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By use of asymptotic analysis, the asymptotic rate of exits of Gaussian vector processes with
continuously differentiable sample paths into intersections of failure domains with piecewise twice
differentiable boundaries is derjved. After some convenient orthogonal transformations, the result
only involves local properties of the failure surface at the so-called Beta-point and the cross-
correlation matrix between the process and its time-derivative.

INTRODUCTION

The failure probability of highly reliable structural
systems under stationary time-variant loading can well be
approximated or bounded by Pr(t)< Pp(0)+ v, T where
Pr(0) is the initial failure probability, v, the outcrossing
rate and [0, 1] a given time-interval’. In fact, this type of
bounds for the failure probability were developed even for
nonstationary loading as well as failure conditions and
utilized in applications as early as the 1960’s2:3#, If the
loading can be modelled by a Gaussian vector process,
only a few special, exact results for vp are known (see, for
example, Refs 5 and 6). A complete set of results only
exists for failure domains bounded by hyperplanes (see
Refs 5, 6 and 7). Nonlinear failure surfaces as, for
example, those arising from v. Mises yield criterion
exhibit serious problems. However, application of certain
methods of asymptotic analysis recently yielded results of
quite general nature and computational ease not only for
the initial failure probability®'® but also for the
outcrossing rate'!*? These results are asymptotic in the
sense that the relative error in the failure probability
becomes negligible when these probabilities are small.
The results available so far are for simple failure domains
with at least twice differentiable fajlure surfaces and for
unions thereof!*'3 [n the following the asymptotic
crossing rate of Gaussian vector processes into
intersections of failure domains is given supplementing
the tools for the treatment of redundant systems.

RESULTS

Let U=U@)=(U,(),...,U,(t))", n>2, be a stationary
normal process with continuously differentiable sample
paths'*, whose autocorrelation functions r{t)of Ut)are
twice differentiable at 1 =0. The time derivative of U(t) is
denoted by U=U(t)=(U,(1),..., U(t)). Without loss of
generality it is assumed that, for each fixed but arbitrary
value of ¢, the variables U,=U(t) are stochastically
independent with zero mean and unit variance, The
correlation matrix of U is R=E[UU] =(E[U,U,]:
I'si,jsn). The cross-correlation matrix of U and U’ is
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R_=E[UUT]=(E[UU)): 1<ij<n). Let further k>2
and g,=g,(u),...,g,=g,(u) be piecewise continuously
differentiable functions such that for the probability
density o(u_) of U the surface integrals

A S f Ji ot ) dstu ) <o
{gi=0}

over the failure surfaces OFi={g;=0} exist. [u =
."w)' is the Euclidean norm of u and ¢, )=
@a(_; 1) is the multinormal density function with
correlation matrix K =1 (I =unit matrix). Assumption
(A1) holds in almost_all—en_gineering applications.

The outcrossing rate vy of the process U(r) from a ‘safe
domain’ |R™\F into the ‘failure domain’ of structural
states defined by

Fi=(){g:<0} 1

is given by the generalized Rice formula’>:

Ve =f El{ -2 @)U} U =u]p@ )dsw) (2)

Here, o(u_) is the outwards directed unit normal vector at
a point u_on the surface oF of F, E[.|.]is the conditional
mean. The notation {x} * =max{0, x} is used.

It is assumed that:

(A2) the failure domain F has a unique ‘Beta-point’ u_*,
le,apointu *in F (orits boundary) with minimal
distance to the coordinate origin. Also, the origin is
not contained in F which implies that u *edF.

(A3) In a small environment of u ¥, the functions g,
(I i<k)are twice continuously differentiable, and
itis g,(u *)=0for 1<i<k.

(A4) The gradients a ;:=grad giu*) (1<i<gk) are
linearly independent, and it is [a;| =1 for 1<i<k
which can always be achieved by premultiplying g,
by 1/”‘1_"”'

According to Lagrange’s theorem u_* is always a linear

combination

§
w*=3ya, withy,<0for I<i<k
i=1

of the @ s, where, due to (Ad), the y's are uniquely
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determined. In addition, we require here that:

E k

(AS) u*=3% ya, withy,<0for I<i<k.
i=1

Assumptions (A2) to (AS) parallel very much those in Ref.
10.
Next, assume that:

(A6) a[(Ru*)=glRu*#0 for I<i<k.

As a simple consequence of (AS) and (A6) it is
alRu*)<0 (1<i<k), @)

since due to u "Ru =0 (R is skew-symmetric)

for at least one i

k
O=w*)'Ru*=3 y{aRu*).
i=1

Without loss of generality, it is further assumed that the

last n—k components of the vectors a_;=(a;,, ..., a;) are
zero:
(A7) a;=0 for I<i<k and k+1<j<n.

This can always be achieved by a suitable orthogonal
transformation. It implies uf,,=---=u*=0. Finally,
define by I the (nonempty) set of all indices i (1 < i< k)for
which it is,

al (Ru*)<0.

Under these assumptions the asymptotic behaviour of the

outcrossing rate
e(b): = b f EH ey} g}* Ly =u_] o(bu ) ds()
aF
)

b

of the process (1/b)U(t) (with derivative (I/b)g(z)) from
R™\F into F, with b— oo a central scaling factor as in Refs
9,10, 11, 12 can be derived. The complete derivations and
proofs are given in Ref. 12, .

By classical regression theory the variable —a "U
conditioned on U =u_is normally distributed with mean
E[-a"Ulu]=-aTRu and variance
Var[—a "Ulu ]=a 'S a, the latter being independent
of u, where the matrix § =R —R R ". According to Ref.
5 the conditional mean in equation (4) is:

With 0F;:=0Fn{g;=0}, the outcrossing rate vs(b)
becomes

v,(b)=b”f Yo (1), b,u )o(bu ) ds(u )
oF

k

~b" Y [V/@‘j’b,“_*) f olbu) ds@]
j aF

Jj=1 i
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b k
~ i > [Wla ;b *)obB )¢, (be;: K]
j=1

“*7195 Z [( - Q.:'Til*)‘/’(bﬁi)‘ﬁk— 1(be; £:)]
i€l

(6)

where

e 1 for  k=n
T \det=D)  for 2<k<n

k 52 *
with dyy= 5 7, 294"

D=y k+1<i,j<n) it
[l

s=1

I=(0;:k+1<i,j<n) (6;;=Kronecker's delta)

and for ie{1, ..., k}

Bi=alu*
ci=(cy: 1 <5<k, s#i)eRF!
with ¢, =f,— (. *)"a_)a Ja ),
K=k 1<s, <k, s# i, 1#i)eR 141
withk,,:= a_sra_l = (a;ra_i)(a__;rai)-

In Ref. 101t is shown that d > 0. Here, it is additionally
assumed that d>0. In the second line of cquation (6) the
disjointness of the crossing events for different surfaces
OF is used together with the fact that y(a ;, b,u)is a
slowly varying function in a small environment of u *.
Due to (A6) and equation (3) the function equation (5)
approaches —g_,-riu_* for b— oo which is independent of
b. The result for the surface integral in line three of
equation (6) may also be derived by reasoning
analogously to Ref. 5 or Ref. 7, ie., by computing
two volume integrals P(n{a;(U, u *)<0}) and
P(n{a;(U, u*+a ;A)<O}) and letting A—0. Here,
the a;,(U, x )’s are the asymptotic linear approximations
of the failure surfaces at u_*. The fourth line of equation
(6) is a consequence of the fact that the function equation
(5) approaches zero for b—co for all summation terms for
which —a [Ru * is negative.

This yields for sufficiently large s an asymptotic
approximation for vy by setting b=1.

1 .
v(F)=x 72 Z[( = Q‘T&M*)(P(ﬁi)@ =i(es é;)] (7)

iel

Since

k
Or-1(cii £i)=P[/ml {G_I(Q—E*)S 0}]
i
where
.a_j=a(i)j=a_j'_@;ra_j)7-a_i
v =oh=u*—(@fu*)a,
are the projections of g; and u* onto the plane

orthogonal to a ; and since further due to assumption
(AS) there is

k
*
v =) v,
J=1
J#*i

Ruben’s asymptotic formula for the multidimensional




normal integral can be written as:'°

¢k—1(£f;£)
k k
= (det(K )" [\/Z 5 w(v}‘)} [T(=yp7!
s=1 j=1
J#i
Furthermore, there is
B+ Z ©}) )+ (@) o= ) *
s=1
or
k l k
o(B) ] 0= o [T o),

and, consequently:

@(Bipr-1(cs K))
k k
=(det &N [T o) [T(=yp~"

s=1 j=1
J#i

Together with equation (7) this yields finally:

~7sl-—ll‘p(u iel
k
{(—g_,?gu_*)(det(__&)”zn(—m“} (8)

j=i
J#1

It can furthermore be shown that if the second part of
assumption (A2) is not fulfilled, i.e., there is g,(v*)> 0 for
some indices i in equation (1), then, these failure domains
can be neglected asymptotically in equation (1).

In applications, the first-order version obtained by
setting d=1 might also provide sufficient numerical
accuracy. Then, an important result which presumably
holds quite generally is that asymptotically the
dependence of the expectation term in equation (2) can be
reduced to a dependence on the Beta-point and the
surface integration in equation (2) can be carried out for
linear approximations of the failure surfaces in the Beta-
point. The Beta-point must be found by a suitable
optimization procedure®. It should be emphasized that
the specific reasoning presented beflore does not apply to
simple surfaces (k=1) as treated in Ref. 11 since

a [(Ru *)=0 in this case.
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Potential applications of these results are, for example,
for redundant structural systems with brmle components
and where, at a single ‘load wave’ more than one such
components can fail.
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