθjI − P ) can be written as the product uT

j vj of two vectors uj and vj , i.e.,

adj(ρeiθjI − P ) = uT
j vj . The properties of the adjoint matrix [HJ12, p. 20] imply that

adj(ρeiθjI − P )(ρeiθjI − P ) = (ρeiθjI − P )adj(ρeiθjI − P ) = det(ρeiθjI − P )I.

By Theorem 7.20, ρeiθj is an Eigenvalue of P , which implies that ρeiθjI − P is singular, so
det(ρeiθjI − P ) = 0. Hence,

adj(ρeiθjI − P )(ρeiθjI − P ) = (ρeiθjI − P )adj(ρeiθjI − P ) = 0.

Therefore, the columns of adj(ρeiθjI − P ) are right eigenvectors of P associated to ρeiθj . Sim-
ilarly, the rows of adj(ρeiθjI − P ) are left eigenvectors of P associated to ρeiθj , and therefore,
adj(ρeiθjI − P ) = uT

j vj , where uj and vj are right and left Eigenvectors corresponding to ρeiθj .

It is not possible that cj = 0, since rank(adj(ρeiθjI − P )) = 1 by Lemma 7.22.

We proceed with proving the second statement. By the Perron-Frobenius Theorem, u0 is either
all-zero, all-positive, or an all-negative vector and the same applies to v0. If we now assume that
B ≜ adj(ρI −P ) satisfies [B]11 > 0, the observations above imply that every entry of B must be
positive. Similarly, if [B]11 < 0, we can conclude that every entry of B must be negative.

The cost-enumerator matrix PG(x) is a matrix that is parametrized in a complex-valued variable
x ∈ C. In our analysis, due to the strong connectivity of the graph G, PG(x) is irreducible for all
positive and real-valued x ∈ R+. By Definition 7.7, the entries of PG(x) are polynomials in x and
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thus analytic4 functions in x. This analyticity then implies, by the implicit function theorem for
algebraic functions, that the Eigenvalue λ(x) that is equal to ρG(x) on the real axis, is analytic in
a neighborhood around the positive real axis.

Lemma 7.24. Let P (x) be a matrix with spectral radius ρ(x), whose entries are analytic functions
in x ∈ C. Also assume that P (x) is irreducible with period d for all x ∈ R+. Then, for each
j ∈ {0, 1, . . . , d − 1} and all real-valued x ∈ R+ there exists a unique Eigenvalue λj(x) of P (x)
with λj(x) = ρ(x)e2πij/d, which is analytic in a complex neighborhood around the positive real axis.
Further, the associated right and left Eigenvectors uj(x) and vj(x), normalized to vj(x)u

T
j (x) = 1,

are analytic on the same domain.

Proof. By the Perron-Frobenius Theorem (Theorem 7.19) and the extension in Theorem 7.20 for
every j ∈ {0, 1, . . . , d−1} and x0 ∈ R+, λj(x0) = ρ(x0)e

i2πij/d is a simple root of the characteristic
polynomial ϕ(λ) = det(λI − P (x0)). The coefficients of this polynomial ϕ(λ) are polynomials
in analytic functions, as the entries of P (x) are analytic by assumption. The implicit function
theorem for algebraic functions [Wil88, pp. 66-67] then implies that for each x0 > 0 there exists
an ϵ > 0 such that λj(x) is an Eigenvalue of P (x) and λj(x) is an analytic function for all x ∈ C
with |x− x0| < ϵ. As proven in [Wil88, pp. 66-67], the associated Eigenvectors are also analytic
functions in x in a neighborhood around the positive real axis.

Note that a continuous continuation of the Perron root to the whole complex plane does not in
general have to be unique. This is because the Perron-Frobenius theorem only guarantees the
uniqueness of the Perron root for positive x. For all other x ∈ C \ R+ the Eigenvalues might
intersect, meaning that the implicit function theorem does not hold, and thus a unique analytic
extension of the root is not possible anymore. The following example illustrates the generic case,
showing that the Eigenvalues at the origin x = 0.

Example 7.25. Consider the graph G with cost-enumerator matrix

PG(x) =

(
x2 x
x x2

)
.

The two Eigenvalues of this matrix are given by λ1(x) = x+ x2 and λ2(x) = −x+ x2. We directly
see that λ1(0) = λ2(0) = 0 and thus, the two Eigenvalues intersect in the origin.

In fact, for any cost-enumerator matrix, all Eigenvalues intersect at x = 0, since PG(0) = 0.
Besides the spectral radius ρ(x) of the cost enumerator matrix, we are also interested in its
derivative. This is because the derivative appears as a component of the critical point equation,
see, e.g., Theorem 7.12 and it can be further used to analyze the convexity of ρ(x).

Lemma 7.26. Let P (x) be a matrix with spectral radius ρ(x), whose entries are analytic functions
in x ∈ C. Further, let P (x) be irreducible with period d for all x ∈ R+. Then, the Eigenvalues
λj(x) of P (x) of maximum modulus and the associated right and left Eigenvectors uj(x) and
vj(x), normalized to vj(x)u

T
j (x) = 1, are analytic in a neighborhood around R+ and it holds that

vj(x)
∂P (x)

∂x
uT
j (x) =

∂λj(x)

∂x
.

4A function is analytic at a point x, if it can locally be represented by a power series. A function is analytic in a
domain if and only if it is complex differentiable in the same domain, see, e.g. [FS09, Thm. IV.1]
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Proof. To start with, denote by λj(x) the Eigenvalues of maximum modulus whose existence is
guaranteed from Lemma 7.24. The differentiability of λj(x) and uj(x),vj(x) then follows from
the analyticity of λj(x) proven in Lemma 7.24. Differentiating P (x)uT

j (x) = λj(x)u
T
j (x) on both

sides with respect to x yields

P (x)
∂uT

j (x)

∂x
+

∂P (x)

∂x
uT
j (x) = λj(x)

∂uT
j (x)

∂x
+

∂λj(x)

∂x
uT
j (x).

Multiplying with vj(x) from the left, one obtains

vj(x)
∂P (x)

∂x
uT
j (x) =

∂λj(x)

∂x
.

as desired.

Note that, although λ1(x) = ρ(x) for all x ∈ R+ (where we denote by λ1(x) the Perron root),
the spectral radius ρ(x) is not necessarily differentiable with respect to complex-valued x, as
ρ(x) is equal to the magnitude of the largest Eigenvalue. Even though the Eigenvalues λj(x) of
maximum modulus are analytic in a neighborhood around the real axis, the magnitude function
is not an analytic function on the whole complex plane.

7.5 Spectral Properties of Cost-Diverse Graphs

An important aspect and requirement of Theorem 7.14 is that the graph G is cost-diverse. Roughly
speaking, by Definition 7.4, cost-diversity means that the spectrum of average costs assumed by
paths connecting two vertices does not approach a constant for large path lengths. This property
is important in the derivation of the asymptotics of the bivariate series NG,v(t, αt) as it entails a
smooth behavior of the series in the parameter α. Conversely, if G is cost-uniform, there is in
fact only a single value for α for which the series NG,v(t, αt) does not vanish eventually. Note
that [KMR00] found that graphs for which all edge costs are the same have this discontinuous
behavior, however these are not the only graphs that fall into this category. We generalize this
observation and show that cost-diversity,5 is the precise graph property that distinguishes between
a smooth and discontinuous behavior. We further extend the notion of cost-diversity to cost
period c (Definition 7.5) and show that it relates to a very special structure of the cost-enumerator
matrix PG(x), when x is rotated in multiples of 2π/c along the complex circle. The following
examples illustrate the cost-diversity property.

Example 7.27. Figure 7.2 illustrates cost-diversity on different graphs. Figure 7.2a is a graph
with constant cost and thus all paths of length m have cost exactly m. The graph is therefore
cost-uniform. Figure 7.2b on the other hand is cost-diverse; there are two paths of length 2 from
the left vertex to itself having cost either 2 or 4. Figure 7.2c shows a cost-uniform graph, since
any cycle of length m from the left vertex to itself has cost 2m; any cycle of length m from the
right vertex to itself has cost 2m; any path of length m from the left to the right vertex has cost
2m− 1; and, any path of length m from the right to the left vertex has cost 2m+ 1. The graph in
Figure 7.2d describes a graph with cost period 2. This is because the cost of any cycle in the graph
is a multiple of 2. Further, the costs of all paths connecting the left and right vertex have costs

5Cost-diversity has been shown in [Liu20] to entail desirably properties on the Perron root.
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(c) Cost-uniform graph
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(d) Cost-diverse graph with cost period 2
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(e) Graph with period 2 and cost period 3

Figure 7.2: Examples of graphs illustrating cost-diversity and cost periodicity

congruent to 1 modulo 2. Thus, the graph has cost period 2. Similarly, the cost of all length-m
cycles inside the graph in Figure 7.2e have costs congruent to m modulo 3. The same is true
for paths connecting the left and middle vertex. Paths from these vertices to the right have costs
congruent to m+ 1 modulo 3 and m+ 2 for the other direction. Thus, the graph has cost period 3.

Connections between cost-diversity and the spectral radius will be integral to Theorem 7.14.
As we will see, the coboundary condition defined in Definition 7.6 arises in a variety of results
related to the Perron-Frobenius Theorem and is very useful for proving several of our results. We
further need the notion of log-log-convexity, which is defined as follows

Definition 7.28. Let I ⊆ R+ be an interval and f(x) : I 7→ R+ a function on that interval. We
call f(x) log-log-convex, if ln f(es) is convex in the variable s on the interval ln I ≜ {lnx : x ∈ I}.
Analogously, we introduce the notions of strict log-log-convexity and log-log-linearity.

With these definitions we arrive at the central statement of this section. We will prove the
next result using Lemmas 7.31 7.34, 7.39, and Corollaries 7.37 and 7.38. Figure 7.3 depicts
the roadmap for our subsequent derivations that establish the connections between the graph
properties, spectral properties of PG(x) and the singularities of FG(x, y).

Lemma 7.29. Let G be a strongly connected graph. The following statements are equivalent.

(a) The graph G has cost period c .

(b) The graph G satisfies the c-periodic coboundary condition.

(c) For all x ∈ C and k ∈ Z, ρG(xe2πik/c) = ρG(x).

Further, if G is cost-uniform, then the spectral radius ρG(x) is log-log-linear on x ∈ R+. If G is
cost-diverse, then the spectral radius ρG(x) is strictly log-log-convex on x ∈ R+.

Remark 7.30. Lemma 7.34 and Corollary 7.37 below state that for any strongly connected graph
G the equation ρG(xe

iϕ) = ρG(x) either has a finite number of solutions ϕk = 2πk/c, when G is
cost-diverse with cost period c, or holds for all ϕ when G is cost-uniform. Because cost period zero
refers to cost-uniformity, this means statement (c) in Lemma 7.29 covers the case of invariance
of the spectral radius on the complex circle. Furthermore, we see that when ρG(xe

iϕ) = ρG(x) has
an infinite number of solutions, then the set of such solutions comprise the full complex circle.

We proceed with proving the lemmas required for the derivation of Lemma 7.29.
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Lemma 7.51 Lemma 7.48Lemmas 7.49 & 7.50

Figure 7.3: Relationships between the properties of strongly connected graphs, the nature of the
cost-enumerator spectrum, and the singularities of the generating function.

7.5.1 Equivalance of Cost-Diversity and Coboundary Condition

We start with proving the equivalence of cost-uniformity and the coboundary condition. For
convenience, we will say that two integers are congruent modulo 0 if and only if they are equal.
The following result is a generalization of the equivalence between the coboundary condition and
cost-uniformity observed in [Liu20] to arbitrary cost periods c.

Lemma 7.31. Let G be a strongly connected graph. Then, G has cost period c if and only if it
fulfills the c-periodic coboundary condition.

Proof. The c-periodic coboundary condition implies cost period c: Let p = (e1, e2, . . . em)
be a path from vertex vi to vertex vj with path cost τ(p) =

∑m
k=1 τ(ek). Suppose p is represented

by the vertex sequence vi = vi0 → vi1 → · · · → vim = vj . The coboundary condition allows the
path cost to be written as

τ(p) =
m∑
k=1

(b+B(vik)−B(vik−1
)) + zc

= mb+B(vj)−B(vi) + zc

for some integer z ∈ Z. Thus, the costs of all paths of length m that connect vi and vj are
congruent modulo c and, by definition, the graph G has cost period c.

Cost period c implies c-periodic coboundary condition: We will start by showing that
there exists b ∈ Q such that the cost of any cycle p of length m satisfies τ(p) ≡ bm (mod c).
Let v1 ∈ V and let p1 be a cycle at vertex v1 of length m1. Such a cycle exists by strong
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connectivity of the graph. Suppose τ(p1) = t1. Now, let v2 ∈ V and let p2 be a cycle of
length m2 at vertex v2 with cost τ(p2) = t2. Denote by g12 = gcd(m1,m2) the greatest common
divisor of m1 and m2. Strong connectivity of G implies there is a path p1→2 from v1 to v2
with length n ≥ 1 and cost τ(p1→2) = t. Define the path p comprising m2/g12 repetitions of
cycle p1 followed by p1→2, and the path p′ comprising p1→2 followed by m1/g12 repetitions of
the cycle p2. The paths p and p′ both have length m1m2/g12 + n. So as G has cost period c,
m2t1/g12 + t = τ(p) = τ(p′) + zc = m1t2/g12 + t+ zc for some z ∈ Z. This implies that

m2t1 −m1t2 = g12zc.

This puts us in the position to employ a variation of the Chinese Remainder Theorem in
Lemma A.9, which implies that there exists b ∈ Q such that any cycle p of length m in G has a
cost τ(p) ≡ mb (mod c), which is congruent to mb modulo c.
Now, define a function B : V → R as follows. Set B(v1) = 0. For a vertex vi ̸= v1, choose

a path p1→i from v1 to vi of length n ≥ 1, and define B(vi) = τ(p1→i) − nb. We claim that
(B(vi) mod c) is independent of the chosen path p1→i. To see this, suppose p′

1→i and p′′
1→i

are two such paths from v1 to vi of length n′ and n′′, respectively, and let pi→1 be a path of
length p from vi to v1. The cycle p′ = (p′

1→i,pi→1) has length n′ + p, so τ(p′) = (n′ + p)b+ z′c,
where z′ ∈ Z. Similarly, the cycle p′′ = (p′′

1→i,pi→1) has length n′′ + p and cost τ(p′′) =
(n′′ + p)b+ z′′c for some z′′ ∈ Z. Then τ(p′

1→i) = τ(p′)− τ(pi→1) = (n′ + p)b+ z′c− τ(pi→1) and
τ(p′′

1→i) = τ(p′′)− τ(pi→1) = (n′′ + p)b+ z′′c− τ(pi→1). It follows that

τ(pi→1) = (n′ + p)b+ z′c− τ(p′
1→i) = (n′′ + p)b+ z′′c− τ(p′′

1→i)

from which we conclude that

τ(p′
1→i)− n′b = τ(p′′

1→i)− n′′b+ (z′ − z′′)c.

This confirms that by definition, (B(vi) mod c) is independent of the choice of path from v1 to vi.
Finally, let e ∈ E be an edge from vertex vi to vertex vj , and let pj→1 denote a path from

vertex vj to v1 of length q. Consider the cycle p1 = (p1→i, e,pj→1), with cost τ(p1) = (n+ 1 +
q)b + z1c for some z1 ∈ Z. Noting that τ(p1) = τ(p1→i, e) + τ(pj→1), and using the fact that
τ(p1→i, e) = B(vj) + (n+ 1)b+ zjc for some zj ∈ Z, we find

τ(pj→1) = (n+ 1 + q)b+ z1c− (B(vj) + (n+ 1)b+ zjc) = qb−B(vj) + (z1 − zj)c.

We can also write τ(p1) = τ(p1→i) + τ(e) + τ(pj→1), implying that

τ(e) = τ(p1)− (τ(p1→i) + τ(pj→1))

= (n+ 1 + q)b− ((B(vi) + nb) + (qb−B(vj))) + (zj − zi)c

= b+B(vj)−B(vi) + (zj − zi)c.

This confirms that the c-periodic coboundary condition holds.

7.5.2 Cost Period and Spectral Properties

We next show that cost-diversity implies that there can only be a finite number of solutions
to ρG(xe

iϕ) = ρG(x) over 0 ≤ ϕ < 2π. In fact, we will prove a stronger statement, that for all
x ∈ R+, the exact and only solutions are ϕk = 2πk/c. This property is vital as it implies that
the minimal singularities of the generating functions will be finitely minimal. We start with an
auxiliary result on the structure of the cost-enumerator matrix.
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Lemma 7.32. Let G be a strongly connected graph with cost period c. Then, for all x ∈ C, k ∈ Z,

PG

(
xe2πik/c

)
= e2πikb/cD−1

k PG(x)Dk,

where Dk is a diagonal matrix with entries [Dk]jj = e2πikB(vj)/c and b, B(vj) are defined by the
coboundary condition. Denoting by λ1(x), . . . , λ|V|(x) the Eigenvalues of PG(x), it holds that

λj

(
xe2πik/c

)
= e2πikb/cλj(x),

Proof. The graph G satisfies the c-periodic coboundary condition by Lemma 7.31. Hence, there
exists a constant b and functions B : V 7→ R such that for any two vertices vi and vj , each edge e
from vi to vj has cost τ(e), which can be written as

τ(e) = b+B(vj)−B(vi) + zec,

for some integer ze ∈ Z. Abbreviate ϕk ≜ 2πk/c. By Definition 7.7, the entries of the cost-
enumerator matrix are given by[

PG

(
xeiϕk

)]
ij
=

∑
e∈E: init(e)=vi,

term(e)=vj

xτ(e)eiϕkτ(e) = [PG(x)]ije
iϕk(b+B(vj)−B(vi)).

Introducing the diagonal matrix Dk with entries [Dk]ii = eiϕkB(vi), we can decompose the
cost-enumerator matrix to

PG

(
xeiϕk

)
= eiϕkbD−1

k PG(x)Dk.

The second part of the lemma directly follows from the similarity6 of the matrices PG(xe
iϕk) and

eiϕkbPG(x) proven in the first part of the lemma.

We will use this property to prove that the Eigenvalues of PG(x) have a very special structure,
when x varies over the complex circle. We continue with another auxiliary result that will serve
to prove the subsequent result on the spectral structure of PG(x) on the complex circle.

Lemma 7.33. Let G be a strongly connected and cost-diverse graph with largest cost period c.
Then, there exist two equal-length cycles at the same vertex whose cost difference is precisely c.

Proof. For convenience we denote in the following for a path p by init(p) the initial vertex of its
first edge and by term(p) the terminal vertex of its last edge. To this end, recall the definition of
cost period c. Since c is the largest cost period, Definition 7.5 guarantees the existence of η ∈ N
pairs of paths pi, p

′
i, i ∈ [η], where for each i both paths have the same lengths mi, pi and p′

i start
in the same vertex vi ≜ init(pi) = init(p′

i) and end in the same vertex ui ≜ term(pi) = term(p′
i)

such that the greatest common divisor of their cost differences is τ(pi)− τ(p′
i) is c. Hence, by

Bézout’s identity, there exist (possibly negative) integers zi ∈ Z such that

η∑
i=1

(τ(pi)− τ(p′
i))zi = c

6Two square matrices A and B are similar, if there exists an invertible diagonal matrix D such that A = D−1BD.
Similar matrices have the same Eigenvalues with the same multiplicities [HJ12, Cor. 1.3.4].
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Figure 7.4: Construction of the path Γ in the proof of Lemma 7.33

For each i, choose an arbitrary path pui→vi that connects ui and vi and construct two cycles
Γi = (pi,pui→vi) and ∆i = (p′

i,pui→vi) that share the same return path pui→vi from ui to vi.
Further choose arbitrary paths qi, 1 ≤ i ≤ η connecting vi and vi+1 and vη and v1. Now, set
µi = max{zi, 0} and µ′

i = µi − zi, denote by Γµ
i , µ ∈ N0 the µ−fold repetition of the cycle Γi and

construct two large cycles Γ and ∆ by

Γ = (Γµ1
1 ,∆

µ′
1

1 , q1,Γ
µ2
2 ,∆

µ′
2

2 , q2, . . . , qη),

∆ = (Γ
µ′
1

1 ,∆µ1
1 , q1,Γ

µ′
2

2 ,∆µ2
2 , q2, . . . , qη).

That is, Γ starts at v1, circles µ1 times along Γ1, then µ′
1 times along ∆1, then proceed to move

along q1 to v2. There it circles µ2 times along Γ2 and µ′
2 times along ∆2, and so on, until it

moves back from vη to v1 along qη. Similarly, ∆ is created. For a visualization of the construction
of the cycle Γ, see Figure 7.4. Notice that µi and µ′

i are guaranteed to be non-negative by their
definitions. Computing the cost difference of Γ and ∆, one obtains

τ(Γ)− τ(∆) =

η∑
i=1

(µiτ(pi) + µ′
iτ(p

′
i))−

η∑
i=1

(µ′
iτ(pi) + µiτ(p

′
i)) =

η∑
i=1

(τ(pi)− τ(p′
i))zi = c.

Hence, there exist two cycles at the vertex v1 of the same length m whose cost is precisely p.

Lemmas 7.32 and 7.33 can be combined to prove the following result on the structure of the
spectral radius on the complex circle.

Lemma 7.34. Let G be a strongly connected and cost-diverse graph with largest cost period c.
Then, for any x ∈ R+, there are precisely c solutions ϕk = 2πk/c, k ∈ {0, 1, . . . , c − 1} to the
equation ρG(xe

iϕ) = ρG(x), in the interval 0 ≤ ϕ < 2π. For all other ϕ, ρG(xe
iϕ) < ρG(x).

Proof. By Lemma 7.32, for all k ∈ {0, 1, . . . , c− 1}, and j ∈ [|V|], we have λj(xe
iϕk) = eiϕkbλj(x),

which implies that ρG(xe
iϕk) = ρG(x).

We proceed with proving that for all other values of ϕ the spectral radius ρG(xe
iϕ) is strictly

less than ρG(x). We start with the observation that for any ϕ ∈ R, we have

|[PG(xe
iϕ)]ij | =

∣∣∣∣∣∣
∑

e∈E:init(e)=vi,term(e)=vj

(xeiϕ)τ(e)

∣∣∣∣∣∣ ≤
∑

e∈E:init(e)=vi,term(e)=vj

xτ(e) = [PG(x)]ij .
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By Wielandt’s theorem [Mey00, Sec. 8.3] (Theorem 7.21) it follows that the spectral radius satisfies
ρG(xe

iϕ) ≤ ρG(x) with equality if and only if there exist θ, θ1, θ2, . . . , θ|V| such that

PG(xe
iϕ) = eiθD−1PG(x)D,

where D is a diagonal matrix with entries [D]jj = eiθj . It therefore suffices to prove that this
equality can not be fulfilled for any 0 ≤ ϕ < 2π that is not equal to some ϕk. Powering the above
equation to m ∈ N, it follows that

Pm
G (xeiϕ) = eimθD−1Pm

G (x)D.

In particular, the entry i, j of this equation reads as

[Pm
G (xeiϕ)]ij = ei(mθ+θj−θi)[Pm

G (x)]ij

and it follows that

|[Pm
G (xeiϕ)]ij | = |[Pm

G (x)]ij | = [Pm
G (x)]ij .

Denote now by Pij(m) = {p = (e1, . . . , em) : init(e1) = vi, term(em) = vj} the set of paths
of length m from vi to vj . It is well-known [KMR00] that [Pm

G (x)]ij =
∑

p∈Pij(m) x
τ(p). By

Lemma 7.33, for a graph with largest cost period c there exists a length m and a vertex vi such
that there are two cycles of length m at vi whose cost differs by exactly c. Let in the following
m, vi be such that they fulfill this property and denote by τ, τ + c the costs that are assumed by
these two cycles. Thus, the polynomial [Pm

G (x)]ii contains the sum of at least two monomials xτ

and xτ+c, each with integer-valued coefficients. Now, recall that the triangle inequality of a sum
of complex numbers is tight if and only if the complex angles of all summands agree. Therefore, if
2πϕc is not an integer multiple of 2π, then |[Pm

G (xeiϕ)]ii| < [Pm
G (x)]ii and the claim follows.

Conversely, also for cost-uniform graphs, the Eigenvalues of PG(x) have a special structure that
can be derived explicitly. The following lemma proves this fact.

Lemma 7.35. Let G = (V, E , σ, τ) be a strongly connected graph that satisfies the coboundary
condition. Then, for all j ∈ [|V|] and x ∈ C, the Eigenvalues λ1(x), . . . , λ|V|(x) of PG(x) are

λj(x) = λj(1)x
b,

where b is the constant of the coboundary condition.

Proof. The graph G satisfies the coboundary condition by assumption. Hence, there exists a
constant b and functions B : V 7→ R such that for any two vertices vi and vj , each edge from vi to
vj has cost τij , which can be written as

τij = b+B(vj)−B(vi).

Further, the number of edges from vi to vj is precisely [PG(1)]ij . It follows that each entry
[PG(x)]ij of PG(x) is equal to

[PG(x)]ij = [PG(1)]ijx
τij = [PG(1)]ijx

b+B(vj)−B(vi).
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Chapter 7 Multivariate Singularity Analysis for Cost Constrained Channels

Introducing the diagonal matrix D(x) with entries [D(x)]ii = xB(vi), we can decompose the
cost-enumerator matrix to

PG(x) = xbD−1(x)PG(1)D(x).

Thus, the characteristic polynomial ϕ(λ, x) of the cost-enumerator matrix PG(x) becomes

det(λI − PG(x)) = det(λI − xbD−1(x)PG(1)D(x))

= det(D) det(λI − xbD−1(x)PG(1)D(x)) detD−1

(a)
= det(λI − xbPG(1)),

where in (a) we used the multiplicativity of the determinant. Thus, ϕ(λ, x) = xb|V|ϕ(x−bλ, 1).
Since the Eigenvalues of PG(x) are precisely the roots of the characteristic polynomial, we can
identify λj(x) as the roots of ϕ(λ, x) and λj(1) as the roots of ϕ(λ, 1). By a variable substitution,
it follows that λj(x) = λj(1)x

b for all j ∈ [|V|] and x ∈ C.

Lemma 7.35 illustrates that the Eigenvalues of cost-uniform graphs have the very special
structure of being monomials in x. All Eigenvalues share the same exponent b from the coboundary
condition and their coefficient is given by the corresponding Eigenvalue of the matrix PG(1). The
following example illustrates Lemma 7.35.

Example 7.36. Consider the cost-uniform graph from Figure 7.2c on Page 140. We can verify,
by analyzing the cost of the edges which are self-loops, that the constant from the coboundary
condition is given by b = 2. Computing the Eigenvalues, we obtain λ1(x) = 2x2 and λ2(x) = 0,
confirming the statement from Lemma 7.35.

This puts us in the position to prove the converse to Lemma 7.34. That is, we can show that
if a graph is cost-uniform, or equivalently, satisfies the coboundary condition, then the spectral
radius is invariant on the complex circle.

Corollary 7.37. Let G be a strongly connected graph that satisfies the coboundary condition.
Then, for any x ∈ C, ρG(xeiϕ) = ρG(x), for all 0 ≤ ϕ < 2π.

Proof. The corollary directly follows from Lemma 7.35, using that the coboundary condition
implies that for all x ∈ C,

ρG(xe
iϕ) = ρG(1)|xeiϕ|b = ρG(1)|x|b = ρG(x).

For illustrative purposes, an alternative proof of Corollary 7.37 that does not use Lemma 7.35
is presented in Appendix A.4.

7.5.3 Cost-Diversity and Strict Log-Log-Convexity

We proceed with discussing log-log-convexity of the spectral radius. This property will help in
several places to prove Theorem 7.16. First, we show that for cost-uniform graphs the spectral
radius is log-log-linear on the real axis.
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7.6 Multivariate Singularity Analysis

Corollary 7.38. Let G be a strongly connected graph. If G is cost-uniform, then ρG(x) is
log-log-linear on the interval x ∈ R+.

Proof. By Lemma 7.35, for all real-valued s ∈ R, ln ρG(es) = ln(ρG(1)) + bs, which is a linear
function in s.

Another way to prove Corollary 7.38 without the employment of Lemma 7.35 is to use Nuss-
baum’s theorem [Nus86], which we present for the interested reader in Appendix A.4. We turn
towards proving the converse to the previous corollary, i.e., we show that if the graph G is
cost-diverse, then ρG(x) is strictly log-log-convex. Notice that the (non-strict) log-log convexity
of the Perron root is known from classical results on irreducible matrices [Coh78; Coh81; Kin61].

Lemma 7.39. Let G be a strongly connected, cost-diverse graph. Then ρG(x) is strictly log-log-
convex for all x ∈ R+.

The proof will make use of the following lemma [SWB06, Thm. 1.37].

Lemma 7.40 ([SWB06, Thm. 1.37]). Let P (s), s ∈ R be an irreducible matrix, such that all
non-zero entries are log-convex functions of s. Then the spectral radius ρ(s) of P (s) is log-convex.
If additionally, at least one entry of P (s) is strictly log-convex, then ρ(s) is strictly log-convex.

Proof of Lemma 7.39. Consider the m-th power Pm
G (x) of PG(x). We know [KMR00] that,

denoting Pij(m) as the set of paths of length m from vi to vj , the entry i, j of the matrix Pm
G (x)

is given by [Pm
G (x)]ij =

∑
p∈Pij(m) x

τ(p). We will show that this entry is strictly log-log-convex, if
there exist two paths of length m from vi to vj with different costs. Taking the second derivative
of the log-log expression, we obtain

∂2

∂s2
ln([Pm

G (es)]ij) =

∑
p e

sτ(p)
∑

p τ(p)
2esτ(p) −

(∑
p τ(p)e

sτ(p)
)2

(
[Pm

G (es)]ij
)2 .

Identifying the vectors u = (esτ(p)/2 : p ∈ Pij(m)) and v = (τ(p)esτ(p)/2 : p ∈ Pij(m)) that both
have length |Pij(m)|, the numerator is equal to (u · u)(v · v)− (u · v)2, where u · v denotes the
inner product of the vectors u and v. The numerator is therefore non-negative by Cauchy-Schwarz
inequality, see, e.g., [HJ12, Ch. 0.6.3], and thus the entries [Pm

G (x)]ij are either 0 or positive
and log-convex. Further, due to the cost-diversity of the graph G, there exist m, i, j such that
there exist two paths of length m from vi to vj with different costs and thus u and v are linearly
independent. In this case, Cauchy-Schwarz inequality holds with strict inequality and thus the
numerator is positive, which implies that [Pm

G (es)]ij is strictly convex in s.
The spectral radius of Pm

G (es) is given by ρmG (es). With Lemma 7.40 it follows that ρmG (es) is
strictly log-convex. Since powering with positive integers does not change log-convexity, ρG(e

s) is
also strictly log-convex. By definition, ρG(x) is thus strictly log-log-convex.

7.6 Multivariate Singularity Analysis

The main step in proving Theorem 7.14 is showing that the prerequisites of [Mel21, Thm. 5.1
and 9.1] are fulfilled, which requires exhibiting certain properties of the singularities. We start by
deriving the generating function and reviewing the properties of the generating function required
to understand [Mel21, Thm. 5.1 and 9.1]. Afterwards, we prove that these properties apply for
the generating functions of the size of the limited-cost follower sets.
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7.6.1 Derivation of the Generating Function

The beginning point of the multivariate singularity analysis is the derivation of the generating
function of the series NG,v(t, n). Together with a profound analysis of the singularities of the
generating function in the proceeding sections, this will allow to use the powerful machinery of
analytical combinatorics in several variables. The starting point of our derivations is the following
recursion, which is the key observation to derive the generating function of the series NG,v(t, n).

Lemma 7.41. Let G = (V, E , τ, σ) be a deterministic graph. Then, the size of the follower set of
any vertex v ∈ V obeys the recursion,

NG,v(t, n) =
∑

e∈E:init(e)=v

NG,term(e)(t− τ(e), n− 1),

for all n > 0, t ≥ 0, and NG,v(t, 0) = 1 for all t ≥ 0, and, NG,v(t, n) = 0 for all t < 0 or n < 0.

Proof. Denote by PG,v(t, n) the set of all length-n paths through G that start from vertex v
and have cost at most t. By the deterministic property of the graph, NG,v(t, n) = |PG,v(t, n)|.
Partition the paths PG,v(t, n) according to the first traversed edge e ∈ E into the distinct parts
PG,v,e(t, n) = {p ∈ PG,v(t, n) : p = (e, e2, . . . )}, for any e ∈ E that emits from v, i.e., init(e) = v.
To start with, PG,v(t, n) =

⋃
e∈E PG,v,e(t, n) and the parts are distinct by definition. Now, any

path p ∈ PG,v,e(t, n) starts by traversing e, which costs τ(e) and results in the vertex term(e).
Therefore, each path p ∈ PG,v,e(t, n) can be assembled by prepending e to some path of cost at
most T − τ(e) and length n− 1 that starts from term(e), i.e.

PG,v,e(t, n) =
{
p = (e,p′) : p′ ∈ PG,term(e)(t− τ(e), n− 1)

}
.

Thus |PG,v,e(t, n)| = NG,term(e)(t− τ(e), n− 1), which proves the recursive statement of the lemma.
The initial condition NG,v(t, 0) = 1 for all t ≥ 0 comes from the fact that we include the length-0
string in our computations.

This recursion allows us to derive the exact generating function of the integer sequences
NG,v(t, n). Further, we can extract the asymptotic behavior of integer sequences by means of
powerful methods in complex analysis [Mel21; PW08]. Note that here we restrict our attention to
the series NG,v(t, n), which directly implies the generating function for NG,v(t) because we have
NG,v(t) =

∑
n≥0NG,v(t, n). We proceed with the proof of Lemma 7.10.

Proof of Lemma 7.10. Starting from the recursive expression of NG,v(t, n), we first incorporate
the beginning of the recursion and obtain

NG,v(t, n) =
∑

e∈E:init(e)=v

NG,term(e)(t− τ(e), n− 1) + U(t, n),

where U(t, n) = 1 if n = 0 and t ≥ 0 and 0, otherwise. Multiplying with xtyn on both sides and
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summing over n, t yields

FG,v(x, y) =
∑

e∈E:init(e)=v

∑
t,n≥0

NG,term(e)(t− τ(e), n− 1)xtyn +
∑
t,n≥0

U(t, n)xtyn

=
∑

e∈E:init(e)=v

xτ(e)y
∑

t≥−τ(e),n≥−1

NG,term(e)(t, n)x
tyn +

∑
t≥0

xt

(a)
=

∑
e∈E:init(e)=v

xτ(e)yFG,term(e)(x, y) +
1

1− x
,

where in (a) we used that NG,v(t, n) = 0 for any t < 0 or n < 0 and the fact that the geometric
series is equal to 1/(1− x). Combining the generating functions of all vertices into one vector
FG(x, y), we obtain

FG(x, y) = yPG(x)FG(x, y) +
1

1− x
1T.

Rearranging the above equality gives the claim.

7.6.2 Analytical Combinatorics in Several Variables

We shortly present and review the ingredients required to invoke the ACSV results [Mel21]. To this
end, for reasons of clarity, we present the definitions for the case, where we wish to compute the
asymptotic behavior of N(α1t, α2t), as t→∞. Notice that in our setup α1 = 1 and α2 = α. We
further restrict the definitions to the bivariate case, as this is our case of interest. Further, we will
assume that the generating function has the form F (x, y) = Q(x, y)/H(x, y) for two polynomials
Q(x, y) and H(x, y). We start with the notion of singularities of a generating function.

Definition 7.42 ([Mel21, Def. 3.5]). A point (x0, y0) ∈ C2 is called a singularity of F (x, y), if
F (x, y) is unbounded in any neighborhood around (x0, y0).

Similar to the univariate case, a sufficient condition for a point to be a singularity is that
H(x0, y0) = 0 and Q(x0, y0) ̸= 0. The important singularities will be those, which are minimal.
They are defined as follows.

Definition 7.43 ([Mel21, Def. 3.9]). A point (x0, y0) ∈ C2 is called a minimal singularity of
F (x, y) = Q(x, y)/H(x, y), if it is a singularity of F (x, y) and there exists no other singularity
(x′, y′) ∈ C2 with |x′| < |x| and |y′| < |y|.

A minimal singularity is called finitely minimal [Mel21, Def. 5.6], if there exist only a finite
number of singularities with the same coordinate-wise modulus. In contrast to the case of
univariate generating functions, not all minimal singularities contribute to the asymptotic behavior
of the series under consideration. The following notion of critical points helps to separate those
singularities which are important for the asymptotic expansion.

Definition 7.44 ([Mel21, Def. 5.4]). A point (x0, y0) ∈ C2 is called a critical point of
F (x, y) = Q(x, y)/H(x, y), if

H(x, y) = α2xHx(x0, y0) = α1yHy(x0, y0)

If further either Hx(x0, y0) ̸= 0 or Hy(x0, y0) ̸= 0, then the point is a smooth critical point.
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As remarked in [Mel21, Def. 5.5], if the direction (α1, α2) is positive, then any minimal smooth
critical point is a point that contributes to the asymptotics.

Definition 7.45 ([Mel21, Def. 5.7]). Let (x0, y0) ∈ C2 be a smooth critical point, assume w.l.o.g.
Hy(x0, y0) ̸= 0 and let g(x) be the explicit function characterizing the singularities (x, g(x)) in a
neighborhood around x0. The point (x0, y0) is called a non-degenerate critical point, if the Hessian
matrix H of

ϕ(θ) = ln

(
g(x0e

iϕ)

g(x0)

)
+ iα1/α2θ

is non-singular at θ = 0.

We now introduce the theorems from ACSV that we will use to prove our asymptotic results,
taking care to note what properties we need to establish to determine asymptotics. These theorems
are specialized to the bivariate case we consider.

First, we see a theorem for ‘smooth’ asymptotics, which applies when asymptotics are determined
by a smooth critical singularity. We will apply this result in the regime when αlo

G < α < αup
G .

Theorem 7.46 ([Mel21, Thm. 5.1]). Let α1, α2 > 0 and let Q(x, y), H(x, y) be coprime
polynomials such that the generating function F (x, y) = Q(x, y)/H(x, y) admits a power series
expansion F (x, y) =

∑
t,n≥0N(t, n)xtyn. Suppose that the system of polynomial equations

H(x, y) = α2xHx(x, y)− α1yHy(x, y) = 0 (7.1)

admits a finite number of solutions, exactly one of which (x0, y0) ∈ C2 is minimal. Suppose further
that (x0, y0) has non-zero coordinates, Hy(x0, y0) ̸= 0, and (x0, y0) is non-degenerate. Then, as
t→∞,

N(tα1, tα2) = x−tα1
0 y−tα2

0 t−1/2 1√
2πα2Hx0,y0

(
−Q(x0, y0)

y0Hy(x0, y0)
+O

(
1

t

))
(7.2)

when t(α1, α2) ∈ N2.

Theorem 7.46 has been extended to the case, when the critical point equations (7.1) admit a
finite set of minimal singularities, which all have the same coordinate-wise modulus. Provided
that all such points fulfill the conditions of Theorem 7.46, an asymptotic expansion of the integer
series is obtained by summing over the right-hand side of (7.2) at each of the singularities [Mel21,
Cor. 5.2]. In order to compute the asymptotic expansion in the smooth case, we thus need to
verify the following properties. First, we need to characterize the minimal points that satisfy (7.1)
and show that Hy does not vanish at these points. Second, the points need to be non-degenerate
and the numerator should be non-zero to guarantee a dominant asymptotic term.

The other case of interest is the multiple-point case where two smooth branches of the singular
set collide. In this case, the asymptotic behavior is obtained using the following theorem.

Theorem 7.47 ([Mel21, Prop. 9.1 and Thm. 9.1]). Let α1, α2 > 0 and let Q(x, y), H(x, y)
be coprime polynomials such that F (x, y) = Q(x, y)/H(x, y) admits a power series expansion
F (x, y) =

∑
t,n≥0N(t, n)xtyn. Suppose that (x0, y0) is a strictly minimal point, and near (x0, y0)

the zero set of H is locally the union of the sets defined by the vanishing of polynomials R(x, y) and
S(x, y) such that R(x0, y0) = S(x0, y0) = 0 and the gradients of R and S are linearly independent
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at (x0, y0) (in particular, both gradients must be non-zero so each of the zero sets are locally
smooth near (x0, y0)). If there exist ν1, ν2 > 0 such that

(α1, α2) = ν1

(
1,

y0Ry(x0, y0)

x0Rx(x0, y0)

)
+ ν2

(
1,

y0Sy(x0, y0)

x0Sx(x0, y0)

)
then, as t→∞,

N(tα1, tα2) = x−tα1
0 y−tα2

0

Q(x0, y0)

| detH|
+O(δt)

where 0 < δ < x−α1
0 y−α2

0 and

H =

(
x0Rx(x0, y0) y0Ry(x0, y0)
x0Sx(x0, y0) y0Sy(x0, y0)

)
.

We will apply this theorem, if α is in the range 0 < α < αlo
G. As in the smooth case, if there

exist a finite number of singularities with the same coordinate-wise modulus as (x0, y0) that all
satisfy the conditions of Theorem 7.47, then we get an asymptotic expansion by summing the
asymptotic contributions of each. Applying Theorem 7.47 is easier than applying Theorem 7.46,
as we only need to prove the existence of the constants ν1 and ν2.

7.6.3 Singularity and Critical Point Analysis

The main challenge in proving Theorem 7.14 is showing that the prerequisites of Theorems 7.46
and 7.47 are fulfilled. We establish the necessary conditions through a careful study of the
singularities of our generating functions

FG(x, y) =
1

1− x
· (I − yPG(x))

−11T.

We can write FG(x, y) = QG(x, y)/HG(x, y) for a polynomial vectorQG(x, y) = adj(I − yPG(x))1
T

and polynomial HG(x, y) = (1− x) det(I − yPG(x)). In particular, all entries of FG(x, y) share
the same denominator, which allows us to analyze the crucial properties such as minimal and
critical points once instead of for each coordinate. According to Definition 7.9, we always work
with respect to the diagonal (α1, α2) = (1, α), and this direction is assumed when discussing
notions like critical points and non-degeneracy.
The first step in our multivariate singularity analysis is to identify those singularities, which

are minimal, i.e., for which there exists no other singularity that has a smaller magnitude in all
coordinates (see Definition 7.43).

Lemma 7.48. Let G be a strongly connected and cost-diverse graph with largest period d and
largest cost period c. The points

{(x0, 1/ρG(x0)) : 0 < x0 < 1} ∪ {(1, y0) : y0 ∈ C, |y0| ≤ 1/ρG(1)}

are minimal singularities of each coordinate of FG(x, y). All other minimal singularities are(
x0e

i2πk/c, e−2πi(kb/c+j/d)/ρG(x0)
)

for some 0 < x0 ≤ 1, k ∈ {0, 1, . . . , c− 1}, and j ∈ {0, 1, . . . , d− 1}, where b is the constant of
the c-periodic coboundary condition.
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Proof. The singularities of the coordinates of FG(x, y) are a subset of the solutions to the equation
(1− x) det(I − yPG(x)) = 0, and any root of the denominator where the numerator does not
vanish is a singularity. Using that det(I − yPG(x)) =

∏
j(1 − yλj(x)), where λj(x) are the

Eigenvalues of PG(x), the singularities of FG are thus a subset of the variety

X = {(x, 1/λj(x)) : x ∈ C, 1 ≤ j ≤ |V|} ∪ {(1, y) : y ∈ C}.

We start by investigating the first set of singularities. Right away, we see that for all x ∈ C
with |x| > 1 the singularities (x, 1/λj(x)) cannot be minimal, since there exists y ∈ C such that
(1, y) has a coordinate-wise smaller modulus as (x, 1/λj(x)). We thus focus on those singularities
with 0 < |x| ≤ 1. Due to the fact that the graph G is strongly connected, it follows that PG(x0)
is irreducible for all x0 ∈ R+ and thus, by the Perron-Frobenius Theorem, has a single real
Eigenvalue ρG(x0) of maximum modulus. In the following we identify the Perron-Frobenius
Eigenvalue as the first Eigenvalue ρG(x0) = λ0(x0).
We now show that for all 0 < x0 ≤ 1 the points (x0, 1/ρG(x0)) are minimal singularities. To

begin, the numerator of FG at this point can be expressed as

QG(x0, 1/ρG(x0)) = adj

(
I − PG(x0)

ρG(x0)

)
1T = ρG(x0)

1−|V| adj(ρG(x0)I − PG(x0))1
T,

so an application of Lemma 7.23 shows that the numerator is non-zero, as adj(ρG(x0)I −PG(x0))
is either all-positive or all-negative. In particular, these points are singularities of each coordinate
and it remains to show minimality. We prove minimality using Proposition 5.4 of [Mel21],
which states that a singularity (x0, 1/ρG(x0)) with positive coordinates is minimal if and only if
HG(tx0, t/ρG(x0)) is non-zero for all 0 < t < 1. The term (1− tx0) does not vanish for 0 < t < 1,
so if HG(tx0, t/ρG(x0)) = 0 then t/ρG(x0) = 1/λj(tx0) for some 0 < t < 1 and j ≥ 1. However,

t/ρG(x0) < 1/ρG(x0)
(a)

≤ 1/ρG(tx0) ≤ |1/λj(tx0)|,

where inequality (a) uses that each entry of PG(x0) is monotonically increasing in x0 and thus
ρG(x0) is also monotonically increasing in x0. Hence HG(tx0, t/ρG(x0)) does not vanish on
0 < t < 1 and it follows that any point (x0, 1/ρG(x0)) with 0 < x0 < 1 is a minimal singularity.
We next prove that the only other minimal singularities in {(x, 1/λj(x)) : x ∈ C, 1 ≤ j ≤ |V|}

are as given in the statement of the lemma. To start with, by Theorem 7.20, for each 0 < x0 ≤ 1
there are precisely d simple Eigenvalues λ0(x0), . . . , λd−1(x0) with the same modulus as the
spectral radius and they are given by

λj(x0) = ρG(x0)e
2πi(j−1)/d.

Due to the similarity of PG(xe
iϕk) and eiϕkbPG(x) for all ϕk = 2πk/c and k ∈ {0, 1, . . . , c−1}, which

was derived in Lemma 7.32, the Eigenvalues of PG(x0e
iϕk) are given by λj(x0e

iϕk) = eiϕkbλj(x0).
Therefore, for each j and k we obtain one candidate for a minimal singularity,(

x0e
iϕk , e−i(ϕkb+2πj/d)/ρG(x0)

)
.

For all other ϕ that are not integer multiples of 2π/c, the singularities (x0e
iϕ, 1/λj(x0e

iϕ)) are not
minimal, as ρG(x0e

iϕ) < ρG(x0) in this case was proven in Lemma 7.34. Furthermore, all other
Eigenvalues λj(x) with j ≥ d have |λj(x)| < ρG(x), which implies that they cannot be minimal.
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Finally, we study the singularities in {(1, y) : y ∈ C}. All points (1, y0), y0 ∈ C, |y0| ≤ 1/ρG(1)
are singularities, since the matrix I − y0PG(1) is invertible. Furthermore, these singularities are
minimal due to the fact that (1, 1/ρG(1)) is minimal as proven above. Conversely, for |y0| > 1/ρG(1)
the points (1, y0) are not minimal due to the existence of the singularities (x0, 1/ρG(x0)).

Noteworthily, while we have proven that the points (x0, 1/ρG(x0)) are indeed singularities, the
same is not necessarily true for the other minimal points. This is because for these points, the
numerator is not guaranteed to be non-negative. Next is a statement on the smoothness and
criticality of the singularities.

Lemma 7.49. Let G be a strongly connected and cost-diverse graph with period d and cost period c.
For all x0 ∈ R+ with x0 ̸= 1 and all k ∈ {0, 1, . . . , c− 1}, j ∈ {0, 1, . . . , d− 1}, the points(

x0e
2πik/c, e−2πi(kb/c+j/d)/ρG(x0)

)
are smooth points of FG(x, y) and critical if and only if αx0ρ

′
G(x0) = ρG(x0). Any point (1, y0)

with y0 ∈ C and |y0| < ρG(1) is not a root of det(I − yPG(x)) and thus is a smooth point that is
never critical.

Proof. Abbreviate for convenience ϕk ≜ 2πk/c and θj ≜ 2πj/d. We start by verifying that
for all x0 ∈ R+ with x0 ̸= 1 and k ∈ {0, 1, . . . , c − 1}, j ∈ {0, 1, . . . , d − 1}, the points
(x0e

iϕk , e−i(ϕkb+θj)/ρG(x0)) are smooth. By Jacobi’s Formula, the partial derivative satisfies

∂HG(x, y)

∂y
= −(1− x) tr (adj(I − yPG(x))PG(x)) .

For the rest of this proof we write λj(x0e
iϕk) for the d Eigenvalues of PG(x0e

iϕk) of maximum
modulus, which satisfy λj(x0e

iϕk) = ei(ϕkb+θj)λ0(x0), where λ0(x0) = ρG(x0) is the Perron root of
PG(x0), according to Theorem 7.20 and Lemma 7.32. The corresponding normalized Eigenvectors
are uj(x0e

iϕk) and vj(x0e
iϕk) and plugging in the points of interest, we obtain

∂HG(x, y)

∂y

∣∣∣∣x=x0e
iϕk ,

y=1/λj(x0e
iϕk )

= −(1− x0e
iϕk) tr

(
adj(I − PG(x0e

iϕk)/λj(x0e
iϕk))PG(x0e

iϕk)
)
.

Here we can use Lemma 7.32 to simplify the cost-enumerator matrix and Lemma 7.23 to find an
explicit representation of the adjoint matrix, simplifying the above expression to

− cj(x0)(1− x0e
iϕk)(λj(x0))

1−|V| tr(eiϕkbvj(x0)PG(x0)u
T
j (x0))

=− cj(x0)(1− x0e
iϕk)(λj(x0))

1−|V|λj(x0e
iϕk),

where cj(x0) ∈ R \ {0} is a non-zero constant. This expression is non-zero for all x0 ∈ R+ with
x0 ̸= 1 and k ∈ {0, 1, . . . , c− 1}, j ∈ {0, 1, . . . , d− 1} and thus the points are smooth.

We now examine when these minimal points are solutions of the critical point equations

αx
∂HG(x, y)

∂x
= y

∂HG(x, y)

∂y
.
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The partial derivative of the denominator with respect to x is given by

∂HG(x, y)

∂x
= −det(I − yPG(x))− (1− x)y tr

(
adj(I − yPG(x))

∂PG(x)

∂x

)
.

Evaluating this partial derivative at the points (x0e
iϕk , 1/λj(x0e

iϕk)), we obtain

∂HG(x, y)

∂x

∣∣∣∣x=x0e
iϕk ,

y=1/λj(x0e
iϕk )

= −(1− x0e
iϕk) tr

(
adj(I − PG(x0e

iϕk)/λj(x0e
iϕk))P ′

G(x0e
iϕk)
)
,

where P ′
G(x) is the partial derivative of the cost-enumerator matrix with respect to x. Here we use

that det(I − yPG(x)) evaluated at these points is 0, as λj(x0e
iϕk) is an Eigenvalue of PG(x0e

iϕk).
Similar to the case of the derivative with respect to y, we simplify this expression to

− cj(x0)(1− x0e
iϕk)(λj(x0))

1−|V|eiϕk(b−1) tr(vj(x0)P
′
G(x0)u

T
j (x0))

(a)
= − cj(x0)(1− x0e

iϕk)(λj(x0))
1−|V|λ′

0(x0)e
i(ϕk(b−1)+θj)

where, in the first step, we used that P ′
G(x0e

iϕk) = eiϕk(b−1)D−1
k P ′

G(x0)Dk according to Lemma 7.32,
and equality (a) follows from an application of Lemma 7.26. Substituting our expressions for the
partial derivatives into the critical point equations shows that the critical point equations simplify
to αx0λ

′
0(x0) = λ0(x0). Since λ0(x0) = ρG(x0), the first part of the lemma follows.

The singularities (1, y0) with |y0| < ρG(1) are not roots of det(I−yPG(x)) as ρG is an Eigenvalue
of PG of largest modulus. Thus, near these points the zero set of the denominator is locally the
zero set of the factor 1 − x and is therefore smooth (algebraically, the partial derivative with
respect to x is non-zero at these points). These points can never be critical because the partial
derivative of HG(x, y) with respect to y vanishes at any such point.

Notice that the derivative ρ′G(x) in the statement of Lemma 7.49 should crucially be understood
with respect to real-valued x. The complex derivative does not necessarily exist, since the spectral
radius is the largest magnitude of all Eigenvalues, ρG(x) = |λ0(x)|, and the magnitude function is
not complex differentiable on the whole complex plane.

Lemma 7.50. Let G be a strongly connected and cost-diverse graph. Then, the critical point
equation αxρ′G(x) = ρG(x) has a positive real solution x0 if and only if

lim
x→∞

ρG(x)

xρ′G(x)
< α < lim

x→0+

ρG(x)

xρ′G(x)
.

This solution, if it exists, is unique among all positive real x. If α > ρG(1)/ρ
′
G(1) then x0 < 1 and

if α < ρG(1)/ρ
′
G(1), then x0 > 1.

Proof. Since ρG(x) > 0 for x ∈ R+, we can rewrite the equation we are trying to solve as f(x) = 1,
where f(x) ≜ αxρ′G(x)/ρG(x). To start we investigate the limit of f(x) as x → 0+. Note that
f(x) > 0 for all x ∈ R+. Furthermore, the strict log-log-convexity of ρG(x) proven in Lemma 7.39
implies that f ′(x) > 0: strict log-log-convexity of ρG(x) means that log ρG(e

s) is strictly convex
in s, and substituting x = es gives

∂

∂x
f(x) = e−s ∂

∂s
f(es) = αe−s ∂

∂s

esρ′G(e
s)

ρG(es)
= αe−s ∂2

∂s2
log ρG(e

s) > 0.
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Figure 7.5: Visualization of the solutions of the critical point equation for ρG(x) = x+ x2. The
illustrated cases correspond to different values of α.

Since f ′(x) > 0 and f(x) > 0 we see that f(x) is a bounded and decreasing function as x → 0
from above, and the monotone convergence theorem implies limx→0+ f(x) exists. Consequently,
if α < limx→0+ ρG(x)/(xρ

′
G(x)) then limx→0+ f(x) < 1, as both limits exist. Notice that we

allow the upper-bound on α to diverge to ∞, in which case we can take α as large as desired.
This can happen, for example, when there exists a cycle of weight 0 in G. Similarly, the limit
limx→∞ 1/f(x) exists, as 1/f(x) is decreasing and positive. Hence, if α > limx→∞ ρG(x)/(xρ

′
G(x))

then limx→∞ 1/f(x) < 1.
To summarize, under our conditions on α we have limx→∞ f(x) < 1 and limx→0+ f(x) > 1. By

the intermediate value theorem, there is at least one solution to f(x) = 1 in x ∈ R+. This solution
is unique, due to the strict monotonicity of f coming from f ′(x) > 0. We further see that if α is
not within these boundaries, there will be no solution in x ∈ R+ due to this monotonicity.

If αρ′G(1) > ρG(1) then f(1) > 1, and the solution to f(x) = 1 must occur at x0 < 1. Similarly,
if αρ′G(1) < ρG(1) then f(1) < 1 and it follows that x0 > 1. For a visualization, see Figure 7.5.

Another requirement of Theorem 7.46 is the following non-degeneracy of the singularities.

Lemma 7.51. Let G be a strongly connected and cost-diverse graph with period d and cost period c.
For all x0 ∈ R+ and k ∈ {0, 1, . . . , c− 1}, j ∈ {0, 1, . . . , d− 1}, the points(

x0e
2πik/c, e−2πi(kb/c+j/d)/ρG(x0)

)
are non-degenerate.

Proof. Write ξk ≜ x0e
2πik/c. According to Theorem 7.20 and Lemma 7.32, there are d Eigenvalues

of maximum modulus λj(ξk) of PG(ξk) that satisfy λj(ξk) = ei(ϕkb+θj)ρG(x0), where ρG(x0) is
the Perron root of PG(x0). Lemma 5.5 of [Mel21] implies that the quantity H determining
non-degeneracy in the smooth case is the second derivative of

ϕ(θ) = log

(
λj(ξk)

λj(ξkeiθ)

)
+

iθ

α
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at θ = 0. Differentiating twice with respect to θ gives

∂2

∂θ2
ϕ(θ)

∣∣∣∣
θ=0

(a)
= − ∂2

∂θ2
log λj(x0e

iθ)

∣∣∣∣
θ=0

=
∂2

∂s2
log λj(e

s)

∣∣∣∣
s=log x0

(b)
=

∂2

∂s2
log ρG(e

s)

∣∣∣∣
s=log x0

(c)
> 0.

In (a) we used Lemma 7.32 to conclude that λj(ξke
iϕ) = e2πikb/cλj(x0e

iϕ). Note that the
differentiation to the left and right hand side of (b) should be understood with respect to complex-
valued s and real-valued s, respectively, as ρG(e

s) is not complex differentiable in s in general.
In (b) we used that for analytic functions, by the definition of complex differentiation, the
derivative along the real line equals the complex derivative. Inequality (c) follows from the strict
log-log-convexity of ρG(x) for x ∈ R+, as was proven in Lemma 7.39.

7.6.4 Proof of Theorem 7.14

The final ingredient to proving Theorem 7.14 is to identify the critical singularities that contribute
to the asymptotic expansion, depending on the value of α,.

Lemma 7.52. Let G be a strongly connected and cost-diverse graph with largest period d and
largest cost period c. Let λj(x0) = e2πij/dρG(x0) with j ∈ {0, 1, . . . , d−1} denote the d Eigenvalues
of maximum modulus of PG(x0).

• If 0 < α < αlo
G, then (1, 1/λj(1)), j ∈ {0, 1, . . . , d− 1} are contributing critical points.

• If αlo
G < α < αup

G , then (x0e
2πik/c, 1/λj(x0e

2πik/c), j ∈ {0, 1, . . . , d− 1}, k ∈ {0, 1, . . . , c− 1},
with αx0ρ

′
G(x0) = ρG(x0) are contributing smooth critical points.

In both cases, there are no contributing points other than those mentioned.

Proof. We first discuss the multiple-point, non-smooth case 0 < α < αlo
G. We start by proving

that (x0, y0) = (1, 1/ρG(1)) satisfies the conditions of Theorem 7.47. The two surfaces defined
by the vanishing of R(x, y) = 1 − x and S(x, y) = det(I − yPG(x)) intersect at this point.
Direct computation shows Rx(x, y) = −1 and Ry(x, y) = 0, while Jacobi’s formula implies
Sx(x, y) = −y tr(adj(I − yPG(x))P

′
G(x)) and Sy(x, y) = − tr(adj(I − yPG(x))PG(x)). Hence,

(1, 1/ρG(1)) is a contributing point if there exist ν1, ν2 > 0 such that

ν1

(
1,

y0Ry(x0, y0)

x0Rx(x0, y0)

)
+ ν2

(
1,

y0Sy(x0, y0)

x0Sx(x0, y0)

)
=

(
ν1 + ν2, ν2

ρG(1)

ρ′G(1)

)
= (1, α).

We can set ν1 = 1 − ν2, ν2 = αρ′G(1)/ρG(1),which are both positive, due to α < ρG(1)/ρ
′
G(1)

and the required conditions hold. Using the same arguments, the singularities (1, 1/λj(x0)) also
contribute to the asymptotics. The remaining singularities (x, y) ∈ C2 with the same coordinate-
wise modulus (|x|, |y|) = (1, 1/ρG(1)) are smooth, however, by [Mel21, Cor. 5.6], none of them
are critical as (1, 1/ρG(1)) is not critical by Lemma 7.50.

We now move to the smooth case αlo
G < α < αup

G . Lemmas 7.48,7.49,7.50, 7.51 show that the
point (x0, 1/ρG(x0)) where 0 < x0 < 1 and αx0ρ

′
G(x0) = ρG(x0) is unique and a smooth, finitely

minimal, critical and non-degenerate singularity and is thus contributing. Furthermore, all other
singularities with the same coordinate-wise modulus, which are (x0e

2πik/c, 1/λj(x0e
2πik/c) for some

k, j ∈ Z, fulfill these properties as well.
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We are finally ready to prove Theorem 7.14 by combining Lemmas 7.48,7.49,7.50, 7.51, and
Lemma 7.52 with Theorems 7.46 and 7.47.

Proof of Theorem 7.14. We differentiate between the two cases 0 < α < αlo
G and αlo

G < α < αup
G .

In the first case, the non-smooth singularity (1, 1/ρG(1)) and those with the same coordinate-wise
modulus are the singularities that determine the asymptotic behavior. In the second case, the
singularities (x0, 1/ρG(x0)) with 0 < x0 < 1 and αx0ρ

′
G(x0) = ρG(x0), and those with the same

coordinate-wise modulus, are the ones contributing.
We start with the multiple-point, non-smooth case 0 < α < αlo

G, aiming to apply Theorem 7.47
with the extension [Mel21, Cor. 9.1]. For any x0 ∈ R+ let λj(x0) = e2πij/dρG(x0) with j ∈
{0, 1, . . . , d − 1} denote the d Eigenvalues of maximum modulus of PG(x0) and let uj(x0) and
vj(x0) be the corresponding right and left Eigenvectors. By Lemma 7.52, Theorem 7.47 is
applicable for the contributing singularities (1, 1/λj(1)) and it remains to compute the required
terms. The numerator of the generating function is given by

QG,v(1, 1/λj(1)) = λj(1)
1−|V| adj(λj(1)I − PG(1))1

T (a)
= cj(1)λj(1)

1−|V|uT
j (1)vj(1)1

T,

where (a) follows from an application of Lemma 7.23. Similarly, we obtain for the numerator

detH = − 1

λj(1)
Sy(1, 1/λj(1)) =

1

λj(1)
tr(adj(I − PG(1)/λj(1))PG(1)) = cj(1)λj(1)

1−|V|.

Plugging these results into the expressions of Theorem 7.47 and summing over all contributing
points (1, 1/λj(1)) according to [Mel21, Cor. 9.1] proves the first statement of Theorem 7.14.
In the smooth case αlo

G < α < αup
G , the point (x0, 1/ρG(x0)) where 0 < x0 < 1 and

αx0ρ
′
G(x0) = ρG(x0) is unique and a smooth, finitely minimal, critical and non-degenerate singu-

larity and thus contributing by Lemma 7.52. The same applies to the other singularities with
the same coordinate-wise modulus, which are (x0e

2πik/c, e−2πi(kb/c+j/d)/ρG(x0)) for some k, j ∈ Z.
This allows us to invoke the extension [Mel21, Cor. 5.2] of Theorem 7.46. Notice that there may
be values of j and k where the numerator vanishes, however we have shown in Lemma 7.48 that
this does not occur when k = j = 0. Thus, it is possible that the leading asymptotic terms from
some of these points vanishes, but the sum of all terms always captures the dominant asymptotic
behavior of the sequence under consideration. The quantity H appearing in the asymptotic
expansion was derived in Lemma 7.51. Abbreviating ϕk = 2πk/c in the following, we find that

QG,v(x0e
iϕk , 1/λj(x0e

iϕk)) = cj(x0)λj(x0)
1−|V|D−1

k uT
j (x0)vj(x0)Dk1

T,

where we used that for any two square matrices D and P , the adjoint of their products is given
by adj(D−1PD) = D−1 adj(P )D.

7.6.5 Proof of the Other Theorems

We continue with proving the remaining theorems.

Proof of Theorem 7.12. Theorem 7.12 directly follows from Theorem 7.14. By the definition of
the capacity, we take the logarithm of the asymptotic expansion NG,v(t, αt) and divide by t.
Computing the limit t→∞, all terms except for the exponential in t vanish.
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Theorems 7.15 and 7.16 can be proven using standard univariate singularity analysis [FS09].
We start with proving Theorem 7.16, which depicts the more general statement of the exact
representation of the follower set size.

Proof of Theorem 7.16. By Lemma 7.10, the generating functions of NG,v(t) are given by the
fractions FG,v(x) = QG,v(x)/HG(x), with the polynomials QG,v(x) = [adj(I − P (x))1T]v and
HG(x) = (1− x) det(I − PG(x)), and thus the singularities are a subset of the solutions to
(1− x) det(I − PG(x)) = 0. Invoking [FS09, Thm. IV.9] then proves Theorem 7.16. Note
that in principle not all solutions have to be singularities, as the numerator and denominator are
not guaranteed to be coprime. This case is covered by setting ΠG,v,i(t) = 0 for all roots which
share common factors with the numerator, in the partial fraction decomposition.

Proof of Theorem 7.15. Theorem 7.15 follows from Theorem 7.16 by the direct computation of
CG = limt→∞ logNG,v(t)/t and the fact that the roots of HG(x) = (1− x)

∏
j(1− λj(x)), where

λj(x) are the Eigenvalues of PG(x). Since PG(x) is an irreducible matrix, there is an Eigenvalue,
which is equal to the spectral radius and thus the singularity of smallest magnitude of FG,v(x) is
that for which ρG(x) = 1. The numerator at this singularity is non-zero due to Lemma 7.23.

7.7 Conclusion

In this chapter we have analyzed cost constrained channels, i.e., directed graphs with labeled and
costly edges. We have derived the precise asymptotic behavior of the size of the number of limited-
cost paths for arbitrary strongly connected and cost-diverse graphs. That is, we have explicitly
derived an easily computable function, whose fraction with respect to the true number of followers
approaches one for large costs. Our theorems imply explicit expressions for the fixed-length and
variable-length capacity, i.e., the exponential growth rate of the number of paths. Interestingly,
through the direct derivation of the capacity, we recover a known result on the equivalence of
the combinatorial and probabilistic capacity of cost constrained channels. While previous works
have shown this equivalence using the central limit theorem, this proof resembles this of Shannon
for the case of the variable-length capacity through the expression of the capacity in terms of
singularities of a generating function. Establishing an explicit and comprehensible framework to
compute both the fixed-length and variable capacity for arbitrary strongly connected graphs, our
results do not only open the way for future research but can also directly be employed in suitable
applications. For our derivations, we have introduced novel properties of costly graphs that extend
the well-known notions of periodicity to costly graphs. Noteworthily, we show that the notion of
cost-diversity is the precise property that distinguishes between sharp and smooth behavior of the
fixed-length capacity. In our exposition we use results from analytical combinatorics in several
variables, which establishes a novel and intriguing connection between noiseless information theory
and complex analysis. In order to prove this connection we have build a comprehensive theory
that extends results from Perron and Frobenius on irreducible matrices. These results were then
related to properties of the singularities of the generating functions of the follower set size, which
built the bridge to the theory of analytical combinatorics in several variables.
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Chapter 8

Cost-Efficient DNA Synthesis

For DNA-based data storage to become a feasible technology, all aspects of the encoding and
decoding pipeline must be optimized. Writing the data into DNA, which is known as DNA
synthesis, is currently the most costly part of existing storage systems. In this regard, several
recent works suggested methods to optimize the cost-efficiency of the synthesis process. Among
these, [Tab+20] developed a method that encodes information through the modification of existing
DNA, circumventing the expensive synthesis step. [Jai+20] discussed codes that optimize the
writing rate of terminator-free synthesis. Their work was motivated by a novel inexpensive
synthesis technology, where the number of nucleotides attached in one step is a random variable,
whose mean can be controlled by the synthesis machine. On the other hand, [Mak+21] studied a
popular synthesis method that synthesizes many sequences in parallel in a step-by-step fashion
using a fixed supersequence. In their work, the authors proposed to divide the strands into batches
of sequences such that in each batch, the sequences have a similar structure, and analyze the
resulting synthesis times.

As a step toward more efficient synthesis, we study the design of codes that minimize the time
and number of required materials needed to produce the DNA strands. We consider a popular
synthesis process, which builds many strands in parallel in a step-by-step fashion using a fixed
supersequence s. The machine iterates through s, one nucleotide at a time, and in each cycle,
it adds the next nucleotide to a subset of the strands. The synthesis time is determined by the
number of iterations, i.e., the length of s. In order to improve the cost-efficiency of this synthesis
process we introduce so-called synthesis codes that restrict the set of admissible DNA sequences.
We derive the maximum amount of information per synthesis cycle that is possibly achievable
with this synthesis process, assuming that s is an arbitrary periodic sequence.

Section 8.1 gives a detailed introduction of the synthesis process and introduces the precise
problem statement and preliminaries. We proceed with deriving the capacity, i.e., the maximum
achievable information rate, measured in bits per synthesis cycle, for a given periodic synthesis
sequence s, in Section 8.2. This is achieved by constructing a labeled and costly synthesis graph
based on s and then relating the sequences that can be synthesized in a given number of cycles to
limited-cost paths through this graph, which allows to use results from Chapter 7. As an exemplary
application, we compute the capacity for the case of using an alternating synthesis sequence over
arbitrary alphabets. In many applications it is desirable to synthesize only sequences which fulfill a
certain constraint, such as that of avoiding long runs of homopolymers. Representing a constraint
by a directed labeled graph, we show how to extend our results such that we can compute the
achievable information rates with a given synthesis sequence and constraint in Section 8.3. To
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s A C G T A C G T A C G T

x1 C T A C G C

x2 A G T A T A

x3 C T T T

Cycle 1 2 3 4 5 6 7 8 9 10 11 12

Figure 8.1: Synthesis of three strands x1 = (CTACGC),x2 = (AGTATA), and x3 = (CTTT) using
the synthesis sequence s = (ACGTACGTACGT). The strand x1 is synthesized by at-
taching the nucleotides in cycles 2, 4, 5, 6, 7, 10, x2 is synthesized in cycles 1, 3, 4, 5, 8, 9,
and similarly x3 is synthesized in cycles 2, 4, 8, 12. Hence, x1 can be synthesized in 10
cycles, x2 in 9 cycles and x3 in 12 cycles, when using the synthesis sequence s.

this end, we introduce a novel labeled graph product between the costly and labeled synthesis
graph and a labeled constraint graph. Finally, we show in Section 8.4, that our results can be
used to compute the precise asymptotic expansion of the number of subsequences of arbitrary
periodic supersequences.

Parts of the results in this chapter have been published in [Len+20a; Len+21d].

8.1 Preliminaries and Problem Statement

Consider a system, where digital data shall be encoded and synthesized into several DNA strands
x1,x2, · · · ∈ Σ∗

q in parallel. These strands can be of equal or different lengths and we will treat
both cases separately in the subsequent analysis. The synthesis is performed by the following
procedure. First, a synthesis sequence of nucleotides s = (s1, s2, . . .) ∈ Σ∗

q is chosen. The synthesis
machine then assembles the DNA strands in a nucleotide-by-nucleotide fashion. To start with,
each strand is build from scratch, starting from a strand of length zero. Then, the synthesis
machine cycles through the synthesis sequence s and in each cycle i = 1, 2, . . . , for each DNA
strand xj , it is possible to either attach the nucleotide si to the strand xj or to perform no action.
This procedure continues until all strands are synthesized. By the nature of the synthesis process,
a DNA strand x can thus be synthesized in t cycles using the synthesis sequence s, if and only if
x is a subsequence of (s1, . . . , st). The synthesis process is visualized in Figure 8.1.

Remark 8.1. Notice that in general, it is conceivable that the synthesis sequence is chosen based
on the DNA strands that shall be synthesized. For example, in the synthesis process visualized
in Figure 8.1, it would be possible to skip the synthesis cycle 11, as in this step the nucleotide
G is attached to none of the sequences. More generally, choosing s as the shortest common
supersequence of all sequences is optimal [Len+20a]. However, it is known that finding the shortest
common supersequence is computationally intensive in general [Mai78], especially for a large
number of sequences, and thus impractical for large synthesis pools, i.e., for a large number of
sequences to be synthesized in parallel. While it is possible to find approximate solutions to the
shortest common supersequence problem [NL06], in our setup we are considering the case, where
the synthesis sequence is chosen in advance without knowledge of the sequences to be synthesized.
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Figure 8.2: Subsequence graph Gsub(s) for the synthesis sequence s = (ACGTACGT...). The label
of an edge is equal to the symbol of its final vertex and the cost is equal to the number
of symbols that are skipped plus one.

We proceed with introducing the subsequence graph, which will be helpful for an abstraction
of the synthesis problem. Afterwards, we will turn towards the main problem statement of this
chapter, that is the analysis of cost-efficient synthesis.

8.1.1 Synthesis and Subsequence Graphs

It is possible to directly associate with the synthesis process a cost constrained channel that
compactly describes the sequences that can be synthesized with a given synthesis sequence s as
follows. The system is defined by a so-called subsequence graph or synthesis graph, which will be
constructed such that its associated costly language with maximum cost t is exactly the set of
all sequences that can be synthesized with s in at most t cycles. This allows to use the general
results from cost constrained channels as in Chapter 7 to infer results for the synthesis process.
As it was presented earlier, a DNA strand x can be synthesized using s in time t if and only if it
is a subsequence of s1:t. We thus introduce the subsequence graph Gsub(s) of a synthesis sequence
s, which is defined as follows.

Definition 8.2. The subsequence graph Gsub(s) of a synthesis sequence s = (s1, s2, . . . ) ∈ Σ∗
q is

a directed, labeled and weighted graph. It has vertices V = {v0, v1, v2, . . . }, where the vertex vi,
i ≥ 1 is associated with the symbol si and v0 is an auxiliary starting vertex. The vertices vi and
vj, are connected by an edge e, if j > i and sk ̸= sj for all i < k < j. The label of such an edge is
σ(e) = sj and the cost is τ(e) = j − i.

Figure 8.2 shows the subsequence graph Gsub(s) for s = (ACGTACGT...). By construction of
the graph Gsub(s) a sequence x can be synthesized using s if and only if there exists a path
through Gsub(s) whose traversed edge labels generate x. Further, the cost of the path is equal to
the number of cycles required to synthesize x using s. For example, synthesizing the sequence
x1 = (CTACGC) from Figure 8.1 using the synthesis sequence s = (ACGTACGT...) corresponds
to the path Start→ C → T → A → C → G → C and has cost 2 + 2 + 1 + 1 + 1 + 3 = 10. Note
that although the synthesis process would allow edges from vi to vj for all j > i, we only draw
q outgoing edges to the next appearance of each σ ∈ Σq for the following two reasons. First, it
is desirable to attach a nucleotide to a sequence as soon as possible to minimize the required
synthesis cycles. Second, this property is useful as it makes the graph deterministic in the sense,
that for each vertex v, the labels from any two edges that start from v have distinct labels. This
directly leads to the following equivalence.
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Proposition 8.3. The sequence x can be synthesized in t cycles using the synthesis sequence s if
and only if it is contained in the cost-t follower set of the starting vertex, i.e., x ∈ LGsub(s),v0(t).

Proof. A sequence x can be synthesized in t cycles using the synthesis sequence s if and only if x
is a subsequence of (s1, . . . , st). We thus prove that LGsub(s),v0(t) is the set of all subsequences of
(s1, . . . , st). On the one hand, each word in LGsub(s),v0(t) is a subsequence of (s1, . . . , st) due to
the following. Each path p = (e1, . . . , en) that starts at v0 generates a word Σq(p) = (si1 , . . . , sin),
where 1 ≤ i1 < i2 < · · · < in are the indices of the traversed vertices. Further, the cost of each
edge is τ(ej) = ij − ij−1 and henceforth τ(p) = i1 + (i2 − i1) + · · ·+ (in − in−1) = in. Thus in ≤ t
and Σq(p) is a subsequence of (s1, . . . , st). On the other hand, if x = (x1, . . . , xn) is a subsequence
of (s1, . . . , st), we can left align it in the subsequence graph Gsub(s) such that it will be generated
from a path start starts at v0. Due to the left alignment, the last symbol xn will be aligned with
a symbol si with i ≤ t and thus the path has cost at most t.

Since the subsequence graph is deterministic, for each vertex v of Gsub(s), there is one-to-one
correspondence between the follower set LGsub(s),v(t) and paths that start at v and have cost at
most t. Thus, the subsequence graph can be used to efficiently count the number of subsequences
of a given supersequence s using standard algorithms that enumerate paths through weighted
graphs. However, due to the lack of cycles in this graphs we cannot directly use our results on
cost constrained channels in Chapter 7, as those require strongly connected graphs. We therefore
fold the subsequence graph for the case of periodic synthesis sequences to obtain an equivalent
strongly connected graph.
To start with, a periodic synthesis sequence s is a sequence of the form s = (r, r, r, . . . ),

where r ∈ ΣM
q is the period of s and M ∈ N is the period length. For periodic sequences, the

subsequence graph can be folded to obtain a strongly connected graph with M vertices as follows.

Definition 8.4. The periodic subsequence graph G(r) of a period r = (r1, . . . , rM ) ∈ ΣM
q is a

directed, labeled and costly graph. It has M vertices V = {v1, . . . , vM}, corresponding to the symbols
of r. There is an edge e from vi to vj if either i < j and rk ̸= rj for all k ∈ {i+ 1, . . . , j − 1} or
i ≥ j and rk ̸= rj for all k ∈ {i+ 1, . . . ,M, 1, . . . , j − 1}. This edge has a label σ(e) = rj and cost

τ(e) =

{
j − i, if i < j,

M − j + i, if i ≥ j
.

The periodic subsequence graph G(ACGT) is visualized in Figure 8.3. It is straightforward to
verify that the analogue of Proposition 8.3 holds also for the periodic subsequence graph with
starting vertex vM . Note that the periodic subsequence graph has self loops with cost M for
symbols that occur exactly once in the period. In fact, we can derive the following properties of
the synthesis graph.

Lemma 8.5. Let r ∈ ΣM
q be an arbitrary sequence which contains at least two different symbols

with corresponding synthesis graph G(r). Then G(r) is deterministic, strongly connected and
cost-diverse. Further, G(r) has period 1 and largest cost period M .

Proof. To start with, G(r) is deterministic because all outgoing edges from the same vertex
have distinct labels by definition. The vertices v1, . . . , vM in G(r) correspond to the symbols in
r = (r1, r2, . . . , rM ). Next, G(r) is strongly connected, since there is a Hamiltonian cycle p1 of
length M starting at vertex v1 and connecting vi to vi+1 for i = 1, 2, . . . ,M − 1 and vM to v1.
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Figure 8.3: Periodic subsequence graph G(ACGT). Hereby, the last symbol of the period, T, can
take the role of the starting vertex.

Next, there is also a cycle p2 starting at vertex v1 of length M − 1 and cost M . This cycle can
be constructed as follows. Let i be such that ri ̸= ri+1, which is guaranteed to exist because r
has two different symbols. Note that vi−1 and vi+1 are connected since ri ̸= ri+1. Then, define a
cycle p2 that contains all the vertices except vi, namely,

p2 = (v1 → v2 → · · · → vi−1 → vi+1 → vi+2 → · · · → vM → v1),

The path p2 has length M − 1 and cost M . Hence, there exist two paths p1 and p2 of length M
and M − 1, respectively, implying that G(r) has period 1. Consider the (M − 1)-fold repetition
of cycle p1 and the M -fold repetition of cycle p2. Both have length M(M − 1), while the first
has cost M(M − 1) and the second has cost M2, implying cost-diversity. Finally, G(r) has cost
period M since it satisfies the M -periodic coboundary condition with b = 0 and B(vi) = i.

8.1.2 Synthesis Information Rates

In the sequel, we characterize the maximum amount of information that can be synthesized in
t synthesis cycles using the synthesis sequence s. To this end, we introduce a synthesis code,
consisting precisely of those DNA sequences that can be synthesized in time t using s. Therefore,
the maximum number of information words that can be encoded to DNA strands is equal to the
the number of DNA sequences that can be synthesized in time t. Recall the definition of the
periodic subsequence graph presented in the previous section. By Proposition 8.3, a sequence x
can be synthesized if and only if there is a path through the subsequence graph with the label
x. Using the notation LG,v(t) and NG,v(t) from Definition 7.8 of limited cost followers and their
number, we naturally arrive at the following definition.

Definition 8.6. For an arbitrary r ∈ ΣM
q , we define Lr(t) ≜ LG(r),vM (t) and Nr(t) ≜ |Lr(t)|.

Accordingly, we define Lr(t, n) ≜ Lr(t) ∩ Σn
q and Nr(t, n) ≜ |Lr(t, n)|.

With this definition, Lr(t) is the set of sequences that can be synthesized in time t when
using the periodic synthesis sequence s = (r, r, r, . . . ) and logNr(t) is the number of information
bits that can be used for encoding. Note that in principle it is also possible to define Nr(t) for
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aperiodic sequences, however in such a case an asymptotic analysis is not possible using cost
constrained systems as presented in this chapter. Given the above definitions, we are now in the
position to present the main figures of merit for the synthesis process.

Let s = (r, r, r, . . . ) be a semi-infinite sequence and let 0 ≤ α ≤ 1 be a parameter controlling
the length of the synthesized sequences.

Definition 8.7. Let r ∈ ΣM
q be an arbitrary period. The synthesis capacity, measured by

number of bits per synthesis cycle, is defined as

Cr = lim sup
t→∞

log(Nr(t))

t
.

and similarly the fixed-length synthesis capacity is defined as

Cr(α) = lim sup
t→∞

log(Nr(t, ⌊αt⌋))
t

.

8.2 Achievable Synthesis Information Rates

We proceed with our main theorems on the synthesis capacity for arbitrary periodic sequences.
We start with the case of synthesizing fixed length sequences.

Theorem 8.8. Let r ∈ ΣM
q be an arbitrary sequence. Abbreviate αlo

G ≜ ρG(r)(1)/ρ
′
G(r)(1). For all

α with 0 ≤ α ≤ αlo
G, we have

Cr(α) = α log ρG(r)(1).

For all α with αlo
G < α < 1,

Cr(α) = − log x0 + α log ρG(r)(x0),

where x0 is the unique real solution to αxρ′G(r)(x) = ρG(r)(x) in the interval 0 < x < 1. For all

α > 1, Cr(α) = 0.

Proof. By Lemma 8.5, the graph G(r) is deterministic, strongly connected and cost-diverse. This
allows to use Theorem 7.12. Further, αup

G = 1, since the minimum average cost of any cycle is
precisely equal to 1. For a more detailed discussion on this connection, see, e.g., [KMR00].

The next result is on the variable-length synthesis capacity.

Theorem 8.9. Let r ∈ ΣM
q be an arbitrary sequence. Denote by x0 the unique positive solution

to ρG(r)(x) = 1. Then, the synthesis capacity is given by

Cr = − log x0.

Proof. The proof directly follows from the fact that G(r) is deterministic and strongly connected
by Lemma 8.5, which allows to invoke Theorem 7.15.
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8.2.1 Alternating Sequences

The alternating sequence is a prominent sequence due to the fact that it is known to maximize its
number of distinct subsequences [HR00] and hence also the synthesis capacity. We proceed with
deriving the synthesis capacity of alternating sequences over arbitrary alphabets.

Proposition 8.10. Consider the q-ary alternating sequence with period aq = (0, 1, . . . , q − 1).
The synthesis capacity of this sequence is given by

Caq = − log xq,

where xq is the unique positive solution to
∑q

i=1 x
i = 1. The fixed-length synthesis capacity is

Caq(α) =

{
α log q α < 2

q−1 ,

− log
(
α
∑q

i=1 ixq(α)
i+1
)
, 2

q−1 < α < 1
,

where xq(α) is the unique solution to
∑q

i=1(1− αi)xi = 0, on the interval 0 < x < 1.
For 2 ≤ q ≤ 4 we obtain Ca2 ≈ 0.694, Ca3 ≈ 0.879, Ca4 ≈ 0.947, and limq→∞Caq = 1,

Ca2(α) = αH2

(
1− α

α

)
,

Ca3(α) = αH2

(γ
α

)
+ γH2

(
1− α− γ

γ

)
,

lim
q→∞

Caq(α) = H2(α),

where γ = −2
3α+ 1

6

√
−8α2 + 12α− 3 + 1

2 and H2(•) is the binary entropy function.

We will make use of the following lemma. Denote by T (v) = {{τ(e) : e ∈ E , init(e) = v}} the
multiset of costs of all outgoing edges from v ∈ V.

Lemma 8.11. Let G be a strongly connected graph, where T (v) is invariant over all v ∈ V. Then,

FG,v(x, y) =
1

(1− x) (1− yρG(x))
,

for all v ∈ V, and, highlighting T ≜ T (v), the Peron root is equal to

ρG(x) =
∑
τ∈T

xτ .

Proof. For simplicity denote by 1 = (1, . . . , 1) the all-ones vector of length |V|. since T (v) is the
same for all v ∈ V, it follows that

PG(x)1
T =

 ∑
τ∈T (v1)

xτ , . . . ,
∑

τ∈T (v|V|)

xτ

T

=

(∑
τ∈T

xτ

)
1T

and thus 1T is a right Eigenvector of PG(x) with Eigenvalue ρG(x) =
∑

τ∈T xτ . It follows that
(I − yPG(x))1

T = (1− yρG(x))1
T and therefore

FG(x, y) =
1

1− x
· (I − yPG(x))

−11T =
1

(1− x)(1− yρG(x))
1T.
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Figure 8.4: Synthesis capacity of the alternating sequences aq over different alphabet sizes. The
maxima are highlighted for q ∈ {2, 3, 4} together with their maximizing α. Notice that
these plots confirm the concavity of the fixed-length capacity in α and its maximum
at the variable-length capacity, which is derived in Proposition A.10.

Proof of Proposition 8.10. For the special case of the alternating sequence, the synthesis graph
Gaq is a complete graph, where each vertex has q outgoing edges. The cost spectrum of the
outgoing edges is T (v) = {1, 2, . . . , q} for all vertices v ∈ VGaq

. Applying Lemma 8.11, yields

ρGaq
(x) =

q∑
i=1

xi.

The results on the fixed length capacity then directly follow from applying Theorem 7.12. Similarly,
the variable-length capacity follows from Theorem 7.15. The results for q = 2 and q = 3 follow
from solving the determining equations followed by some algebraic reformulations.

Figure 8.4 visualized the synthesis capacity for the alternating sequences over different alphabets.
Notice that the relevant case for DNA synthesis is q = 4, and we include the remaining alphabet
sizes for comparison. We see that using the proposed synthesis codes, we can improve the synthesis
information rate from 0.5 bit per cycle1 to roughly 0.947 bit per cycle.

8.2.2 Repeated Alternating Sequences

For illustrative purposes, we present the synthesis capacity for another class of synthesis sequences.
We will discuss sequences with periods of the form wq,k = (0k, 1k, 2k, . . . , (q− 1)k), where the k-th
power represents the k-fold repetition of a letter. Hence, wq,1 = aq is the standard alternating
sequence. It is possible to use the symmetry of the periodic synthesis graph, to find the spectral

1We state here the synthesis rate for synthesizing the worst case sequence x = (TTTT . . . ). In average, the
uncoded synthesis rate is 0.8 bit per cycle, see, e.g., [Len+20a].
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Figure 8.5: Synthesis capacity of the repeated alternating sequences wq,k for q = 4 and different
number of repetitions k.

radius as the Perron root of a simplified cost-enumerator matrix. In particular, when k ≥ 2, the
spectral radius is given by ρGwq,k

(x) = ρ(Wq,k(x)), where Wq,k(x) is the k × k matrix

Wq,k(x) =



q−1∑
i=1

xki x 0 . . . 0 0

q−1∑
i=1

xki−1 0 x . . . 0 0

...
...

. . .
...

q−1∑
i=1

xki−k+2 0 0 . . . 0 x

q∑
i=1

xki−k+1 0 0 . . . 0 0


.

This follows from the symmetry of the synthesis sequence.2 Associating the i-th vertex of the
graph defined by Wq,k(x) with the i-th symbols in each repetition, we see that there is a one-to-one
correspondence between the limited-cost sequences in the graph Gwq,k

and the graph defined by
Wq,k(x). Figure 8.5 visualizes the synthesis capacity of the repeated alternating sequences for
q = 4 and different number of repetitions k.

2The first symbols in each repetition have the same followers, up to a relabeling of the symbols, and the same is
true for the second symbols, the third symbols, and so on.
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8.3 Constrained Synthesis

In many applications it is required that the synthesized strands fulfill some given constraints.
Such constraints can be, for example, the avoidance of runs of homopolymers3 or a balanced
GC content. We thus present a method to compute the maximum information rate under the
constraint of synthesizing DNA sequences that have a specific structure. More formally, we let
s = (r, r, r, . . . ) be a periodic synthesis sequence. Further, let the constraint that we wish to
impose on the DNA strands be given in form of a directed, labeled graph Gc = (Vc, Ec, σc) with
vertices Vc, edges Ec and labels σc : Ec 7→ Σq. The set of possible constrained DNA sequences that
are allowed to be synthesized is given by all words that are generated by paths through the graph
Gc = (Vc, Ec, σc) that start from a dedicated starting state vs ∈ Vc. The following graph product
will generate the set of constrained DNA sequences that can be synthesized in t synthesis cycles.

Definition 8.12. Let G1 = (V1, E1, σ1, τ1) be a directed, labeled, and weighted graph and
G2 = (V2, E2, σ2) be a directed, labeled graph. We define their label product as the directed,
labeled, weighted graph G = G1 ×G2, G = (V, E , σ, τ) constituent of vertices V = V1 × V2, edges

E = {(e1, e2) ∈ E1 × E2 : σ1(e1) = σ2(e2)},

labeling σ : E 7→ σ such that for e = (e1, e2) ∈ E, it holds that σ(e) = σ1(e1) = σ2(e2). The weights
are τ : E 7→ N with τ(e) = τ1(e1).

With this definition, we can define the central quantity of interest for constrained synthesis,
which is the maximal information rate, measured in bits per synthesis cycle, when synthesizing
sequences that are constrained by the graph Gc.

Definition 8.13. Let r ∈ ΣM
q be an arbitrary period and Gc = (Vc, Ec, σc) a strongly connected,

directed, labeled graph with starting vertex vs ∈ Vc. The constrained synthesis capacity
measured by number of bits per synthesis cycle is defined as

Cr,Gc,vs = lim sup
t→∞

log(NG(r)×Gc,(vM ,vs)(t))

t
.

and similarly the fixed-length constrained synthesis capacity is defined as

Cr,Gc,vs(α) = lim sup
t→∞

log(NG(r)×Gc,(vM ,vs)(t, ⌊αt⌋))
t

.

It remains to prove that the label product of the synthesis graph G and the constrained graph
Gc exactly generate the set of constrained sequences that can be synthesized in t cycles. This
claim is proven in a more general form in the following lemma, which extends [LM95, Prop. 3.4.10]
to costly graphs.

Lemma 8.14. Let G1 = (V1, E1, σ1, τ1) be a directed, labeled, weighted graph and G2 = (V2, E2, σ2)
be a directed, labeled graph. Then, for any v1 ∈ V1 and v2 ∈ V2

LG1×G2,(v1,v2)(t) = LG1,v1(t) ∩ LG2,v2 .

3A run of homopolymers is a consecutive string of nucleotides of the same type.
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Figure 8.6: Periodic synthesis graph, constraint graph and their label product from Example 8.15.

Proof. We denote G = (V, E , σ, τ) = G1 ×G2 as the label product of G1 and G2. To start with,
assume that a sequence x is contained in x ∈ LG1,v1(t) ∩ LG2,v2 . This means that there exists a
path p1 starting from v1 through G1 with σ1(p1) = x and τ1(p1) ≤ t and there exists another
path p2 starting from v2 through G2 with σ(p2) = x. For every i, the i-th edge in p1 has the same
label as the i-th edge of p2, such that p ≜ (p1,p2) is a path through G1 ×G2 that starts from
(v1, v2). Its label is σ(p) = σ1(p1) = σ2(p2) = x and its cost is τ(p) = τ1(p1) ≤ t. Henceforth,
LG1×G2,(v1,v2)(t) ⊇ LG1,v1(t)∩LG2,v2 . Let now conversely x ∈ LG1×G2,(v1,v2)(t). Thus, there exists
a path p through G1×G2, starting from (v1, v2) with σ(p) = x and τ(p) ≤ t. Writing p = (p1,p2),
we see that p1 is a path through G1 that starts at v1 and has cost at most τ1(p1) = τ(p) ≤ t
and label σ1(p1) = σ(p) = x. Further, p2 is a path through G2 that starts at v2 and has label
σ2(p2) = σ(p) = x and thus LG1×G2,(v1,v2)(t) ⊆ LG1,v1(t) ∩ LG2,v2 , which proves the claim.

With this result, the set of constrained sequences that can be synthesized in t cycles is precisely
LG(r)×Gc,(vM ,vs)(t). Note that the graph G(r) × Gc is deterministic, however it is not always
strongly connected as we will show in the following example.

Example 8.15. Consider the periodic synthesis sequence s with period r = (AC). Further, let Gc

be the constrained graph of the language of words over Σq = {A,C} comprising only words that
do not contain runs of the letter C of length more than 1. Both graphs and their label product
are displayed in Figure 8.6. The vertex (A, v2) has no incident edges and thus the graph is not
strongly connected. However, this vertex does not play a role, if we let either C be the starting
vertex for the synthesis graph or v1 be the starting vertex for the constraint graph. In these cases,
the vertex can simply be discarded, resulting in a strongly connected graph.

While our previous analysis has shown that for unconstrained synthesis, the alternating sequence
with period r = (ACGT) maximizes the synthesis information rate, we show in the following
example that such a claim is not necessarily true for constrained synthesis.
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(b) Label product graph of the graphs G(ACGT) and GTT.
The edge labels are equal to the label of the final state
and have been omitted for readability.

Figure 8.7: Constraint graph and their label product from Example 8.16.

Example 8.16. Consider the periodic synthesis sequence s with period r = (ACGT). Further, let
GTT be the constraint graph that enumerates all words over Σq = {A,C,G,T} that only contain
runs of the letter T that have length at least 2. Figure 8.7 shows the constraint graph and the
product graph, while the synthesis graph is displayed in Figure 8.3 on Page 163. We find that
C(ACGT),GTT

≈ 0.7188, however if we use a synthesis sequence with period r = (ACG) instead, we
can get a higher constrained synthesis rate of C(ACG),GTT

≈ 0.8791. This result is intuitive, as
compared to the unconstrained case, the constraint increases the cost of synthesizing T by 4 cycles
(following the constraint, we always need to synthesize two T’s in succession), which means that it is
more efficient to remove T from the synthesis sequence in order to reduce the cost of the remaining
symbols. Notice that it is not a coincidence that C(ACG),GTT

= C(ACG) = Ca3 (c.f. Proposition 8.10),
as the constraint GTT contains all sequences over the alphabet Σ3 = {A,C,G}.

Note that strictly speaking, in the previous example, the sequence (ACG) is again an alternating
sequence over a smaller alphabet. It is indeed also possible to construct constraints for which no
alternating sequence is optimal, however these examples can become quite extensive, especially
over the DNA alphabet and are beyond the scope of this dissertation.

8.4 Counting Subsequences Using Costly Constrained Channels

Counting subsequences of a given supersequence is a problem that arises in manifold research
areas, such as bioinformatics, information theory, and coding theory. While explicit formulas for
the number of subsequences of arbitrary supersequences exist [MKB08], these expressions are in
general difficult to analyze and compact and explicit expressions for arbitrary sequences remain
unknown to date, except for some special sequences, such as alternating sequences [HR00]. In this
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work, we provide a compact and precise characterization of both the total number of subsequences
and the number of fixed-length subsequences of a given arbitrary supersequence.

We shortly comment on how it is possible to use our results to efficiently and precisely compute
the number of subsequences of an arbitrary sequence. The central observation is that, by definition
of the synthesis problem, the sequences that can be synthesized in time t using s are precisely the
subsequences of (s1, . . . , st). Thus, by Proposition 8.3, we can count the number of subsequences
of s by counting the number of cost-t followers in the subsequence graph Gsub(s), i.e., NGsub(s),v0(t).
Analogously, we can count the length-n subsequences of s by the length-n followers of cost at most
t, i.e., NGsub(s),v0(t, n). Therefore, using the recursion in the proof of Lemma 7.41, it is possible
to count the number of subsequences with dynamic programming. Even more, if s is periodic,
then Theorems 8.8 and 8.9 can be used to compute the exponential growth rate of the number of
variable-length or fixed-length subsequences. In fact, due to Lemma 8.5 we can even compute the
precise asymptotic behavior of the number of subsequences using Theorems 7.12 and 7.15.
Finally, remarkably, our analysis extends to the case of counting subsequences that fulfill a

certain constraint that is represented in the form of a labeled and directed graph. This is evident
from the discussion in Section 8.3.

8.5 Conclusion

The object of study within this chaper was a popular synthesis process, known as array-based
synthesis. We have shown that by restricting the set of DNA sequences that we allow to synthesize,
it is possible to optimize the number of information bits that can be synthesized per synthesis
cycle, improving the cost-efficiency of DNA-based data storage systems. We have shown how to
relate the synthesis problem to costly constrained channels, allowing to compute the maximum
achievable information rate using the results presented in Chapter 7. We further have shown how
to compute maximal achievable synthesis information rates when one restricts to synthesizing
constraint sequences. Our results have proven that there are constraints for which the optimal
synthesis sequence for the unconstrained case, i.e., the alternating sequence, is not optimal.
Finally, our results give the solution to a prominent problem in information theory, coding theory
and bioinformatics, i.e., that of efficiently enumerating and counting all subsequences of a given
supersequence. We have shown that with our methods, we can characterize the exact asymptotic
behavior of the number of subsequences by a comprehensible analysis of the Perron root of the
cost-enumerator matrix.
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Chapter 9

Further Publications by the Author

We supplement this manuscript with a short presentation of further publications from the author
that resulted from his work as a doctoral candidate.

9.1 Concatenated Codes for the Probabilistic DNA Storage Channel

Motivated by the employment in multiple current DNA storage experiments, we investigate the
performance of concatenated codes over the probabilistic DNA storage channel. Concatenated
codes are the natural choice for DNA storage experiments, since typically the data is stored
on many parallel sequences, motivating the employment of an inner code for each sequences,
enhanced by an outer code over all strands. In [LWP20] we show that the achievable rate of
a decoder that decodes each strand with a hard decision using the inner code, followed by a
decoding of the outer code, exhibits a gap with respect to the capacity of the probabilistic DNA
storage channel. This is because the inner code has a fixed rate, while the nature of the inner
channel is unknown due to the randomness of the sequencing coverage of each DNA strand. We
show that combining several strands to joint inner codewords, it is possible to narrow the gap
between achievable rates and capacity, under the cost of additional decoding complexity.

The author’s main contribution to this study was the derivation and proof of the achievable
information rates of the investigated concatenated coding schemes.

9.2 Covering Codes for Insertions and Deletions

A covering code is a set of codewords with the property that the union of balls, suitably defined,
around these codewords covers an entire space. Covering codes are a core object of study in
coding theory and discrete mathematics. They have found applications in diverse areas such as
data compression, football pools, circuit complexity, lattice problems, and approximate nearest
neighbor search. Generally, the goal is to find the covering code with the minimum size codebook.
While most prior work on covering codes has focused on the Hamming metric, in [Len+20b;
Len+21e] we consider the problem of designing covering codes defined in terms of either insertions
or deletions. First, we provide new sphere-covering lower bounds on the minimum possible size
of such codes. Then, we provide new existential upper bounds on the size of optimal covering
codes for a single insertion or a single deletion that are tight up to a constant factor. Finally, we
derive improved upper bounds for covering codes using R ≥ 2 insertions or deletions. We prove
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that codes exist with density that is only a factor O(R logR) larger than the lower bounds for all
fixed R. In particular, our upper bounds have an optimal dependence on the word length, and
we achieve an asymptotic density that matches the best known bounds for Hamming distance
covering codes.

9.3 Codes for Reconstruction of Multiple Reads of a DNA Sequence

Decoding sequences that stem from multiple transmissions of a codeword over an insertion,
deletion, and substitution channel is a critical component of efficient DNA data storage systems.
In [Len+21c], we consider a concatenated coding scheme with an outer low-density parity-check
code and either an inner convolutional code or a block code. We propose two new decoding
algorithms for inference from multiple received sequences, both combining the inner code and
channel to a joint hidden Markov model to infer symbolwise a posteriori probabilities (APPs). The
first decoder computes the exact APPs by jointly decoding the received sequences, whereas the
second decoder approximates the APPs by combining the results of separately decoded received
sequences. Using the proposed algorithms, we evaluate the performance of decoding multiple
received sequences by means of achievable information rates and Monte-Carlo simulations. We
show that decoding multiple sequences at once can lead to significant performance gains as
compared to a single received sequence.
In this joint project, the author’s main contributions comprised the development of the joint

decoder and the numerical evaluations of achievable information rates and error rates of the
schemes with inner convolutional codes.

9.4 Function-Correcting Codes

In standard communication systems, a sender desires to convey a digital message to a receiver
via an erroneous channel. To protect this message from errors, it is first encoded using an
error-correcting code and then it is transmitted over the channel to the receiver, which decodes
the received word to obtain the original message. Within this setup, the goal is to recover the
message correctly. Motivated by applications in machine learning and archival data storage, in
[Len+21a; Len+21b] we introduce function-correcting codes, a new class of codes designed to
protect a function evaluation of the data against errors. We show that function-correcting codes
are equivalent to irregular-distance codes, i.e., codes that obey some given distance requirement
between each pair of codewords. Using these connections, we study irregular-distance codes and
derive general upper and lower bounds on their optimal redundancy. Since these bounds heavily
depend on the specific function, we provide simplified, suboptimal bounds that are easier to
evaluate. We further employ our general results to specific functions of interest and compare our
results to standard error-correcting codes which protect the whole data.

9.5 Codes Correcting a Burst of Deletions

Burst deletions and insertions are a class of errors that can be found in a variety of applications,
ranging from modern data storage systems, e.g., DNA-based data storage over communication
systems to file synchronization. In contrast to classical deletion and insertions errors, that
delete and insert symbols into a string at arbitrary positions, burst errors occur at consecutive
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positions. In [LP20], we present an efficiently encodable and decodable code construction that is
capable of correcting a burst of deletions of length at most k. The redundancy of this code is
log n+Ok log log n, which is optimal in terms of scaling with n. The code can be split into two
main components. First, we impose a constraint that allows us to locate the burst of deletions up
to an interval of size roughly log n. Then, with the knowledge of the approximate location of the
burst, we use several shifted Varshamov-Tenengolts codes to correct the burst of deletions, which
only requires a small amount of redundancy since the location is already known up to an interval
of small size. Finally, we show how to efficiently encode and decode the code.

9.6 Multi-Symbol Duplication-Correcting Codes

During replication of DNA it is common that multiple consecutive nucleotides are repeated and
duplicated within a DNA strand. These errors are known as tandem duplications, where a sequence
of symbols is repeated; respectively as palindromic duplications, where a sequence is repeated
in reversed order. In our works, [LWY17; LWY19] we investigate error-correcting codes over
channels that suffer from single tandem or palindromic duplication errors. In particular, we derive
upper bounds on the cardinality of tandem duplication and palindromic deletion-correcting codes
by deriving sphere packing bounds for these error types. Our upper bounds on the cardinality
directly imply lower bounds on the redundancy which we compare with the redundancy of the
best known construction correcting arbitrary burst errors. Our results indicate that the correction
of palindromic deletions requires more redundancy than the correction of tandem duplications.
Further, there is a significant gap between the minimum redundancy of duplication correcting
codes and burst insertion-correcting codes. In [LJW18], we generalize our results on single tandem
duplication errors to the case of multiple errors. We propose explicit constructions that correct
duplications of multiple consecutive symbols. Finally, we discuss the asymptotic behavior of the
derived codes and bounds, exposing fundamental insights about the tandem duplication channel.

9.7 Clustering-Correcting Codes

Clustering DNA sequences according to their similarity is a vital aspect of many DNA-based
storage systems. Accurate clustering results however depend on the dissimilarity of the original
strands, which usually depends on the user data to be stored and is not necessarily the case for
all possible messages. In [Shi+19; Shi+22], we propose a new class of codes, called Clustering-
Correcting Codes that encode user data into DNA strands that are guaranteed to be dissimilar.
We further design the codes such that a clustering algorithm based on the (possibly erroneous)
indices of the sequences, followed by a simple decision rule within the clusters can be used to
achieve accurate clustering, even in the presence of errors. We present efficient encoding and
decoding algorithms for these codes and derive converse bounds on the minimum redundancy
required to impose the desired constraint on the DNA sequences.

The main contributors to this study were Tal Shinkar and Eitan Yaakobi, while the author
assisted with the derivation of the converse and achievability bounds.
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9.8 Error Correction for Physically Unclonable Functions

Physically unclonable functions are hardware devices that serve as unique identifiers or key storage
devices. Our publications [Imm+17; Imm+19] propose a novel variable-length mapping scheme
from physical readouts to binary messages. While such a mapping comes at the advantage of
a reduced bias, it introduces new errors in form of insertions and deletions, when the reads
are perturbed by errors. To combat these errors, we use error correction schemes based on
Varshamov-Tenengolts codes and prove the feasibility of the scheme using simulations with an
empirical read distribution. This scheme promises a high effective number of secrecy bits, while
providing sensitivity with respect to tampering attacks.

Within this project, the author designed the codes for insertion and deletion correction.
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Chapter 10

Concluding Remarks

The topic of reliability and efficiency in digital memories is a popular candidate for information-
theoretic and coding-theoretic studies. As part of this research branch, this dissertation is focused
around the abstraction, modeling and analysis of the core processes involved in next-generation
memories, such as DNA-based storage systems. Large parts of the research are concerned with
the reliable communication of information over novel channels that abstract central aspects of
modern memories, such as the appearance of synchronization errors in the form of insertions or
deletions or the disorder of data stored in different parts of the memory. Another part deals with
the optimization of array-based synthesis, establishing novel connections between the theory of
analytical combinatorics in several variables and noiseless information theory.
Being a research object for only a short period of time, “DNA-based storage systems are new

and uncharted territory for coding theorists” [Mil+18] and the list of open problems within these
fascinating areas is long, demanding the ceaseless interest of researchers from diverse fields. Here,
for brevity, we only focus on those open questions that are most related to our studies.
Regarding zero-error codes over unordered sets, we remark that there are several interesting

problems that have not been addressed in the literature yet. One is to find the comprehensive codes
that perform well in all or at least in many parameter regimes. Especially for the combination
of a loss of sequences together with errors within the sequences, a general approach to and
understanding of constructive solutions remains elusive to date. From an algorithmic point of
view, efficient encoders and decoders are also of interest due to very large code dimensions that
arise from the two-dimensional nature of the codewords.

Within the field of information transmission via a probabilistic noisy drawing of input sequences,
the derivation of the capacity for the case of insertion and deletion errors is an intriguing question.
The methods presented in this thesis suggest that our results on the probabilistic DNA storage
channel may generalize to a broader class of constituent channels. That is, it is conceivable that
a replacement of the q-ary symmetric channel with an insertion and deletion channel yields a
channel whose capacity is obtained by replacing the capacity of the multinomial channel with the
capacity of a multiple draw insertion and deletion channel in Theorem 6.2. This result remains
unproven to date and is hindered due to the lack of a comprehensive understanding of even the
conventional insertion and deletion channel with a single received sequence. However, it might
still be possible to derive the capacity without the precise knowledge of the individual capacity
expressions, provided that specific properties of the insertion and deletion channels are known,
such as the capacity-achieving input distributions.
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Appendix A

Auxiliary and Supplementary Results

A.1 Auxiliary Lemmas

For the readers convenience, we summarize auxiliary lemmas that are used throughout the
dissertation.

Lemma A.1. Let f(n), g(n) : N 7→ R be two arbitrary functions with f(n) = o(1) for n → ∞.
Then,

g(n) log (1 + f(n)) = g(n)f(n) log e +O
(
g(n)f2(n)

)
.

Proof. We use the standard bound on the natural logarithm

x

x+ 1
≤ log(1 + x)

log e
≤ x,

for all x > −1. Since f(n) = o(1), there exists n0 ∈ N, such that |f(n)| < 1 for all n ≥ n0 and
therefore

g(n)
f(n)

f(n) + 1
≤ g(n)

log (1 + f(n))

log e
≤ g(n)f(n),

for all n ≥ n0. This allows to find an upper bound to the following limit of the first order
approximation

lim
n→∞

∣∣∣∣g(n) log (1 + f(n))− g(n)f(n) log e

g(n)f2(n)

∣∣∣∣ ≤ 1,

by plugging in the lower and upper bound on g(n) log(1 + f(n)), which proves the statement.

Lemma A.2. Fix k ∈ N0 and let f(n) : N 7→ R be a function with f(n) = o(n) as n→∞. When
n→∞, the binomial coefficient satisfies

log

(
n− f(n)

k

)
= k log n− log k! + o(1), (A.1)

log
k∑

i=0

(
n

i

)
= k log n− log k! + o(1). (A.2)
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Proof. We start by proving statement (A.1). From the definition of the binomial coefficient, for
all n ≥ f(n) + k it directly follows that

(n− f(n)− k)k

k!
≤
(
n− f(n)

k

)
≤ (n− f(n))k

k!
.

Thus, we can bound the binomial coefficient from below by

log
(n− f(n)− k)k

k!
= k log(n− f(n)− k)− log k! = k log n+ k log(1− (f(n) + k)/n)− log k!

(a)
= k log n− log k!− o(1),

where in equality (a) we used Lemma A.1 to show that k log(1− (f(n) + k)/n) = o(1) for fixed
k,m as n→∞. The upper bound exhibits the same asymptotic behavior, which can be shown
using analogous steps. Therefore, the statement (A.1) follows.

We now proceed with proving statement (A.2). On the one hand, we can bound the binomial
sum from below by

∑k
i=0

(
n
i

)
≥
(
n
k

)
and thus the binomial sum is also asymptotically bounded

from below by the right hand side of statement (A.1). On the other hand, we can prove that

k∑
i=0

(
n

i

)
=

(
n

k

)(
1 +

k−1∑
i=0

(
n
i

)(
n
k

)) =

(
n

k

)(
1 +

k−1∑
i=0

(n− k)!k!

(n− i)!i!

)
(a)

≤
(
n

k

)(
1 + k

k!

(n− k + 1)

)
,

where in inequality (a) we used that (n− i)!i! ≥ (n− k + 1)! for all i ≤ k − 1.1 Now, the second
factor approaches 1 as n→∞, since k is fixed. Therefore, taking logarithms, this upper bound
has the same asymptotic behavior as (A.1) and the statement follows.

Lemma A.3. Let f(n), g(n) : N 7→ R be two arbitrary functions with g(n) = o(f(n)) and
g(n) = ω(1), when n→∞. The binomial coefficient satisfies

log

(
f(n)

g(n)

)
= g(n) log

ef(n)

g(n)
+ o(g(n)),

when n→∞.

Proof. Note that g(n) = o(f(n)) and g(n) = ω(1) automatically implies f(n) = ω(1). The
binomial coefficient satisfies

log

(
f(n)

g(n)

)
= log

f(n)!

(f(n)− g(n))!g(n)!

= g(n) log
f(n)

g(n)
− 1

2
log g(n)−

(
f(n)− g(n) +

1

2

)
log

(
1− g(n)

f(n)

)
+ γ,

1While this bound is rather crude, it suffices for the statement of the lemma.
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where γ = − log
√
2π +O( 1

g(n)). Here we used a refinement [Rob55] of Stirling’s approximation,
which states that √

2πn
(n
e

)n
e

1
12n+1 ≤ n! ≤

√
2πn

(n
e

)n
e

1
12n ,

for any n ∈ N. Using Lemma A.1, we obtain

−
(
f(n)− g(n) +

1

2

)
log

(
1− g(n)

f(n)

)
= log e

(
g(n)− g2(n)

f(n)
+

g(n)

2f(n)

)
+O

(
g2(n)

f(n)

)
= g(n) log e +O

(
g2(n)

f(n)

)
,

where we used that g(n)
f(n) = o(1). Plugging this result into the expression of the binomial coefficient

and using further log g(n) = o(g(n)) and γ = o(g(n)) proves the lemma.

Lemma A.4. Let n ∈ N, 0 < p < 1 and k ∈ N, k ≥ np. Then, the binomial tail distribution can
be bounded from above by

n∑
i=k

(
n

i

)
pi(1− p)n−i ≤ 2−nD( k

n
||p),

n∑
i=k

(
n

i

)
pi(1− p)n−i ≤ e−2n( k

n
−p)

2

where D(p1||p2) = p1 log(p1/p2) + (1− p1) log((1− p1)/(1− p2)) is the Kullback-Leibler divergence
between two Bernoulli distributions with probabilities p1 and p2.

Proof. The first inequality is a well-known upper bound on the binomial tail, which can be found
in, e.g., [Ash90, Lemma 4.7.2]. The second inequality can directly be proven using Hoeffding
inequality [Ver18, Thm. 2.2.6], by using that the expected value of the binomial distribution is
equal to np.

Lemma A.5. For any events A,B, the conditional probability of A given B satisfies

Pr (A) + Pr (B)− 1 ≤ Pr (A|B) ≤ Pr (A)
Pr (B)

.

Proof. The proof follows directly from basic stochastic principles. On the one hand, we have

Pr (A|B) = Pr (A ∩ B)
Pr (B)

≤ Pr (A)
Pr (B)

.

For the lower bound, we denote by Bc the complement event of B with Pr (Bc) = 1− Pr (B). The
lower bound then follows from the following series of inequalities

Pr (A|B) = Pr (A ∩ B)
Pr (B)

≥ Pr (A ∩ B) = Pr (A)− Pr (A ∩ Bc) ≥ Pr (A)− Pr (Bc) .
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A.2 Bound on the Fraction of Clustered Sets

Lemma A.6. For any fixed 0 < β < 1, fixed integer δ ∈ N0, and any integer functions y(M) ≤M
and z(L) with z(L) ≤ 2L/y(M) for large enough M , the following asymptotic property holds

log

(
2L

M−y(M)

)(2L/z(L)
y(M)

)(
2L

M−δ

) ≤ −y(M) log
z(L)y(M)

eM
+O

(
My(M)

2L

)
+O(L),

when M →∞ and M = 2βL.

Proof. The lemma can be shown directly by inserting the factorial expression for the binomial co-
efficient. Denoting by nm = n · (n− 1) . . . (n−m+ 1) the falling factorial for arbitrary n,m ∈ N0

with n ≥ m, we obtain

log

(
2L

M−y(M)

)(2L/z(L)
y(M)

)(
2L

M−δ

) = log
(2L/z(L))y(M)(2L −M + δ)δ

(2L −M + y(M))y(M)M δ
+ log

(
M

y(M)

)
≤ y(M) log

2L/z(L)

2L −M
+ log

(
M

y(M)

)
+O(L).

Using
(
n
k

)
≤
(
en
k

)k
as an upper bound for the binomial coefficient and rearranging the term z(L),

we further obtain

log

(
2L

M−y(M)

)(2L/z(L)
y(M)

)(
2L

M−δ

) ≤ −y(M) log
(
1−M/2L

)
+ y(M) log

eM

z(L)y(M)
+O(L)

(a)

≤ y(M) log
eM

z(L)y(M)
+O

(
My(M)

2L

)
+O(L).

In inequality (a), we used Lemma A.1 for the approximation of the logarithm.

A.3 Capacity of the Ordered Multinomial Channel

Lemma A.7. Fix 0 < p < 1, q ∈ N and let the distribution Pr (d) be a given distribution that has
a bounded number of draws and converges in frequency to ν. Then, the capacity of the ordered
parallel multinomial channel is given by

COPM(ν, p, q) =
∑
d≥0

νdCMul(d, p, q).

Proof. For ease of notation, we abbreviate X = (x1, . . . ,xM ) as the length-ML vector comprising
all input sequences and Z = (z1, . . . ,zM ) as the length-ML vector that contains all output
clusters. We first bound the capacity from above using Fano’s inequality, which implies that for
any code C ⊆ ΣM×L

q of rate R, we have [CT06]

R ≤ Pr (Err|C)R+
1 + I(X;Z)

ML
.

182



A.3 Capacity of the Ordered Multinomial Channel

By the definition of an achievable code rate we have that Pr (Err|C) → 0 as M → ∞. Further,
1

ML → 0 and we therefore obtain a valid bound on achievable code rates, if we bound the mutual
information I(X;Z) = H(Z) − H(Z|X) from above. Using the chain rule of entropy [CT06,
Thm. 2.5.1], we can write the output entropy as

H(Z) = H(Z,d)−H(d|Z) = H(Z|d) +H(d)−H(d|Z).

Similarly, we can express the conditional output entropy as

H(Z|X) = H(Z,d|X)−H(d|Z,X) = H(Z|X,d) +H(d|X)−H(d|X,Z).

We can simplify both expressions due to the fact that d is a function of Z, since for each i ∈ [M ]
it is possible to infer the number of draws di from zi, by identifying the symbol alphabet of zi.
This is in particular due to the fact that for the multinomial channel, it holds that the output
alphabets Zd are distinct. It follows that H(d|Z) = H(d|X,Z) = 0. Further, since X and d are
independent by the definition of the channel, we have H(d|X) = H(d) and we obtain

I(X;Z) = H(Z|d)−H(Z|X,d) =
∑
d

Pr (d) (H(Z|d = d)−H(Z|X,d = d)).

By the chain rule of entropy together with the fact that conditioning reduces entropy [CT06,
Thm. 2.6.5], the joint entropy can be bounded from above by the sum of the individual marginal
entropies and we obtain

H(Z|d = d) ≤
M∑
i=1

H(zi|d = d) =
M∑
i=1

H(zi|di = di),

where the last equality is due to the fact that given di, zi is independent of all dj with j ̸= i. On
the other hand, the conditional output entropy can be simplified to

H(Z|X,d = d) =

M∑
i=1

H(zi|X,d = d) =

M∑
i=1

H(zi|xi, di = di).

The first equality is because we can write zi = xi + ei, where ei is a random vector over the
symbols Σdi

q that is independent of X. Thus, given X and d, the only randomness in zi is ei and
henceforth, the zi’s are independent given X and d. Consequently the joint entropy is equal to
the sum of marginal entropies. The second equality follows from the fact that given xi and di, zi
is independent of xj and dj for all j ̸= i. It follows that

I(X;Z) ≤
∑
d

Pr (d)
M∑
i=1

(H(zi|di = di)−H(zi|xi, di = di)) =
∑
d

Pr (d)
M∑
i=1

I(xi, zi|di = di)

(a)

≤ L
∑
d

Pr (d)
M∑
i=1

CMul(di, p, q)
(b)
= L

∑
n

Pr (n)
∑
d≥0

ndCMul(d, p, q),

where inequality (a) is due to the fact that each of the individual mutual information terms is
maximized by the capacity as shown in Lemma 5.2. Equality (b) follows from the fact that in
the sum over i, it only matters how often some d occurs in d. By definition, this is equal to
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the drawing frequency n, which is a function of d, which allows to replace the sum over d by a
sum over n. For an arbitrary ϵ > 0 denote now by Nϵ the event on the random variable n that∑

d≥0

∣∣ nd
M − νd

∣∣ ≤ ϵ/4. We can thus split the sum over n into two parts

I(X;Z) ≤ L

∑
n∈Nϵ

Pr (n)
∑
d≥0

ndCMul(d, p, q) +
∑
n/∈Nϵ

Pr (n)
∑
d≥0

ndCMul(d, p, q)


(a)

≤ L

Mϵ

4
+M

∑
d≥0

νdCMul(d, p, q) +
∑
n/∈Nϵ

Pr (n)
∑
d≥0

ndCMul(d, p, q)


(b)

≤ ML

 ϵ

4
+
∑
d≥0

νdCMul(d, p, q) + Pr (n /∈ Nϵ)

 ,

where (a) is due to the fact that for all n ∈ Nϵ, we have∑
d≥0

(nd −Mνd)CMul(d, p, q) ≤
∑
d≥0

|nd −Mνd| ≤
Mϵ

4
.

Inequality (b) follows from the fact that CMul(d, p, q) ≤ 1 and
∑

d≥0 nd = M . By definition of
frequency convergence Pr (n /∈ Nϵ)→ 0 as M →∞ for all ϵ > 0, any achievable rate R satisfies
R ≤ COPM(ν, p, q), which proves the converse bound on the capacity.

On the other hand, we prove achievability using a random coding argument as in [CT06; Sha48].
Let C = {X(1), . . . ,X(qMLR)} ⊆ ΣM×L

q be a random codebook with code rate R, where each

X(i) ∈ ΣM×L
q is chosen independently and uniform over all possible words in ΣM×L

q . We denote
the individual sequences of X(i) by X(i) = (x1(i), . . . ,xM (i)) For a given codebook, we associate

an encoder encC(W ) = X(W ) and decoder Ŵ = decC(Z) that we will describe in the following.
To define the decoder, we fix an ϵ > 0 and introduce the notion of typical sequences over the
ordered multinomial channel as follows.

T M,L,ϵ
OPM (p, q) ≜

{
((x1, . . . ,xM ), (z1, . . . , zM )) ∈ ΣM×L

q ×
(
Σd1×L
q × · · · × ΣdM×L

q

)
:

d1, . . . , dM ∈ N0 ∧
∣∣∣{i ∈ [M ] : (xi, zi) ∈ T L,ϵ

Mul(di, p, q)
}∣∣∣ ≥ (1− ϵ)M

}
.

In other words, a pair of input sequences and output clusters ((x1, . . . ,xM ), (z1, . . . , zM )) is
jointly typical, if almost all of the individual sequences xi, zi are jointly typical with respect
to the multinomial channel. The decoder decC(Z) then decodes to Ŵ , if X(Ŵ ) is the unique
codeword that is jointly typical with Z = (z1, . . . ,zM ) with respect to the ordered multinomial
channel. If there is none or more than two codewords that are jointly typical with Z, than the
decoder outputs a failure, resulting in a decoding error. The probability of error, averaged over
all codebooks is given by

Pr (Err) =
∑
C

Pr (C)Pr (Err|C) = Pr (Err|W = 1) ,

where the last equality is due to the symmetry of the choice of random codebooks, see, e.g., [CT06,
Ch. 7.7]. The two possible error events are that X(1) is not jointly typical with Z or that one of
the other codewords is jointly typical with respect to Z. Denote by Ji the event that the i-th
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codeword X(i) is jointly typical with Z, i.e., (X(i),Z) ∈ T M,L,ϵ
OPM (p, q) and by J c

i the complement
event. By the union bound we obtain

Pr (Err|W = 1) ≤ Pr

J c
1 ∪

qMLR⋃
i=2

Ji

∣∣∣∣∣W = 1

 ≤ 1− Pr (J1|W = 1) + Pr

qMLR⋃
i=2

Ji

∣∣∣∣∣W = 1

 .

We first bound Pr (J1|W = 1) from below. We demarginalize with respect to the drawing
distribution d and obtain

Pr (J1|W = 1) =
∑
d

Pr (d)Pr (J1|W = 1,d = d) ≥
∑
d∈Nϵ

Pr (d)Pr (J1|W = 1,d = d) ,

where we used that d is independent of W . Note that the event Nϵ was originally defined
as an event on the drawing frequency n, however since n is a function of d, one can also
define it on the drawing composition d. We can use the fact that, given d = d, the num-

ber of jointly typical pairs over the multinomial channel
∣∣∣{i ∈ [M ] : (xi(1), zi) ∈ T L,ϵ

Mul(di, p, q)
}∣∣∣

is the sum of M independent random Bernoulli random variables with success probabilities

πi ≜ Pr
(
(xi(1), zi) ∈ T L,ϵ

Mul(di, p, q)|W = 1, di = di

)
. From the results about jointly typical se-

quences [CT06, Thm. 7.6.1] we know that for all ϵ > 0 and i ∈ [M ], it holds that πi > 1− ϵ/2 for
all L ≥ Ldi , as zi is the result of transmitting xi(1) over the multinomial channel. As maxi∈[M ] Ldi

might increase with M , we focus our attention to a subset of multinomial channels whose number
of draws is bounded from above by a large, but finite quantity. To this end, let Dϵ be chosen such
that

∑
d≥Dϵ

νd < ϵ/4. We have that for all d ∈ Nϵ, the number of i ∈ [M ] with di < Dϵ is at least

Dϵ−1∑
d=0

nd ≥M

Dϵ−1∑
d=0

νd −
Mϵ

4
> M

(
1− ϵ

2

)
.

Thus, at least M(1− ϵ/2) Bernoulli variables have success probability at least πi > 1− ϵ/2 for all
L ≥ max0≤d<Dϵ Ld (which is finite, i.e., not a function of L) and, we obtain

Pr (J1|W = 1,d = d)

≥
M−Mϵ

2∑
i=M−Mϵ

(
M − Mϵ

2

i

)(
1− ϵ

2

)i ( ϵ
2

)M−Mϵ
2

−i
=

Mϵ
2∑

i=0

(
M − Mϵ

2

i

)(
1− ϵ

2

)M−Mϵ
2

−i ( ϵ
2

)i

= 1−
M−Mϵ

2∑
i=Mϵ

2
+1

(
M − Mϵ

2

i

)(
1− ϵ

2

)M−Mϵ
2

−i ( ϵ
2

)i (c)

≥ 1− e
−2(M−Mϵ

2 )
(

ϵ2

4−2ϵ

)2

,

for all 0 < ϵ < 1 and large enough L. Here we used Lemma A.4 to bound the binomial tail in
inequality (c). Thus, finally, for any ϵ > 0 and large enough L,

Pr (J1|W = 1) ≥

(
1− e

−2(M−Mϵ
2 )

(
ϵ2

4−2ϵ

)2
)
Pr (d ∈ Nϵ) ,

where the first term approaches 1 as M →∞ for any ϵ > 0 and the second term approaches 1 as
well by assumption of convergence of the drawing frequency. It follows that Pr (J1|W = 1)→ 1.
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We now bound Pr
(⋃qMLR

i=2 Ji|W = 1
)
from above and perform the same demarginalization

with respect to the drawing composition d to obtain

Pr

qMLR⋃
i=2

Ji

∣∣∣∣∣W = 1

 ≤ Pr (d /∈ Nϵ) +
∑
d∈Nϵ

Pr (d)Pr

qMLR⋃
i=2

Ji

∣∣∣∣∣W = 1,d = d


(d)

≤ Pr (d /∈ Nϵ) + qMLR
∑
d∈Nϵ

Pr (d)Pr (J2|W = 1,d = d) ,

where we used the union bound to prove inequality (d), together with the fact that due to the identi-
cal and independent choice of codewords, Pr (J2|W = 1,d = d) = . . . = Pr

(
JqMLR |W = 1,d = d

)
.

Again, the number of jointly typical pairs of the multinomial channel is distributed as the sum
of independent Bernoulli variables with success probability πi. For the case of the event J2, the
xi(2) are independent of zi and thus for all i ∈ [M ], πi < q−L(CMul(di,p,q)−ϵ) for L ≥ Ldi [CT06,
Thm. 7.6.1]. It follows that

Pr (J2|W = 1,d = d) =
∑

I⊆[M ]:|I|≥M(1−ϵ)

∏
i∈I

πi
∏
j /∈I

(1− πj) ≤
∑

I⊆[M ]:|I|=M(1−ϵ)

∏
i∈I

πi

≤
(

M

M(1− ϵ)

)
max

I⊆[M ]:|I|=M(1−ϵ)

∏
i∈I

πi.

Now abbreviate I(ϵ) = {i ∈ I : di < Dϵ}. We can bound the product over πi by∏
i∈I

πi ≤
∏

i∈I(ϵ)

πi <
∏

i∈I(ϵ)

q−L(CMul(di,p,q)−ϵ) = q−L
∑

i∈I(ϵ)(CMul(di,p,q)−ϵ)

for all L ≥ max0≤d<Dϵ Ld. Recall from earlier that for all d ∈ Nϵ, the number of i ∈ [M ] with
di < Dϵ is at least M

(
1− ϵ

2

)
and thus |I(ϵ)| ≥ M(1 − 3ϵ

2 ) for any choice of I. Analyzing the
exponent of the error probability expression above, we find that

L
∑

i∈I(ϵ)

(CMul(di, p, q)− ϵ) = L

 M∑
i=1

(CMul(di, p, q)− ϵ)−
∑

i/∈I(ϵ)

(CMul(di, p, q)− ϵ)


≥ L

(
M∑
i=1

(CMul(di, p, q)− ϵ)− 3Mϵ

2

)
= L

∑
d≥0

ndCMul(d, p, q)−
5MLϵ

2

≥ML
∑
d≥0

νdCMul(d, p, q)−
7MLϵ

2
= MLCOPM(ν, p, q)− 7MLϵ

2
.

Using further that
(

M
M(1−ϵ)

)
≤ 2M , it follows that for any 0 < ϵ < 1 and large enough M the error

probability of the second error event is at most

Pr

qMLR⋃
i=2

Ji

∣∣∣∣∣W = 1

 ≤ Pr (d /∈ Nϵ) + 2Mq−ML(COPM(ν,p,q)−R−7ϵ/2).

As we can choose ϵ as small as desired, for any R < COPM(ν, p, q), the above error probability
vanishes and thus the average error probability of the random code ensemble Pr (Err|W = 1) goes
to 0 as M →∞. Henceforth, we can conclude that there exists at least one code of rate R that
has vanishing error probability.
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A.4 Alternative Proofs for Results on Cost-Uniform Graphs

We provide an alternative proof of Corollary 7.37 that makes use of Wielandt’s theorem and
avoids the employment of Lemma 7.35. This proof is of purely academical nature and is meant to
provide the reader with more background on irreducible matrices.

Alternative proof of Corollary 7.37. Wielandt’s theorem (Theorem 7.21) states that ρG(xe
iϕ) ≤

ρG(x) with equality if and only if there exist θ, θ1, θ2, . . . , θ|V| such that

PG(xe
iϕ) = eiθD−1PG(x)D,

where D is a diagonal matrix with entries [D]jj = eiθj . If G is cost-uniform, there can be at
most one cost on edges connecting any two states, so each nonzero entry [PG(x)]ij of PG(x) is
a monomial of the form Nijx

τij , where τij is the cost of an edge from vi to vj , and Nij is the
number of such edges. Due to the coboundary condition, τij can be written as

τij = b+B(vj)−B(vi).

For any x > 0 and any 0 ≤ ϕ < 2π, we can write

[PG(xe
iϕ)]ij = Nijx

τijeiϕτij = Nijx
τijeiϕ(b+B(vj)−B(vi)) = eiϕ(b+B(vj)−B(vi))[PG(x)]ij

= ei(θ+θi−θj)[PG(x)]ij

where θ = ϕb and θk = ϕB(vk) for all k. This confirms that the condition in Wielandt’s theorem
holds and, therefore, ρG(xe

iϕ) = ρG(x) for all 0 ≤ ϕ < 2π.

We also provide a standalone proof of Corollary 7.38 on the log-log-linearity of the Perron root.

Alternative proof of Corollary 7.38. Let 0 < x1 < x2 < 1 and, for 0 ≤ s ≤ 1, define the matrix
Π(s) ≜ PG(e

s log(x2/x1)+log x1). Notice that Π(0) = PG(x1) and Π(1) = PG(x2). We will apply
[Nus86, Corollary 1.2] to prove log-linearity of Π(s). To start with, as cost-uniformity implies
the coboundary condition, each entry [PG(e

s)]ij has the form [PG(e
s)]ij = Nije

sτij , where Nij is
the number of edges from vi to vj and τij = b+B(vj)−B(vi). We directly see that [PG(e

s)]ij is
log-convex in s. Since scaling does not change convexity, so are the entries of Π(s). We can thus
apply [Nus86, Corollary 1.2], which implies that

λ(Π(s)) ≤ λ(Π(0))1−sλ(Π(1))s

with equality for all 0 < s < 1 if and only if there exist constants c ∈ R and C(1), . . . , C(|V|) > 0
such that [Π(0)]ij = c · C−1(i)C(j)[Π(1)]ij for all i, j. That is, these constants need to satisfy

Nijx
τij
1 = Nijc · C−1(i)C(j)x

τij
2 ,

or, equivalently,

τij log

(
x1
x2

)
− log c+ logC(i)− logC(j) = 0.

This condition can directly be identified as the coboundary condition, which is fulfilled by
assumption of cost-diversity. It follows that λ(Π(s)) = ρG(x1) (ρG(x2)/ρG(x1))

s for all 0 ≤ s ≤ 1
and 0 < x1 < x2 < 1. Or, reversing the linear scaling in s, ρG(e

s) = αβs for some α, β ∈ R,
proving that log ρG(e

s) is linear and, henceforth, ρG(x) is log-log-linear.
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A.5 Periodicity of Strongly Connected Graphs

We first prove that the definition of periodicity from [MRS01] follows from Definition 7.3.

Lemma A.8. Let G = (V, E , σ, τ) be a strongly connected graph with largest period d. Then, the
greatest common divisor of all cycle lengths is d.

Proof. To start with, we note that the length m of each cycle must be divisible by d, since
otherwise the twice repetition of this cycle would not have a length congruent to that of the single
cycle modulo d. Analogously to the proof of Lemma 7.33, we can prove the existence of two cycles
at the same state whose length differs in precisely d. This implies that the the greatest common
divisor of the path lengths is d, which proves the statement.

We proceed with a variation of the Chinese Remainder Theorem. The original Chinese
Remainder Theorem can be found in, e.g., [IR90, Section 3.4].

Lemma A.9. Let c ∈ N and (m1, τ1), (m2, τ2), . . . , be pairs of integers (mi, τi) ∈ N2. Denote by
d the greatest common divisor of all mi. If these pairs satisfy

miτj ≡ mjτi (mod (cd))

for all i, j, then there exists b ∈ Z such that for all i,

dτi ≡ mib (mod (cd)).

Further, any b′ ∈ Z with b′ ≡ b (mod c) has the same property.

Proof. We prove the statement by a direct construction. Assume without loss of generality that
gcd(m1, . . . ,mn) = d for some n ∈ N. This is possible, since there exist finitely many mi such
that their greatest common divisor is equal to d. By Bézout’s identity, there exist z1, . . . , zn ∈ Z
with z1m1 + · · ·+ znmn = d. Choosing b = z1τ1 + . . . znτn, we obtain for any 1 ≤ i ≤ n,

mib = zimiτi +
∑
j ̸=i

zjmiτj = τi

d−
∑
j ̸=i

zjmj

+
∑
j ̸=i

zjmiτj = τid+
∑
j ̸=i

zj(miτj −mjτi).

By assumption miτj −mjτi ≡ 0 (mod (cd)) and thus mib ≡ τid (mod (cd)). On the other hand,
for any i > n, we set zi = 0 and obtain via a similar argument

mib = zimiτi +
n∑

j=1

zjmiτj = τid+
n∑

j=1

zj(miτj −mjτi),

which implies that mib ≡ τid (mod (cd)). This concludes the proof.

A.6 Concavity and Maximality of Fixed-Length Capacity

Proposition A.10. Let G be a strongly connected, deterministic, cost-diverse graph. Then, CG(α)
is a concave function in α and its maximum is equal to CG(α

∗) = CG, where α∗ = 2CG/ρ′G(2
−CG).
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Proof. To start with, CG(α) is linear in the interval 0 ≤ α < αlo
G. In the interval αlo

G ≤ α < αup
G ,

CG(α) = − log x0(α) +α log ρG(x0(α)), where x0(α) is the unique positive solution to f(x) = α−1

with f(x) ≜ xρ′G(x)/ρG(x). Notice that ρG(x) > 0 for all x > 0 and thus, by Lemma 7.24, f(x)
is analytic for all x > 0. Further, as in the proof of Lemma 7.50, we can show that ∂

∂xf(x) > 0,
which means that x0(α) is analytic in α and also strictly monotonically decreasing in α. Therefore,
for αlo

G ≤ α < αup
G ,

∂

∂α
CG(α) = −

x′0(α)

x0(α)
+ log ρG(x0(α)) + α

x′0(α)ρ
′
G(x0(α))

ρG(x0(α))

= −x′0(α)

x0(α)
+ log ρG(x0(α)) + αf(x0(α))

x′0(α)

x0(α)

(a)
= log ρG(x0(α)),

where we used in (a) that f(x0(α)) = α−1 by definition. Since x0(α) is strictly monotonically
decreasing in α and also ρG(x) and the logarithm are strictly monotone functions (see Lemma 7.26),
CG(α) is strictly concave in the considered interval. By definition of αlo

G, CG(α)→ αlo
G log ρG(1),

as α approaches αlo
G from both the left and right, proving continuity of CG(α). Therefore, CG(α)

is a concave function on the full interval 0 ≤ α ≤ αup
G . From the above derivation of the derivative

of CG(α), we further see that α∗ with ρG(x0(α
∗)) = 1 is a unique stationary point of CG(α) with

capacity CG(α
∗) = − log x0(α

∗) = CG. It follows that α∗ is the unique solution for α to the
system of two equations f(x) = α−1 and ρG(x) = 1, x > 0. The above exposition proves that the
solution to these equations are α∗ and x0(α

∗), where α∗ is as given in the statement.
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Glossary

Abbreviations

Notation Description

BCH Bose-Chaudhuri-Hocquenghem
DNA Deoxyribonucleic acid
GV Gilbert-Varshamov
MDS Maximum-distance-separable
OPM Ordered parallel multinomial channel
QSC q-ary symmetric channel
SP Sphere-packing
TPC Tensor product code
UPM Unordered parallel multinomial channel
VT Varshamov-Tenengolts

Global Notation

Notation Description

N Set of natural numbers
Z Set of positive and negative integer numbers
Q Set of rational numbers
R Set of real numbers, R+ for positive real numbers
C Set of complex numbers
[n] Set of integers up to n
A,C,G,T DNA bases: Adenine (A), Cytosine (C), Guanine (G), Thymine (T)
Σq Alphabet of size q with letters Σq = {0, 1, . . . , q − 1}.
Fq Finite field of size q
C Code over some space
wtH(x) Hamming weight of the vector x
dH (x,y) Hamming distance between x and y
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Glossary for Part 1

Notation Description

L Length of DNA strand, measured in number of consecutive nucleotides
M Number of DNA strands that are stored in the archive
β Archive density
S Data set of M DNA strands, each of length L
SC Set of sequences, which have been reconstructed correctly
SL Set of sequences, which have been lost after reconstruction
SE Set of sequences, which have been reconstructed with errors
XL
M Set of all possible data sets with M sequences, each of length L

r(C) Redundancy of a code C ⊆ XL
M

T Error type
(s, t, u)T Parameters of the adversarial DNA storage channel
BT(x, u) Error ball of possible outcomes after at most u errors of type T in x
ST(x, u) Error sphere of possible outcomes after exactly u errors of type T in x
BT(S, s, t, u) Error ball of possible outcomes from the (s, t, u)T DNA storage channel
V T(S, s, t, u) Set of all words which have intersection error balls with S
V

T
(s, t, u) Average of the number of sets with intersecting DNA error balls

V T(u) Maximum of the number of sequences with intersecting T error balls

S
D,t

(u) t-th moment of the deletion sphere size distribution

||x|| Number of runs in the vector x
ILM Code of indexed sequences
I(i) Binary representation of the index i− 1
I(S) Set of indices of sequences in the set S
prefk(x) Prefix of length k of the vector x
suffk(x) Suffix of length k of the vector x
MDS[M,k,] MDS code of length M and dimension k
v(S) Set-indicator vector of length 2L

sVT(x) Varshamov-Tenengolts checksum

Glossary for Part 2

Notation Description

L Length of DNA strand, measured in number of consecutive nucleotides
M Number of DNA strands that are stored in the archive
β Archive density, β = logq(M)/L

N Total number of drawn sequences in the DNA storage channel
c Sequencing depth: average number of times, a sequence is read
X = (x1, . . . ,xM ) Input sequences
Y = (y1, . . . ,yM ) Output clusters
R = (r1, . . . , rN ) Output sequences
Pr (x = x) Probability of an event
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I(x; y) Mutual information of the random variables x and y
H(x) Entropy of the random variable x
E [x] Expected value of the random variable x
V [x] Variance of the random variable x
{{•}} Multiset
CMul(d, p, q) Capacity of the multinomial channel with d draws
COPM(ν, β, p, q) Capacity of the ordered parallel multinomial channel
CUPM(ν, β, p, q) Capacity of the unordered parallel multinomial channel
CDNA(c, β, p, q) Capacity of the DNA storage channel

T L,ϵ
Mul(d, p, q) Typical sequences over the multinomial channel

T M,L,ϵ
OPM (p, q) Typical sequences over the ordered parallel multinomial channel

T M,L,ϵ
UPM (p, q) Typical sequences over the unordered parallel multinomial channel

Glossary for Part 3

Notation Description

G Labeled and directed graph
V Vertex set of a graph
E Set of all directed edges of a graph
σ Labels of graph edges
τ Costs or weights of graph edges
PG(x) Cost-enumerator matrix of the graph G
ρG(x) Spectral radius of the cost-enumerator matrix PG(x)
LG,v(t) Cost-t follower set of the vertex v in the graph G
LG,v(t, n) Length-n and cost-t follower set of the vertex v in the graph G
NG,v(t) Size of the cost-t follower set of the vertex v in the graph G
NG,v(t, n) Size of the length-n and cost-t follower set of the vertex v in the graph G
CG Variable-length capacity
CG(α) Fixed-length capacity
FG(x, y) Generating function of the length-n and cost-t follower set sizes
I Identity matrix
rank(P ) Rank of the matrix P
adj(P ) Adjoint (or adjugate) of the matrix P
tr(P ) Trace of the matrix P
gcd Greatest common divisor
mod Modulo operator
i Imaginary unit
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