
Computational Science and Engineering
Technische Universität München

Master’s Thesis

Auto-Encoder Sparse Grids

Akhil Nasser

Computational Science and Engineering
Technische Universität München

Master’s Thesis

Auto-Encoder Sparse Grids

Author: Akhil Nasser
1st examiner: Univ.-Prof. Dr. Hans-Joachim Bungartz
Advisor: Dr. Felix Dietrich
Submission Date: May 9th, 2021

I hereby declare that this thesis is entirely the result of my own work except where other-
wise indicated. I have only used the resources given in the list of references.

May 9th, 2021 Akhil Nasser

Acknowledgments

My work on this Thesis was greatly facilitated with the help of certain key individuals.
Firstly, I would like to graciously thank my supervisor Dr. Felix Dietrich. As my
Supervisor he was of great help to me as he guided me along my Thesis with his

extensive subject knowledge and the practical aspects of doing a Thesis. I would like to
thank my fellow student Zhen Zhang for our discussions that have helped me as I

worked on the Thesis. I would also like to thank Paul Subaru and Michael obersteiner
who have given valuable insights into the topics comprising this Thesis. Finally, I would

like to thank my family who have been a constant source of support in my research
endeavours for this Thesis.

vii

“[T]he greatest benefit of machine learning may ultimately be not what the machines learn but
what we learn by teaching them.”

-Pedro Domingos

viii

Abstract

Deep Learning-based approaches have become very popular across many fields due
to their versatility and their ability to model complex phenomena. Deep Learning based
models have far outperform traditional Machine Learning based models and techniques in
many tests such as the ImageNet competition. A popular network configuration is the Au-
toencoder that essentially captures the latent space representation of higher dimensional
functions. The Autoencoder consists of two neural networks that work in tandem to min-
imize an objective function.

Sparse Grids are a mathematical technique that help us to deal with the ’curse of di-
mensionality’ that is associated with high dimensional functions. Traditional Cartesian
coordinate based grid system i.e the full grid becomes too computationally expensive and
memory intensive for representation/interpolation of high dimensional functions. Sparse
Grids also perform a similar function as an Autoencoder but whereas in Neural Networks
the underlying basis functions are non-linear and intractable, in sparse grids, this is not
necessarily the case.

This thesis aims to demonstrate the feasibility of using Sparse Grids as components of
‘neural networks’. This is accomplished in the case of the Sparse Grid Autoencoder(SGA)
and the Sparse Grid Variational Autoencoder (SGVA) with the help of an example. A com-
parative analysis is performed with the traditional Autoencoder network architecture.

ix

Contents

 Acknowledgements vii

 Abstract ix

 1. Introduction 1

 2. State of the Art 3
 2.1. Sparse Grids . 3
 2.2. Deep Learning . 7

 3. Sparse Grid Autoencoder 15
 3.1. Methodology . 15
 3.2. Model Development . 16
 3.3. Implementation . 20

 3.3.1. Sparse Grid Layer . 21
 3.3.2. Sparse Grid Autoencoder . 23
 3.3.3. Sparse Grid Variational Autoencoder 28

 3.4. Results . 33

 4. Conclusion 43

 Appendix 47

 A. Abbreviations 47

 Bibliography 49

xi

List of Codes

 3.1. Sparse Grid Points Setup . 22
 3.2. Sparse Grid Setup . 24
 3.3. Data Scaler . 25
 3.4. Sparse Grid Linear Calculation Layer . 26
 3.5. Forward Pass of the Sparse Grid Autoencoder 26
 3.6. Parameter Definition for the Sparse Grid Autoencoder 27
 3.7. Forward Pass of the Sparse Grid Variational Autoencoder 28
 3.8. Sample Generation of the Sparse Grid Variation Autoencoder 29
 3.9. Reparametrization in the Sparse Grid Variation Autoencoder 31
 3.10. Loss Function of the Sparse Grid Variation Autoencoder 32

xiii

List of Figures

 2.1. Basic Grid Setup . 3
 2.2. Hat Functions for 1D Grid . 5
 2.3. Hat Functions for 2D Grid . 6
 2.4. A Hierarchical basis of functions (top) vs. A nodal basis of functions (bottom) 8
 2.5. Two Dimensional Subspaces (Source - [15]) 9
 2.6. A Simple Deep Neural Network . 10
 2.7. A Backpropagation Example . 11
 2.8. A Interpolation of Latent Variables of an Autoencoder (Source - [1]) 13

 3.1. Plot of the ReLU(x) non-linearity function 16
 3.2. Autoencoder architecture . 17
 3.3. Sparse Grid Autoencoder architecture . 18
 3.4. Sparse Grid Variational Autoencoder architecture 19
 3.5. Plot of the tanh(x) non-linearity function . 25
 3.6. Plot of the Sparse Grid of level 4 . 27
 3.7. Possible resulting distributions for a Gaussian prior 30
 3.8. Plot of the Sigmoid function . 30
 3.9. A two-dimensional grid . 33
 3.10. Training & Validation Loss of the Sparse Grid Autoencoder 34
 3.11. Latent Space Representation of the Sparse Grid Autoencoder 35
 3.12. Training & Validation Loss of the Sparse Grid Variational Autoencoder . . . 36
 3.13. Latent Space Representation of the Sparse Grid Variational Autoencoder . . 37
 3.14. Hyper-parameter Search of the Sparse Grid Autoencoder 38
 3.15. Latent Representation of SGA with best set of hyper-parameters 39
 3.16. Hyper-parameter Search of the Sparse Grid Variational Autoencoder 40
 3.17. Latent Representation of SGVA with an optimal set of hyper-parameters . . 41

xv

1. Introduction

The world today produces an astounding amount of data every second due to advances
in technology like the Internet and the abundance of monitoring devices. In this situation
of an abundance of data there is a growing interest from governments and companies to
make sense of the data to extract valuable insights that could further help in improving
a product or service. This has started a ”data race” to collect even more data and also
to develop techniques to interpret this data. This is clearly evident in the requests for
cookie/app permissions and the total penetration of advertisements throughout the In-
ternet based on the browsing activities of potential customers. The rise in job postings
looking for data scientists/analysts is also an indicator of this movement towards a data-
driven world.

The vast amounts of data that are being collected are very often high-dimensional i.e
having many attributes, many that are often redundant or not interesting. This makes
the downstream processing of data very cumbersome and expensive. Thus, researchers
have devoted a significant amount of time and effort to reduce the dimensionality of the
collected data. The Mathematical models such as Clustering Algorithms, Support Vector
Machines, Principal Component Analysis and others have emerged out of this research.
These algorithms perform very well in dimensionality reduction and are still predomi-
nantly used in many applications but they have some limitations. Their greatest limitation
is their inability to handle large datasets that are becoming prevalent now. This handicap
was overcome with the advent of Deep Learning. Deep Learning performs very well on
large data sets and also works well with many different types of data like audio, images,
graphs, videos and others. Deep Learning models are able to do what used to take human
interpretation and many different methods in a single end-to-end model. The incorpora-
tion of Robustness into Deep Learning models has also allowed for the models to learn
from corrupted data as well as data with large natural variations.

In this race to develop better and better models, people across the world are trying dif-
ferent architectures of Networks incorporating many new feature maps. This is shown by
the continuous improvements in Convolutional Neural network architectures to improve
both accuracy on predefined datasets and reduce the number of parameters used to get
there. Expansion into the areas of graphical data, image segmentation, Object detection,
Machine translation, data generation have seen the rise of Networks such as LSTM, GAT,
GCN, U-Net, GAN, DCGAN, WGAN, CycleGAN, Transformers, RBM, Autoencoders and
many more. We too look at ways to improve existing architectures using a new set of ideas.

1

1. Introduction

Motivation

One class of Deep Learning Networks is the Autoencoder. The Autoencoder is neither a
Classifier nor a Generative Network. Classifier Networks are those that are, as the name
suggests able to label/classify data after adequate training. Generative Networks are Net-
works that are able to generate new data that have common underlying functional rela-
tionships similar to the training data. The Autoencoder is a Network that learns the latent
representations of the input data. Autoencoder Networks have achieved great results in
the field of unsupervised learning. This has been successfully used in the application areas
of feature extraction, image compression, image denoising and most importantly dimen-
sionality reduction. A related Network to the Autoencoder is the Variational Autoencoder
which is a generative Network. It can generate new samples similar to the input after
learning the hidden patterns in the training data. Variational Autoencoders have been
used in similar applications as the Autoencoder and in word interpolations, generate more
training data or sequences. This data generation ability can greatly expand the collection
of data for further processing. This is especially useful in Medical applications where there
is a dearth of data.

The main motivation behind the Sparse Grid Autoencoder is to develop a novel archi-
tecture for an Autoencoder that is more Human-Interpretable while trying to be more ef-
ficient with respect to memory storage and computational complexity. A great challenge
with Deep Learning Networks in general is their inscrutable manner of operation which
leads to decreased confidence by industry professionals in the results produced by such
mathematical tools. This is partially solved in the case of the Autoencoder due to the ability
to sample the entire latent space thus learning the exact nature of features being embed-
ded. The composition of non-linear functions in traditional neural network architecture
make human-explainable AI a challenging task. The other advantage is that studies by
[16] have shown that for dimensionality reduction of data with moderate dimensionality,
Sparse Grids are far more efficient than Feed forward neural networks. This thesis hopes
to introduce this novel idea of using Sparse Grids as the Layers of a Neural Network. This
is a first-of-a-kind approach towards designing such a Network.

This Thesis is structured as follows. Section 2 is a broad overview of the fields of Sparse
Grids and Deep Learning. Section 2.1 explains the basic concepts and history of Sparse
Grids. Section 2.2 does the same for Deep Learning. This Section is meant to give the
necessary background information for understanding the Thesis. Section 3 delves into the
core ideas of the Thesis. The subsection 3.1 discusses the Methodology behind the Sparse
Grid Autoencoder and the Sparse Grid Variational Autoencoder. Section 3.2 presents how
the architecture models for these Networks was constructed. Section 3.3 details the imple-
mentation of these Networks. Section 3.4 describes the results that were obtained by these
Networks on a problem. It also discusses the Hyper-Parameter tuning of these models. Fi-
nally, Section 4 presents the Conclusions of the Thesis and also gives some ideas for future
work.

2

2. State of the Art

2.1. Sparse Grids

Sparse Grids arouse out of the need to address the ”curse of dimensionality” that was
encountered when solving PDE in high dimensional spaces. The use of Finite Difference
Methods to solve these PDE on uniform grids led to complexities of the order of O(Nd)
where N is uniform number of discretized points in a single dimension. N is set depending
on the how accurate the predicted function should be to the true solution. As can be clearly
seen the exponential rise of complexity with the number of dimensions meant that for
cases beyond d = 4 the calculations become very expensive. It is in this context Sparse
Grids were introduced.

The full grid or regular grid is the space discretized by points in regular intervals (See Fig
 2.1b). Each grid point has a function defined with respect to it. This function is typically a
linear hat function defined as follows in the one-dimensional example.

φi(x) =

{
1− |x− xi|, for xi−1 ≤ x ≤ xi+1

0 else
(2.1)

Here x is the co-ordinate of any given point and xi,xi−1 and xi+1 are grid points.
Figure 2.1a shows a simple one-dimensional hat function defined with respect to the

point x = 0 with a support length of 2. This hat function is now extended to all points on
the full grid. The result of this is shown in 2.2 . The Figure 2.2a shows the individual hat

(a) A Simple One-Dimensional hat
function (b) A Simple Full Grid on the x-y plane

Figure 2.1.: Basic Grid Setup

3

2. State of the Art

functions overlapping each other with the dotted lines showing the point around which
each of these functions are defined. The effective function looks as shown in 2.2b . In higher
dimensions we perform tensor products to obtain linear basis functions in the coordinate
axes. An example of this case is shown in Figure 2.3a . It shows a simple 2-d hat function.
The Tensor Product implies the following operation.

φX−Y (x, y) = φX(x) ∗ φY (y) (2.2)

Here φX(x) and φY (y) are the hat function defined on the respective coordinate axes.
This is extended to the multi-dimensional case. The nodal basis of functions is the set
of functions defined on [0, 1] → R represented by the set ω = φi|0 <= i < N |. N is the
number of discrete points (See Fig 2.2c). The support of a nodal basis function is defined
as the interval over which the function is non-zero.

Using this nodal basis of functions we can solve the relevant PDE’s. This involves find-
ing the integral of a complex function using approximations to the function. Though in
this case we use the grid in the context of solving the PDE’s this can be done wherever
an approximation to a complex function using simple basis functions is required. The
approximation for the integral calculation of this complex function is shown below.∫ 1

0
f(x)dx =

∫ 1

0

N−1∑
i=0

αiφi(x)dx =

N−1∑
i=0

αi

∫ 1

0
φi(x)dx (2.3)

Here φi(x) is the nodal basis and the space of [0, 1] is discretized into N points. αi is
the coefficient associated with each nodal basis function. These αi have to be solved for.
Iterative methods are often used to obtain the values of αi. We already know the definition
of the basis functions allowing us to calculate the integral.

Sparse Grids take advantage of the fact that not all basis functions are equally important
in the reconstruction of a target function. Sparse Grids use a hierarchical basis of functions.
A hierarchical basis is so called because it consists of an hierarchy of discretized grids with
each grid lower on the hierarchy being a finer grid than the one above it. In the hierarchical
basis of functions not all nodal functions on each level is taken.

Without loss of generalization we take the function to be one-dimensional in the space
of Ω = [0, 1]. To approximate a function on this interval we consider a family of grids Ωl

where l denotes the level of the grid. Each grid is discretized with a grid size of hl = 2−l

this leads to 2l − 1 points per grid level. These points are represented by xl,i = ihl, 1 ≤
i ≤ 2l−1 − 1. The hierarchical basis functions are constructed on each level of this grid as
follows:

φl,i = φ(
x− xl,i
hl

), 1 ≤ i ≤ 2l − 1 (2.4)

φi(x) =

{
1− |x− xi|, for xi−1 ≤ x ≤ xi+1

0 else
(2.5)

4

2.1. Sparse Grids

(a) A Series of One-Dimensional hat functions

(b) Effective function basis on one-dimensional
grid

(c) Nodal basis on one-dimensional grid

Figure 2.2.: Hat Functions for 1D Grid

5

2. State of the Art

(a) A Simple Two-Dimensional hat function

(b) A Series of Two-Dimensional hat functions

Figure 2.3.: Hat Functions for 2D Grid

6

2.2. Deep Learning

The hierarchical basis functions are taken to be linear hat-functions. These can be changed
for including more expressivity in the model. The difference between the hierarchical basis
and the nodal basis is shown in Fig 2.4 . The figure shows the hierarchical basis (above the
dotted line) for a level 3 grid. W1,W2 and W3 are the differently discretized grids. All the
Φ’s denote basis functions. The basis function for this H3 = φ3,1, φ2,1, φ3,3, φ1,1, φ3,5, φ2,3, φ3,7.
They exist in different grids unlike the nodal basis that are in the same grid. The nodal ba-
sis is shown below in V 3. The nodal basis is what is used in the case of the full grid. The
different grids are called subspaces. They can be defined as Wl given by [2],

Wl = span{φl,i, i ∈ Il} (2.6)

with,

Il = {i ∈ Nd : 1 ≤ i ≤ 2l − 1, ijodd for all j} (2.7)

A Sparse Grid of level n consists of all subspaces with
∑D

i li ≤ n where li is the dis-
cretization level of the grid in co-ordinate axis i. D is the dimensional size of the subspaces.
A li value of 2 implies a discretization length of 1/22 for a unit length. Thus a Sparse Grid of
dimension 2 will contain the subspaces (1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (3, 1). This is shown
in Figure 2.5 . The Figure shows all the subspaces for the full grid. The subspaces above
the dotted line shows the subspace for the Sparse Grid of level 3.

2.2. Deep Learning

Machine Learning is becoming a critical part of the modern world due to the explosion
of data and the race to utilize this valuable resource. Machine learning algorithms had
been achieving great success in the problems of regression and classification. Yann LeCun
who is a pioneer in the field, first applied the standard backpropagation algorithm with
deep neural networks back in 1989 [11]. His algorithm though successful was extremely
time-consuming and required a lot of resources. Many other advances were made with
the discoveries of CNN for image recognition tasks [13], use of LSTM’s [5] and RNN [19]
and attempts to deal with graph-based data [9] too. The Deep Learning revolution took off
since 2010 due to the availability of vastly more powerful hardware specifically GPU’s and
significant improvements in Programming paradigms. This was reflected in 2012 when
deep neural networks achieved superhuman performance in classification tasks [10]. Their
performance has only improved since then. Discoveries in how the human brain functions
have also helped in this revolution [20].

Deep Learning is so named because of the ”deep nature” i.e the utilization of multiple
layers of neural/convolutional layers to increase the expressivity of the model. The neural
layer consists of ”neurons” that are computational centres that operate on the input data.
The convolutional layer operates on the entire input data and the use of the convolution

7

2. State of the Art

Figure 2.4.: A Hierarchical basis of functions (top) vs. A nodal basis of functions (bottom)

8

2.2. Deep Learning

Figure 2.5.: Two Dimensional Subspaces (Source - [15])

9

2. State of the Art

Figure 2.6.: A Simple Deep Neural Network

operation implies strong correlation of data to neighbouring points. A simple deep neu-
ral network of depth 1 is shown in Fig 2.6 . The Input is x with the components being
numbered from one to four. The hidden layer (in purple) of the Networks consists of the
weights W1, W2, W3 and W4. This is called the hidden layer as it is ”hidden” from us
unlike the input and output layers. The Outputs are the labels output l1,l2,l3 which are
the probabilities of each label. This is also called as a fully connected layer as each input
elements influences the values of all weights. A more realistic example would have many
hidden layers with many more individual weights per layer.

The core idea that incorporated the learning aspect into these ”deep” networks is Back-
propagation. Backpropagation was first discussed in 1960 by Henry J. Kelley [6]. The idea
was further improved on with the inclusion of the chain rule for derivatives. The earliest
contributors to Backpropagation were Seppo Linnainmaa [14] and Werbos [22] .Backprop-
agation is the method by which the Network calculates the gradient of the objective func-
tion with respect to the weights of the Networks. The objective/loss function is something

10

2.2. Deep Learning

Figure 2.7.: A Backpropagation Example

that the Network is trying to minimize to solve the problem. This can take the form of
Cross-Entropy loss for correct label classification, Mean square error loss for direct image
generation, L1 loss for simpler data and many other cases. Using 2.7 we explain in simple
terms the idea of backpropagation.

In Figure 2.7 , a deep neural network is shown which calculates the loss value using a
function f(x) where x are the calculated label probabilities l. To optimize this loss function
we calculate the gradient of the loss function with respect to the variables i.e the weights
of the network. The gradient is being calculated as the optimization techniques involve a
gradient based update rule to the variables. Here a very important mathematical idea is
used i.e the Chain rule of Derivatives. The chain rule is shown in 2.8 .

δu

δt
=
δu

δx
∗ δx
δt

where x = f(t) (2.8)

11

2. State of the Art

We perform the calculations for one such weight in the Network(2.9).

δLoss

δW1,1
=
δLoss

δl1
∗ δl1

δW1,1

=
δLoss

δl1
∗ δl1

δo3,1
∗ δo3,1
δW1,1

=
δLoss

δl1
∗ δl1

δo3,1
∗ δo3,1
δo2,1

∗ δo2,1
δo1,1

∗ δo1,1
δW1,1

(2.9)

Similarly the gradients are calculated with all other weights. This is automatically imple-
mented in frameworks such as PyTorch and Tensorflow and the feature is called autograd.
Deep Learning Networks have many different update rules. The use case of a certain type
of optimizer depends on the situation and the problem being solved but often the best
performing one can only be found after training. There are four main variations though
many more niche optimizers do exist.

1. Standard Gradient Descent

2. Stochastic gradient descent

3. RMSProp

4. Adam

There exists a lot of literature regarding the advantages and what essentially each type
of optimizer is good at capturing. The Adam optimizer [7] is at present the most widely
used optimizer.

Depending on the nature of data and what is to be learned deep learning techniques
techniques can be divided into three large groups. They are supervised learning, unsuper-
vised learning and Reinforcement learning. Supervised learning is performed with fully
labeled data and when the objective is to know the labels of unknown samples. In un-
supervised learning the data is unlabelled and the objective is to learn hidden functional
relations and patterns. Semi-supervised learning is a mix of both of these approaches. It
has partially labeled data and the idea is to generate labels for the unlabeled data after
training. Reinforcement learning is concerned with how an agent reacts to surroundings
and encouraging/discouraging certain actions based on a rewards system. Unsupervised
learning is a very important field among these as most of the data in real-world is often
unlabelled and labeling data is a time-consuming and expensive process. It could also be
that in certain cases we do not know the exact labels to be used.

This thesis goes in depth into unsupervised learning with Autoencoders and Variational
Autoencoders.

Autoencoders learn latent representations of input data. The architecture is shown in
Figure 3.2 . The model consists of two main blocks - a Encoder and a Decoder. The Encoder

12

2.2. Deep Learning

Figure 2.8.: A Interpolation of Latent Variables of an Autoencoder (Source - [1])

and Decoder are fully-connected layers as shown in 2.6 . The Weights are of the appropriate
dimensions to result in the predefined latent space size. Each value in the latent space
representation characterized some feature of the original input data. These can be studied
by varying these values i.e performing interpolations to better understand the features
being learned (See Fig. 2.8). The Figure shows the effect on the output for interpolating
the latent representations of the MNIST dataset.

13

3. Sparse Grid Autoencoder

This section details the development process of the Sparse Grid Autoencoder and the
Sparse Grid Variational Autoencoder.

In Section 3.1 the Methodology behind the Sparse Grid Autoencoder (SGA) and the
Sparse Grid Variational Autoencoder (SGVA) is discussed. Section 3.2 explains the De-
velopment of the SGA and SGVA models. In Section 3.3 the implementation details of
the SGA and SGVA models in Python is described. Finally Section 3.4 details the Hyper-
Parameter Tuning of these models.

3.1. Methodology

The main idea in the Thesis is to substitute the conventional Neural Network that is com-
posed of linear layers and non-linear activation functions with Sparse Grids. The input
to the Network undergoes multiple layers of functional composition with linear and non-
linear functions. The output of such a Network can be succinctly represented by

h(x) = ReLU(f(ReLU..x)) where f(x) = Wx+~b

Here x represents the input data to the Network and ReLU is a non-linear activation
function (Fig. 3.1). W is the Weight matrix and ~b is the bias that is added to the model.
f(x) is the mathematical operation that is performed when the input is passed through a
layer of the network. The ReLU function is defined as

ReLU(x) = max(0, x) (3.1)

As explained previously we replace these layers with a single Sparse Grid Layer which
can be represented as follows

h(x) = f(scaled x) ∗W where f(x) = a ∗ g(x− xsg)

Here scaled x refers to the input that has been scaled to the hypercube [−1, 1]d. W is
the Weight matrix and f(x) is the short-form representation of the main calculation of the
Sparse grid. g(x) is a clamping function that limits the values to the range [0, 1], xsg is the
points of the sparse grid and a is a known co-efficient. This is done for the both the En-
coder and Decoder sections of the Sparse Grid Autoencoder. The Sparse Grid Autoencoder
utilizes the same general architecture as the Autoencoder architecture.

15

3. Sparse Grid Autoencoder

Figure 3.1.: Plot of the ReLU(x) non-linearity function

The Sparse Grid Variational Autoencoder (SGVA) follows a similar architecture to the
standard Variational Autoencoder. The limitation of the input to the Sparse Grid Varia-
tional Autoencoder in that it should be in the hypercube [−1, 1]d significantly changes the
calculation of the assumed prior distribution.

3.2. Model Development

The Sparse-Grid Autoencoder architecture is very similar to the conventional Autoencoder
in that it consists of a Encoder and a Decoder section(See Fig 3.2 & 3.3). The Encoder
and Decoder are Sparse-Grid Layers of the appropriate dimensions of the input and the
intended latent dimensions. Since these dimensions are pre-determined the architecture is
built only for a pair of input dimensions and latent dimensions.

The big difference between the architectures is the inclusion of the addition data scaling
layers. These are included as the Input to the Sparse Grid have to be in the range of [-
1,1] due to the definition of the hierarchical basis functions for the Sparse Grid Layer. The
basis functions are taken to be piecewise linear functions with a support length of twice
the discretization length. These are defined for every sparse grid point.

The Sparse Grid Variational Autoencoder has more significant variations to the stan-
dard Variational Autoencoder. The limitation that the Sparse Grid Layer can only accept
inputs in the range [−1, 1] changes the assumption of the prior distribution from a stan-
dard Gaussian distribution. This is due to the fact that samples generated from a Gaussian
distribution have a non-zero probability of being outside the specified range which would
violate the requirements of the Sparse grid layer. The addition of data-scaling to the gen-
erated samples would twist the originally assumed prior thereby defeating the purpose.
This work takes the assumed prior to be a Uniform distribution on the interval [0, 1]. This
solves the aforementioned problem.

The loss function of the Variational Autoencoder is given by Equation 3.2 . This is the

16

3.2. Model Development

Figure 3.2.: Autoencoder architecture

17

3. Sparse Grid Autoencoder

Figure 3.3.: Sparse Grid Autoencoder architecture

18

3.2. Model Development

Figure 3.4.: Sparse Grid Variational Autoencoder architecture

19

3. Sparse Grid Autoencoder

generic definition as applied to a individual data point i. The first term is the reconstruc-
tion loss i.e it is a measure of how close the final output of the Variational Autoencoder to
the Input. The second term is a called the Kullback-Leibler divergence. It is a measure of
how close the distribution of the assumed prior p(z) is to the distribution of the encoder
output qθ(z|xi). If they are identical this term becomes zero which is the ideal case.

li(θ, φ) = −Ez∼qθ(z|xi)(log pφ(xi|z)) + KL(qθ(z|xi)||p(z)) (3.2)

The reconstruction loss in the Sparse Grid Variational Autoencoder is taken to be the
Mean Square Error loss between the final output and the input. The Kullback-Leibler
divergence has to be calculated for our assumed prior, the Uniform distribution [0, 1]. The
Kullback-Leibler divergence is defined as in Equation 3.3 .

KL(P ||Q) =

∫ ∞
−∞

p(x) log(
p(x)

q(x)
)dx (3.3)

Using 3.3 to calculate the loss for the Sparse Grid Variational Autoencoder gives us:

KL(qθ(z|xi)||p(z)) =

∫ ∞
−∞

qθ(z|xi) log(
qθ(z|xi)
p(z)

dz)

=

∫ ∞
−∞

qθ(z|xi) log(qθ(z|xi))dz −
∫ ∞
−∞

qθ(z|xi)log(p(z))dz

=

∫ 1

0
qθ(z|xi) log(qθ(z|xi))dz −

∫ 1

0
qθ(z|xi)log(p(z))dz

=

∫ b

a

1

b− a
log(

1

b− a
)dz − 0 ([a, b] ∈ [0, 1]andp(z) = 1∀z)

=
1

b− a
log(

1

b− a
)

∫ b

a
dz

= log(
1

b− a
)

This loss is implemented in the code.

3.3. Implementation

This section will describe the Implementation of the Sparse Grid Autoencoder (SGA) and
the Sparse Grid Variational Autoencoder (SGVA).

The Sparse Grid Autoencoder (SGA) and the Sparse Grid Variational Autoencoder (SGVA)
are implemented in Python using the PyTorch framework. Python is used as the Program-
ming language in this Thesis due to wide availability of libraries and tools designed for
Machine Learning. Since there is no layer implementation of the Sparse Grid in PyTorch
as this is a novel idea the layer architecture has to constructed from scratch.

20

3.3. Implementation

3.3.1. Sparse Grid Layer

The Sparse Grid is implemented in the code in two stages. The first stage deals with the
actual construction of the Sparse Grid points i.e their positions and subspace coefficients.
The second stage constructs the Sparse Grid class with all of the associated features namely
the hierarchical functions, functional coefficients calculation and many necessary parame-
ter retrieval functions for further use down the pipeline.

The first stage is the construction of the Sparse Grid points. This stage requires two
main inputs the number of dimensions of the Sparse Grid and the discretization level of
the Sparse Grid. These are hyper-parameters that has to be decided based on the data and
problem. The idea is explained in Algorithmic terms in Algorithm 1 . We first need to find
the valid subspaces for the Sparse Grid of specified input parameters. This is calculated
in two parts. Firstly, all subspaces i.e level vectors are calculated that are of the dimension
of the Sparse Grid. Then the validity of the subspace to belong to the the Sparse Grid of
that level is checked. After this process we have the list of all valid subspaces. The second
part is calculating the co-ordinates of the sparse grid points, the subspace coefficient and
the scaling factors for each subspace. The scaling factor is the factor by which you add to
the co-ordinates of a grid point to get another grid point. The importance of this measure
is to calculate at each subspace level the support of the sparse grid functions.

The Code snippet 3.1 is how the first stage is worked out. The combi scheme variable
is responsible for generating the subspace levels associated with the Sparse Grid of the
specified dimension and discretization level. Each of these subspaces have the associated
grid points and they all have a common coefficient associated with their subspace. This
is calculated in the variable coefficients. The variable positions determines the
Cartesian co-ordinate in the [0, 1] hypercube for the Sparse Grid points. This is calculated
with the help of combi scheme as once the subspace is known, the discretization level in
each dimension is also known. scales calculates the support values of the functions for
each subspace level.

The second stage is assembling the Sparse Grid and all of the associated functions to-
gether. This is done inside the class CombinedSparseGridTest in the code (See 3.2).
The construct grid functions as the name implies constructs the grid using the given
positions and scale factors. These are set to not requiring the gradient as these are not
the Parameters to be learned. Setting the gradient is not required saves a lot of valuable
computation time as otherwise the program would be trying to calculate the backward
pass of the network with respect to these Parameters. In PyTorch ”Parameter” is a special
Tensor that becomes associated with the parameter iterator. This allows to check for all
of the inputs/variables required for a particular class. A Tensor is the basic data struc-
ture in PyTorch that comes with the benefit of being able to run on either the CPU or the
GPU when compared to the standard numpy implementation for a array or matrix. The
compute coefficients function does the computation of the exact coefficients if the
output of the Sparse layer is known. This is useful if the latent representation is already
known. The problem statement of the Thesis does not specify the knowledge of latent

21

3. Sparse Grid Autoencoder

1 combi_scheme = [level_vector for level_vector in product
2 (*[list(range(1,level+1)) for d in range(n_latent_dimensions)])
3 if level <= sum(level_vector) <= level + n_latent_dimensions - 1]
4 combi_coefficients = []
5 dim = n_latent_dimensions
6 for level_vector in combi_scheme:
7 q = (level + n_latent_dimensions - 1 - sum(level_vector))
8 coefficient = (-1)**q * math.factorial(dim-1)/
9 (math.factorial(q)*math.factorial(dim-1-q))

10 combi_coefficients.append(int(coefficient))
11

12 positions = np.array([]).reshape(0,dim)
13 scales = np.array([]).reshape(0,dim)
14 coefficients = np.array([], dtype=int)
15 for grid, coefficient in zip(combi_scheme, combi_coefficients):
16 level_vec_combi_grid = 2**(np.asarray(grid)) - 1
17 num_points_grid = np.prod(level_vec_combi_grid)
18 positions = np.concatenate((positions,np.asarray
19 (list(product(*[np.linspace(0,1,level_vec_combi_grid[d] + 1,
20 endpoint=None)[1:] for d in range(dim)])))))
21 scales = np.concatenate((scales,np.ones((num_points_grid,dim)) *
22 1/(level_vec_combi_grid+1)))
23 coefficients = np.concatenate((coefficients,
24 np.ones(num_points_grid) * coefficient))

Code 3.1.: Sparse Grid Points Setup

22

3.3. Implementation

Algorithm 1 Sparse Grid Points Setup

1: for iteration = 1, 2, . . . level do
2: Generate all possible combinations of grids i.e level vectors (iteration, . . .) of latent

dimension size.
3: Check for validity of Subspace to be part of Sparse Grid.
4: if level ≤

∑
i levelvectori ≤ level + latent dimension size − 1 then Accept level

vector
5: else Reject level vector
6: end if
7: end for
8: for level vector ∈ Total set of level vectors do
9: Calculate the Coefficient of Subspace.

10: Calculate the Positions of Sparse Grid points in Subspace.
11: Calculate the scaling factor between points for Subspace.
12: end for

space representation. Thus, this is going to be a parameter to be learned by the network.
size return and parameters return are functions defined to retrieve specific values
required for future computations.

The Sparse Grid setup for the Encoder and the Decoder are identical despite the differ-
ence in dimensionality.

3.3.2. Sparse Grid Autoencoder

Once the Sparse Grid is set up for the Encoder and the Decoder, they are combined together
in the Autoencoder module. As mentioned previously we need to scale the data that is fed
into the Sparse Grid Layer. This is achieved with a data scaler function that scales the
data to [−1, 1] (See Code 3.3). The section of code takes into account the maximum and
minimum values of input in each dimension and then scales as per the following formula.

scaling function(x) =

(
2 ∗ x− xmin

xmax − xmin

)
− 1 (3.4)

In the intermediate stage when going from the latent space representation to the Decoder
it was observed that the Tanh non-linearity function gave superior results to this scaling
formula. The Tanh non-linearity is very similar to the definition defined above as in it too
maps the input data to the range [−1, 1]. Tanh is defined as

f(x) = tanh(x) =
ex − e−x

ex + e−x
(3.5)

The Tanh non-linearity is graphed in Fig 3.5 .

23

3. Sparse Grid Autoencoder

1 class CombinedSparseGridTest():
2 """
3 Generic Class for a Sparse Grid
4 """
5 def __init__(self, positions, scales, combi_coefficients,
6 l2_regularization=1e-5):
7 self.size = (positions.shape[0])
8 self.l2_regularization = l2_regularization
9 self._construct_grid(positions, scales)

10 self._combi_coefficients = combi_coefficients
11

12 def _construct_grid(self, positions, scales):
13 """
14 Constructing Sparse Grid with given position of points and
15 respective scaling level
16 """
17 self.positions = Parameter(torch.Tensor(positions),
18 requires_grad = False)
19 self.scales = Parameter(torch.Tensor(scales), requires_grad = False)
20

21 def compute_coefficients(self, _inputs, _outputs):
22 """
23 Exact Calculation of Coefficients of Sparse Grid (After Training)
24 """
25 _kernel = self.kernel(_inputs)
26

27 self._sg_coeff = torch.lstsq(_outputs,_kernel)
28

29 def size_return(self):
30 """
31 Compute the grid with given coefficients
32 """
33 return self.size
34

35 def parameters_return(self):
36 """
37 Returns the Parameters of the Sparse Grid for further calculation
38 """
39 return self.positions,self.scales,self._combi_coef

Code 3.2.: Sparse Grid Setup

24

3.3. Implementation

Figure 3.5.: Plot of the tanh(x) non-linearity function

1 def compute_data_scaler(self, data_in):
2 d_min = data_in.min(0, keepdims=True)[0]
3 d_max = data_in.max(0, keepdims=True)[0]
4 scaler = d_max - d_min
5 scaled_data = ((2 * (data_in - d_min))/scaler) - 1
6 return scaled_data

Code 3.3.: Data Scaler

The actual computation with the Sparse Grid is performed in the hat function. This
is done in the Code Section 3.4 . In the hat function, x is the input data to the Sparse
grid, loc is the position information of the Sparse grid points and scale refers to the support
of the corresponding hat function defined by the sparse grid point. combi coefficients is
the coefficient associated with the subspaces of the sparse grid. The pairwise distance
i.e distances between the coordinates in each dimension is calculated between each input
data point and all the points of the Sparse grid points. This distance is then divided by
the support/extant of the hat function associated with the set sparse grid point. This value
that is obtained is clamped to 0, 1 if the value is outside the range [0, 1], otherwise it is set as
is. This reflects the actual hat function being performed on the value. The functional value
is then multiplied with the associated coefficient of that level and the result is returned to
the calling function.

All the experiments were conducted on a sparse grid of discretization level of 4. The
Sparse grid looks as shown in Figure 3.6 .

The forward pass of the Autoencoder module is shown in Code 3.5 . The forward pass
is the path that the input takes along the network architecture to obtain the output that
is constrained to match some predefined criteria. This is the same as the Architecture

25

3. Sparse Grid Autoencoder

1 def hat_function(x, loc=0, scale=1, combi_coefficients=1):
2 # squared pairwise distances
3 pairwise_diff = torch.abs(torch.unsqueeze(x, 0) -
4 torch.unsqueeze(loc, 1))
5 pairwise_diff /= torch.unsqueeze(scale, 1)
6 hat_evaluation = torch.clamp(torch.abs(1-pairwise_diff), 0, 1)
7 output = torch.transpose(torch.prod(hat_evaluation,
8 axis =-1), 0, 1) * torch.Tensor(combi_coefficients)
9 return output

Code 3.4.: Sparse Grid Linear Calculation Layer

1 def forward(self,inputs):
2 inputs_scaled = self.compute_data_scaler(inputs)
3 print(inputs_scaled)
4 encoder_output = self.kernel(self.sparse_grids[0], inputs)
5 @ self._sg_coeff_encoder
6 scaled_latent_space = self.tanh_layer(encoder_output)
7 decoder_output = self.kernel(self.sparse_grids[1],
8 scaled_latent_space) @ self._sg_coeff_decoder
9

10 return decoder_output

Code 3.5.: Forward Pass of the Sparse Grid Autoencoder

26

3.3. Implementation

Figure 3.6.: Plot of the Sparse Grid of level 4

1 self._sg_coeff_encoder = Parameter(torch.randn(self.encoder_size,
2 self.latent_size, dtype=torch.double), requires_grad = True)
3 self._sg_coeff_decoder = Parameter(torch.randn(self.decoder_size,
4 self.input_size, dtype=torch.double), requires_grad = True)

Code 3.6.: Parameter Definition for the Sparse Grid Autoencoder

Diagrams presented in Section 3.2 . The input is scaled then passes through the first Sparse
Grid Layer which gives the latent representations. This is once again scaled and fed into
the Decoder section which finally gives the output that is trained to be as close as possible
to the input.

The parameters to be learned are the individual coefficients associated with the Sparse
Grid points/functions that are multiplied with the outputs of the Sparse grid functions
applied to the inputs. The encoder and decoder coefficients, both have to be learned while
training.

The training parameters for the Sparse Grid Autoencoder is shown in Table 3.1 . The
Loss function used is defined in 3.7 .

Learning Rate 0.005
Epochs 100

Batch Size 16
Input Dimensionality 8
Latent Dimensionality 2

Sparse Grid Level 4

Table 3.1.: Training Parameters of the Sparse Grid Autoencoder

27

3. Sparse Grid Autoencoder

1 def forward(self,inputs):
2 """
3 Forward Pass of the VAE Module (For Training)
4 """
5 # Scaling Input Data to [0,1]
6 inputs_scaled = self.compute_data_scaler(inputs)
7 # Passing through Encoder Sparse Grid
8 encoder_output = self.kernel(self.sparse_grids[0], inputs_scaled)
9 @ self._sg_coeff_encoder

10 # Latent Space Sample Generation
11 generated_samples, dist_parameters1, dist_parameters2 =
12 self.sample_generation(encoder_output)
13 # Rescaling Latent Space Generated Example to [0,1]
14 scaled_latent_space = self.sigmoid(generated_samples)
15 # Passing through Decoder Sparse Grid
16 decoder_output = self.kernel(self.sparse_grids[1],
17 scaled_latent_space) @ self._sg_coeff_decoder
18 # Scaling Decoder Output to [0,1]
19 decoder_output = self.sigmoid(decoder_output)
20

21 return decoder_output, dist_parameters1, dist_parameters2

Code 3.7.: Forward Pass of the Sparse Grid Variational Autoencoder

3.3.3. Sparse Grid Variational Autoencoder

The Sparse Grid Variation Autoencoder has a similar architecture to the Sparse Grid Au-
toencoder. The main difference with the as explained in Section 3.2 is that the instead of
taking the latent representations to be directly the lower-dimensional representation of the
input they are instead taken as realizations from a latent distribution whose parameters
have to be learned. This leads to a change in the forward pass of the Variation Autoen-
coder as shown in Code 3.7 .

The main difference can be observed in line 11 which generates samples from the prior
distribution using the output of the encoder section of the SGVA.

The Code Section 3.8 details the implementation of sampling procedure for the Sparse
Grid Variational Autoencoder. As explained previously in Section 3.2 the Variational Au-
toencoder assumes a certain prior that is approximated using a learned distribution q(z).
In the stand Variational Autoencoder the prior is assumed to be Gaussian but this cannot
be taken as the case in this architecture as the Sparse Grid cannot input data that exceed
the [−1, 1] hypercube. The Gaussian curve extends from [−∞,∞] thus samples drawn

28

3.3. Implementation

1 def sample_generation(self, encoder_output):
2 """
3 Computes the Parameters of the Assumed Prior Distribution
4 (Uniform - [a,b]) and generates samples.
5 """
6 # a and b parameter computation
7 dist_parameters_a = self.fc1(encoder_output)
8 dist_parameters_a = self.sigmoid(dist_parameters_a)
9 dist_parameters_b = self.fc2(encoder_output)

10 dist_parameters_b = self.sigmoid(dist_parameters_b)
11

12 # Generating Samples from Uniform Distribution using
13 learned parameters
14 z = self.reparameterize(dist_parameters_a, dist_parameters_b)
15

16 return z, dist_parameters_a, dist_parameters_b

Code 3.8.: Sample Generation of the Sparse Grid Variation Autoencoder

from this distribution will have to be scaled to [−1, 1] for the decoder sparse grid. This
restriction will obscure many of the drawn samples and will result in effectively creating
an entirely different distribution. This resulting distribution is going to be something ex-
tremely complex which would impact the calculation of the loss function. An example of
this situation is shown in 3.7 .

For the purpose of sample generation, the output generated by the Encoder section is
passed through two different linear layers to generate the parameters of the assumed prior
distribution i.e the Uniform Distribution. The Uniform distribution is taken to be defined
on the interval [0, 1]. This is achieved with the help of the non-linearity Sigmoid function
that maps the output of the linear layers to the required interval. The Sigmoid function is
shown in Fig 3.8 .

Code Section 3.9 is the implementation of the reparametrization trick in the Sparse Grid
Variational Autoencoder. The learned parameters ~a and~b of the Uniform distribution [~a,~b]
is the distribution from which the data is sampled. The parameters/weights associated
with the linear functions are also learnable parameters. They are learned in conjunction
with the sparse grid coefficients of the encoder and the decoder. Using the distribution
parameters are then used in the reparametrization trick used in the Variational Autoen-
coder. Firstly samples are generated from the uniform distribution [0, 1]. These generated
samples undergo a transformation with the learned parameters ~a and ~b to the range [~a,~b]

29

3. Sparse Grid Autoencoder

Figure 3.7.: Possible resulting distributions for a Gaussian prior

Figure 3.8.: Plot of the Sigmoid function

30

3.3. Implementation

1 def reparameterize(self, dist_parameters_a, dist_parameters_b):
2 """
3 Generates Samples using the Computed Parameters
4 (Uniform Distribution)
5 """
6 # Generate Random Samples from [0,1]
7 esp1 = torch.Tensor(np.random.random
8 ((dist_parameters_a.shape[0], 1)))
9 esp2 = torch.Tensor(np.random.random

10 ((dist_parameters_a.shape[0], 1)))
11

12 # Reparametrize of the 2-d latent space
13 z1 = dist_parameters_a[:,:1] + (dist_parameters_b[:,:1]
14 - dist_parameters_a[:,:1]) * esp1
15 z2 = dist_parameters_a[:,1:] + (dist_parameters_b[:,1:]
16 - dist_parameters_a[:,1:]) * esp2
17

18 # Combining the Generated Dimensional Samples
19 z = torch.cat([z1,z2], dim = 1)
20

21 return z

Code 3.9.: Reparametrization in the Sparse Grid Variation Autoencoder

31

3. Sparse Grid Autoencoder

Learning Rate 0.005
Epochs 200

Batch Size 16
Input Dimensionality 8
Latent Dimensionality 2

Sparse Grid Level 4

Table 3.2.: Training Parameters of the Sparse Grid Variational Autoencoder

1 def loss_fn(recon_x, x, dist_parameters_a, dist_parameters_b):
2 BCE = F.mse_loss(recon_x, x)
3 tmp1 = dist_parameters_b[:,:1] - dist_parameters_a[:,:1]
4 tmp2 = dist_parameters_b[:,1:] - dist_parameters_a[:,1:]
5 tmp1 = torch.reciprocal(tmp1)
6 tmp2 = torch.reciprocal(tmp2)
7 KLD = torch.sum(torch.log(torch.abs(tmp1 * tmp2)))
8 return torch.sum(BCE + KLD)

Code 3.10.: Loss Function of the Sparse Grid Variation Autoencoder

using the fairly standard formula.

U(~a,~b) = ~a+ U(0, 1) ∗ (~b− ~a) (3.6)

The reason for two samples being drawn is due to the fact that the latent dimensionality
of the data has been taken as two. This is also the reason for the vector notation for the
parameters. So each sample drawn is for each dimension of the latent space. These indi-
vidual samples are then concatenated to finally be the generated 2-D samples drawn from
the Uniform distribution [~a,~b].

The Parameters of Training the Sparse Grid Variational Autoencoder is shown in Table
 3.2 . The Optimizer used in Training is the Adam Optimizer.

The loss function is implemented as described in Section 3.2 . First part of the loss func-
tion involves the calculation of the Mean Squared Error between the original data and
the reconstructed data. This loss is calculated as per the formula 3.7 . n is the number of
samples and Y and Y ′ are the original and reconstructed data points respectively.

MSE Loss =
1

n

n∑
i=1

(Yi − Y ′i)2 (3.7)

The second part of the loss function involves the calculation of the Kulback-Leibler di-
vergence between the returned distribution and a standard Uniform distribution. This acts

32

3.4. Results

Figure 3.9.: A two-dimensional grid

as a form of regularization that penalized learned distributions depending on how much
they deviate from the standard Uniform distribution.

3.4. Results

This section presents the results that have been achieved with the novel Sparse Grid Au-
toencoder(SGA) and Sparse Grid Variational Autoencoder(SGVA) architectures.

Model Problem 1

To test out the efficacy of the architectures we first simulate a controlled problem which is
deterministic. This will help gauge the correctness of the proposed models. The problem
is defined as follows for the Sparse Gird Autoencoder.

In this model problem the latent dimensionality of the data is taken to be two-dimensional.
This is achieved by taking a two-dimensional grid(See Fig 3.9) and all the points on the
grid are the latent dimensional representation of the input data. The low dimensional data
is artificially transformed to a high-dimensional data using helper functions. These are
transformations on the original co-ordinate data preferably non-linear to increase dimen-
sionality. This problem uses the trigonometric family of functions of sin(x), sin(2x) and so
on as well as cos(y), cos(2y) and so on. The sine functions are applied on the x-coordinate
of the grid points while the cosine functions are applied on the y-coordinate of the grid.
This results in a generated high-dimensional input. The experiment uses the input dimen-
sionality of 8 for the data. Thus the functions used are sin(x), sin(2x), sin(3x) and sin(4x)
and similarly for the cosine functions. The grid is taken to be 25x25. Since we have taken
the latent dimensional points beforehand we can visualize how accurately the model recre-
ates this grid after training.

33

3. Sparse Grid Autoencoder

Figure 3.10.: Training & Validation Loss of the Sparse Grid Autoencoder

The training loss of the Sparse Grid Autoencoder is shown in Figure 3.10 . The training
loss decreases as the training progresses through the epochs and after 60 epochs the de-
crease in the loss value becomes very small .The validation loss follows the training loss
pattern. The reason for the similarity is due to the homogeneity of the initial data. This
implies that as the model learns the training data it also learns the validation dataset.

Figure 3.11 shows the latent space representation of the inputs after training the model.
The Original 25x25 grid is shown as green crosses and the learned latent space represen-
tation are the blue circles. The high-dimensional input was obtained form this original
25x25 grid. The model learns the latent representation of the input but these are far from
the actual latent representation. The learned latent representation are unable to capture
the full space of the original grid and are very confined along the x = 0 and y = 1 axes.

To gauge the correctness of the Sparse Grid Variational Autoencoder we construct a
model problem that is similar to the one constructed for the Sparse Grid Autoencoder.
The Variational Autoencoder model assumes a prior of a certain distribution. This is the
Gaussian distribution in the standard case. For the reason explained in Section 3.2 the
prior is take to be a Uniform Distribution [0, 1]. The example assumes a two-dimensional
latent space. This implies a combination of the Uniform Distribution in each axes as
the generalized distribution. This is achieved with the help of Numpy helper function
np.random.random that samples points in from U [0, 1]. So the data is generated from
this distribution and the model tries to learn the parameters of the Uniform distribution.
The type of distribution has to incorporated into the model as otherwise the model(VAE)

34

3.4. Results

Figure 3.11.: Latent Space Representation of the Sparse Grid Autoencoder

35

3. Sparse Grid Autoencoder

Figure 3.12.: Training & Validation Loss of the Sparse Grid Variational Autoencoder

cannot predict the distribution type. Once the points are sampled we follow the same
procedure as in the case of the Sparse Grid Autoencoder to increase dimensionality. The
trigonometric functions are used to generate the input data to be fed into the SGVA.

The training loss of the Sparse Grid Variational Autoencoder is shown in Figure 3.12 .
The training loss decreases as the training progresses through the epochs and after 180
epochs the decrease in the loss value becomes very small .The validation loss follows the
training loss pattern. The reason is the same as the SGA the distributions of the training
and validation data is identical.

Figure 3.13 shows the latent space representation of the inputs after training the model.
The originally sampled points from the Uniform Distribution is shown in green. The latent
space samples that are generated from the learned distribution are shown in blue. It is
observed that in the case of the Sparse Grid Variational Autoencoder the model is able to
learn the full space of the original latent distribution. Hence this model works well.

Hyper-Parameter Tuning

Hyper-Parameters are the parameters that are used in training the data but are not learned
from training. They are fixed for each training cycle. Hyper-Parameter Tuning refers to
the process by which the hyper-parameters are optimized for obtaining the best-possible
result which in most cases implies lowest loss value. The Hyper-Parameters in the Sparse
Grid Autoencoder and the Sparse Grid Variational Autoencoder are:

36

3.4. Results

Figure 3.13.: Latent Space Representation of the Sparse Grid Variational Autoencoder

37

3. Sparse Grid Autoencoder

Figure 3.14.: Hyper-parameter Search of the Sparse Grid Autoencoder

1. Level of the Sparse Grid

2. Epochs

3. Batch Size

4. Learning Rate

These are optimized based on a grid search algorithm. The lower and upper bounds of
each of these parameters is specified and the training is done for each with the values of
parameters for reach point on this grid. The range of values of parameters over which the
grid search algorithm is performed in shown in Table 3.3 .

Hyper-Parameter Range Data Points

Learning Rate [0.001,0.01] 5
Epoch [50,250] 5

Batch Size [8,32] 4
Grid Level [3,5] 3

Table 3.3.: Hyper-Parameter Table of Values for Sparse Grid Autoencoder

The results of the Hyper-parameter grid search is sown in Figure 3.14 . The Colour bar
represents the training loss [0, 3]. The lines in the plot are coloured based on the associated

38

3.4. Results

Figure 3.15.: Latent Representation of SGA with best set of hyper-parameters

training loss with that set of hyper-parameters. The darker the colour of the line the better
is that set of parameters. With this heuristic, the plot informs us that the worst results are
obtained with grid level of 5, batch size of 32, 50 epochs and a 0.001 learning rate. The best
training set cannot be taken based on this data alone as a lot of parameter sets have very
close training loss values. To further narrow down on optimal sets of hyper-parameters,
we look into the learned latent representations. The combination in which the model best
captures the original latent space is considered to be good. The ”best” in this case means
a good distribution of data points throughout the latent space. This criteria gives the best
parameter set as (learning rate, epoch, batch size, level) → (0.001, 40, 32, 4). The Figure

 3.15 shows the latent representation learned by the model under these hyper-parameters.
Even though clumps of learned representations remain, this is a significant improvement
over the standard set of hyper-parameters.

The Sparse Grid Variational Autoencoder also undergoes a similar treatment searching
for the best set of hyper-parameters. The range of values of parameters over which the

39

3. Sparse Grid Autoencoder

Figure 3.16.: Hyper-parameter Search of the Sparse Grid Variational Autoencoder

grid search algorithm is performed in shown in Table 3.4 .

Hyper-Parameter Range Data Points

Learning Rate [0.001,0.01] 5
Epoch [100,300] 5

Batch Size [8,32] 4
Grid Level [3,5] 3

Table 3.4.: Hyper-Parameter Table of Values for Sparse Grid Variational Autoencoder

The results of the Hyper-parameter grid search is shown in Figure 3.16 . The Colour bar
represents the training loss [0, 3.5]. The Parallel graph shows that many combinations of
hyper-parameters work well. This is the same case as in the Sparse Grid Autoencoder.
Unlike the situation with the SGA the SGVA manages to capture the latent space of the
input data very well with a wide range of hyper-parameters. This means that selecting
the best combination is impossible and instead a wide set of hyper-parameters is good.
The only indication is to avoid hyper-parameters with combinations of small learning rate
and epochs with higher batch size and discretization level. Figure 3.17 shows the latent
samples generated using the learned parameters of the distribution by the model with the
hyper-parameters (learning rate, epoch, batch size, level)→ (0.0055, 250, 32, 5).

The main takeaways from this exercise are that decreasing the learning rate will increase

40

3.4. Results

Figure 3.17.: Latent Representation of SGVA with an optimal set of hyper-parameters

41

3. Sparse Grid Autoencoder

the needed number of epochs to maintain the same error as previously. Larger Batch sizes
need longer training periods. Finer Discretization methods also require longer training
periods. These are broad generalizations that are applicable to a wide variety of deep
learning networks and are not exclusive to the Sparse Grid Networks

42

4. Conclusion

This section explains the conclusions drawn based on the results (3.4) and also describes
some further ideas that can implemented to improve the applicability of the Sparse Grid
Layer to other problems.

This Thesis establishes the proof-of-concept for the implementation of the Sparse grid in
the Deep learning pipeline. We first went through the basics of Sparse Grids, the reason
for their existence, their advantages over conventional methods, the theory behind them
and finally how they are implemented. Then Deep Learning was covered- the need for its
existence, its history, the theoretical background and further implementation in PyTorch.
We further delved into the different types of Deep Learning approaches and the Networks
that are specialized for these purposes. Then the main idea of the Thesis is presented
i.e the use of Sparse Grids in Deep Learning Networks. The Deep Learning Networks
taken into consideration are the Autoencoder and Variational Autoencoder Networks. The
models are explained with respect to their purpose , architecture and loss functions. Their
architectures are then used as the inspiration behind the Sparse Grid Autoencoder (SGA)
and the Sparse Grid Variational Autoencoder (SGVA). The resulting process behind these
models are explained and their implementation details in PyTorch are also penned out in
detail. The Results obtained by these networks on the model problem is presented and
Hyper-parameter tuning is performed to get the best possible result.

The Results achieved validate the models. The Sparse Grid Autoencoder was able to
achieve a very low error rate and have a general good understanding of the original latent
space as it was approximately able to cover the entire latent space. This was achieved after
performing Hyper-Parameter Tuning. Many combinations of hyper-parameters although
able to bring down the error rate to a satisfactory level, they were unable to capture the
original latent space. They instead clump up in certain areas and fail to capture the extant
of the space. The Sparse Grid Variational Autoencoder was also able to achieve a very low
error rate and able to fully capture the extant of the original latent space. The main differ-
ence here with the Sparse Grid Autoencoder is that the the SGVA was able to perform well
with many different combinations of Hyper-Parameters. In most of the cases the model
had learned the full extant of the latent space and was able to draw samples from most
locations in the latent space. The Sparse Grid Variational Autoencoder is a more com-
plex model than the Sparse Grid Autoencoder and thereby took longer to train.With both
models performing well on these problems, we feel confident that these models can be
extended to more real-world example cases too. The advantage in number of parameters
saved would be of great benefit to many scientific problems.

We feel confident that this idea can be further improved upon in different ways. This

43

4. Conclusion

thesis only used the Sparse Grid in the Autoencoder and the Variational Autoencoder
Networks. There is no such limitation though. They can be generalized across many
Deep Learning Networks. From standard Multi-layer Perceptron to the current in-demand
Transformers, Sparse Grids can be used. They can also be used in combination with stan-
dard Neural Network architectures in order to maximize performance. Since this thesis es-
tablished proof-of-concept of these Networks, these Networks can be used to tackle more
real-world applications in Flow simulations like fluid dynamics and crowd modelling.

Another idea to be explored is that of experiment design. With the implementation of
the Sparse Grid in the Autoencoder Network for calculating the low-dimensional repre-
sentation of inputs, a more efficient method of sampling can be implemented. The input
space to the Sparse Grid Autoencoder is vast owing to its high-dimensionality, this can
lead to regions of input space which are under representation or no representation in the
input data. Using the Sparse Grid Autoencoder this problem can be mitigated. The Sparse
Grid in the latent space can inform us of areas of under-representation suing an error func-
tion. This error function will involve the Sparse grid points and the latent representations
of the inputs. We can then solve an inverse problem using the Sparse grid points to get the
high-dimensional representation and thus give a complete picture of the input space. This
gives us a methodology of designing future experiments with efficiency. This would be a
huge advantage over the conventional Deep learning architectures.

An area of obvious improvement that applies not only to Sparse Grid Networks but in
general is the use of Sparse Grids in Hyper-parameter tuning. The method used in this
Thesis is a grid based searching algorithm that takes into account the full-grid with all
of the hyper-parameters. For a sufficiently large network with many hyper-parameters,
this can easily explode the number of training simulations required. The same idea of the
”curse of dimensionality” applies here. This time the issue is even more serious as each
training requires a significant amount of time leading to a cumulative training time of days
and even more. This can be improved by changing the full-grid to a Sparse grid thereby
dropping the amount of discrete points used for training simulations which would directly
lead to savings in both time and energy.

This thesis hopefully is a starting point for widening the avenue of research into com-
bining Sparse Grids and Deep learning Networks.

44

Appendix

45

A. Abbreviations

SGA : Sparse Grid Autoencoder

SGVA : Sparse Grid Variational Autoencoder

PDE : Partial Differential Equations

KL-divergence : Kullback-Leibler divergence.

LSTM : Long short-term memory

CNN : Convolutional Neural Network

GAT : Graph Attention Netowrk

GCN : Graph Convolutional Network

U-Net : U ”shaped” Convolutional Network

GAN : Generative Adversarial Network

DCGAN : Deep Convolutional Generative Adversarial Network

RNN : Recurrent Neural Networks

WGAN : Wasserstein Generative Adversarial Network

CycleGAN :Cycle - Generative Adversarial Network

RBM : Restricted Boltzmann Machine

VAE : Variational Autoencoder

MNIST : Dataset of handwritten integers from 0-9

47

49

Bibliography

[1] David Berthelot, Colin Raffel, Aurko Roy, and Ian Goodfellow. Understanding and
improving interpolation in autoencoders via an adversarial regularizer, 2018.

[2] Hans-Joachim Bungartz and Michael Griebel. Sparse grids. Acta Numerica,
13:147–269, 2004.

[3] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. The MIT Press,
2016.

[4] Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial networks,
2014.

[5] Sepp Hochreiter and Jürgen Schmidhuber. Long Short-Term Memory. Neural Compu-
tation, 9(8):1735–1780, 11 1997.

[6] HENRY J. KELLEY. Gradient theory of optimal flight paths. ARS Journal, 30(10):947–
954, 1960.

[7] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization,
2017.

[8] Diederik P Kingma and Max Welling. Auto-encoding variational bayes, 2014.

[9] Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convo-
lutional networks, 2017.

[10] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with
deep convolutional neural networks. In F. Pereira, C. J. C. Burges, L. Bottou, and K. Q.
Weinberger, editors, Advances in Neural Information Processing Systems, volume 25.
Curran Associates, Inc., 2012.

[11] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, and L. D.
Jackel. Backpropagation applied to handwritten zip code recognition. Neural Compu-
tation, 1:541–551, 1989.

[12] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. Nature,
521(7553):436–444, 2015.

51

Bibliography

[13] Yann Lecun, Koray Kavukcuoglu, and Clement Farabet. Convolutional networks and
applications in vision. pages 253–256, 05 2010.

[14] Seppo Linnainmaa. Taylor expansion of the accumulated rounding error. BIT Numer-
ical Mathematics, 16(2):146–160, Jun 1976.

[15] Hadrien Montanelli and Qiang Du. New error bounds for deep networks using sparse
grids, 2018.

[16] Dirk Pflu¨ger. Spatially adaptive sparse grids for high-dimensional problems, 2010.

[17] Dirk Pflüger, Benjamin Peherstorfer, and Hans-Joachim Bungartz. Spatially adap-
tive sparse grids for high-dimensional data-driven problems. Journal of Complexity,
26(5):508–522, 2010. SI: HDA 2009.

[18] Joseph Rocca. Understanding variational autoencoders (vaes). Medium, 09 2019.

[19] Alex Sherstinsky. Fundamentals of recurrent neural network (rnn) and long short-
term memory (lstm) network. Physica D: Nonlinear Phenomena, 404:132306, Mar 2020.

[20] Concetto Spampinato, Simone Palazzo, Isaak Kavasidis, Daniela Giordano, Nasim
Souly, and Mubarak Shah. Deep learning human mind for automated visual classifi-
cation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), July 2017.

[21] Michael Tschannen, Olivier Bachem, and Mario Lucic. Recent advances in
autoencoder-based representation learning, 2018.

[22] Paul Werbos and Paul John. Beyond regression : new tools for prediction and analysis
in the behavioral sciences /. 01 1974.

52

	Acknowledgements
	Abstract
	Introduction
	State of the Art
	Sparse Grids
	Deep Learning

	Sparse Grid Autoencoder
	Methodology
	Model Development
	Implementation
	Sparse Grid Layer
	Sparse Grid Autoencoder
	Sparse Grid Variational Autoencoder

	Results

	Conclusion
	Appendix
	Abbreviations
	Bibliography

