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SUMMARY

The time-dependent failure probability of multicomponent
systems with time-invariant system properties under statio-
nary random loading is estimated in terms of the unconditio-
nal rate of failure resp. outcrossings. The system can have
operational as well as structural components. Gaussian shock,
rectangular wave and continuous processes are dealt with.

INTRODUCTION

The following upper bound and approximation (for small failure
probabilities) for the failure probability of general, non-

repairable, stationary systems is well-known:

P.(t) s PL(O)+E[N(£)] = P.(0)+vt (1)

(€

N(t) is the counting process of failure events in [O,t], v is
the so-called unconditional outcrossing (failure) rate which

can be given as

v = lim 1 P ({S(t)=1}n{S(t+4)=0}) (2)
A-0 A
if s(t) is the system's state function possessing a value of
1 if it is in a safe state and zero otherwise. If the failure
event can be expressed as the exit of a vector process X(t)

into the failure domain V one may also define

v = lim + P ((X(t)€ VIn{X(t+a)E V}) (3)
A=-0 A

and as for the failure process in eq. (2)the process of exits
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an orderly point process. In this case, S(t) is unity LE

X(t) € V and zero otherwise. However, systems usually consist
of a number of "components" for which various combinations

of componential failure events form the different modes in
which a system can fail. The system failure event can always

be expressed as a (minimal) cut set of componential failure
events, i.e.
F=unF,, (4)
S
i3
Consequently, there are three basic problems in system relia-

bility that is the calculation of

£ the componential failure probabilities
(rates)

ii. the failure probability (rates) for inter-
sections of componential failure events

jii. the failure probabilities (rates) for unions
of individual or intersections of componential
failure events.

In the following, some results are given if the system con=
sists of non-structural components and of structural compo-
nents subjected to time-varying loads. Structural properties
and states are described in terms of a random vector process
¥(t) of input quantities (loads, stiffnesses, resistances)
some components of which can be time-invariant yielding the
componential output guantities X(t) (load effects, stresses,
etc.) Even if the input processes were independent the out-
put processes are not because they are related by (for li-

near structural behaviour):
X(t) = X(0)+H ¥i(x) (5)

or, more generally, for linear dynamic systems by:
A

X(t) = X(0)+J h(t-7) ¥(r)dr (6)
0

Even if it is sometimes possible and advisable to work in
the input space for formulation (5) this is generally impos=
Primary interest will therefore lie

sible for formulation (6).
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in a proper quantification of the dependencies thus intro-
duced. It will further be assumed that ¥ (t) or, slightly less
restrictive, X(t) are zero mean, unit variance Gaussian pro-
cesses (with respect to their amplitude distribution) and,

in this paper, failure events are independent of the state
of the system. Componential failure will be determined either
by a simple renewal point process (figure I a), so-called
marked shocks (figure I b) or marked renewal processes, rec-
tangular wave renewal processes where the mark now is a rec-
tangular wave (figure I c) or Gaussian processes with an
existing second derivative of their autocorrelation function
(figure I d). In figure 1 renewals are denoted by crosses,
failure events as circles. In the case of a multivariate re-
newal process, it is assumed that it is marginally and cross-—
wise orderly, i.e. the probability of more than one renewal
in one or more components of the process in a small time

interval is of negligible order.
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ZERO-TIME FAILURE PROBABILITY

By definition, components of type & Petdn S e

state at t=0 and,
no shock is present at that time.

as an assumption, for a type b. component
It follows that

(0) = P(X(0)€UNV, ) (1)

£ +J

where X(0) includes only processes of type c. and d. Solution
of eq —tT) is straight—forward if one uses the well-known

tech i es of t+he first -ordex :e]labll ity me nod [ Lo hes
gu : t S ese
- a3 ]

can be made asymptotically exact yielding (<!

13 =172
- A 1 - B
(0 ~Z o.cp (g5 By) 7 vj4) [det(I-By)
1, o8 T : C i
(8)

where I. is the subset of components in the i-th cut set for

which V, (X)AO' but .;x\=o at least for one j. If
£

x*. is the 301nt g-point, 1i.e. the point for which
"lj

g* =min{11x!11} for g ; (X)50} (9)
*13 LS 713
and § gy (]El.,J the line—fly independ;nt*gradients of the
= 1E }
fallure surfaces in x 5’ then, ¢ ={d;4X¥ lj’j“Iik"
=1 =,
2T & ; Yo X = : I={8_ ;pg€(IN ’
gi=‘9lggiq'?'q511k" L3 csR, s 2 pg PA =ik
. ag(x.)
Be=—0"% ¥ .gSTl ; pg € (IMN. )} and ¢, (2. c)=
= s 39X _0X g 1 ik k'=;
s€l. P g
i e 1iaTe1a)] ¢ i density.
(2n det (g)) /€ exp E—§\§ ¢ a)l the multinormal Y

This result can be improved [2,3] but also simplified on
various lines, for example, by omitting the correction terms
containing second order derivatives of the failure surfaces,
by approximating (linearizing) each failure surface at its
individual g-point and by sharpening the union operation
required in eq.(7) by replacing the simple sum of probabl-=

lities in eq.(8) by the bounds given in [(4].

STATIONARY OUTCROSSING RATES

Despite the suggestions made in (5] to use th

e so-called

point of maximum density of outcrossings as an approximation

point of an arbitrary failure surface, some s

sults and, stronger, a still limited set of asymptotic

as, for example, given in [6,7] let us presume that it

generally acceptable to use the f-point found

imulation re-

2]
©
w
[+
-

=
V1]

in the fore-

going section as a convenient approximation point for the

failure surface. As for the time-invariant case, the inclu-

sion of gquadratic terms might be necessary in

the sense of

asymptotically correct results. Yet, linear approximations

in the individual or joint B-points may be used for first-

order estimates and which are the subject of the following

E 5 > i -
JooEs Nir =y <0} = (0 X+g.. S0}
rs Ipg (%) Qg ETPpgRY

Let the linearizations of the failure surfaces be found
=

n

sk

independently with rate

wals implies that [5]

o
>
()
<
|
0
<
)

where X is the random vector at rest before a
. +
i-th component and 51 the vector after a jump

ponent. V is an arbitrary failure domain. The

is a direct consequence of the independence assumption

the renewals. It is seen that only domain integrals are

volved for which the results of the foregoing

m

. Assume furth

components of X(t) of type c. and the renewals occurring

‘1' Overall orderliness of the rene-

jump of the
of that com-

sum in eq. (10)

section can be

applied. If, in particular, V = {a x+BsO}, R the cross-
. P : BBl A e
correlation coefficient matrix of X and p.. ,=Corri(X.,X_ !
Ji,™ o
the serial correlation coefficients, we have (X € V;} =
T =3 o = T, 1 a4 5 - 5
{a"X 5-B} and {X, € V} = {a X, s-B} and, therefore [8
n} .
R B e :i[m(~bj—p?(~b,—b;:*1 (11)
i=1 i
; n ; -
’ % i = ‘ i o e £ x
with b=/ (a 35) and p =1—ui P GG o B L)/ (a"Ra) ¢ 'Further-
:]w] - -0 t® N 4

more, a parallel system experiences an outcro

the jump the vector X is in at least one safe
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domain but then jumps into the joint failure domain. It is
r J wi -
easily shown that V in eq. (10) must be replaced by ]\r with

v ={aTx - 5r>0? and, hence

T r=
n TER Yn(Xe(Q\nV )) ]
Rinvs) Wl e i Tt A SRR T
i=1 5 X
T A, (6 (~ciR.)-9, (-d,~d;B2)]  in which
= I \ll®m(‘c'§c) ng e
i=1
i Tk »T
c = {8 f(aTBa ]}/2:r=1,...,m?r g = el
= r r==
TR, 1/2 (4%Ra '/ 2) ;x,5=1, . ..m}
B~ (g Bag)/ ((z Bap) aglag * Jix ;
"
. (.E_'c ==
R.=
By i
Lge 5{:
; n i Lt /2 T 17y,
g e - “nt. | /(a_Ra ) (9 Ra,) &
R= {[a Ra, OLt,ij;1°‘rj{°J'L3' Pig,+) /e R, v tuz)

A non-redundant (series) system fails if a jumping component
of X enters any of the system component failure domains but,
before the jump was in the joint safe domain of all system

components. More generally, a cut set system fails if any of
its parallel systems experiences an outcrossing of X but the
jumping i-th component of X remains in the safe domain of at

least one system component in the other parallel systems. We

have
K n ¢ K
v(V) = T £ A, P(xgel) v )n U (xe?))
k=1 i=1 EM - e peEM . i
K n 5
§oF L A (Pixel)v) -
k=1 i=1 qeM, -
s TR
?tuiuemvhrg{ s 3y ¥)) :
j=1 geM, 3 T S A (13)
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The second term is a correction term and can be bounded by the
use of the results in [4].

It is now very easy to add processes of type b. According
to the independence assumption for the renewals the same for-
mulae apply with X as before but 51 the vector of rectangular
wave processes augmented by the i-th shock component. Remem-
ber, shock components have zero amplitude except during the
jump.

Furthermore, system components of type a. can be added.
The probabilities in square brackets in eqg. (10) must be set
as unity. The componential failure probability is bounded
from the above by Ait but more accurate values can be used
if their distribution of the time to failure is known. In this
case, system components can also be assumed repairable with
componential failure probabilities replaced by the correspon-
ding unavailabilities [9].

The consideration of processes of type d. is more in-
volved. The multivariate generalisation of Rice's formula

reads [10]

v(V) = [ E [-aT

(x)X|
-\

I

=x] o(x)ds(x) (14)

where o(x) is the unit normal of the failure surface g(x)=0

at x,9V the surface of V and ds(x) the surface element in x.
Without loss of generality, one can assume X(t) an independent
vector. Only if the expectation in eq. (14) is independent

of x,(implies independence of X and X), we have for

vV = faT§ + B 5 O} and H the failure half-space

\

v(V) = E {-gT

(E

] | w(x)ds(x) = E [ lo(B) (15)
3H *N

Otherwise the surface integral in eq. (14) appears in-
tractable analytically as well as numerically in spaces of
higher dimension.

However, as pointed out in [11], egqg.(15) is an upper
: .. 1 A 5
bound with E+‘_XN] = 7??.D[9 X] even for dependent vectors

3 and X. Moreover, it can be shown that under some not too

restrictive conditions and increasing B the integral (14) is
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dominated by the second factor in the integrand and here only

by the vicinity of the B-point. Therefore, eq.(15) can be modi-

fied to

vv) = Bl X |x"le(8) (16)
with : :

EL 20x'] = u${§)+c¢i§} (17)

s = El-a"%]x"] = - Bepx” (18)

g= VarE“ET; 5* o QTiégg_§§§£§L)§ (19)

In generalisation of the interpretation for Rice's formula,
i.e. that the outcrossing rate is the probability (per small
unit time) that the velocity XN is such to move X into the
failure domain given that X is on the failure surface times
the probability that it is on that surface, the outcrossing
rate for a parallel system is the probability of X being in
all failure domains except one where X is on its failure
surface times the probability that X moves into the respective
failure domain. Obviously, the various outcrossing events are
disjoint. Let 5* now be the joint B-point of V=nV.. It can then

be shown that, in first order approximation,

) (20)

wi E{
ith E L

s * 5 . 5
failure surfaces in x (can, zlternatively and approximately,

according to eq.(17), a, the gradients of the

be evaluated in the individual B-points)with safety indices

T = S T B e Al T
A — . =4 8 ={q" ¢ a.1°* 3 T =1 a,=-{a a, s S v O
B D ¢ 2 P 2 ey ) ioel) and B =la 0, ~{g g, )lg.a;/;
s,t*+i}.
The formulation can be extended to (minimal) cut set systems.

Egs. (14),(15) or (20} follows.The out-

crossing rate is the probability of moves of X into the

can be interpreted as

* Y '3 * . .
failure domain (conditioned on X=x ) in first approximation

times the probability that X is on the failure surface. This

~

last probability is non-zero because the set X € G with

G={g(X)=0} is non-empty except for some easily detected dege-

nerate cases. Therefore, short hand

the following cbvious

notation of eq. (16) is used.

v(V) = [% i

P (XEG)E_[

NI% ] (21)

In analogy to the jump process case a (minimal) cut set system
fails if X is in all failure domains of a cut except one where
it is on the failure surface and moves into the last failure
domain provided that it remains in at least one safe domain in
the other cuts.

Formally, one has:

K ;
viv) = = 5 P((xe6_)n ) (xev,)n (T )IB [k, o120 ]
k=1 geM i1eM j:‘] pPeEM . - e 7
k itk . J
i1xg J¥k p#*qg
(22)
The probabilities in eq. (22) can be expanded.
p((xec )n [ Nxev.)n ) U (xev ) =
= PEM s Ry o P
eM, = DEM .
ixg jxk p;qJ
Bl(XeG 10 f\(Levl)J =
9 ieM,
ixq
K
Pl ) eV )n(xes )
j=1 rEM.ka & &
j*k r=q
(23)

The computation of the last correction term can be quite in-
volved and may be simplified in practical applications.
It is now straight forward but rather lengthy to formulate

the outcrossing rate (unconditional failure rate) the

if

failure phenomenon (type a) is present as well as the load
effect processes of types b. to d. For a simple component

one has

n n
st

S Vi SEIRY
ofa B
gz

P( V) +

X i
3 o s Wi
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n
c
+i£ Ac ip({xb+ FV}H{Xb+c +€V})

+P (X (24)

Ld+c€G)E

N dl-d+c

with obvious reference to the uncertainty space by the in-
dices. It is clear that time-invariant components of dimen-
sion e simply increase the uncertainty space by e dimensions.

The analogous formulae for systems are not given here.
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