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1. Introduction

In many cases the resistance properties of structural systems as
well as the loads acting on the structure depend on time. If the
loads can be modelled by stationary processes and the resistances
are time-invariant the determination of the time-dependent reliabi-
lity essentially is a prdblem of load combination for which a
number of solution procedures exists applicable not only to struc-
tural components but also to entire structural systems. (See refe—
rences [1,2,3] as ' representative for the different approaches and
(4] as an example for the treatment of structural systems). The
only method capable to handle instationary loading with some rigour
appears to be the outcrossing approach [5] and the same is true for
cases where resistances deteriorate with time e.g. due to load-in-
duced fatigue, corrosion or aging. This has been demonstrated in
{6] and elsewhere for structural components. If, however, deterio-
ration occurs in a (redundant) structural system a reliability

analysis meets serious complications because structurasl failure




most likely is the result of a sequence of componental failures at
different random times each of which changing the stress regime in
the structure. Failure phenomena of this type will especially be
found in certain types of railway bridges, aircraft structures and
in many maritime structures such as ships or offshore platforms.
The quantification of the time-dependent reliability is not only
the basis for a proper design of such structures but, probably more
important, allows the selection of suitable inspection strategies

and rational decisions about necessity and time of repairs.

The only studies known to the authors which have addressed this
problem so far are due to Martindale/Wirsching [7] and to Rackwitz
[8]. The first mentioned reference assumes the distribution of
times between componental failures as known but depending on the
system states., Reliabilities are determined by the Monte-Carlo-

methods.

In this study the widely analytical outcrossing approach proposed
in {91 for the determination of time-variant structural reliability
under stationary 1oéding and non-deteriorating structural resistan-
ces 1is generalised to fatigue~induced deterioration of structural
components.Furthermore, formulations are sought such that reliabi-
lity calculations can be performed with modern first- and second-
order reliability methods. This might enable the analysis of larger
systems with many uncertain variables. The formulations are demon-

strated at a simple example.




2. Reliability of structural components

Assume a statically reacting, linear-elastic and redundant structu-
ral system subject to loads modelled as piecewise stationary (and
ergodic) Gaussian vector processes L(r). Further, suppose that
failure can occur in a finite number of preselected control points
(hot spots) which will he denoted by elements or components of the
structure. For these components it is always possible to derive the
load effect process which, here, is assumed to be a scalar process,

i Li(r), and whose mean and covariance function

i.e. Sj(r} = ? a
i
are easily determined from the properties of L(r). Component
failure occurs whenever Sj(r) exceeds some resistance (residual
strength) Rj(r) for the first time. Componental failure or state
changes are understood as a discontinuous change (decrease) in
stiffness at that time causing a more or less abrupt redistribution
of internal forces in the system in some manner. For simplifica-
tion, only perfectly brittle elemental failures will be considered.
In practical applications one might wish to model the rupture phe-
nomenon more realistically, e.g. by retaining some fraction of the

original stiffness. The considerations to come also hold in this

case with some minor modifications.

The resistances Rj(r) depend on a time-invariant vector of uncer-
tain parameters such as initial strength Rj(o) and parameters de-
termining the strength degradation. These are collected in the unm-

certain vector @ with given distribution function FQ {q). For the

moment, Q will be kept fixed and, therefore, the considerations in

this section are conditional on @ = d. In order to determine the




failure probability one needs to know the distribution of the time
to failure which, unfortunately, can only be given exactly under
very special conditions for the process Sj(r) and functions Rj(r).
However, a rather general asymptotic formula for the failure proba-—

bility or the distribution of time to failure under the conditions

mentioned is:

L

Pf,j =P (Tj < t) = F&j{t) ~1-exp [- g uj(r) dr] (1)

Herein, uj(r) is the upcrossing rate defined by:

P({Sj(r) < RJ.(T)} 0 (SJ.(T + 4d) > RJ.(T + 4d)})

v.(r) = lim
J 40 4a

Eq. (1) is valid provided that vj(r) exists. For example, it exists
for Gaussian processes with continuous, differentiable sample
paths. In principle, the residual strength is also a non-stationary
process depending on the load effect process. For high oycle
fatigue, however, one can assume that asymptotically (large r) the
pProcesses Rj(r) not only become uncorrelated with the processes
Sj(r) but also have vanishing coefficient of variation {6)]. Under
the same conditions it can be assumed that Rj(r) are sufficiently
smooth functions with existing derivative. Then, with Rj(r) being
approximately a deterministic function the following formula for

vj(r) can be derived [10] (the reference to r now being ommitted)

vj = woP(r) ?(f/wo) (3)

where r = (R - ms)/as, t is the time derivative of r, wg the




variance of the derivative of the normalized load effect process

g = (8 - ms)/ o and ¥(x) = P(x) - x¢(-x).
The residual strength function typically has the form

R(r) = K, (1 - K uOE[ASA]r)B (4)

1 2

where the constants can have concrete physical meaning. Assume, for

example, the crack propagation law due to Paris/Erdogan {11}
da _ "
g - Cla8ima) (3)

with a the crack length, 4S the effective stress-range and C and m
two material parameters. The crack becomes unstable for

K = Jmas » Kc with Ké the fracture toughness.

1/2

Then, it can be shown that for m > 2, Kl = Ké (nao)— ,
K2 = C ﬂm/Zao (m - 2)2/4, A=m, B= (m- 2)_1. v, is the rate of

positive zero crossings of s(7). For =a sufficiently narrow-band

process s(7) it is finally E [45] = (2JE)AaSAr(1 + A/2) 110,121.

The integral in eq.(1l) of the outcrossing rate eq. (3} with thre-
shold function eq. (4) can be approximated fairly well for suffi-
ciently large thresholds r(t) by using the method of Laplace. Fol-
lowing [13] where the application of this method to fatigue relia-

bility problems is investigated in some detail, one obtains

y h(t)
I(t) = [ v(r) dr ~ exp [f{t)][1 - exp [- tf'(t}]] (6)
o fr{t)




with

L™ ] .
h(t) = 2 ¢ (28, (7
175 “s
£it) = - L r2e) (8)
2
£(8) = = r(t) B(t) (9)

Eg. (6) can be improved further (See [131).

The total failure probability with the paramters @ = g now being

random 1is:

P, . (t) ~1 - exp [-I . {t | 10
£,5 (V) [ =P 1(t|2)1dR (10)
A serious obstacle in applications can be the multidimensional in-—
tegration required in eq. (10). It is, however, possible to refor-
mulate the reliability problem such that modern first- and second -

order reliability methods become applicable [14]. Introducing the

auxiliary standard normal variable as [8]

P(T;(a) ¢ t) =1 - exp [-I (t]|a}] = P(UTJ < u (11)

we find that by‘solving for Tj(g)

Y ioIn ¢ (-Up ) gl (12)

T. = I.
J(g) IJ ;




the Rosenblatt-transformation (15] in the required formulation:
Pf.j(tlg) = P(Tj(g) -t ¢ o) (13)

The total failure probability can be given as

(-P
H

P(T,(T(U) - t < o) (14)

£, 3¢

with @

it

I(QQ) the Rosenblatt-transformation of Q. Then, for small

failure probabilities an accurate probability estimate is [14]

n
j -1/2

Pf’j(t) ~ ¢(-p)'¥ (1 - xia) (15}
izl

where

* . b3
B =gl =min {Hu 1} for {u: g{u) ¢ o) ' {16)
the Ri's the main curvatures in g*, 6 = ¢/(-p) / ¢/(-p) and

g/(u) ¢ o the event in the left-hand side of eq. (14). The inver-
sion of the integral Ij(t) in eq. (12) is best made by Newton's
algorithm:

(K)) 4 1n o0y

(k)
)j )

I.{T.(q)
Jd d - (17)

(@ ) = i@ ™ -
Uj(Tj(g

Formula (3) has been found to be rather conservative for not too
large values of r(t) especially for narrow band processes such asg

wave loading processes and the consideration of crossings of the




envelope process E(r) of S(r) may yield better results. In this

case, eq. (3} has to be modified into [12]:

vy = g fRay(r) P (f/uE) (18)

. 2 2 -1/2.2
with wg = W (1- (A1(AOA2} )

Rayleigh-density. An even better result is obtained by using the

_ 2
) and fRay(r) = r exp [-r7/2] the
interpolation between eq. (3) end eq. (18) proposed in [16]
vy = vy [1 - exp [- v,a/vyll {19)

The conditions for the validity of the approximation eq. (5) are
still fulfilled but eq. (7) is replaced by:
W

h(t) = _©

?(f(tjfwo) {1 - exp I- vz/ulll | ' {20)

w_P(r{t)/w._)
uz/v1 = E E r{t) : (21)

wo?(f(t)/wo)

Formula (18) should be used in practical applications, not only
because it gives more accurate results for a -larger range of
thresholds and bandwidth parameters & = A (a_3,) /% with »; the
i-th spectral moment of S{r) but is alsoc more consistent with the

basic Poissonian assumptions underlying eq. (4).




3. System reliability

Consider now system failure which in redundant structures requires
several components to fail simultanecusly or in a sequence. In
general, many different sets of componental failures exist which
imply system failure. Consider, for the moment, a certain set or
failure path v consisting of N = N{v) components. Further analysis
now must distinguish between different cases. Here, only several
limiting cases will be investigated in more detail. Assume that
during a "local” extreme of the loading process there is a brittle
componental failure as discussed in the foregoing section. Internal
forces will then be redistributed. The load effect in another com—
ponent  will perform a damped oscillation around the statically re-
distributed load effect. Two extreme cases can be visualized. If
there is small damping and a relatively large eigenfrequency of the
oscillations the additional, dynamic load-effect after brittle
failure of some component can reach at most twice the difference
between the static load-effect before and after the failure {case
A). The other extreme is where redistribution corresponds to the
case of critical (over) damping. The redistribution follows a nega-
tive exponential function (case B). No.dynamic overshoo?ing occurs.
Unfortunately,r the dynamic effects in rupture phenomena have found
very little attention in the literature and it is hard to say which
of the two limiting cases is closer to reality in a gpecific appli-
cation. The authors are inclined to presume that case B is more

representative for real failure phenomena in many cases.

Furthermore, we need to consider two other extreme cases defined by

two limits of the ratio TR of (almost perfect) load-effect




redistribution time and the predominant period T0 of the load
process . The case where redistribution of forces takes a time much
shorter than T0 is denoted by case I. For case II, on the other
hand, the time required to redistribute the forces is much larger
than T0 (See figure 1). During a "local" extreme of the load
multiple failures can occur. It is even possible that all
components in a failure path fail simultaneously thus causing
immediate system col-lapse. An example of the failure tree is given
in figure 2. In case I there is ’'immediate' load redistribution
during one local extreme of the loading process while there is

virtually none in case II in this period.

If now partial failure occurs along the failure path at the diffe-
rent failure times it is clear that the time to system collapse is
the sum of the times between those partial failures. For non-dete-

riorating structures, we simply have [9]:

N{v)
Pf,u(T) =P (iil Ti(g) -T < 0) (22)

Herein, T is some prespecified service time of the structure. For
the moment, it is assumed for simplicity of notation that only. one
component fails at the time instants of abrupt changes in the

system.

For deteriorating structures the problem is somewhat more complex.
The second failure time now must depend in the first failure time
since the latter determines the two damage accumulation regimes to

be considered when computing the second failure time. And the

10




third, forth, ... failure times analogously depend on all previous

failure times, respectively. Hence, a possible formulation is:

N{wv)
Pp (T) = P (151 T Ty ooy T,_;) =T < 0) (23)

A crucial assumption when proceeding further is that the various
failure times are conditionally independent. In addition they are
exponentially distributed according to eq. (1). This requires that
even the failure events at the end of a failure path are rare
events and, hence, the Poissonian character of the crossing events
can be maintained. From a physical point of view this assumption
also implies that after each componental failure the load effect
process has a "restart” from the intersection of the safe domains
of all still unfailed components. Then, in generalising the
approach for component failure as in egs. (10) to {16) the fol-

lowing transformation appears natural:

T
1-exp (- f o (r]aldrl = ¢ (U, )
o) 1
T, _ _
1-exp - [ uirla, U, ..., Up, dr)'= (U, )
o] 1 i-1 i
T
N(v)
1 ~exp [~ v {(rjg, U, , ..., U drl = {U )
g Nw) Ty TNw)-1 ¢ T

(24)

Thus, estimates of path failure probabilities can be cbtained by

egs (15) and (16), too.
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Finally, if the parameter Q = g is uncertain and there are M pos-
sible paths to system failure the overall failure probability is

the probability of the union of the path failure events

M M
P.(T}) =P(UF ) =Pl U f T.(gIT 1Toseeaa) = T < 0} dF.) (25)
f v=1 ¥ v=1 Q ieN(v) 17"2 Q
M
=P(U {z TTU)|T ...)—TgO})
v=1 ieN{w) RTe
This probability can be bounded according to [17}:
m
f < P(Fl) + (P(F ) — max {P(F n F ")
v=2 MY
Pf(T)l m (26)
> P(Fl) + Z (P(F ) - Z P(F n F ¥)
v=2 [I2eY)

The consideration of multiple failures which drastically can reduce
the redundancy in a system requires a clear distinction between
case I and II. In the latter case the formulations given before
carry over with the only modification that now the crossings into
intersections of componental failure domains have to be considered.
For case I with or without dynamic overshooting the calculation of
the failure times is more complicated. Due to the normally diffe-
rent Joad redistribution regimes once the resistance level of a
certain component is exceeded, one needs to consider all possible
permutations in the set of remaining components for multiple
failure. In order to illustrate the basic aspects assume that the
set consists of only two elements. Once the level of the first
component expe-riences a crossing two «cases «can ocour.

Redistribution of internal forces either causes the level of the

12




second component being crossed by the load effect process during
redistribution or leads to a new (reduced) resistance level for the
second component. In the first case the crossing rate is the
crossing rate of component 1 before load redistribution. In the
second case the crossing rate corresponds to the crossings of
component 2 after load redistribu-tion immediately after a crossing
of level 1. Moreover, the cros-sing rate for component 1 alone
needs to be computed under the condition that the process enters
the failure domain of component 1 but not of component 2. Neither
this last crossing rate nor the first one can be determined
exactly. However, certain asymptotic results are available which
are summarized in {21]. In particular, it is shown that for high
levels ry the sample path of the process after an upcrossing is a
parabola whose peak is exponentially dis-tributed. This leads to

the approximate conditional rates:

_ 2
lenﬁz = uR1 P(S.m < Rl) uRlil - expl - (rlr2 - r1]] {27)

A
1]

_ 2
Yo P(Sm > Rz) = vn expl -~ (rlr2 - rl)] (28)

172 1 1

Unfortunately, these approximations appear to -be good only for

rather high levels ry and Lo

If, on the other hand, the first case is present eq. (22) or (23),
i.e. where the failure time to collaps is the sum of the failure
times of the -components, are no more valid. An exact analysis of
this situation appears very cumbersome but possible. Here, we pro-

pose an approximation. The sums in egs. (22) or (23) are truncated

13
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as soon as the crossing rate or even the probability of first pas-
sage of the next component would become smaller than for the pre-
vious one all evaluated at the g-point. In this case one does need
not to investigate further multiple failures from the remaining set

of components in the failure path.

In general, there exist a very large number of paths to system

failuré. In practical computation it will, therefore, be necessary
to limit the analysis to only a few failure paths which prefereably
are the dominant {most likely) ones. They can be found by appro-
priate search algorithms. Suitable algorithms have been proposed by
several authors [18,19,20] for time-invariant structural system
reliability analyses. The one proposed in [20] which has been
adapted to time-variant reliability in [9] might also be used here
although it still is considered to be suboptimal.The algorithm can
be described as follows. Let there be a set of M = (1, 2, P
failure events a finite number of subsets of which leads to system
failure. For the intact structure all componental failure probabi-
lities are computed. Each component is the starting point of =a
time-variant failure tree. The component with largest failure pro-
bability, then, is transferred into a failed state which implies an
updating of the stiffness matrix of the system. It is now necessary
in case II to check whether after load redistribution there is no
component whose failure is implied by the failure of the first com-
ponent., If there are any those have also to be transferred into a
failure state. If this is true for all remaining components in the
failure path the search is terminated because a path to failure is
found. Otherwise, in order to find the next most likely state

change in the system the probabilities of Jjoint occurence of the

14




first state change event and the possible consecutive events are
computed. If one of these joint probabilities is larger than the
previously calculated probabilities the corresponding component is
transferred into a failure state. A second updating of the
stiffness matrix is performed. At this stage we again need to check
the likelihood of multiple failure by use of formula (28) and its
generalisations followed by a check of presence of redundaney in
the system. The algorithm, then, continues with either two
simultaneous and one consecutive or three consecutive failure
events involved. If, however, smaller probabilities have been
calculated previously, the procedure continues at those components
after having restored the system properties back to the degradation
state of interest. Eventually, a sequence failure event will be
found. Its occurence probability is the joint probability of all
events in the sequence which is also the largest probability
computed up to now, This terminates the algorithm. A lower bound
for the system failure probability, then, is the probability of the
union of all complete failure sequences. The lower bound in eq.
(26) applies. An upper bound is the probability of the union of all
complete and incomplete failure sequences for which the upper

bound in eq. (26) should be used. In order to improve these bounds,
one might include the next most likely failure paths which can be
obtained in an analogous manner. This technique to produce strict
probability bounds by a combination of an optimal search for
dominant complete and of further incomplete failure paths and of
eq. (26) facilitates the analysis of larger systems very much. For

real structures such as offshore platforms the choice of the

particular search algorithm appears to be only a secondary ‘problem

15




because the various proposed algorithms essentially lead to the

same results.

4. Numerical example

As in (7] and [8} we shall investigate in more detail one of the
mechanically simplest redundant systems shown in figure 3. This
so~called Daniels-System (after Daniels who first studied its
reliability in (22]1) has n physical components whose stochastic
properties all have the same distribution function. If a component
fails its load is distributed equally among the remaining compo-
nents. These assumptions enable not only a number of simplifica~-
tions in the formulation but circumvent the problem of considering
a large number of failure paths. We shall especially use certain
results presented in [23] for the time-invariant case. Yet, we ocan

illustrate all relevant aspects outlined before.

We adapt the following fatigue deterioration model which is some—
what simpler than the one associated with eq. (5) (See, for
example, [24]1). It is assumed that the decrement of residual
strength is proportional to some function of the stress range A4S
and inversely proportional to some power of the actual strength,

i.e. the governing differential equation is [25]:

de(r) ) m=1 . : : ‘
— = - h{48.)/(m R.(r)) (29)
dr J J
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Using the usual S-N-curve information in the form KNSb = 1 for a

narrow-band Gaussian load effect process leads to (see also eq.

(4)) 123]:

b

2 r1+ b/2) uor)llm (30)

b
R.(r) =R.(0) { 1 -k (A2
J J j

R (o)
J

This is a monotonically decreasing function for any positive m.
Assume further that the only uncertain variable is the initial
strength R{c) which is normally distributed with mean E[R(c)] and
standard deviation DI[R(o)]. Alternatively, the parameters K, b, and
m can be introduced as random variables, but must not depend on j
in order to render the special formulation possible. There are good
reasons for a non-negligible inter-element correlation. Therefore,
for iﬁitial strength values which are positively and equally corre-
lated one has the following representation (Rosenblatt-transfor-

mation)} for the various Rj(o)’s:
RJ(O) = E{R(o)]1 + D(R{o)] (UO g + Uj JI59), j =1, ..., n {31)

In order to establish the sequence of element failures, we need the
order statistiés bf‘(Rl(r), Rz(r), ey Rn(r}).‘ Since the para-
meters in the second factor in eq. (28) are assumed constant, the
order statistics ﬁl(r) < ﬁztr) $eonX ﬁn(r) can be derived from the
order statistics of the Rj(o)'s. In [24] it is shown that the order
statistics of a vector of independent standard normal variables

have Rosenblatt-transformation:
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H

_ -1 1/n
U= ¢ - ¢(-up /™
(32)
~ g J 1/(n-k+1)
Uy = 97 - T g ]
k=1
Therefore,
Ry(0) = EIR(0}] + DIR(0)1(U, {7 + U, {T5) (33)

-~

with Uj as given in eq. (32). Eq. (33) inserted in the correspon-—

ding eq. (30) yields the required order statistics Rj(r).

The numerical calculations to be discussed are performed with the

following set of data:

S(r} ~ N (0.5, 0.1),

Rj(o) ~ N (0.8, 0.2},

n =4,

g = 0.3,

v =1,
o

T = 106

m = 10—2

Furthermore, formula (3) is used throughout instead of the presu-

meably better formula (18).

At first, the case of time-invariant elemental resistance is inves-
tigated by setting m - o, Case IB, that is (immediate) load redis-

tribution without dynamic overshooting is calculated as follows.

18
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The extreme value distribution of the load is:

L S(x) = exp [-v(x) TI {34)

{0,T]
which easily is transformed by:

-1 1
s =u [- T In 4’“’3’] (35)

The system failure probability must be determined from [24):

n A n A~
Pf(T) =P (jgl {{n-3+1) Rj (o) - smax <) =P (jgl F.) (36)

The numerical calculations yield the following results in terms of
the equivalent or generalized safety index g8 = - ¢_1 [P(.}]. The

individual event and intersection safety indices are:

B (ﬁl) =2.22 ; B (El) = 2.22 ;

B (Fz) =2.71 ; 8 (F1 N Fz) = 2.81;
B (F3) =2.25,; 8 (F1 N F2 n F3) = 2.97 ;
B (F4) =-0.,35 ; B (F1 n F2 N F3 n F4 ) = 2.97 ;

Table 1: Safety indices (Case IB)

It is obvious from the individual safety indices and from the in-

crements in the system safety indices that the second "component”
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dominates the system. If this fails there is only a slight increase
in reliability. And given that the third component fails, there is
a probability of larger than 0.5 that the forth component will also
fail due to the significant effect of load redistribution. Note
that this formulation does not contain any information about the
times of failure. In particular, there is no information whether
the component I failed some time before 5 or both components failed

simultaneously in a single "load wave".

For this case, we also study dynamic overshooting {(case TA). Let
J-1 components already be broken. An upper bound to the additional
dynamic load for component j ta break is Rj—l' Therefore, after

some rearrangements, eq.(34) is modified to:

n
Pf(T) =P { n

((n-j+1) R, - R,
o (n-j+1) J(0) 5

n .
1(0) T Sk $ON =P 2 F.)

The numerical results for case IA are:

B (Fi) 2.22 ; B (FI) = 2.22 ;

11

[xe]
M
<

B (Fz) 1.79 ; g8 (F1 n Fz)

B (F3) -0.51 ; g (F1 n F2 n Fa) = 2.65 ;

-3.22 ; p (F, nF,

B (F4)
Table 2: Safety indices (Case IA)
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As expected, the order statistics safety indices now decrease sub-
stantially. The effect of redundancy is moderate after failure of
the weakest component. Therefore, significant dynamic effects, if
present, require sperial consideration in applications. They are

neglected in the following.

Next, we study the case that during a "wave" there ig essentially
no load redistribution and no dynamic overshooting (case IIB). The
resistances are still time-~invariant. The corresponding numerical
caleulations are shown in figure 4. In this case, all possible
failure paths are investigated. Two safety indices are given for
each mode in the failure tree of figure 4. The upper value corres-
ponds to the first-order reliability method, i.e. to d{~ p). The
lower value corresponds to eq. (15), i.e. to the more accurate
(asymptotic) second-order result. The equivalent safety index is
defined as before. It is seen that the second-order corrections are
significant in this example. The Rosenblatt-transformation for the
order statistics of the Rj(o)’s has been given recursively in
"ascending" order. An equivalent transformation can also be given
in descending order. In {26] it is demonstrated that the numerical
results of FORM or SORM can also depend on the special type of
Rosenblatt-~transformation. The first event, therefore, is computed
with both the ascending {arrow indicating upwards) and the descen-
ding (arrow indicating downwards) transformation. Comparison of the
two sets of results shows that the first-order results can differ
by a certain amount whereas the second~order results are suffi-
ciently stable. That this is so can also be taken as a verification
of the high numerical accuracy of SORM. In all subsequent figures

only the SORM-results are given. The system safety indices along a
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failure path must increase. But from figure 4 it is evident that
after seperate or joint failure of the two weakest elements in the
structure little extra reliability is gained when the last two
elements are also included in the analysis. This corresponds to the
earlier findings. An interesting piece of information about the
system behavior is also the (most likely) fraction of time spent. in
each system state indicated in the last column in figure 4. For
example, for the first failure sequence we see that it takes 27 %
of the sequence life to failure of the first component, another
59 % to the second component failure and 14 % to the third
component. failure which is immediately followed by failure of the
last. component. In the second critical fifth failure sequence 99 %
of the sequence life is spent without any failure but sequence
failure occurs shortly after Jjoint failure of the first two
components. Comparison of the system B’s corresponding to case I
and case II wverifies that case II has higher reliability as it
‘should be, although the difference is not very large in this

example.

A similar figure 5 has been produced for components subject to
fatigue, i.e. by applying eq.(23) and eq.{28) with the given para-
meters. Only case IIB is treated. The beta values now aré substant-
ially smaller. 1In addition, the ordering of the failure sequences
according to their system safety index is different from that in
figure 4. As expected, the sequences now spend more time of their

total life time in the earlier degradation states.

Finally, we return to the frequently more realistic case of imme-

diate load redistribution but without dynamic overshooting in order
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to investigate structural degradation in time (case IB). The
algorithm described at the end of the foregoing section is applied.

The failure sequences computed by the algorithm are shown in figure

~

6. At first, component 1 is transferred into a failure state after

some time TI' Next, component 2 is transferred into a failure state

at time T} + TZ' At this stage the redistribution of forces reveals
that failure of 5 is most likely followed by failure of 5 and 1.
Hence, the sequence is truncated at this point. Investigation of
multiple failure further shows that sequence "ﬁl n 52" is more
likely than sequence "%1 then %2". The sequence is not investigated

because the level of 3 almost coincides with the level of 1.

~ ~ ~

"F1 n F2 N F3". One concludes that for this system the dominant

~ -

sequence is "F1 n Fz". There will hardly be a chance for repair to
save the system once %1 or even El and Ez have failed. The overall
equivalent safety :index should be identical to the safety index
already computed for case IB. That this is true only approximately

must be attributed to the somewhat inconsistent computation of con-

cept for the event "F1 )l F2" when using eq. (28).

5. Summary and Conclusions

This study is directed towards the quantification of failure proba-
bilities of structural components and systems under time-variant
loading with and without fatigue induced strength deterioration, In
particular, the degradation behavior of redundant structural .
systems 1is investigated in order to be able to design proper in-
spection and repair strategies. The so-called outcrossing approach

is chosen and embedded in modern methods of numerical reliability
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analysis. Appropriate formulations are given which are numerically
feasible although sometimes laborous. The computation schemes are

espacially suited to highly reliable systems.

The study of time-variant system reliability at first requires a
realistic mechanical modelling in arder to take account of dynamic
effects and/or proper redistribution regimes for the internal
forces upon componental failure. As in time-invariant structural
reliability with brittle components the effect of structural redun-
dancy usually is moderate. Tt appears that except in highly redun-
dant structures there is little chance to repair one or more failed
components in time. Usually, the failure of those components alse
imply structural collapse. Therefore, observations of the degrada-
tion state of components and the entire structure are very impor-
tant. Several aspects of the theory and of modelling need to be

improved. The most important are:

i, Methods for multiple failure probabilities

ii. Search algorithms for dominant componental faijure se-
quences

iii. Incorporation of inspection observations

iv. Consideration of more realistic load models, e.g. by in-
troduction of stationary sequences of sea stgtes in ap-

Plications to offshore structures.
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Figure 1: Illustration of extreme cases
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Figure 4: Failure tree
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