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ABSTRACT

The outcrossing rate for not necessarily
stationary, differentiable Gaussian vector pro-
cesses into intersections, unions or unions of
intersections of deterministically time-varying
linearly bounded failure domains is given on the
basis of the generalized Rice-formula. The ex-
pectation term in this formula is calculated
exactly or closely bounded. The remaining surface
integral is expressed in terms of the multi-normal
integral which can be determined numerically. The
formulae can also be used as approximations for
smooth non-linear failure boundariés which is
justified by reference to some recent results of
asymptotic analysis.

KEYWORDS

Gaussian processes; outcrossing rates; time-
variant failure domains; minimal cut sets; first-
order reliability

1. INTRODUCTION

The exact analysis of the reliability of structures under
time-variant multidimensional load processes with or without
dynamic effects requires the determination of the distribution
function of the time T to first failure. The failure probability
is Pf(t)=P(T;t),t;0. Unfortunately, no general solution exists
but the following well-known upper bound has been established [1]

o

Pf(t)LPf(0)+6v(T)dT (1)

where Pf(O) is the initial failure probability and v(t) the rate
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of exits of a mean-square differentiable vector process
3(1):(X1(r),xz(r),...,xn(r))T into the failure domain F(t) with
boundary 9F(t). Rather generally, F(1) is given by F(r)nUﬁFrs(T)
where FrS(T)={§:gr5(§,T)<O} and aFrS(r)={§:grs(§,r)=O} a determi-
nistic function of time t. Problems of this kind, for example,
are met in the analysis of multicomponent structures subjected

to random excitation with or without load-effect induced varia-
tion of F g(1T) with time (for example, due to damage accumula-

tion).

An exact evaluation of eq. (1) for arbitrary boundaries
BFrs(r) and processes X(t) still appears hopeless. However, P.(0)
as well as v (1) can be approximated or bounded rather efficient-
ly if X (1) is a Gaussian process whose autocorrelation functions

are twice differentiable at t=0 and F(t) consists of combinations

of intersections and unions of half spaces and the time-derivative

of g(x,t) exists on 3F(t). Without loss of generality the re-
quired first and second moments of the standardized process can,
for any arbitrary but fixed 1, be given as (reference to T now

being omitted),

E(X] = E[X] = 0
R=EXX]=1
R = E[X X'
R = E(% %)

and the individual failure domains are represented by

\ s 5 :
Fi(T] = {;:gi(§,T)<O;={§:~gi(r)§+ai(r)<03 (2)
with -g, (|la;ll=1) the vector of direction cosines of g, (x,7) on

3F; (1) and ei(r)=min{H§|Hgi(g,r)uo}the so-called safety-index.
The supposed existence of the time derivative of gi(ﬁ,:] here
implies that the time-derivatives of g, (1) and B, (r) exist. In
the following some results are derived utilizing the fact that
multinormal integrals can now be calculated with moderate effort
and high numerical accuracy [2]. The same method can be applied

to determine Pf(O).
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OUTCROSSING RATES OF GAUSSIAN VECTOR PROCESSES

2. OUTCROSSING RATES FOR INTERSECTIONS AND UNIONS

Let F=£%1Fi with 1sksn and the gi's,i=1,2,...,k be linearly
independent. Also,\Bi
not contained in any Fi(T).
formula [3] yields in noting that the normal vectors &; oOn each

(T)zaF(r)ﬂ{g:a?(r)§+ei(r)=0} do not depend on Y{=X

(1))>0 for all i meaning that the origin is
Application of the generalized Rice-

subsurface BFi

=1
k Te- . n + 2
ve= I [ E[{alk-(B- T a4 F|x=ylen(y)ds(¥) (3)
o N aal7s ® o
n

+ . :
where {a} =max{0,a},B;~ z a4 the change of Fi(T) during a small
A d

time-interval, wn(y) the density of X and ds (y) denotes surface
e standard results of normal dis-
ER given

integration over aFi. Using som
tribution theory [4] the conditional distribution of &
X=y is univariate normal with mean mi(Y)=§E§I and variance

°i=93(5_3 gT}gi. performance of the expectation operation in

eq. (3) results in

¥ia Sn. (v, ) = E[{a?i-(é.- 2 &..)}+]X=z]
> -5 3 b i 13 =
: a,-my (y) ; a;-m, (y)
= 00— )= ((a;-my (¥)) & 5y ) (4)

n
with éi=Bi- z &ij and ©(.) and ¢(.) the standard normal density
i=1

and distribution function, respectively. Eg. (3) is rewritten with

eq. (4) as

k
T e S | ‘?(éi.mi(y),Gi)wn(y)dS(y) (5)

i=1 aF,
-

where it is noted that the function ¥ also depends on Y. No gene-

ral solution appears possible for this integral.

A special case has already been pointed out in [1] when X

y does not depend on Y and,
Also, if X is stationary one
% and its derivate X are

and g are independent implying that
Iy ST

therefore, mi(yJ=O and oi=xi=gi§gi.

can make use of the fact that the scalar

uncorrelated. Since the conditional distribution of gzg given
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X=y is the same as the conditional distribution of a?x given

Qo
gf§§=g§§x a suitable coordinate rotation will always establish
the independence of gfg and gggg. Then, the expectation term in
eg. (3) can be separated as before and the variance of gfg be-

comes Ki=gfggi [5]. It follows that

Vy =

k
L
i=

?(aifO,xi) J mn(y)ds(y) (6)
1 oF .

o
For éi=0, it is simply W(O,O,Ki)=mi/{ff. The remaining surface
integrals can be solved by generalizing an argument in [5] and

[6] (compare also figure 1):

[oo= Jig. (y)dsiy) ©(By) by _q(b;iBy) = (7)
oF,
it
: = = s : :
with pi = (BS B gsgi,1sssk,s#1)
g T oy :
B, = (age, (2 2,)(a,a,);1ss,tsk;is, t+i)
and ¢0 =1

The outcrossing rate for a union of failure domains can also be

given following a completely analogous derivation:

k
in which
i = — -

with the same notation as before but now ¢O=O.

Figure 1: Intersecting failure domains
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In the general case, an upper bound can be derived by sub-

d stituting W{éi,mi(y),ci) by its maximum value for yeaF,. Since
it can be shown that w(éi,mi(zJ,oi) is monotonically increasing
with mi(y), it suffices to solve the following problem of linear

programming:
{_lf=9i(_)f)=0r1_f;)_gj (y)s0)
. 1¥]
m; (y;') = max(ajRy) for (10)

{y:9; (y)=on ) g. (y)>0}
g e e T i

The upper set of constraints is to be used for intersections
| while the lower set of constraints is for unions of failure do-

mains. One obtains

<
A
[ o By

g i o
l&'(ai,mi(yi'),oi)l"q “L)/

E i=1

| where q equals either n or u whichever case is of interest. It
should be noted that in contrast to [5], the function ¥ here is
bounded or approximated instead of the surface integral T in (7).

3. OUTCROSSINGS INTO (MINIMAL) CUT SETS

We now discuss the case of exits into unions of cut sets

m n, m
F = L) rf Fi' = L)C' (12)
e e Nl MR
i=1 ](1)—]1 i=1
with j(i}e{j1,...,ni}c{1,...,k} indicating those failure domains
! which occur in the i-th cut, i=1,...,m.

As pointed out in [6] an explicit expression for the cros-
sing rate can be obtained by using the method of exclusion and
inclusion, but the resulting formula is quite cumbersome. For
practical purposes suitable bounding techniques appear appropri-

ate. Observing that v, can be considered as a finite positive

¥
set function the bounds in [7] apply as well to crossing rates:
m m
: s v LA
max (v, } S Vg S Vp S Vg S i Ve (13)

i=1 i i




with
1 - +

v iy, T (v LN }

F Ci1=2 €1 jei CiNCy
and

Vu oy

ey el BV =maxt ¥ohe
. Ci im2 G4 jei CyNCy

The componential crossing rates Ve and Ve, e, San be calculated
i L=

by equations (6) or (11) with eq. (7).

4. THE NON-REGULAR CASE

Some degenerate cases can occur by weakening the assumptions
preceeding eqg. (3). Recall that under the assumption of linear in-
dependence of the gi's, k=1 corresponds to a simple halfspace
while k=n corresponds to an unrestricted cone in R®. Let ksn
and assume the vectors ayr i=1,...,k are linearly dependent. Then
the hyperplanes aFi do not intersect in an unique manner. A num-
ber of cases is possible. Figures 2.a-b show two possible ar-
rangements for k=n=3 each resulting in a redundancy of some of

the failure domains. In these cases the redundent components have

to be omitted and then the crossing rates are calculated as above.

rank (L) =1 rank (Z)=2 rank (L) =2
Figure 2: Linearly dependent failure surfaces

Another possibility is shown in figure 2.c where the first
failure component whose boundary is given by the plane E1 is
only of interest in the case of a union failure domain. In order
to calculate the surface integrals the equations of the straight

lines in which the planes intersect must be known. This example
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OUTCROSSING RATES OF GAUSSIAN VECTOR PROCESSES

also gives an idea for the other degenerate case, k»n, i.e. the
gi's always being dependent. The calculation of the surface in-
tegrals now requires the knowledge of the cuts of the individual
surfaces as the solution of a system of linear equations with
defective rank. In both cases the linear dependence of the gi's
results in a degenerate behaviour of the probability distribution

of the wvector X(t)n(g$§(t),...,gix(t))T, as can easily be seen by

inspection of the covariance matrix §=Cov(¥(t},2(t))=ﬂgfgj);
1, 9=1,+.5,K) which ig hot of full rank k, 1.a, rank (£}<k. The
non-regular case must be solved by individual inspection. No

simple general strategy appears available.

5. OUTCROSSING RATES FOR GENERAL NON-LINEAR FAILURE BOUNDARIES

If the componental failure surfaces are given in terms of
arbitrary smooth functions g,, exact results for the outcrossing
rates are rarely available. Recently, asymptotically exact appro-
ximations have been derived in [8] for k=1 and in [9] for 2<ksn

and intersection failure domains. In these papers it is shown
that the major contribution to the crossing rate is asymptotical-
ly given by the outcrossings near the (local or global) Beta-
points. (See [10] for precise definitions of local and global
Beta-points.) To gain asymptotic exactness, the estimates based
on linearisations as those obtained before must be corrected by
factors depending on the second derivatives of the failure sur-
faces at the global or local Beta-points. Except for the curva-
ture correction, the asymptotic results are similar to the result
(6) and coincide with eq. (6) for linear failure surfaces. The
asymptotic results thus justify an approximation for general out-
crossing rates by linearisation of arbitrary failure surfaces

at the global Beta-points for intersections of the contributing
failure domains in line of the discussions in [10]. With some
loss of accuracy local Beta-points may even be used for inter-
sections. Equally important is the result in [9] that the func-
tion ¥ as defined in eq.(4) asymptotically depends only on the
global Beta-point y* for which Gr=min{ﬂz|[| gﬁgrs{x)ﬁo} justify-
ing the approach leading to inequality (11) . Therefore, the re-
lation (11) becomes asymptotically correct if y' is replaced by
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Y . Furthermore, the asymptotic outcrossing rate of unions of

failure domains was proved to be just a limited sum of the cros=
sing rates, of the individual domains.(see (8] and [11]) which
might simplify the considerations in section 3. The material
given in sections 2 and 3 is considered as the time-variant equi-
valent to the first-order reliability concepts for time-invariant
problems as outlined in [2] and (9] with the exception that the
rigorous treatment of non-gaussian processes is far more complex
if possible at all.
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