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A BOUND AND AN APPROXIMATION TO
THE MULTIVARIATE NORMAL DISTRIBUTION FUNCTION

M. HoHENBICHLER and R. RACKwITZ*

(Received Septmber 26, 1983 ; revised January 10, 1984)

Abstract. A lower bound for the multivariate normal distribution function is derived which
usually is applicable if no negative correlations are involved. Based on this bound an approxima-
tion is proposed which can be used for arbitrary correlations. Both the bound and the approxi-
mation are numerically feasible also for higher dimensions, The accuracy is tested in numerical

examples ; it appears sufficient for many applications.

1. Introduction. Let ¢=(¢y,...,c,) ER" andlet X =(X,,..., X,)
be a standard normal random vector with correlation matrix R = (pjj:1g1i,
j=n), ie.

E[X,-]:O,E'[XI?]ZI (lgign)
E[X; X;]=py (L, fsn)

The n-dimensional normal distribution function

& (c;R)=P[X <cl=P[ D {X;<¢1}]-= (1)
< £ <

-

=1-P[0 (X 5-¢}]

¥ =
=1

u

has important applications in statistics and recently also in the reliability theory of
structural or operational systems. There exist two important types of analytical
solutions. Plackett [12] derived a reduction formula which reduced (1) to the
evaluation of n(n — 1)/2 integrals over (n — 2 )-dimensional probabilities &, ,,
while Steck [13] and John [6] expressed ®
P

n 2 asum of n integrals over

n_1- The numerical effort of those methods increases rapidly with the dimension.
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Thus, they fail to be suitable computational tools for medium and large n (n > 5,
say ). The same observation also holds for direct numerical integration of eq. (1) ;
the published algorithms try to minimize the calculation time by means of effective
programming and sophisticated stopping rules (see [2], [10]). Other authors
expanded @, into a power series with respect to the correlation coefficients (see
[8], [9], [11]), but these series converge extremely slow or are even numerically
intractable unless dimension is low or correlations are small. Numerically feasible
solutions, as for example given by Dunnett and Sobel [3], exist only for some

special cases.

Therefore, approximations are highly desirable. The only one mentioned in [7 ],
which is due to Bacon [1], is restricted to orthant probabilities (¢ =0). In this
paper, a numerically feasible and generally applicable approximation is described,

which results from a modification of a lower bound of @, .

2. A Lower Bound for Positive Correlations
Firstly, the variables X,, ... X, are expressed as

X;

f= g X+, X, with

I

Py =P, = N }_pg Y =(X;—p; X1)In;
¥; is a standard normal variable. Without loss of generality, pzi < 1 can be assum-
ed, since else the variables X, and X; were identical. The covariance between X
and ¥; iscov(X,,Y;)=(p; — p;)/n; =0, and consequently X; and (Y,,

., ¥, ) are stochastically independent. Writing now @, asa conditional proba-
bility

7
P (eiR)=P[Xy ] XP[N (X}l {Xigal]=
1=2 i

=PIX, c,]XP{iz ¢y 11

and observing, that the variable X =®~' [®(c, ) ®(X,)] (P is the univariate
standardnormal distribution function) is also independent of (Y,,...,Y ), while

{p; X, +0;Y; 211 {X,

i

1A
A

n

its distribution equals the conditional distribution of X, given that X, < c,, one
obtains
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/- (4]
¢ s + D s . , D " f s,
P, (c;R) ‘I’f'frl)?"f-/'[!“2 {p; X7 +n, Y, <¢,}]
In order to define the bound, the event F; : = 'i:pl.X(; tn, Y!. < ¢; } is substituted

by a smaller event B; which is linear with respect to the independent standard normal
variables (X, ¥;)

B;={buX, +b,, Y, <d;} CF;

I
and has possibly large probability.
In particular, for p, > O the set ["?:= {(x,»):p; ! [®B(e, ) 2(x)]

+ 0y < ¢; } is concave. Consequently, denoting by u; = {uu, u;.,) the point on

the boundary of i-":.k which is closest to the origin, the gradient of the function

)

_fl-(x,_v) =0 Vd(e,) ®(x)] + n;y at the point u, by 7, =r7a‘x‘ T

X 2 2 ok
and by g; = (g;,. gw) o O Y 1/2 Ty Vi the set

By :={{x.y):¢

nkx=u, ) ¥ gi},(_r -u, )< 0}

iy’ i

has largest probability P [(X,, ¥,) € B? | among all linear subsets of F’;.’. This

implies

Bi=12; (X —uy, ) + £, (Y, —up )< 0} =
il wd
with V! il X + gfy Y; and dr. S8 Ut gl._y Uyes The random vector ¥ =
(V,,...,V, ) is again normally distributed with
E[V,]=0
E[Vi] =1
E[V,V;1=0;;:=2;. 8, *8.,8,(p;"p,0:)l(n; 1)

Provided that all p; 2 O(2 £ i g n), one obtains therefore
n n
® (c; R)=®(e,) P[0 F,] 2 (¢, )P[0 B,]=
=2 b I=2

= #(c,)®,_,(d; §)
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wiﬂ:d=(d,,...,d”)andS'—‘(a”. wergd, il igon) .

Recursive application of this procedure finally yields a product of univariate
normal probabilities, which is a lower bound to @, ifall the ” p:. s"" appearing in
the course of the algorithm remain non-negative.

3. An Approximation for the General Case

The derivation of the approximation is based on a heuristic argument but, never-
theless, the numerical results are surprisingly good. Replacing F; by a “possibly
similar™ event A4;, like the “equivalent halfspace™ proposed in [4 ]

A; = {“fle ta; Y; <e!.} , with

)
L e P[(X, t¢,, Y, +e,)EF;]__ =
|
Xl
=P [Fp] XE[Z,-I-QF,-] where Z;; =
' Y; for j=

I

for j

b

a:

: 2 in-113
TR {c:,.,i»a,.z) a;;

1
and e; = @~ (P[F;])

(E[ | ] being the conditional expectation ), which has the same probability as F;
and the same relative sensitivity with respect to small variations in the variables X,
and Y;, one obtains the approximation

n n
5 SAlEag Fil A =9 (e;T)

with e=(e2,._.,e")

and T = (a,-l a;, +a;, al-z(p,.j - ,ol.ij/(ninj) £.2

A

S,

1A
-

and finally

®,(c;R)=®(c,)®, ,(e; T).

- . . . . ’
This approximation is exact, if all P; s are zero. It becomes also exact in the
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limit p;* k(2 gign).
Recursive application of the last equation expresses @, again as a product of univari-
ate normal probabilities. Some further conceptual and computational details of the

“equivalent event” concept are discussed in [5].
4, Further Comments

1) The numerical effort primarily lies in the determination of uj, or e; and ay;
respectively. Since this must be performed for each event F; that occurs in the

course of the algorithm, the calculation time is roughly proportional to n{n—1)/2.

2) Both the bound and the approximation should depend on the ordering of the
X;- s. The influence of the ordering however was found to be insignificant in
numerical examples. The best results are usually obtained by conditioning out the
dominant variable JX; (withsmallest probability P [X; < ¢;]) ineach step of

the recursion.

3) A number of numerical examples have been performed to test the bound and the
approximation. Some typical results are shown in the tables 1 and 2 . In other
examples the accuracy as compared to the solution of Dunnett and Sobel ( see
introduction) was also agreeable. The results are not given in terms of probabili-
ties P, but in terms of the corresponding normal quantil § =&~ (P), which
behaves more regular with respect to variations of the c;-s and p;is. Table 1
compares the bound and the approximation with the exact solution ( obtained
with the Dunnett-Sobel method ) for equicorrelated X} s(p”- =i ] <n)
and equal c}s( ¢;=c, 1 £ig n). The first value in each group gives the

bound, the second one the approximation, while the third is the exact solution.

Table 2 deals with a Markovian chain

pi; = exp(—1log(2) |i—jl/L) (lgijgn)
Chilie e ¢l = ni
n = 50

>

L being the “correlation length”. Again, the first value in each group is the
bound, the second is the approximation, while the third value is the result of a
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simulation with 500000 runs.

-— 0 | o - o0 ol 1O

4) The accuracy of the method appears less satisfying in the case of extremely 'Hr i ':r. ':; {; r:; W@ ool -”r 22 ;7: ! ,G: ‘O_:: ‘é % é Er;
negatively correlated variables yielding very small probabilities. R e i il et e b R Ll AT O | b o e
5) The algorithm programmed in FORTRAN-4 computer code is available from the 5 | TPk = e I g ¥
”_, el ™ — - (o il o '_F_, < 0o o — — - oo
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