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ABSTRACT
Machine-readable Building Information Models
(BIM) are of great benefit for the building operation
phase. Losses through data exchange or issues in
software interoperability can significantly impede
their availability. Incorrect and imprecise semantics
in the exchange format IFC are frequent and compli-
cate knowledge extraction. To support an automated
IFC object correction, we use a Geometric Deep
Learning (GDL) approach to perform classification
based solely on the 3D shape. A Graph Convolu-
tional Network (GCN) uses the native triangle-mesh
and automatically creates meaningful local features
for subsequent classification. The method reaches
an accuracy of up to 85% on our self-assembled,
partially industry dataset.

INTRODUCTION
The use of a standardized data structure is critical to
successfully adopting BIM in the building-operation
phase. Most building operation related tasks require
seamless and automatic data access to vast amounts
of cross-disciplinary data, fast retrieval and spatial lo-
calization of specific data, and the creation of relevant
sub-views to perform specific jobs (Becerik-Gerber
et al. 2012). The Industry Foundation Classes (IFC)
provide an open data exchange format to standard-
ize information flow in the BIM process. However,
the mapping from BIM-to-IFC is not straight for-
ward, and exchanges often result in a loss or mod-
ification of object semantics and information (Koo
et al. 2020), (Ozturk 2020). Misclassified entities,
as defined in a IFC data model, prevent successful
deployment of automation in BIM-supported tasks
during operation (Jang & Collinge 2020, Wu & Zhang
2019) and require tedious rework jobs of the Facility
Management (FM). BIM has its history in computer-
aided-design (CAD) and is still nowadays a method
with primary dependence on geometric modeling and
instance placement. An architect or engineer might
recognize an object seamlessly based on his experience
and thus miss to define an explicit semantic class. In
contrast, the latter’s absence will likely keep the ob-
ject hidden from any automated model parsing. As
BIM requirements are growing to encapsulate various
complex concepts and entities across multiple disci-
plines, the IFC standard becomes highly complex and

requires expert knowledge for the correct semantic
mapping of BIM instances. Consequently, the lack
of rigidness in describing BIM instances makes IFC-
based exchanges unpredictable (Koo et al. 2020).

The absence of semantic object classes is a com-
mon challenge also in the Scan-to-BIM process (Ma
et al. 2018). The reconstructed geometry from point
clouds needs to be segmented and semantically la-
beled before being of use for downstream applica-
tions.

In the following paragraphs, we will first show
why the general classification of 3D shapes is not a
straight-forward task due to the various formats the
data can be encoded in. After that, we describe how
the rapid progress in GDL might be a powerful tool
for imitating a practitioner’s eye and facilitate com-
puterized shape understanding.

3D data formats

BIM elements can be encoded explicitly (definition
by the element’s surface) and implicitly (a series of
construction steps encodes the element). Implicit
representations such as Constructive Solid Geometry
(CSG) or extruded-/swept volumes have different ad-
vantages favoring a traceable and flexible geometry
exchange in the BIM process (Borrmann et al. 2015).
A limiting factor of implicit representations is, all in-
volved software systems’ requirement to support the
operators used for the geometries’ initial creation.

Explicit representation formats such as Boundary
Representations (BRep) or triangulated surface rep-
resentations provide more generic object encoding.
As shown in Figure 1a, surface models consist of a set
of connected polygons or triangles, discretizing an ob-
ject’s continuous surface. Their use extends beyond
BIM and is especially important in visualization-
related applications, such as simulations. Similarly,
solid models, e.g., CSG or voxel-assembled geometry
(Figure 1c) encode the physical space an object oc-
cupies. Depending on the type, one or several solids
form a semantically coherent object. Moreover, point
clouds are commonly known to be acquired by Li-
DAR technology (Bosché et al. 2015), Photogramme-
try (Tuttas et al. 2017), or depth cameras (Armeni
et al. 2016) and can, depending on the acquisition
settings, offer a very exact representation of the sur-
faces of a scene or object. A set of points in a given
coordinate system (X,Y,Z) encodes for a scene, an ob-
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Figure 1: Explicit 3D representations for a 3-way valve: (a) Triangulated mesh (b) point cloud (c) Voxel grid (d) 2D Multi-view images

ject shape, or a segment (Figure 1b). Alternatively,
a 3D shape can be represented by its 2D projection
or rendering from multiple view angles (Figure 1d).

When applying Machine Learning (ML), the need
for vast datasets tends to let researchers choose gen-
eral representation formats over native implicit rep-
resentations formats from BIM (Kim et al. 2019).

Deep Learning on 3D data

Deep Learning (DL) has led to considerable break-
throughs in various tasks, notably in computer vision
(Krizhevsky et al. 2012, Czerniawski & Leite 2020).
However, deep layer stacking and the concept of con-
volutional filters by design induce specific priors in
the learning process. These constructs have appeared
to be very suitable, especially in image classification
and segmentation tasks on structured data domains.

While deep learning has matured into a technology
finding its use in commercial applications, its appli-
cation on 3D data is not straight forward. When con-
sidering non-Euclidean data such as surface meshes or
unstructured and irregular point cloud data, the con-
volutional filter’s fundamental assumptions are not
given (Bronstein et al. 2017). Discretizing the 3D
space into a regular density grid or taking multi-
view snapshots of the object are ways to reestablish
a structured data space suitable for deep convolu-
tional learning. Choosing the ideal voxel size in the
first and defining the optimal viewpoint in the second
approach is a challenging preprocessing step and is
likely to impede the conservation of relevant features
for classification tasks. PointNet (Qi et al. 2017) and
it’s wide range of variations operate on point cloud
data directly leveraging important spatial character-
istics native to the data. It treats each point individ-
ually and uses, in the case of PointNet++, symmetric
functions to guarantee the principles of convolution
to apply to 3D data. PointNet, however, does not
consider local connectivity between points and fails
to extract detailed geometrical information (Wang,
Huang, Hou, Zhang & Shan 2019, Wang, Sun, Liu,
Sarma, Bronstein & Solomon 2019).

Geometric deep learning (Bronstein et al. 2017)
is the translation of the key concepts of convolu-
tion to the non-Euclidean domain and allows for im-

proved 3D learning on explicit geometry represen-
tations without data preprocessing or cumbersome
feature engineering. New methods and facilitation
frameworks such as PyTorch Geometric1 or Deep
Graph Library2 unlock the development of algorithms
operating on raw 3D surface meshes.

The abundance and relevance of surface meshes in
BIM and point cloud reconstruction suggest exploring
technologies, capable of leveraging the native data
characteristics. In this context, our contribution can
be summarized as follows:

• The advantages of GDL in the context of IFC
instance classification are identified.

• A method for future assembly of IFC entities for
extended shape learning is presented

• The presented dataset is published as BIM-
GEOM (Collins 2021)

• A basic light-weight GDL architecture is imple-
mented to operate upon the IFC shape encod-
ings.

We start off by showing how previous approaches
dealt with classifying BIM elements and point out the
benefits GDL could have in comparison. In the meth-
ods section we present the workflow leading from IFC
models to two different shape encodings, laying the
base for GDL. We then train a Graph Convolutional
Neural Network (GCN) and discuss the results’ rele-
vance to today’s construction industry challenges.

RELATED WORK
Methods commonly referred to as BIM semantic en-
richment deduce implicit information from meaning-
ful topological and element-wise features. We can
differentiate between rule-based-inference and ML
methods.

Sacks et al. (2017) use single-object features like
e.g volume, extrusion direction and pair-wise topolog-
ical, as well as semantic relationship features such as
”parallel to” or ”neighboring object is X”. Ma et al.
(2018) highlight, that rule-based inference lacks rigor
and suggests to extend their approach with ML.

1https://pytorch-geometric.readthedocs.io
2https://www.dgl.ai

https://pytorch-geometric.readthedocs.io
https://www.dgl.ai


ML methods have in turn reached significant at-
tention. Koo et al. (2017) extract geometrical fea-
tures such as width, height, length, volume from the
object geometries to train a support-vector-machine
for IFC object outlier detection. The challenge of tra-
ditional Euclidean ML models lies in defining mean-
ingful features derived from the 3D shape.

Kim et al. (2019) use a 2D CNN approach to clas-
sify 3D objects and render multi-view images from
each object. Although the 2D-image approach offers
advantages regarding the availability of datasets for
transfer-training, it neglects structures and patterns
that only exist in 3D. Most recently, Koo et al. (2020)
introduce the thermography of GDL and compare
PointNet to a Multi-View-CNN approach for BIM el-
ements classification. Despite achieving good results,
they argue that the approaches are computationally
too expensive in training and preprocessing for con-
struction industries’ daily practice.

No previous work has investigated non-Euclidean
deep learning methods in the BIM context. The key
idea is to learn high-dimensional vector representa-
tions of local geometry, so-called embeddings, thereby
circumventing the tedious task of geometric feature
selection. We extend the work in this domain by in-
troducing GDL concepts described by Bronstein et al.
(2017) and offer a data-driven classification approach
suitable for domain practitioners.

METHODS AND APPROACH
In order for the GCN to fulfill the classification

task, training on labeled data is required. The pro-
cess of preparing a GCN for building element classifi-
cation is as follows: 1. Assembly, preprocessing, and
encoding of shapes, 2. iterative optimization of the
networks trainable parameters (training), and 3. val-
idation of the network on unseen data. We assemble
a dataset of building models from both, industry and
academia and form with it the basis of our approach.

Data assembly

The characteristics of the training dataset must well
reflect the characteristics of the domain the network
is supposed to be applied to later. Otherwise the
network might overfit to the more specific cases pre-
sented in the training dataset.

Ideally, the trained network can predict the class
of shapes independent of the

1. authoring software and vendor specific modelling
differences

2. building functionality and its implications on lay-
outs

3. Level of Geometry (LoG), low LoG remnants
from early project stages

4. repetitive nature of some construction elements,
causing over- and under-represented classes

The aspects are considered in the following assembly
steps.

22 IFC files are used for data collection, authored
in Autodesk Revit and ArchiCAD by different do-
main practitioners (addressing Item 1). Here, we as-
sume that the BIM-to-IFC mappings are set correctly
by the author and perform a brief manual verifica-
tion. A similarly significant share of models repre-
sents office buildings and public buildings (Item 2).
Although no closer attention is given to LoG dur-
ing assembly, Item 3 is discussed in the result sec-
tion. The Application Programming Interface (API)
of SimpleBIM is used to tag unique geometries based
on their representations. We thereby avoid extract-
ing repetitive elements from the IFC models (Item
4). The IFC geometries of interest are extracted from
the tagged files with IfcOpenShell3, triangulated us-
ing the PythonOCC libraries4, and divided into train-
ing(80%) and test(20%) set for learning and vali-
dating. The dataset consists of structural elements
(IfcWall, IfcSlab, IfcColumn, IfcWindow, IfcDoor,
IfcStair IfcRailing), the equipment (IfcFlowTerminal,
IfcFlowSegment, IfcFlowFitting, IfcDistributionCon-
trolElement, IfcFlowController) and the interior fur-
niture (IfcFurnishingElements), an example of each is
shown in Figure 3.

Table 1 shows the final dataset composition. A
maximum of 100 randomly unique geometries per IFC
file is set to avoid over-representing one element class.
It prevents abundant element classes with mostly
unique geometries like IfcWall and IfcSlab from dom-
inating the final data (Item 4).

Table 1: BIMGEOM class distribution: Total no. of geometries
(G), no. of unique geometries (UG) and the no. of selected

geometries (SG) limiting 100 UG per IFC file

Category G UG SG

IfcWall 39’474 23’381 2’000
IfcSlab 7’541 6’828 1’395
IfcColumn 6’752 2’307 1’280
IfcWindow 9’531 932 776
IfcDoor 8’473 1’917 1’313
IfcStair 762 668 668
IfcRailing 2’546 2’192 1’068
IfcFlowTerminal 13’849 679 498
IfcFlowSegment 39’596 29’902 308
IfcFlowFitting 29’734 3’624 202
IfcDistributionControlElement 7’778 220 181
IfcFlowControler 4’907 233 175
IfcFurnishingElement 6’200 773 371

Total 177’143 73’656 10’146

3http://ifcopenshell.org/python
4http://www.pythonocc.org/
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Data prepossessing and encoding in a graph

The type of neural network used for element classi-
fication influences the preprocessing effort and, con-
sequently, considerably the feature availability and
granularity. Our neural network should run on data
closest possible to the original geometry represen-
tation. We also argue that the less preprocessing
steps are needed the more intuitive, generalizable,
and light-weight the shape learning process becomes.

A graph is formulated as G = (V,W ); consisting
of a set of vertices V and an adjacency matrix W
representing the nodes’ connectivity. For connected
nodes, the matrix W can take the value 1; 0 other-
wise. In our case, we weight the edges according to
the normalized Euclidean distance between the con-
nected nodes, letting W take continuous values. Each
node in the graph is associated with a set of features
X , normalized coordinates and normal vectors. We
denote the node’s neighborhood as N(v).

A tessellated mesh translates to a graph intu-
itively; the triangle vertex points formulate the set
of vertices V , the triangles’ boundaries the matrix
W . Figure 2a illustrates the graph formulated from
the tessellated mesh upon batch generation. We no-
tice that the transformation of low LoD geometry to
a triangulated surface mesh results in planar surfaces
being approximated by a single or relatively few large
triangles. High LoD geometry in turn is character-
ized by a high density of triangles with a relatively
small surface area. In some cases this Mesh-To-Graph
method results in a rather simplistic graph on which
we suppose the network to overfitt quickly. Gener-
alization to even slightly different appearances might
be difficult.

To counteract this, we choose an additional alter-
native encoding. We uniformly sample 1024 points
(similarly to Qi et al. (2017)) from the mesh facees
proportionally to their face area. The result is a
synthetic point cloud encoding for the shape. A k-
Nearest-Neighbor (k-NN) graph is created, based on
the node position in the metric space, see Figure 2b.
This encoding has the advantage that more graph
nodes more thoroughly represent low LoD geometry.
In contrast, local high LoD geometry is approximated
by only a few sampled points. K = 5 was found to
perform best.

Figure 2a-b illustrate the differences in encoding
for low LoD regions, 2c-d in turn show a local zoom
on a high LoD region. The mesh graph comparatively
lacks nodes on the large door faces but manifests a
high node density at the geometrically more complex
areas such as the door handle. In turn, the 5-NN
graph shows a more uniform node density across the
shape, looses however important details for complex
local geometry. Combining the methods to leverage
the advantages of both, lies beyond the scope of this
paper.

a b c d

Figure 2: Encoding variations for IfcDoor and a zoom on the
door handle: (a) & (c) Graph translated from surface mesh, (b)
& (d) Point Sampling and subsequent creation of 5-NN graph

Figure 3: Dataset samples: (from left to right, as read) IfcWall,
IfcSlab, IfcColumn, IfcWindow, IfcDoor, IfcStair, IfcRailing,

IfcFlowTerminal, IfcFlowSegment, IfcFlowFitting,
IfcDistributionControlElement, IfcFlowController,

IfcFurnishingElement

GCN architecture choices and training setting

To assemble a well performing GCN, several architec-
tural choices such as the number of layers, the width
of feature channels, the activation function, the opti-
mizer, drop-out strategy and the loss function, have
to be made. Such parameter optimizations are per-
formed iteratively on a subset of BIMGEOM and lead
to the described design choices. For further insights
we publish our code on GitHub5. The best perform-
ing architecture after parameter optimization is then
used for training.

The GCN is trained such that the final embed-
dings allow for classification. The need for cumber-
some 3D feature engineering as used in related clas-
sification approaches is thereby obleviated.

Equations 1 - 3 formalize the described approach.
The embedding h0

v of node v correspond to the initial
input features described earlier. Every subsequent
high-dimensional node embedding is obtained by ap-
plying a nonlinear transformation σ to the sum of the
weighted aggregation of neighborhood embeddings hu
and the weighted embedding of node v itself, hv. In a
multi-layer graph convolution network where K > 1,
the output of Eq. 3 serves as an input for the subse-
quent convolutional layer. The trainable weight ma-
trices Wk and bias matirces Bk are, similar to ker-
nels in CNNs operating on images, shared amongst
all nodes in one convolutional layer. We set the ag-

5https://github.com/fclairec/geometric-ifc

https://github.com/fclairec/geometric-ifc
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graph encoding variations. Each node has 3-dimensions d and an additional set of features X . Random transformations, such as

rotations, random translation per node, allow for dataset balancing.

gregation of neighborhood embeddings to ”sum” for
this work.

In practice, this means that in a three-layered
GCN as used here, each node will have updated its
embedding three times, every time considering the
features from its direct neighborhood. The final em-
bedding h3

v of node v will contain information from
its three-hop neighborhood.

h0
v = xv (1)

hk
v = σ

(
Wk ∑hk−1

u +Bkhk−1
v

)
∀k ∈ {1, . . . ,K} and ∀u ∈ N(v)

(2)

zv = hK
v (3)

A multi-layer graph convolution architecture, as seen
in Figure 4 is implemented and serves as a basis for
our experiments. Throughout the three model lay-
ers, the embeddings are concatenated with those of
the respective prior layer. The concatenation allows
the network to forget about the updated, potentially
less useful embeddings, and fall back to use the previ-
ous layer’s embeddings solely. A dropout rate of 0.2
is introduced as a regularization strategy. As an acti-
vation function, we choose ReLU. The global pooling
layer takes the feature-wise maximum across nodes,
forming the final embedding of dimension 256 and
forwards them to a fully connected layer. Finally, a
cross-entropy loss guarantees good training for clas-
sification purposes.

The training was conducted over 250 epochs with
early stopping. We found the network to perform best
with a learning rate of 0.001, and batch size 30.

The dataset is balanced with class subsampling
and dataset augmentation to avoid biases towards
dominant classes in the dataset. We transformed ev-
ery sample randomly upon loading. Apart from pre-
venting overfitting on specific graph constellations,
such transformation steps have other advantages:

• Scale normalization permits the network to clas-

sify shapes independent of their scale.
• Translations in the range of 0 to 0.01 (in refer-

ence to unit scale) are applied to each node. In
the case of the 5-NN graph encoding, this has
the benefit of the training samples being more
similar to noisy reconstructed meshes from the
Scan-to-BIM use case.

• Random rotations of 360° with respect to all 3
axes guarantee the network to be rotation invari-
ant. Even-though graphs are rotation-invariant
by definition, the addition of absolute coordi-
nates in the node features induces a bias.

• Evening class size reduces bias towards over-
represented samples, e.g., IfcWall. By applying
random transformations, samples from under-
represented classes are drawn several times from
the dataset, and each time modified slightly.

Arguably, the network could or could not be rotation
and scale invariant. In most cases it is a justified
assumption, that the building elements are correctly
oriented with respect to their z-axis. We therefore in-
vestigate our networks performance by adding a bias
of a correctly oriented z-axis to the network by apply-
ing random rotation only around the z-axis. Out of
scope in this work lies the consideration of absolute
shape size for better classification purposes.

We report the classification results with means of
the per class and overall test accuracy. Additional
insights are discussed using a confusion matrix.

EXPERIMENTS AND USE CASE SCE-
NARIO

Classification performances

We evaluate our trained GCN architecture on the
given test set of BIMGEOM. The overall test ac-
curacy reported is 0.73 for the Mesh-to-Graph and
0.67 for 5-NN-Graph encoding. When training the
network with a bias around the oriented z-axis the
overall test accuracy increases to 0.85 and 0.83, re-
spectively. In Table 2, additionally, the accuracy per



Table 2: Classification results reported as overall accuracy (OA) and accuracy per class. The reported values are an average of 5
trainings. The per class accuracy is calculated as the number of correctly classified samples normalized by the total samples of the

respective class in the augmented dataset. We compare the outcome of the two graph encoding variations Mesh-to-Graph and
5-NN-Graph. * denotes experiments where only random rotations around the x,y plane were applied (fixed in z-direction).

Encoding OA IfcWa IfcSl IfcCo IfcWi IfcDo IfcSt IfcRai IfcFT IfcFSe IfcFFi IfcDiCoEl IfcFCo IfcFuEl

Mesh to Graph 0.73 0.67 0.72 0.85 0.63 0.89 0.82 0.65 0.37 0.84 0.73 0.78 0.82 0.19
5-NN Graph 0.67 0.86 0.79 0.85 0.29 0.80 0.77 0.48 0.33 0.32 0.71 0.80 0.70 0.09

Mesh to Graph* 0.85 0.75 0.82 0.90 0.80 0.70 0.75 0.65 0.79 0.74 0.86 0.83 0.81 0.51
5-NN Graph* 0.83 0.83 0.92 0.93 0.71 0.93 0.95 0.83 0.64 0.79 0.83 0.81 0.78 0.30

class is reported. We note that both, the overall, as
well as the per-class accuracy represent the amount
of correctly classified elements (per class) relative to
the total samples (of each class) in the balanced test
set. Since class balancing results in multiple sampling
and transforming elements from under-represented
classes, we have to consider the risk of network bi-
ases for such classes. Additional insight is given by
considering the amount of confusion for each class,
see the confusion matrix in Figure 6.

Rotation invariant network

Although, when rotation invariant, individual classes
perform relatively well for both encodings (Ifc-
Door, IfcStair, IfcFlowController), IfcFurnishingEle-
ment and IfcFlowTerminal are conspicuous. These
classes contain the most geometrical variance (e.g.,
chair and bookshelf or water tap and a ventilation
outlet) and show the need for a classifier at the sub-
type level or the consideration of context informa-
tion. Figure 5 aims to give insight into the inter-class
variance for IfcFowTerminal and IfcDoor. IfcDistri-
butionControlElement is supposedly not represented
well enough in the dataset but is often approximated
by dummy geometry or vendor-specific geometries.
The network, performing well for this class, might
be reflecting a bias towards the specific shape type
present in the dataset.

The Mesh-to-Graph encoding performs signifi-
cantly better than the 5-NN encoding for IfcRailing,
and IfcFlowSegment, IfcWindow, worse however for
IfcWall and IfcSlab. One cause for this could be the
difference in point density at high LoD regions be-
tween the two approaches, for example, at the door-
or window handles. During preprocessing too few
points are sampled in such areas. Similarly, the subtle
changes in surface geometry between a windows’ glaz-
ing and its frame might be approximated too coarsely
in the 5-NN approach. The flexible representation
of triangle meshes seems to have its benefits when
shapes have varying surface complexities. An impre-
cision in encoding caused by the 5-NN graph con-
struction might additionally cause lousy performance
for IfcRailing: Sampled points on the same bar could
lie further apart than they do to points on the neigh-
boring bar and cause imprecise graph connections..

The network’s confusion between IfcStair and IfcRail-
ing might be an indicator of this.

On the other hand, the better performance of the
5-NN approach in classes such as IfcWall and IfcSlab,
suggests that the nodes on the large flat surfaces are
essential for classification. For instance, the similarity
of normal vectors on large triangle surfaces might not
be identified for the Mesh-to-Graph encoding due to
the absence of nodes on the surface.

IfcFlowSegments are confused partially with Ifc-
Columns and IfcWalls with IfcSlabs or IfcColumns.
We believe that rotation invariance impedes a rea-
sonable classification in this case.

Figure 5: Inter-class variability for IfcFlowTerminal (top-row)
and IfcDoor (bottom-row): Some examples from the dataset are

shown

Z-oriented-axis biased network

When we add a network bias around the oriented
z-axis, most classes’ classification accuracies are
promising. Although different for both encodings, it
can generally be said that the intentional bias adds
certainty where we would, as domain experts, expect
it to, e.g., IfcWall, IfcSlab, IfcWindow, IfcFlowSeg-
ment, IfcFurnishingElememnt, IfcRailing.

Same as in the rotation invariant encoding, the
overall accuracy is slightly higher for the Mesh-to-
Graph encoding. However, the total number of
classes performing better is higher for the 5-NN ap-
proach.

IfcFurnishingElement still performs poorly for
both encodings, although the performance for the
Mesh-to-Graph encoding has increased considerably.
When looking into the individual predictions, the net-
work classifies many non-simplified IfcFurnishing ele-
ments correctly for the Mesh-to-Graph encoding. We
suppose that happens thanks to higher node density
at high LoD geometry for the mesh-graph than the 5-



NN-Graph. Details such as furniture-leg extremities
and bookshelf handles seem to be learned correctly
and account for some good predictions. The high di-
versity in the class IfcFurnishingElement would how-
ever suggest investigating classification at subtype
level. For classes with no particular orientation in
the building, e.g., IfcFlowController, the z-bias do not
lead to significant performance increases.
The confusion between classes for this experiment are
depicted in Figure 6.

Despite the bias in z-direction, confusion occurs
between IfcFlowSegment and IfcColumn, which is ex-
plicable by the IfcFlowSegents also being vertically
present in a typical building. IfcWall still manifests
confusion with IfcColumn. For the mentioned classes,
we suggest that context information or scale infor-
mation is needed for a yet more precise classification.
The confusion between IfcWall with IfcSlab has been
reduced considerably by introducing the bias.

IfcFurnishingElements are, on the one hand, most
often confused with IfcDistributionControlElements
or IfcWall and on the other hand with IfcFlowFit-
ting. The first confusion is explicable by dummy
cuboid geometries being present in both IfcFurnishin-
gElement and IfcDistributionControlElement classes
and the missing scale information due to shape nor-
malization. Low IfcWalls and compact IfcFlowFit-
ting cuboids, similarly, can resemble approximated
dummy benches, tables, and bookshelves. For such
cases, it becomes essential to consider context in-
formation for increasing classification performance.
IfcFurnishingElement, being classified as IfcFlowTer-
minal, might be explained by the latter manifesting
long-straight geometrical forms (fixations extending
to e.g. ceiling or floor or long LED strips). The
furniture-leg extremities are most likely confused with
them.

IfcWindows often misclassified as IfcDoors, how-
ever not in the opposite way. Especially single winged
IfcWindows are without window sill are mistaken for
doors. IfcWindows manifesting either of such a char-
acteristic are very likely to be recognized correctly.Generally, the equipment classes such as IfcFlow-
Controller and IfcFlowTerminal manifest more confu-
sion amongst themselves than they do with structural
elements. This holds for the 5-NN approach as well as
for the Mesh-to-Graph approach. We deduce that the
weighted adjacency matrix encodes well for the phys-
ical distances between the nodes and lets the network
differentiate between structural elements and equip-
ment. Seemingly, the network identifies close-range
geometrical features similarly well as long-range fea-
tures.

Benchmark evaluation for Scan-To-BIM workflow

Additionally to validating our trained model on the
unseen test data of BIMGEOM, we extend the valida-
tion to a benchmark dataset without retraining. As

described earlier, the object classification of surface
meshes can become useful in the Scan-To-BIM pro-
cess. The reconstruction of surfaces from point clouds
is a challenging task for itself. After reconstruction,
the next task is instance segmentation and classifica-
tion, which, as we argue, could benefit from advances
in deep learning on surface models as presented in our
approach. We thus evaluate our approach in the con-
text of Khoshelham et al. (2017)’s benchmark dataset
for indoor modeling. Apart from the point clouds
and respective IFC models, the dataset does not con-
tain reconstructed surface mesh entities to test our
algorithm. Therefore, we apply the same methods
described for data assembly and report the overall
prediction performances as overall accuracy in Table
3. The dataset lacks equipment and furnishing in-
stances, limiting our evaluation’s scope to the follow-
ing structural classes: IfcWall, IfcSlab, IfcWindow,
IfcDoor, IfcColumn, IfcStair, IfcRailing. The over-
all prediction accuracy is 0.54 for the Mesh-to-Graph
approach and 0.81 for the 5-NN-Point-Graph enod-
ing. We can argue that the GCN trained on the 5-
NN encoding has a better generalization power. We
attempt to explain this by pointing out that, points
are sampled at random from the mesh surfaces during
data augmentation, yielding a slightly different graph
for training at each time. In contrast, the Mesh-to-
Graph encoding corresponds in each case to the initial
connectivity present in the input shape. Except for
the random noise (translation) added, the training
samples will look the same each time. The Mesh-
to-Graph approach thus requires a bigger dataset for
better generalization. The 5-NN, arguably, general-
ized well with an overall accuracy of 0.81 The bench-
mark shapes are rather simplistically modeled (low
LoG) since the IFCs are reconstructions from point
clouds rather than models used for construction plan-

Figure 6: Confusion matrix (rows:true labels,
columns:predicted labels) for element encoding as 5-NN Graph,

biased for z-oriented axis. The matrix is normalized by the
number of true labels in each class. The diagonal entries thus

are the same as the accuracy per class reported in Table 2



ning. To increase the performance of our approach to
100%, we require an extension of our approach with
context information or a higher LOG modeling de-
gree.

Table 3: Inference results on Indoor Modelling Benchmark
Dataset (Khoshelham et al. 2017)

Model name OA

Mesh to Graph 0.53
5-NN Graph 0.66

Mesh to Graph* 0.54
5-NN Graph* 0.81

Model complexity in 3D learning

The last experiment compares our approach with re-
spect to its computational efficiency. Next to predic-
tion performance, the number of trainable parameters
and the amount of preprocessing steps are essential
points, determining the algorithms’ feasibility in the
construction industry’s practice. As Koo et al. (2020)
most recently points out, the computational inten-
sity of heavy approaches is a practical drawback for
deployment. Compared to deep learning approaches
such as PointNet++ and MVCNN, mentioned in Koo
et al. (2020), our model has considerably fewer pa-
rameters. Table 4 shows that our GCN model re-
duces the number of trainable parameters by a factor
of 10 compared to PointNet++ and achieves simi-
lar overall accuracies. Regarding the preprocessing
steps, our approach avoids selecting the ideal view-
points for multi-view image capture and, in the case
of the Mesh-to-Graph encoding, avoids a point sam-
pling as performed in PointNet++.
Table 4: Deep learning architecture complexity: Total amount
of trainable parameters (TP), mean epoch time (MET) [s] for
specified hardware, and batch size. PointNet++ is deployed
without its spatial transformer and trained on the same train

and test data. Additionally reported is Koo et al. (2020)s results
of the number of parameters for MVCNN

Model name # TP MET [s] OA

GCN 126’925 10.5 0.85
PointNet++ 3.5 M. 189.5 0.86
MVCNN 60 M. - -

RESULT DISCUSSION
For excellent support of the industry’s practition-
ers, the network would need to achieve accuracies
close to 100%. Considering the limited scope of cer-
tain training data in the BIM community, we believe
the reported overall accuracies of above 80% to be a
promising step in the direction of automated model
correction. The experiments showed, the network to
have difficulties coping with high-geometric-variance
classes such as IfcFurnishingElement or IfcFlowTer-

minal. The network’s final layers do not seem to allow
for different geometrical feature learning within one
class. Investigating this issue further and addressing
it by adapting the model architecture or classifying
elements into more detailed sub-types might be ben-
eficial. Since the benchmark dataset does not include
all classes and limits the conclusion on generalization
power, we remain careful about conclusions regarding
the preferred form of graph encoding. The net-
work captures localized, fine-grained geometric vari-
ations as well as long-range features well for both en-
codings. This ability of GCNs to deduce relevant ge-
ometrical features automatically reduces the need for
manual geometric feature definition, as suggested by
various work introduced earlier.

Limitations & Overfitting

We partially address the issue of little publicly avail-
able data Ma et al. (2018) by publishing the dataset
used in this work. However, especially since most
IFC models lack equipment, overfitting is an issue.
The network is most likely biased for vendor-specific
equipment types and might perform poorly on others.

The IFC models used for this work are assumed
to have semantically correct elements. Only a short
visual analysis has been performed to check the data
consistency.

Relevance for BIM/FM practitioners

This work’s motivation originated from stakeholder-
specific or lacking construction element classes im-
peding the automated use of BIM in the operation
phase. This work suggests a generic, adaptive, and
light-weight machine learning approach to map con-
struction elements to stakeholder-specific data mod-
els, thereby unlocking further automation in FM re-
lated data retrieval tasks. Avoiding tedious feature
selection and operating on close-to-native IFC geom-
etry, we imagine that the method could be embedded
in any BIM parsing application. Despite our re-
sults being limited to IFC classes’ granularity, our
approach can be extended to operate on other classi-
fication systems such as Omniclass or Uniclass.

CONCLUSION & OUTLOOK
The lack of correct semantic classes needed for
building operation could be improved with methods
such as ours. The full capacities of GDL in this
context is promising and suggests further work into
the direction, especially regarding the inclusion of
context information.
For our approach to be of value for the Scan-to-BIM
workflow, future work could proceed to evaluate
it together with a preceding mesh reconstruction
and instance segmentation. When reconstructing
point clouds, occlusions or incorrect surface recon-



struction result in incomplete shapes, challenging
segmentation and classification. In future work, the
knowledge of our research could be extended with
an ablation study with respect to node removal and
shape completion.
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