
DEPARTMENT OF INFORMATICS
TECHNISCHE UNIVERSITÄT MÜNCHEN

Bachelor’s Thesis in Informatics

Neural Networks Solving Linear Systems

Iremnur Kidil

DEPARTMENT OF INFORMATICS
TECHNISCHE UNIVERSITÄT MÜNCHEN

Bachelor’s Thesis in Informatics

Neural Networks Solving Linear Systems

Neurale Netzwerke, die lineare Systeme lösen

Author: Iremnur Kidil
Supervisor: Prof. Dr. Christian Mendl
Advisor: Dr. Felix Dietrich
Submission Date: 15.04.2021

I confirm that this bachelor’s thesis is my own work and I have documented all sources
and material used.

15.04.2021 Iremnur Kidil

Acknowledgments

I would like to thank my advisor, Dr. Felix Dietrich, for the guidance he has given me
throughout this thesis.

iv

Abstract

Solving linear systems is a fundamental part of engineering and computational science
problems since it is relied on in many fields such as numerical simulations, image and
signal processing, and fluid dynamics. The linear equations can be collectively represented
as Ax = b, a system consisting of a matrix A, a solution x, and data b. In the problem,
matrixA and data b are given, and we need to find x. In this work, we explore two different
computation methods for solving linear systems, firstly using a linear solver and secondly
implementing a neural network. For the linear solvers we benefit from the NumPy linear
algebra functions solve() and lstsq(). As a second method for solving linear systems,
we build neural networks that represent the solution vector x. A and b are fixed and the
goal of the network is to find an estimation of x that minimizes the error r in r = Ax − b.
As an advantage neural networks can estimate solutions for large-scale problems. After
the direct solution of linear systems with neural networks, we discuss and explore special
settings, like applying custom loss functions, in which using neural networks to solve a
linear system is beneficial against the standard solvers.

v

Contents

 Acknowledgements iv

 Abstract v

 1 Introduction 1

 2 State of the Art 3
 2.1 Linear Systems . 3
 2.2 Linear Solvers . 4

 2.2.1 NumPy Linear Algebra Functions . 4
 2.2.2 LU Decomposition . 5
 2.2.3 Least Squares Method . 6

 2.3 Neural Networks . 7
 2.3.1 Introduction to Neural Networks . 8
 2.3.2 General Overview on Training and Testing 8
 2.3.3 The Perceptron: Forward Propagation 9
 2.3.4 Activation Functions . 10
 2.3.5 Loss functions . 16
 2.3.6 Loss optimization . 17
 2.3.7 Backpropagation . 20

 2.4 Neural Networks for Solving Systems of Linear Equations 21
 2.4.1 Introduction to the Paper ”Neural Networks for Solving Systems of

Linear Equations and Related Problems” 22
 2.4.2 Energy Functions . 23

 3 Neural Networks Solving Linear Systems 28
 3.1 Structure of the Neural Network . 28

 3.1.1 Layers . 28
 3.1.2 Activation Function . 29

 3.2 Implementation of the Neural Networks . 29
 3.2.1 Libraries . 29
 3.2.2 Training Samples . 29
 3.2.3 Training Procedure . 30

 3.3 Implementation of Different Loss Functions 34
 3.3.1 Ordinary Least Squares Problem . 34
 3.3.2 Iteratively Reweighted Least Squares 34

vi

Contents

 3.3.3 Least Absolute Value Problem . 36
 3.3.4 Chebyshev Problem . 37

 3.4 Evaluation of Loss . 38
 3.4.1 Ordinary Least Squares Problem . 38
 3.4.2 Iteratively Reweighted Least Squares Problem 40
 3.4.3 Least Absolute Value Problem . 41
 3.4.4 Chebyshev Problem . 43
 3.4.5 Results . 43

 3.5 Computation with Linear Solvers . 44
 3.6 Computation of a Large-Scale Linear System 44

 4 Conclusion 48
 4.1 Summary . 48
 4.2 Future Work . 49

 Bibliography 50

vii

1 Introduction

There are several methods that can be utilized to solve linear systems. One of the options
is to use pre-existing linear solvers. In this thesis, we propose a second option, which
is building neural networks. These neural networks are created because of the ability to
work with custom loss functions and to compute estimations of x for large-scale problems.
Thus, the aim of the thesis is to solve a linear system Ax = b with a neural network and
discuss the advantages of using neural networks against linear solvers.
The thesis starts with a brief explanation of linear systems. We then demonstrate different
linear solvers to solve these linear systems. For the implementation of the neural networks
we use Python. Therefore, to implement linear solvers we benefit from NumPy, which is
a package in Python that enables the use of operations for scientific computing. We take a
deeper look at the NumPy linear algebra functions that help us to find a solution x for the
problem Ax = b. The linear algebra functions that are discussed consist of three options.
First option is inverting the matrix A with the method inv() and then multiplying it with
b with the help of dot(), since x = A−1b. Due to the high complexity of inverting a ma-
trix, we work with the solve() or the least squares method lstsq(). If A is square and
has full rank, the solve() method can compute an exact solution with the help of a LA-
PACK routine. Nevertheless, if either of the conditions are not true, we use the lstsq()
method. The least squares method uses a regression procedure to determine the best fit
hyperplane to a given dataset and returns least-squares solution x to our linear system
Ax = b. The working principles of the methods solve() and lstsq() are explained
comprehensively.
We then represent the features of the nonlinear networks in depth because our linear net-
work adopts some of the main features of nonlinear networks. The reason why we refer
to the neural network specifically as linear is that usually neural networks represent solu-
tions to nonlinear problems. However, our network represents a solution for a linear sys-
tem. How we approach building neural networks is primarily based on the paper ”Neural
networks for solving systems of linear equations and related problems” [5] that was writ-
ten in 1992 by Cichocki and Unbehauen. The theory behind the paper is to solve a linear
equation Ax = b iteratively in order to converge to a solution x as close as possible to the
true solution. Normally, we expect from a neural network to train with a dataset that has
numerous information. The reason for that is to acquire a network that is as accurate as
possible for solving any other related problem. In our implementation, we work with a
different method. Rather than feeding the network different matrices A and b, we have a
fixed matrix A and a fixed matrix b as training samples.
After explaining the approach of Cichocki and Unbehauen, we demonstrate the reimple-

1

1 Introduction

mentation of the iterative solution method. We implement the mentioned method in two
different ways. At first, we used only numerical operations with respect to the paper,
because at that time there were no open source platforms for machine learning like Ten-
sorFlow [3]. We then implement the same iterative solution method with TensorFlow to
benefit from its library. With TensorFlow, we can deal with large datasets and for our prob-
lem Ax = b, a large matrix is treated as a large dataset. Hence, every row represents one
data point. We then use software frameworks to solve a linear system iteratively.
One of the most crucial advantages of using the iterative solution method is that we can
benefit from custom loss functions. In the thesis four different energy functions, being ordi-
nary least squares, iteratively reweighted least squares, least absolute value and chebyshev
problems, are thoroughly explained. These energy functions used in the work of Cichocki
and Unbehauen serve the duty of a loss function, and we implement these different loss
functions without using TensorFlow as well as using TensorFlow. After we discuss the
advantages and the disadvantages of each energy function, we compare behaviours of the
losses for a small-scale problem.
Before concluding the thesis, we also introduce the results of a large-scale problem solved
by our iterative method. The implemented large-scale problem can not be solved by linear
solvers, at least on our laptops. The problem consists of a matrix A that has the shape
(10000 × 10000). We then compare the computation times for both implementations with
and without using TensorFlow. Further, we examine which loss function performed the
best on our example.

2

2 State of the Art

2.1 Linear Systems

In this section, we firstly describe what a linear equation is. Further, we proceed to systems
of linear equations. We provide the matrix form of a linear system as well.

• Linear Equations
A linear equation with variables x1, x2, . . . , xn has the form:

a1x1 + a2x2 + · · ·+ anxn = b,

where ai ∈ R represents the coefficients of xi and b ∈ R represents the constant term
[4]. It is called a linear equation because the set of solutions forms a straight line in
the hyperplane.

• System of Linear Equations
A finite collection of the linear equations in same variables is a system of linear equa-
tions. An example of a linear system with n different variables and m different equa-
tions can be defined as:

a11x1 + a12x2 + · · ·+ a1nxn = b1
a21x1 + a22x2 + · · ·+ a2nxn = b2

...
am1x1 + am2x2 + · · ·+ amnxn = bm

.

We can demonstrate the same linear system as Ax = b. In matrix notation the equa-
tion has the following form:

a11 a12 . . . a1n
a21 a22 . . . a2n

...
...

. . .
...

am1 am2 . . . amn

x1
x2
...
xn

 =

b1
b2
...
bn

 .
A solution set x = (x1, x2, . . . , xn) is a tuple that makes each equation a true state-
ment [4].

3

2 State of the Art

2.2 Linear Solvers

One option to solve linear systems is to use linear solvers. For the implementation of the
neural networks solving linear systems, we use Python. Therefore, we benefit from the
NumPy linear algebra functions. In this section we discuss different methods to solve a
linear system Ax = b with the help of NumPy. Then, we explain LU decomposition and
least squares method in depth to clarify how the linear algebra functions solve() and
lstsq() work respectively.

2.2.1 NumPy Linear Algebra Functions

• x = np.linalg.inv(A).dot(b)
The logic behind the solution method is as follows:

Ax = b =⇒ x = A−1b.

The inv() method finds the inverse of a matrix, in our case A−1 [22] and the dot()
method calculates the dot product of A−1 and b. An exact solution of x is computed
[2].
If the inverse of a matrix exists, a common technique is to use Gauss-Jordan elimina-
tion. Nevertheless, Gauss-Jordan elimination is an inefficient and expensive mech-
anism when it comes to large matrices. Depending upon the size of the matrix, the
cost of the operation scales cubically. The complexity of finding an inverse is O(n3).
In many scientific computing applications, it is sufficient to compute approximations
of x rather than computing the exact result.
The method computes the inverse of the matrix A in:

AA−1 = I (2.1)

by solving forA−1. I is a n×n identity matrix that has ones in the diagonal and zeros
elsewhere. To solve 2.1 A is factorized with LU decomposition. We demonstrate how
LU decomposition works in 2.2.2 . In order to compute xwith the foundA−1, we need
an extra matrix multiplication x = A−1b.

• x = np.linalg.solve(A, b)
Instead of chaining both methods inv() and dot(), the solve() method can be
performed directly. It computes an exact solution as well. However, in order to ben-
efit from the solve() method, A must be square and well-determined, meaning it
needs to have full rank. A square matrix has full rank either when its rows or its
columns are linearly independent [2].
The method does not compute the inverse of the matrix A. Computation of the so-
lution is provided by LAPACK’s LU decomposition. Thus, A is factorized with LU
decomposition and then x is solved with forward and backward substitutions. LA-
PACK, abbreviation for Linear Algebra Package, is a software library for numerical

4

2 State of the Art

linear algebra. With the help of a routine in gesv, the solution to a linear system
with a square matrix A and multiple right hand sides is computed. The reason why
solve() is preferred over the inv() method is that more floating point operations
are used to solve for A−1, an n × n matrix, than for x, a vector that has n elements.
Thus, more floating point operations cause more numerical errors and slower per-
formance.

• x = np.linalg.lstsq(A, b, rcond=’warn’)
If matrix A is not square and has not full rank, we use the least squares method
lstsq(). It returns the least-squares estimation to a linear matrix equation, Ax = b.
Hence, instead of computing an exact solution, we obtain the best solution. Matrix
A can have the amount of linearly independent rows that are less than, equal to, or
greater than A’s number of linearly independent columns. Found x minimizes the
squared Euclidean norm of the term (b−Ax). Hence, we take the square of each ele-
ment and sum them. Later in 2.2.3 , we take a deeper look at the least squares method.
To have a better understanding of the NumPy linear algebra function lstsq(), we
observe the parameters and the output values.
Parameters:

– A: the m× n coefficient matrix.

– b: the dependent variable values. b can be a vector or a matrix. Assume b is a
m × k matrix, then the least squares solution is calculated for each column k.
Note that different types of regularizations are discussed later in the thesis.

– rcond: a cut-off ratio for small singular values of A.

Returns:

– x: the least-squares solution.

– residuals: an array for sums of squared residuals. It is empty, if the rank of the
matrix A is < n or m ≤ n.

– rank of the matrix A.

– s: an array that holds singular values of A.

Finding an exact solution is also possible. If A is square and of full rank, and when
the rcond parameter is set to zero, then the lstsq() method acts as the solve()
method [2].

2.2.2 LU Decomposition

LU decomposition process computes U , which is an upper triangular matrix, and L, which
is a lower triangular matrix, such that A = LU [26]. A demonstration can be given with

5

2 State of the Art

matrices:

A =

a11 a12 a13
a21 a22 a23
a31 a32 a33

 , L =

 1 0 0
l21 1 0
l31 l32 1

 , U =

u11 u12 u13
0 u22 u23
0 0 u33

 .
We first modify A and convert it to U . We do this by performing only one type of row op-
eration, which is replacing a row Ri by Ri − kRj . Next step is to compute L. L records the
k-values with respect to the positions in the matrix U . Hence, we compute U using Gaus-
sian elimination (only the specified row operation) and L by saving the steps in Gaussian
elimination.
To give a better understanding we perform LU decomposition on the matrix A that we
used in the implementation of our neural network described in 3.2.2 .

A =

1 1 1
0 2 5
2 5 −1

 = LU

 1 0 0
l21 1 0
l31 l32 1

1 1 1
0 2 5
2 5 −1

R2 − 0R1 → R2−−−−−−−−−−−→

 1 0 0
0 1 0
l31 l32 1

1 1 1
0 2 5
2 5 −1

R3 − 2R1 → R3−−−−−−−−−−−→

1 0 0
0 1 0
2 l32 1

1 1 1
0 2 5
0 3 −3

R3 −
(
3

2

)
R2 → R3

−−−−−−−−−−−−−−→

1 0 0
0 1 0

2
3

2
1

1 1 1
0 2 5

0 0
−21
2

 (2.2)

After completing the row operations, we achieved the factorized A in form A = LU in the
last step 2.2 , which is:

A =

1 0 0
0 1 0

2
3

2
1

1 1 1
0 2 5

0 0
−21
2

 .
2.2.3 Least Squares Method

The least squares method is a solution technique for an overdetermined set of equations
Ax ≈ b, where A ∈ Rm×n is the matrix model, b ∈ Rm is the measurement vector, and
x ∈ Rn is the unknown vector [5 , 11 , 12 , 21]. A and b are given in advance and x is
unknown. We can define the linear estimation model as follows:

Ax = b+ r = btrue, (2.3)

where r ∈ Rm is the unknown vector of measurement errors that we want to minimize
and btrue ∈ Rm is the vector of true values [5 , 21].

6

2 State of the Art

Figure 2.1: Least Squares Regression

Figure 2.1 demonstrates how the least squares method is computed for a two-dimensional
problem. Assume, our dataset consists of n data points (xi, yi), i = 1, . . . , n. The coeffi-
cients of x represent A and y represents btrue in 2.3 . The dataset is shown with the green
dots. xi is an independent and yi is a dependent variable that is computed by observa-
tion. The goal is to obtain a best fit line to a given dataset that minimizes the residuals
r. The difference between the actual output yi and the output predicted by the model ŷi,
demonstrated with orange lines, gives us the ri. According to estimation model 2.3 , ŷ cor-
responds to b. The value predicted by the model can be also defined as f(xi, β). For a
two-dimensional problem, the y-intercept can be denoted with β1 and the slope with β0.
Thus, f(xi, β) = β0x + β1. In order to find the optimal parameters, for instance β0 and β1
for the given problem, the sum of the squared residuals is computed:

S =

n∑
i=1

r2i

and the method tries to minimize S. Least squares method is sensitive to the outliers [5].
If there are outliers in the data, the line will be shifted in the direction of the error.

2.3 Neural Networks

In this section we take a deeper look at the nonlinear neural networks. The iterative
method that we proposed in this thesis to solve linear systems adopts the general features
of the nonlinear neural networks. Therefore, it is crucial to discuss the concepts regarding
nonlinear neural networks at first.

7

2 State of the Art

2.3.1 Introduction to Neural Networks

Artificial neural networks are attracting attention due to the outstanding performance in-
pattern recognition and modelling of nonlinear relationships involving large numbers of
variables. The human brain is the inspiration for creating artificial neural networks. Thus,
a neural network is a computer model with an architecture that essentially mimics the
organizational skills of the human brain and the knowledge acquisition. Layers in an ar-
tificial neural network represent the network of neurons in the brain [27]. The operating
principle of a biological neuron is to receive electrical signals from other neurons that have
different weights. The neuron is fired if the value of all the electrical signals is big enough,
otherwise, the neuron is in an inactive state. Based on the principle of how the biological
neurons work, artificial neurons are designed to have dynamic states that can hold values
[7 , 10].
There are three fundamental components of an artificial neural network, being: the input
layer, the hidden layer, and the output layer. Input layer is where the network meets the
presented input and output layer keeps the response of the network to the input. The
intermediate layers, also called hidden layers, enables us to compute complicated map-
pings between patterns. These layers are interconnected processing elements, referred to
as neurons. Neurons in an artificial neural network interact with each other via weighted
connections and they together form layers. Each neuron in the former layer is connected
with all the neurons in the next layer [10].
The number of neurons and layers depends on the user and on the specific application.
For instance, if the hidden layer has few nodes, the network will not be able to properly
perform the task it is trained on. In contrast, if the hidden layer has too many neurons, the
network will not be able to generalize the given data and the training time will be longer
[10]. This is because the patterns will be memorized by the network, which is a common
issue in deep learning [8]. We want from our network to estimate outputs generally from
the dataset, rather than memorizing them.

2.3.2 General Overview on Training and Testing

In order to train a network, a dataset is given with the actual input and corresponding out-
put. During training, information is passed from the input layer, to the hidden layers and
the output is given by the outermost layer [8 , 27]. The goal of the network is to make an
estimation as accurately as possible for a given input. Thus, a high number of data is fed to
the model venturing the increase of time. The number of the training data should be less
than five to ten times the number of connections in the network [10 , 14]. One more aspect
to achieve an optimal solution is to feed data randomly in each iteration while training.
The network will generalize the information and will not be biased by the order of it [8].
The entire dataset is fed to the network during training with respect to the number of
epochs. One epoch, also called a cycle, is a pass through the set of training data along with
the update of the weights. The number of epochs depends on the specific application. At

8

2 State of the Art

the end of each cycle, weights are updated. After training is finished, the network is ex-
pected to produce accurate outputs with minimum errors regarding the given dataset. To
use the model for different datasets, weights are stored in the network [10].
The network is tested with a testing dataset, also called a testset, to evaluate how well the
trained network with trained weights performs. During the testing phase, no learning and
weight adjustment take place. In order to evaluate results, at least 10-20% of the dataset
[14] should be kept. The predictions of the model are compared to the target output val-
ues. They should be reliable considering the input values are in the range of the training
dataset. If the model predicts the output accurately, it is established that the model gen-
eralizes the information successfully and it can be trusted. After acquiring convenient
results, the model can be used in practical applications [8 , 10].

2.3.3 The Perceptron: Forward Propagation

Figure 2.2: Perceptron

The information processing in a neural network starts with data being fed to the input
layer. Due to the structure of the interconnected layers, input data is processed with the
associated weights. Output from each neuron is produced by multiplying the neuron’s
input and corresponding weight vector. Then, the result is passed through an activation
function and it is supplied to the next layer as the input [5 , 27]. Hence, the number of
neurons in the output from the prior layer equals the input into the current layer [8]. At
the end, the data we want to obtain is the values of the neurons in the last layer. We can
demonstrate the mentioned process with a model, called the perceptron.
Perceptron is the structural building block of deep learning that demonstrates the model
of a biological neuron. Figure 2.2 shows an example of a perceptron. The input is denoted
by x = [x1, x2, . . . , xm] ∈ Rm with m entries and there is also a bias b. Bias is a special

9

2 State of the Art

form of weight and it is optimized during the training process along with the weights.
Weights, defined as w = [w1, w2, ..., wm] ∈ Rm, connect the corresponding input to the next
layer. Strength of the relationships between the interconnected neurons are determined by
the weights. In multilayered neural networks there are two fundamental operations for
the modeling and the training process, namely forward propagation and backpropagation
[7 , 8 , 10].
Here, we elaborate the forward propagation. The logic behind the forward propagation is
to sum the multiplication of inputs with the corresponding weights and the bias. We can
denote the sum with z:

z = b+
m∑
i=1

xiwi.

Bias is a constant that helps to shift the activation function. The value z is passed to an
activation function denoted by g, where the response state of the neuron [7] is simulated.
Thus, we obtain the output y:

y = g(z).

Overall, the output of a single perceptron is calculated with:

y = g(b+
m∑
i=1

xiwi). (2.4)

The goal of the forward propagation is to generate a prediction and calculate the loss at
the meantime. Computation of loss is described in 2.3.5 in depth.

2.3.4 Activation Functions

Activation functions have a crucial role for artificial neural networks. They enable the net-
work to learn by providing nonlinear mappings between the input and the corresponding
output. Aside from the nonlinear activation functions, there are also linear activation func-
tions. Linear functions are usually not preferred because the network can only adapt to the
linear changes in the input. However, in the real world, most relations are nonlinear. Non-
linear activation functions allow the network to learn the nonlinear dependencies in data.
In other words, data that can not be classified linearly can be differentiated using nonlinear
activation functions [7 , 27].
In this thesis, we will focus on linear activation functions only, because we concentrate on
the solution to linear problems. Nevertheless, the loss functions we discuss for these linear
systems can be nonlinear, and in principle can be treated as a nonlinear activation function
as well. Therefore, it is useful to also discuss nonlinear activations at this point.
In backpropagation derivatives of the activation functions in each layer need to be calcu-
lated [7]. Therefore, it is crucial for activation functions to be differentiable almost every-
where with h = R→ R [13].
There are several activation functions that are used in different scenarios and each of them

10

2 State of the Art

has different features. For almost all settings, choosing the right function for a specific net-
work requires trial-and-error, since there exists no rules about which activation function
will perform better in different scenarios. Here we elaborate the most common activation
functions and examine the advantages and disadvantages.

1. Linear Activation Function
Activation function is called linear because it is proportional to the given input. Ad-

Figure 2.3: Linear Activation Function and the Derivative

vantage:

• A linear activation function has a derivative m, considering that a linear line
has the function y = mx + c. The constant value m can be selected arbitrarily.
Figure 2.3 is an example of a linear function with slope m = 1 and c = 0.

Disadvantage:

• The derivative of the function will always be the same. It is not sufficient
enough to adjust weights and biases during backpropagation with a constant
value that is independent from the input. Hence, linear activation functions
will perform poorly for nonlinear tasks, since the error of the model will not be
improved on each iteration [27].

2. Nonlinear Activation Functions

a) Sigmoid
Sigmoid activation function, also known as the logistic curve, is a nonlinear s-
shaped function [10]. It is one of the most common activation functions [7 , 10 ,

 30]. As seen in Figure 2.4 , the output is scaled between 0 and 1 [8] like a proba-
bility distribution.
Sigmoid function is defined as:

11

2 State of the Art

Figure 2.4: Sigmoid and the Derivative

g(z) =
1

1 + e−z

and the derivative of the function is:

d

dx
g(z) = g(z)(1− g(z)).

The output values have the same sign. Most probable outcome for the given
input pattern is the output with the largest value [8].
Advantage:

• It is well suited for problems, where we need to predict the probability as
an output.

Disadvantage:

• There is a vanishing gradient problem [20] because it results zero gradient
in the limit [7 , 13]:

lim
x→+∞

g′(z) = 0

lim
x→−∞

g′(z) = 0.

While backpropagation the outputs are chained with respect to the gradient
descent algorithm one another in the direction of inner layers. Hence, the
inner layers have reducing gradients towards 0 causing them to contribute
less to the learning process. At the end, the network can have inaccurate
results and it can take longer to compute outputs. Therefore, sigmoid acti-
vation function is used in the output level rather than hidden layers [7].

b) Tanh
Tanh or hyperbolic tangent activation function has similarities with sigmoid,

12

2 State of the Art

Figure 2.5: Tanh and the Derivative

such as being s-shaped. However, as seen in Figure 2.5 this function is symmet-
rical to the origin [27], which means the output values of the neurons can have
different signs. The output is scaled between -1 to 1.
Tanh function is defined as:

g(z) =
sinh(z)

cosh(z)
=
ez − e−z

ez + e−z

and the derivative of the function is:

g′(z) = 1− tanh2(z).

Advantage:

• The mean of the input data is approximately zero. In other words, the in-
put data is normalized. Therefore, the convergence is faster than sigmoid
[18] making tanh activation function more preferable. Also, tanh achieves
a lower classification error [7 , 9].

Disadvantage:

• Like the sigmoid activation function, there is a vanishing gradient problem.
Therefore, using sigmoid and tanh activation functions on the hidden layers
is not favored.

c) ReLU
According to researches in the field of neuroscience, only one to four percent
of neurons are in an active state at the same time. In contrast, the activation
functions such as sigmoid and tanh activate almost half of the neurons in the
network at the same time. Since each neuron in an active state goes through
operations like forward propagation and backpropagation, it becomes difficult
for the network to train. Rectified linear unit is introduced to improve efficiency

13

2 State of the Art

Figure 2.6: ReLU and the Derivative

regarding the mentioned issue [7].
ReLU is one of the most widely used activation functions [7 , 27] and it is defined
as:

g(z) = max(0, z) =

{
z if z ≥ 0

0 if z < 0
.

The derivative of ReLU is:

g′(z) =

{
1 if z ≥ 0

0 if z < 0
.

Advantages:

• Neurons are activated partially [27]. Therefore, the efficiency is higher,
since each iteration the network does not operate all the nodes. If the out-
put from the activation function is 0, the neuron is deactivated as seen in
Figure 2.6 , meaning the output from the neuron will not be delivered as the
input to the next layer. ReLU activation function can only be used in the
hidden layers of the network.

• Since the derivative of the function is 1, when the input x > 0, the vanishing
gradient problem is solved [6 , 7 , 20]. The training process is faster and that
is why ReLU is preferred most of the time [15 , 27]. In deep neural networks
sigmoid and tanh activation functions are replaced by ReLU and ELU to
solve the vanishing gradient issue and to make convergence speed faster
[7].

• As opposed to sigmoid and tanh, it is cheaper to compute ReLU because
the activation function does not contain an exponential function.

14

2 State of the Art

Disadvantages:

• A neuron is deactivated when the input x is less than 0 preventing updates
on the relative weights [7 , 20].

• Since the function has a linear nature, it is not well suited for classification
problems like tanh and sigmoid.

d) ELU
ELU is a variant of ReLU, which stands for exponential linear unit. The goal

Figure 2.7: ELU and the Derivative, α = 1

is to decrease the bias shift effect of the ReLU by pushing the activation means
closer to zero [6 , 7]. Negative outputs can be produced with α(ez − 1). An
example is demonstrated in Figure 2.7 with α = 1. ELU is defined as:

g(α, z) =

{
z if z > 0

α(ez − 1) if z ≤ 0

and the derivative of the function is:

g′(α, z) =

{
1 if z > 0

αez if z ≤ 0.

Advantages:

• Like ReLU, vanishing gradient issue is prevented because of the constant
derivative in the positive part.

• The average of the output comes close to zero. As a consequence ELU con-
verges faster.

• Experimental results [6] shows that when there are more than five layers in
the network, ELU generalizes better than ReLU. Furthermore, ELU enables
faster learning [7].

15

2 State of the Art

Disadvantage:

• It is time consuming for the network to search for an optimal α.

2.3.5 Loss functions

In this thesis, we will elaborate different energy functions in 2.4.2 that we used as loss func-
tions in our networks. The logic of the energy functions is the same as the loss functions
that are used in nonlinear neural networks. Therefore, we discuss different loss functions
in order to demonstrate their role in the learning process.
A loss function can also be referred to as a cost function, an empirical risk or an objective
function. The cost incurred from incorrect predictions is measured by the loss of our net-
work. We mark the loss as L and it is computed by L(f(xi;W), yi) [31], where f(x(i);W) is
the predicted output of the model with respect to the weights. The actual output that we
want to acquire is y(i) and error is the difference between the actual output and the pre-
dicted output of the model. According to the error, weights of the neurons are modified.
The loss is carried out through optimization algorithms [25], which are explained in 2.3.6 .
To measure the total loss over the entire dataset we compute the empirical loss:

J(W) =
1

n

n∑
i=1

L(f(xi;W), yi).

For each input xi the loss is calculated and summed up. To find the average loss of the
network the sum is divided by the number of training training samples n [19].
There are different types of loss functions serving different purposes. Here, we discuss
some of the most common loss functions and which loss function to opt for in different
scenarios.

• Binary Cross Entropy Loss
The loss function is defined as:

J(W) = − 1

n

n∑
i=1

yi log(f(xi;W)) + (1− yi) log(1− f(xi;W)). (2.5)

When there are only two label classes (e.g. a binary classification problem) using
binary cross entropy is beneficial. The output can be left or right, 1 or 0, A or B. The
activation function must be compatible with the loss function. For binary cross en-
tropy, the compatible activation function can be selected as sigmoid.
The reason for using logarithmic operations is to penalize bad predictions. For in-
stance, if the associated probability belongs to the true class 1, then we need the loss
to be 0. However, if that probability is falsely a lower value such as 0.1, the model
should penalize the bad prediction. Thus, the loss needs to be significantly higher.
Log of a value that is between 0 and 1 is negative. Hence, taking the negative log
serves the above mentioned purpose perfectly. − log(x) is equal to 0 when x is 1. For

16

2 State of the Art

probabilities that are closer to zero, the loss increases exponentially. Say a training
example supposed to be 1, as the target value. However, the model predicted the out-
put as 0.6. That indicates there is a probabilistic false negative of 40%, meaning the
model has 40% confidence in the wrong result from a Bayesian perspective. Hence,
this 40% is penalized by returning the value − log(0.6) ≈ 0.22. For the second term
of the equation 2.5 , the same logic applies as probabilistic false positives [16].

• Mean Squared Error Loss
For regression models that output continuous real numbers, mean squared error loss
is one of the most common loss functions. The function is defined as:

J(W) =
1

n

n∑
i=1

(y − f(xi;W))2.

The error is calculated as the average of squared differences between the actual and
predicted values [28]. The loss function penalizes large errors by taking the square
of them.
The loss function is sensitive to outliers, noisy data. The mean target value is the
optimal prediction for the input data in mean squared error loss function. In contrast
to mean squared error, for mean absolute error the optimal prediction is the median
of the data. One can utilize mean squared error loss function, when the target data
is distributed normally around the mean value with respect to the input [5].

• Mean Absolute Value Error Loss
The difference from the mean squared error loss is that instead of taking the square
of the error, we take the absolute value. The function is defined as:

J(W) =
1

n

n∑
i=1

|y − f(xi;W)|.

Mean absolute value error loss is insensitive to the outliers. The median target value
of the inputs is the optimal prediction for this loss function. Because of the func-
tion not being quadratic, the gradient magnitude does not depend on the error size,
rather it depends on the sign of the error. Therefore, convergence problems might
occur, since the gradient magnitude will be large even though the error is small.
Nevertheless, it is rational to use the mean absolute value error loss, when we do not
want our regression to be affected by the outliers as much as the mean squared error
loss [5].

2.3.6 Loss optimization

To achieve the lowest loss, we need to find the weights W ∗ that minimize the loss function
shown below:

W ∗ = argmin
W

1

n

n∑
i=1

L(f(xi;W), yi),

17

2 State of the Art

W ∗ = argmin
W

J(W).

W = w0, w1, . . . , wn is the collection of weights across the neural network from all the lay-
ers. In an optimization problem we want to optimize all of the weights to minimize the
empirical loss. In 2.3.5 we described loss as a function of the network weights with J(W).
To give an example, we demonstrate a loss landscape with a loss function that depends on
only two weights J(w0, w1) in Figure 2.8 .
First step is to initialize random weighting factors for each node interconnection and a bias

Figure 2.8: Landscape of a Loss Regarding Two Weights

[10]. Then, we feed the network given dataset and produce outputs with respect to ran-
domly assigned weights. Starting from the random point on the landscape, we compute
the gradient of the loss function with respect to the weights δJ(W)/δ(W). The result of
the gradient indicates the steepest ascent. Hence, the direction of the gradient is upwards.
Instead of going upwards, we want to take steps in the direction, where the minimum is
located. Therefore, we opt for the opposite direction of the gradient. New weights and
biases are computed in order to minimize the total error calculated for the initial iteration.
We repeat the process until we converge to a minimum [8].
Gradient descent is one of the most common ways to optimize neural networks. There are
different options for applying this algorithm. We explain the batch, stochastic and mini-
batch gradient descent algorithms. They differ from each other in the amount of data used
to compute the gradient of the loss function. A trade-off is made between the time it takes
to perform a parameter update and the accuracy of this update [23].
Usually, the gradient descent algorithms are performed by the software frameworks that
help us to build deep learning models such as Keras, which is the high-level API of Tensor-
Flow [1]. Therefore, the steps of the gradient descent can be overlooked. Here, we discuss
explicitly how different types of gradient descent algorithms work.

• Batch Gradient Descent
The gradient of the loss function is calculated for the entire dataset. The disadvantage

18

2 State of the Art

of the batch gradient descent is that it can be slow since the gradients for the entire
dataset needs to be computed. Below, we describe step by step the batch gradient
descent [23].

1. Weights are randomly initialized.

2. Until convergence, the following two steps are looped through:

– Computation of the gradient according to the weights
δJ(W)

δ(W)
,

– Update of the weights with W ←W − η δJ(W)

δ(W)
.

3. Weights are returned.

The gradient computed in step 2 determines how the loss is changing with respect
to the weights. Computation of the gradients to minimize the loss is performed by
backpropagation. Later in 2.3.7 , we examine backpropagation and give an example
to demonstrate how the algorithm works.
Weight update occurs by subtracting the current weight from the gradient multiplied
by a small value η, which is the learning rate. Learning rate determines how large
each step we take is with regard to the gradient. Thus, the gradient indicates the
direction we want to take in order to converge and the learning rate indicates the
magnitude of change of the parameter set at each iteration. Learning is the process
of improving the properties, such as increased convergence rate, decreased settling
time, and the functionality of the neural network by adapting the connection weights
in the course of time [5]. The speed of the learning process is controlled by the learn-
ing rate that is adjustable [8].
Setting a learning rate is a difficult problem. If the learning rate is set to a high num-
ber, the learning process will be faster. However, if the learning rate is set to a number
that is too high, then weight changes will have oscillations that will prevent conver-
gence to the optimal solution set. Hence, high learning rates can become unstable
and diverge. On the contrary, it is possible for the network to converge too slow that
it stucks in a local error minimum instead of the global minimum, if the learning rate
is too low. Once again, this situation can result in a solution set that is not optimal.
In order to obtain the optimal solution set, learning rate can be shifted from a higher
number to a lower one during training. This process reduces the probability of set-
tling in a local minimum and speeds up the convergence to the optimal solution set
[5 , 8 , 23].

• Stochastic Gradient Descent
A variant of the gradient descent is the stochastic gradient descent. The only different
step from batch gradient descent is the step 2 .

1. Weights are randomly initialized.

2. Until convergence, the following steps are looped through:

19

2 State of the Art

– Picking a single data point i,

– Computation of the gradient according to the weights
δJi(W)

δ(W)
,

– Update the weights with W ←W − η δJ(W)

δ(W)
.

3. Weights are returned.

For each training example a parameter update is performed. In contrast to batch
gradient descent, stochastic gradient descent performs only one update at a time
preventing redundancy. The trade-off here is that we sacrifice the accuracy that we
can get from batch gradient descent to obtain lower computation time. However, it is
shown that, when we slowly decrease the learning rate while training, we can obtain
the same accuracy as the batch gradient descent with a lower computation time [23].

• Mini-Batch Gradient Descent
Mini-batch gradient descent performs an update for every n training examples in-
stead of performing one as shown in the steps of the algorithm below.

1. Weights are randomly initialized.

2. Until convergence, the following steps are looped through:

– Picking a batch of data points B,

– Computation of the gradient according to the weights

δJ(W)

δ(W)
=

1

B

B∑
k=1

δJk(W)

δW
,

– Update the weights with W ←W − η δJ(W)

δ(W)
.

3. Weights are returned.

The common batch sizes are between 50 and 256. The advantages of mini-batch
gradient descent algorithm is that it achieves more stable convergence and it can
optimize large-scale matrix operations. This is one of the crucial reasons why we
use neural networks for solving linear systems. For large-scale problems Ax = b,
instead of working with full matrix A and b, we can operate on batches of data. The
computation of the gradient is again faster, since we calculate the gradient as the
average of the batch rather as all the data points. Additionally, estimations are more
accurate too since we work with more than one point each iteration [23].

2.3.7 Backpropagation

Currently backpropagation is the most popular technique to perform supervised learning
tasks such as pattern recognition. The algorithm can be applied to neural networks that

20

2 State of the Art

represent solutions to nonlinear problems. To backpropagate, at least one hidden layer
is necessary and the researches have shown that networks with a single hidden layer are
capable of providing accurate approximations of any continuous function [10 , 17]. Nev-
ertheless, we also apply a highly simplified version of backpropagation in the iterative
solution method because we need to calculate the gradients to update the solution x. The
aim of the algorithm is to obtain an accurate network that can perform well on unseen
data by adapting the parameters. Therefore, we need to adjust the weights in a way that if
decreasing one would cause the error to be higher than it is increased and vice versa. This
method is performed on all of the weights in the network and then we start all over again.
For one pass through the network the derivatives for all of the weights are calculated using
the chain rule. We continue to minimize the error by adjusting the weights until the error
and the weights are stabilized [24 , 29].
To visualize what backpropagation does we benefit from Figure 2.9 . It is a demonstration

Figure 2.9: Backpropagation

of a highly simplified neural network that contains one input neuron x, one hidden layer
existing from only a neuron z1 and an output neuron ŷ. To determine, how a small change
in one weight w2 affects the final loss J(W), we compute:

δJ(W)

δ(w2)
=
δJ(W)

δŷ
× δŷ

δw2
.

We apply the chain rule in order to compute the gradient according to w2. If we want to
compute the gradient according to w1, then we apply the chain rule recursively:

δJ(W)

δ(w1)
=
δJ(W)

δŷ
× δŷ

δz1
× δz1
δw1

,

where z1 is the activation function of the first unit. As the name backpropagation implies,
when we compute the gradient with respect to w1, we take a step back and we include
the derivative of the output ŷ with respect to z1 and derivative of z1 with respect to w1.
To complete backpropagation, the algorithm is repeated for every weight in the network
using the gradients from outer layers.

2.4 Neural Networks for Solving Systems of Linear Equations

At this point, we switch from general nonlinear neural network theory to solving linear
problems. The reason we discussed neural networks before is that they allow us to rep-
resent solutions to (usually: nonlinear) problems, and we will use this property now to

21

2 State of the Art

represent solutions to linear systems instead. Additionally, we discuss specific regulariza-
tion methods for linear systems.

2.4.1 Introduction to the Paper ”Neural Networks for Solving Systems of
Linear Equations and Related Problems”

The paper ”Neural Networks for Solving Systems of Linear Equations and Related Prob-
lems” written by Cichocki and Unbehauen in 1992 [5] proposes to build neural networks
to solve a linear system iteratively. The underlying ideas of the authors are still valid, even
though the specific computational methods are no longer relevant because of the later im-
provement in machine learning frameworks like TensorFlow.
According to the paper, the linear estimation model is:

Ax = b+ r = btrue.

A = [aij] ∈ Rm×n is our matrix model, b ∈ Rm is a vector of observations or measure-
ments, btrue ∈ Rm is a vector of true values and lastly, r ∈ Rm is an unknown vector of
measurement errors. What we search for is an estimation of x = [x1, x2, ..., xn] ∈ Rn.
A hypothetical energy function is built in order to find a vector x, which minimizes the
energy function. The energy functions is defined as follows:

E(x) =
m∑
i=1

σi(ri(x)).

σi represents the convex function and several options are examined in the paper, being:

• Ordinary Least Squares Problem: σi(ri) = r2i /2,

• Iteratively Reweighted Least Squares Problem: σi(ri) = (β/α) ln(cosh(αri)),

• Least Absolute Value Problem: σi(ri) = |ri|,

• Chebyshev Problem: σi(ri) = |ri|.

Least absolute value and Chebyshev problems have the same convex functions yet their
energies are different. One more aspect that we need to know to understand the energy
function is the residual vector r defined as:

ri(x) = [r1(x), r2(x), ...rm(x)]T = Ax− b. (2.6)

Each member of the vector r in 2.6 can be calculated with:

ri(x) = aTi x− bi =
n∑

j=1

aijxj − bi.

The paper discusses how well the estimation of x is made using different convex functions
in the training process. In the present time, the energy function used in Chichocki and
Unbehauen’s work corresponds to the loss function.

22

2 State of the Art

2.4.2 Energy Functions

We will examine four different energy functions throughout this thesis. Which energy
function to use depends on the error distribution in the measurement vector b and on the
specific application.

• Ordinary Least Squares Problem: σi(ri) = r2i /2
The energy function for the problem is defined as:

E2(x) =
1

2

m∑
i=1

r2i (x)

=
1

2
rT (x)r(x)

=
1

2
(Ax− b)T (Ax− b)

=
1

2
||Ax− b||22.

(2.7)

If the noise in the measurement vector b has a Gaussian distribution, it is optimal to
use ordinary least squares criterion. However, assuming the error has a Gaussian
distribution is not quite realistic. There could be different sources of errors, such as
modeling errors, sampling errors or human errors.
As mentioned earlier, our goal is to find an x that minimizes the energy function.
Therefore, we need to calculate the gradient of the energy function ∇E2(x). To com-
pute the gradient, derivatives of the energy function are calculated with respect to
each element in x as shown below:

∇E2(x) = AT (Ax− b)

=

[
δE2(x)

δx1
,
δE2(x)

δx2
, . . . ,

δE2(x)

δxn

]
,

(2.8)

where x(0) = x0. After we compute the gradient with respect to the specified energy
function, we scale the gradient by multiplying it with −µ(t):

dx

dt
= −µ(t)∇E2(x). (2.9)

µ(t) = [mij(t)] is a n × n positive definite matrix that is often diagonal. The entries
of the matrix are dependent on the time t.
The learning procedure of the whole system with respect to the ordinary least squares
is:

dxj
dt

= −
n∑

p=1

µjp

 m∑
p=1

aip

(
n∑

k=1

aikxk − bi

) . (2.10)

23

2 State of the Art

with xj(0) = x0j ,m ≥ n (because the equation is assumed to be overdetermined), for
j = 1, 2, ..., n. x is calculated as a limit point starting from x0, which can be chosen
random at the initial state.
The goal when building a matrix µ(t) is to provide convergence speed and stability
of differential equations. On the one hand, if the µij is chosen small, the convergence
speed to the desired solution x will be rather slow. On the other hand, if the µij is
chosen large, it can cause an unstable behaviour of the neural network. Hence, µ(t)
serves here the duty of the learning rate that we discussed in 2.3.6 . There are two
possibilities deciding on the entries µij . Firstly, designating constant entries for the
weights. Secondly, selecting the entries adaptively. Adaptive selection can increase
the convergence rate without causing stability problems, as opposed to choosing
large constants directly.

• Iteratively Reweighted Least Squares Problem: σi(ri) = (β/α) ln(cosh(αri))
The energy function for the problem is defined as:

(x) = E(x, α, β) =
β

α

m∑
i=1

ln(cosh(αri), (2.11)

where α > 0, β > 0 are problem-dependent variables.
The criterion is more robust towards the outliers than ordinary least squares crite-
rion. Therefore, we achieve a better quality from a continuous-valued solution when
there are spiky noise or outliers in the measurement vector b. What makes this pos-
sible is the nonlinear activation function g that we pass the error into:

gi[ri] = gi

[
n∑

k=1

aikxk − bi

]
. (2.12)

g performs the following operations to the error:

gi[ri] =
δσL(ri)

δri
=

δ

[
β

α

∑
ln(cosh(αri)

]
δri

= β tanh(αri). (2.13)

Here, the sigmoid nonlinearities are not used with the purpose of binary classifica-
tion as described in 2.3.4 , rather they are used for enabling the network to achieve
more robust solutions by preventing the absolute values of residuals from being
greater than the cut-off parameter β and by compressing large residuals. If α and
β are selected in a way that α = 1/β, then the iteratively reweighted least squares
problem converges to the ordinary least squares problem. In contrast, if β = 1 and
α is chosen large (e.g. 100), then the problem converges to the least absolute value
problem.

24

2 State of the Art

The learning procedure of the whole system with respect to the iteratively reweighted
least squares is:

dxj
dt

= −
n∑

p=1

µjp

 m∑
p=1

aipg

[
n∑

k=1

aikxk − bi

] .

• Least Absolute Value Problem: σi(ri) = |ri|
The energy function is defined as:

E1(x) =

m∑
i=1

|ri(x)|, (2.14)

where the absolute values of the residuals are summed up. Like iteratively reweighted
least squares criterion, least absolute value criterion can be used as an alternative
when there are outliers in the measurement vector b.
The learning procedure of the whole system with respect to the least absolute value
problem is:

dxj
dt

= −
n∑

p=1

µjp

 m∑
i=1

aipsign

−bi + n∑
j=1

aijxj

 .

• Chebyshev Problem: σi(ri) = |ri|
Chebyshev criterion is formulated as a minimax problem:

E(x) = min
x∈Rn

max
1≤i≤m

{|ri(x)|}. (2.15)

First the absolute values of the residuals are computed. Then, the maximum along
the residuals is selected. If the errors are uniformly distributed, using Chebyshev
criterion is suggested. However, it is unlikely that the measurement vector b has
uniformly distributed errors.
The learning procedure of the whole system with respect to the Chebyshev problem
is:

dxj
dt

= −
n∑

p=1

µjp

aipsign
−bi + n∑

j=1

aijxj

 .

The entire approach with the differential equations can be performed in three essential
steps and each step represents a layer in the network demonstrated in Figure 2.10 . The
architecture of the iterative solution method resembles the perceptron in 2.3.3 . The differ-
ence between the models is that the network built for the iterative solution method stores
x, the solution that we want to estimate, as weights. Also, the network does not process
any inputs in contrast to usual neural networks. We have a fixed A and a fixed b.

25

2 State of the Art

Figure 2.10: Architecture of a Neural Network for Solving a Linear System With Ordinary
Least Squares Criterion. Adapted from [5].

1. Computation of the Error
For all the above mentioned different energy functions, first step is to calculate the
error:

ei(x) =
n∑

k=1

aikxk − bi, i = 1, 2, ...,m.

Exceptionally, a nonlinearity with g is added to the energy function of iteratively
reweighted least squares problem:

ei(x) = gi

[
n∑

k=1

aikxk − bi

]
, i = 1, 2, ...,m.

In the first layer, namely the sensors layer, the error signals are produced as seen in
Figure 2.10 .

2. Computation of the Gradient
Second layer consists of association elements that compute the gradient components
of the function with the contribution of the first layer. For least squares and itera-
tively reweighted least squares problems, the gradients are calculated in the same
manner, which correspond to:

δε(x)

δxp
=

m∑
i=1

aipei(x), p = 1, 2, ..., n.

26

2 State of the Art

For least absolute value problem, the gradient is:

δε(x)

δxp
=

m∑
i=1

aipsign

−bi + n∑
j=1

aijxj

 , p = 1, 2, ..., n. (2.16)

Lastly for the Chebyshev problem, the index i corresponds to the maximum element
from the residuals vector r, as shown in 2.15 . Hence, the gradient is defined as:

δε(x)

δxp
= aipsign

−bi + n∑
j=1

aijxj

 , p = 1, 2, ..., n. (2.17)

3. Constitution of the Proper Learning System
Third and last layer is formed of response elements. With this step, the whole learn-
ing process is completed for one iteration. Last step is applied to all the different
energy functions in the same manner. The gradient is scaled with −µ:

dxj
dt

= −
n∑

p=1

µjp
δε(x)

δxp
, xj(0) = x

(0)
j , j = 1, 2, ..., n.

27

3 Neural Networks Solving Linear Systems

In this chapter the implementation of neural networks that can solve linear systems are ex-
plained in depth. The work in the thesis is mainly based on the paper ”Neural Networks
for Solving Systems of Linear Equations and Related Problems” [5], where their approach
for building neural networks is discussed thoroughly in Section 2.4 . We start with the
reimplementation of the iterative solution method adopted from the paper. At first, we do
not benefit from any software frameworks for deep learning. Afterwards, with the same
conditions, such as the same learning rate, same number of iterations/epochs and same
loss functions, we implement the same solution method with TensorFlow. TensorFlow is
an open source platform that has extensive tools and libraries to train deep neural net-
works [3]. We utilize these properties while creating our own model. Furthermore, the
implementations also differ in the used loss functions. We build the networks using dif-
ferent regularization techniques discussed in 2.4.2 .
Later in the thesis, we compare the implementations of both neural networks, with and
without using Tensorflow. Additionally, a comparison of networks adopting different loss
functions is also included. We use a small-scale problem Ax = b, where we selected A as
a (3 × 3) matrix at first, to demonstrate the solution method explicitly. Then, we provide
results for a large-scale problem, where we opted for a (10000× 10000) matrix A. We also
compute the same problems with linear solvers. Furthermore, we discuss the advantages
and the disadvantages of using linear solvers for solving linear systems.

3.1 Structure of the Neural Network

Before explaining the implementation of the iterative solution method, we give a general
overview at the structure of the network. In this section, we examine the layering of the
network and the use of activation functions in advance by taking the structure of nonlinear
neural networks into consideration.

3.1.1 Layers

As opposed to the nonlinear neural networks, our network does not represent nonlinear
mappings. In Figure 2.10 from the last Section 2.4 , the linear model for the iterative solu-
tion method is demonstrated. According to Cichocki and Unbehauen, the model consists
of three layers and in each layer different computations for building the learning system
take place. Thus, the logic of layering is different from today as we discussed in 2.3.1 .

28

3 Neural Networks Solving Linear Systems

The mentioned three layers correspond to one linear layer at the present time because in
our implementation neither we use any other hidden layers nor we have separate input
and output layers. Our network does not process any inputs rather it stores the solution x
in one single linear layer as weights. The reason why they divide the network into three
different layers is to distinguish different calculation steps from each other.

3.1.2 Activation Function

In our network we do not use any activation functions like the usual nonlinear neural net-
works discussed in 2.3.4 . The only time we apply a nonlinear activation function g is when
we opt for the iteratively reweighted least squares problem. Nevertheless, this activation
function is not applied to the network directly like the nonlinear neural networks, where at
each layer the multiplication of weights and inputs are passed into it as described in 2.3.3 .
This activation function is a part of the loss function. Hence, we do not need to implement
the activation function explicitly for the training process.

3.2 Implementation of the Neural Networks

3.2.1 Libraries

For the implementation of the iterative solution method we used Python. Thus, we need
to import several Python libraries that are demonstrated in 3.1 . We benefit from NumPy to
perform linear algebra operations. Moreover, we need to have a library for visualization
of our results and Matplotlib fulfill the need. Since we implement two types of neural
networks, being a neural network that we built only with numerical computations and a
network built with TensorFlow, we import the TensorFlow package as well.

1 import numpy as np
2 import matplotlib.pyplot as plt
3 import tensorflow as tf

Code Listing 3.1: Imported Libraries for the Implementation of the Neural Networks

3.2.2 Training Samples

The theory behind Cichocki and Unbehauen’s paper is to solve a linear system Ax = b
iteratively in order to converge to a solution x as close as possible to the actual solution.
Normally, as we examine in 2.3.2 , neural networks are trained with datasets that have nu-
merous information. The goal is to obtain a network with trained weights that can predict
accurate results on unseen data. In our implementation, we adopt a different solution
method. We feed our network a fixed matrix A and a fixed matrix b instead of feeding the

29

3 Neural Networks Solving Linear Systems

network various matrices A and b. To be concrete, we work with an example to demon-
strate the approach better:

A =

1 1 1
0 2 5
2 5 −1

 , b =
 6
−4
27

 .
In this case, the actual x that we want to converge after the training is:

x actual =

 5
3
−2

 .
However, x is unknown at the start. The problem can be defined as:1 1 1

0 2 5
2 5 −1

×
x1x2
x3

 =

 6
−4
27

 .
The goal of our network is to find an approximation for x1, x2, and x3. We do not use any
testing samples, since the responsibility of our network is just to find an approximation x
for this specific problem. In other words, our network is specialized for solving only one
problem.

3.2.3 Training Procedure

• Neural Network Implemented Without TensorFlow

1 x = np.array([0, 0, 0])
2 energy_function = 0
3 lstsq_energies = []
4

5 for i in range(1000):
6

7 error_vector = A @ x - b
8

9 energy_function = (1/2) * error_vector.T @ error_vector
10 lstsq_energies.append(energy_function)
11

12 gradient_vector = A.T @ error_vector
13

14 scaled_gradient = -m @ gradient_vector
15

16 x_new = x + scaled_gradient
17 x = x_new

Code Listing 3.2: Neural Network Implemented Without TensorFlow Using Ordinary
Least Squares Loss

30

3 Neural Networks Solving Linear Systems

Above, a code excerpt 3.2 is provided to give a better understanding of the training
procedure. We firstly initialize a random x and we opted for a vector that consists of
zeros:

x =

00
0

 . (3.1)

We implement the approach with three essential steps mentioned in Section 2.4 . At
first, error r is calculated with Ax − b in line 7 . Then, the energy function using the
error r is computed. The energy function differs for each regularization technique.
In code excerpt 3.2 , the energy function represents the ordinary least squares prob-
lem. We append the computed energy function to a list because after the training,
we want to plot the loss and observe its behaviour.
Next step is to calculate the gradient of the energy function with respect to the x vec-
tor in line 12 . The reason is to detect the rate of change in the energy function to the
change in each xi = [x1, x2, ..., xn]. The process is a simplified version of backprop-
agation described in 2.3.7 . Here, our weights are the elements of the x vector that
we want to estimate. Therefore, the gradient is computed with respect to x. We also
do not chain derivatives as we move towards outer layers because we only have one
layer in our model.
For µ we designate a matrix defined as:

µ =

0.01 0 0
0 0.01 0
0 0 0.01

 . (3.2)

We opt for entries 0.01 for the diagonal. Thus, the matrix µ scales the gradient instead
of updating x with the full amount like a learning rate described in 2.3.6 . After
computing the step size for each xi, we need to integrate the gradient in order to
obtain the updated x. We perform integration by using the rectangle method. For
each iteration, the scaled gradient is added to x in order to achieve the area of the
rectangle below the function as in line 16 . The updated x will be the new input for
the next iteration. We iterate all the steps over a 1000 times.

• Neural Network Implemented With TensorFlow

1 n_dim = 3
2 n_training_steps_per_epoch = 1
3 x_train = np.zeros((n_training_steps_per_epoch,n_dim))
4 NET_LEARNING_RATE = 1e-2
5 NET_EPOCHS = 1000
6 NET_BATCH_SIZE = 1

Code Listing 3.3: Extra Parameters for the TensorFlow Implementation

31

3 Neural Networks Solving Linear Systems

For the implementation with TensorFlow we have additional variables as shown
above in 3.3 that we will utilize in the training process. We set the dimension of
the problem to 3, since we have a 3 × 3 matrix A. Moreover, we use a training vari-
able x_train to define the number of training steps per epoch and the dimension of
the problem. The number of training steps per epoch is set to 1 and as mentioned, the
dimension is set to 3, which stands for the number of rows and number of columns
in x_train.
Our network performs the stochastic gradient descent algorithm described in 2.3.6 .
As we already mentioned above, we set 1 for the n_training_steps_per_epoch
and 1 for the NET_BATCH_SIZE because in each iteration our goal is to accomplish
one pass through the operations. The reason why we do this is to have the same plot
as the implementation without using Tensorflow at the end. If we set the number of
training steps per epoch to a larger number, for instance to 1000, and the batch size
to 256, then we can converge faster to the solution. Note that with those parameters,
stochastic gradient descent acts as mini-batch gradient descent.

1 class LinearSystemSolution(tf.keras.Model):
2 def __init__(self, n_input_dimension, A, b, **kwargs):
3 super(LinearSystemSolution, self).__init__(**kwargs)
4 self.solution = tf.Variable(initial_value=tf.zeros((
5 n_input_dimension,1), dtype=tf.float64),
6 trainable= True ,
7 dtype=tf.float64,
8 shape=(n_input_dimension,1))
9 self.A = tf.convert_to_tensor(A)

10 self.b = tf.convert_to_tensor(b)
11

12 def call(self, x, training=True):
13 error = tf.matmul(self.A, self.solution) - self.b
14 self.add_loss(tf.reduce_sum(tf.square(error))/2)
15 return self.solution
16

17 network = LinearSystemSolution(n_dim, A, b)
18 network.compile(optimizer=tf.optimizers.SGD(learning_rate=
19 NET_LEARNING_RATE))
20

21 callbacks = [LossAndErrorPrintingCallback()]
22 lstsq_historian = network.fit(x_train, epochs=NET_EPOCHS,
23 verbose=0, batch_size=NET_BATCH_SIZE, callbacks=callbacks)

Code Listing 3.4: Neural Network Implemented With Tensorflow Using Ordinary Least
Squares Loss

Above, there is a code excerpt 3.4 that demonstrates the implementation of a neural
network using TensorFlow. The adopted loss function is again the ordinary least
squares problem.
According to the user guide of Keras [1], tf.keras.Model() groups layers into an

32

3 Neural Networks Solving Linear Systems

object with training and inference features. To define our custom single layer and its
attributes, we use the constructor __init__(). We then pass the input dimension,
A, and b described in 3.2.2 to the constructor. To define our solution x in line 4 , we
use the constructor Variable(), which has the arguments shown in 3.5 below.

1 tf.Variable(
2 initial_value=None, trainable=None, validate_shape=True,
3 caching_device=None, name=None, variable_def=None, dtype=None,
4 import_scope=None, constraint=None,
5 synchronization=tf.VariableSynchronization.AUTO,
6 aggregation=tf.compat.v1.VariableAggregation.NONE, shape=None
7)

Code Listing 3.5: Arguments of the Variable() Constructor

For building our network, we use the arguments initial_value, trainable,
dtype, and shape. In our example, initial_value is a matrix that consists of
zeros with the shape (3×1), since we search for the solution x ∈ R3. We seek to have
a trainable variable because in each iteration x will be updated. Hence, we set the
boolean trainable to true. For numeric stability, we set the default floating-point
dtype to float64. shape defines the shape of our solution x, being (3 × 1). After
setting the parameters of the Variable(), we convert the matrices A and b from
Python objects to Tensor objects in lines 9 and 10 .
The call() method defines the computation from input to output. At first, the er-
ror is calculated with Ax − b in line 13 . Then, we use the add_loss() method that
adds an externally defined loss to the collection of losses. We define the loss function
according to the ordinary least squares problem [1].
We create our network in line 17 and then we compile it. To configure our model,
we use the method compile(). As an optimizer we select the stochastic gradient
descent, which is discussed in 2.3.6 . After the model is configured, it is ready for
training. Method fit() trains the model for a fixed number of epochs. The argu-
ments of the method are shown below 3.6 .

1 fit(
2 x=None, y=None, batch_size=None, epochs=1, verbose=1,
3 callbacks=None, validation_split=0.0, validation_data=None,
4 shuffle=True, class_weight=None, sample_weight=None,
5 initial_epoch=0, steps_per_epoch=None, validation_steps=None,
6 validation_batch_size=None, validation_freq=1, max_queue_size=10,
7 workers=1, use_multiprocessing=False
8)

Code Listing 3.6: Arguments of the fit() Method

x is the input data and y is the target data. Essentially, our network does not process
any inputs, it just stores the solution x as a TensorFlow variable. Thus, x_train
in line 22 is used only for defining the number of training steps per epoch and the

33

3 Neural Networks Solving Linear Systems

dimension of the problem.
Learning rate serves the same purpose with the matrix µ defined in 3.2 . Thus, we set
it to 0.01 to create the same environment for both implementations. The number of
epochs is correspondingly set to a 1000 as demonstrated in 3.3 . Lastly, verbose is
set to 0. It can have the values 0 or 1. If verbose = 0, there is no progress bar as an
output and for verbose = 1 vice versa [1].

3.3 Implementation of Different Loss Functions

The different energy functions that help us to compute loss are discussed in Section 2.4 .
The described energy functions are used as loss functions in our model. In this section, we
elaborate the implementations of the different loss functions for both neural networks that
are built with and without using TensorFlow.

3.3.1 Ordinary Least Squares Problem

• Neural Network Implemented Without TensorFlow
The code excerpt 3.2 demonstrates the implementation of a network that adopts
ordinary least squares problem as a loss function. At the beginning of the itera-
tion, the error_vector is calculated and passed to the energy_function, which
is computed with respect to the ordinary least squares problem described in 2.7 .
Thus, we take the square of the error vector and divide it by two. We calculate the
gradient_vector with regard to 2.8 by multiplying the transpose of the matrix A
with the error_vector.

• Neural Network Implemented With TensorFlow
The full implementation of the neural network using TensorFlow can be seen in

 3.4 . In the call() function, we specify the loss that we want to use during the
training process of the network. Therefore, in line 14 we define the ordinary least
squares problem. The square of the error is computed with tf.square() and
tf.reduce_sum() sums all the elements. Hence, tf.reduce_sum() has the same
responsibility as the

∑
operator in this situation. Lastly, we divide the result by two

to obtain the corresponding loss function.

3.3.2 Iteratively Reweighted Least Squares

• Neural Network Implemented Without TensorFlow
We introduce two variables before training, namely α and β. As discussed in 2.4.2 ,
α and β symbolizes different shapes of sigmoid nonlinearities. In our example, we
selected α = 0.1 and β = 10 so that the iteratively reweighted least squares problem
converges to the ordinary least squares problem.

34

3 Neural Networks Solving Linear Systems

1 for i in range(1000):
2

3 error_vector = A @ x - b
4

5 sum_total = 0
6 for j in error_vector:
7 res = np.log(np.cosh(alpha*(j)))
8 sum_total = res + sum_total
9

10 energy_function = beta/alpha * sum_total
11 iter_energies.append(energy_function)
12

13 g = beta * np.tanh(alpha * error_vector)
14

15 gradient_vector = A.T @ g
16

17 scaled_gradient = -m @ gradient_vector
18

19 x_new = x + scaled_gradient
20 x = x_new

Code Listing 3.7: Neural Network Implemented Without TensorFlow Using Iteratively
Reweighted Least Squares Loss

Code excerpt 3.7 demonstrates the training procedure of the network with the loss
function iteratively reweighted least squares. To implement the energy function de-
fined in 2.11 , we iterate through the elements in error_vector and apply the op-
erations in line 7 . Before, we append the computed energy to the list, we multiply it
with β/α.
A nonlinearity with activation function g is added to the problem and in line 13 and
we define g as in 2.13 . The activation function g contains tanh activation function
that we defined in 2.3.4 . gradient_vector is calculated in the same manner as the
gradient_vector from the least squares problem.

• Neural Network Implemented With TensorFlow
We use the same implementation as the ordinary least squares problem defined in

 3.4 for the other loss functions. The only part that needs to be modified is inside the
call() function, where we define our custom loss functions. Below in code excerpt

 3.8 , iteratively reweighted least squares problem is implemented with respect to its
energy function 2.11 .

1 def call(self, x, training=True):
2 error = tf.matmul(self.A, self.solution) - self.b
3 self.add_loss(tf.reduce_sum(tf.math.log(tf.math.cosh
4 (alpha*(error)))) * (beta/alpha))
5 return self.solution

Code Listing 3.8: Iteratively Reweighted Least Squares Loss Defined in call()

35

3 Neural Networks Solving Linear Systems

3.3.3 Least Absolute Value Problem

• Neural Network Implemented Without TensorFlow

1 for i in range(1000):
2

3 error_vector = A @ x - b
4

5 sum_total = 0
6 for j in error_vector:
7 sum_total = abs(j) + sum_total
8

9 energy_function = sum_total
10 abs_energies.append(energy_function)
11

12 sign_0 = np.sign(-b[0] + A[0] @ x)
13 sign_1 = np.sign(-b[1] + A[1] @ x)
14 sign_2 = np.sign(-b[2] + A[2] @ x)
15

16 sign_vector = np.array([sign_0, sign_1, sign_2])
17

18 der_x0 = A[:, 0] @ sign_vector
19 der_x1 = A[:, 1] @ sign_vector
20 der_x2 = A[:, 2] @ sign_vector
21

22 gradient_vector = np.array([der_x0, der_x1, der_x2]).T
23

24 scaled_gradient = -m @ gradient_vector
25

26 x_new = x + scaled_gradient
27 x = x_new

Code Listing 3.9: Neural Network Implemented Without Tensorflow Using Least Absolute
Value Loss

Code excerpt 3.9 demonstrates the implementation of a network that adopts the least
absolute value problem as a loss function. To compute the energy function, we sum
up the absolute values of the elements of the error_vector in line 7 . We calculate
the gradient_vector with respect to the computation in 2.16 . At first, we com-
pute the signs of the term −bi +

∑n
j=1 aijxj starting at line 12 for each element of

the error_vector. Then we join them together in the sign_vector. With respect
to x0, x1 and x2, we compute the derivatives of the energy function. For instance,
when we differentiate the energy function according to x0, every other x becomes a
constant. Therefore, we take all the coefficients of x0 from the first column of the ma-
trix A and we multiply it with the sign_vector. After we define derivatives with
respect to each x, we create the gradient_vector by combining them together.

• Neural Network Implemented With TensorFlow

36

3 Neural Networks Solving Linear Systems

1 def call(self, x, training=True):
2 error = tf.matmul(self.A, self.solution) - self.b
3 self.add_loss(tf.reduce_sum(tf.abs(error)))
4 return self.solution

Code Listing 3.10: Least Absolute Value Loss Defined in call()

Code excerpt 3.10 is the implementation of the least absolute value problem in call()
function. According to the energy function of the least absolute value problem de-
fined in 2.14 , we take the absolute value of the error with the help of tf.abs().
Then, with reduce_sum() we sum up the absolute values of the elements in the
residual vector.

3.3.4 Chebyshev Problem

• Neural Network Implemented Without TensorFlow

1 for i in range(1000):
2

3 error_vector = A @ x - b
4

5 max_val = max(abs(error_vector))
6

7 energy_function = max_val
8 cheb_energies.append(energy_function)
9

10 sign_0 = np.sign(-b[0] + A[0] @ x)
11 sign_1 = np.sign(-b[1] + A[1] @ x)
12 sign_2 = np.sign(-b[2] + A[2] @ x)
13

14 if max_val == abs(error_vector[0]):
15 gradient_vector = np.array([A[0][0]*sign_0, A[0][1]*sign_0, A[0][2]*

sign_0]).T
16 elif max_val == abs(error_vector[1]):
17 gradient_vector = np.array([A[1][0]*sign_1, A[1][1]*sign_1, A[1][2]*

sign_1]).T
18 else:
19 gradient_vector = np.array([A[2][0]*sign_2, A[2][1]*sign_2, A[2][2]*

sign_2]).T
20

21 scaled_gradient = -m @ gradient_vector
22

23 x_new = x + scaled_gradient
24 x = x_new

Code Listing 3.11: Neural Network Implemented Without Tensorflow Using Chebyshev
Loss

37

3 Neural Networks Solving Linear Systems

As opposed to the least absolute value problem, we take absolute values of the resid-
uals and select the maximum value as defined in 2.15 . To compute the gradient ac-
cording to 2.17 , we follow the same steps as the implementation of the least absolute
value problem at start. After computing the signs for each element in the residual
vector, starting from line 14 we search for the element that has the maximum ab-
solute value. For instance, if it is the first element of the error_vector, then the
gradient is composed of the derivatives from the first row of the matrix A with re-
spect to x0, x1 and x2. To be more concrete, r0 = a00 ∗ x0 + a01 ∗ x1 + a02 ∗ x2 − b0
is the first element of the error_vector. If r0 has the highest absolute value, our
gradient_vector will be: a00 ∗ sign0a01 ∗ sign0

a02 ∗ sign0

 .
• Neural Network Implemented With TensorFlow

1 def call(self, x, training=True):
2 error = tf.matmul(self.A, self.solution) - self.b
3 self.add_loss(tf.reduce_max(tf.abs(error)))
4 return self.solution

Code Listing 3.12: Chebyshev Loss Defined in call()

As seen in code excerpt 3.12 , we first take the absolute value of the error. In order to
obtain the maximum along the elements, we use the method tf.reduce_max().

3.4 Evaluation of Loss

In this section we demonstrate for each problem the behaviour of the loss. We benefit from
plots to give a deeper understanding. At the end of the section we compare each loss that
we obtained from using four different energy functions.

3.4.1 Ordinary Least Squares Problem

• Neural Network Implemented Without Using TensorFlow

1 lstsq_loss_without_tf = lstsq_energies[999]
2 print("Loss without using tensorflow is ", lstsq_loss_without_tf)

Code Listing 3.13: Computation of Ordinary Least Squares Loss Without Using
TensorFlow

38

3 Neural Networks Solving Linear Systems

After we trained the network with the implementation demonstrated in 3.2 over a
1000 times, the list lstsq_energies has collected an energy for each iteration. We
compute the last element of the energy list in order to evaluate the loss of our model
at the end. The loss of the network we built by adopting ordinary least squares
problem is approximately 0.00015, which is 10−4.

• Neural Network Implemented With TensorFlow

1 lstsq_loss_with_tf = (lstsq_historian.history["loss"][999])
2 print("Loss using tensorflow is ", lstsq_loss_with_tf)

Code Listing 3.14: Computation of Ordinary Least Squares Loss Using TensorFlow

To compute the loss of the network built with the help of TensorFlow, we benefit from
the History object as demonstrated in 3.14 . The network.fit() method used in
the code snippet 3.4 returns a History object. Furthermore, History.history
attribute holds a recording of training loss values and metrics values at successive
epochs [1].
As expected, the output is approximately 0.00015, which is the same output that we
obtained from the implementation using only numerical operations. We used the
same parameters for both neural networks to achieve the same results. Our main
goal by adapting the iterative solution method to the TensorFlow environment is to
benefit from its library. TensorFlow offers us some advantages, such as more practi-
cal implementation and faster convergence to the solution.

• Plotting the Loss

1 fig,ax = plt.subplots(1,1,figsize=(5,5))
2 ax.semilogy(lstsq_historian.history["loss"], "x",
3 label = "with tf", markevery= 5)
4 ax.semilogy(lstsq_energies, label = "without tf")
5 ax.set_title("Loss: Ordinary Least Squares Problem")
6 ax.set_xlabel("Iterations")
7 ax.set_ylabel("Loss")
8 ax.legend()

Code Listing 3.15: Plotting Ordinary Least Squares Loss

To plot the losses for both neural networks, we use code excerpt 3.15 . Correspond-
ing plot is demonstrated in Figure 3.1 . Both energy functions are minimized in the
same manner. For the neural network built with TensorFlow, there are several ways
to improve the minimization process. For instance, training steps per epoch can be
incremented. Hence, in one epoch x will be updated several times and we can con-
verge faster to the solution than the neural network built without TensorFlow.

39

3 Neural Networks Solving Linear Systems

Figure 3.1: Ordinary Least Squares Loss With and Without Using TensorFlow

• Convergence to the Actual Solution
Lastly, we evaluate the estimated x to see how well the networks have converged to
the actual x.

1 print("network solution without using tf is", x)
2 print("network solution using tf is", network.solution.numpy().T)

Code Listing 3.16: Network Solutions Using Ordinary Least Squares Loss

The results of 3.16 are again approximately the same and the solution of the networks
is: 4.9769

3.0092
−2.0030

 . (3.3)

Both networks converged to the actual solution defined in 3.2.2 successfully with
minor errors.

3.4.2 Iteratively Reweighted Least Squares Problem

The results are achieved in the same way for all the different energy functions. Therefore,
from this point we provide only the outputs. For iteratively reweighted least squares, we
selected α = 0.1 and β = 10 so that the problem converges to the ordinary least squares
problem. Thus, the loss we get is approximately the same as the ordinary least squares
problem, being 0.00015. Again, we observe the same behaviour of the loss from both

40

3 Neural Networks Solving Linear Systems

Figure 3.2: Iteratively Reweighted Least Squares Loss With and Without Using Tensor-
Flow, α = 0.1 and β = 10

neural networks using iteratively reweighted least squares problem as their loss function.
The convergence to the actual x is as follows: 4.9772

3.0091
−2.0029

 .
We achieved nearly the same values for the solution x as we achieved in 3.3 .

3.4.3 Least Absolute Value Problem

The loss we get from the neural network implemented without TensorFlow that adopts
the least absolute value problem is 0.56000. From the neural network implemented with
TensorFlow, we obtain a loss that is approximately 0.44000. As seen in Figure 3.3 there is
chattering in the loss. Therefore, the obtained losses from the last iteration are different.
For instance, if we examine the neural network implemented without using TensorFlow
and compute the 998th energy, it is 0.42000. Nevertheless, the computed loss is higher than
the least squares problems.
The network solutions without and with using TensorFlow in advance are as follows: 4.84

3.02
−2.02

 ,
 4.90

3.08
−1.96

 .

41

3 Neural Networks Solving Linear Systems

Figure 3.3: Least Absolute Value Loss With and Without Using TensorFlow

Hence, the network solutions have higher distance to the actual solution in contrast to least
squares problems.

Figure 3.4: Chebyshev Loss With and Without Using TensorFlow

42

3 Neural Networks Solving Linear Systems

3.4.4 Chebyshev Problem

The loss we obtain using the Chebyshev problem, demonstrated in Figure 3.4 , is 0.14000 for
both neural networks. In comparison to the least absolute value problem, for this specific
example we achieved a lower loss with Chebyshev. However, the loss is still higher than
the least squares problems. The network solutions are the same for both implementations
and it is: 4.87

3.08
−2.02

 .
Computed solution is near to the solution that we obtained from using the least absolute
value problem. Nevertheless, the convergence is weaker than the solutions from using
least squares problems.

3.4.5 Results

Figure 3.5: Comparison of 4 Different Energy Functions

43

3 Neural Networks Solving Linear Systems

We compare all the losses that we obtained from using different energy functions in Fig-
ure 3.5 . Ordinary least squares and iteratively reweighted least squares functions behaved
in the same manner. That is because we selected α and β as α = 1/β. Additionally, it can
be seen that the least squares problems achieved the lowest loss. Note that, for our small-
scale example we used a measurement vector b that does not consist of any errors. There
are no outliers in the data that may shift the least squares functions towards the error. Be-
tween the least absolute value and Chebyshev problems, we achieved a lower loss using
the Chebyshev problem. As we described the mean absolute value error loss in 2.3.5 , the
energy function least absolute value can have convergence problems. Therefore, we have
oscillations in Figure 3.5 when we compute the loss with the least absolute value problem.

3.5 Computation with Linear Solvers

We computed a solution x for our training sample A and b using the solve() method in
 3.17 .

1 x_standard = np.linalg.solve(A, b)

Code Listing 3.17: Computation of x With solve()

The reason we use the solve() method is that our A is square and has full rank. We
could use the least squares method lstsq() as well. As shown in code excerpt 3.17 , a
single line is enough to solve a linear equation. For our small-scale problem, solve()
method computes a solution x_standard same as the actual solution x defined in 3.2.2 .
Out of all the neural networks that adopted different loss functions, we obtained the best
solution from the linear solver.
The simplicity of implementing a linear solver and the accuracy of the result compared
to neural networks are noticeable. Both neural network and linear solver have the same
goal, to solve Ax = b. Then, we must have some advantages over linear solvers when
we solve linear systems with neural networks. The advantage of neural networks is that
they can handle large-scale matrix operations. In contrast, linear solvers can not compute
results for large-scale problems on our laptops because there is not enough memory to
perform operations on such large matrices. Even though implementing a neural network
is complicated, it offers a functionality that a direct linear solver is not capable of. To
conclude, using linear solvers is feasible when we have a small-scale problem. In next
Section 3.6 , we will demonstrate an example, where using linear solvers does not work
due to the size of the matrices.

3.6 Computation of a Large-Scale Linear System

For our large-scale problem, we create A and x randomly as normally distributed matri-
ces. A has the shape (10000 × 10000) and x has the shape (10000 × 1). We compute b by

44

3 Neural Networks Solving Linear Systems

multiplying A and x. When we work with such large matrices, the sum of the elements
in each row gets very large and numerical overflow can occur. To prevent any issues, we
rescale A and b after sampling them. We accomplish rescaling by dividing both A and b by
10000. Since A and b are divided simultaneously with the same number:

(
1

10000
×A)x = (

1

10000
× b),

x stays the same. Figure 3.6 demonstrates the loss using ordinary least squares problem.

Figure 3.6: Ordinary Least Squares Loss With and Without Using TensorFlow

According to the loss, our network built without the help of TensorFlow performed the
same as the network built with TensorFlow. The main difference between both imple-
mentations is the computation time. Using ordinary least squares loss, we achieved a
solution in 141 seconds with TensorFlow, which is approximately two and a half minutes.
The computation time of the implementation without TensorFlow is 357 seconds, which
is approximately six minutes. As a result, with the help of TensorFlow we obtained the
estimation of x more than twice as fast. Therefore, we continued to work with TensorFlow
for this problem. Computation times for the other loss functions are between 141 and 143
seconds.
We compute the norm of the error as shown in 3.18 in order to check how well the network
solutions are. These solutions belong to the networks that adopted ordinary least squares
loss.

1 print(np.linalg.norm(A @ network.solution.numpy() - b))
2 print(np.linalg.norm(A @ x - b))

Code Listing 3.18: Computation of the Error According to the Ordinary Least Squares
Problem

45

3 Neural Networks Solving Linear Systems

As a result we obtained 0.9864 for both implementations with and without using Tensor-
Flow.

Figure 3.7: Different Losses Computed Using TensorFlow

In Figure 3.7 different losses computed with TensorFlow are demonstrated. Since the start-
ing points for each loss are different, we compute the norm of the error with the same
method we used in 3.18 in order to determine which loss function performed the best for
our large-scale problem. The results are as follows:

• Iteratively Reweighted Least Squares Problem (α = 1, β = 10) = 0.9864,

• Least Absolute Value Problem = 0.8413,

• Chebyshev Problem = 0.9883.

46

3 Neural Networks Solving Linear Systems

According to the results, we achieved the most accurate solution x with the least absolute
value problem. As we discussed in 2.3.5 , the least absolute value is more robust to the
outliers than least squares problems. Hence, the errors (e.g. rounding errors) are handled
better and the estimated x is closer to the actual solution. Least squares problems per-
formed better than Chebyshev nevertheless worse than the least absolute value problem.

47

4 Conclusion

4.1 Summary

Neural networks have compatible features to work with matrix operations. In this thesis
we proposed an iterative method to solve a linear system. We first examined the nonlinear
neural networks in depth and then we adopted some of the characteristics of these neu-
ral networks to the models that we built. The reason why we implemented an iterative
solution method instead of using pre-existing linear solvers is that we wanted to obtain a
system that can work with large matrices. Linear solvers are easy to implement and they
return more accurate results for small-scale problems Ax = b. To demonstrate how our
network operates, we used a small-scale problem with a matrix A ∈ R3×3 and a vector
b ∈ R3 in 3.2.2 . For the demonstrated problem, we obtained a solution x same as the actual
solution with the solve()method. Hence, we achieved a better result from a linear solver
than the networks that we built to solve a linear system. Nevertheless, in Section 3.6 , we
showed a large-scale problem, where we used an A ∈ R10000×10000 and a b ∈ R10000, and
we achieved an estimation of x that we could not achieve with linear solvers. The NumPy
linear algebra functions solve() and lstsq() could not compute a result due to the
large-scale numerical operations that had to be done to estimate a x.
We benefited from four different energy functions as we built the networks. These en-
ergy functions are used as loss functions and each of them has its advantages in different
scenarios. For instance, ordinary least squares function performed the best on the small-
scale problem because the measurement vector b did not contain any outliers in it. For
the large-scale problem, the least absolute value function returned the most accurate re-
sult because it is more robust to the errors in the data. The errors might have occured in
the sampling and rescaling process while rounding the floating-point numbers. With the
iterative solution method we have the advantage of selecting a loss function to compute
x. For instance, if it is thought that b might have some outliers in it, then we can opt for
iteratively reweighted least squares or least absolute value problems. We also have the
opportunity to define a more complex loss function to solve a linear system.
We computed the results for both networks implemented with and without using Tensor-
Flow. Tensorflow has some features that ease the process of building a neural network.
To define networks that adopt different loss functions without the help of TensorFlow, we
need to start from the very beginning because implementing each loss requires different
computations (e.g. computation of the gradients). In contrast, in the implementation with
TensorFlow the only piece of code that needs to be modified is inside of the call() func-
tion, where we specify the loss functions. This feature of TensorFlow makes it practical to

48

4 Conclusion

solve linear systems with the desired loss function. Another crucial advantage of Tensor-
flow is the faster computation time. With Tensorflow it takes approximately twice as fast to
compute a solution than the implementation without using TensorFlow for the large-scale
problem.
To conclude, we implemented a method to solve a linear system iteratively that has advan-
tages over linear solvers. According to the results we also showed that using TensorFlow is
beneficial to build the iterative solution method. While building the networks, we utilized
different loss functions and we observed the behaviours of these loss functions in order to
determine when to use them.

4.2 Future Work

In this thesis we provided an example of a linear system that did not contain any errors in
the measurement vector b. For future work, with the use of different loss functions, linear
systems that contain different types of errors can be computed with the iterative solution
method. Thus, the losses after the computations can be observed in order to determine
which loss function performs the best according to different types of errors. Further, new
and more complex loss functions can be introduced to our model.
Lastly, as we discussed in Section 3.6 the time it takes to compute a solution with Tensor-
Flow is approximately two and a half minutes for the large-scale problem. New methods
can be introduced, to shorten the computation time of our model. Further, the iterative so-
lution method can be improved in order to work with larger matrices than 10000× 10000.

49

Bibliography

[1] Keras api reference. https://keras.io/api/. Accessed: 2021-04-08.

[2] Linear algebra (numpy.linalg). https://numpy.org/doc/stable/reference/routines.
linalg.html. Accessed: 2021-04-06.

[3] Martı́n Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean,
Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al. Tensorflow:
A system for large-scale machine learning. In 12th {USENIX} symposium on operating
systems design and implementation ({OSDI} 16), pages 265–283, 2016.

[4] Beifang Chen. Systems of linear equations.

[5] A. Cichocki and R. Unbehauen. Neural networks for solving systems of linear equa-
tions and related problems. IEEE Transactions and Circuits and Systems I: Fundemental
Theory and Applications, 1992.

[6] Djork-Arné Clevert, Thomas Unterthiner, and Sepp Hochreiter. Fast and accu-
rate deep network learning by exponential linear units (elus). arXiv preprint
arXiv:1511.07289, 2015.

[7] Bin Ding, Huimin Qian, and Jun Zhou. Activation functions and their characteristics
in deep neural networks. In 2018 Chinese Control And Decision Conference (CCDC),
pages 1836–1841. IEEE, 2018.

[8] Randall J Erb. Introduction to backpropagation neural network computation. Phar-
maceutical research, 10(2):165–170, 1993.

[9] Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feed-
forward neural networks. In Proceedings of the thirteenth international conference on ar-
tificial intelligence and statistics, pages 249–256. JMLR Workshop and Conference Pro-
ceedings, 2010.

[10] Anthony TC Goh. Back-propagation neural networks for modeling complex systems.
Artificial Intelligence in Engineering, 9(3):143–151, 1995.

[11] Gene H Golub. Some modified matrix eigenvalue problems. Siam Review, 15(2):318–
334, 1973.

50

Bibliography

[12] Gene H Golub and Charles F Van Loan. An analysis of the total least squares problem.
SIAM journal on numerical analysis, 17(6):883–893, 1980.

[13] Caglar Gulcehre, Marcin Moczulski, Misha Denil, and Yoshua Bengio. Noisy activa-
tion functions. In International conference on machine learning, pages 3059–3068. PMLR,
2016.

[14] Dan Hammerstrom. Working with neural networks. IEEE spectrum, 30(7):46–53, 1993.

[15] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into recti-
fiers: Surpassing human-level performance on imagenet classification. In Proceedings
of the IEEE international conference on computer vision, pages 1026–1034, 2015.

[16] Yaoshiang Ho and Samuel Wookey. The real-world-weight cross-entropy loss func-
tion: Modeling the costs of mislabeling. IEEE Access, 8:4806–4813, 2019.

[17] Kurt Hornik. Approximation capabilities of multilayer feedforward networks. Neural
networks, 4(2):251–257, 1991.

[18] Yann A LeCun, Léon Bottou, Genevieve B Orr, and Klaus-Robert Müller. Efficient
backprop. In Neural networks: Tricks of the trade, pages 9–48. Springer, 2012.

[19] Hao Li, Zheng Xu, Gavin Taylor, Christoph Studer, and Tom Goldstein. Visualizing
the loss landscape of neural nets. arXiv preprint arXiv:1712.09913, 2017.

[20] Andrew L Maas, Awni Y Hannun, and Andrew Y Ng. Rectifier nonlinearities improve
neural network acoustic models. In Proc. icml, volume 30, page 3. Citeseer, 2013.

[21] Ivan Markovsky and Sabine Van Huffel. Overview of total least-squares methods.
Signal processing, 87(10):2283–2302, 2007.

[22] Travis E Oliphant. Python for scientific computing. Computing in Science & Engineer-
ing, 9(3):10–20, 2007.

[23] Sebastian Ruder. An overview of gradient descent optimization algorithms. arXiv
preprint arXiv:1609.04747, 2016.

[24] David E Rumelhart, Richard Durbin, Richard Golden, and Yves Chauvin. Backprop-
agation: The basic theory. Backpropagation: Theory, architectures and applications, pages
1–34, 1995.

[25] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning internal
representations by error propagation. Technical report, California Univ San Diego La
Jolla Inst for Cognitive Science, 1985.

[26] Yousef Saad. Ilut: A dual threshold incomplete lu factorization. Numerical linear
algebra with applications, 1(4):387–402, 1994.

51

Bibliography

[27] Sagar Sharma. Activation functions in neural networks. towards data science, 6.

[28] Zhou Wang and Alan C Bovik. Mean squared error: Love it or leave it? a new look at
signal fidelity measures. IEEE signal processing magazine, 26(1):98–117, 2009.

[29] Paul J Werbos. Backpropagation through time: what it does and how to do it. Pro-
ceedings of the IEEE, 78(10):1550–1560, 1990.

[30] M. D. Zeiler, M. Ranzato, R. Monga, M. Mao, K. Yang, Q. V. Le, P. Nguyen, A. Senior,
V. Vanhoucke, J. Dean, and G. E. Hinton. On rectified linear units for speech process-
ing. In 2013 IEEE International Conference on Acoustics, Speech and Signal Processing,
pages 3517–3521, 2013.

[31] Zhilu Zhang and Mert R Sabuncu. Generalized cross entropy loss for training deep
neural networks with noisy labels. arXiv preprint arXiv:1805.07836, 2018.

52

	Acknowledgements
	Abstract
	Introduction
	State of the Art
	Linear Systems
	Linear Solvers
	NumPy Linear Algebra Functions
	LU Decomposition
	Least Squares Method

	Neural Networks
	Introduction to Neural Networks
	General Overview on Training and Testing
	The Perceptron: Forward Propagation
	Activation Functions
	Loss functions
	Loss optimization
	Backpropagation

	Neural Networks for Solving Systems of Linear Equations
	Introduction to the Paper "Neural Networks for Solving Systems of Linear Equations and Related Problems"
	Energy Functions

	Neural Networks Solving Linear Systems
	Structure of the Neural Network
	Layers
	Activation Function

	Implementation of the Neural Networks
	Libraries
	Training Samples
	Training Procedure

	Implementation of Different Loss Functions
	Ordinary Least Squares Problem
	Iteratively Reweighted Least Squares
	Least Absolute Value Problem
	Chebyshev Problem

	Evaluation of Loss
	Ordinary Least Squares Problem
	Iteratively Reweighted Least Squares Problem
	Least Absolute Value Problem
	Chebyshev Problem
	Results

	Computation with Linear Solvers
	Computation of a Large-Scale Linear System

	Conclusion
	Summary
	Future Work

	Bibliography

