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Abstract

Due to the increasing amount of data, machine learning algorithms have gained importance,
as they automatically process large data sets. These algorithms are calibrated by hyper-
parameters, that need to be chosen carefully. Hyper-parameter optimization methods are
used to automatize this process. This thesis discusses hyper-parameter optimization in
the context of sparse grid density estimation. First, the concept of density estimation is
introduced, followed by classification and clustering, two common types of machine learning
that can be based on it. Afterwards, hyper-parameters are defined, and various methods
to optimize them are presented. Grid search, random search, and Bayesian optimization
are discussed in theory and in the context of my implementation. These methods are
used to optimize the hyper-parameters for normal and adaptive classification. Finally, the
performance of the implemented methods is analyzed and compared to that of the open
source software hyperopt.

Zusammenfassung

Durch die zunehmende Menge an Daten haben Algorithmen für maschinelles Lernen an
Relevanz gewonnen, da diese automatisch große Datensätze verarbeiten. Diese Algorithmen
werden von Hyperparametern kalibriert, die sorgfältig ausgewählt werden müssen. Hyperpa-
rameteroptimierungsmethoden werden verwendet um diesen Prozess zu automatisieren. Diese
Arbeit bespricht Hyperparameteroptimierung im Kontext von Dünngitter Dichteschätzung.
Zuerst wird das Konzept der Dichteschätzung eingeführt, gefolgt von Klassifizierung und
Clustering, zwei verbreiteten Arten von maschinellem Lernen, die darauf basieren können.
Danach werden Hyperparameter definiert, sowie diverse Methoden präsentiert diese zu
optimieren. Rastersuche, Zufallssuche sowie Bayessche Optimierung werden theoretisch und
im Kontext meiner Implementierung besprochen. Diese Methoden werden verwendet um die
Hyperparameter von normaler und adaptiver Klassifizierung zu optimieren. Die Leistung
der implementierten Methoden wird im letzten Schritt analysiert, sowie mit der Leistung
der Open-Source-Software hyperopt verglichen.
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1 Introduction

In recent years, the amount of data has increased drastically, up to a point where it is
often impossible to manually process it. To handle this huge amount of data, methods are
needed that automatically analyze data. Machine learning methods have the goal of finding
patterns in a given data set. These patterns are further used “to predict future data or
other outcomes of interest” [1], such as analyzing a new data point with them. Classification
and clustering are two common machine learning methods. The former is given a set of
labeled data, meaning that each data point belongs to a specified “class”. It then tries to
find patterns in this data to understand the structure of these classes, so that it can then
classify unseen data. Clustering is similar, but the given data is not labeled. Therefore the
classes are not specified beforehand, but the algorithm tries to find out which data points
may be put together. These groups of data points are then called “clusters” [1]. Both can be
implemented with the help of density estimation, a method that reconstructs the unknown
density function of a given data set.

For machine learning methods, there are usually parameters that need to be specified
before the learning process, called hyper-parameters. They significantly influence the training
accuracy and speed of the method, and therefore should be carefully configured [2]. This
raises the question that this thesis aims to answer: “How can the hyper-parameters of a
given machine learning algorithm be optimized?”. In particular, I will discuss this question
in the context of sparse grid density estimation.

In Chapter 2, an introduction to density estimation is given, as well as further explanations
on classification and clustering. Chapter 3 then provides a definition of hyper-parameters
and presents various hyper-parameter optimization methods, focused on the method that
I have implemented in the scope of this thesis. This implementation is then explained in
Chapter 4. Chapter 5 discusses tests that have been conducted on it, as well as their results
and lastly, the thesis is concluded by Chapter 6 providing a review and outlook.
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2 Density Estimation and Machine Learning

This Chapter introduces density estimation, a tool that estimates the underlying density
function of a given data set, in Section 2.1. Classification, a machine learning algorithm
that learns the structure of classes of a set of labeled data, is then explained in Section 2.2.
Clustering, an algorithm that works on unlabeled data points and groups them into clusters,
is then discussed in Section 2.3.

2.1 Density Estimation

This section is mainly based on [3], if not stated otherwise. Density estimation is a tool
used to reconstruct the underlying density function of a given data set, which can also
provide a basis for data-mining tasks like clustering and classification. It is given a data set
S = {x1, . . . , xM} ⊂ Rd, which consists of samples drawn from an unknown distribution
with a probability density function f . The task is then to estimate f based on the given
data S, constructing the estimated density function f̂ of f . There are two types of density
estimation methods: Parametric density estimation requires additional information about
the underlying distribution, while nonparametric density estimation uses only the data
set S [3].

2.1.1 Kernel Based Density Estimation

A common nonparametric method is Kernel density estimation, which uses a kernel function,
often the Gaussian kernel :

f̂(x) =
1

M

M∑
i=1

K(
x− xi
h

), (2.1a)

K(x) = (2π)−1/2e−x
2/2, (2.1b)

with h > 0 being the bandwidth. Selecting a good value for h is a non-trivial problem.
Kernel density estimators can also become very expensive for large datasets, because in
order to evaluate f̂ as many kernels as there are data points in S need to be computed [3].

2.1.2 Sparse Grid Density Estimation

Density estimations based on sparse grids improves both these problems: The idea of grid-
based density estimation is to first estimate the density function using a highly overfitted
guess fε, and to then obtain a smoother, more generalized approximation f̂ using spline
smoothing. Instead of using kernels, the density function f̂ is discretized using basis functions
centered at grid points, and does not need one basis function for each data point. This
improves the computational cost as long as the amount of grid points is considerably smaller
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2 Density Estimation and Machine Learning

than the amount of data points, but it still suffers from the curse of dimensionality when
used with regular grids. This means that, for a full grid, the amount of grid points grows
exponentially with the dimension of the data points. To improve this, sparse grids are
introduced [4]. In particular, the sparse grid combination technique can be used for this
problem [5]. In this method, the solution is calculated independently on anisotropic and
therefore inexpensive full grids. These results are then combined to obtain the final solution.
Figure 2.1 shows an example for the construction of a density function using a sparse grid,
Figure 2.2 provides a visualization of the sparse grid combination technique.

Figure 2.1: Construction of a density function on the “Circles” data set (taken from [6]),
using a sparse grid of level 3. The data points (top left) are mapped onto a
sparse grid (top right). The basis functions of the sparse grid points are then
used to estimate the density function (bottom). Source: [7].

3



2 Density Estimation and Machine Learning

Figure 2.2: Construction of the density function on the “Circles” data set using the combi-
nation technique. The solution is computed on anisotropic full grids of different
levels, ranging from lmin = 1 to lmax = 4, which are then combined to obtain
the result (top right corner). Source: [7].

The first, overfitted estimate fε is constructed using

fε =
1

M

M∑
i=1

δxi , (2.2)

with δxi being the dirac delta function centered on xi. Based on this initial guess, we then
look for f̂ in a suitable function space V :

f̂ = argmin
u∈V

∫
Ω

(u(x)− fε(x))2dx+ λ||Lu||2L2 . (2.3)

4



2 Density Estimation and Machine Learning

The left term ensures a closeness to fε, ||Lu||2L2 imposes a smoothness constraint and the
regularization parameterλ > 0 balances smoothness and fidelity. This is then transformed
into ∫

Ω
u(x) · s(x)dx+ λ

∫
Ω
Lu(x) · Ls(x)dx =

1

M

M∑
i=1

s(xi), (2.4)

for all test functions s ∈ V . To solve this, the finite-dimensional function space VN ⊂ V is
defined as the span of the basis functions Φ = {φ1, . . . , φN} centered at grid points. An
approximated density function f̂N ∈ VN is then depicted as a linear combination of basis
functions φi and coefficients αi:

f̂N (x) =

N∑
i=1

αiφi(x). (2.5)

A sparse grid discretization is used to make this computationally feasible: Let Φ be the

set of hierarchical basis functions of the sparse grid space V
(1)
` ⊂ H2

mix of level ` ∈ N.
Incorporating this into (2.4) yields∫

Ω
f̂N (x) · φ(x)dx+ λ

∫
Ω
Lf̂N (x) · Lφ(x)dx =

1

M

M∑
i=1

φ(xi), (2.6)

which can be simplified because f̂N is a linear combination of basis functions Φ with
coefficients α, yielding

(R+ λC)α = b, (2.7)

where R, C and b are computed using

Rij = (φi, φj)L2 =

∫
Ω
φi(x) · φj(x)dx, (2.8)

Cij = (Lφi, Lφj)L2 =

∫
Ω
Lφi(x) · Lφj(x)dx, (2.9)

bi =
1

M

M∑
j=1

φi(xj). (2.10)

C may then be replaced by the identity matrix I for the purpose of penalizing non-smooth
functions:

(R+ λI)α = b. (2.11)

In order to compute the density estimation function f̂N , this equation has to be defined for
the desired sparse grid level ` ∈ N and then solved for the coefficient vector α. With α and

the respective basis functions Φ of the defined sparse grid space V
(1)
` the density estimation

function f̂N is then constructed as in (2.5) [3].
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2 Density Estimation and Machine Learning

2.2 Classification

Classification is a type of supervised machine learning. This means that the algorithm is
given a training set S = {(xi, yi)}Ni=1, consisting of N input-output pairs called training
examples, and the goal is to learn a mapping from the inputs xi to outputs yi. The xi and
yi can both theoretically be anything. When the yi are categorical, the problem is called
classification. In this case the outputs yi ∈ {1, . . . , C} are classes, also called labels, with C
being the amount of classes. When C = 2, meaning that there are only two classes, it is called
binary classification, while using more classes, with C > 2, is called multiclass classification.
It may also be possible to map an input x to more than one class label y, this is then
called multi-label classification. When not stated otherwise, “Classification” usually refers to
multiclass classification with a single output. The goal is ultimately to assign classes to new
inputs x, using a mapping learned from the training set S. Such a mapping can be learned
using function approximation: The assumption is that there is some unknown function g
that maps inputs to outputs, with y = g(x). This function is estimated using S, yielding ĝ,
which we can then use to assign approximated outputs ŷ to new inputs x: ŷ = ĝ(x) [1]. One
approach to this is to use density estimation. This works as follow: First, the training set S
is split into partitions, where each partition contains only input-output pairs of the same
class k. There is one partition for each class, yielding C partitions S1, . . . , SC with

Sk = {(xi, yi) ∈ S|yi = k}. (2.12)

Then, a probability density function f̂k is estimated for each set Sk, as presented in
Section 2.1. When assigning a new point x the estimated density functions are evaluated at
x and the point is assigned to the class k where f̂k(x) has the highest value:

y = argmax
k∈{1,...,C}

f̂k(x). (2.13)

The confidence of this assignment depends on how much the evaluations of f̂k(x) differ: If
the highest value is significantly greater than the other values, x can be assigned to the
corresponding class with great confidence. However if several density functions yield similar
values, the mapping is less confident. This could, for example, occur for points x that lie in
between classes [8]. Figure 2.3 depicts the “Moons” data set (taken from [6]), which is split
into two partitions as explained in Equation 2.12. A density function is then estimated on
both, as visualized in Figure 2.4.
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2 Density Estimation and Machine Learning

Figure 2.3: The “Moons” training set (left) is split into two partitions, depicted in blue and
orange respectively (right). Source: [7].

Figure 2.4: A density function is estimated on each partition, which can then be used to
map new points x to classes as in Equation 2.13. Source: [7].

2.3 Clustering

Clustering is a type of unsupervised learning. The difference to supervised learning is that
the given data S = {xi}Ni=1 contains only input values x, but no corresponding output
values y. The goal is to find “interesting structure” in the given data. Unsupervised learning
is generally more complicated than supervised learning, but it is more applicable since it
does not require labels, which may be hard to obtain. Clustering is the task of creating
groups, or clusters for input points with similar properties [1]. This can also be done with
the help of density estimation: A region has high density when it contains many data points,
and low density when it contains few. A cluster can be characterized as a region of high

7



2 Density Estimation and Machine Learning

density surrounded by a region of low density. To find such regions, the data is represented
as a similarity graph G = (S,E) with the given data points as vertices. Then a density
function f̂ is estimated for S. Lastly, all vertices xi at which f̂(xi) < ε for some density
threshold ε, are deleted, as well as their related edges. This way all vertices and edges inside
of low-density regions are removed, splitting the graph into several connected components
that represent the clusters. After obtaining the clusters in this manner, the points that were
deleted in the process can now either be connected to the nearest cluster or considered noise
and left out entirely [9].

8



3 Hyper-Parameter Optimization

This Chapter will introduce hyper-parameters and the problem of hyper-parameter opti-
mization. It will then explain some of the most important methods to solve this problem,
focused on Bayesian Optimization.

3.1 Introduction to Hyper-Parameter Optimization

Machine-Learning algorithms usually have parameters that need to be set beforehand and can
not be updated during the learning phase. Such parameters are called hyper-parameters [2].
Examples would be the regularization parameter λ used for sparse grid density estimation
in Equation 2.3 of Section 2.1, or the density threshold used for clustering in Section 2.3.
These parameters can have a significant influence on training accuracy and speed, which is
why finding good values for them is crucial. This can be done manually if the necessary
expert knowledge about the respective hyper-parameters is available, which it is often not.
The process of automatically optimizing hyper-parameters and largely removing humans
from this task is called hyper-parameter optimization. Mathematically, hyper-parameter
optimization seeks to optimize an objective function mapping the hyper-parameters to an
evaluation, seeking to achieve maximum accuracy, or minimum loss. The result of the
optimization process is then the set of hyper-parameters x∗ that evaluates best on the
objective function:

x∗ = argmax
x∈X

fobj(x). (3.1)

In order to evaluate this objective function for a specific setting of hyper-parameters, the
algorithm has to be applied with these settings, training a model with a training data set
and then evaluating it on a validation set. This makes evaluating the objective function,
and therefore the whole process of hyper-parameter optimization expensive to compute [2].
This Chapter introduces several methods for hyper-parameter optimization and discusses
their advantages and disadvantages.

3.1.1 Grid Search

Grid search performs an exhaustive search on a specified set of hyper-parameters, which
I will refer to as the search space. This search space is generated by the users, who need
to have some preliminary knowledge on the hyper-parameters in order to generate suitable
candidates. This method is very expensive to compute for large search spaces, since all
specified candidates are evaluated. It is therefore desirable to keep the search space narrow,
which in effect means that the users need to have sufficient knowledge to define such a search
space. Grid search is straightforward and mathematically simple. It also guarantees that
the optimal combination of hyper-parameters is found, as long as this optimum is included
in the search space, since all candidates will be tested. Another advantage is that it is easy

9



3 Hyper-Parameter Optimization

to be executed in parallel, since trials of different hyper-parameter combinations do not
depend on each other. Drawbacks are that preliminary knowledge is needed, potentially to
an extend that is not available, in order to define a search space that is sufficiently narrow
but still includes the optimum. It also requires many evaluations of the objective function,
making it expensive to compute [2].

3.1.2 Random Search

Random search randomly searches through possible values of hyper-parameters until either
the desired accuracy is reached, or a given budget is depleted [2]. One advantage over grid
search is that the search space does not have to be narrow, since the amount of values tried
depends on the given budget and not on the size of the search space. In effect, one does not
need as much knowledge about the hyper-parameters. For a limited amount of tries random
search is statistically more likely to find the optimum, since it can usually not be guaranteed
that the optimum is included in a manually generated search space. If it is not included, it
can definitely not be found by grid search [10]. It can, however, not be guaranteed that the
optimum is found using random search either. Similarly to grid search, random search is
easy to parallelize since the evaluations do not depend on each other. It is still expensive
since it requires a lot of evaluations of the objective function, but this is bounded by the
given budget. Newly designed algorithms are often compared to random search, making it a
baseline to measure the efficiency of hyper-parameter optimization methods [2].

3.1.3 Other Methods

There are numerous other methods for hyper-parameter optimization that may also be
considered when selecting an algorithm for a specific case. This methods include, but are
not limited to population based training, which is similar to genetic algorithms [11], and the
use of an early stopping policy [2]. The choice of algorithm depends on the given resources
and the specific problem: For example, some algorithms may only work with continuous
values of hyper-parameters, but some problems use discrete values like integers or boolean.

3.2 Bayesian Optimization

Both grid search and random search require many evaluations of the objective function,
making them expensive to compute. Bayesian Optimization seeks to reduce the amount of
evaluations necessary, in order to decrease the computational cost. This section introduces the
general concept of Bayesian optimization, and explains the specific type I have implemented,
which will be discussed in more detail in Chapter 4.

3.2.1 Introduction to Bayesian Optimization

Bayesian Optimization is an optimization method for functions that can only be observed
through input-output observations that may also be distorted by noise, also known as
noisy black box functions. It is very data efficient and therefore especially useful when
evaluating the function is expensive and not much information about it is given. This makes
Bayesian optimization very helpful for the problem of hyper-parameter optimization: As

10



3 Hyper-Parameter Optimization

described in Section 3.1 the objective function is expensive to evaluate, and often the only
information available on it is input-output behavior. This is also a significant advantage
over grid search: Bayesian optimization does not require users to have knowledge on the
hyper-parameters, as the algorithm obtains the needed information itself. The fundamental
idea of Bayesian optimization is to learn from the information obtained by prior evaluations,
in order to make suitable assumptions about where the optimum may be [12]. For example,
if all prior evaluations in a specific area were significantly better than evaluations in other
areas, it does intuitively make sense to expect the optimum to be in the vicinity of this
area. This is the underlying principle of Bayesian optimization [13]. Each iteration of the
algorithm looks as follow: The prior input values of the function x1, . . . , xn, as well as their
respective evaluations y1, . . . , yn make up the evidence set Dn. They are used to generate a
statistical model of the objective function, called the surrogate model. Based on this model,
an acquisition function αn(x) is created. Maximizing this acquisition function yields the
next value that should be evaluated on the objective function fobj :

xn+1 = argmax
x∈X

α(x;Dn). (3.2)

After evaluating xn+1 on the objective function, it and the respective yn+1 = fobj(xn+1) are
both added to the evidence set. The statistical model is updated and then used to create
the new acquisition function αn+1, which is then again used to obtain the next value to be
evaluated on the objective function. These steps are repeated until a given budget is depleted,
or the optimum is found. Bayesian optimization is mathematically less straightforward than
grid search and random search, but the additional computational effort is compensated by
the reduced amount of evaluations of the objective function needed.

Algorithm 1: Bayesian optimization

1 for n = 1, 2, . . . do
2 // select new xn+1 by optimizing acquizition function α
3 xn+1 = argmax

x∈X
α(x;Dn)

4 // query objective function to obtain yn+1

5 yn+1 = fobj(xn+1)
6 // augment evidence set

7 Dn+1 = {Dn, (xn+1, yn+1)}
8 update statistical model()

Figure 3.1: Pseudocode of Bayesian optimization.

The key ingredients of Bayesian optimization are the surrogate model and the acquisition
function. An in-depth discussion about different choices for both can be found in [12].
Popular options for the surrogate model include random forests, tree parzen estimators and
Gaussian process. Which model is best depends on the properties of the specific search
space, for instance what data types the hyper-parameters are and how much they depend
on each other. The acquisition functions differ in their exact methods, but most of them
balance exploration and exploitation. Exploration is the process of gaining new information
to best improve the surrogate model, by evaluating points where the model is uncertain.

11



3 Hyper-Parameter Optimization

Exploitation uses the current model to find the point where the optimum is most likely to
be. Among others, the types of acquisition functions include improvement based policies
and optimistic policies. The former favors points that are likely to lead to an improvement
of the current optimum. This type of method includes probability of improvement and
expected improvement, where either the likelihood of improvement or the expected amount
of improvement is maximized. Optimistic policies use the best-case scenario according to
the current model, even though this scenario is uncertain - hence the name “optimistic”.
This type includes upper confidence bound and Gaussian process upper confidence bound
(GP-UCB) [12].

3.2.2 Discrete Bayesian Optimization using GP-UCB

In my implementation I have used a Gaussian process to create the surrogate model and
GP-UCB as the acquisition function. This Gaussian process GP (µ(x), k(x, x′)) is defined by
two ingredients: its mean function µ(x), which may be assumed to be a zero function in the
context of Bayesian optimization, and its covariance function k(x, x′). In the context of this
thesis the used covariance function is the squared exponential kernel

k(x, x′) = σ2
kexp(−

1

2l2n
||x− x′||2), (3.3)

where σ2
k dictates the uncertainty in the objective function, and the length scale parameter

ln controls how quickly a function can change [14]. Both can either be optimized in each
iteration [15], or set to constants for simpler computation but a loss of efficiency. A variety
of other common choices for kernel functions is given in Section 5.2. of [16]. Fitting the
evidence set Dn = {(xi, yi)}Ni=1 into the Gaussian process yields the predictive distribution of
the objective function fobj , which is also a Gaussian process GP (µ(x), σ2(x)) with the mean

µ(x) = kT (K + σεI)
−1y, (3.4)

and the variance
σ2(x) = k(x, x)− kT (K + σεI)

−1y. (3.5)

In this context, k = [k(xi, x)]∀xi∈Dn is a vector of the covariances of the new point x and all
other points xi included in the current evidence set, K = [k(xi, xj)∀xi,xj∈Dn ] is the covariance
matrix, σε is a parameter denoting measurement noise, I is the identity matrix of the same
dimension as K, and y = (yi, . . . , yn) is a vector consisting of all evaluations of the objective
function obtained so far. The acquisition function using GP-UCB is then

αn(x) = µ(x) +
√
βnσ(x). (3.6)

In simple terms, µ(x) can be said to represent exploitation, σ(x) exploration, and βt is the
exploitation-exploration trade-off factor. The specific calculation of the βn depends on the
context. If the search space is a subset of [0, r]d, with dimension d ∈ N and radius r > 0, βn
is proposed to be

βn = 2log(
n22π2

3δ
) + 2d log(n2dbr

√
log(

4da

δ
)) (3.7)
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3 Hyper-Parameter Optimization

for δ ∈ (0, 1) and constants a, b > 0, the choice of which again depends on the exact
context [16]. It is also crucial to mention that the iterations need to begin with n = 1, as βn
is undefined for n = 0. The next point is then acquired by maximizing αn(x):

xn+1 = argmax
x∈X

αn(x). (3.8)

An issue with this acquisition function is that it assumes that the objective function is
continuous. This is, however, not always the case: If the hyper-parameters assume discrete
values like integer values or boolean, the search space and the objective function are also
discrete. The assumption that the objective function is continuous is a common problem with
acquisition functions, as for example probability of improvement and expected improvement
suffer from this as well. The first approach to solving this is to use naive rounding. This
simply rounds the value acquired by Equation 3.8 to the nearest value included in the
discrete search space. This approach may result in repeatedly evaluating the same point,
as rounding a new point xn+1 /∈ Cn may give a point that is already in the evidence set
rd(xn+1) ∈ Cn. When this happens, the algorithm is unable to acquire new information
and gets stuck at this point. That is why the authors of [14] propose another method:
Fundamentally, increasing βn, and therefore the factor of exploration in the acquisition
function, should always yield a new x. In order to not have to use excessively high values
for βn, the length-scale parameter ln used in the covariance function can also be adjusted.
When the acquisition function yields values that are, after rounding, already in the evidence
set, this method finds new values β∗n, l

∗
n by minimizing a function g(βn + ∆β, l) that models

the desired objectives for the new values:

β∗n, l
∗
n = argmin

∆β∈[0,βh],l∈[0,lh]
g(βn + ∆β, l), (3.9a)

g(βn + ∆β, l) = ∆β + ||xn+1 + x′n+1||2 + P (x′n+1). (3.9b)

Here, xn+1 is the point acquired by using αn with the original βn and ln, where
rd(xn+1) ∈ Dn. The x′n+1 is the value that αn suggests using the updated βn + ∆β
and l. There are also upper bounds βh and lh that can be set manually. The objectives
modeled in g(βn + ∆β, l) are as follows: ∆β should be small, so that the new β∗n does not
become too big. Secondly, the new x′n+1 should not be too far away from the original xn+1,
since that is where the acquisition function originally assumed the current optimal value
for evaluation to be. Lastly, we do not want the new x value acquired using β∗n and l∗n
to also already be in the evidence set. This is modeled by the penalty function P (x′n+1):
This function is zero if rd(x′n+1) /∈ Cn, and a constant otherwise. Using this approach, the
algorithm should find a new value for x and not get stuck at one point [14].
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4 Implementation

This Chapter introduces the sparseSpACE framework [17], with a focus on the implementa-
tions of the density estimation and machine learning algorithms. It will then continue to
give a more detailed explanation of the implementation of hyper-parameter optimization
methods added in the context of this thesis, that aim to optimize the hyper-parameters of
the previously implemented machine learning algorithms.

4.1 Density Estimation and Machine Learning with the
sparseSpACE-Framework

Sparse Grid Spatially Adaptive Combination Environment, short sparseSpACE, is a Python
framework created by Michael Obersteiner. This framework includes various spatially
adaptive combination techniques, as well as arbitrary grid based operations. In 2020, the
DensityEstimation functionality, which implements the estimation of a density function (see
Section 2.1), has been added by Lukas Schulte [18]. Based on that, the DEMachineLearning

wrapper has been implemented by Cora Moser, which includes classification and clustering
using density estimation, as explained in Section 2.2 and Section 2.3 [7]. In the same year,
density estimation using the dimension-wise spatially adaptive refinement method as well as
classification using single-dimensional refinement have been added by Markus Fabry [19].

To use the density estimation functionality, users create a DensityEstimation object.
At this point, they need to specify the data the estimation should be performed on, which
may, for example, be created using the scikit-learn [6] package sklearn.datasets that
provides various types of datasets. In addition to the data, users can specify the regularization
parameter λ to control the smoothness of the estimated density function. They can also turn
mass lumping on or off: When this is turned on, the calculation of R (Equation 2.8) ignores
the cases where the basis functions overlap only partially. This way, R is a diagonal matrix,
simplifying the computation of Equation 2.11, but also decreasing the accuracy [18]. In
order to use the classification functionality, users need to initialize a Classification object,
on which they can then call the perform classification method to start the learning
process. They can also call the perform classification dimension wise method if the
classification process should be based on density estimation using the dimension-wise spatially
adaptive refinement method. The Classification class requires the data it is supposed to
perform classification on in the form of a DataSet object: as part of the DEMachineLearning
wrapper, the DataSet class has been implemented to simplify working with the data. It
includes functions such as separating the data based on their labels or scaling it. There
are also optional parameters the user can specify when creating a Classification object,
most notably the splitting percentage which determines how much of the data set is used
for training purposes and how much for evaluation purposes. The training set is further
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split into partitions with data of the same class to prepare for the classification learning
process, as depicted in Equation 2.12. The perform classification method requires λ,
as well as a boolean parameter to determine the use of mass lumping, in order to create
a DensityEstimation object to estimate density functions on all the partitions. Other
parameters, such as the minimal and maximal level of the underlying sparse grid (see
Figure 2.2), may be specified if desired but are optional. The same parameters are required
for the perform classification dimension wise method, but there are more optional
parameters that can be used. Classification can be performed once on each Classification

object, and later evaluated using the evaluate method. This method maps the testing
data to classes using the estimated density functions, and then compares the calculated
classes to the actual classes of this data to determine and finally return the amount of wrong
mappings, the amount of total mappings and the percentage of correct mappings [7].

4.2 The HP Optimization module

As an addition to the sparseSpACE framework I have implemented the HP Optimization

module. This module consists of the HP Optimization class which contains methods for
hyper-parameter optimization, as well as the Optimize Classification class to support
optimizing the hyper-parameters for the classification methods introduced in Section 4.1.

4.2.1 The HP Optimization class

The HP Optimization class has two required inputs: The objective function that needs to be
optimized, as well as a hyper-parameter space that specifies the possible values of the hyper-
parameters. The objective function can theoretically be any function, but in the context
of hyper-parameter optimization it should be one that takes in a set of hyper-parameters,
performs a machine learning task with them and returns an evaluation, as explained in
Section 3.1. In order to optimize the hyper-parameters of a specific machine learning task,
such an objective function needs to be created for it. The input of the objective function
is called x-value, and the corresponding evaluation y-value. The hyper-parameter space is
assumed to contain information about as many hyper-parameters as the objective function
takes in, which is therefore also the dimension of the x-values. This information is encoded as
a multi-dimensional array called hp space, that contains one array for each hyper-parameter.
These start with a string of the type of the specific hyper-parameter that specifies whether it
can assume values within a continuous interval, integer values in an interval int, or exactly
the values given in the form of a list. This descriptor is then followed by values that either
denote the start and end of the interval, or the values in the list. If only one value is given,
this value is assumed to be the only one possible for this hyper-parameter, regardless of the
type. This is handled similarly if the given type is unknown: In this case the first value
given after the descriptor is assumed to be the only one possible. If a value is given instead
of a descriptor, it is handled like an unknown type. If less information than one descriptor
and one value is given it defaults to [’list’, 1], which may however lead to issues during
hyper-parameter optimization if the objective function does not work with this value. Similar
problems may occur of not enough hyper-parameters are specified in hp space. If the best
possible evaluation of the objective function is known, for example 100% or 1 in the case of
evaluating a classification process by the percentage of correct mappings, this may also be
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Algorithm 2: Grid search

1 Function perform GO(fobj, search space, interval levels):
2 if search space not given then
3 search space = create search space(interval levels)

4 for x in search space do
5 y = fobj(x)
6 if y > best y then
7 best y = y
8 best x = x

9 return best x, best y

given to the HP Optimization class through the parameter f max. This is then used to stop
the optimization process if this value is achieved. After creating a HP Optimization object
users can call one of three optimization methods: perform GO for grid search, perform RO

for random search and perform BO for Bayesian optimization. All three take in some kind of
information about the x-values they are supposed to try, and return the best combination of
hyper-parameters found called best x, the evaluation of the objective function there called
best evaluation, as well as a list of all combinations tried and another list of all their
evaluations to help retrace the process.

When calling perform GO, users can either directly specify the search space as an array
containing all x-values they want the algorithm to try, or they can give a value called
interval levels. If no search space is given, the method automatically creates a search
space using this parameter and the information given in hp space by taking roughly
interval level+1 many values from intervals in hp space, all values given in the form of
lists and combining them using the Cartesian product. This, however, may result in a very
large search space, and does not guarantee that the optimum is included in it. The method
then proceeds to iterate through all values in the search space, evaluating all of them on the
given objective function and returning x-value and evaluation of the one that evaluated best.
Algorithm 2 provides a rough depiction of the perform GO method in the form of pseudo-code.

When using perform RO, the users simply need to state how many iterations should be
performed through the parameter amt it. In each iteration, the method creates a random
x-value and evaluates the objective function on it. The random values are based on hp space,
and it is made sure that only values that follow the criteria specified there are created.
After doing this amt it many times, the best x-value found this way and its corresponding
evaluation are returned. A brief depiction of the perform RO method using pseudo-code is
given in Algorithm 3.

Lastly, perform BO also requires only the amount of iterations desired, amt it. The
optional parameters r, δ, a and b are used to calculate β (see Equation 3.7) and default
to r = 3, δ = 0.1, a = 1 and b = 1. The algorithm first initializes Bayesian optimization
with d+ 1 random points, with d being the dimension of the x-values, as proposed in [14].
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Algorithm 3: Random search

1 Function perform RO(fobj, amt it):
2 for n in range (0, amt it) do
3 x = get random x()

4 y = fobj(x)
5 if y > best y then
6 best y = y
7 best x = x

8 return best x, best y

These random points, along with their evaluations, make up the initial evidence set. In
each iteration the current evidence set is used to calculate the surrogate model based on a
Gaussian Process using the squared exponential kernel, as well as the acquisition function
α(x) using GP-UCB, as explained in Subsection 3.2.2. The parameters of the kernel are
chosen to be constants σk = 1 and ln = 0.5, and the measurement noise is set to σε = 0. This
acquisition function is then maximized to obtain new x, as well as rounded to get new x rd,
a value that meets the criteria specified in hp space. If new x rd is not yet included in the
evidence set, it is evaluated on the objective function and added along with its evaluation.
Then the new iteration is started, again calculating the surrogate model and the acquisition
function, but based on the updated evidence set.

If the current evidence set already includes new x rd, new values for β and l are obtained
as explained by Equation 3.9. This does, however, not always help to find a new x-value
that is not already in the evidence set. For example, this may occur if all possible values
specified in hp space are already included in the evidence set. Unfortunately, it is often
unclear why no new value can be found and may be due to numerical inaccuracies or a
bug in the code. If a new x-value is found this way, it and its evaluation are added to the
evidence set. If it is not, the same process to get a new β and l is tried again twice, each
time with increased βh als lh so that more values are tried, as well as an increased penalty
for points x that are already in the evidence set. After that, if still no new x-value has
been found, the algorithm instead generates a random x. If even this way no value can
be found that is not already in the evidence set, the algorithm assumes that hp space has
been exhausted and terminates. Otherwise, the random x and its evaluation are added to
the evidence set. This way, some information is gained that may help to find new points
in the remaining iterations of Bayesian optimization. To help with retracing the steps of
the algorithm, it records in which steps a random value was used in the form of an array
called used random x, and writes this information to the console at the end. After adding
the random x-value and its evaluation to the evidence set, the algorithm continues to the
next iteration. After finishing all iterations, perform BO returns the x-value where the best
evaluation has been found, the corresponding evaluation, the x- and y-values of the evidence
set as well as used random x. A conceptual pseudo code of perform BO can be found in
Algorithm 4.
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Algorithm 4: Bayesian optimization

1 Function perform BO(fobj, amt it, r, δ, a, b):
2 // Create initial evidence set C with random values

3 C = create initial evidence set()

4 for n in range (0, amt it) do
5 // get l always returns a specified constant

6 l = get l(n)
7 β = get beta(n, r, δ, a, b)
8 x = acquire new x(C, n, β, l)
9 // If the x is already in C, get new β and l to get new x

10 if x ∈ C then
11 new β, new l = get new beta and l()

12 x = acquire new x(C, n, new β, new l)

13 // If new x is also in C, get random x

14 if x ∈ C then
15 x = get random x()

16 y = fobj(x)
17 if y > best y then
18 best y = y
19 best x = x

20 // Add new values to the evidence set

21 C.add(x, y)

22 return best x, best y

4.2.2 The Optimize Classification class

The Optimize Classification class was created to support hyper-parameter optimization
of the classification functionality introduced in Section 4.1. It provides objective functions
for classification and dimension-wise classification, as well as hyper-parameter spaces that
can be used as hp space for both. Creating an Optimize Classification object requires
no parameters, but if desired, users may specify the data on which classification should be
performed. They can do so either in the form of a DataSet object or by specifying information
so that a new data set can be created, such as the name of the type of data and the dimension.
Creating a new data set by name offers only a small variety of options, so if a specific
data set is desired it should be passed to the constructor of Optimize Classification

directly. The data set defaults to the “Moons” data set. Users can also optionally specify
some parameters that are used for classification, but that should not be optimized, such as
the maximal level of the underlying sparse grid in the density estimation process max lv

(see Figure 2.2), which is 3 per default. Each Optimize Classification object has two
functions that perform an evaluation at a specific set of hyper-parameters, and therefore
take the role of objective functions. Both take in a list of parameters, create a new
Classification object using the specified data, perform classification with the given
hyper-parameters, and return the evaluation of this classification process in the form of

18



4 Implementation

the percentage of correct mappings. The set of hyper-parameters given to the objective
function are the parameters used for the specific type of classification, for example λ and
mass lumping for both. The function pea classification performs normal classification,
while pea classification dimension wise uses dimension-wise classification, with “pea”
being short for “perform evaluation at”. An Optimize Classification object also provides
two arrays called classification space and class dim wise space. When optimizing
the objective functions, these arrays may be used as hp space, with classification space

being meant for normal classification, while class dim wise space is supposed to be used
for dimension-wise classification. They are, however, not automatically used when their
respective objective function is being optimized, so users can also specify different spaces if
desired. When users want to optimize them, these functions, together with their respective
spaces, can simply be used to create a new HP Optimization object on which optimization
can then be executed.
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In this Chapter, the performance of the hyper-parameter optimization methods presented in
Chapter 4 will be analyzed and compared to that of the open source software hyperopt [20].
The hyper-parameters of pea classification and pea classification dimension wise

on different data sets have been optimized using perform GO, perform RO, perform BO and
hyperopt. The results of all four will be presented and compared, in terms of how good the
hyper-parameter input found is and how quickly it has been found. The data sets used for
this are the “Circles” data set, the “Moons” data set, as well as the “Classification” data set,
the “Blobs” data set and the “Gaussian Quantiles” data set of dimension 2 and 4. In [7], a
short introduction to these data sets is given, as well as an assessment of their usage for
classification purposes. When creating the data sets, their random state is set to 1, making
them the same every time. This helps to compare the optimization algorithms, as they are
used on the exact same problems.

5.1 Hyperopt

“Hyperopt is a Python library for serial and parallel optimization over awkward search
spaces, which may include real-valued, discrete, and conditional dimensions” [20]. It provides
random search, as well as hyper-parameter optimization based on tree parzen estimators [21].
Optimization is executed using the function fmin, which takes in a loss function, a search
space, the preferred optimization algorithm and the maximal amount of evaluations that
should be done in the process. The output of fmin is the input x for which the loss function
is minimal [20]. This is different to my implementation, which searches for the maximum of
an evaluation function. To adjust to this, hyperopt is not directly given one of the evaluation
functions pea classification and pea classification dimension wise, but a function
that returns the result of these functions subtracted from 1. Since the evaluation functions
return the percentage of correct mappings, subtracting them from one gives the percentage
of incorrect mappings, which should be minimized and therefore works as a loss function.
After getting the input x that minimizes this loss function using fmin, its evaluation can be
subtracted from 1 again in order to obtain a result that is comparable to the results of my
implementation. Since both classification and dimension-wise classification have awkward
hyper-parameter search spaces, with for example λ being real-valued and mass lumping
being boolean and therefore discrete, hyperopt is a good choice for optimizing them.
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5.2 Optimization of Normal Classification

In order to compare the hyper-parameter optimization methods on classification using
the specified data sets, an Optimize Classification object is created for each data set.
The pea classification method and the classification space of this object are then
used to create a new HP Optimization object, on which perform GO, perform RO and
perform BO are called. The search space for perform GO is generated automatically using
interval levels = 2. This corresponds to a total of 12 evaluations in the case of normal
classification, ranging from evaluation number 0 to number 11. The other methods are
set to the same total amount of evaluations. Additionally, hyperopt is set up with a
loss function that returns 1 − pea classification, a search space that corresponds to
classification space and 12 as the maximal amount of evaluations. Figure 5.1 describes
the hyper-parameters of normal classification as well as the values they can have, as encoded
in classification space. It should be noted that the minimal level of the underlying
sparse grid, min lv is technically not optimized, as only one possible value for it is specified.
This is because using a higher value for it significantly increases the computational cost of
classification and therefore hyper-parameter optimization. It could, however, be optimized as
well if users define a different search space with more options for min lv. The maximal level
is specified at the creation of the Optimize Classification object and set to max lv = 5
for normal classification. Also noteworthy is that the input value for lambd exp is not

directly used for the regularization parameter λ, but λ = 1−(lambd exp), making λ smaller
when lambd exp is bigger, and λ ∈ (0, 1].

Name Type Values

lambd exp float [0, 20]

massl bool {0, 1}
min lv int {1}

one vs others bool {0, 1}

Figure 5.1: The hyper-parameters of normal classification.

When comparing the four methods, it should be kept in mind that perform RO and
perform BO both use random x-variables, making their performance different every time
they are used. This can be seen when using them on the same data set twice, as depicted
by Figure 5.2. Normal classification on the “Moons” data set is used both times, but
perform RO and perform BO both perform significantly better in Figure 5.2b than they do in
Figure 5.2a, as they reach the evaluation of 0.97 faster. In both cases, perform GO performs
the same, as it always searches through the same values in the same order. Hyperopt can
also be seen to have an element of randomness, as it reaches an evaluation of 0.97 faster
in Figure 5.2a than it does in Figure 5.2b. In both test runs, all optimization algorithms
reach the evaluation 0.97 in the given amount of iterations. In Figure 5.2a it is even reached
within the first 4 iterations, which is fairly fast.
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(a) Example of random search and Bayesian optimization
reaching an evaluation of 0.97 within four evaluations.

(b) Example of random search and Bayesian optimization
reaching an evaluation of 0.97 within one evaluation.

Figure 5.2: Comparison of optimization algorithms using normal classification on the “Moons”
data set twice. The x-axis depicts the number of the current evaluation starting
with number 0, while the y-axis depicts the best evaluation found so far.
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Another interesting aspect to look at is how often perform BO had to use random values.
As explained in Subsection 4.2.1, when the acquisition function gets stuck at one point, the
last resort to get a new value is to generate a random x-value. At the end of perform BO it
is written to the console and returned in what steps random values have been needed, but it
is not depicted in the graphs. In the case of normal classification on the “Moons” data set,
random values have been used in every step. In such cases perform BO is unfavorable in
comparison to perform RO, as both only use random values, but perform BO requires more
computational effort.

It is also interesting to compare different input points and their evaluations, as this may
give an insight as to which hyper-parameters are more important than others, and whether
specific settings seem to generally be good. For this purpose, Figure 5.3 gives all the best
values for normal classification on the “Moons” data set that have been found by the different
optimization algorithms, and Figure 5.4 all the values evaluated by perform GO together
with their evaluations. Both are taken from the same run as the values for Figure 5.2.
In this case, it is noteworthy that two of four best input values found have massl = 1
and one vs others = 0, raising the suspicion that these values may be particularly good.
However, the evaluations in Figure 5.4 show that there are several other values for which
the evaluation of 0.97 is reached. The values there suggest that lambd exp = 0.0 performs
particularly well, as all such input values have an evaluation of 0.97. Additionally, all other
values that reach an evaluation of 0.97 have massl = 1, suggesting that this value may also
be particularly good.
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Algorithm lambd exp massl min lv one vs others

GO 0.0 0 1 0

RO 2.52.. 1 1 0

BO 14.51.. 1 1 0

hpo 6.92.. 1 1 1

Figure 5.3: The best input values found for normal classification on the “Moons” data set.

No. lambd exp massl min lv one vs others evaluation

0 0.0 0 1 0 0.97

1 0.0 0 1 1 0.97

2 0.0 1 1 0 0.97

3 0.0 1 1 1 0.97

4 10.0 0 1 0 0.94

5 10.0 0 1 1 0.929..

6 10.0 1 1 0 0.97

7 10.0 1 1 1 0.97

8 20.0 0 1 0 0.94

9 20.0 0 1 1 0.929..

10 20.0 1 1 0 0.97

11 20.0 1 1 1 0.97

Figure 5.4: All input values evaluated by perform GO for normal classification on the “Moons”
data set, in the order they were evaluated, together with their evaluations.
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In Figs. 5.5 to 5.8 the optimization algorithms are compared on normal classification on
the other data sets. For each data set, a graph like Figure 5.2 is given, which depicts the
best evaluation found in a specific number of evaluations by each optimization algorithm.
The input values where this best evaluation was reached is then given in a table similarly
to Figure 5.3, but with shortened notations. In these tables, “GO”, “RO”, “BO” and “hpo”
stand for perform GO, perform RO, perform BO and hyperopt, while “Algo.” is short for
“Algorithm”, “λ exp” is lambd exp, “mnlv” is min lv and “ovo” stands for one vs others.

(a) Normal classification on the “Circles” data set.

Algo. λ exp massl mnlv ovo

GO 10.0 0 1 0

RO 16.57.. 0 1 0

BO 9.21.. 0 1 0

hpo 8.21.. 0 1 0

(b) The best input values found for normal
classification on the “Circles” data set.

Figure 5.5: Comparison of optimization algorithms using normal classification on the data
sets “Circles”
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(a) Normal classification on the “Classification” data set of
dimension 2.

(b) Normal classification on the “Classification” data set of
dimension 4.

Algo. λ exp massl mnlv ovo

GO 0.0 0 1 0

RO 0.35.. 0 1 1

BO 1.76.. 1 1 1

hpo 1.4.. 0 1 0

(c) The best input values found for normal
classification on the “Classification” data
set of dimension 2.

Algo. λ exp massl mnlv ovo

GO 0.0 0 1 0

RO 17.32.. 1 1 0

BO 4.79.. 1 1 1

hpo 10.03.. 1 1 0

(d) The best input values found for normal
classification on the “Classification” data
set of dimension 4.

Figure 5.6: Comparison of optimization algorithms using normal classification on the “Clas-
sification” data sets of dimensions 2 and 4.
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(a) Normal classification on the “Blobs” data set of dimension 2.

(b) Normal classification on the “Blobs” data set of dimension 4.

Algo. λ exp massl mnlv ovo

GO 0.0 0 1 0

RO 15.84.. 1 1 0

BO 17.01.. 1 1 0

hpo 3.11.. 1 1 0

(c) The best input values found for normal
classification on the “Blobs” data set of
dimension 2.

Algo. λ exp massl mnlv ovo

GO 10.0 0 1 1

RO 7.6.. 0 1 1

BO 19.91.. 0 1 1

hpo 19.05.. 0 1 1

(d) The best input values found for normal
classification on the “Blobs” data set of
dimension 4.

Figure 5.7: Comparison of optimization algorithms using normal classification on the “Blobs”
data sets of dimension 2 and 4.
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(a) Normal classification on the “Gaussian Quantiles” data set of
dimension 2.

(b) Normal classification on the “Gaussian Quantiles” data set of
dimension 4.

Algo. λ exp massl mnlv ovo

GO 10.0 0 1 0

RO 12.32.. 0 1 0

BO 6.75.. 0 1 0

hpo 8.42.. 0 1 0

(c) The best input values found for normal
classification on the “Gaussian Quantiles”
data set of dimension 2.

Algo. λ exp massl mnlv ovo

GO 0.0 0 1 1

RO 4.07.. 1 1 1

BO 0.28.. 0 1 1

hpo 0.47.. 0 1 1

(d) The best input values found for normal
classification on the “Gaussian Quantiles”
data set of dimension 4.

Figure 5.8: Comparison of optimization algorithms using normal classification on the
“Gaussian Quantiles” data sets of dimensions 2 and 4.
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It is noteworthy that all four algorithms tend to reach the same best evaluation. The
evaluations reached differ significantly for the different data sets, with only an evaluation
of 0.48 being reached for “Gaussian Quantiles” of dimension 4 (see Figure 5.8b) while
many others reach an evaluation above 0.90. The best evaluations have also been found at
relatively different input values overall, suggesting that there are no best settings that apply
for normal classification all the time, but that it depends on the data set. For the same data
set, however, there are some settings that seem to be particularly good, such as massl = 0
and ovo = 0 for the “Circles” data set (Figure 5.5b), and the ”Gaussian Quantiles” data
set of dimension 2 (Figure 5.8c). For all data sets, perform BO has had to use a random
x-value in every step, suggesting that it generally more advisable to use perform RO.

For normal classification, perform GO has also performed well, and in some cases, such as
Figure 5.7a, it has even reached an evaluation of above 0.92 before all other algorithms. This
may happen if the best configuration is among the first values tried. It should, however, be
noted that all other values in the search space will still be evaluated, in case a better value can
be found. Lastly, it should be noted that the data set used influences how time-intensive the
classification process, and therefore the optimization of its hyper-parameters is. To optimize
the hyper-parameters of normal classification on the ”Moons” data set, each method has
only needed about 5 seconds. For normal classification on the ”Blobs” data set of dimension
4, they have taken up to 3 minutes.

5.3 Optimization of Dimension-Wise Classification

Comparing the optimization methods on dimension-wise classification of different data sets is
similar to that of normal classification: An Optimize Classification object is created for
each data set, and then pea classification dimension wise and class dim wise space

are used to create a new HP Optimization object. There are also more hyper-parameters
that are being optimized. The first three, lambd exp, massl and min lv are the same as
for normal classification. The fourth, ovo ec is similar but actually encodes two dependent
parameters: When one vs others is activated, one can also choose to use an error calculator
for dimension-wise classification. When ovo ec = 0, one vs others is deactivated and
therefore no error calculator can be used. When ovo ec = 1, one vs others is activated
but no error calculator is used, and when ovo ec = 2, an error calculator is used. The last
parameter, max evaluations, is an integer between 2 and a parameter max evals, that
can be specified when creating an Optimize Classification object and is 256 per default.
For the data sets of dimension 4 it is increased to max evals = 1000. This parameter
controls how often the underlying sparse grid is refined: The sparse grid starts with min lv

and max lv and is then refined until the amount of grid points exceeds max evaluations.
This also implies that the sparse grid is not refined at all if the first grid used already has
more points than max evaluations. As with normal classification, min lv is always 1. The
maximal level is set to max lv = 3.
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Name Type Values

lambd exp float [0, 20]

massl bool {0, 1}
min lv int {1}
ovo ec int {0, 1, 2}
margin float [0, 1]

rebalancing bool {0, 1}
use relative surplus bool {0, 1}

max evaluations int [2, max evals]

Figure 5.9: The hyper-parameters of dimension-wise classification.

Due to the amount of hyper-parameters, the search space for perform GO becomes very
large. If interval levels is set to 2 again, this would correspond to a total of 648 evalua-
tions. That is why it is decreased to interval levels = 0, meaning that only one value
is taken from each interval, in this case the smallest. This makes a total of 24 evaluations.
As before, perform RO, perform BO and hyperopt are set to the same amount of iterations.
The data sets on which dimension-wise classification is executed are the same as for normal
classification. The comparisons of the optimization algorithms on the different data sets are
illustrated by Figs. 5.10 to 5.13.

As with normal classification, perform BO had to use random values in every step of every
optimization process, meaning that it has not performed as intended in every test case.
While this may be due to numerical inaccuracies, it may also be due to a bug in my code that
has not yet been found. This implies that perform RO is generally favorable. The first thing
that is noteworthy about the comparisons is that perform GO tends to perform a lot worse
than the other algorithms. This is likely because its search space only contains values that
perform relatively poorly. The evaluations reached on the same data set are relatively similar
again - in some cases with the exception of perform GO - but they also differ significantly for
different data sets. It may be assumed that classification on the data sets where only a low
accuracy is reached is generally harder, for both normal and dimension-wise classification.
With the exception of the “Classification” data set of dimension 4, and the ”Blobs” data
set of dimension 2, dimension-wise classification has reached slightly higher evaluations
than normal classification on all data sets. The best values also seem to have changed, as
for example the best evaluations for the “Circles” data set do not have massl = 0 and
ovo ec = 0, but they do not have a similar trend either. However, it can also be seen that
the best values are not always completely different, as for the “Gaussian Quantiles” data set
of dimension 2 all best values still include massl = 0.
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5 Results

(a) Dimension-wise classification on the “Moons” data set.

(b) Dimension-wise classification on the “Circles” data set.

Algo. Result

GO (0.0, 0, 1, 1, 0.0, 0, 0, 2)

RO (6.68.., 0, 1, 2, 0.908.., 1, 0, 15)

BO (7.84.., 1, 1, 0, 0.298.., 1, 0, 179)

hpo (7.724.., 1, 1, 2, 0.012.., 1, 1, 220)

(c) The best input values found for dimension-
wise classification on the “Moons” data
set.

Algo. Result

GO (0.0, 0, 1, 1, 0.0, 0, 0, 2)

RO (5.86.., 1, 1, 1, 0.049.., 0, 0, 205)

BO (12.114.., 1, 1, 2, 0.08.., 0, 0, 199)

hpo (3.691.., 0, 1, 0, 0.03.., 0, 0, 201)

(d) The best input values found for dimension-
wise classification on the “Circles” data
set.

Figure 5.10: Comparison of optimization algorithms using dimension-wise classifica-
tion on the data sets “Moons” and “Circles”. The results are given
in the form (lambd exp, massl, min lv, ovo ec, margin, rebalancing,
use relative surplus, max evaluations).
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5 Results

(a) Dimension-wise classification on the “Classification” data
set of dimension 2.

(b) Dimension-wise classification on the “Classification” data
set of dimension 4.

Algo. Result

GO (0.0, 0, 1, 0, 0.0, 0, 0, 2)

RO (12.287.., 1, 1, 2, 0.61.., 1, 1, 183)

BO (12.323.., 1, 1, 2, 0.273.., 0, 0, 52)

hpo (15.553.., 0, 1, 1, 0.85.., 1, 1, 51)

(c) The best input values found for dimension-
wise classification on the “Classification”
data set of dimension 2.

Algo. Result

GO (0.0, 0, 1, 0, 0.0, 0, 0, 2)

RO (19.953.., 1, 1, 2, 0.804.., 0, 0, 683)

BO (5.157.., 1, 1, 0, 0.604.., 1, 1, 121)

hpo (7.691.., 1, 1, 1, 0.82.., 1, 0, 216)

(d) The best input values found for dimension-
wise classification on the “Classification”
data set of dimension 4.

Figure 5.11: Comparison of optimization algorithms using dimension-wise classification
on the “Classification” data sets of dimension 2 and 4. The results are
given in the form (lambd exp, massl, min lv, ovo ec, margin, rebalancing,
use relative surplus, max evaluations).

32



5 Results

(a) Dimension-wise classification on the “Blobs” data set of
dimension 2.

(b) Dimension-wise classification on the “Blobs” data set of
dimension 4.

Algo. Result

GO (0.0, 0, 1, 1, 0.0, 0, 0, 2)

RO (4.826.., 1, 1, 2, 0.417.., 0, 0, 215)

BO (19.875.., 1, 1, 0, 0.753.., 0, 1, 82)

hpo (7.91.., 0, 1, 1, 0.995.., 1, 1, 101)

(c) The best input values found for dimension-
wise classification on the “Blobs” data set
of dimension 2.

Algo. Result

GO (0.0, 0, 1, 0, 0.0, 0, 0, 2)

RO (15.801.., 0, 1, 2, 0.97.., 1, 0, 743)

BO (1.916.., 0, 1, 1, 0.706.., 0, 1, 296)

hpo (6.329.., 1, 1, 2, 0.535.., 1, 1, 133)

(d) The best input values found for dimension-
wise classification on the “Blobs” data set
of dimension 4.

Figure 5.12: Comparison of optimization algorithms using dimension-wise classification
on the “Blobs” data sets of dimension 2 and 4. The results are given
in the form (lambd exp, massl, min lv, ovo ec, margin, rebalancing,
use relative surplus, max evaluations).
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5 Results

(a) Dimension-wise classification on the “Gaussian Quantiles”
data set of dimension 2.

(b) Dimension-wise classification on the “Gaussian Quantiles”
data set of dimension 4.

Algo. Result

GO (0.0, 0, 1, 1, 0.0, 0, 0, 2)

RO (15.447.., 0, 1, 2, 0.475.., 1, 1, 169)

BO (5.581.., 0, 1, 1, 0.559.., 0, 1, 161)

hpo (5.391.., 0, 1, 2, 0.558.., 0, 1, 240)

(c) The best input values found for dimension-
wise classification on the “Gaussian Quan-
tiles” data set of dimension 2.

Algo. Result

GO (0.0, 0, 1, 1, 0.0, 0, 0, 2)

RO (1.311.., 0, 1, 1, 0.172.., 0, 0, 570)

BO (17.02.., 1, 1, 2, 0.369.., 1, 1, 755)

hpo (9.747.., 0, 1, 1, 0.428.., 1, 0, 108)

(d) The best input values found for dimension-
wise classification on the “Gaussian Quan-
tiles” data set of dimension 4.

Figure 5.13: Comparison of optimization algorithms using dimension-wise classification on
the “Gaussian Quantiles” data sets of dimension 2 and 4. The results are
given in the form (lambd exp, massl, min lv, ovo ec, margin, rebalancing,
use relative surplus, max evaluations).
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6 Conclusion

“How can the parameters of a given machine learning algorithm be optimized?”. In order to
discuss this question, this thesis has first introduced the concept of density estimation, a
tool that estimates the underlying density function of a given data set. Then, two common
machine learning algorithms, classification and clustering, have been presented. Classification
is given a data set where each data point is labeled with a “class”, and aims to understand
the structure of these classes. Clustering operates on a set of unlabeled data and searches
for “interesting structure” in it. Both can be implemented based on density estimation.

It has then been explained that for machine learning algorithms, some parameters need
to be set before the learning process. These are called hyper-parameters. Optimizing
them is a non-trivial task, and doing so manually requires expert knowledge that is often
not available. That is why hyper-parameter optimization methods aim to automatize this
process. Mathematically, they maximize an objective function that maps a given set of
hyper-parameters to an evaluation. Three common methods for this are grid search, random
search and Bayesian optimization. Grid Search is a type of exhaustive search, where all
values specified in a search space are evaluated to find the best one. Random search searches
through random values, while Bayesian optimization aims to learn from former evaluations
in order to estimate what values may be good.

These three methods have been implemented in the scope of this thesis. They, as well as
the open source software hyperopt, have then been used to optimize the hyper-parameters
of normal and dimension-wise classification, two classification algorithms that have been
previously implemented on the sparseSpACE framework. These tests have shown that
the performance depends strongly on the data set on which classification is performed.
However, in most cases a relatively good configuration with an accuracy of above 90% has
been obtained. It was also shown that the performance of grid search worsens when there
are more hyper-parameters: For normal classification, which has four hyper-parameters,
grid search usually reached an equally high evaluation as the other methods, while it
was significantly worse for dimension-wise classification, which has eight hyper-parameters.
This is likely because the search-space used for dimension-wise classification included only
few values for each hyper-parameter, and probably left out other values that would have
produced a better performance. If more values per hyper-parameter are included, however,
the size of the search space grows considerably, and thus the computational cost. Lastly, my
implementation of Bayesian optimization was shown to be flawed, as it always resorts to
evaluating random values (for more information on this, please refer to Subsection 4.2.1).
This means it performs similarly to random search, but requires more computational effort.

Therefore, future research could be dedicated to understanding this flaw and improving
on it. Additionally, other hyper-parameter optimization methods may be implemented, such
as population based methods and different types of Bayesian optimization.
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