
Computational Science and Engineering
(International Master’s Program)

Technische Universität München

Master’s Thesis

Implementation of the Space Time Finite
Element Method within the AdhoC++

Framework

Martin Frank

Computational Science and Engineering
(International Master’s Program)

Technische Universität München

Master’s Thesis

Implementation of the Space Time Finite Element
Method within the AdhoC++ Framework

Author: Martin Frank
Examiner: Univ.-Prof. Dr. Hans-Joachim Bungartz
Assistant advisor: M.Sc.(hons) Hayden Liu Weng
Submission Date: July 12, 2021

I hereby declare that this thesis is entirely the result of my own work except where other-
wise indicated. I have only used the resources given in the list of references.

July 12, 2021 Martin Frank

Acknowledgments

First, I would like to thank Univ.-Prof. Dr. Hans-Joachim Bungartz for giving me the
opportunity to write my thesis at the Chair of Scientific Computing and for providing me
with the necessary access to computing resources.

Next, I would like to thank M.Sc.(hons) Hayden Liu Weng for supervising the thesis.
With his patience and motivation, he created a wonderful working environment that en-
couraged me to do my best. Whenever challenging times occurred, he supported me with
good advice and helpful tips.

I would like to give a very special thanks to Dr.-Ing. habil. Stefan Kollmannsberger on
behalf of the group Simulation in Applied Mechanics for providing access to AdhoC++.
I have benefited a lot from their previous work and expertise and without AdhoC++ the
thesis would not have been the same.

I would also like to thank my family for their unconditionally support and love. Without
your encouragement and care, I would have never had the same opportunities.

A special thanks to all my friends who encouraged and supported me during the thesis,
but also provided the necessary distraction from the thesis itself or the pandemic.

Last but not least, I would like to thank my girlfriend Sonja, who not only lovingly
supported me during the master thesis, but also during the whole study. Thank you for
always being by my side.

vii

Abstract

The aim of this work is to apply the Space Time Finite Element Method on problems
of additive manufacturing, such as Selective Laser Melting, within the parallel framework
AdhoC++. Therefore, the nonsymmetric matrix discretizations for the heat and latent heat
equation are derived and solved with direct solvers and GMRES. The results from the
linear and nonlinear heat equation are compared to analytic solutions, and convergence
studies of the applications are presented. Throughout the thesis, the differences between
the Space Time Finite Element Method and Finite Element Method are highlighted, result-
ing in a final benchmark of the two methods. The solutions of the latent heat equation,
which results in a phase change, are compared against the solutions of a Stefan problem
and a commercial Finite Element Method software package. Additional insights regard-
ing stability, computational implementation and parallel aspects of the Space Time Finite
Element Method are given.

ix

Contents

 Acknowledgements vii

 Abstract ix

 1 Introduction and outline 1
 1.1 Introduction . 1
 1.2 Outline . 3

 2 Finite Element Method for the heat equation 5
 2.1 Introduction to the heat equation . 5
 2.2 The weak solution of the heat equation . 6
 2.3 Fundamentals of FEM . 7

 2.3.1 Basis functions . 7
 2.3.2 Numerical integration . 9
 2.3.3 Discrete solution . 10
 2.3.4 Initial value problem . 11
 2.3.5 Refinement strategies . 12

 3 Space Time Finite Element Method for the heat equation 15
 3.1 Derivation of the Space Time Finite Element Method 15
 3.2 Space time slab . 17

 4 Nonlinear Finite Element Method 19
 4.1 Newton solver . 19
 4.2 Nonlinear Finite Element Method . 20
 4.3 Nonlinear Space Time Finite Element Method 21

 5 Solver 25
 5.1 Direct solvers . 25
 5.2 Conjugate gradient method . 26
 5.3 GMRES . 27
 5.4 Preconditioning . 28

 5.4.1 Jacobi preconditioner . 28
 5.4.2 Neumann preconditioner . 29

xi

Contents

 6 Implementation 31
 6.1 Implementation of the STFEM . 31

 6.1.1 Gradient . 32
 6.1.2 Physics . 32
 6.1.3 Implemented system equations . 32

 6.2 Boundary conditions . 33
 6.3 Implementation of the mesh . 33
 6.4 Parallel implementation . 33
 6.5 Space time slab . 34

 7 Verification 37
 7.1 Travelling Gaussian function . 37
 7.2 Domain and boundary specification . 38
 7.3 Linear transient 1D . 39
 7.4 Linear transient 2D . 41
 7.5 Nonlinear problem 1D . 43
 7.6 Verification of the slab . 44
 7.7 Verification of the time order . 46
 7.8 Comparison of STFEM and FEM . 48

 8 Phase change with Space Time Finite Elements 51
 8.1 Introduction to the latent heat model . 51
 8.2 STFEM for the phase change . 53
 8.3 Implementation of the latent heat equation 54
 8.4 Verification . 55

 8.4.1 Melting of a bar . 55
 8.4.2 Freezing of a liquid square . 58

 8.5 Summary of phase change . 61

 9 Summary and Conclusion 63
 9.1 Summary . 63
 9.2 Conclusion . 64
 9.3 Outlook . 64

 9.3.1 Element ratio and anisotropic elements 65
 9.3.2 Solver . 65
 9.3.3 Benchmark . 65
 9.3.4 Time scale . 65
 9.3.5 Space dimension . 66

xii

Contents

 List of Figures 69

 List of Tables 71

 Bibliography 77

xiii

1 Introduction and outline

1.1 Introduction

From an industrial perspective, manufacturing is an expensive and limiting part of de-
veloping new machines and products. The ability to create objects from the developers
dreams can make the difference between an average and a state of the art product. How-
ever, the initial shape of the parts is not the key to success: adaption steps within the var-
ious stages of the overall component development must be done efficiently with respect
to costs, but still provide the flexibility to adapt to other components. Previous manufac-
turing techniques as the injection molding process or CNC milling made some changes
infeasible, not only in terms of costs, but also with respect to the geometric shapes [33].
As a result, efficient ways of creating and adapting new products were the focus of many
research groups.

The outcomes are additive manufacturing solutions, such as Selective Laser Melting
(SLM) or Laser Powder Bed Fusion (LPBF). Additive manufacturing is rapidly growing
due to its benefits regarding fast prototyping, green technology and production-on-demand.
The manufacturing relies on distributing several layers to obtain the geometry. Each in-
dividual layer is obtained by locally melting material powder with a laser beam to create
a melting pool. The melting pool solidifies with the previous layer. By solidification and
melting of the material in combination with support layers, arbitrary geometries can be
manufactured. These flexible shapes with varying densities are often used for applications
in aerospace [11] or health medicine [56].

As the method is used for rapid prototyping, the production defects should be as low
as possible. To decrease them, simulations help to better understand the behaviour and
adapt the machines to higher precision. The simulations must tackle two physical phe-
nomena to obtain a reasonable geometry. Firstly, the layers are added through melted
metal which solidifies during the process. This process requires multidimensional phase
change modeling to obtain a reasonable temperature within the added layer. In particular,
the moving boundary of the molten material and the complex heat flux across the phase
change require nonlinear modeling to obtain valid simulation results. Secondly, the size of
the products change due to thermal compression and expansion. Hence, the challenge in
terms of simulating the SLM process relies not only on phase change modeling, but also on
thermo-structural analysis. During compression and expansion, internal stresses may lead
to deformation or failure of the prototype [10]. As a result, only coupled simulations may
predict the final geometry and the respective stresses in order to decrease the production
defects.

1

1 Introduction and outline

Over the past decades, the Finite Element Method (FEM) has become a well established
technique for solving elliptic and parabolic problems. This includes thermo-structural cou-
pling problems with respect to deformation. For the structural equations, the FEM is the
method of choice and by now various descriptions exist. The temperature for coupling
within solid materials can be obtained by modeling and solving the heat equation. To
model the SLM, a liquid part needs to be approximated as well. The final temperature
from the phase change can be obtained efficiently by solving the latent heat equation. The
latent heat equation is capable of providing a solution for the liquid and solid phase. Pre-
vious applications of the latent heat equation within coupled Finite Element simulations
have led to promising results for the SLM [40 , 42 , 43 , 44].

In addition, the simulations are time-dependent problems, as the distribution of the lay-
ers is done within several minutes or hours. Time stepping schemes are still an open topic
of research, because every method has advantages and disadvantages. Previous simula-
tions used various explicit, implicit or multi-timestepping schemes for simulating the time
frame [15].

Another approach to obtain a solution for the time domain is to discretize the domain
with Finite Elements not only in space, but also in time. This so called Space Time Finite
Element Method (STFEM) showed promising results in structural analysis [6] and electro-
dynamics [14]. For the STFEM, the order of the error within time can be adapted by using
low or high order elements within the time direction. Moreover, the resulting large, non-
symmetric matrices can now be solved very efficiently on parallel clusters. In contrast to
the previous time stepping methods, the solution is obtained continuously over time. This
continuous-time representation can be advantageous to gain new insights into the physical
phenomena and simplify time synchronisation within coupled simulations. Previous work
on the STFEM with focus on additive manufacturing has led to interesting results [58], but
did not provide the necessary coupling algorithms, as they would be needed to model the
coupled SLM process. As a result, a framework that is capable of modeling thermostruc-
tural analyses and providing coupling interfaces for different meshes is needed.

The AdhoC++ framework already focuses on additive manufacturing [36 , 37] and pro-
vides some coupling algorithms. It is capable of solving the respective problems in par-
allel [34] and provides advanced mesh refinement strategies to increase the local solution
quality [59]. Therefore, the goal of this thesis is to apply the STFEM to additive manufac-
turing problems within the AdhoC++ framework. This includes implementing the STFEM
within AdhoC++ for the linear and nonlinear heat equation to simulate the temperature
distribution and revise the important theoretical aspects of the STFEM. Additionally, the
STFEM should be applied to the nonlinear latent heat equation in order to verify if it is
capable of simulating the phase change within the manufacturing process of SLM.

2

1.2 Outline

1.2 Outline

First, the FEM for the heat equation is derived in chapter 2 . This includes the problem
formulation, the derivation of the weak equation and a recapitulation of the fundamentals
to obtain a discrete solution. In chapter 3 , the problem formulation is adapted to apply the
STFEM to the heat equation. Additionally, the space time slab is introduced and its ad-
vantages are highlighted. The nonlinear problem formulation for both methods is found
in chapter 4 , where additionally the solution procedures are explained. Chapter 5 shortly
revises the solver and preconditioner to solve the symmetric and nonsymmetric matrix
system from the FEM and STFEM. The implementation concepts are explained in Chap-
ter 6 . First, the AdhoC++ framework is introduced and afterwards, the implementation
concepts of the STFEM for physics, mesh and space time slab are presented. Chapter 7

compares the obtained results for STFEM to analytic solutions and connects theoretical as-
pects of the time order with the results from STFEM. Finally, the FEM is compared against
the STFEM. The STFEM is applied to the nonlinear latent heat equation in chapter 8 . Two
examples modeling the phase change are presented. The thesis is concluded in chapter 9

with a summary, a conclusion and an outlook on open topics.

3

2 Finite Element Method for the heat
equation

This chapter introduces the fundamental concepts of the FEM by applying them to the
heat equation. First, the partial differential heat equation in the strong form is explained
in section 2.1 with the according problem formulation. The weak formulation of the heat
equation for the FEM is derived in section 2.2 . In order to discretize the weak equation,
section 2.3 states the basis functions and numerical integration, which are used to obtain
the discrete solution. This includes an overview of different explicit and implicit meth-
ods for solving the initial problem. The fundamentals of FEM are closed by revising the
refinement strategies.

2.1 Introduction to the heat equation

The heat equation is a partial differential equation (PDE), which models the evolving tem-
perature field T during the time t due to diffusion in a domain Ω. It can be derived from
the conservation of energy within the domain, since for every point of the domain the heat
flux must be balanced according to the sources and sinks. The equation can be stated as:

ρc
∂T

∂t
−∇ · (k∇T) = f(x) in Ω. (2.1)

The material parameters ρ, c, k describe the density, heat capacity and thermal conductiv-
ity respectively. The sinks and sources are defined within f(x).

In order to find a valid solution of the PDE, the boundary conditions must be prescribed,
resulting in a boundary value problem. The boundary conditions Γ can be split into Dirich-
let ΓD, Neumann ΓN and Robin ΓR boundaries, which need to be well defined over the
whole boundary ∂Ω:

∂Ω = ΓN ∪̇ ΓD ∪̇ ΓR. (2.2)

Dirichlet boundary conditions from equation 2.3 prescribe a specific Temperature T0 at
the boundary, whereas the Neumann boundary ΓN in equation 2.4 specifies the gradient
of T into a direction at the boundary. The Neumann boundaries can be used to establish

5

2 Finite Element Method for the heat equation

physical boundary conditions resulting from convection or radiation.

T = T0 in ΓD (2.3)

−kn
∂T

∂n

∣∣∣∣
ΓN

= q0 in ΓN (2.4)

To describe a boundary with conduction and convection, Robin or mixed boundary con-
ditions with an appropriate convection coefficient h and temperature of the boundary ma-
terial TBCM , may be applied:

−kn
∂T

∂n

∣∣∣∣
ΓN

+ h · (T − TBCM) = 0 in ΓR. (2.5)

Since mainly Dirichlet boundary conditions are used in this thesis, additional information
can be found in [32 , 52] and the Robin boundary is not considered further, i.e. ΓR = 0.

The material parameters additionally may depend on space, time and temperature. The
time interval is specified within τ . Thus, equation 2.1 with the boundary conditions 2.2 -
 2.4 is adapted to obtain the final initial boundary value problem:

ρ(x, T)c(x, T)
∂T

∂t
−∇ · (k(x, T)∇T) = f(x, t) in Ω× τ (2.6)

T (x, 0) = Tinit(x, t) in ΓD × τ (2.7)

−kn
∂T

∂n

∣∣∣∣
ΓN

= qinit(x, t) in ΓN × τ. (2.8)

The solution T (x, t) of the equation is a scalar field varying within space and time. As the
material parameters also depend on the temperature field T , complex material descrip-
tions may change the PDE 2.6 into a nonlinear PDE.

2.2 The weak solution of the heat equation

Finding a solution which fullfills equation 2.6 for every point in the solution domain is
not always feasible due to the arising arbitrary complex domains or solutions [8]. There-
fore, the FEM provides a remedy, since it satisfies the equation only in a weak or integral
sense. The weak form can be derived in two steps. First, multiply the equation with a test
function φ and integrate over the domain:∫

Ω
ρ(x, T)c(x, T)

∂T

∂t
φ dΩ−

∫
Ω
∇ · (k(x, T)∇T)φ dΩ =

∫
Ω
f(x, t)φ dΩ. (2.9)

The divergence theorem is applied to the second term in order to eliminate the second
order derivatives:

−
∫

Ω
∇ · (k(x, T)∇T)φ dΩ =

∫
Ω
∇φ(k(x, T)∇T) dΩ−

∫
∂Ω
k(x, T)∇Tφ d∂Ω. (2.10)

6

2.3 Fundamentals of FEM

This results in the equation weak form:∫
Ω
ρ(x, T)c(x, T)

∂T

∂t
φ dΩ +

∫
Ω
∇φ(k(x, T)∇T) dΩ =

∫
Ω
f(x, t)φ dΩ +∫

∂Ω
k(x, T)∇Tφ d∂Ω.

(2.11)

Typically, the solution space X and the test function space Φ are both chosen from the
Hilbert space H1(Ω):

X = {T |T ∈ H1(Ω), T = T0 ∀ x ∈ ΓD} (2.12)

Φ = {φ|φ ∈ H1(Ω), φ = 0 ∀ x ∈ ΓD}. (2.13)

This is the so called Bubnov-Galerkin approach, since the same space is used for the test
and solution functions. The surface integral reduces to:

∫
∂Ω
k(x, T)∇Tφ d∂Ω =

���
���

���
���:0∫

∂ΓD

k(x, T)∇Tφ dΓD +

∫
∂ΓN

k(x, T)∇Tφ dΓN , (2.14)

as the test space is 0 per definition on the Dirichlet boundary.

2.3 Fundamentals of FEM

This chapter revises the basics of the standard FEM approximation. It includes a short
introduction regarding basis functions and integration techniques in order to derive the
semi-discrete equation. An outlook is given to discretize the solution within the time do-
main. This includes a recap of the explicit or implicit time stepping methods. Finally,
different refinement strategies are presented.

2.3.1 Basis functions

The basis functions need to satisfy certain properties as consistency and partition of unity,
which are defined as:

n∑
i=0

Ni(x) = 1 and ḡ(x) =
n∑
i=0

Ni(x) · gi, (2.15)

in order to provide a valid basis for the elements [2]. The basis functions can either be
defined locally on a reference element and mapped to the global problem or globally be
defined with respect to the whole domain. This depends on the implementation of the
mesh and its refinement strategy [62]. The standard hat functions are usually defined with
Lagrange polynomials on the reference interval. The coefficients gi for the polynomial can

7

2 Finite Element Method for the heat equation

Figure 2.1: Comparison of the basis functions, adapted version from [59]

easily be computed by using the fact that the Lagrange polynomial at the point xk equals
to the function:

li(xk) = δik =

®
1, if i = k
0, if i 6= k

, (2.16)

where li(x) is defined as:

li(x) =
n∏

j=0,j 6=i

x− xj
xi − xj

. (2.17)

The final polynomial approximation ḡ(x) of the function g(x) can be stated as:

ḡ(x) =

n∑
i=0

li(x) · g(xi). (2.18)

A drawback of elements with Lagrange basis is that during p-refinement methods the
basis functions and the coefficients of the functions inside the refinement area need to be
recomputed. A recomputation of the basis functions is needed as the points xk change
with higher order. The integrated Legendre polynomials provide a solution, since the
polynomial of higher order is orthogonal to all polynomials of lower order. The integrated
Legendre polynomials can be defined as:

Pn =
1

2n · n!
· d

n

dxn
((x2 − 1)n) (2.19)∫ b

a
w(x)Pn(x)Pm(x)dx = 0. (2.20)

Hence, during p-refinement, the basis functions are not recomputed and an additional ba-
sis can simply be inserted. Figure 2.1 visualizes the differences between the Lagrange and
Legendre basis functions. Only the coefficients of the function gi need to be approximated

8

2.3 Fundamentals of FEM

with the correspondingL2-Projection. For theL2-Projection, the residual between the error
and the polynomial or function space φ should be minimized as stated in equation:∫

Ω
(g − PL2g)φdΩ ∀φ ∈ Φh, (2.21)

where P 2
L is the interpolant and g is the function to project. The resulting system:

Mĝ = G (2.22)

must be solved for the coefficients of the degrees of freedoms (DOFs) ĝ, where M and G
are specified as:

M =

∫
Ω
NTNdΩ and G =

∫
Ω
NT gdΩ. (2.23)

In addition, the condition number of the global matrix system highly depends on the
choice of basis, therefore a suited basis, such as the integrated Legendre, may lead to less
computational effort.

2.3.2 Numerical integration

The Gauss-Quadrature is preferred for numerical integration, since it is able to approxi-
mate a polynomial of degree p = 2n + 1 exactly. The number of integration points can
be stated as n, where the polynomial degree should be previously defined within the ba-
sis functions. The approximation is done with the precalculated integration weights wi,
where the functions need to be evaluated at the integration points xi:∫ b

a
g(x)dx ≈

n∑
i=0

wi · g(xi). (2.24)

For computational efficiency, the integration points xi are precomputed on the unit inter-
val ξ ∈ [−1, 1] and mapped to the global domain [a, b] or point xglob with the mapping Q
and the Jacobian matrix J .∫ b

a
g(x)dx =

∫ 1

−1
g(xglob)|J |dξ ≈

n∑
i=0

wi · g(xglob)|J | (2.25)

xglob = Q(ξi) and J =
∂x

∂ξ
=

∂x
∂ξ1

∂y
∂ξ1

∂z
∂ξ1

∂x
∂η

∂y
∂η

∂z
∂η

∂x
∂ζ

∂y
∂ζ

∂z
∂ζ

 (2.26)

Higher dimensional integrals can be computed by using the Cartesian product of the
stated one-dimensional integral.

9

2 Finite Element Method for the heat equation

2.3.3 Discrete solution

In the next step, the discrete basis is selected to approximate our solution field T . This is
achieved by defining local elements in the parameter space and transforming them to the
global space. In addition, the respective Temperatures Ti are summed over all degrees of
freedom(DOFs):

T ≈ T̂ =

ndofs∑
i=1

NT
i · Ti (2.27)

φ̂ =

ndofs∑
j=1

NT
j · φj . (2.28)

Combining the global, discrete solution from equation 2.27 , the basis functions from equa-
tion 2.28 , the weak form of the heat equation from equation 2.11 and the boundary condi-
tions from equations 2.14 , 2.4 leads to the discrete problem:

ndofs∑
j=1

φj

ndofs∑
i=1

Ti
∂t

∫
Ω
ρ(x, T̂)c(x, T̂)NT

i N
T
j dΩ +

ndofs∑
j=1

φj

ndofs∑
i=1

Ti

∫
Ω
k(x, T̂)∇NT

j ∇NT
i dΩ =

ndofs∑
j=1

φj

∫
Ω
f(x, t)NT

j dΩ +

ndofs∑
j=1

φj

∫
∂ΓN

q(x, t)NT
j dΓN

(2.29)

for which the φj values cancel out. As a result, the semi-discrete system consisting of the
mass matrix M , stiffness matrix K and the force vector F is obtained:

M(T)
T

∂t
+K(T)T = F (t) (2.30)

M(T) =

∫
Ω
NT c(x, NT)ρ(x, NT)N dΩ (2.31)

K(T) =

∫
Ω
BTk(x, NT)B dΩ (2.32)

F (t) =

∫
Ω
NT f(x, t) dΩ. (2.33)

For the standard FEM, the B Operator is defined as B = ∇N , which equals to the deriva-
tive with respect to the domain, hence B =

î
∂N(x)
∂x , ∂N(x)

∂y

ó
.

10

2.3 Fundamentals of FEM

2.3.4 Initial value problem

From the previous formulations within equations 2.6 - 2.8 it is evident that the problem is
time-dependent, but in the current matrix equation 2.30 the time-dependent term T

∂t is not
yet discretized. For this subchapter, only linear problems are considered, hence the mass
matrix, stiffness matrix and source term do not depend on the temperature T . In order to
obtain a solution for every time point, a time stepping scheme needs to be selected. The
classic solution strategies for time discretization can be split up into two classes: explicit
and implicit methods. For the explicit methods, there exist simple methods as Explicit
Euler 2.35 or Runge Kutta [20] schemes of different order. As an example, the equation 2.30

is discretized by the Explicit Euler:

M · T
n+1 − Tn

∆t
+K · Tn = F (tn) (2.34)

Tn+1 = Tn + ∆t ·M−1 ·
Ä
F (tn)−K · Tn

ä
. (2.35)

The mass matrix can be adapted with mass lumping [22] to prevent from inverting it. For
the implicit methods, Implicit Euler or Crank-Nicholson are famous solution strategies.
Thus, the Implicit Euler is applied to equation 2.30 , which leads to the following deriva-
tion:

T

∂t
= M−1 · (F (t)−K · T) (2.36)

Tn+1 − Tn =M−1 · (∆t · F (tn+1)−∆t ·K · Tn+1) (2.37)

(M + ∆t·K) · Tn+1 = ∆t · F (tn+1) +M · Tn. (2.38)

The main difference between explicit an implicit schemes can be seen in equations 2.35

and 2.38 , respectively. The explicit form can be reformulated for implementation into an
update scheme. This allows to update the same values, which can be done very efficiently
in terms of computational effort. A major drawback of explicit methods is the time step
size ∆t, which must be chosen small enough or automatically adapted in order to ensure
stability.

In contrast to the explicit schemes, the implicit schemes need to solve a matrix system in
order to get the solution at the following time step Tn+1. In principle, the implicit methods
are unconditionally stable, but for the equation , the parameters as ∆tmust be chosen right
to obtain a reasonable solution [29].

Both time schemes need an initial condition in order to be well defined. For the Legendre
basis, the initial conditions are projected to the DOFs by an L2-Projection. Depending on
the problem formulation, the initial conditions may also be obtained by an initial solve of
the system.

Since all ingredients are present, the system can be solved or updated. For solving the
system the conjugate gradient method is used, since the arising matrix system is symmetric
and positive definite. More on solvers can be found in chapter 5 .

11

2 Finite Element Method for the heat equation

2.3.5 Refinement strategies

Refinements of the mesh can be done in various ways, and every strategy has advantages
and disadvantages. This chapter gives a brief overview of the basic refinement strategies
such as h, p and hp-refinement.

h-refinement

Typically, h-refinement is the simplest way to obtain more accurate solutions, as the num-
ber of evenly distributed elements within the same domain is increased. Unfortunately,
it may not be feasible to refine large global domains evenly, as the computational effort
rises. Especially for arbitrary complex geometries, the solution quality may be advanced
by refining the complex geometries locally.

p-refinement

The p-refinement increases the number of nodes in an element. Hence the global number
of elements is not modified. Typically, the added polynomial modes approximate the so-
lution better. In terms of computational effort, the shape functions can be implemented
efficiently by using hierarchical basis functions.

hp-refinement

In general, there may exist parts of the solution domain where lower order refinements are
capable of approximating the solution perfectly, and subdomains where higher order hp-
refinements are needed. Therefore, efficient local refinement strategies as the multi-level
hp-refinement are applied to expose parallelism through it’s algorithmic behaviour and
data structures.

The idea of the multi-level hp-approach in case of a partitioned base-overlay refinement
is to define local overlay layers, which approximate the global solution T = Tb + To by
summation of a base Tb and a fine solution To. Applying this superposition recursively
to components of the mesh may result in an simple, but efficient refinement strategy. To
eliminate inactive nodes, basis functions like the integrated Legendre polynomial are ap-
plicable, as individual shape functions can be identified easily. By eliminating the inactive
nodes on a finer mesh, the mesh compatibility between adjacent elements can be ensured.
In Figure 2.2 , a mesh is refined according to the hp-refinement and the active and inactive
nodes per layer can be identified accordingly. The continuity between elements are en-
sured by Dirichlet boundary conditions. To obtain reasonable results, the integration must
be projected on the leaf element. More information can be found within [34 , 60].

12

2.3 Fundamentals of FEM

Figure 2.2: Visualization of the hp-mulitlevel method from [60]

13

3 Space Time Finite Element Method for the
heat equation

From the first pioneering work of [30] within solid mechanics the STFEM has been contin-
uously developed as for the Navier-Stokes equation with Discontinuous Galerkin(DG) [21]
or parabolic evolution problems [49]. Not only applications have been improved, but also
the overall solving process [41].

This chapter solves the heat equation problem stated within equations 2.6 - 2.8 by using
STFEM. First, the derivation from the previously defined standard FEM is adapted and the
key differences are explained in section 3.1 . In section 3.2 the space time slab is introduced,
which subdivides the interval into smaller time steps.

3.1 Derivation of the Space Time Finite Element Method

The STFEM relies on the discretization of the time space τ . Therefore, the time twill simply
be treated as an existing space dimension. To get started, the new space Π is introduced:

Π = Ω× τ, (3.1)

consisting of the previous spatial space Ω and the time space τ , where τ is defined as:

τ ∈ [t0, t1]. (3.2)

The boundary conditions δΠ can be split up into three parts:

δΠ = Γ× τ ∪ Ω× [t0] ∪ Ω× [t1]. (3.3)

The term at the time t0 can be interpreted as the inital condition compared to the stan-
dard FEM. The other two terms consist of the classic time-dependent boundary parts. It
is worthwhile to mention, that by using STFEM, the dimension of the problem rises ac-
cordingly to space and time, since the discrete domain is in equation 3.1 extended by the
time.

Before deriving the equation, the solution space needs to be stated. Since the solution
should statisfy the equation:

∂T

∂t
∈ L2(τ) (3.4)

15

3 Space Time Finite Element Method for the heat equation

to fullfill the energy decreasing property, equation 3.4 implies that the Hilbert space H1(τ)
provides a suitable space. Therefore, the Bubnov-Galerkin approach is replaced by the
Petrov-Galerkin approach. Petrov-Galerkin makes use of different function spaces for the
solution space T and test space φ such that:

X = {T |T ∈ H1(Ω)×H1(τ)} (3.5)

Φ = {φ|φ ∈ H1(Ω)× L2(τ)}. (3.6)

Further information regarding energy decreasing properties and test spaces can be found
in [48].

The weak solution derived from equation 2.11 is still valid, but the previously defined
space Ω must be adapted to the new space Π. This can be done by adapting the gradient of
the problem, since the original problem should be kept. The previous defined derivative∇
is now separated into∇x and∇t, leading to the new problem formulation:∫

Π
ρ(x, T)c(x, T)∇tTφ dΠ +

∫
Π
∇xφ(k(x, T)∇xT) dΠ =∫

Π
f(x, t)φ dΠ +

∫
∂Γ̄N

k(x, T)∇xTφ dΓ̄N .
(3.7)

As already indicated, the new basis must be time-dependent and can be constructed with
a cartesian tensor product of the standard one-dimensional elements:

N(x, t) = N(x) ·N(t). (3.8)

The properties for the elements are the same as defined in subsection 2.3.1 . Combining the
new basis from equation 3.8 with the adapted equation 3.7 , where the global solution field
is defined as in equation 2.27 , leads to the discrete problem:

ndofs∑
j=1

φj

ndofs∑
i=1

Ti

∫
Π
ρ(x, T̂)c(x, T̂)NT

i · ∇tNT
j dΠ +

ndofs∑
j=1

φj

ndofs∑
i=1

Ti

∫
Π
k(x, T̂)∇xN

T
j ∇xN

T
i dΠ =

ndofs∑
j=1

φj

∫
Π
f(x, t)NT

j dΠ +

ndofs∑
j=1

φj

∫
∂ΓN

q(x, t)NT
j dΓN ,

(3.9)

where the B-Operator is split with respect to space and time for 2D space :

Bx =

[
N(x, t)

∂x
,
N(x, t)

∂y

]
(3.10)

Bt =
N(x, t)

∂t
. (3.11)

16

3.2 Space time slab

The final discrete matrix equation is obtained with:Ä
M(T) +K(T)

ä
· T = F (t) (3.12)

M(T) =

∫
Π
NT c(x, NT)ρ(x, NT)Bt dΠ (3.13)

K(T) =

∫
Π
BT
x k(x, NT)Bx dΠ (3.14)

F (t) =

∫
Π
NT f(x, t) dΠ. (3.15)

Due to the space time approach, the mass matrix and the stiffness matrix are now com-
bined to a matrix, which enables to solve one equation for the whole problem. Unfortu-
nately, the resulting matrix is not symmetric positive definite anymore, due to the time
discretization and the respective physical behaviour. Thus, using the conjugate gradient
method would not lead to a valid solution. The GMRES is the solver of choice and is
revised in the section 5.3 .

3.2 Space time slab

In terms of computational effort, it may be advantageous to decompose large problems
into smaller subproblems. This can be done by using the DG approach for detaching the
global solution space Π into multiple smaller time parts Πn = Ω× [tn−1, tn]. These smaller
space time parts Πn are so called space time slabs, where each time slab can then be solved
sequentially.

The coupling between the elements arise from the interelement compatibility condition,
that the solution of an element boundary must be the same with the neighbouring element.
The Figure 3.2 shows the continuous approach along the time domain for two elements,
where this constrain would enforce equation:

T 1
2 = T 2

1 . (3.16)

By removing the compatibility constraint of the elements, the solution is decoupled and
the solution space Φ is not continuous anymore, as there exist two values for φh(tn), φh(t−n)
from element E1 and φh(t+n) form element E2. In Figure 3.1 this is indicated with the
two points at the time tn. As the elements or cells are disconnected from each other, a
jump operator must be established in order to connect the elements via the flux F again.
Figure 3.1 displays the DG approach with the flux. For the slab, the jump operator is
specified as:

[[φh(tn)]] = φh(t+n)− φh(t−n), (3.17)

which couples the elements by setting F = 0. The result can be seen in Figure 3.2 , where an
implicit connection is again established between the DOFs T 1

2 and T 2
1 . This results again

17

3 Space Time Finite Element Method for the heat equation

in equation 3.16 . Finally, the blue domain representing the first slab Πn can be solved
independently and the solution at the boundary tn is then used as initial condition to
solve the following time slab Πn+1. This approach is only valid for the time direction, as
for other dimensions the flux may not cancel out. The derivation can be found in [31].
Additional information regarding general DG can be found in [16 , 19] and advanced DG
discretizations in [57 , 61].

E1 E2 ttntn−1 tn+1
+−

T 2
1

Πn

T 1
2

Πn+1

F

Figure 3.1: General DG in time direction

E1 E2 ttntn−1 tn+1
+−

T 2
1

Πn

T 1
2

Πn+1

Figure 3.2: Slab visualization in time direction

Another interpretation can be given with domain decomposition. The initial domain is
cut into two parts Πn and Πn+1 across a time part tn, where a solution is obtained within
the first domain Πn. The result of the first domain across the boundary is used as initial
boundary condition for the second time domain. In Figure 3.2 , the initial boundary condi-
tions of the second domain corresponds to the red dot. This approach works as the current
time slab Πn is independent of the following time slab Πn+1.

18

4 Nonlinear Finite Element Method

As research continues, more challenging problems and complex materials need to be mod-
eled mathematically precisely to obtain a reasonable solution. Since these problems can no
longer be modeled using linear methods, the simulations must be adapted for nonlinear
physical problems. The nonlinearities can arise from material descriptions, geometry prob-
lems or contact problems [35]. But before the nonlinear FEM is given, a short revision of
the Newton solver is presented in section 4.1 . As for this chapter, mainly nonlinear mate-
rials are considered, the solution strategy for the nonlinear FEM with nonlinear materials
is specified in section 4.2 . Finally, the chapter is closed with the derivation of the nonlinear
STFEM in section 4.3 . In addition, for every method the algorithmic changes are presented.

4.1 Newton solver

The Newton solver is one of the most well established methods when it comes to finding
the roots of nonlinear equations, especially on higher dimensional problems [24]. The idea
is based on Taylor expansion and assumes that the function f(x) can be approximated
by its derivative, as the difference between the starting point xn and the solution point x
approaches 0:

0 =
f(x)

∂x
(x− xn) + f(xn). (4.1)

For a one-dimensional problem this can easily be written in the update scheme:

xn+1 = xn −
f(xn)

f ′(xn)
. (4.2)

To obtain a solution, f(x) needs to be in an implicit or residual form and the derivative
of f(x) must be well defined within the solution interval:

f(x)

∂x
6= 0 ∀x ∈ [xs, xe]. (4.3)

In every Newton iteration, a linear system of equations must be solved. In addition, the
starting point must be chosen right, otherwise the solution might not converge.

19

4 Nonlinear Finite Element Method

4.2 Nonlinear Finite Element Method

The derivation of the weak equation does not change due to the nonlinearties, but as it can
be seen from equation 2.30 , the mass matrix M(T) and stiffness matrix K(T) are generally
temperature dependent due to nonlinear heat capacity, density or conductivity. In this
case, the system cannot be simply solved, as it is not possible to derive the explicit form for
the temperature. The implicit residual form is satisfied for an equilibrium point, consisting
of the external, internal and inertia forces:

R(T) = F︸︷︷︸
external

−M(T)
T

∂t︸ ︷︷ ︸
inertia force

−K(T)T︸ ︷︷ ︸
internal

. (4.4)

The inertia force depends on the time derivative and needs to be discretized with an ap-
propriate time stepping scheme from subsection 2.3.4 . As the system must be solved with
the Newton solver due to material nonlinearities, this offers the possibility to solve the Im-
plicit Euler time step in combination with the material solve. As a result the time stepping
and the material solve is done within in the same solve. Therefore, a time and temperature
dependent residual can be stated as:

R(T, tn, tn+1) = F (tn+1)−K(Tn+1) · T (tn+1)−M(Tn+1) · T (tn+1)− T (tn)

∆t
. (4.5)

The scheme uses the Newton from section 4.1 implicitly and is summarized within Algo-
rithm 1 .

More sophisticated solution algorithms [9] may include the explicit use of the residual’s
derivative in combination with line-search methods and load stepping. Previously, the
residual’s derivative was only specified asK(T). This can simply be enhanced by deriving
the residual of equation 4.4 :

R(T)

∂T
=
�
�
�7

0
F

∂T
− M(T)

∂T
· T
∂t
−
���

���
��:0

M(T) · T

∂t · ∂T
− K(T)

∂T
· T −K(T) ·

�
�
�7

1
T

∂T
(4.6)

RT =
R(T)

∂T
=−MT (T) · T

∂t
−KT (T) · T −K(T), (4.7)

where the derivative matrices are specified as:

KT (T) =

∫
Ω
BT k(x, NT)

∂T
B dΩ =

∫
Ω
BTkTB dΩ (4.8)

MT (T) =

∫
Ω
NTρ(x, NT)

c(x, NT)

∂T
N dΩ +

∫
Ω
NT ρ(x, NT)

∂T
c(x, NT)N dΩ. (4.9)

20

4.3 Nonlinear Space Time Finite Element Method

The derivations according to the temperature T of the material parameters kT , cT and ρT
can be derived from the problem formulation as well:

kT =
k(x, T)

∂T
(4.10)

cT =
c(x, T)

∂T
(4.11)

ρT =
ρ(x, T)

∂T
. (4.12)

Algorithm 1: Nonlinear FEM with Newton and Implicit Euler
Result: T (tfinal)
initialization ∆t, T0, NewtonIterations, t0, norm
apply refinement strategy
while tn < tfinal do

update time step tn = tn + ∆t
while i < NewtonIterations and norm > tolerance do

update derivative of residual RT (T tni , tn) = K(T tni)
update residual R(T tni , tn)
solve RT (T tni , tn) ·∆Ti = R(T tni , tn)
update solution T tni+1 = T tni + ∆Ti
update norm norm = R(T tni , tn)T ·∆Ti
update iteration i+ 1

end
if norm < tolerance then

update solution Tn+1
0 = Tni

else
algorithm failed

end
end

4.3 Nonlinear Space Time Finite Element Method

In this case, the solution strategy of a nonlinear material k(x, t, T), density ρ(x, t, T) and
heat capacity c(x, t, T) term is presented. All material properties depend on space, time
and the temperature. To solve this nonlinear equation, the previous defined Newton
method is used. Hence, the basic weak equation from 3.12 is transformed into the residual
equation, which consists of the external and internal energy part.

R(T) = F (t)︸︷︷︸
external

−
Ä
M(T) +K(T)

ä
T︸ ︷︷ ︸

internal

(4.13)

21

4 Nonlinear Finite Element Method

In the case of STFEM, the residual equation must be derived with respect to the temper-
ature T . For the multidimensional case, the update in the solution direction ∆T can be
computed with the Jacobian matrix J :

R(∆T) = R(Tn) + J(T) ·∆T = 0 (4.14)

∆T = −
Ä
J(Tn)−1R(Tn)

ä
(4.15)

Tn+1 = Tn −
Ä
J(Tn)−1R(Tn)

ä
(4.16)

J(Tn)Tn+1 = J(Tn)Tn −R(Tn). (4.17)

Applying this now to the residual heat equation leads to:

−J(T) =
∂R(T)

∂T
=
−F (T) +

Ä
M(T) +K(T)

ä
T

∂T
(4.18)

F (T)

∂T
=
��

���
���

��:0
−
∫

ΩN
T f(x, t) dΩ

∂T
(4.19)

K(T)T

∂T
= KT (T)T +K(T) (4.20)

M(T)T

∂T
= MT (T)T +M(T). (4.21)

Since in the scope of this thesis mainly manufactured solutions are considered, the source
term F is independent of the solution T and is not contributing. It is worth to mention,
that this term may not be simply neglected on nonlinear geometry problems or complex
source models. The derivative parts can be specified with:

KT (T) =

∫
Ω
BT
x kT (x, NT)Bx dΩ (4.22)

MT (T) =

∫
Ω
NTρ(x, NT)cT (x,NT)Bt dΩ +

∫
Ω
NTρT (x, NT)c(x, NT)Bt dΩ. (4.23)

Even if the derivatives of the density ρT , heat capacity cT and thermal conductivity kT
are unknown, the solution can still be obtained with lower convergence rate. For every
update, the equation 4.17 has to be solved. If only one of the heat capacity, density or
conductivity is nonlinear, the other derivative parts in equation 4.22 and 4.23 simply cancel
out as for the source term 4.19 .

22

4.3 Nonlinear Space Time Finite Element Method

The algorithm to obtain the solution for the STFEM is the simple, stationary Newton
solver and is stated in Algorithm 2 .

Algorithm 2: Nonlinear STFEM with Newton
Result: T
initialization NewtonIterations, norm, T0

apply refinement strategy
while i < NewtonIterations and norm > tolerance do

update derivative of residual RT (Ti)
update residual R(Ti)
solve RT (Ti) ·∆Ti = R(Ti)
update solution Ti+1 = Ti + ∆Ti
update norm norm = R(Ti)

T ·∆Ti
update iteration i+ 1

end

23

5 Solver

In the previous chapters, all basics of FEM and STFEM and their algorithmic solving strate-
gies were presented, but so far the solvers were not specified. This chapter revises the ba-
sics of the solvers and selected preconditioning methods to obtain a solution for the linear
system. In general, three solvers are presented, beginning with a universal direct solver in
section 5.1 for symmetric and non-symmetric problems. Then, in section 5.2 , the conjugate
gradient method for symmetric positive definite problems is presented. As last solver, the
GMRES solver is explained for non-symmetric problems in section 5.3 . In addition, the
Jacobi and Neumann preconditioners are introduced in section 5.4 .

The problem formulation of this chapter can be stated as:

Ax = b A ∈ Rn×n x, b ∈ Rn, (5.1)

where the matrix A is sparse. For sparse matrices, it is advantageous to store only all
non-zero matrix entries, which can be realised with a compressed row or column matrix
storage. More information on sparse linear algebra and iterative methods can be found
in [7].

5.1 Direct solvers

Direct solvers are efficient for solving small matrices, such as those from system tests. The
Gaussian elimination procedure, implemented as LU-Factorization is quite often used. The
matrix A is decomposed into an upper U and a lower L matrix and applied to system 5.1 :

PA = LU PA = LU (5.2)
PAx = Pb LUx = Pb. (5.3)

Depending on the implementation, the permutation matrix P can be specified. The so-
lution of the matrix system can be computed efficiently with the respective forward and
backward substitution of the upper U and lower L matrices:

y = Ux b̃ = Pb (5.4)

Ly = b̃ Ux = y. (5.5)

It is important to notice that this direct solver is capable of obtaining a solution inde-
pendently of the definiteness of the matrix. Hence, symmetric or non-symmetric definite

25

5 Solver

problems may be solved. This provides a good starting point for solving equations. Nev-
ertheless, there are several drawbacks of the direct solvers. One of the major drawbacks is
the ”Fill-in”. The ”Fill-in” occurs during pivoting and fills up entries of sparse matrices,
which were initially 0. As a result, the efficient storage structure of the sparse matrices
is lost. The accuracy depends on the implementation, since rounding errors with respect
to pivoting or ”Fill-ins” may lead to inaccurate results. More information can be found
within [25].

5.2 Conjugate gradient method

The conjugate gradient method (CG) is the most famous iterative method for solving sym-
metric positive definite matrices as they rise from the discretization of an elliptic PDE. The
idea behind CG is that search directions of the problem are conjugate with respect to the
residual. This can be stated as:

rTi rj = 0. (5.6)

This special property guarantees that the basis of the new solution increment is not within
the previous solution basis. The solution space is therefore stated as a so called Krylov
subspace, which is spanned as:

Di = span{r0, Ar0, A
2r0, ..., A

i−1r0}. (5.7)

CG is theoretically able to provide a solution with n iterations, where n is the number of
eigenvectors of the matrix A. The convergence speed depends on the condition number
of the matrix. For well-conditioned systems the solution can be obtained in less than n
iterations, whereas for ill-conditioned matrices, preconditioning is crucial to obtain the
solution within a reasonable time. Simple Jacobi preconditioning or enhanced multigrid
methods may therefore speed up the computation. A detailed derivation and explanation
can be found in [50] and an unoptimized algorithm can be found in Algorithm 3 .

Algorithm 3: Conjugate Gradient algorithm
input : A, b
output: x
initialization x0,n
d0 = r0 = b−Ax0

while i ≤ n do
αi = rTi ri
xi+1 = xi + αidi
ri+1 = ri − αiAdi
βi+1 =

rTi+1ri+1

riri
di+1 = ri+1 + βi+1di

end

26

5.3 GMRES

5.3 GMRES

The Generalized Minimal Residual Method or short GMRES is a robust, iterative method
for solving general nonsymmetric systems. The idea is to minimize the norm of the resid-
ual vector within a Krylov subspace [45]. The n-basis vector within the solution Krylov
subspace is defined to be the orthonormal vectors qn. Hence, the solution of the system can
be stated as equation 5.8 . The Arnoldi iteration normally provides the largest eigenvalue
of a matrix. Refactoring the Arnoldi process leads to equation 5.9 , which decomposes the
problem into a Hessenberg matrix H . An appropriate start value reduces the equation to
the final minimization formulation in equation 5.10 as Qn is orthonormal due to its defini-
tion. The minimization problem can now be solved efficiently with Givens rotation.

xn = x0 +Qnyn (5.8)

AQn = Qn+1H̃n (5.9)

||rn|| = ||Axn − b|| = ||r0 −AQnyn|| = ||βq1 −Qn+1H̃yn|| = ||H̃nyn − βe1|| (5.10)

This results in the final Algorithm 4 .

Algorithm 4: GMRES algorithm
input : A, b,maxiter
output: x
initialization Q,r,e, x0, H
while i ≤ maxiter do

update H,Q with Arnoldi(A,Q, k)
update b,H with Givens rotation(H, k, i)
update residual β
update error e

end
update solution x = x0 +Hb

27

5 Solver

5.4 Preconditioning

Even though the solution for some iterative methods or direct solvers can be obtained in a
finite sequence of steps, the system may still be ill-conditioned. These ill-conditioned ma-
trix systems may lead to rounding errors or low convergence rates. The condition num-
ber κ of the system depends on the maximal and minimal eigenvalues λmax and λmin.
Systems can be described as ill-conditioned if:

κ =
λmax
λmin

� 1. (5.11)

For the STFEM, the systems are often ill-conditioned. Thus, preconditioning is helpful to
speed up the solving process. Various preconditioner such as incomplete LU-decomposition,
Gauss-Seidel, domain decomposition or algebraic multigrid methods exist and some of
them were already applied to STFEM [4 , 54]. To start, the left preconditioned system:

P−1(Ax− b) = 0 (5.12)

is considered. For P = A, the preconditioner would correspond to the inverted matrix
and solve the system. For P = I , the previous system has to be solved and nothing has
changed. A good preconditioner has therefore two contradicting criteria to satisfy. On the
one hand, it should correspond to the matrix A, whereas on the other hand it should be
as cheap as possible in terms of computational effort. In the following, the Jacobi iteration
and the Neumann series are presented as they are used within the thesis.

5.4.1 Jacobi preconditioner

The stationary Jacobi preconditoning uses the diagonal matrix of A:

P = diag(A). (5.13)

By using the Richardson iteration, the solution xn+1 gets updated according to:

xn+1
i = (I +

1

Aii
Aij)x

n
i −

bi
Aii

(5.14)

for every entry of the vector xi. In terms of computational effort and parallelism the Jacobi
iteration is quite good. Unfortunately, it lacks not only in terms of convergence speed, but
also only converges for diagonal dominant matrices.

28

5.4 Preconditioning

5.4.2 Neumann preconditioner

Polynomial preconditioners use the polynomial P−1 = s(A) for approximating the system.
Thus, the equation 5.12 can be adapted to:

s(A)Ax = s(A)b. (5.15)

The general Neumann series expansion:

A−1 = (I −N)−1 =
∞∑
k=0

Nk (5.16)

is adapted to approximate the polynomial s(A), by defining the matrix N to be:

N = I − ωD−1A, (5.17)

where ω denotes a scaling parameter and D the diagonal of matrix A. As a result, the
preconditioner and the left side can be stated as:

P−1 = (1 +N + . . . N s)D−1 and (5.18)

P−1A =
1

ω

Ä
I −N s+1

ä
(5.19)

according to [46]. The preconditioner can be well parallelised and the computational effort
can be regulated, as s and w can be chosen accordingly. For s → ∞, the preconditioner
would correspond to the inverse of A. Unfortunately, for higher order polynomials, nu-
merical instabilities may occur.

29

6 Implementation

The number of frameworks for solving PDEs, especially with a focus on time-dependant
problems, is quite large. Various libraries as DUNE [12], deal.II [5] or FEniCS [3] offer
a wide range for simulating PDEs. Nevertheless, the object-oriented library AdhoC++ was
chosen to be extended, as it provides interfaces for coupling algorithms, parallel imple-
mentations and refinement strategies. As AdhoC++ is not open source, some of the basic
concepts are explained in order to give a small insight. The AdhoC++ library makes use of
other libraries such as Boost [47] for system tests, HDF5 [38] for large data sets, MPI [23]
for parallelisation and Trilinos [55] or PARDISO [1] for the solvers.

The implementation of the STFEM in terms of equations and physics is given in the
section 6.1 . Next, the concepts of boundary conditions and mesh implementation are given
in section 6.2 and section 6.3 . Section 6.4 describes the parallel implementation within
AdhoC++ and finally, section 6.5 introduces the implementation of the space time slab.

6.1 Implementation of the STFEM

From the previous derivations in chapter 3 it can be seen that the STFEM approach needs to
create a mesh not only in the space dimension, but also in the time dimension. The imple-
mented idea is to simply extend the framework by using the last dimension of the discrete
mesh as the time dimension. By using this approach, most of the key features as mesh
assembly, computing of ansatz spaces, setting up the global system equation and applying
boundary conditions can be reused without further changes within the framework. Only
semantic changes need to be considered. The physical operations, as gradients, kinematic
equations and energy equations, need to be adapted.

Unfortunately, the framework is capable of meshing and postprocessing only up to max-
imum of three dimensions. As adding a dimension more to a framework can be quite chal-
lenging, this thesis restricts to one and two-dimensional space problems, as all advantages
and drawbacks may also be covered within two dimensions.

31

6 Implementation

6.1.1 Gradient

As indicated in the previous section, the gradient orB-Operator is split into a space partBx
and a time part Bt for the implementation. The time derivative is always specified as last
direction. As an example, the two-dimensional B-Operator is presented:

B =

N(x,t)
∂x

N(x,t)
∂y

N(x,t)
∂t

 −→ Bx =

N(x,t)
∂x

N(x,t)
∂y

0

 , Bt =

 0
0

N(x,t)
∂t

 . (6.1)

6.1.2 Physics

For the implementation of the STFEM, the formulation derived from chapter 3 must be
implemented accordingly. This is done with local elements and the previous defined B-
Operators. For the evaluation of the material and density properties, the material tensors
are adapted to the higher dimension, as the material should not contribute into the time
dimension. As an example the previous material tensor for 2D is extended for STFEM:ñ

k(x, y) 0
0 k(x, y)

ô
−→

k(x, y, t) 0 0
0 k(x, y, t) 0
0 0 0

 . (6.2)

The element matrices for the global stiffness part K and global mass M are set up and
summed up accordingly.

6.1.3 Implemented system equations

The linear system equation implemented within AdhoC++ is done with a system object,
which can access the system matrices with respect to different matrix traits of the form:

Ms · ẍ+Ds · ẋ+Ks · x = RHS. (6.3)

From the standard FEM point, this implementation makes sense, as the terms can be iden-
tified easily and registered on the slots of the equation, respectively. For the STFEM, in
contrast to the FEM, the mass term depends on x. As a result, the mass matrix is summed
with the previous stiffness matrix and registered at the position of the system stiffness ma-
trixKs. To avoid confusion, the STFEM mass term is referred as masskinematic term, since
it represents the physical behaviour of the mass, but is implemented in the kinetic part of
the system equation.

In addition, the system class may also hold the engergy equation, which is needed for
the nonlinear problems:

Res = ExternalEnergy − InternalEnergy. (6.4)

32

6.2 Boundary conditions

In equation 4.13 , the external and internal energy parts were already highlighted and can
therefore be registered on the external and internal slots. In addition, the derivative of
the residual must be registered as required by the solving process, which is done on the
stiffness or system matrix slot.

6.2 Boundary conditions

AdhoC++ offers various methods to enforce boundary conditions on the mesh. In general,
Dirichlet and Neumann conditions can be enforced in a strong or weak sense. The bound-
ary conditions may be applied on geometric components of the mesh as nodes, edges and
faces. From the geometric components the boundary function is projected with an L2-
Projection to the DOFs. The strong boundary conditions are enforced by using direct or
penalty constraints. For the direct constraint, the matrix entry is set explicitly to the value
of the boundary function, whereas for the penalty constraint a penalty value is added
within the matrix. In the scope of this thesis, the boundary conditions were mainly ap-
plied strongly with the direct constraint, as this does not worsen the condition number of
the matrix system.

6.3 Implementation of the mesh

The implementation uses the multilevel hp-refinement strategy from subsection 2.3.5 to re-
fine the mesh. Options as refining towards boundaries or varying the polynomial degree
per layer are available. To define a refinement section, the geometric domain, refinement
strategy and recursive layers must be specified. The geometric domain of the refinement
section can be specified with geometric objects such as boxes, circles or other topologi-
cal components. The implemented refinement strategy decouples the hp-refinement and
enables an efficient change between h-refinement and p-refinement in every layer. The
number of recursive layers defines how often the refinement strategy is applied to the
geometric domain.

6.4 Parallel implementation

Even relatively small problems may need long simulation time, if the available resources
provide too little computational power or are not used efficiently. Hence, over the past
decades, parallelization for shared and distributed memory models have become the stan-
dard within scientific simulations. The AdhoC++ framework is already parallelised by [34]
and provides interfaces to the libraries Trilinos [55], Paradiso [1] and HDF5 [38]. As in-
dicated in subsection 2.3.5 , the main parallelization aspect within the framework is the
multilevel refinement. The mesh and refinement strategy is set up in serial. The distribu-
tion of the elements to the different processors is done with the geometric load distributor

33

6 Implementation

Zoltan [13], which ensures evenly distributed domains with respect to the computational
effort of the elements. The integration of the separate domains are then carried out by
each processor individually. The global system is efficiently assembled and solved with
the Trilinos extension, since it provides not only the vector and matrix handle for dis-
tributed vectors and matrices, but also a wide range of solvers. The AZTECO [27] solver
library within Trilinos is used to compute the solution, since it provides all solvers and
preconditioners mentioned in chapter 5 . The post processing is done in parallel with the
HDF5 library, which enables efficient distributed input and output for the files and pro-
vides support for the visualisation.

6.5 Space time slab

As the required amount of memory increases for larger systems, it can be advantageous to
decouple the matrices into smaller ones. This is done with the space time slab from sec-
tion 3.2 . The slab was implemented by using only one mesh. The summarized procedure
can be found in Algorithm 5 . After initialization and refinement, the constraint points for
the slab are defined. This is done by projecting the integration points of the refined el-
ements on the surface, as for the most quadrature rules, the points do not contribute to
the surface. In the following, the first or initial slab problem with the lateral boundary
conditions is solved and postprocessed. The corresponding time loop is then started with
an update of the time step and boundary conditions. This includes projecting the solution
from the last time step at the end of the timeslab to the initial boundary conditions of the
next. Finally, the system can be solved and postprocessed.

Algorithm 5: Space time slab algorithm
set up parameters, mesh and refinement strategy
set up boundaryvalueproblem
initialize postprocessor
define solver
apply refinement strategy
setup constraint points for slab
set up global equation
apply boundary conditions
solve initial system
apply postprocessing
while t ≤ tfinal do

update time step
constrain system with previous solution
solve system
apply postprocessing

end

34

6.5 Space time slab

t0 t1 t1 t2

x = 0

xend

Mesh 1 Mesh 2

Figure 6.1: Graphic representation of the implemented slab problem

Figure 6.1 visualizes a one-dimensional space and time example, which explains the
procedure. The compatibility constraint decouples the meshes, but keeps the DOFs for the
same time steps. As a result, the DOFs within the red box at t1 are the same and are copied
for the next mesh. Since the implementation is done with only one mesh, the DOFs are
written on the same mesh again. This is indicated with the dashed arrow.

Additionally, the source term functions and time stepping scheme must be adapted as
well to ensure the synchronisation between mesh and time. The advantages in terms of
computational effort are obvious, as only one mesh needs to be stored and the constraints
need to be updated.

It is worth to mention that the approach is not working for nonlinear load stepping
problems, as the load stepping is working on the same mesh and therefore overwrites the
initial boundary condition of the current time step with the interim solution of the load
stepping.

35

7 Verification

In order to prove the correctness of the implemented code, a verification must be done.
This includes a comparison of the error between an appropriate analytic and the obtained
solution. As analytic solution the Gaussian function is first introduced in section 7.1 , as it is
often used to represent the laser beam within SLM simulations. The domain specifications
are given in section 7.2 . The following sections 7.3 , 7.4 and 7.5 contain the verification of
the one-dimensional, two-dimensional linear and nonlinear versions. For the linear heat
equation, convergence studies are presented to verify the theoretical results of the STFEM
within AdhoC++. For the verification of the slab in section 7.6 , the norms of the surfaces are
considered. Section 7.7 evaluates the convergence within time for different orders. Finally,
a comparison of the FEM and STFEM is given in section 7.8 to determine the differences
between the two methods. Since this chapter deals with manufactured solutions, the units
are chosen consistently and not considered further.

7.1 Travelling Gaussian function

First, an analytic solution must be selected. The Gaussian function is perfectly suited,
as it satisfies the heat equation 2.1 and in terms of SLM modeling, the external energy
added during the process can be modeled as a Gaussian function. In general, the Gaussian
function g can be expressed as:

g(x) = a · e−
(x−b)2

2·d2 , (7.1)

where the coefficient a stands for the amplitude, b for the center and d for the width of the
peak. In Figure 7.1 , various peaks are visualized with different parameters.

As the different layers are added by a moving heat source, the Gaussian function must
be adapted in order to move within time. For verification, the travelling Gaussian peak in
the multidimensional case is selected as a reference solution and can be specified as:

T1(x, t) = e−
(x−t−b)2

2·d2 (7.2)

with x corresponding to the position vector in Euclidean space for the 1D space and as:

T2(x, t) = T2(x, y, t) = e−
(x−t−bx)2+(y−by)2

2·d2 (7.3)

for the 2D space. For the 2D equation 7.3 , the parameter b is split within the space dimen-
sions accordingly.

37

7 Verification

−2 0 2 4 6

0

0.5

1

1.5

2

x

f
(x

)

a = 1.0, b = 1.0, d = 1.0
a = 1.5, b = 0.0, d = 0.5
a = 2.0, b = −1.0, d = 0.7

Figure 7.1: Example of Gaussian functions with different parameters a, b and d

7.2 Domain and boundary specification

The verification problem is defined within a square domain with Dirichlet boundary con-
ditions. For the 1D space problem formulation, this results in a 2D space time problem,
which can be seen in Figure 7.2a . The initial boundary is marked as orange in the Fig-
ure 7.2a .

l1 x

lt

t

ΠT (0, t) T (l1, t)

T (0, 0)

(a) 1D space time domain Π

lx

x

lt

t

lyy

T (x, y, 0)

T (0, y, t) T (l1, y, t)

T (x, 0, t)

T (x, l2, t)

(b) 2D space time domain Π

Figure 7.2: Different domains Π for the space time verification problem

For the 2D space problem, the 1D space problem is simply extended to a 3D problem.

38

7.3 Linear transient 1D

The according edges are changed to faces, resulting in Figure 7.2b . The orange surface
within Figure 7.2b determines the initial boundary conditions. The blue surface is the free
surface for which the solution should be obtained. The remaining four faces of the cube are
the lateral boundary conditions and are constrained with Dirichlet boundary conditions.

In general, it depends on the formulation of the problem, if the initial boundary condi-
tions are specified or not. If the initial boundary conditions are not specified, the solution
within STFEM is also obtained for the initial problem at t = 0. For the Gaussian function,
the initial condition corresponds to the solution of the initial problem. Hence, specifying
the initial boundary conditions for the Gaussian function may only result in a more con-
strained problem. For other problems it may be fatal not to specify the initial conditions.

7.3 Linear transient 1D

The density, heat capacity and thermal conductivity must now be specified with smooth
functions in order to derive the source term f(x, t) from the manufactured solution of
equation 7.2 . For the linear case, the three parameters are chosen as:

ρ(x) = (5.0 + x) · cos(x) + 5.0 (7.4)
k(x) = (5.0 + x) · sin(x) + 5.0 (7.5)
c(x) = 5.0. (7.6)

The manufactured solution T1(x, t) from 7.2 with parameters a = 1, b = 0.5 and d = 0.1
is used. The grid is defined on the intervall l1 = [0, 1] and lt = [0, 0.5] and is discretized
with 10 elements per direction. The polynomial degree was defined p = 3 for space and
time. For the first verification, the solution was obtained serially by solving with the Gaus-
sian elimination from section 5.1 . The solution is visualized in Figure 7.3 .

Figure 7.3: Solution of the travelling Gaussian function with 10 elements per direction

39

7 Verification

According to [53] the L2 error for piecewise linear basis functions with triangular ele-
ments can be stated as:

||T̂ − T̂h||L2 ≤ chs−1|T̂ |Hs s ∈ [1, p+ 1]. (7.7)

Even though the error equation 7.7 is not explicitly applicable to the problem previously
defined, it still provides an estimate of convergence, since an analogous measure can be
derived. Next, a convergence study is made in order compare it with the theory. The L2 er-
ror eL2 within the space time domain is considered as:

eL2 =

∫
Π

Ä
TSTFEM − T1

ä2
dΠ. (7.8)

For the polynomial degree p = 2 the convergence can be seen pretty well. The error within
Figure 7.4 reduces, according to equation 7.7 , by 4 if element size is reduced by half. For
the other two polynomials the error reduction takes place within the first steps. As the
convergence is finished about 100 DOFs, the convergence can not be seen for further steps.

Even though the error from equation 7.7 is not intended for different material properties,
it still is applicable for the formulated problem [53]. The same procedure was applied to
the parallel implementation, leading to similar results without further justification.

101 102 103

10−4

10−3

10−2

10−1

DOFs

e L
2

p = 2
p = 3
p = 4

Figure 7.4: 1D serial convergence study for h-refinement with different polynomial degrees

40

7.4 Linear transient 2D

7.4 Linear transient 2D

The problem is now extended to 2D, as it can be seen in Figure 7.2b . The manufactured
solution T2(x, t) from equation 7.3 is adapted to the verification problem with the material
parameters:

T2(x, t) = e
(x−t−0.5)2+(y−0.5)2

2·0.052 (7.9)
k(x) = (5.0 + x) · sin(y) + 5.0 (7.10)
ρ(x) = (5.0 + y) · cos(x) + 5.0 (7.11)

c(x) = 5.0. (7.12)

The domain is specified as lx = ly = 1 and lt = 0.2 with a uniform discretization of
nx = ny = 30 and nt = 3 elements. The polynomial degree of the elements is speci-
fied with p = 3. The initial boundary conditions are not specified within this example to
demonstrate the initial solve. In this example, the parallel implementation was used with
the GMRES solver from section 5.3 . The tolerance of the solver was specified as 10−5. The
same results can be obtained with the serial version, but the complexity of the problem
includes about 2211 elements, which takes too long for the serial implementation.

102 103 104 105

10−4

10−1

102

105

DOFs

e L
2

p = 2
p = 4

(a) Same element size for p = 2 and p = 4

103 104 105

10−4

10−1

102

105

DOFs

e L
2

p = 3
p = 4
pt = 3

(b) Different element sizes for p = 3

Figure 7.5: Convergence study for h-refinement with different polynomial degrees

The convergence study with h-refinement of space and time for the 2D problem is pre-
sented in Figure 7.5 . The theory from [53] does not cover 2D quadrilateral elements, but
the convergence in terms of h-refinement for elements with approximately the same size
in space and time can still be seen in Figure 7.5a for p = 2 and p = 4 as the error decreases
accordingly. For polynomial p = 3 with the equal element length in space and time, the
convergence is not optimal, since a larger outlier occurs around 38400 DOFs. For the solu-
tion pt = 3, an additional time element is added to estimate whether the outlier can still be

41

7 Verification

seen. Hence, the convergence rate of the solution can be seen better for the first points of
pt = 3 in Figure 7.5b , but again a smaller outlier appears at the converged state compared
to the reference p = 4. Therefore, for a polynomial degree of 3, discretizations with higher
error are often found, especially in already converged regions.

Figure 7.6: Linear Transient 2D verification example at t = 0.0

Figure 7.7: Linear Transient 2D verification example at t = 0.1

42

7.5 Nonlinear problem 1D

Figure 7.8: Linear Transient 2D verification example at t = 0.2

7.5 Nonlinear problem 1D

This section will verify the process of nonlinear material problems. First, the material
must be adapted according to the derivation in section 4.3 . This implies specifying the
derivatives of the material. A simple approach is to define the density, heat capacity and
thermal conductivity with their respective derivatives as:

ρ(x, T) = (2 · x) · cos(T) + 1.0 ρT (x, T) = −(2 · x) · sin(T) (7.13)
k(x, T) = (2 · x) · sin(T) + 1.0 kT (x, T) = (2 · x) · cos(T) (7.14)
c(x, T) = 1.0 cT (x, T) = 0. (7.15)

The manufactured solution from equation 7.3 with a = 1, b = 0.5 and d = 0.1 is taken as
the reference solution. The domain is specified with lx = 1 and lt = 0.2. The mesh uses 790
DOFs, which arise from nx = 20 space, nt = 3 time elements and a polynomial degree
of p = 2. The tolerance of the Newton solver is set to 5 · 10−3, where the direct solver from
section 5.1 is used. The L2 error eL2 reduced to 3.179 · 10−6 and the result can be viewed
within Figure 7.9 .

43

7 Verification

Figure 7.9: Nonlinear 1D solution of the verification problem

7.6 Verification of the slab

For the verification of the slab, the properties are specified with minor changes compared
to section 7.4 :

T2(x, t) = e
(x−t−0.5)2+(y−0.5)2

2·0.052 (7.16)
k(x) = (5.0 + x) · sin(y) + 5.0 (7.17)

ρ(x) = c(x) = 1.0. (7.18)

The problem size in time is defined as td = 0.3 with 3 slabs, which results in a slab size
of lt = 0.1. The domain size of the space is defined on the unit interval lx = ly = 1. The
mesh is specified with nx = ny = 9 and nt = 1 elements and a polynomial degree of p = 2.
In addition, h-refinement is applied twice within the volume [0.45 × 0.85, 0.4 × 0.6, 0 × 1]
of the mesh. The results of the slab solution are visualized in the Figures 7.10a - 7.10d .

In order to verify the slab, the L2 norm of the individual surfaces are checked. This must
be done, since the boundary conditions are not enforced directly, but via a projection of the
topological components. For verification, the integrals of the projected end surface and the
new surface should be equal at the same time. Table 7.1 displays the values of the integrals
from previous end and new start surface, respectively. As the integrals do not differ much,
it can be concluded that the projection error within the slab surfaces is below the tolerance
and the slab is working properly.

time end surface start surface
0.1 7.102 · 10−3 7.195 · 10−3

0.2 7.382 · 10−3 7.378 · 10−3

Table 7.1: L2 integral of the previous and the new slab surface

44

7.6 Verification of the slab

(a) t = 0.0 (b) t = 0.1

(c) t = 0.2 (d) t = 0.3

Figure 7.10: Solution of the temperature distribution at different time steps

45

7 Verification

7.7 Verification of the time order

This section will investigate the order of the time discretization. As example, the verifica-
tion problem from 7.2b is taken, where the lengths are within the unit cube lx = ly = lt = 1
and the surfaces are specified as Dirichlet boundaries. The parameters for the respective
material coefficients are taken from section 7.4 and can be found in equations 7.10 , 7.11

and 7.12 . In addition the solution is adapted to:

TC(x, t) = e−
(x− sin(πt)

4 −0.5)2+(y− cos(πt)
4 −0.5)2

2·0.052 . (7.19)

The resulting solution is a travelling Gaussian function on a circle with diameter 0.5, where
the center is located in the center of the unit domain [0.5, 0.5]. From the Figures 7.12a -
 7.12d , it can be seen that the circle starts at the top and moves to the bottom with a circular
motion. The error of the solution can be split up into a spatial and time part. For the
STFEM the error is expected to decrease as:

eSTFEM = O(∆hp) +O(∆tp). (7.20)

For the following example the spatial error is fixed with nx = 20 space elements and time
elements are refined between nt = [1, 20]. The result can be seen within the Figure 7.11 .
The L2 error eL2 from equation 7.8 decreases with respect to p, as expected from equa-
tion 7.20 . For a polynomial degree of p = 3, small oscillations for the first odd element
numbers occur in the solution. The oscillations are reproduced in the convergence of Fig-
ure 7.11 , since the error is significantly higher for the odd discretizations with p = 3.

103 104 105

10−5

10−4

10−3

10−2

Degree of Freedoms

e L
2

p = 1
p = 2
p = 3
p = 4

Figure 7.11: Error eL2 during h-refinement within time for different polynomial degrees

46

7.7 Verification of the time order

(a) t = 0.00 (b) t = 0.25

(c) t = 0.5 (d) t = 0.75

Figure 7.12: Solution TC at different timesteps

In summary, as expected from equation 7.20 , the error decreases within time for p =
1 and p = 2. For p = 3 the expected error for odd element numbers could not be verified.
For the remaining error with p = 4, the range of the solution is too small to fully verify the
fourth order convergence, but it is indicated for some points.

47

7 Verification

7.8 Comparison of STFEM and FEM

This section will finally compare the implementations of the implicit FEM from chapter 2

to the STFEM from chapter 3 . As the FEM was already verified within AdhoC++, only
the specific example was set up as indicated in section 7.7 . Hence, all parameters and
domain properties can be found in chapter 7 . Since the focus of the framework was on
symmetric-definite problems, the CG was further optimized as the framework provides
preconditioning methods, such as algebraic multigrid for the CG. In order to enable a
comparison between the two methods, the solving process is done with the same direct
solver. The following solutions are obtained by a parallel version with 1 MPI thread, as
the L2 error is not obtained parallel.

The reference is defined as the L2 error norm. Previous considerations of the L2 error eL2

from equation 7.8 within the whole space-time domain Π can not be made because the
FEM has no solution between the different time steps. Thus, the etnL2

error at a timestep is
defined as:

etnL2
=

∫
Ω

Ä
TFEM (tn)− TC(tn)

ä2
dΩ. (7.21)

For the following comparison, the error eltL2
is evaluated at the end of the time domain,

therefore at time tn = lt. But before, it should be noted that the implicit FEM version has
not the same order of error with respect to time. The error for the implicit FEM can be
stated as:

eFEM = O(∆hp) +O(∆t) (7.22)

and is of first order within time. For the STFEM, the order depends on the polynomial
degree p and is the same for space and time, as only isotropic quadrilateral elements are
considered for the comparison. The idea is to evaluate the qualitative solution at the final
time with respect to the error within time. Therefore, the space discretization is fixed with
a number of elements and the time elements are refined accordingly. The number of time
points for the implicit FEM is chosen according to the polynomial degree p ·nt. This results
in a sufficient number of points for the space time discretization and leads to a linear rise
of DOFs in the Figures 7.13 and 7.14 for the FEM. In Figure 7.13 , it can be seen that the
STFEM is of higher order with respect to time.

48

7.8 Comparison of STFEM and FEM

105 106
10−8

10−7

10−6

10−5

10−4

10−3

10−2

DOFs

el
t L
2

STFEM p = 2 Nx = 40
FEM p = 2 Nx = 40

STFEM p = 3 Nx = 20
FEM p = 3 Nx = 20

Figure 7.13: Error eltL2
during h-refinement within time

105 106

0

2,000

4,000

DOFs

ti
m

e
to

so
lu

ti
on

in
[s

]

STFEM p = 2 Nx = 40
FEM p = 2 Nx = 40

STFEM p = 3 Nx = 20
FEM p = 3 Nx = 20

Figure 7.14: Time required to solve the FEM and STFEM

In terms of solution time, the STFEM within the AdhoC++ was faster than the implicit
FEM, as it can be seen from Figure 7.14 . The curves for the STFEM are identical, as the
most time spent within the STFEM is for the system solve. Hence, the characteristic of the
solver can be found in the Figure 7.14 again.

49

7 Verification

As the error order of the methods differ according to equations 7.20 and 7.22 , the timestep
must be adapted to:

t̄ =

{
∆t = lt

nt
, for FEM

∆tp = lt
npt
, for STFEM , (7.23)

to enable a comparison. For the following Table 7.2 the values nx = 40 and a polynomial
degree of p = 2 the error and time are compared. From the Table 7.2 , it can be concluded
that the proportional error is higher at the STFEM, but the solution was obtained faster.

t̄ FEM eltL2
STFEM eltL2

FEM time [s] STFEM time [s]
1
2

2
3.830 · 10−4 4.214 · 10−3 475.714 18.262

1
4

2
4.537 · 10−5 6.757 · 10−4 1620.195 46.731

1
6

2
1.023 · 10−5 1.031 · 10−4 3530.632 90.406

Table 7.2: Error and time for selective points

In terms of memory consumption, the most storage is needed for the allocation of the
global matrix system. For the FEM, the symmetric matrix can be stored efficiently, whereas
for STFEM the whole non-symmetric matrix needs to be stored. During the solving pro-
cess, the efficient symmetric matrix storage of the FEM is however lost due to the ”Fill-Ins”
of the direct solver. In addition, for the STFEM, the matrix size depends on the spatial and
time discretization, whereas for the FEM, the global matrix size depends only on the spa-
tial discretization. As the time discretization is refined, corresponding matrix system rises
and for arbitrary long time problems, this results in a large non-symmetric matrix.

To summarize the results, the STFEM was able to obtain the solution faster than the im-
plicit FEM within AdhoC++. In addition, the solution is obtained with higher precision
after a certain discretization by using the same direct solver within a shared memory con-
text. A drawback of the STFEM is the storage and size of the system matrix.

50

8 Phase change with Space Time Finite
Elements

As already indicated in the introduction, one goal of the thesis is to apply the STFEM to
the solidification and melting within the SLM process. The phase change problem can
be modeled as tracking or fixed-domain model. Tracking methods include following the
boundaries of the moving phase change and working on deformed meshes with the in-
terface boundaries. This is typical for a Stefan Problem [17]. In contrast to this, the phase
change is modeled in the same domain but using descriptions, such as the latent heat
model, to obtain the temperature. The nonlinearity within the latent heat equation arises
from the discontinuous phase change function. Both models result in nonlinear problems
due to the physics of the phase change. This chapter first gives an introduction to the latent
heat equation in section 8.1 and derives the STFEM for the latent heat model in section 8.2 .
In the following section 8.3 comments to the implementation are made. The results are
verified using an example of a melting bar and a solidification of a square in section 8.4 .
To close the chapter, the results of the application are summarized in section 8.5 .

8.1 Introduction to the latent heat model

The quantity of interest within the phase change problem is the temperature distribution T ,
as the phase state of the material is dependent on the temperature. According to the energy
equation 8.1 , the change within temperature, the specific energy ω and the density ρ0 must
be balanced with the specific heat source r and the heat flux q in every part of the domain Ω
as:

ρ0
∂ω

∂T
· Ṫ = −∇q + ρ0 · r Ω× τ. (8.1)

To start with the derivation, the specific internal energy is defined as:

ω =

∫ T

Tref

c dT + Lfpc. (8.2)

The first term consists of the integrated specific heat capacity c between the reference tem-
perature Tref and the final temperature T . The second term consists of the latent heat L,
which releases or absorbs energy during the phase change. To determine whether latent

51

8 Phase change with Space Time Finite Elements

heat is present, a discontinuous phase change function fpc is specified:

fpc(T) =

{
0, T ≤ T̄m
1, T > T̄m.

(8.3)

The phase change function is the source of the nonlinearity within the problem formu-
lation. It sets the latent heat free, if the temperature T exceeds the melting temperature T̄m
of the material. For the phase change function fpc from equation 8.3 the model assumes
the boundary ΓPC of the latent heat to be isothermal. For numerical reasons, it is therefore
advantageous to smooth the discontinuity and model the phase change function with the
temperatures of the solid Ts and liquid Tl phases:

fpc(T) =
1

2

[
tanh

(2

Tl − Ts
·
(
T − Ts + Tl

2

))]
+

1

2
. (8.4)

Since the only unknown term is the heat flux q, it must be substituted with a constitutive
law such as Fourier’s law:

q = −k∇T. (8.5)

Combining the energy equation 8.1 with the specific energy equation 8.2 and Fourier’s
law 8.5 leads to the final equation 8.6 . In order to extend equation 8.6 to a problem formu-
lation, the boundary and initial conditions are defined as well:

ρ0 ·
(
c+

Lfpc(T)

∂T

)
· Ṫ = −∇(−k∇T) + ρ0 · r in Ω× τ (8.6)

T (x, t) = Tinit(x, t) in ΓD × τ (8.7)

−kn
∂T

∂n

∣∣∣∣
ΓN ,t

= q0 in ΓN × τ . (8.8)

Figure 8.1 displays the problem. The phase state is defined over the temperature T , which
causes to move the boundary ΓPC according to the latent heat L and the phase change
function fpc(T). The global domain does not change, only the respective solid Ωs and
liquid Ωl state of the domain.

ΓPC
ΩlΩsΓD ΓN

q0

Figure 8.1: A phase change problem

52

8.2 STFEM for the phase change

8.2 STFEM for the phase change

As already done for the heat equation in section 2.2 , the weak equation for the latent heat
equation is again derived by multiplying with the test function φ and integrating over the
domain Π = Ω× τ :

∫
Π
ρ0 ·

(
c+

Lfpc(T)

∂T

)
· Ṫ · φ dΠ =

∫
Π
−∇(−k∇T) · φ dΠ +

∫
Π
ρ0 · r · φ dΠ. (8.9)

By applying the divergence theorem and cancelling the Dirichlet boundary, the final equa-
tion is obtained:∫

Π
ρ0 ·

(
c+

Lfpc(T)

∂T

)
· Ṫ · φ dΠ +

∫
Π

(k∇T) · ∇φ dΠ =

∫
Π
ρ0 · r · φ dΠ +∫

ΓN

(k∇T) · φ dΓ.

(8.10)

The solution space is obtained from the Petrov-Galerkin approach and can be stated as:

X = {T |T ∈ H1(Ω)×H1(τ), T = T0 ∀ x ∈ ΓD} (8.11)

Φ = {φ|φ ∈ H1(Ω)× L2(τ), φ = 0 ∀ x ∈ ΓD}. (8.12)

For the discretization, appropriate basis functions in space and time are selected:

T ≈ T̂ =

ndofs∑
i=1

Ni(x, t)
T · Ti (8.13)

φ̂ =

ndofs∑
j=1

Nj(x, t)
T · φj (8.14)

and the gradient is separated to derive the equation:

ndofs∑
j=1

φj

ndofs∑
i=1

Ti

∫
Π
ρ0 ·

(
c+

Lfpc(T)

∂T

)
· ∇tNT

i ·NT
j dΠ+

ndofs∑
j=1

φj

ndofs∑
i=1

Ti

∫
Π
k∇xN

T
i · ∇xN

T
j dΠ =

ndofs∑
j=1

φj

∫
Π
ρ0 · r ·NT

j dΠ +

ndofs∑
j=1

φj

∫
ΓN

q0 ·NT
j dΓN ,

(8.15)

as already done for the heat equation.

53

8 Phase change with Space Time Finite Elements

Up to this point, there is not much difference to the derivation of the heat equation
from the previous section 2.2 . If the equation 8.15 is combined with the B-Operator from
equations 3.10 and 3.11 , this results in the same matrix equation:Ä

M(T) +K(T)
ä
· T = F (t) (8.16)

as the one previously defined in equation 3.12 . Thus, a comparison of the respective
terms M(T), K(T) and F (t) is made in Table 8.1 to highlight the differences. For the
mass term M(T), the density stays the same, but the heat capacity c gets the additional
latent heat L with the respective phase change function fpc. The stiffness term K(T) re-
mains the same, as the constitutive law is not changed. For the comparison of the source
vector F (t), the Neuman part is neglected and the source term f(x, t) is split into a specific
source part r and the density ρ0. Hence, mainly the coefficients of the respective terms
change.

term heat equation latent heat equation

M(T)

∫
Π
NT cρBt dΠ

∫
Π
NTρ0

(
c+

Lfpc(T)

∂T

)
Bt dΠ

K(T)

∫
Π
BT
x kBx dΠ

∫
Π
BT
x kBx dΠ

F (t)

∫
Π
NT f(x, t) dΠ

∫
Π
NTρ0 · r dΠ

Table 8.1: Comparison of the heat equation and the latent heat equation

8.3 Implementation of the latent heat equation

In order to simulate the latent heat problem, the physical equations had to be added. This
was done by implementing the respective coefficients and source terms within the appro-
priate factories and application files. From the previously implemented heat equation,
the basic routines were slightly adapted. This included a revision of the energy equation,
matrix assembly, source terms and material properties. Hence, the boundary conditions,
mesh and refinement strategy did not need to be adapted.

54

8.4 Verification

8.4 Verification

To proof the correctness of the implemented method, two verification examples are pre-
sented. The first example is the melting of a solid bar. Therefore, the important aspects of
the analytic solution are explained and the results are compared with the solution of the
Stefan problem. Afterwards, the solidification of a 2D plate is simulated and compared to
a reference solution. The different parameters are stated to enable a comparison.

8.4.1 Melting of a bar

As a first application, the melting of a one-dimensional semi-infinite bar is considered. The
bar is at an initial temperature Tinit, which is below the melting temperature T̄m. At the
initial state t = 0 s, a stationary temperature TBC is applied on one end of the bar. As the
boundary temperature exceeds the melting temperature, the bar starts to melt. Figure 8.2

visualizes the problem.

ΩsTBC Tinit

l

Figure 8.2: One-dimensional bar for the phase change

The material of the bar is specified as Titanium with the material description in Table 8.2 .
The problem was already solved with the standard FEM by [36] within AdhoC++, hence
the material parameters and boundary conditions are adapted to enable a comparison.

k 16 W/m3°C TBC 2000 °C
ρ 4510 kg/m3 T̄m 1670 °C
c 520 J/(m3°C) Tinit 1500 °C
L 325000 J/kg

Table 8.2: Thermo-physical material properties of Titanium for liquid and solid

55

8 Phase change with Space Time Finite Elements

The analytic solution for the liquid domain can be obtained from solving the respective
Stefan problem for the heat equation, which can be found in [18 , 26]. The solution of the
temperature distribution can be stated as:

T (x, t) =

Tl −

(
Tl − T̄M

) erf(x/2
√
αlt)

erf(λ) if x ≤ I(t)

Ts +
(
T̄M − Ts

) erfc(x/2
√
αst)

erfc
(
λ
√
α1/αs

) if x > I(t),
(8.17)

where the position of the interface between the liquid and solid state I(t) is defined by:

I(t) = 2λ
√
αlt. (8.18)

The coefficient λ can be obtained by solving the nonlinear equation:

St1

exp
(
λ2
)

erf(λ)
−

Sts
√
αs

√
αl exp

(
αlλ2/αs

)
erfc

(
λ
»
αl/αs

) = λ
√
π (8.19)

with the missing Stefan numbers:

St1 =
Cl
(
Tl − T̄m

)
L

and Sts =
Cs
(
T̄m − Ts

)
L

(8.20)

and the diffusivity constants for liquid and solid:

αl =
kl
ρlcl

αs =
ks
ρscs

. (8.21)

The results of the STFEM in comparison with the analytic solution are displayed in Fig-
ures 8.3 and 8.4 . The bar has a length l = 0.5 m and is discretized with nx = 50 space
and nt = 10 time elements of order p = 4. As a refinement strategy, 2 h-refinements in
space interval [0.0, 0.1] m and time interval [0, 1] s are applied. The solution is obtained by
a direct solver.

56

8.4 Verification

0 0.005 0.01 0.015

1,600

1,800

2,000

x in m

T
in

°C

analytic solution
approximation

T̄m

Figure 8.3: Temperature distribution within the bar at t = 0.5 s

0 0.005 0.01 0.015 0.02

1,600

1,800

2,000

x in m

T
in

°C

analytic Solution
Approximation

T̄m

Figure 8.4: Temperature distribution within the bar at t = 1 s

Even though the results look quite promising, the solution is obtained with a relatively
fine discretization. For coarser problems, the solution was very diffusive, leading to a
faster rise of the temperature. This behaviour can also be seen in Figure 8.3 , as the temper-
ature is higher compared to the analytic solution.

57

8 Phase change with Space Time Finite Elements

8.4.2 Freezing of a liquid square

For the two-dimensional verification, the analytic solution for the Stefan problem could
not be derived, but previous considerations by [39] are compared within the commer-
cial software Abaqus[51]. Therefore, the Abaqus example “freezing of a square solid“ is
taken as reference solution. The problem consists of a 2D plate filled with liquid, where
the temperature of the liquid is just above the freezing temperature. The outer Dirichlet
boundaries are set below the freezing point. As a result, the square starts to freeze from
outside towards the center. The material parameters are defined same for both problems
and can be found in Table 8.3 .

k 1.08 W/m3°C Ts −0.25 °C
ρ 1.0 kg/m3 Tl −0.15 °C
c 1.0 J/(m3°C) T̄m 0 °C
L 70.26 J/kg T̂BC −45 °C

Table 8.3: Thermo-physical material properties for the 2D freezing square

The problem including the discretization, can be viewed in Figure 8.5 . To follow the
solidification in two dimensions, the temperature distribution along the blue line in Fig-
ure 8.5 is taken at different time steps for the comparison. The temperature distribution at
the point R1 at [x = 1 m, y = 1 m] is investigated continuously over the time domain. The

Tl
Ωl

T̂BC

xlx

ly

y

R1

Figure 8.5: 2D plate with discretization

58

8.4 Verification

length of the domain is specified as lx = ly = 8m. The reference solution is obtained by us-
ing a mesh consisting of linear, quadrilateral elements with the FEM for the heat equation.
The standard, implicit time stepping is used within Abaqus, which is implemented as a
half-step residual approach [28]. This approach selects a maximum temperature rise and
adapts the time step according to the maximum temperature difference. For the reference
solution in Abaqus, the temperature difference is set to 2 °C. The boundary conditions are
specified as symmetric. As a result only a quarter must be simulated in comparison to the
STFEM.

The solution of the AdhoC++ is compared with two different discretizations. The first
discretization uses a mesh with space nx = 16 elements, time elements nt = 12 and a
polynomial degree of p = 3. This results in the same number of elements as for Abaqus.
The second solution is obtained by using a lower discretization, as a polynomial degree
of p = 1 with 32 space and 9 time elements are used. The results can be viewed in the
Figures 8.6 , 8.7 and 8.8 .

0 1 2 3 4 5 6

−40

−30

−20

−10

0

R1

Line towards Center in m

T
in

°C

Abaqus
16× 12× 3
32× 9× 1

Figure 8.6: Temperature distribution towards the center at t = 0.5 s

Figures 8.6 and 8.7 visualize the solution across the blue line from Figure 8.5 at the time
steps t = 0.5 s and t = 1.0 s. For both figures it can be seen that the cube freezes faster
within AdhoC++, as the temperature gradient is steeper than for Abaqus. In addition, the
polynomial degree with p = 1 shows small oscillations around the freezing temperature.

59

8 Phase change with Space Time Finite Elements

0 1 2 3 4 5 6

−40

−30

−20

−10

0

R1

Line towards Center in m

T
in

°C

Abaqus
16× 12× 3
32× 9× 1

Figure 8.7: Temperature distribution towards the center at t = 1 s

0 0.2 0.4 0.6 0.8 1

−30

−20

−10

0

t in s

T
in

°C

Abaqus
16× 12× 3
32× 9× 1

Figure 8.8: Timeline of the solution at the point R1

Figure 8.8 visualizes the solution for the reference point R1. The solution does not be-
have physically correct, because the temperature exceeds the initial temperature before
the freezing point. From the different polynomial solutions, it can be concluded that the
higher polynomials lead to bigger oscillations. The freezing point at t = 0.4 s is for both
AdhoC++ solutions shifted. In addition, the temperature gradient with respect to time is
steeper for the reference solution than for the solution from AdhoC++. This results in a
lower temperature drop over time. The temperature gradient is better approximated for
the lower polynomial degree.

60

8.5 Summary of phase change

8.5 Summary of phase change

To summarize the results of the phase change, for both cases the temperature was slightly
more diffusive than expected from the solutions. The one-dimensional bar was approx-
imated well, as the melting of the bar is only slightly faster than the analytic solution.
For the 2D plate, the freezing of the the STFEM proceeds faster and leads to nonphysical
oscillations around the freezing point. For the higher polynomial degree, the oscillations
rise.

The previous examples showed that it is possible to obtain plausible results for the
STFEM applied to the phase change. Nevertheless, both examples needed fine discretiza-
tions and a high number of Newton iterations. This included various tests of the solvers
and the parameters to obtain the results. Therefore, further investigations with respect to
stability should be made. For the 2D plate, the solution was achieved significantly faster
with Abaqus that a comparison with AdhoC++ is superfluous.

61

9 Summary and Conclusion

Finally, the summary revises the chapters and the conclusion states the results of the thesis.
Further research directions are presented in the outlook.

9.1 Summary

The STFEM was applied to heat transfer problems to provide solution strategies for adap-
tive manufacturing. First the heat equation with the mathematical problem formulation
was introduced and the FEM for the heat equation was derived. This included a revision
of the fundamental concepts of the FEM and time stepping schemes.

The STFEM was derived for the heat equation and the differences to the FEM were
stated. In addition, the space time slab was introduced. The general procedure for the
nonlinear FEM was revised, beginning with the appropriate Newton solver and the deriva-
tions of the nonlinear FEM and STFEM. This included illustration of the implemented con-
cepts with algorithms. The respective solvers and preconditioners were briefly discussed.
For the solver, these were direct solvers, CG and GMRES, and for the preconditioner, Jacobi
and Neumann.

Additionally, the implementation concepts of AdhoC++ were revised and the respective
changes to implement the STFEM were highlighted. Deeper insights regarding mesh were
given with additional information on parallel concepts and external libraries.

For verification, several linear and nonlinear transient test cases were setup and re-
viewed by different analytic solutions with the Gaussian function. Theoretical results and
expectations for the linear STFEM were confirmed within different convergence studies.
Finally, the different methods were compared with respect to mathematical aspects as ac-
curacy and convergence. In addition, the required resources as memory and time con-
sumption were evaluated.

The latent heat model for phase change was introduced and the STFEM was derived for
the problem. Differences to the heat equation were discussed and the implementation was
verified against an analytic solution of a Stefan Problem. As one-dimensional verification,
the melting of a bar was simulated. For the two-dimensional version, the solution was
compared to a benchmark example of Abaqus.

63

9 Summary and Conclusion

9.2 Conclusion

The STFEM was successfully implemented and verified within AdhoC++, which included
an implementation of a serial and parallel version. The idea of using the last dimension
for time proved to enable a fast implementation within existing frameworks and the use
of present features and optimizations. For the serial version, the space time slab proved
to decompose the space time problem into smaller pieces and enable an efficient way of
solving.

The verification problems from the Gaussian function showed that the STFEM can be
applied for SLM. The convergence studies for 1D and 2D proved the expected convergence
of order p within the examples. For a polynomial degree p = 3, different stability issues
could be seen. For some discretizations, the error did not behave as expected from the
convergence results. In particular, for the time refinement, a significantly higher error
was observed for odd numbers of elements. However, the explicit refinement in the time
direction indicated that for p = 1 and p = 2 the convergence within time is of order p.

A comparison of the linear, implicit FEM and the STFEM showed that the solution for
the STFEM was more accurate and achieved faster within a shared memory context. The
non-symmetric, large matrix did not have a negative influence on the solution time within
the examples.

The STFEM was derived and implemented for the latent heat equation. The verifica-
tion procedure indicated that the method was implemented successfully, but the obtained
results were more diffusive than expected. In addition, stability issues for some discretiza-
tions were noted. In the one-dimensional bar, the material melted faster than the analytic
solution and in the freezing of the two-dimensional plate example, the solidification of the
liquid was faster than the reference solution. In addition, nonphysical behaviour due to
oscillations occurred in the 2D plate. For higher order polynomials, the oscillations were
reinforced.

9.3 Outlook

At last, the outlook is presented, as there are still some open topics to discuss. Future re-
search could focus on the element ratio, the time scale and the solving process. In addition,
the results should be compared to other high performance computing PDE libraries to ob-
tain a better overview of the performance. This should include more complex problem
formulations and more applications. Additional equations, such as the wave equation,
could also be investigated. This could include implementing the third space dimension.

64

9.3 Outlook

9.3.1 Element ratio and anisotropic elements

A mindful reader may have already noticed that for the verification process, even though
the respective subdomains have changed, the ratio between the length of space and time
for the elements was mostly even. Hence, trying different discretizations may lead to
better or worse approximations. As the framework is capable of using different orders of
basis functions per direction, an investigation of anisotropic elements within space and
time could lead to interesting results. Not only a comparison to low order time schemes
could be enabled, but also more stable schemes for nonlinear problems could be derived.
Especially, the oscillations within the freezing plate could vanish with lower time orders.

9.3.2 Solver

Even though the AdhoC++ framework has been further developed for symmetric positive
definite problems, the choice of non-symmetric solvers and direct solvers is quite large.
In the previous sections, it was shown that the GMRES and direct solvers are capable of
obtaining solutions in a reasonable amount of time. However, the implemented solvers
did not provide preconditioners like the multigrid methods for non-symmetric solvers.
Since the resulting problems are generally ill-conditioned, algebraic multigrid methods
could improve the solution process. In addition, the direct solvers could be optimized for
parallel applications.

9.3.3 Benchmark

With enhanced solving methods and preconditioners, the STFEM could be compared to
the FEM using CG and algebraic multigrid methods. This comparison would state inter-
esting results with focus on the current state of the art methods. The obtained results of a
benchmark example should be compared to the implementation within other PDE libraries
as deal.II.

9.3.4 Time scale

The provided examples were restricted to smaller time scales. Many applications need
much larger time scales, as in the verification examples. Therefore, the behaviour of the
long term evolution of STFEM should be investigated with respect to accuracy. The circu-
lar travelling Gaussian function could be used as a starting point to investigate the phase
error within STFEM. In terms of parallel aspects, this could include enhancing the slab
implementation within the parallel implementation.

65

9 Summary and Conclusion

9.3.5 Space dimension

As in the current framework only a maximum of two space dimensions can be represented,
the number of applications is restricted. Many applications require a three-dimensional
space representation to provide the insights. Hence, implementing a fourth dimension
within AdhoC++ will be needed for benchmarking and applications. This could be done by
inventing a method to apply the time elements on an existing space discretization explic-
itly or including an existing multidimensional mesh generator to AdhoC++. In addition,
the corresponding algorithmic changes must be maintained within AdhoC++.

66

9.3 Outlook

67

List of Figures

 2.1 Comparison of the basis functions, adapted version from [59] 8
 2.2 Visualization of the hp-mulitlevel method from [60] 13

 3.1 General DG in time direction . 18
 3.2 Slab visualization in time direction . 18

 6.1 Graphic representation of the implemented slab problem 35

 7.1 Example of Gaussian functions with different parameters a, b and d 38
 7.2 Different domains Π for the space time verification problem 38
 7.3 Solution of the travelling Gaussian function with 10 elements per direction 39
 7.4 1D serial convergence study for h-refinement with different polynomial de-

grees . 40
 7.5 Convergence study for h-refinement with different polynomial degrees . . . 41
 7.6 Linear Transient 2D verification example at t = 0.0 42
 7.7 Linear Transient 2D verification example at t = 0.1 42
 7.8 Linear Transient 2D verification example at t = 0.2 43
 7.9 Nonlinear 1D solution of the verification problem 44
 7.10 Solution of the temperature distribution at different time steps 45
 7.11 Error eL2 during h-refinement within time for different polynomial degrees 46
 7.12 Solution TC at different timesteps . 47
 7.13 Error eltL2

during h-refinement within time . 49
 7.14 Time required to solve the FEM and STFEM 49

 8.1 A phase change problem . 52
 8.2 One-dimensional bar for the phase change 55
 8.3 Temperature distribution within the bar at t = 0.5 s 57
 8.4 Temperature distribution within the bar at t = 1 s 57
 8.5 2D plate with discretization . 58
 8.6 Temperature distribution towards the center at t = 0.5 s 59
 8.7 Temperature distribution towards the center at t = 1 s 60
 8.8 Timeline of the solution at the point R1 . 60

69

List of Tables

 7.1 L2 integral of the previous and the new slab surface 44
 7.2 Error and time for selective points . 50

 8.1 Comparison of the heat equation and the latent heat equation 54
 8.2 Thermo-physical material properties of Titanium for liquid and solid 55
 8.3 Thermo-physical material properties for the 2D freezing square 58

71

Bibliography

[1] Christie Alappat, Achim Basermann, Alan R. Bishop, Holger Fehske, Georg Hager,
Olaf Schenk, Jonas Thies, and Gerhard Wellein. A recursive algebraic coloring tech-
nique for hardware-efficient symmetric sparse matrix-vector multiplication. ACM
Trans. Parallel Comput., 7(3), June 2020.

[2] Aliprantis, Charalambos D, and Border Kim C. Infinite Dimensional Analysis: a Hitch-
hiker’s Guide. Springer, Berlin; London, 2006.

[3] Martin S. Alnæs, Jan Blechta, Johan Hake, August Johansson, Benjamin Kehlet, An-
ders Logg, Chris Richardson, Johannes Ring, Marie E. Rognes, and Garth N. Wells.
The fenics project version 1.5. Archive of Numerical Software, 3(100), 2015.

[4] Matthew Anderson and Jung-Han Kimn. A numerical approach to space-time fi-
nite elements for the wave equation. Journal of Computational Physics, 226(1):466–476,
September 2007.

[5] Daniel Arndt, Wolfgang Bangerth, Bruno Blais, Thomas C. Clevenger, Marc Fehling,
Alexander V. Grayver, Timo Heister, Luca Heltai, Martin Kronbichler, Matthias Maier,
Peter Munch, Jean-Paul Pelteret, Reza Rastak, Ignacio Thomas, Bruno Turcksin,
Zhuoran Wang, and David Wells. The deal.II library, version 9.2. Journal of Nu-
merical Mathematics, 28(3):131–146, 2020.

[6] Czesław I. Bajer and Bartłomiej Dyniewicz. Numerical Analysis of Vibrations of Struc-
tures under Moving Inertial Load. Springer Berlin Heidelberg, 2012.

[7] R.M. Barrett, Berry MW, T. Chan, Demmel JW, Donato JM, Jack Dongarra, Victor Ei-
jkhout, Roldan Pozo, Chris Romine, and Henk Van der Vorst. TEMPLATES for the
Solution of Linear Systems: Building Blocks for Iterative Methods, volume 43. 01 1994.

[8] Klaus J. Bathe. Finite Element Procedures. K. J. Bathe, Watertown, MA, second edition,
June 2014.

[9] Klaus-Jürgen Bathe and Mohammad R. Khoshgoftaar. Finite element formulation
and solution of nonlinear heat transfer. Nuclear Engineering and Design, 51(3):389–401,
1979.

[10] Peiying Bian, Xiaodong Shao, and Jingli Du. Finite element analysis of thermal stress
and thermal deformation in typical part during SLM. Applied Sciences, 9(11):2231,
May 2019.

73

Bibliography

[11] Michele Bici, Salvatore Brischetto, Francesca Campana, Carlo Giovanni Ferro, Carlo
Seclı̀, Sara Varetti, Paolo Maggiore, and Andrea Mazza. Development of a multifunc-
tional panel for aerospace use through slm additive manufacturing. Procedia CIRP,
67:215–220, 2018. 11th CIRP Conference on Intelligent Computation in Manufactur-
ing Engineering, 19-21 July 2017, Gulf of Naples, Italy.

[12] M. Blatt, A. Burchardt, A. Dedner, Ch. Engwer, J. Fahlke, B. Flemisch, Ch. Gersbacher,
C. Gräser, F. Gruber, Ch. Grüninger, D. Kempf, R. Klöfkorn, T. Malkmus, S. Müthing,
M. Nolte, M. Piatkowski, and O. Sander. The Distributed and Unified Numerics En-
vironment, Version 2.4. Archive of Numerical Software, 4(100):13–29, 2016.

[13] E. Boman, Ümit V. Catalyürek, C. Chevalier, and K. Devine. The zoltan and isorropia
parallel toolkits for combinatorial scientific computing: Partitioning, ordering and
coloring. Sci. Program., 20:129–150, 2012.

[14] M. Buch, A. Idesman, R. Niekamp, and Stein E. Finite elements in space and time for
parallel computing of viscoelastic deformation. Comput. Mech., 24:386–395, 1999.

[15] Lin Cheng and Gregory J. Wagner. An optimally-coupled multi-time stepping
method for transient heat conduction simulation for additive manufacturing. Com-
puter Methods in Applied Mechanics and Engineering, 381:113825, August 2021.

[16] Bernardo Cockburn, Karniadakis, George E., and Chi-Wang Shu. Discontinuous
Galerkin Methods - Theory, Computation and Applications. Springer, Berlin; London,
2000.

[17] L. Crivelli and S. Idelsohn. A temperature-based finite element solution for phase-
change problems. International Journal for Numerical Methods in Engineering, 23:99–119,
1986.

[18] Stephen H. Davis. Theory of Solidification. Cambridge University Press, October 2001.

[19] V. Dolejšı́ and M. Feistauer. Discontinuous Galerkin Method - Analysis and Applications
to Compressible Flow. Springer, Berlin; London, 2015.

[20] J.R. Dormand and P.J. Prince. A family of embedded runge-kutta formulae. Journal of
Computational and Applied Mathematics, 6(1):19–26, 1980.

[21] Truman Everett Ellis. Space–time discontinuous Petrov–Galerkin finite elements for tran-
sient fluid mechanics. Phd thesis, TX: University of Texas at Austin, 2016.

[22] Carlos A. Felippa, Qiong Guo, and K. C. Park. Mass matrix templates: General de-
scription and 1d examples. Archives of Computational Methods in Engineering, 22(1):1–
65, May 2014.

[23] Message P Forum. Mpi: A message-passing interface standard. Technical report,
USA, 1994.

74

Bibliography

[24] A. Galántai. The theory of newton's method. Journal of Computational and Applied
Mathematics, 124(1-2):25–44, December 2000.

[25] Steven Michael Hadfield and Timothy A. Davis. On the Lu Factorization of Sequences
of Identically Structured Sparse Matrices within a Distributed Memory Environment. PhD
thesis, USA, 1994. AAI9606793.

[26] David W Hahn and M Necati Özisik. Heat conduction. John Wiley & Sons, 2012.

[27] Michael Heroux. Aztecoo user guide for version 3.6. Sand report, Sandia National
Laboratories, Albuquerque, New Mexico and Livermore, California.

[28] H. D. Hibbitt and B. I. Karlsson. Analysis of pipe whip. [PWR; BWR]. Technical
report, November 1979.

[29] T. J. R. Hughes and W. K. Liu. Implicit-explicit finite elements in transient analysis:
Stability theory. Journal of Applied Mechanics, 45(2):371–374, June 1978.

[30] Thomas J.R. Hughes and Gregory M. Hulbert. Space-time finite element methods
for elastodynamics: Formulations and error estimates. Computer Methods in Applied
Mechanics and Engineering, 66(3):339–363, 1988.

[31] Gregory M. Hulbert and Thomas J.R. Hughes. Space-time finite element methods
for second-order hyperbolic equations. Computer Methods in Applied Mechanics and
Engineering, 84(3):327–348, 1990.

[32] Frank P. Incropera and David P. DeWitt. Fundamentals of Heat and Mass Transfer. John
Wiley & Sons, Inc., New York City, New York, 4th edition edition, 1996.

[33] Dilip Sahebrao Ingole, Abhay Madhusudan Kuthe, Shashank B. Thakare, and Amol S.
Talankar. Rapid prototyping – a technology transfer approach for development of
rapid tooling. Rapid Prototyping Journal, 15(4):280–290, July 2009.

[34] John N. Jomo, Nils Zander, Mohamed Elhaddad, Ali Özcan, Stefan Kollmannsberger,
Ralf-Peter Mundani, and Ernst Rank. Parallelization of the multi-levelhp-adaptive
finite cell method. Computers & Mathematics with Applications, 74(1):126–142, July 2017.

[35] Nam-Ho Kim. Introduction to Nonlinear Finite Element Analysis. Springer US, 2015.

[36] S. Kollmannsberger, A. Özcan, M. Carraturo, N. Zander, and E. Rank. A hierarchical
computational model for moving thermal loads and phase changes with applications
to selective laser melting. Computers & Mathematics with Applications, 75(5):1483–1497,
March 2018.

[37] Stefan Kollmannsberger, Massimo Carraturo, Alessandro Reali, and Ferdinando Au-
ricchio. Accurate prediction of melt pool shapes in laser powder bed fusion by the

75

Bibliography

non-linear temperature equation including phase changes. Integrating Materials and
Manufacturing Innovation, 8(2):167–177, April 2019.

[38] Sandeep Koranne. Hierarchical data format 5: Hdf5. In Handbook of Open Source Tools,
pages 191–200. Springer, 2011.

[39] Anastas Lazaridis. A numerical solution of the multidimensional solidification (or
melting) problem. International Journal of Heat and Mass Transfer, 13(9):1459–1477, 1970.

[40] Yingli Li, Kun Zhou, Pengfei Tan, Shu Beng Tor, Chee Kai Chua, and Kah Fai Leong.
Modeling temperature and residual stress fields in selective laser melting. Interna-
tional Journal of Mechanical Sciences, 136:24–35, 2018.

[41] Martin Neumüller. Space–Time Methods: Fast Solvers and Applications. Phd thesis,
Austria: TU Graz, 2013.

[42] Deepankar Pal, Nachiket Patil, Khalid Haludeen Kutty, Kai Zeng, Alleyce Moreland,
Adam Hicks, David Beeler, and Brent Stucker. A generalized feed-forward dynamic
adaptive mesh refinement and derefinement finite-element framework for metal laser
sintering—part II: Nonlinear thermal simulations and validations. Journal of Manufac-
turing Science and Engineering, 138(6), January 2016.

[43] E. L. Papazoglou, N. E. Karkalos, and A. P. Markopoulos. A comprehensive study
on thermal modeling of SLM process under conduction mode using FEM. The Inter-
national Journal of Advanced Manufacturing Technology, 111(9-10):2939–2955, November
2020.

[44] Dario Pitassi, Enrico Savoia, Vigilio Fontanari, Alberto Molinari, Valerio Luchin, Gi-
anluca Zappini, and Matteo Benedetti. Finite element thermal analysis of metal parts
additively manufactured via selective laser melting. In Finite Element Method - Simu-
lation, Numerical Analysis and Solution Techniques. InTech, February 2018.

[45] Youcef Saad and Martin H. Schultz. GMRES: A generalized minimal residual algo-
rithm for solving nonsymmetric linear systems. SIAM Journal on Scientific and Statis-
tical Computing, 7(3):856–869, July 1986.

[46] Yousef Saad. Iterative methods for sparse linear systems. SIAM, 2003.

[47] Boris Schaeling. The Boost C++ Libraries. XML Press, 2011.

[48] F. Schieweck. A-stable discontinuous galerkin–petrov time discretization of higher
order. 18(1):25–57, 2010.

[49] Christoph Schwab and Rob Stevenson. Space–time adaptive wavelet methods for
parabolic evolution problems. Math. Comput., 78:1293–1318, 09 2009.

76

Bibliography

[50] Jonathan Richard Shewchuk. An introduction to the conjugate gradient method with-
out the agonizing pain. August 1994.

[51] Michael Smith. ABAQUS/Standard User’s Manual, Version 6.9. Dassault Systèmes
Simulia Corp, United States, 2009.

[52] Denis Spiridonov, Maria Vasilyeva, and Wing Tat Leung. A generalized multiscale
finite element method (GMsFEM) for perforated domain flows with robin boundary
conditions. Journal of Computational and Applied Mathematics, 357:319–328, September
2019.

[53] Olaf Steinbach. Space-time finite element methods for parabolic problems. Computa-
tional Methods in Applied Mathematics, 15(4):551–566, 2015.

[54] Olaf Steinbach and Huidong Yang. Comparison of algebraic multigrid methods for
an adaptive space-time finite-element discretization of the heat equation in 3d and
4d. Numerical Linear Algebra with Applications, 25(3):e2143, January 2018.

[55] The Trilinos Project Team. The Trilinos Project Website.

[56] Ben Vandenbroucke and Jean-Pierre Kruth. Selective laser melting of biocompatible
metals for rapid manufacturing of medical parts. Rapid Prototyping Journal, 13(4):196–
203, August 2007.

[57] Shogo Wada, Rui Zhang, Seetha R. Mannava, Vijay K. Vasudevan, and Dong Qian.
Simulation-based prediction of cyclic failure in rubbery materials using nonlinear
space-time finite element method coupled with continuum damage mechanics. Fi-
nite Elements in Analysis and Design, 138:21–30, January 2018.

[58] Hayden Liu Weng. Partitioned hierarchical space-time fem for transient heat prob-
lems. Master’s thesis, Technical University of Munich, 3 2019.

[59] Nils Zander. Multi-level hp-FEM: dynamically changing high-order mesh refinement with
arbitrary hanging nodes. Dissertation, Technical University of Munich, 2017.

[60] Nils Zander, Tino Bog, Mohamed Elhaddad, Felix Frischmann, Stefan Kollmanns-
berger, and Ernst Rank. The multi-level hp-method for three-dimensional problems:
Dynamically changing high-order mesh refinement with arbitrary hanging nodes.
Computer Methods in Applied Mechanics and Engineering, 310:252–277, 2016.

[61] Rui Zhang, Lihua Wen, Jinyou Xiao, and Dong Qian. An efficient solution algorithm
for space–time finite element method. Computational Mechanics, 63(3):455–470, July
2018.

[62] O.C. Zienkiewicz, R.L. Taylor, and J.Z. Zhu. The finite element method: Its basis
and fundamentals. In The Finite Element Method: its Basis and Fundamentals (Seventh
Edition), page iii. Butterworth-Heinemann, Oxford, seventh edition edition, 2013.

77

	Acknowledgements
	Abstract
	Introduction and outline
	Introduction
	Outline

	Finite Element Method for the heat equation
	Introduction to the heat equation
	The weak solution of the heat equation
	Fundamentals of FEM
	Basis functions
	Numerical integration
	Discrete solution
	Initial value problem
	Refinement strategies

	Space Time Finite Element Method for the heat equation
	Derivation of the Space Time Finite Element Method
	Space time slab

	Nonlinear Finite Element Method
	Newton solver
	Nonlinear Finite Element Method
	Nonlinear Space Time Finite Element Method

	Solver
	Direct solvers
	Conjugate gradient method
	GMRES
	Preconditioning
	Jacobi preconditioner
	Neumann preconditioner

	Implementation
	Implementation of the STFEM
	Gradient
	Physics
	Implemented system equations

	Boundary conditions
	Implementation of the mesh
	Parallel implementation
	Space time slab

	Verification
	Travelling Gaussian function
	Domain and boundary specification
	Linear transient 1D
	Linear transient 2D
	Nonlinear problem 1D
	Verification of the slab
	Verification of the time order
	Comparison of STFEM and FEM

	Phase change with Space Time Finite Elements
	Introduction to the latent heat model
	STFEM for the phase change
	Implementation of the latent heat equation
	Verification
	Melting of a bar
	Freezing of a liquid square

	Summary of phase change

	Summary and Conclusion
	Summary
	Conclusion
	Outlook
	Element ratio and anisotropic elements
	Solver
	Benchmark
	Time scale
	Space dimension

	List of Figures
	List of Tables
	Bibliography

