Predictive distribution of strength under control
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The joint distribution of strength of materials is derived in terms of a set of conditional
distributions to be used in studies on structural reliability. Bayes theorem of probability
theory is used to update prior distributions for the parameters of Gaussian sequences by
direct observations and/or by compliance tests. Maximum-Likelihood estimators are given
for the efficient quantification of prior information. The formulae are applied to concrete
production judged by standard tests. It is shown that statistical uncertainties must not be

ignored in structural reliability studies.

INTRODUCTION

Studies for the reliability of structures require realistic
models for all relevant uncertain quantities. Only if a
complete set of models, compatible with the reliability
method and the mechanical context in which they are
to be used, is available sensible conclusions can be
drawn from such studies. The need for realistic and
operational models is particularly obvious in the area
of code making where, at present, serious attempts are
made to design a new generation of probability-based
structural codes. It appears, however, that still few
studies have been directed towards the elaboration of
suitable models for the strength of materials although
a vast number of statistical iivestigations exists for
various types of material and structural components
where data have been collected under various circum-
stances of production, sampling and testing. Those
generally resulted in an overall knowledge of the
distribution type which fits best to the observations and
about their distribution parameters the latter most
frequently being expressed in terms of means and
standard deviations. Many of them, however, failed to
recognise that in structural reliability it is necessary to
distinguish between two basic types of uncertainties
— the first which concerns the spatial (and, possibly,
time-dependent) variations of material properties in a
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given structure and which may be modelled by a
random field or just by an independent sequence with
given probability distribution and given distribution
parameters; and the second, which is essentially of
statistical nature and simply expresses the state of
ignorance about the actual distribution parameters,
again in terms of probability distributions. Quite
frequently, the latter type of uncertainty is the
dominating one and has important consequences not
only on the safety level but on the means and
methodology of assurance of structural reliability. The
mathematical concept in which both types of uncertain-
ties can consistently be treated is that of Bayesian
statistics as proposed by Veneziano [13]. Also, the
formulations are compatible with modern first-order
reliability methods [4] and, therefore, are amenable to
numerical treatment which was not feasible in previous
reliability methods.

Subsequently, a rather general model for the
distribution of the strength of materials including the
favourable effect of compliance control is proposed. It
rests on the following basic concept. Given a certain
economical climate of production of material,
e. g. concrete production in concrete factories in a
country under the regime of a certain technological
standard and pre-specified compliance rules, it is
assumed that a randomly selected structure is supplied
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by a randomly selected producer with material of a
certain grade chosen previously by the designer. The
material as delivered or produced at a given job is
assumed to form a stationary, independent Gaussian
sequence with fixed but previously unknown mean and
variance. The development of a suitable model then
generally requires the following steps:

(1) collection and modelling of prior information on
the statistical properties of production;

(i) updating of the prior information if direct
observations are available;

(iii) consideration of the filtering effect of potential
compliance tests;

(iv) evaluation of the predictive distribution of
strength at a given point in a given structure;

(v) if necessary, characterization of the joint distri-
bution of strength in different points within a structure.

Clearly, if one of the basic conditions is changed, the
whole modelling procedure must be repeated.

The perhaps most important decision which has been
made before is the assumption of a Gaussian
distribution. Of course, log-normal distributions or
other distributions derivable from the Gaussian
distribution by simple transformations then are also
included. In fact, the log-normal distribution is perhaps
the most realistic one for physical reasons (no negative
values). Further, it is positively skewed as is the
empirical distribution of most of the data on material
strength. A model from the Gaussian family should be
selected for various reasons. First of all, it can hardly
be rejected on statistical grounds for most types of
material, at least not with substantially more justification
than any other of the uni-modal distributions which
have been proposed. But it is by far the most developed
in a statistical sense as will be seen and, thus, has
enormous operational advantages. Furthermore, the
strength of material as modelled herein is the strength
of test specimen of well-defined shape, size and testing
procedure. The determination of the strength of cross-
sections or structural members, which is of only interest
in reliability studies, is still another step which may
distort the original distribution anyway but, again,
normal distributions facilitate many derivations. Prob-
lems of this type are discussed in a separate paper [5].
The selection of a model from the Gaussian family,
therefore, is to a large extent pragmatic. Nevertheless,
one has to keep in mind that reliability statements
always are conditioned on the set of stochastic models
used. (For a detailed discussion of the problem of
model selection in structural reliability the reader is
referred to reference [3]).

The paper first discusses the type of prior information
usually available. It then reviews briefly some classical
results of Bayesian statistics for normal variables
including the notion of a predictive distribution. The
results on the effect of compliance control to be derived
are believed novel. Some numerical results indicate the

~ influence of different states of statistical knowledge on
~ the predictive distribution of strength.

PRIOR INFORMATION ON MATERIALS' PRODUCTION

Figure 1 displays the observed means and standard
deviations of concrete of a given grade at a number of
jobs. Each point represents the statistics of a random
sample of at least 50 tests. Therefore, there is only a
small statistical error when interpreting the pair (x’, s")
as the true mean and the true standard deviation at that
job. The variations in those values rather reflect
different production strategies meaning that mean and
standard deviation are uncertain quantities as well. For
the data shown in figure 1 the specified strength
corresponds to the S5%-fractile of the individual
populations. The dashed line, therefore, separates those
pairs which, by definition, have sufficient quality from
those which are insufficient. The arrows indicate those
jobs where at least one negative control decision should
have been taken according to a certain compliance rule.
Finally, the dotted line is the line of linear regression
between s’ and x° demonstrating that inspite of the
definition of the specified strength as a 5%,-fractile
which demands for larger means with larger variability,
only weak correlation exists between standard deviations
and means. A more detailed discussion of the data
shown in figure 1 is given in [9].

A quantification of the prior knowledge on production
as given in figure 1 can best be made in the framework
of Bayesian statistics. For example, let f'(0) be the
prior probability density of an uncertain parameter
vector@= {0, O, ..., 6, }andL’ (4 (z)|8) the prob-
ability of an event A4 (z), defined in the ®&-space and
being a function of the observation vector
z={zy, 23, ..., Zm}, given @ =0. Then, Bayes theorem
states that the posterior probability density of ® is
given by:

f7(0|2) x L(A(2)|0) [ (0. (1)

In particular, if L(zl&) is the likelihood function of z
the usual form of Bayes theorem in statistics is obtained.
For normal sequences with parameter vec-
tor ®= {M, Z}, a natural choice of the distribution
type for the prior distribution then is the so-called
Normal-Gamma distribution whose probability density
is given by [12]:

fNr(}-‘, hif‘a S’a ﬂ’, V‘)
=fw(u|x’, hn') fr(h
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.2
i 2.7 (V2 W)

s, v)

where x” is the mean of an equivalent sample of size n’
and ¢’ is the standard deviation of an equivalent sample
of size v'+1. Note that the uncertain variability is
expressed by the precision h=1/g?. Equation (2) is
denoted by the natural conjugate of the likelihood
function of samples with respective sizes n’ and v +1
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Fig. 1. — Observed mean minus specified strength and standard deviation of standard cube strength of 88 production units of concrete grade B35

(Arrows indicate lots with at least one negative compliance decision).

taken from the same process. If direct observations of
the process are available with statistics (x, n, s, v), then,
the posterior density is of the same type as equation (2)
but with parameters given subsequently. Note that
information on p or h may be obtained from the same
(then, v=n—1), different or overlapping samples.
Furthermore, the two special cases of known precision
or known mean and the other respective parameter
unknown are determined by obvious limiting operations:

—.. %X n+xn

e 3)
n"=n'+n, 4
@ i e 2 2o Ean e

s -v"[v sS4+’ x4+ [vs* +nxt]—n" x"2, (5)
Vi=[V4am)]+[v+d(m)]—6(n) (6)

with:

0 for x=0,
1 for x>0

5(x)a{

It appears to be important to recognize the nature of
the prior distribution in our case. In contrast to the
statistical model which leads to formula (2) where,
starting from a non-informative prior distribution, two
samples are taken sequentially from the same population
to yield the density (2) with parameters (x*, n”, 5", v*),
the prior density with statistics (X", n’, &, v), again
starting from a non-informative prior, is evaluated from
a sample of pairs (x, s) each representing a different
population. We, thus, have to determine appropriate
estimators for the parameters of equation (2).

Unfortunately, simple moment estimators as given
in [12] are rather inefficient in a statistical sense so that
Maximum-Likelihood estimators have been derived in
the usual way [8]. With m;=x; and h;=1/s? and the
abbreviations:

1 k
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2 1k Bl
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one can show that:
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The determination of v’ requires the numerical solution
of equation (10). For sufficiently large v the Ilast
expansion can be truncated after the second term so
that approximately:

va(Inh—h)

As an example, the same data as for figure 1 are
evaluated by the Maximum-Likelihood method yielding
xi”,ﬂ‘i?.()ﬁ, n’hﬂ.: 137, 53‘1,"—"3.69, vj;,-_mlé? while the
moment estimators are: X3 =47.95, ny~0, sie=2.38,
var=1.535.

Clearly, if direct observations are available in a
particular case, e.g. by trial tests, formulae (3) to (6)
may be used to update the prior information. In fact,
the information collected in figure 1 may substantially
be improved by even small direct samples since, as
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indicated by the relative small prior sample weights »’
and v', prior information turns out to be rather vague
in this case.

PREDICTIVE DISTRIBUTION

Now, let the strength of material at pointi in
structure j be represented by:

XUEU,'EJ"FM‘; (11)

in which U, is an independent standard normal sequence,
X, the standard deviation and M; the mean of material
strength at job j (or, production unit, batch, structural
section or whatever unit might be chosen as appropriate).
It follows, that X;; has conditional distribution function
(the index j is now being dropped):

HH:(xlﬂa 5)=¢(%) (12)

while, from equation (2):

H, (a|s", v")
- ‘ 2 exp [ (1/2)v"(s"/1)*]
[(A/2)v (s"/t)* 1" * 12 ) dt
Sy { O 02v ey |

1 1
i e s Bl
=1—F; (23 s“la 2») (13)
with Fr (z[ﬂ:[;!‘(r‘)J- e 't' ! dt the incomplete
1]

Gamma-function.

Similarly, the conditional distribution of the mean is
given by:

Ha(|o, X%, 1) qb(y_?) (14)
0, x.n)= _
: cr{'\fr;';

The set of conditional distribution functions H,(.),
H;(.) and H;;,(.) completely defines the joint
distribution of the sequence of strengths X,
i=1, 2, ..., r within the chosen unit. Note that a rather
complex dependence structure exists between different
points i within the unit and which must not be ignored
in certain reliability applications. The information given
by equations (12) to (14) is also sufficient when applying
modern transformation techniques within first-order
reliability methods [4].

If interest lies only in the marginal distribution of X,
i=1,2, ..., rle g for reliability calculations of indivi-
dual cross-sections) and, consequently, stochastic
dependence between strength values at different points
in the structure has no significance, the conditioning of
the parameters (g, o) can be removed by integration,
ie:
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where T (.) is Student’s-t-distribution with f degrees
of freedom. Formula (16) is also denoted by the uni-
variate or marginal predictive distribution of indepen-
dent Gaussian sequences. For large v* the distribu-
tion (16) converges to the normal, i.e. the case of
known standard deviation s” — o.

EFFECT OF COMPLIANCE CONTROL

The information on the distribution of qualities
offered might be updated if either actual test data are
available or if it is certain that the production process
must pass known procedures of compliance testing. In
case of rejection, the lot covered by a compliance
decision will undergo further detailed investigation.
Therefore, it is no longer of interest.

Denote P (A |d (z), z, pu, o) the conditional probability
of an acceptance decision given a certain decision
rule d(z), the outcome z of a random sample and the
production process having mean g and standard
deviation o. As a function of u and ¢ this probability,
e.g L(u o), is widely known as the operation
characteristic of the “test” (d (2), z).

If f (u, o) is the probability density of qualities
offered, it is easy to see that:

* f (g, o) Ly, o)
f (#’ O’): + o + o0
j j f(u, 0) Ly, o)du do

L] D

(17)

is the probability density of those qualities (M =y,
Z =0) which have passed control. Analytical results for
the distribution function of (M, Z) filtered by
compliance control are very few, one of which is
presented next in terms of conditional distribution
functions.

One may now wish to distinguish between three cases:
(a) Standard deviation known and constant ;

(b) Standard deviation known during testing but
varying from unit to unit according to equation (13);

(c) Standard deviation unknown during testing and
varying from unit to unit according to equation (13).
Case a

Here, equation (17) reduces to [11];

J (W L)
I*)= w55 ,
S (WL (u)du

bt~ <}

while a suitable decision rule for compliance control is:

asz=x:A= Acceptance,
d(z)= { i3 (19)
\ a>z=x: A= Rejection
with operating characteristic [2]:
L—a
P(A|d(2), 2, g)=L ()= qﬁ( & ) (20)
o/s/m

Obviously, the distribution equation (14) must be
replaced by:

HY(u|x", n", A)=P(M S u|x", n’, A)

‘‘‘‘‘ o H,(u|x", n") (21)

with:
+ oo 5
P(A):‘[ f%@u|x", ") L(p)du

(22)

((E"wa)mfﬁ )
B e

I
P(A|MZpy)= j fa(u|x".n")Lp) dp

u—x "= a)lo//m
=@ -

ol /n” S1+@mm)

1
i 7 ) 23
]+(n"/m)) (23)

where @(., .; .) is the standard bivariate normal
integral defined by:

1 L] k
fp(h‘k; [))=‘WFTW;J< -[
2 /l—p* ) .

(- 4] -

1
X el s IR S ol )2 y
cxp[ 2(1—p?) (u*—2uv+t )]dz du.

'In the derivation, the table of normal integrals given by

Owen [6] has been used. Also, in evaluating the
binormal integral a series expansions in terms of a
function T'(a, b), given by the same author in an earlier
paper, has been proved to be efficient [8].

‘Furlher. it is possible to determine the predictive
distribution corresponding to equation (18). In this

|
|
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case, we have:
H(x)*«f S (x| p) f*(pydu
ok er = (x—-»y V1
N o _”_aw\ g o
p—x -
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al/m
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[(n"+1) ((n"/m)+ D]'2 )° o

with:

N=P(A) in equation (22).

Case ¢

Next we consider case ¢. Unfortunately, no exact
analytical solution appears possible but good approxi-
mations can be developed. Obviously, given the
distributions equations (13) and (14) we now have:

Hi(o|s", v, A)=P(Z=Zals", v, A)

_P(4|Z=0)

P ) H,(a|s", v) (25)

and:

H}(u|o, X", n", A)=P(M=pu|X", n", a, A)

g, MSu)
P(A|0) ?

”

P(A
= ( (;1[{1’, b 5

4 (26)

In order to specify the probabilities P ( .), the following,
widely used decision rule is introduced:

asz=x+4s5:A= Acceptance,
d(:):{ L (27)
azz=x+4s: 4= Rejection,

where a is a given acceptance limit, 4 a given acceptance
factor (which sometimes is taken as A= —1.645), ¥ the
sample mean and s the sample standard deviation of a
random sample of size m. The distribution of the
random quantity X is known to be related to the non-
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central-t-distribution [2], but, in first approximation,
one can evaluate P(A4|d (2), z, u, o) by:

P(A|d(2), z, u, 0)

u—(a—ia) ) 28)

=], ~¢
i (6\/(iIM)+(iz/2m)

making use of the fact that sample standard deviations
are asymptotically normally distributed with mean

E[S]=0c and standard deviation D[S}=6ﬂ\/2—r;. A
somewhat better approximation to the non-central-t-
distribution has been used in [11]. Then,

P(A)=Im '{.m Sur( e|x", n", 57, v7)
1] —o

x L(pu, o) du do
=r fr(o]s", \-’)¢(1+ E) do
2 oy
=Pr(T; <t|8) = Pr(T,; <t-9), (29)
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o -

x L(y, 6)dudo
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: o 7
=J'I w(%—é)u"‘w(u)du
- Q,(t, 5;2\/1-_”, 1:)
2
;PNH§HMH[ﬁ>§f]

2
zPr(T;(t—-é)PT(x})— i—;j‘) (30)
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which, if inserted into equations (25) and (26), produce
the required a posteriori distributions (the distributions
updated by the fact that certain compliance control will
take place). Again, use has been made of reference [6] in
order to reduce the integrals in equations (29) and (30).
The abbreviations used are: t=a/(ys"), d=—B/y, f=v"
with a=(x"—a), f=4and y> =(1/n")+(1/m) + (A*/2m).
Further, T; is a non-central-t-variate with f degrees of
freedom and non-centrality parameter & and T is the
corresponding central-t-variate while y7 denotes the
chi-square variate. Q, (., .;.,.) is a special bivariate
non-central-t-distribution introduced in [6] which is
easily evaluated in terms of normal densities, normal
integrals and bivariate normal integrals. Also, simple
numerical integration or the approximate bound in
equation (30) is sufficiently accurate. Finally, certain
reductions are possible for the univariate predictive
distribution. In analogy to equation (24) we have:

E @ a0
Hm:EjOJ_PMﬂm@

X far (i, @] X", 0", s",v")
L (4, o|a, 4, m)dy do (33)

which after some obvious substitutions and using
again [6] becomes:

s, V)

1 =
H(x)=‘7v"..[ Jr(o
0

¢( e (x"—a+i0)/a/1/m+1%/(2m)
x E
o /1+(1/n") J1+(m/n") (1+22)2)

1
(" +1) (n”/m(1+(i2/2))+l)]”2) e e

with N=P(A) in equation (29). No further sensible
reduction appears possible.

Case b

If, during testing, the standard deviation o is known,
e. g from previous production records and, conse-
quently, replaces the sample standard deviation s in
equation (27), the distribution of X remains as in
equation (13). Formula (26) is still valid but with the
A’s in the parameter 9, in the correlation coefficient in
equation (32) and in equation (34) be set equal to zero.

NUMERICAL EXAMPLES

The prior information contained in data collections
as represented by figure 1 is, as mentioned, rather
vague. This can best be seen in evaluating the predictive
distribution equation (16) for various levels of infor-
mation. For example, assume that n trial tests yielded
exactly the parameter (x’, s”) found for figure 1. Then,
figure 2 demonstrates the significant effect of more and
direct information. Note also the relatively fast
convergence of the distribution towards the normal
distribution with parameters (x”=x’, " =5).

Table I is an example how prior information could
be given. It is the result of a large data collection on
concrete production in Southern Germany. Concrete
cube strength is assumed to be log-normally distributed.
Therefore, the parameters given are for a log-normal-
gamma distribution. Some obvious interpretations of
changes in the parameters with concrete grade and type
concrete are omitted for brevity of presentation.
Naturally, due to different production policies and
different control standards other values are to be
expected in other countries but, as far as former
statistical surveys in the international literature can be
re-evaluated as required, the prior weights n” and v* as
well as the numerical values of the parameters x” and s’
do not differ substantially from those given in table 1.

A similar situation holds for the yield strength of
reinforcing bars. In this case we assume that the
material of given diameter to be built in a specific
building is supplied by a randomly selected steel mill
from a randomly selected batch. A large survey on
Middle-European steel production for hot-rolled,
medium diameter bars showed an almost constant and
relatively small within batch (=melt) variability of
o ~ 8 N/mm?, but relatively large variability of the mean
strength of batches of any (particular) steel mill and
among steel mills. In fact, one determines for a certain
steel grade a global mean x’ ~ 480 N/mm?* and standard
deviation oy ~ 28 N/mm? while the within-mill standard
deviation of the means may be about 15 N/mm?. If one
applies the formulae for known standard deviation one
obtains an equivalent prior sample size of n’=0.08 if

TABLE I

PRIOR PARAMETERS FOR CONCRETE STRENGTH DISTRIBUTION

i | i ‘ |

Concrete grade

T : ) L S |
‘1 C15 |C25 | Cc35 [Cc45 | Cc55 |
Sit ‘ T T l 3.40 TM‘S 385 -
"‘“.;:'d Jiimtel e 1.0 |20 | 30 A
i ! i 0.15 | 0.12 [ 0.09 .
ekl 30 140 [-48 -
L e 3.40 | 3.65| 3.85 | 3.98
R‘?‘“.‘j ‘ e B e
i ! f vov....| 014 1012 0.00 | 0.07
v .......| 60 |60 | 60 |60 |
Concrete ‘ St ) | 3.80 | 3.95 | 408 | 4.15
for e <cehan | easis gl i
precast ‘ 8 rer b - 1 009| 008 | 007 | 0.05 |
elements T A izt | 4.5 4.5 | 5.0 3554
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Fig. 2. — Predictive distribution of strength with increasing size of
direct sample (underlying normal distribution).

the mill is unknown and n"=0.28 if it is known. Again,
very few trial tests may improve the state of knowledge
considerably.

For the effect of compliance control on the lower tail
of the predictive distribution, we expect the filtering to
be significant for relatively diffuse prior information, to
increase with increasing acceptance limit and/or
decreasing acceptance factor and, of course, with the
sample size of acceptance testing. One can show,
however, that generally small samples produce the main
effect and only little is gained if the sample size is
increased beyond, say, m=35 to 10. As an example,
compare figure 3, where the predictive distribution of
yield strength given the previous prior information is
calculated for various m (a=435N/mm?). Also, the
distribution of qualities in terms of the batch means as
produced and accepted is given. The percentage of
batches with negative acceptance decisions is
roughly 5%.

A last demonstration ( fig. 4), shows that given the
relatively vague prior information as collected in table I
(mean and standard deviation unknown), probabilities
of exceedance can easily be reduced by an order of
magnitude in the lower tail of the distribution if
compliance control is considered.

In practical applications or detailed reliability studies
one, therefore, has to compromise between the simple
model as, for example, described by equation (16) and
the more complex but also more realistic models as
given by equation (24) or even equation (34). Neverthe-
less, it should be emphasised that direct observations
are much more efficient in updating vague prior
information than large sample compliance tests. In a
particular case one, therefore, might think of carrying
out few trial tests well in advance or of controlling
production processes with respect to previously selected
targets rather than to rely on relatively inefficient

265




Vol. 16 - N® 94 - Matériaux et Constructions

A
YIELD STRENGTH IN N/mm?
”
400 450 / 500 o
0 7
rd
>
-1
-2
-3
]
- n" 0788
—d -4} ™ 1.7
° 5 7.9
/,;If o
-5 /]fw" 1 435 £ Xm:A
315" d{z)=
435 >%p:A
> [ e Tein
/ / ¥ |
/ /
% oy 0 o

Fig. 3. — Predictive distribution of yield strength of reinforcing steel
under control (upper thin line: prior distribution, lower thin line:
prior distribution with perfect information, dotted lines: distribution
of batch means under control).

statistical compliance testing of the end product. This
insight is not very new but it appears to be proved here
for the first time numerically.

SUMMARY AND CONCLUSIONS

The strength of materials as tested by specimens of
standard type, shape and age is modelled as a Gaussian
sequence with partially known mean and standard
deviation. Information on these parameters must be
gained from previous production units in terms of a
prior distribution. This can be updated through Bayes’
theorem if either direct observations are available or
future production is known to undergo certain
compliance tests. The sequence of strength values to be
expected can then be represented by a set of conditional
distribution functions or, if interest lies only in the
marginal distribution, by a predictive distribution.
Closed formulae are derived for most cases involving
the univariate normal, bivariate normal, central and
non-central t-distributions which all are either tabulated
or can be computed by appropriate series expansions
available in the statistical literature. The results are
demonstrated at an example from concrete production
indicating that, generally, uncertainties in the parameters
of the strength distribution can be significant in
reliability studies. Therefore, it is recommended to
consider statistical uncertainties as reflected by the
appropriate (possibly updated) prior distribution
throughout in reliability studies. The favourable filtering
effect of compliance control can additionally be taken
into account at the expense of slightly more numerical
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Fig. 4. —Predictive distribution of concrete cube strength under control
with prior information equivalent to figure 1.

effort. For most types of material the initial distribution
of elemental strength values might sufficiently realisti-
cally be taken as lognormal in which case all results
remain valid with the necessary straightforward
modifications. The models proposed herein can be
applied at least to concrete, reinforcing and structural
steel.
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RESUME

Distribution prévisionnelle de la résistance sous
contrdle. — La résistance de matériaux ainsi vérifiée sur
des spécimens de type, forme et dge normalisés est
modélisée comme une progression gaussienne avec une
valeur moyenne et un écart-type partiellement connus.
Pour obtenir une information sur ces paramétres, il faut
se servir d unités de production précédentes en s’ appuyant
sur une distribution a priori. La mise d jour peut se faire
par le théoréme de Bayes, si des observations directes
sont disponibles, ou s’il est connu que la production a
venir va étre soumise d certains essais de conformité. La
progression des valeurs de résistances escomptées peut
alors étre représentée par un ensemble de fonctions de
distribution conditionnelle ou, si 'on s’intéresse seulement
d la distribution marginale, par une distribution
prévisionnelle. Dans la plupart des cas, les formules sont
dérivées en incluant la loi de distribution normale, la loi
de distribution bi-normale, les distributions t centrales et

non centrales, qui figurent toutes sous forme de tableau,
ou peuvent étre calculées par des expansions de séries
appropriées, disponibles dans la littérature statistique.
Les résultats sont illustrés par un exemple de production
de béton, qui indique que, en général, des incertitudes
dans les paramétres de la distribution de résistance
peuvent avoir leur signification dans les études de fiabilité.
Il est par conséquent tout indiqué de considérer que les
incertitudes statistiques se reflétent dans la distribution
a priori appropriée, si possible mise d jour par le moyen
des études de fiabilité. De plus, T'effet filtrant favorable
de contréle de conformité peut étre pris en considération
avec peu deffort numérique supplémentaire. Pour la
plupart des types de matériaux, la distribution initiale des
valeurs de résistances élémentaires peut étre admise
comme log-normal avec suffisamment de réalisme. Dans
ce cas, tous les résultats restent valables avec les
modifications nécessaires. Les modéles proposés ici
peuvent étre appliqués au moins au béton, béton armé et
acier structurel.
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