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ABSTRACT
Even when adherence to project schedule is the most
critical performance metric among project owners,
still 53 % of typical construction projects exhibit
schedule delays. To contribute to more efficient con-
struction progress monitoring, this research proposes
a method to detect the most common temporary ob-
ject classes in large-scale laser scanner point clouds of
construction sites. The proposed workflow includes a
combination of several techniques: image processing
over vertical projections, finding patterns in 3D de-
tected contours, and performing checks over vertical
cross-sections. A deep learning algorithm was lever-
aged to classify these cross-sections for the purpose
of formwork detection. After applying the method on
three real-world point clouds and testing with three
object categories (cranes, scaffolds, and formwork),
the results reveal that the process achieves average
rates above 88 % for precision and recall and out-
standing computational performance (1 s to process
105 points). These metrics demonstrate the method’s
capability to support the automatic segmentation of
point clouds of construction sites.

INTRODUCTION
Nowadays, inefficiencies, such as cost and time over-
runs, occur regularly within the construction indus-
try. According to Mace & Jones (2016) 53% and 66%
of typical construction projects record schedule delays
and cost overruns, respectively. Moreover, KPMG re-
vealed in its Global Construction Survey that adher-
ence to the project schedule is not only the most es-
sential performance measure in construction industry
contracts but also the central issue in the execution
of projects (Armstrong & Gilge 2017).

One of the root causes of these issues is that the
monitoring process is still mostly performed manually
in the construction industry. This practice is expen-
sive, labor-intensive, and not comprehensive (Lin &
Golparvar-Fard 2020).

Many approaches have emerged to address this
problem. Current research proposes to compare a 4D
building information model with a point cloud of a
construction site, allowing to track progress (Braun
et al. 2020, Bosché 2012). This tracking is possible be-
cause in a BIM model, all construction elements, be-

sides having 3D geometry, are linked with process in-
formation, enabling them to report the planned state
of construction at any given time. However, one of
the preeminent challenges with this approach is the
presence of temporary construction elements in the
point cloud. These temporary elements are usually
not present in the building information model, and
even worse, may occlude large portions of the per-
manent structures in the point cloud. Therefore, the
presence of these elements makes a reliable compari-
son with the 3D geometry of the model more challeng-
ing. Some of the most common temporary elements
are: scaffolds, formwork, cranes, reinforcement, and
machinery.

To overcome this challenge, the goal of this re-
search is to detect cranes, scaffolds, and formwork in
laser-scanned point clouds of construction sites. Be-
sides the fact that these objects are prevalent on a
construction site, detecting them is useful for the fol-
lowing reasons:

Since the number of cranes and their height varies
depending on the construction phase, this informa-
tion gives a rough idea about the state of the con-
struction progress. Moreover, knowing the exact po-
sition of cranes would allow the verification of com-
pliance with safety regulations, like the distance from
the crane to the building or to other cranes.

Detecting scaffolding components is useful to
track the construction site’s progress and perform
precise safety regulation checks regarding the mini-
mum requirements that scaffold should fulfill, such as
the presence of toe-boards and guard-rails in the right
position. This checks could be done by implement-
ing corroborated methods such as those introduced
by Wang (2019). This last step is crucial because,
as Wang identified, falling from scaffolds is one of the
leading causes of fatal accidents on construction sites.

Identifying the location of the formwork gives cru-
cial information about the exact current state of con-
struction progress. A placed formwork does not ex-
clusively represent a building element that is cur-
rently under construction, it also indirectly gives vital
information about other completed tasks on the con-
struction site. For example, the previous construction
of a concrete slab on which the formwork is placed,
or the placed rebars inside two wall formworks. Af-



ter the detection of formwork elements, the quality
of the construction can also be evaluated. Beyond
the correct position of the formwork itself (relative to
the corresponding wall), the presence of openings and
special elements can automatically be verified.

RELATED WORK
There has been a lot of improvement in automatic
construction progress monitoring in the past decade.
While some researchers based their methods on pho-
togrammetric point clouds (Golparvar-Fard et al.
2011, 2015, Braun et al. 2020, Braun & Borrmann
2019, Braun et al. 2016), others use laser scanner
point clouds (Bosché & Haas 2008, Bosché 2012, Kim
et al. 2013, Bosché et al. 2015, Han et al. 2018). The
existence of a 3D/4D building information model is
implicit for these Scan-vs-BIM approaches. With a
4D model and a point cloud, an as-built vs. as-
planned comparison is possible, allowing the auto-
matic monitoring of the progress (Braun et al. 2020).
However, the presence of temporary building ele-
ments hinders automatic progress tracking. Besides
that, these temporary elements should be detectable,
even without having a BIM model.

Turkan et al. (2014) made initial proposals to
track temporary elements. However, their method
is based on a Scan-vs-BIM approach that requires a
BIM model. Only using point clouds, most of the
related work focuses on the reconstruction of a build-
ing information model from scans (Maalek et al. 2019,
Nikoohemat et al. 2020, Armeni et al. 2016). How-
ever, there is only limited research on the detection
of cranes, scaffold or formwork using point clouds.

While deep learning approaches for point cloud
segmentation seem to be very promising, they still
have three critical shortcomings. One limitation is
the maximum number of points that an algorithm
can process simultaneously (e.g., 1m×1m with 4096
points) (Guo et al. 2019), making the method not
very suitable to detect large objects in large-scale
point clouds directly. A second drawback is the non-
rotational invariant constraint of some techniques,
like the one implemented by Zeng et al. (2020), which
restricts the practice to only find items with known
XYZ-orientation. A third and final drawback is that
extracting the deep point features is usually very
time-consuming and memory-costly (Zeng et al. 2020,
Landrieu & Simonovsky 2018, Hu et al. 2020). Be-
sides that, the successful implementation of a deep
learning algorithm requires a large database of real
labeled data to train the algorithms. Such a database
is at this moment not available for temporary objects
on construction sites.

Other state-of-the-art methods, that do not re-
quire labeled data, like the ones proposed by Xu et al.
(2018) or Wang (2019), take advantage of the verti-
cality of the objects to detect scaffold elements, as
well as in-depth knowledge of the underlying geom-

etry of the objects, like dimensions of the uprights
or possible bay width distances. While still having
some drawbacks, these methods showed promising re-
sults for the specific case of scaffold detection in point
clouds of construction sites.

Further work can be done to detect scaffolds more
efficiently, as well as to recognise additional objects,
such as cranes and formwork elements. These en-
hancements are specifically the goal of this research.

GEOMETRY OF TARGET OBJECTS
This section summarizes necessary specifications
about the target objects’ usual geometry, which is
crucial to detect these objects in a point cloud. Ad-
ditional justification for the selection of certain types
of target objects is also given.

Cranes
Some of the most common types of cranes in the con-
struction industry are the crawler crane, self-erecting
crane, telescopic crane, and tower crane. This re-
search focuses mainly on tower cranes because they
are the most commonly used in the construction of
tall buildings (Böttcher & Neuenhagen 1997, p. 58).

The main components of a tower crane are the
base, mast, slewing unit, operating cabin, jib, and
counter-jib. The mast is generally made of individual
steel trussed sections that are connected. The number
of sections will determine the overall height of the
crane.

While a mast section is always squared, its width
can vary between 1.2 m to 2.5 m depending on the
crane’s type (see Figure 1). To allow the detection of
self-erecting cranes that usually have a smaller mast
width than tower cranes, we use a minimum mast
width of 1 m instead of 1.2 m for crane detection.

Block foundation

Tower crane mast 
(ca. 1.2 m x 1.2 m to
2.5 m x 2.5 m, depending on the type)

Required space 

Figure 1: Top view of a tower crane mast with dimensions
(Schach & Otto 2017, p. 28).

Scaffold
Opposite to sections of a tower cranes mast, scaf-

fold elements consist of different smaller pieces that
are usually manually assembled on the construction
site. These are mainly: uprights, guard-rails, toe-
boards, and work platforms. Additionally, there are
special sections of the scaffold system with diago-
nal braces, stairs, or additional accessories that en-
able the scaffold to adapt to different needs, such
as bridges or extensions, to make the scaffold wider.
This research will focus on detecting faced scaffold
elements.



Depending on the manufacturer, a scaffold’s exact
geometry can vary, but standardized norms establish
some minimum dimensions. Following DIN EN 12
811-1, the minimum scaffold bay width is 0.6 m, and
while there could be a scaffold bay width of more than
2.4 m, in this research, only scaffold with a maximum
width of 1.2 m will be considered. This considera-
tion is based on the fact that cost-effective scaffold
systems are mainly made in the width classes W06
and W09 (Schach & Otto 2017, p. 240), which have a
width between the selected range (0.6 m to 1.20 m) in
accordance with Table 1 of DIN EN 12 811-1. Simi-
larly, the scaffold bay length could vary between 1.5 m
to 3 m in line with DIN 4420-4. Figure 2 presents the
main components of a scaffold, together with its stan-
dardized minimum and maximum dimensions.

Uprights

Bay length 
(1,5 to 3 m)

Bay width 
(0,6 to 1,2 m)

Guard-rails

Work platform

Toe-board

Figure 2: Main scaffold components and dimension ranges

Formwork
Among the many types of formwork, the most

common are wall, column, and slab formwork. Sim-
ilar to scaffold elements, there could be specialized
types of formwork, and they could also have addi-
tional accessories, for example, working platforms.
However, this research will concentrate on standard
wall formwork.

Whereas the exact geometry of a formwork ele-
ment depends on the manufacturer, the basic idea
of vertical studs and horizontal walings in front of
an interior wall panel always remains constant. The
orthogonality between studs and walings (see red ele-
ments in Figure 8a) together with the wall panel will
be exploited to detect formwork elements.

METHODOLOGY
Overview
The workflow of this research is illustrated in Fig-
ure 3. The first step is a preprocessing of the raw
laser-scanned point cloud, in which down-sampling is
applied, followed by a rotation of the point cloud that

will align it to the building axes.
The second step is the detection of cranes, in

which Regions of Interest (ROIs) that may contain
cranes are separated using image processing tech-
niques over a vertical projection of the point cloud.
Later, an algorithm will search a pattern character-
istic of a tower crane in detected 3D vertical lines,
which will reveal the cranes’ possible positions. Then,
the final location of cranes is determined by applying
checks over vertical cross-section projections. Subse-
quently, scaffold elements are detected with a very
similar procedure as with cranes (see Scaffold detec-
tion).

Laser scanner 
point cloud

Segmented 
point cloud 

1. Preprocess

2. Crane detection

3. Scaffold detection

ROIs Separation

3D Contour detection

4. Formwork detection

Cross-section generation

2D Image classification

Downsampling

Point cloud rotation

Figure 3: Workflow overview.

As the last step, formwork elements are detected.
Here again, the ROIs that might contain formwork el-
ements are prefiltered, vertical cross-sections projec-
tions are generated, and a Machine Learning (ML)
algorithm is leveraged to determine the presence of
formwork elements (see Formwork detection).

Preprocessing
Downsampling
Filtering or downsampling the point cloud is vital for
two reasons: First, it will allow the method to take
advantage of the fact that the point cloud has a rel-
atively uniform density by assuring a certain aver-
age data spacing; and second, it is the first step that
will reduce the computational cost as the number of
points is reduced substantially, always when the orig-
inal resolution is higher than the used leaf size.

To fast sub-sample the point cloud, it is first or-
ganized into an octree with a resolution of 5 m. The
creation of this octree allows the implementation of
the PCL voxel grid method with a leaf size (V Gls) of
5 mm in every leaf voxel of the octree.



Table 1: Parameter Summary

Parameter Description Wall Crane Scaffold Formwork

hmin [m] Minimum object height 1.2 0.7 0.2 0.075
S Structural element with its size R10x10 R10x10 E5x5 R10x10
Di Number of dilation iterations 5 3 6 6
Amin [m2] Minimum blob area 1.5 0.0075 0.002 0.25
Amax [m2] Maximum blob area MAX 0.3 0.075 MAX
lmin [m] Minimum merged lines length N/A 1.5 0.4 N/A

Point cloud rotation
This step aims to rotate the point cloud so that it is
aligned with the building’s principal axes. This align-
ment will allow taking advantage of the rectangular
grid that usually the building’s floor plans follow (also
known as Manhattan World).

This rotation is done in two main steps:
1) Walls ROIs Separation with image processing in a
vertical projection, and 2) determination of the final
angle of rotation with 2D detected lines.

Before applying this method, the point cloud has
to be divided into different building floors, for this,
the user has to enter manually the minimum and
maximum Z values of the corresponding floor to be
analyzed. This separation is a requirement for the
process to be able to filter objects by their minimum
height. Figure 4 illustrates a building’s first floor.

Figure 4: Clipped first floor of the Test dataset Nr. 2.

Walls ROIs separation
As usually all large load-bearing walls are aligned

with the building’s structural axes, they are first sep-
arated from the rest of the point cloud.

As the point cloud was already downsampled, it
is known that the minimum distance between two
points is 5 mm. Therefore, the point cloud projec-
tion in a grayscale accumulation image, which stores
the number of points projected on each pixel, allows
the differentiation of the objects by their minimum
height. For example, considering the presence of oc-
clusions in the point cloud and the possible presence
of formwork covering the walls, it is assumed that
vertical walls may have at least 1.2 m (hmin) of height,
which is around half of the height of an average wall.

Subsequently, ten iterations of a morphological di-
lation with a structural element (S) with a rectangu-
lar shape of size 10 x 10 (SR10), will join small blobs
that are close to each other and may conform more
oversized objects (as shown in Figure 5b). Later the
blobs can be separated by its number of white pixels.
Since the grid side length used to create the vertical
projection has a value of 5 mm, one square meter in
the point cloud is then represented by a region con-
taining 40.000 pixels in the image.

For example, for walls a minimum area of Amin =
1.5 m2 was considered to be more appropriate (see in
Table 1 all parameters). Figure 5c shows the final
wall ROIs, which are the result of filtering the blobs
by size in a dilated vertical projection after passing a
height threshold.

(a) (b) (c)
Figure 5: Wall ROIs in a vertical projection: (a) original vertical projection (for better visibility, the inverted binary version is shown
here); (b) binary image after threshold and dilation, notice here that the two surfaces of the walls now form one single large blob; (c)

final Wall ROIs (Wregions) after separation by blob size. Test dataset: Nr. 2.



(a) (b) (c) (d)
Figure 6: Detection of possible crane lines: (a) original point cloud with a red ellipse indicating the location of the crane; (b) Crane

ROIs in (a), notice the presence of other thin and tall objects in addition to the crane; (c) detected 3D contours in (d) ;(d) filtered
merged vertical lines from (c). Test dataset: Nr. 1.

Angle of rotation with 2D lines
Once the ROIs of large walls are isolated in Wregions,
this image is used as a mask to filter the original ver-
tical projection. Using the probabilistic Hough trans-
form algorithm (Mukhopadhyay & Chaudhuri 2015),
with an angular resolution of π/(180 · 100), 2D lines
are fitted in this filtered vertical projection. Finally,
the angle of rotation is determined using the k-means
algorithm (Ahmed et al. 2020) over a 1D histogram
of the slopes of the previously detected 2D lines.

Once the point cloud is downsampled and aligned
with the axes of the coordinate system, the next step
is the detection of the target objects.
Crane detection
The detection of cranes starts with a similar step as
the one used to separate the wall ROIs but with dif-
ferent parameters of minimum height, dilation, and
blob size (see Table 1). This step will efficiently filter
out points that are more likely to belong to a crane
from the rest of the point cloud. In Figure 6b, all the
elements that pass the filter are shown.

In the next step, 3D contours are efficiently de-
tected with the algorithm provided by Lu et al.
(2019). Figure 6c illustrates the 3D line detection
results in a point cloud with the crane ROIs.

Subsequently, the vertical lines are projected in
the XY-plane and then merged in single lines if there
is a maximum distance of 20 cm between them, con-
sidering that the detected lines could be in any of the
four borders of the steel profiles, which have a width
of around 12.5 cm (Yasmin 2019). These merged lines
are then also filtered by their length (see lmin in Table
1), resulting in the lines presented in Figure 6d.

Now that the vertical lines are detected, the pat-
tern that characterizes a crane will be searched in
these vertical lines. As explained before, the mast of
tower cranes always has a characteristic square sec-
tion, with a lateral size between 1 m and 2.5 m. There-
fore, the main goal of this step is to find four verti-
cal lines, which follow this geometric pattern. To do
so, the algorithm will first search for pairs of vertical
lines that are between 0.8 m and 2.7 m apart (± 0.2 m
of the original range). Then, to ensure that the se-
lected lines are in similar height ranges, the algorithm
checks that the Z value ranges overlap.

Figure 7a illustrates the four possible regions

where the other two steel profiles could be present.
These are according to the standard dimensions of
cranes, which are illustrated in Figure 1.
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Figure 7: Location of possible lines: top view of the vertical
lines (a) in green the crane lines, (b) in red scaffold lines. A

pair of vertical lines are indicated with a dashed line. The other
pair could be in the blue regions. These regions result from an
offset to the left and the right from the first detected pair in the
middle. In both examples, the other couples were successfully

found, since they are in the blue regions.

Afterwards, to determine whether the four lines
indeed represent a crane or not, three checks are car-
ried out. First, if there is a crane, points should be
present between every two continuous vertical lines.
The second check examines the presence of a horizon-
tal line between these vertical lines, with a length of
at least 80 % of the distance between them. Finally,
and exclusively for cranes, a total height check re-
veals the ultimate location of the detected cranes. As
cranes are usually the highest objects in a construc-
tion site, their height should not be lower than 10 m
below the point cloud’s maximum Z value. This last
check serves to differentiate the cranes from similar
but lower elements such as shoring.

Scaffold detection
The scaffold detection process follows very similar
steps as the crane detection, with two main differ-
ences: Firstly, the threshold values of the ROIs sep-
aration phase are different (see Table 1). Secondly,
detecting the pattern on vertical lines is also adjusted
to detect not only square but also rectangular pat-
terns that are characteristic for a scaffold. This ad-
justment is done with the distances shown in Figure
7b, in accordance to the regulations regarding scaffold
dimensions, as shown in Figure 2.



(a) (b) (c)
Figure 9: Automatically segmented point clouds: (a) dataset Nr. 1; (b) dataset Nr. 2 (as it is originally colorless, it is shown here with

height ramp gray-scale colors); (c) dataset Nr. 3. In green detected cranes, in blue detected scaffolds, and in red detected formwork
elements.

Formwork detection
The formwork detection procedure differs from the
other two presented detection processes in two as-
pects: Firstly, while the threshold values are very
similar to those used for wall ROIs separation, once
the ROIs with formwork are separated from the whole
point cloud, they are then filtered in blobs that are
aligned to the X and Y-axes. Secondly, in every
aligned blob point cloud, vertical cross-sections are
generated and classified with a Deep Learning (DL)
algorithm, revealing the location of the formwork el-
ements.

To find the right location where these cross-
sections must be created, 2D lines are detected in
a vertical projection of the point cloud in every blob.
For horizontal blobs, the algorithm search for the low-
est and the highest horizontal lines. If the difference
between them is larger than 11 cm (the minimum
width of formwork (PERI 2014, p. 42)), then there
might be a formwork element. To finally identify
which blobs contain formwork elements, two vertical
cross-sections are generated for every blob, one from
the top and another from the bottom. Then a DL al-
gorithm classifies these cross-sections as formwork or
non-formwork. Something unique about these cross-
sections is that they contain depth information; this
enables the DL algorithm to consider the exterior
studs and walings as well as the interior wall plane
surface.

The PyTorch C++ frontend was used to train and
test the used DL algorithm. The neural network used
consists of five convolutional layers with max-pooling
and ReLU activation and three fully connected layers.
244 images were used to train the model; these were
generated with dataset Nr. 1, and a data augmenta-
tion step. Figure 8 shows a subset of these images.

(a) (b)
Figure 8: Set of vertical cross-section to classify formwork: (a)

formwork; (b) non-formwork.

RESULTS AND DISCUSSION
The proposed method’s performance was validated
on three different point clouds from a construction
site in Germany acquired at different stages of the
construction progress with a terrestrial laser scanner,
specifically with the FARO Laser Scanner Focus S
350 Plus.

Table 2 enumerates the different datasets, provid-
ing additional information about their aligned dimen-
sions, the area they cover, and the number of points
they contain. Figure 9 presents the segmentation re-
sults of the three data sets.

Table 3 shows the validation results for every
dataset, giving every target object precision and re-
call. These were calculated based on the number of
points on the respective segmented point cloud.

Table 2: Point cloud Datasets.

Nr. ∆x, ∆y, ∆z
[m]

Area
[m2]

Nr. of points

1 71, 58, 46 4,118 127,121,272
2 53, 60, 46 3,180 223,272,813
3 39, 78, 25 3,042 67,213,140

The proposed algorithms were all developed in
C++ and tested on a laptop with a 2.80 GHz CPU
and GTX 1050 GPU. Table 4 presents the times in
seconds of the main steps for each dataset.



Table 3: Validation Results for each dataset.

Nr. Object Precision Recall

1
Crane 100.0 % 100.0 %
Scaffold 100.0 % 100.0 %
Formwork 85.1 % 68.1 %

2
Crane 100.0 % 100.0 %
Scaffold 89.1 % 95.1 %
Formwork 36.4 % 90.3 %

3
Crane 100.0 % 100.0 %
Scaffold 100.0 % 82.6 %
Formwork 85.1 % 100.0 %

Overall 88.4 % 92.9 %

Table 4: Conputational time in seconds for each dataset.

Step
Dataset Number

Nr.1 Nr.2 Nr.3

Preprocessing 67 103 34
Crane detection 51 381 95
Scaffold det. 168 2245 726
Formwork det. 153 148 72

Total
time

[s] 439 2877 927

[min] 7.3 48.0 15.5

(a) (b)
Figure 10: False negative scaffolds: (a) non-detected scaffold
in dataset Nr. 2; (b) one instances of a non-detected scaffold in

dataset Nr. 3. The colors in this figure are according to the
height of the points.

Discussion
The results produced by the proposed technique
are promising. While cranes and scaffold detection
achieve precision and recall above 82.6 %, there is
more room for improvement regarding formwork de-
tection, where the minimum rates were 36.4 % and
68.1 %. There are two main reasons for these low met-
rics: Firstly, the method classifies sections of point
clouds as formwork or non-formwork. This fact re-
sult in low precision in cases when, e.g., only half of
a large wall is covered by formwork. Secondly, the
low recall in dataset Nr. 1 is due to the presence of
occlusion in foundation formwork. This dataset was
acquired with only 11 scans, leaving several founda-
tion formworks, located in their respective excavation
pits, very occluded.

(a) (b)
Figure 11: Similar objects (a) cross-sections of scaffold (left)

stacking pallets (right), the latter are wrongly classified as
scaffolds; (b) cross-sections of cranes (up) shoring (down), the

latter have similar cross-sections as cranes.

The precision of scaffold detection was affected by
stacking pallets for props, which were wrongly clas-
sified as scaffold elements. This misclassification is
caused by the fact that those elements show four ver-
tical lines in the scaffold ranges and their cross-section
also has a horizontal line, as illustrated in Figure 11a.
Occlusions were again the cause why the recall was
not perfect. As shown in Figure 10, even if only one
up-right was occluded, the method is not able to de-
tect the scaffold.

While the crane detection results are impressive,
there are cases when the method will not work. For
example, when banners are hanging on the side of the
tower crane. With these elements, the proposed tech-
nique will prefilter the crane as a wall in the ROIs sep-
aration step. This issue is also present in the case of
scaffolds covered with safety screens. Another inter-
esting finding in this research is that shoring elements
and cranes have very similar cross-sections, as shown
in Figure 11b. To avoid this problem, the total height
of the elements relative to the maximum point cloud
height is compared. However, this solution implies
the manual deletion of the jib of the crane.

The technique proposed by Wang (2019) relies on
a first manual point cloud clipping of a small region
where scaffolds are present. Since it takes the convex



(a) (b)
Figure 12: Detected groups of vertical elements for cranes only

using the vertical lines: (a) detected vertical lines; (b) the
corresponding point cloud inside the regions delimited from the

groups of vertical lines. Note that even when there is only a
single crane, the code detected more elements with the same

pattern in vertical lines. Most of them are props (in the middle
of the image (b)) and shoring (in the right).

hull of the detected uprights in a 2D projection, it
will not filter successfully only scaffold elements in
cases when many of them are present, like in the Test
dataset Nr. 3 of this paper. On the contrary, the
technique proposed here can be applied directly on
large datasets, without restrictions on the amount or
position of the scaffold instances.
Xu et al. (2018) limited their approach to detecting
scaffolds next to a facade and with a particular bay
width of 0.8 m. Considering more possible scaffold di-
mensions makes the proposed technique more robust.
However, it will give lower performance than Xu et al.
(2018) in low-quality point clouds.

Regarding the computational time, the method re-
quires in average 1 s to process 105 points. However,
it takes much more time in dataset Nr. 2 compared
to the other two datasets. The reason for that is the
presence of shoring and props that support slab form-
work. As illustrated in Figure ??, these elements have
the same pattern in vertical lines as cranes. Therefore
the method has to generate many cross-sections and
perform the occupancy and the horizontal line check,
demanding more time.

Nonetheless, in comparison with Wang (2019),
the technique does not generate horizontal slices ev-
ery 0.05 m and fits circles in each of them, which
certainly requires more time. Additionally, in com-
parison with the deep learning method proposed by
Zeng et al. (2020), their approach would require 15 s
only to extract the deep features from a point cloud
with 105 points. This is 15 times more than the av-
erage time that the proposed technique requires to
detect the three target objects. However, their tech-
nique would be more appropriate to recognize objects
with more complex geometries.

CONCLUSIONS
This paper investigated the detection of temporary
elements in a construction site’s point cloud, with-
out the need of a previous integration with a BIM
model and exploding mainly the objects’ verticality
to achieve a fast detection. In conclusion, one could
argue that as long as there is a way to infer pri-
mary geometrical constraints on the target objects,

it is possible to achieve awe-inspiring performance on
a 3D object detection problem. This achievement is
not only in terms of accuracy but also in computa-
tional time.

In this research, the target objects’ vertical orien-
tation and their minimum height, and other geomet-
rical features played a crucial role in detecting them.
Such a technique would not apply to all objects (e.g.,
deformable objects). Nonetheless, the process is not
limited to a few given examples or object size restric-
tions.

Furthermore, using 2D and 2.5D projections al-
lows the implementation of a very efficient method
to filter and detect objects on massive point clouds.
Finally, implementing a deep learning algorithm to
classify 2.5D vertical cross-section projections proved
to be very suitable for formwork classification, facili-
tating also a future possible extension of the method
to detect other elements, e.g., reinforcement, contain-
ers, fences, etc.

Future work

Additional validation on more datasets, with tempo-
rary objects from different manufacturers will serve
to test and improve the robustness of the method.
Moreover, the recognition of vertical and horizontal
placed reinforcement would complete the primary set
of not permanently-visible objects that determine the
current state of the construction progress.

Later, to achieve a fully automated construc-
tion monitoring, the integration with a detailed 4D
building information model containing the perma-
nent structures’ geometry and time information is re-
quired, as done by Braun et al. (2020). This integra-
tion should be easier after the detection of the tem-
porary objects and would also enable identifying and
verifying openings and essential building elements in
the right location on the construction site.

Subsequently, and as done by Kim et al. (2020), an
automated dimensional quality assessment can also
be performed to ensure compliance with the struc-
tural plans.

Safety regulations can also be verified in cranes
and scaffold elements, for the latter Wang (2019) al-
ready proposed a method that requires the detection
of every component of the scaffolds, such as guard-
rails, toe-boars, and working platforms.
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