
DEPARTMENT OF INFORMATICS
TECHNISCHE UNIVERSITÄT MÜNCHEN

Bachelor’s Thesis in Informatics

Development of a Sophisticated Session
Recording Exporter for the BigBlueButton

Web Conferencing System

Daniel Petri Rocha

DEPARTMENT OF INFORMATICS
TECHNISCHE UNIVERSITÄT MÜNCHEN

Bachelor’s Thesis in Informatics

Development of a Sophisticated Session
Recording Exporter for the BigBlueButton

Web Conferencing System

Entwicklung eines fortgeschrittenen Tools
zum Export von Sitzungsaufzeichnungen im

BigBlueButton Konferenzsystem
Author: Daniel Petri Rocha
Supervisor: Prof. Dr.-Ing. Jörg Ott
Advisors: Dipl.-Inf. (Univ.) Martin Uhl

Christian Menges, B.Sc.
Fabian Sauter, B.Sc.
Sebastian Kappes, B.Sc.

Submission Date: September 15th, 2021

I confirm that this bachelor’s thesis in informatics is my own work and I have docu-
mented all sources and material used.

Munich, September 15th, 2021 Daniel Petri Rocha

Acknowledgments

I am thankful to Prof. Dr.-Ing. Jörg Ott for giving me the opportunity of writing a
Bachelor’s thesis at the Chair of Connected Mobility1 from the Department of Informatics
at the Technical University of Munich.

Likewise, I am grateful for the time Dipl.-Inf. Martin Uhl, Christian Menges, B.Sc.,
Fabian Sauter, B.Sc., and Sebastian Kappes, B. Sc., have committed weekly to the im-
plementation aspects of this 4-month long undertaking. Their attentive involvement
provided constructive feedback of paramount importance, without which the contribu-
tions made to BigBlueButton could not have been realized.

At last, I am beholden to the BigBlueButton community for being so welcoming
throughout all development phases. Their support and warm embrace provided crucial
guidance to a newcomer to their open-source project.

1https://www.in.tum.de/cm/home/

https://www.in.tum.de/cm/home/

Abstract

BigBlueButton is an open-source web conferencing system designed for remote teaching.
A longstanding feature request by community members has been to give users the
ability to download the recording of a meeting as a video file, including the presentation,
webcams, and chat messages. This thesis implemented that enhancement as a script
executed automatically by the server once a recorded conference ends, performing
significantly faster than previous solutions capturing the screen of the web player in real-
time. Additionally, annotated slides can be output as PDF. Processing the presentation
into both formats can also be done client-side if the user has no access to the server.
Development of the converter did not introduce new dependencies into BigBlueButton
and resulted in contributions to a Ruby library providing a data structure for efficient
queries on intervals and FFmpeg, a command-line multimedia framework. The code
offers a foundation for other improvements on BigBlueButton’s roadmap, such as giving
instructors the option to import work done on documents in breakout rooms into the
main session.

v

Zusammenfassung

BigBlueButton ist ein quelloffenes online Konferenzsystem, dass für den Fernunterricht
entwickelt wurde. Ein lang ersehnter Wunsch der Nutzer war es die Möglichkeit zu
haben, die Aufzeichnung einer Sitzung inklusive der Präsentation, geteilten Webcams
und Chatnachrichten als Videodatei herunterladen zu können. In dieser Arbeit wurde
diese Erweiterung in Form eines Skripts implementiert, welches automatisch von einem
Server ausgeführt wird, sobald eine aufgezeichnete Konferenz beendet wurde. Dies
geschieht wesentlich schneller als eine Echtzeitbildschirmaufnahme des Webplayers
welche zuvor als Ersatz verwendet wurde. Zusätzlich können mit Notizen versehene
Folien als PDF erhalten bleiben. Die Verarbeitung der Präsentation in beiden Formaten
kann zusätzlich lokal erfolgen sofern der Nutzer keinen Zugang zum Server hat. Die
Entwicklung des Konverters führte keine neuen Abhängigkeiten in BigBlueButton ein
und resultierte zum einen in Beiträgen zu einer Ruby-Bibliothek, die eine Datenstruktur
für effiziente Abfragen von Intervallen bereitstellt, und zum anderen in FFmpeg, bei
welchem es sich um ein kommandozeilenbasiertes Multimedia-Framework handelt. Der
Code bietet eine Grundlage für zukünftig geplante Verbesserungen von BigBlueButton,
wie beispielsweise die Möglichkeit für Lehrkräfte, die in Nebenräumen erarbeiteten
Dokumente in die Hauptsitzung zu importieren.

vii

Contents

Acknowledgments iii

Abstract v

Zusammenfassung vii

1 The BigBlueButton Web Conferencing System 1
1.1 Introduction . 1
1.2 Functionality supported by the web player 1
1.3 Existing approaches . 3
1.4 Requirements . 4

1.4.1 Functional requirements . 4
1.4.2 Non-functional requirements . 4
1.4.3 Additional features . 4

2 Theoretical Background 5
2.1 Recording phases . 5
2.2 Encoding of the processed files . 6

2.2.1 Captions . 6
2.2.2 Chat . 6
2.2.3 Cursor . 7
2.2.4 Panzooms . 8
2.2.5 Video files . 9
2.2.6 Whiteboard . 9

3 Implementation 13
3.1 Post-publish script example file . 13
3.2 Constants and switches . 14
3.3 Client-side export . 16
3.4 Exporting the presentation . 16

3.4.1 Whiteboard shape conversion . 17
3.4.2 Parsing whiteboard timestamps . 17
3.4.3 Rendering the chat . 18
3.4.4 Rendering the cursor . 20
3.4.5 Rendering the whiteboard . 21
3.4.6 The interval tree data structure . 22
3.4.7 Exporting whiteboard frames . 23

ix

Contents

3.4.8 Rendering the video . 24
3.4.9 Adding captions and chapter marks 26

3.5 PDF export feature . 27
3.6 Adding a base-uri option to FFmpeg . 28
3.7 Integration into Greenlight . 29

4 Benchmarking 31
4.1 Performance improvements . 32
4.2 Static Analysis . 34
4.3 Dynamic Analysis . 35
4.4 Benchmarking the PDF export . 35

5 Conclusion 39
5.1 Deployment . 39
5.2 Feedback . 39
5.3 Future work . 39

Acronyms 41

Glossary 43

List of Figures 45

List of Tables 47

Listings 49

Bibliography 51

x

1 The BigBlueButton Web Conferencing
System

1.1 Introduction

BigBlueButton (BBB) is an open-source initiative that provides a virtual classroom
environment for online learning, giving teachers a platform on which students can be
engaged remotely for distance education. BBB has been among the videoconferencing
tools adopted by the Department of Informatics at the Technical University of Munich
(TUM) since the academic summer semester of 2020, when the COVID-19 pandemic
moved lectures and tutor classes online indefinitely.

A critical shortcoming of BBB turned out to be its limited options to export recorded
sessions held on the platform, with the most commented-on feature request on BBB’s
GitHub repository being about enabling users to download recorded meetings as a
single file [Dix12]. Playback of a recorded conference occurs on a web player that can be
accessed once a recorded meeting ends.

This bachelor’s thesis aims to implement the export of recordings into BBB’s source
code as a server-side process that renders a unique video containing all assets shown
in the playback interface. The exporter’s usage and implementation details are docu-
mented throughout this work to explain the rationale behind design decisions while
simultaneously acting as a concrete contributing demonstration for new BBB developers.

1.2 Functionality supported by the web player

Most actions taken by conference participants will show up in BBB’s web player during
playback of a recorded meeting, the only exception being when users embed an external
video player in the presentation area from sources such as YouTube, Vimeo, and Twitch.
All other events are captured by the server and stored in a format that allows the pre-
sentation to be recreated within the browser using the no longer maintained Popcorn.js1

framework. As a result, playback is not entirely supported across different browsers
and devices.

The module realizing the player2 is not necessarily tied to the server since an indepen-
dent folder can be created containing the files a recording requires. Understanding how
that data is stored and structured is a crucial aspect for the exporter’s implementation;

1https://github.com/mozilla/popcorn-js
2https://github.com/bigbluebutton/bbb-playback

1

https://github.com/mozilla/popcorn-js
https://github.com/bigbluebutton/bbb-playback

1 The BigBlueButton Web Conferencing System

for now, it suffices to be aware that the following functionalities need to be supported
by the project to resemble BBB’s playback interface truthfully:

Annotations Users may add scribbles, circles, lines, rectangles, and triangles in varying
thicknesses and colors on top of any presentation slide.

Breakout rooms Moderators can send participants into breakout rooms, during which
an active recording continues taping the main room.

Captions Instructors can manually type the closed captions of what other participants
are saying while the conference is still ongoing.

Chat Users may send public messages at any point in time.

Cursor The presenter’s mouse pointer may appear on top of the slides in the whiteboard
area during the entirety of the session.

Polls The presenter can quiz the audience and choose to display the results publicly.
Response types include giving participants a text box to type their answer in or
presenting multiple options from which one can be chosen.

Screen shares Multiple users may be sharing their screens simultaneously. Often called
"deskshare" among BBB developers.

Shared notes Users can anonymously write formatted text into a shared document that
all other attendees can see and edit. Only the final state of these notes can be
retrieved from the web player; there is no timing information associated with the
input. Converting the pad into different formats is already possible and will not
be regarded henceforth.

Slides A presenter can upload documents in the Office, Portable Document Format
(PDF), or text file format, and images in the Joint Photographic Experts Group
(JPEG) or Portable Network Graphics (PNG) format, on which selected users can
add annotations concurrently.

Text Alongside annotations, text boxes can be added to the whiteboard containing text
in different sizes and colors.

Webcams Participants of the meeting can choose to share their microphones and
webcams throughout the call, as long as the session’s moderator allowed them to.

Zooms The current presenter can enlarge a section of a slide and move it around.
Internally called a "panzoom."

2

1.3 Existing approaches

1.3 Existing approaches

Due to the demand for an export feature, several scripts which attempt to offer the
functionality have been listed on the issue’s page [Dix12]. A common workaround is to
overlay the only two video files provided by BBB — the webcam and deskshare videos —
using the Command-Line Interface (CLI) tool FFmpeg3 to combine the media tracks. Sys-
tem administrators can obtain that solution by installing the bbb-playback-screenshare
package4, but troubleshooting is necessary to run it in the newest BBB 2.3 release
[Dix21a].

Though that approach might suffice in specific use cases, it leaves out key parts of a
meeting, such as slides shown on the whiteboard area. The solutions capable of handling
uploaded presentation files rarely support annotations that users may have drawn on
the whiteboard itself.

A notable exception is BBB-Render5, which is actively being developed and achieves
a single video by constructing a GStreamer Editing Services (GES)6 project through a
collection of Python scripts. GES is a library that allows timeline-based editing of media
streams in a non-linear fashion, serving as a basis for video editors such as Pitivi7. It
follows that BBB-Render’s output can be visually customized before rendering starts,
though it is meant for client-side use and the chat, captions, and panzooms are not
supported. As of 07/2021, a Pull Request (PR) that makes text visible on the whiteboard
is waiting to be merged.

As such, the most suitable option for client-side users remains playing the recording
back in real-time while performing a screen capture locally, despite the fact that partially
working exporters exist. The requirements to run them, e.g., BBB-Render expecting a
Ubuntu 20.04 system to convert a recording in addition to the installation of numerous
dependencies, creates an unrealistic entry barrier that no meeting participant can be
reasonably expected to overcome on their own. Hence, a server-side script integrated
into BBB that automatically performs the necessary work after the end of a session is
the approach chosen for this thesis to make the file publicly available for download in
BBB’s Graphical User Interface (GUI), Greenlight8.

In an email exchange with Pedro Marin, one of BBB’s core committers, he pointed an
existing project run by community members out called BBB Video Download,9 one of
the few server-side scripts that renders many of the recording’s visible assets. Compared
with the built-in player, however, it has an output resolution of only 800×600. It lacks
both the chat and the polls, two areas BBB deems essential for student engagement
and for which new features are already on the official roadmap. The video is in part

3https://ffmpeg.org/
4See the screenshare workflow in Section 2.1
5https://github.com/plugorgau/bbb-render
6https://gstreamer.freedesktop.org/
7https://www.pitivi.org/
8https://github.com/bigbluebutton/greenlight
9https://github.com/tilmanmoser/bbb-video-download

3

https://ffmpeg.org/
https://github.com/plugorgau/bbb-render
https://gstreamer.freedesktop.org/
https://www.pitivi.org/
https://github.com/bigbluebutton/greenlight
https://github.com/tilmanmoser/bbb-video-download

1 The BigBlueButton Web Conferencing System

assembled by having a headless browser run in the background while taking screenshots;
other server-side scripts such as BBB-Recorder7 use a similar method to perform a
complete screen recording by opening a tab with Google Chrome and capturing it with
Puppetcam.8 Even though they output a video resembling the original, that approach
takes at least as long as the recording itself in addition to the time BBB took to process
them in the first place.

1.4 Requirements

The previously mentioned programs and their methods form the basis of the exporter
developed throughout this project. Its elicited requirements follow.

1.4.1 Functional requirements

• A single video file is returned, whose container format is widely used.

• All applicable multimedia assets previously outlined in Section 1.2 are supported.

• Integration into BBB’s 2.3 source code.

• The conversion process begins as soon as BBB finishes processing the required
files.

• Users can download the video through BBB’s interface.

1.4.2 Non-functional requirements

• Converting a video is much faster than performing a screen recording.

• No significant new dependencies are introduced into BBB.

• The exporter is backward-compatible BBB’s 2.2 version.

• The script relies on open-source software exclusively.

1.4.3 Additional features

• Annotated slides can be downloaded as PDFs.

• Chapter marks are part of the video’s metadata for easier navigation.

• Individual meetings can be re-rendered.

• The exporter offers rendering parameters to control the output quality and resource
usage.

7https://github.com/jibon57/bbb-recorder
8https://github.com/muralikg/puppetcam

4

https://github.com/jibon57/bbb-recorder
https://github.com/muralikg/puppetcam

2 Theoretical Background

2.1 Recording phases

The reasoning behind storing the media files separately to assemble a recording from
the stored data later is that it allows BBB to be easily extended with new workflows
[Dixb]. Each workflow is a different way of replaying and consuming the media; the
presentation workflow, for instance, is included out-of-the-box and responsible for the
current state of recordings. At the same time, podcast only yields the meeting’s audio
track, and screenshare returns the webcams overlaid onto the deskshare video. These
have to be separately installed and enabled server-side.

Workflows are implemented with Ruby 2.5 scripts that take a recording’s data as
input and generate the desired format as output. They address the steps of processing
and publishing a recording, two of six phases which recordings undergo internally:

1. Capture 2. Archive 3. Sanity 4. Process 5. Publish 6. Playback

The first phase stores the data streams and events emitted by BBB’s modules through-
out a session on the server. Chat messages, cursor movements and whiteboard anno-
tations are stored in Redis1, a key-value database. Deskshare and webcam videos are
captured with Red52; the meeting’s audio with FreeSWITCH3 [Dixb]. During Archive,
the raw files are placed in a separate folder and marked for deletion if an instructor did
not choose to record a meeting. However, a system administrator can opt to rebuild
the whole recording regardless [Dixb]. Sanity consists of scripts that certify the data’s
integrity to ensure the upcoming stages can run without encountering any issues. Pro-
cessing then occurs on a per workflow basis, combining the media to achieve the desired
result depending on the metadata collected in the events. At last, produced files are
published by moving them to a folder Nginx [Dixa] allows unrestricted access to, from
which playback can begin.

The Archive, Process, and Publish stages pass through post phases that run after the
respective step completes, e.g., a post-script that sends out a notification once a new
recording is available for playback. Since the exporter needs to mimic the behavior
of the web player closely, it will be implemented as an extension to the presentation
workflow, i.e., a post-publish script that works with the same playback files. Introducing
an entirely new workflow instead would require parsing the raw data again and hinder
the coordination between the web player and the exporter as new features come in.

1https://github.com/redis/redis
2https://www.red5pro.com/open-source/
3https://freeswitch.com/

5

https://github.com/redis/redis
https://www.red5pro.com/open-source/
https://freeswitch.com/

2 Theoretical Background

1 [
2 {"locale": "en", "localeName": "English"},
3 {"locale": "pt-BR", "localeName": "portugu\u00eas (Brasil)"},
4 {"locale": "de", "localeName": "Deutsch"}
5]

Listing 2.1: Example captions.json file

1 WEBVTT
2
3 00:00:10.644 --> 00:00:17.144
4 Instructors can download live captions in different formats during
5
6 00:00:17.144 --> 00:00:22.255
7 a meeting, such as plain text, Microsoft Word, PDF, ODF or HTML.

Listing 2.2: Example English subtitles in captions_en.vtt

2.2 Encoding of the processed files

The following items outline the scheme the processed and published files are encoded
in, specifically for the presentation workflow. How data is stored will be leveraged
during the implementation period to realize the exporter. Examples used are based on a
close to nine-hour-long BBB tutorial held by the instructors of a mandatory bachelor’s
course at TUM. The exercise session was chosen as a reference for being a real-life use
case of BBB being utilized in teaching environments. Its length ensures that the tutors
and students had enough opportunities to use most of the functionality offered by BBB
during the meeting.

2.2.1 Captions

The closed-captioning feature is still "very limited," [Ber21] seeing that no automatic
transcription is available. A stenographer can select different languages to write subtitles
in, which are stored in a file called captions.json. For a meeting captioned in English,
Brazilian Portuguese, and German, Listing 2.1 illustrates how data is encoded.

For each locale, a file caption_<locale_name>.vtt is created in the Web Video Text
Tracks (WebVTT)4 format similar to the one in Listing 2.2.

2.2.2 Chat

The chat is kept in an Extensible Markup Language (XML) file called slides_new.xml,
which has a root element called popcorn. It has chattimeline elements as child nodes,

4https://www.w3.org/TR/webvtt1/

6

https://www.w3.org/TR/webvtt1/

2.2 Encoding of the processed files

1 <?xml version="1.0"?>
2 <popcorn>
3 <chattimeline in="60" direction="down" name="Alice" message=
4 "The Tweedback session is still closed, right?" target="chat"/>
5 <chattimeline in="65" direction="down" name="Bob"
6 message="It's working for me :)" target="chat"/>
7 <chattimeline in="470" direction="down" name="Charlie" message=
8 "<a href="https://tweedback.de/pq4t" rel="
9 nofollow"><u>https://tweedback.de/pq4t<

10 /u>" target="chat"/>
11 </popcorn>

Listing 2.3: Example chat messages in slides_new.xml

which each have attributes storing the timestamp in seconds a message is first shown (in),
the movement made by the chat window during playback (direction), the username
of the message’s author including its contents (name, message), and which part of the
playback GUI it appears on (target).

In the example from Listing 2.3, Alice asked a question a minute into the session
and got a reply five seconds later. Since the attribute in has a timestep of one second,
chattimeline elements are given the same timestamp if multiple users send messages
within that timeframe. As a result, it suffices to render the chat with a single frame per
second when fewer messages come in at once than what can fit in the chat area.

Charlie shared a hyperlink that is saved alongside surrounding Hypertext Markup
Language (HTML) markup, which participants can open to see the externally referenced
page. Since a video player does not support such functionality, the exporter will need to
strip unsafe tags to display their inner text.

Seeing that chat messages always move in the same direction and have the same
target, the exporter can disregard these attributes.

2.2.3 Cursor

The cursor is rendered as a solid red circle over the presentation slides. Its data is stored
in cursor.xml, an instance of which can be found in Listing 2.4.

The root element holds a series of events as children, which in turn store where
the cursor is at each given timestamp. A new entry is only created when the cursor’s
position changes, having a timestep of 0.1 seconds. To animate the cursor, ten frames
per second (FPS) are therefore enough.

The cursor’s position is described in relation to the width and height of the white-
board’s visible area. Frequently that corresponds to the dimensions of the slide the
cursor is on, but the possible change in these parameters caused by zooming needs to
be considered too.

Assuming dimensions of 1600×900 at the 4.2-second mark, the cursor in the XML

7

2 Theoretical Background

1 <?xml version="1.0"?>
2 <recording id="cursor_events">
3 <event timestamp="0.0">
4 <cursor>-1.0 -1.0</cursor>
5 </event>
6 <event timestamp="4.2">
7 <cursor>0.1 0.5</cursor>
8 </event>
9 </recording>

Listing 2.4: Example cursor.xml file

1 <?xml version="1.0"?>
2 <recording id="panzoom_events">
3 <event timestamp="0.0">
4 <viewBox>-0.0 -0.0 1600.0 900.0</viewBox>
5 </event>
6 <event timestamp="10.0">
7 <viewBox>110 120 1280.0 720.0</viewBox>
8 </event>
9 </recording>

Listing 2.5: Example panzooms.xml file

fragment from Listing 2.4 is located at (160, 450). The coordinates can be obtained by
multiplying the vector components found in the inner text of the cursor element by the
size of the rectangle describing the visible area at the given timestamp, which is saved
in the panzooms file described in this chapter. Negative coordinates are returned when
the cursor is not being shown.

2.2.4 Panzooms

As exemplified in Listing 2.5, the panzooms.xml document is structured in a similar way
to the cursor events and chat files:

The viewBox elements contain a four-dimensional vector describing the zoom and
pan of a slide for a given timestamp in the recording. A new node is added when a
change occurs. The entries in the list correspond to the following properties [MDN21c],
respectively:

1. min-x 2. min-y 3. width 4. height

The first two entries define the starting coordinates of a rectangle whose upper-left-
corner is set at (min-x, min-y). From this new origin, a rectangular area is spanned given
the width and height dimensions. The region constrained by the rectangle is what the
user sees.

8

2.2 Encoding of the processed files

Presume a slide is being shown that is 1600 pixels wide and 900 pixels high. Given
Listing 2.5, the slide would be entirely visible during the first 10 seconds of a recording.
A user then scales a region, reducing the displayed area to a box whose sides are
1280×720 — keeping the same aspect ratio as before. The box is additionally shifted
along the x and y-axis by a few hundred pixels.

The viewBox attribute is defined in the Scalable Vector Graphics (SVG) XML names-
pace and used by the whiteboard’s slides to realize panzooms during playback in the
browser. The transformed viewport is also taken into account by the cursor.

2.2.5 Video files

A presentation.yml file in BBB’s core configures the dimensions, format, and framerate
the output video has during playback. Per default on BBB 2.2 and 2.3, videos are
rendered into the WebM format due to its permissive license5; MP4 is offered as an
alternative.

Deskshare

The deskshare video file is only created for meetings in which participants share their
screens. It is as long as the recording itself and displays a blank white screen when no
deskshare takes place. Since the whiteboard stops being shown when a screen share
begins and vice-versa, the exporter can play the deskshare video under the slides at all
times without having to take any kinds of interval data into account. It is rendered into
a size of 1280×720 pixels by default at 5 FPS.

Webcams

The generated file has a default width in pixels of 640, a height of 480, and a framerate
of 15 FPS. In a similar fashion to the deskshare video, the file’s length corresponds
to the duration of the recording. The published file contains the captured audio and
video from all participants of the session. If multiple people are sharing their webcams
simultaneously, these are arranged in a grid-like pattern. Only a white background is
shown with the audio track playing over it when all cameras are turned off.

2.2.6 Whiteboard

The whiteboard’s data is stored in a document called shapes.svg that Popcorn.js uses
to create a timeline-based project. In contrast to what the file extension suggests, the
contents are not well-formed SVG due to additional attributes the video and media
library requires. When opened in a browser or other viewing tools, the invalid markup
outside of SVG’s namespace and document type definition is ignored. Still, no graphics
appear since all media types have been purposively made invisible. The general idea is

5https://www.webmproject.org/license/software/

9

https://www.webmproject.org/license/software/

2 Theoretical Background

1 <g class="canvas" id="canvas1" image="image1" display="none">
2 <g id="image1-draw1" class="shape" timestamp="0.0" undo="-1"
3 shape="image1-pencil1" style="stroke:#ff0000;stroke-linecap:round;
4 stroke-linejoin:round;stroke-width:2;visibility:hidden;fill:none">
5 <path d="M94.51219 457.14286L91.72473 459.93032L91.72473"/>
6 </g>
7 <g id="image1-draw2" class="shape" timestamp="0.3" undo="-1"
8 shape="image1-pencil2" style="...">
9 <circle cx="200" cy="550" r="1.4"/>

10 </g>
11 </g>

Listing 2.6: Example shapes.svg strokes

to deduce which assets should be visible given a timestamp and only display that subset
of the shapes file. Rendering a succession of sorted timecodes in ascending order then
visually recreates the animations on the whiteboard when played back at the correct
speed.

Annotations

Annotations are either strokes on the whiteboard or geometric shapes. For each presenta-
tion slide, a group container element is created to act as a canvas that stores the sketches.
The g element of the canvas class has an id and references a slide in the image attribute.
Its children are further group elements from which the actual SVG shapes inherit their
attributes [MDN21a], such as style and timing information. Since annotations can be
undone, the undo attribute is either set to -1 or the last timestamp the shape was visible
in; its first appearance is kept in timestamp. The shapes themselves are valid SVG 1.1
elements describing circles, lines, rectangles, triangles, and paths. Path elements, for
instance, combine multiple curves and straight lines [MDN21b] to recreate the natural
flow found in hand-written notes.

In BBB 2.3, annotations are only shown to participants once the shape has been fully
drawn. The partial drawings leading up to the full one used to be shared and stored
in earlier versions but were removed due to the increase in resource consumption. The
example from Listing 2.7 illustrates this change, showing the path’s data when a pencil
is used to underline a phrase.

In BBB 2.2, the stroke’s path keeps being expanded with more information, duplicating
the data the previous frame needed until the same final path is reached. Strokes
belonging to the same pencil can be identified with the shape attribute. Even though this
variant has a considerable overhead cost, at least an option to use it may be introduced
again in the future since a live whiteboard feature is especially desired [Sug21b] in
classroom settings. As a result, the exporter needs to be able to handle both approaches.

10

2.2 Encoding of the processed files

1 <!-- BBB 2.2 -->
2 <g id="..." class="..." timestamp="0.0" undo="-1" shape="..." style="...">
3 <path d="M 0 0 L 289 3"/>
4 </g>
5
6 <g ... timestamp="0.1" ...>
7 <path d="M 0 0 L 289 3 L 631 9"/>
8 </g>
9

10 <!-- Only this node is included in BBB 2.3 recordings -->
11 <g ... timestamp="0.2" ... >
12 <path d="M 0 0 L 289 3 L 631 9 L 995 3"/>
13 </g>

Listing 2.7: Comparison between BBB 2.2 and 2.3 annotations

1 <g id="image1-draw1" class="shape" timestamp="11.9"
2 undo="47.1" shape="image1-poll1" style="visibility:hidden">
3 <image width="544.0" height="119.88" x="1056.0" y="780.12"
4 xlink:href="presentation/.../poll_result1.svg"/>
5 </g>

Listing 2.8: Example shapes.svg poll fragment

Polls

Polls are part of a slide’s canvas and therefore share the same attributes as an annotation
does. The image displaying the results is loaded externally through SVG’s image element
and an xlink:href reference. The figure appears in the lower right corner of the current
slide and scales according to the panzoom.

Slides

The slides shown when a presentation is replayed are individual PNG images that have
been extracted from the original input file, e.g., PDF or PowerPoint presentations. They
are always resized to 1600×1600 while keeping the original aspect ratio, meaning either
the width or height of the resulting image will be 1600 pixels long.

Just as is the case with the polls, a reference is responsible for showing the picture in
the background, which is placed at the coordinate’s system origin. Unlike the canvas
elements that only store the timestamp they first appear in, slides have two attributes —
in and out — to define the interval they were shown in. BBB stores the textual content
of the slide in a file to enable searching for specific keywords of a recording and find
the corresponding position in it. This file’s path is found in the text attribute.

11

2 Theoretical Background

1 <image id="image1" class="slide" in="0.0" out="335.4"
2 xlink:href="presentation/.../slide-1.png" width="1600" height="1200"
3 x="0" y="0" style="visibility:hidden"
4 text="presentation/.../textfiles/slide-1.txt"/>

Listing 2.9: Example slide reference in shapes.svg

1 <g ... shape="image1-text1"
2 style="color:#ff0000;word-wrap:break-word;visibility:hidden;
3 font-family:Arial;font-size:16px">
4 <switch>
5 <foreignObject width="480.0" height="180.0" x="300" y="400">
6 <p xmlns="http://www.w3.org/1999/xhtml" style="margin:0;padding:0">
7 Hello World!
8 </p>
9 </foreignObject>

10 </switch>
11 </g>

Listing 2.10: Example shapes.svg canvas text

Text

When participants of a meeting add text to the whiteboard, Extensible HyperText
Markup Language (XHTML) elements are added to the whiteboard’s canvas instead
of rendering them as pure SVG. This is due to the fact that SVG 1.1 is not capable
of automatically wrapping text given a bounding box, while XHTML is. SVG Tiny
1.2 does so as well with the textArea element [Neu+08], but its support status across
mobile and desktop platforms is severely limited [Sch08]. Likewise, SVG 2 plans on
introducing automatic line breaks [Wil+18a], but the specification has not yet left the
recommendation stage [Wil+18b] and still awaits to be implemented by any major
browser.

BBB gives users a rectangular content area to type in, such as 480×180 in the example
below. In order to embed the XHTML namespace and constrain the size of that field, the
switch and foreignObject6 tags are used. The font color, family, and size are passed in
the style attribute.

6https://developer.mozilla.org/en-US/docs/Web/SVG/Element/foreignObject

12

https://developer.mozilla.org/en-US/docs/Web/SVG/Element/foreignObject

3 Implementation

The exporter’s development occurred on a public personal repository1 before opening a
PR on BBB’s GitHub page. The coming sections focus on the server-side version of the
script, structured in the order the code is executed in to exemplify a sample run of the
code. Client-side implementation details follow, later mentioning how the script was
modified to enable annotated slide exports and the changes made to BBB’s GUI to add
download buttons.

To avoid introducing new major dependencies, the exporter relies on BBB’s usage of
FFmpeg to render a single MP4 file — the format having been chosen for its widespread
use and compatibility. SVG rasterization is supported in the FFmpeg version used by
BBB due to its compilation having taken place with the librsvg2 codec enabled. Since
FFmpeg is not a video editor, but instead a CLI tool to convert and mix media streams
into different formats, a central part of the exporter’s implementation revolves around
generating suitable streams for FFmpeg from the published presentation data.

3.1 Post-publish script example file

BBB provides a post-publish script template3 that contains boilerplate code for new
additions. The framework expands relative paths after obtaining the meeting parameters
and loading required modules, serving as the basis of the exporting script as shown in
Listing 3.1.

A logger object is created to write information related to the script’s execution in
BBB’s log directory, such as which presentation is being converted, how long it ran for,
and possible error messages. Its contents are set to clear weekly. CLI arguments are
parsed with Trollop4, a Ruby gem: the meeting ID is passed with the -m flag and used to
reference the published presentation files; BBB’s record and process worker invokes the
script with the playback format name passed in -f. An @ is prefixed to the declaration of
published_files, changing its scope to all of the exporter’s methods as a Ruby instance
variable.

1https://github.com/danielpetri1/bbb-recording-exporter
2https://gitlab.gnome.org/GNOME/librsvg
3https://github.com/bigbluebutton/bigbluebutton/blob/develop/record-and-playback/core/
scripts/post_publish/post_publish.rb.example

4https://rubygems.org/gems/trollop/versions/2.9.10

13

https://github.com/danielpetri1/bbb-recording-exporter
https://gitlab.gnome.org/GNOME/librsvg
https://github.com/bigbluebutton/bigbluebutton/blob/develop/record-and-playback/core/scripts/post_publish/post_publish.rb.example
https://github.com/bigbluebutton/bigbluebutton/blob/develop/record-and-playback/core/scripts/post_publish/post_publish.rb.example
https://rubygems.org/gems/trollop/versions/2.9.10

3 Implementation

1 require File.expand_path('../../../lib/recordandplayback', __FILE__)
2
3 opts = Trollop.options do
4 opt :meeting_id, "Meeting id to archive", type: String
5 opt :format, "Playback format name", type: String
6 end
7
8 meeting_id = opts[:meeting_id]
9

10 logger = Logger.new("/var/log/bigbluebutton/post_publish.log", 'weekly')
11 logger.level = Logger::INFO
12 BigBlueButton.logger = logger
13 BigBlueButton.logger.info("Started exporting presentation for [#{meeting_id}]")
14
15 @published_files = "/var/bigbluebutton/published/presentation/#{meeting_id}"

Listing 3.1: Preamble of the exporter derived from BBB’s template

3.2 Constants and switches

A series of values control the exporter’s layout, output resolution, and resource us-
age. By default, the output video size is set to 1920×1080 in the OUTPUT_WIDTH and
OUTPUT_HEIGHT constants. Given these dimensions, exported components are dynami-
cally resized to fit the window, keeping the desired aspect ratio. The processed webcam
video is scaled down to 320×240 and placed in the upper left corner. Since the chat is as
wide as the webcam video, and the messages occupy the remaining height, CHAT_WIDTH
equals WEBCAMS_WIDTH and CHAT_HEIGHT is the difference between OUTPUT_HEIGHT and
WEBCAMS_HEIGHT.

All chat messages are rendered onto an SVG canvas that is cropped according to the
current timestamp in the presentation. CHAT_CANVAS_WIDTH and CHAT_CANVAS_HEIGHT
contain these dimensions, which are close to the maximum 8032×32767 supported by
librsvg5. Due to SVG’s previously discussed text limitations, a monospaced font was
chosen to ease calculation of where line breaks should happen, given that each character
then always has exact dimensions. CHAT_FONT_SIZE is instanciated with 15, standing
for the height in pixels each character is tall. Through trial and error, the relationship
between the width and height of Ubuntu’s 18.04 default monospaced font (Ubuntu
Mono) on which BBB runs was determined to be 3:5. CHAT_FONT_SIZE_X, a character’s
width, is therefore 0.6 times the font size. Though the exact width can be determined
with rmagick6 or ttfunk7, these tools were refrained from to avoid introducing new
dependencies.

The area reserved for the whiteboard is shared with the deskshare, which is scaled to

5This limitation arises from Cairo, the rendering engine used by librsvg.
6https://github.com/rmagick/rmagick
7https://github.com/prawnpdf/ttfunk

14

https://github.com/rmagick/rmagick
https://github.com/prawnpdf/ttfunk

3.2 Constants and switches

1 DESKSHARE_Y_OFFSET = ((SLIDES_HEIGHT - ([SLIDES_WIDTH.to_f /
↪→ DESKSHARE_INPUT_WIDTH, SLIDES_HEIGHT.to_f / DESKSHARE_INPUT_HEIGHT].min
↪→ * DESKSHARE_INPUT_HEIGHT)) / 2).to_i

Listing 3.2: Centering the deskshare video in the exporter’s whiteboard area

fill the whiteboard area whilst maintaining the input aspect ratio. To center the video
stream accordingly, DESKSHARE_Y_OFFSET is calculated taking DESKSHARE_INPUT_WIDTH,
DESKSHARE_INPUT_HEIGHT, and the whiteboard dimensions where slides are shown into
account. Assuming the deskshare has the default size of 1280×720, the procedure in
Listing 3.2 yields an offset of 90 pixels from the top part of the video once it was scaled
to fit the resulting 1600×1080 whiteboard area. This positioning of the components is
summarized as an illustration in Figure 3.1, closely resembling the web player’s layout.

Whiteboard (1600×1080)
Chat (320×840)

Webcams (320×240)

Deskshare (1600×900)

Figure 3.1: Default output video layout

BBB servers that support a live whiteboard (default on version 2.2) need to enable
REMOVE_REDUNDANT_SHAPES to correctly show SVG annotations, due to the differences in
stroke encoding across versions. Since SVG files are made up of plain text, they can be
losslessly compressed with GNU zip (GZIP). The resulting SVGZ file is supported by
librsvg. The exporter has a SVGZ_COMPRESSION switch that, when set to true, will ensure
the script only writes compressed image data on disk. The number of threads used to
export the video can be limited in THREADS, considering community members asked for
a way to contain FFmpeg’s resource consumption. Similarly, the quality and file size of
the output can be controlled with the Constant Rate Factor (CRF) parameter, as laid out
in FFmpeg’s documentation [FFM21]. At the end of an encode, the time taken and the

15

3 Implementation

maximum amount of memory consumed can be displayed by setting BENCHMARK_FFMPEG
to true.

FFmpeg is not capable of rendering embedded background images in each slide since
librsvg requires a base Uniform Resource Identifier (URI) when utilizing the file URI
scheme due to security concerns, a parameter FFmpeg does not support as of August
2021. A working alternative is the data URI scheme, which encodes the referenced file in
the Base64 format. A patch8 adding the base_uri parameter to FFmpeg’s librsvg decoder
was submitted and awaits merging. When FFMPEG_REFERENCE_SUPPORT is enabled, the
exporter will assume FFmpeg has been recompiled with the patch applied and skip
the Base64 conversion step, which can become quite resource-intensive. Likewise,
CAPTION_SUPPORT can be switched on when the movtext codec is present in FFmpeg for
subtitles.

3.3 Client-side export

Since the exporter works with the published presentation files, all assets can be publicly
accessed over the internet without having root permissions on a BBB server. A download
script is provided on a separate branch which uses the recording’s hostname and meeting
ID to obtain the files. The script itself is identical to the server-side exporter, except for
the header, log keeping, and CLI arguments demonstrated in Listing 3.1. The client-side
script needs to be executed in the same directory the downloaded files are available in,
since the @published_files path is set to that folder.

3.4 Exporting the presentation

To render a video from presentation data, the exporter will keep track of every change
that occurred in the whiteboard, to then create an SVG frame containing what is
displayed at the timestamp the change occurred. Changes to the whiteboard include
adding annotations, zooming in and out, switching slides, and starting a deskshare.
Cursor movements will be treated separately since it does not affect the whiteboard’s
contents, even though the pointer is rendered on top of it. Registering a change for
every mouse movement would result in a massive amount of exported frames in which
the whiteboard stayed the same; creating frames for changes in the whiteboard only
instead ensures no resources were consumed unnecessarily. The chat and webcam are
separate components to the whiteboard as well. Temporarily generated files are stored
in scratch directories that are deleted as soon as the exporter finishes its execution.

8https://ffmpeg.org/pipermail/ffmpeg-devel/2021-August/282985.html

16

https://ffmpeg.org/pipermail/ffmpeg-devel/2021-August/282985.html

3.4 Exporting the presentation

3.4.1 Whiteboard shape conversion

The exporter begins by parsing the shapes.svg document using the Nokogiri9 gem
to convert whiteboard assets into a format compatible with FFmpeg. All shapes and
annotations are selected using an XML Path Language (XPATH) query to change their
visibility attribute from hidden to visible. If the element is a poll, it contains an external
reference to another SVG file embedded in the whiteboard that is loaded either if a base
URI has been passed, or the linked image is in the Base64 plaintext format [GNOb]. A
helper method performs the conversion to Base64 if FFmpeg does not support the base
parameter. When a text node contains XHTML text, its contents need to be recreated
using SVG elements. Font size, color, and positional attributes are stored along the text
box’s dimensions to reconstruct an approximate copy, akin to what is done to the chat.
Generated SVG text elements are normalized to conform to the standards imposed by
the World Wide Web Consortium (W3C) on Unicode and sanitized with the Loofah10

gem by stripping it of potentially unsafe tags; both Nokogiri and Loofah were already
in use by BBB.

3.4.2 Parsing whiteboard timestamps

Changes made to shapes.svg are temporarily saved in a separate shapes_modified.svg
file to avoid interfering with the web player. Parsing the modified file returns the
shapes, slides, and timing information required to rebuild the whole presentation as
a video. One pass of the document suffices, so Nokogiri’s XML Reader can be used
since it is significantly faster than using XPATH queries. The XML reader receives
the modified file and returns nodes that can be traversed iteratively in an each loop
[Nok21]. Timestamps of when slides entered and left the whiteboard are stored in an
array declared as timestamps and in a WhiteboardSlide struct containing either the
data of or a reference to the background image and its dimensions.

Unlike slides, shapes store timing information in the timestamp and undo attributes.
Determining the intervals in which the shape was shown is therefore not as trivial. When
going back to a previous page in the displayed whiteboard document, the annotations
are reinserted as they had been last left, making the timings appear off. If a user goes
back to a slide in the 10th minute of a meeting in which the annotations were added
during the first, the shape will keep its original attributes (e.g., timestamp="60.0",
undo="-1") even though the actual playback time is at the 10-minute mark. The undo
attribute complicates things further, as annotations that were already deleted are present
regardless in the whiteboard’s canvas, and drawings can be removed far into the future
due to the trash bin-button in the GUI that removes all annotations the user pressing
the icon has made. For a given shape, its actual interval information can therefore be
derived as follows:

9https://github.com/sparklemotion/nokogiri
10https://github.com/flavorjones/loofah

17

https://github.com/sparklemotion/nokogiri
https://github.com/flavorjones/loofah

3 Implementation

1 shape_undo = slide_out if shape_undo.negative?
2
3 shape_enter = [shape_timestamp, slide_in].max
4 shape_leave = [[shape_undo, slide_in].max, slide_out].min

Listing 3.3: Determining a shape’s interval start (shape_enter) and end (shape_leave)

• When undo is -1, the shape is not deleted from the whiteboard. As a result, it is
displayed for as long as the slide it lies on.

• The shape’s starting timestamp is either already correct or was already present
when displaying the current slide. The maximum of both values is the annotation’s
starting timestamp.

• The shape stops being displayed when the slide changes or undo is pressed. An
undo before the slide begins means the shape can be discarded.

Listing 3.4.2 contains the Ruby implementation of the verbose description above.
That approach is similar to BBB-Render’s code. However, they perform a redundant
minimum operation by setting the shape’s initial timestamp to [[[shape_timestamp,
slide_in].max, slide_out].min, which is not required since shape_timestamp and
slide_in are always equal or less than slide_out. In addition to the interval data, each
element in the shapes array contains the drawing’s SVG markup.

Panzooms stored in panzooms.xml are parsed in a similar fashion. The parse_panzooms
method is called with the timestamps array passed as an argument, once it has been
returned by the previous method. To this array further instances of whiteboard move-
ments will be appended, i.e, changes to the viewBox parameter of the slides. A panzooms
queue stores the timestamp of the movement alongside the SVG viewBox parameter.
Once all changes to the whiteboard have been parsed, the duration of the meeting
obtained from the metadata is included as the final whiteboard timestamp. The exporter
at this point has all the information it needs to render individual whiteboard frames.

3.4.3 Rendering the chat

By parsing slides_new.xml with Nokogiri’s XML reader, the username behind every
chat message is kept with its contents and timing information in an array. The timecode
next to the message is included in the HH:MM:SS format, as is done on the web player.
Messages and usernames are scrubbed with the Loofah gem to strip it of HTML tags,
that are present when users send external links. An example of this can be seen in the
last message sent in Listing 2.3: the markup from the hyperlink should not appear in
the chat. After sanitization, only the markup’s inner text is left. To comply with W3C’s
validation service11, the string is normalized to a canonical form12. Both these steps in

11https://validator.w3.org/
12https://apidock.com/ruby/v2_5_5/String/unicode_normalize

18

https://validator.w3.org/
https://apidock.com/ruby/v2_5_5/String/unicode_normalize

3.4 Exporting the presentation

1 60.0 crop@c x 0, crop@c y 60;
2 65.0 crop@c x 0, crop@c y 105;
3 470.0 crop@c x 0, crop@c y 150;

Listing 3.4: Example FFmpeg commands to crop the chat canvas

combination ensure the chat does not break when dealing with Universal Transformation
Format (UTF)-8 encoded text, which was verified by performing tests with W3C’s sample
plain-text file13. Languages written from left to the right are supported as well, with the
timecode in that case coming before the username instead.

The text messages are then placed on a SVG canvas that is built with the XML
Builder14 gem, which proved to be faster than Nokogiri’s markup builder. Due to the
usage of a monospaced font, the width of the chat box will always be able to hold a
fixed amount of characters. Messages are broken up into individual lines, with line
breaks being inserted at whitespace characters if the next few words do not fit the chat’s
width. By multiplying the amount of lines with the font’s height in pixels, the total
message height is obtained. Once the messages reach the bottom of the canvas, the
next ones are printed with an offset of CHAT_WIDTH, beginning a new chat column on
the canvas. For a seamless transition, the last few messages are duplicated at the top.
The coordinates of the messages are written in a text file (chat_timestamps) that is used
to send commands to FFmpeg, which then crops the canvas appropriately to create an
illusion of movement at a given timestamp.

CHAT_CANVAS_WIDTH

CH
AT

_C
AN

VA
S_

HE
IG

HT

CHAT_WIDTH

CH
AT

_H
EI

GH
T

Figure 3.2: Example chat from Listing 2.3 rendered onto the canvas

13https://www.w3.org/2001/06/utf-8-test/UTF-8-demo.html
14https://github.com/jimweirich/builder

19

https://www.w3.org/2001/06/utf-8-test/UTF-8-demo.html
https://github.com/jimweirich/builder

3 Implementation

1 builder = Builder::XmlMarkup.new
2
3 builder.svg(width: "16", height: "16") do
4 builder.circle(cx: "8", cy: "8", r: "8", fill: "red")
5 end
6
7 File.open("#{@published_files}/cursor/cursor.svg", "w", 0o600) do |svg|
8 svg.write(builder.target!)
9 end

Listing 3.5: Ruby code from which the mouse pointer SVG is built

1 <svg width="16" height="16">
2 <circle cx="8" cy="8" r="8" fill="red"/>
3 </svg>

Listing 3.6: Generated mouse pointer SVG

3.4.4 Rendering the cursor

The render_cursor method is called with two arguments: the parsed panzoom data,
and a Nokogiri XML Reader object to parse the cursor.xml file. The mouse pointer
itself is created from scratch using the XML Builder gem. It produces an SVG file
containing the markup for the red dot in Figure 3.3 which will be used as a cursor on
the whiteboard.

Figure 3.3: Mouse pointer rendered with FFmpeg

The cursor’s coordinates in cursor.xml are relative to the current’s slide size and view
box. As a result, they need to be transformed to correspond to the actual coordinates on
the slide, taking into account how the slide itself was scaled to fit the exporter’s layout.
The exporter uses W3C’s algorithm outlined in natural language in SVG’s 2 specification
to compute the equivalent transform of the SVG viewport [Wil+18c].

The cursor’s radius is subtracted from the calculated x and y coordinates since FFmpeg
will place the top-left corner of the image on the specified coordinate, resulting in a
small yet visible offset from the desired location. The final, centered coordinates are
saved as commands which get sent to FFmpeg that contain the timestamp and the
position of the cursor. FFmpeg overlays the cursor’s SVG image onto the slide for each
entry in the cursor_timestamps file, leaving the cursor stationary in that location until
the timestamp of the next command is reached. Negative timestamps are instances in
which the cursor is not visible on the whiteboard.

20

3.4 Exporting the presentation

1 0.0 overlay@m x 1602.464, overlay@m y 515.719;
2 0.3 overlay@m x 1583.616, overlay@m y 532.063;
3 0.7 overlay@m x -1288.0, overlay@m y -818.0;
4 1.1 overlay@m x 1428.992, overlay@m y 519.49;
5 1.4 overlay@m x 1484.304, overlay@m y 552.169;

Listing 3.7: Example commands sent to FFmpeg with the mouse pointer’s position

3.4.5 Rendering the whiteboard

The render_whiteboard method receives the parsed panzooms, slides, shapes, and
timestamps arrays as arguments. Elements from the timestamps array are then sorted
and duplicates removed, resulting in a timeline of events in which changes on the
whiteboard occurred. Figure 3.4 shows a video timeline instance. A frame is created
for each interval present in the timeline, which when played back in order produce an
animation of the whiteboard over time.

0.0 1.4 3.7 5.0 6.5 Time [s]

Frame 0

Frame 1

Frame 2

Frame 3

Figure 3.4: Example whiteboard timeline intervals

Since the panzooms and slides array are in the correct order, they can be thought of as
queues from which the first element is popped when the interval’s start corresponds to
the timestamp of the zoom or slide change. The background image or viewbox parameter
is kept until the next element in the queue has an initial timestamp greater or equal
to the current timestamp in the video timeline. Shapes and whiteboard annotations,
however, can overlap, and thus require a more elaborate approach. In the example
shown in Figure 3.5, a blue shape (such as a circle) is displayed from the time t = 1.4
to t = 5.0, whilst another green one is shown from 3.7 to 6.5. Both ranges overlap
in the interval from 3.7 to 5.0; the third frame in the exported video will therefore be
rendered with the SVG data of both shapes. The capability of obtaining the overlapping
shapes given a timestamp is provided by the interval tree data structure, discussed in
the next section.

0.0 1.4 3.7 5.0 6.5 Time [s]

Blue shape visible

Green shape visible

Figure 3.5: Example overlapping whiteboard shapes

As illustrated in Section 2.7, BBB handles annotations differently depending on the

21

3 Implementation

1 def remove_adjacent(array)
2 index = 0
3
4 until array[index + 1].nil?
5 array[index] = nil if array[index].id == array[index + 1].id
6 index += 1
7 end
8
9 array.compact! || array

10 end

Listing 3.8: remove_adjacent method, invoked when REMOVE_REDUNDANT_SHAPES is set

version. When the whiteboard is capable of displaying stroke animations, sections of
the final path have the same shape ID. The remove_adjacent method uses the fact that
segments of the same path come after another in the shapes.svg file to retain only the
last state of each stroke with an in-place algorithm listed in Listing 3.8. Each shape
is compared with its successor, if their IDs are equal, the current node is set to nil
to remove redundant shapes. A copy of the modified array is returned without the
nil values using Ruby’s compact method15; the total runtime of remove_adjacent is
therefore linear due to the two passes through the array.

3.4.6 The interval tree data structure

BBB-Render uses a Python module providing an interval tree to efficiently query visible
drawings at each timestamp in the recording. It uses O(n) storage, takes O(n log(n))
time to build, and returns queries in O(log(n) + k), where k is the number of intervals
reported [Ber08a].

Ruby gems providing the same functionality, such as itree16 and interval-tree17, did not
fulfill the exporter’s requirements. The former uses an AVL tree for dynamic insertion
of nodes, while the latter is implemented as a static binary tree. Even though both
approaches are faster than the brute-force approach of checking each timestamp against
all intervals in the array, taking O(n) time per query, itree turned out not to be capable
of returning duplicate intervals even when the nodes held different data.

When a slide is shown that already has drawings on it, it may be the case that two or
more shapes are displayed for the same period of time, even though they contain distinct
SVG markup. itree, however, reports only one of the annotations. In addition, future
maintenance of the repository seems unlikely due to inactivity since 2013. Though
interval-tree has an option to return multiple matches, its implementation was slow and
missed a corner case. Additionally, the gem did not augment the tree to be able to store

15https://apidock.com/ruby/v1_9_3_392/Array/compact
16https://github.com/hoxworth/itree
17https://github.com/greensync/interval-tree

22

https://apidock.com/ruby/v1_9_3_392/Array/compact
https://github.com/hoxworth/itree
https://github.com/greensync/interval-tree

3.4 Exporting the presentation

custom data alongside each interval.
Due to these problems, the exporter initially resorted to the trivial — yet inefficient —

method of selecting the right whiteboard annotations. Fortunately, a PR18 was made
implementing the support for custom objects, turning the issue with the duplicate
intervals into the only problem to solve. A PR was made as part of this thesis to
the interval-tree repository, implementing the search function iteratively to prevent
stack overflows from occuring and considering the passed unique parameter which
was previously implemented incorrectly. While both submissions await approval, the
gem was temporarily added into the existing lib folder of BBB recording scripts which
contains, among others, a custom hash function for Nokogiri documents and the workers
initiating each recording phase.

Segment trees are comparable data structures also capable of reporting intervals con-
taining a point. Their advantage comes when generalized to higher-dimensional objects,
such as segments arbitrarily orientated on a plane or when the amount of returned
elements is of interest but not the objects themselves. For the exporter which utilizes
1-dimensional segments, i.e., intervals, usage of an interval tree is more reasonable since
a segment tree consumes O(n log(n)) space [Ber08b].

3.4.7 Exporting whiteboard frames

Frames are rendered by the svg_export function, which builds an SVG frame with the
XML builder from the shapes obtained through the interval tree, the slide’s viewbox
parameter, and its dimensions. If the SVGZ_COMPRESSION flag is enabled, the frame is
GZIPped into SVGZ. Frames have the fixed size specified in the SLIDES_WIDTH and
SLIDES_HEIGHT constants, which correspond to the whiteboard area of the exporter.

Uniform scaling of the frames is done in this step instead of later in FFmpeg due to
an issue in which frames whose width and height differ from the first SVG input are
dropped, since the streams from all files need to share the same properties [FFmb]. The
frame’s background image is scaled to maximize the viewing area of the whiteboard
whilst still maintaining the aspect ratio. This behavior differs from the web player,
which has a static viewport corresponding to the slide’s original dimensions. When
zooming into a slide that has the A4 paper format, for instance, playback in the web
player will maintain the window’s shape throughout, while the exported video fills the
whiteboard area with the slide. Another contrasting implementation aspect is the fact
that the mouse pointer is scaled alongside panzooms in the presentation playback, a
characteristic regarded as a bug by the exporter.

The whiteboard frames are loaded sequentially into FFmpeg using the concatenation
demuxer, which makes it possible to create a video file from a set of images and their
respective durations [FFm17]. The exporter creates a temporary whiteboard_timestamps
text file containing the path to the whiteboard’s frames and the interval’s length it should
be displayed for. Listing 3.9 illustrates the format used. In effect, the whiteboard video

18https://github.com/greensync/interval-tree/pull/13

23

https://github.com/greensync/interval-tree/pull/13

3 Implementation

1 file ../frames/frame0.svg
2 duration 2.1
3 file ../frames/frame1.svg
4 duration 0.1
5 file ../frames/frame2.svg
6 duration 0.1
7 file ../frames/frame3.svg
8 duration 0.3

Listing 3.9: Example FFmpeg whiteboard_timestamps for the whiteboard slideshow

is a slideshow in which the framerate varies.

3.4.8 Rendering the video

The meeting is rendered by a single FFmpeg instruction that uses the generated assets
and commands as input, multiplexing the audio, video, and image streams into a
single file in the MP4 container format. Only the meeting’s chapter marks and captions
are added retroactively. FFmpeg is invoked using Ruby’s system method, which is
called with an FFmpeg instruction that varies depending on whether a deskshare video
took place during the meeting. This section will examine the case where a screen
share occurred, as the FFmpeg command without the additional data stream follows
analogously.

The first argument — with index 0 — passed to ffmpeg on line 3 in the command line is
a solid white color stream from the lavfi filter acting as the exporter’s background. The
dimensions of the generated background frame define the output size of the exported
video. Some developers in the BBB community have reported replacing the backdrop
with an image to suit the needs of their customers, e.g., displaying their brand through
a watermark in the resulting video file.

The whiteboard is loaded on line 4 by reading the exported frames as a slideshow
from a similar file to the one shown in Listing 3.9. Since the paths in the file are relative,
-safe 0 is passed as an argument to enable such URIs. Similarly, the base-uri is set in
case FFmpeg supports the patch implemented in Section 3.6. Cursor and chat SVGs
are loaded with their framerates set to 10 and 1 respectively and looped continuously
throughout the video, allowing them to receive commands describing their respective
movements on screen.

As discussed in Section 2.2.5, the processed video file of the webcams has the length
of the meeting itself and is present even under the circumstance in which no attendee
turned their cameras on. on line 8, the deskshare video is loaded, suitably setting the
file extension either to the MP4 or WebM format. These five separate input streams will
be moved, cropped, scaled, and overlaid onto each other starting from line 10 to recreate
the events of the recorded meeting through a complex filtergraph19.

19https://trac.ffmpeg.org/wiki/FilteringGuide

24

3.4 Exporting the presentation

1 ffmpeg
2
3 -f lavfi -i color=c=white:s=#{OUTPUT_WIDTH}x#{OUTPUT_HEIGHT}
4 -f concat -safe 0 #{BASE_URI} -i #{@published_files}/timestamps/whiteboard_timestamps
5 -framerate 10 -loop 1 -i #{@published_files}/cursor/cursor.svg
6 -framerate 1 -loop 1 -i #{@published_files}/chats/chat.svg
7 -i #{@published_files}/video/webcams.#{VIDEO_EXTENSION}
8 -i #{@published_files}/deskshare/deskshare.#{VIDEO_EXTENSION}
9

10 -filter_complex
11 '[2]sendcmd=f=#{@published_files}/timestamps/cursor_timestamps[cursor];
12 [3]sendcmd=f=#{@published_files}/timestamps/chat_timestamps,
13 crop@c=w=#{CHAT_WIDTH}:h=#{CHAT_HEIGHT}:x=0:y=0[chat];
14 [4]scale=w=#{WEBCAMS_WIDTH}:h=#{WEBCAMS_HEIGHT}[webcams];
15 [5]scale=w=#{SLIDES_WIDTH}:h=#{SLIDES_HEIGHT}:force_original_aspect_ratio=1[deskshare];
16 [0][deskshare]overlay=x=#{WEBCAMS_WIDTH}:y=#{DESKSHARE_Y_OFFSET}[screenshare];
17 [screenshare][1]overlay=x=#{WEBCAMS_WIDTH}[slides];
18 [slides][cursor]overlay@m[whiteboard];
19 [whiteboard][chat]overlay=y=#{WEBCAMS_HEIGHT}[chats];
20 [chats][webcams]overlay'
21
22 -c:a aac
23 -crf #{CONSTANT_RATE_FACTOR}
24 -shortest
25 -t #{duration}
26 -threads #{THREADS}
27 -metadata title='#{meeting_name}'
28 #{BENCHMARK}
29 #{@published_files}/meeting-tmp.mp4

Listing 3.10: FFmpeg command used to export the recorded meeting with deskshare

Cursor and chat commands need to be differentiated, which is done by adding @m
to the overlay commands sent to the mouse pointer and @c for the chat. The overlay
command places the cursor on the desired position at a given timestamp, while the chat
canvas is cropped to show the messages displayed at a given timestamp. The streams
receiving those commands are labeled as cursor and chat, representing individual
layers the exporter uses to create the output video. Webcam and deskshare videos are
scaled to fit the exporter’s layout and positioned per Figure 3.1.

At last, the components are overlaid. The deskshare, webcam videos, and chat layers
are placed over the background image, as illustrated in Figure 3.6. The whiteboard
frames are placed over the centered deskshare video: once a screen share begins, the
frame shown on the whiteboard is transparent, revealing the deskshare underneath. The
cursor composes the final upper layer, being bounded by the whiteboard’s dimensions.

Audio from the webcams and deskshare video is re-encoded with the Advanced Audio

25

3 Implementation

Coding (AAC) codec suited for MP4 files on line 22 to ensure compability with the
Opus audio format used by WebM inputs. The video quality output option is set with
the CRF parameter. -shortest secures the length of the output video equals the length
of the shortest input, a safeguard in case the duration passed with -t is imprecise. The
threads parameter gives the user an option to balance rendering speeds with resource
consumption. The time it took to render the video and maximum memory consumed
is shown by FFmpeg if BENCHMARK is enabled. To the meeting-tmp.mp4 output file, the
corresponding BBB room name is added as a title in the metadata. Rendering is initially
done to a temporary file and renamed to meeting.mp4 after completion to prevent
downloads of a broken file while the export is still in progress, given the directory is
publicly exposed.

Background color

Deskshare Webcam Chat

Slides

Cursor

Figure 3.6: Exported video layers in FFmpeg

3.4.9 Adding captions and chapter marks

WebVTT subtitles were added as a separate stream in the MP4 container to avoid
burning the subtitle tracks into the video, a more resource-intensive process. Rendering
the captions into the video would require one encoding pass per language, yielding
multiple versions of the output file. The locale required to set the subtitle language
in the caption’s JavaScript Object Notation (JSON) file is not recognized by FFmpeg;
instead, the language’s 3-letter International Organization for Standardization (ISO)
63920 code is needed. An approximation is made by taking the initials of the localeName,
as illustrated in Listing 2.1.

The mov_text codec is needed [FFma] to add multiple subtitle tracks to an MP4 file,
but neither the encoder nor the decoder is installed along with BBB’s FFmpeg default
configuration. movtext must be added as a codec option when recompiling FFmpeg for
caption support. This change does not interfere with FFmpeg’s license and thus still
allows for redistribution.

Metadata of the rendered meeting.mp4 file was extended to add chapter marks for
user-friendlier navigation, mirroring the slide thumbnails in BBB’s player. Lines 1 to 6
in Listing 3.11 show the existing metadata of an example meeting. A CHAPTER entry is

20https://www.loc.gov/standards/iso639-2/php/English_list.php

26

https://www.loc.gov/standards/iso639-2/php/English_list.php

3.5 PDF export feature

1 ;FFMETADATA1
2 major_brand=isom
3 minor_version=512
4 compatible_brands=isomiso2avc1mp41
5 title=Home Room
6 encoder=Lavf59.3.101
7
8 [CHAPTER]
9 START=0.0

10 END=335400000000.0
11 title=Slide 1
12
13 [CHAPTER]
14 START=335400000000.0
15 END=351300000000.0
16 title=Slide 2

Listing 3.11: Example MP4 video metadata, containing chapter marks

made with the slide’s number and timing information in nanoseconds for each page
displayed for more than 0.25 seconds. A quarter of a second was arbitrarily chosen as a
limiting value to prevent new chapters from being added when rapidly navigating the
document. The text file is then re-inserted into the video, replacing the former metadata.

3.5 PDF export feature

The exporter’s code can be modified to convert the presentation with annotations into a
PDF file by rendering the last state of the whiteboard for each slide. Cursor movements
and panzooms are disregarded: only slide changes are taken into consideration. The
interval tree data structure returns the drawings at the timestamp immediately preceding
such events. The methods used to parse the shapes and slides are reused from the video
exporter.

The behavior of this approach differs from what an end-user may expect, which is to
see the uploaded document in its original order, with the annotations overlaid as they
were last shown in the meeting. Due to new image elements being created alongside
a canvas in shapes.svg, however, many copies of the same slide may appear in the
final PDF if the presenter went back and forth in the document during the meeting. A
method to only keep the last version of each slide maintaining the sequence is listed
in Listing 3.12, in which two slides are said to be equal if they reference the same
background image. The first instance of a slide is replaced with its last occurrence,
including annotations. Its duplicates are set to nil and later removed from the array
containing the final slides, using the compact method referenced in Section 3.4.5.

The PDF export feature is implemented as a separate post-publish export_slides.rb

27

3 Implementation

1 def unique_slides(slides)
2 (0..slides.size - 1).each do |i|
3 ((i + 1)..slides.size - 1).each do |j|
4 next if slides[i].nil? || slides[j].nil?
5
6 if slides[i].href == slides[j].href
7 slides[i] = slides[j]
8 slides[j] = nil
9 end

10 end
11 end
12
13 slides.compact! || slides
14 end

Listing 3.12: Method to maintain the original slide order for the PDF export

script that uses rsvg-convert to convert the SVGs into PDFs, a lightweight CLI wrapper
for librsvg. rsvg-convert is capable of combining multiple SVG files into a single PDF
document, but not when the size of the input files differ21 (state: 08/2021). A temporary
workaround was to convert every SVG into a temporary PDF, combining them using a
Ruby gem called Combine PDF22.

Only recorded slides appear in the exported PDF file due to its dependence on the
shapes.svg file. To obtain all slides, a possible approach is to implement a new workflow
that is entirely independent from the presentation one. A separate workflow could also
allow the raw uploaded document to be used in place of the rasterized images, allowing
text to be searched in the resulting PDF. A concrete implementation, however, would
go beyond the scope of this thesis: the current presentation conversion flow23 done by
bbb-web converts documents into rasterized SVGs.

3.6 Adding a base-uri option to FFmpeg

FFmpeg rasterizes SVGs with a Librsvg wrapper24 that loads SVG data with the
rsvg_handle_new_from_data function, which does not provide the ability to set a base
URI [GNOa]. rsvg_handle_new_from_stream_sync is used instead that creates the han-
dle from the input stream, flags, and a base file [Pro]. The input stream corresponds to
the SVG data; the flags and URI path can be passed in FFmpeg as one of the audiovisual
options. The patch was submitted to FFmpeg’s mailing list and did not fail the tests

21https://gitlab.gnome.org/GNOME/librsvg/-/issues/783
22https://github.com/boazsegev/combine_pdf
23https://docs.bigbluebutton.org/2.3/architecture.html
24https://github.com/FFmpeg/FFmpeg/blob/master/libavcodec/librsvgdec.c

28

https://gitlab.gnome.org/GNOME/librsvg/-/issues/783
https://github.com/boazsegev/combine_pdf
https://docs.bigbluebutton.org/2.3/architecture.html
https://github.com/FFmpeg/FFmpeg/blob/master/libavcodec/librsvgdec.c

3.7 Integration into Greenlight

provided by their fully automated testing environment25. As of 08/2021, no manual
inspection or feedback was given by FFmpeg developers.

3.7 Integration into Greenlight

BBB’s GUI, Greenlight, was modified to show download buttons for the exported MP4
video and PDF files. BBB’s documentation provides a guide26 on how to customize
Greenlight’s interface, which is written in Ruby on Rails27. Members of the BBB
community had already explored possible ways to add such buttons in the interface28

for alternative exporting scripts29, providing a foundation to make changes upon.
Adaptations encompassed making the buttons compatible with BBB 2.3 and enabling a

direct download of the file instead of loading it in the browser’s player first. Additionally,
the buttons use labels rather than plain text to follow the browser’s locale setting,
displaying translated contents as a result. The modifications are available in a fork of
Greenlight30.

A drawback of that method is that the button is shown while the MP4 video is being
rendered, throwing a 404 Not Found error in the meantime. To fix that problem, a user
on the exporter’s repository issue tracker reported31 that no modification to Greenlight
is required, since a button to access each playback format is automatically added to the
GUI once there is metadata as XML markup in BBB’s published directory. The exporter
uses the presentation’s metadata.xml file as a blueprint, replacing the format name and
link. Figure 3.7 shows both variants: the dropdown menu that appears after integrating
the code in the front end, and the small blue buttons added by Greenlight once it locates
the metadata files.

Figure 3.7: Download buttons in Greenlight, in two variants

25https://patchwork.ffmpeg.org/project/ffmpeg/patch/20210803094534.1000-1-daniel.petri@
tum.de/

26https://docs.bigbluebutton.org/greenlight/gl-customize.html
27https://rubyonrails.org/
28https://groups.google.com/g/bigbluebutton-greenlight/c/pT9rF_9VKFU/m/sYg8XBvrAAAJ
29https://groups.google.com/g/bigbluebutton-dev/c/ZVq9LvB5w88
30https://github.com/danielpetri1/greenlight
31https://github.com/danielpetri1/bbb-recording-exporter/issues/33

29

https://patchwork.ffmpeg.org/project/ffmpeg/patch/20210803094534.1000-1-daniel.petri@tum.de/
https://patchwork.ffmpeg.org/project/ffmpeg/patch/20210803094534.1000-1-daniel.petri@tum.de/
https://docs.bigbluebutton.org/greenlight/gl-customize.html
https://rubyonrails.org/
https://groups.google.com/g/bigbluebutton-greenlight/c/pT9rF_9VKFU/m/sYg8XBvrAAAJ
https://groups.google.com/g/bigbluebutton-dev/c/ZVq9LvB5w88
https://github.com/danielpetri1/greenlight
https://github.com/danielpetri1/bbb-recording-exporter/issues/33

4 Benchmarking

Benchmarks were done on a 2020 Mac Mini with the Apple M1 chip and 8 GB of memory.
Table 4.1 contains a hardware overview of the model [Fru20].

L1 cache [kB]
CPU cores Clockrate [GHz] Data Instructions L2 cache [MB]

Efficiency: 4 2.06 64 128 12
Performance: 4 3.2 128 196 4

Table 4.1: Hardware information for Mac Mini’s M1 system on a chip

The Graphics Processing Unit (GPU) has eight cores with 128 execution units sup-
porting Apple’s VideoToolbox1 framework to make encoding and decoding video with
hardware acceleration possible, which FFmpeg does implement. VideoToolbox lacks the
CRF parameter, however, and is not compatible with other operating systems besides
macOS [FFm20], such as the Ubuntu server hosting BBB throughout development of
the exporter. Therefore, -hwaccel was not passed in the command from Listing 3.10
to explore GPU-based improvements, instead relying on more compatible yet CPU-
intensive software decoders to render the video. FFmpeg was compiled from source
from a development branch snapshot (version N-102809-gde8e6e67e7).

Two meetings served as a reference: an actual tutorial held at TUM described in
Section 2.2 and a stress test with 10 participants, each actively interacting with the
whiteboard. Under the circumstances summarized in Table 4.2, the exporter performs
up to 39% faster than a screen capture on consumer-grade hardware. The exporter
converted the tutorial up to 4.2 times quicker than a playback in real-time. Tables 4.3
and 4.4 show the impact the CRF parameter has on the file size of the final output and
how enabling both the usage of SVGZs and the file scheme reduces data written on disk
by over 64% and 94%, respectively. Additionally, trade-offs between GZIP compression
policies are presented: per default a "compromise between speed and compression" is
requested [Adl21]; BEST_SPEED as used by the exporter is fastest but compresses SVGZ
data the least.

These parameters did not affect rendering speeds. As shown in Table 4.5, the FFmpeg
thread count and the size of the chat canvas size does. For the load test, for instance, a
reduced chat canvas size of 1280×32760 can hold all messages; for the tutorial 320×1020
suffices. These minimum values were manually determined to bring the improvements

1https://developer.apple.com/documentation/videotoolbox

31

https://developer.apple.com/documentation/videotoolbox

4 Benchmarking

Meeting Length BBB Commands [MB] Messages Strokes Frames

Load test 7min 51s 2.3 0.167 671 (430.0 kB) 3424 1727
Tutorial 8h 46min 2.2 3.4 3 (0.572 kB) 10552 9220

Table 4.2: Comparison between reference recordings used for benchmarking purposes

Output size [MB]
CRF Load test Tutorial

0 68.9 5610
23 39.95 1120
51 12.8 561

Table 4.3: Example impact of the CRF parameter on the rendered video file size

Frame data written [MB] Encoding [s]
Policy SVGZ References Load test Tutorial Load test Tutorial

- false false 438.6 1110.0 2.7 23.5
- false true 412.8 206.3 2.1 2.3

Best speed true false 173.6 737.8 6.7 44.1
Best speed true true 158.5 62.0 5.5 3.5

Default true false 159.4 718.6 14.9 51.6
Default true true 145.2 56.1 13.3 5.9

Table 4.4: Example impact using the SVGZ and base-uri options

to light; users of the script are advised to adapt the constants to suit their needs. Render
times stem from the BENCHMARK constant, which also reports the maximum Resident
Set Size (RSS) occupied during the encode. For the tutorial, FFmpeg on the BBB server
consumed circa 4100 MB of memory, while maxrss hovered around 850 MB for the stress
test. On a Ryzen 3900XT server with 24 cores and 32 GB of memory, an enterprise BBB
host service reported usually taking 10 to 15% of the meeting’s duration to offer the
replay to its customers [Dam21]; their setup copes with more than 4 concurrent exports.

4.1 Performance improvements

Besides the time it takes to render the actual video, the encoding of the presentation’s
files, as described in Section 2.2, also plays a role in the total execution time of the
exporter. This section will explore the performance gains made over time in that area by
comparing the preprocessing speeds for the chat, cursor, and whiteboard components
across its versions.

The first few iterations of the exporter were noticeably slow. A prototype took

32

4.1 Performance improvements

Render time
Maximum chat canvas size Minimum chat canvas size

Threads Load test Tutorial Load test Tutorial

1 7min 40s 5h 22min 59s 7min 18s 4h 04min 03s
2 6min 03s 4h 21min 10s 5min 31s 2h 23min 07s
3 5min 44s 4h 04min 17s 5min 05s 2h 07min 19s
4 5min 25s 3h 23min 08s 4min 46s 2h 05min 03s

Table 4.5: Sample impact of the thread count and chat canvas size on exporting speeds

1 # Get shape IDs
2 draw.each do |drawing|
3 shapes << drawing.attr('shape')
4 end
5
6 # Obtain set of shape IDs
7 shapes = shapes.uniq
8
9 # Filter out duplicates: we're only interested in the last shape of each ID

10 shapes.each do |shape|
11 selection = draw.select {|drawing| drawing.attr('shape') == shape}
12 render << selection.last
13 end

Listing 4.1: Innefficient remove_adjacent, executed for every whiteboard frame

around 18 minutes to generate SVG slides and convert them to PNG, which is an
unnecessary step. Once skipped, another origin for the sluggishness turned out to be
the implementation of the remove_adjacent function shown in Listing 4.1. Originally,
the shape ID attributing each stroke part to a whiteboard annotation was copied into an
array on which Ruby’s uniq function was called to obtain the set of unique shapes. For
each of those, their last occurrence was filtered out using Ruby’s select and placed in
an array containing the final drawings to be rendered. Essentially, redundant copies and
uniq not exploiting the fact that the shapes array is sorted in order of appearance curbed
the method. At first, this method was scrapped entirely, arguing that it was unnecessary
in BBB 2.3 and dropping the idea of backward compatibility. It was re-added later once
the efficient implementation was come up with.

In the beginning, each mouse movement and incoming chat message resulted in a new
frame being produced in addition to the ones required to render the whiteboard. For a
long presentation such as the tutorial, this approach resulted in over 64400 separate SVG
frames containing a copy of the same red pointer at a different location on the screen.
The use of FFmpeg’s sendcmd got rid of the need for separate frames, saving many costly
Input/Output (IO) operations. Further IO improvements came from opening the text

33

4 Benchmarking

files holding the instructions for FFmpeg once before the loop writing the commands
instead of opening and closing it every iteration.

XPATH queries were optimized by either parsing the files with Nokogiri’s XML
Reader to handle the data in a more efficient data structure, e.g., queues and the interval
tree, or by making the query itself more efficient by replacing instances of the // operator.
The reader parser is only called once, traversing the XML file similarly to how a "cursor
would move" [Nok21] throughout a document. Data the exporter needs is extracted
during that single pass. On the other hand, queries starting with // — which selects
the node itself or all descendants matching the request — were called multiple times
for each interval in the video timeline, repeatedly traversing the entire document. In
the few remaining cases where the use of XPATH expressions was deemed fit, // was
replaced with direct steps to an element in the subtree from which the search starts. The
path to the nodes is derived from the file’s encoding scheme.

Nokogiri’s XML Builder turned out to be slower than the XML Builder gem by a factor
of 10 when creating whiteboard SVG frames.

Markup such as chat tspan elements are concatenated with the « operator instead of
+= on the same grounds throughout the exporter’s code. This is due to « concatenating
in-place without making a copy of the string object, an adjustment especially felt in the
stress test due to the hundreds of messages.

Re-introducing an optimized version of the remove_adjacent function thwarts the
exporter from writing around 1 GB of extra data to the disk for the tutorial. By including
references to linked images instead of performing a conversion to the Base64 format, a
further 0.9 GB is saved. Figure 4.1 plots the effects these improvements had on the time
taken to encode the files.

Multithreading the export of frames with user-level threads did not result in speed
improvements. Likewise, shortening negative cursor coordinates in an attempt to write
less data when the mouse is outside the whiteboard’s area introduced branches and
comparisons that ultimately slowed the encoding process.

4.2 Static Analysis

Three Ruby gems were used during development to improve the code’s readability
and performance: Fasterer2, which suggests changes resulting in speed gains, Reek3, to
remove code smells, and Rubocop4, a linter based on Ruby’s community style guide5.
Fasterer, for instance, reports that using Ruby’s each_with_index is slower than a while
loop and that adding an element to the start of an array with unshift is over 260 times
quicker than using insert [Fas19]. Reek was used to remove most duplicate method
calls in the exporting process, and Rubocop to format the code enforcing the convention.

2https://github.com/DamirSvrtan/fasterer
3https://github.com/troessner/reek
4https://github.com/rubocop/rubocop
5https://rubystyle.guide/

34

https://github.com/DamirSvrtan/fasterer
https://github.com/troessner/reek
https://github.com/rubocop/rubocop
https://rubystyle.guide/

4.3 Dynamic Analysis

With the help of these tools, the post-publish scripts passed Sonar Cloud’s6 quality gates
concerning bugs, security vulnerabilities, code smells, and code duplication in the PRs
submitted to BBB.

4.3 Dynamic Analysis

Rbspy7 0.8.1 was used to profile the exporter while it encodes the chat, cursor, and
whiteboard frames. The resulting flamegraph in Figure 4.2 has a minimum flame width
of 0.1% and arises from running the exporter for the tutorial in its default use case, i.e.,
with SVGZ support enabled and references in FFmpeg disabled. Stack traces for the
remove_adjacent, render_chat, and render_cursor functions notably barely showed
alongside lookups in the interval tree. The first block in render_whiteboard opens the
file where the frame’s location and duration are written down. The block two levels
deep is the loop that begins by determining the current slide, its view_box parameter,
and which shapes to draw. Once queried, most time is spent exporting SVG frames
created with the XML Builder gem due to the SVGZ compression and writing images
in the Base64 format. Given the samples from Table 4.4 and the flamegraph, it appears
that turning compression on with FFmpeg references enabled yields the best trade-off
between speed and resource usage.

The flamegraph for the stress test is similar, exception being that the render_chat
function is responsible for a bit more than 10% of the total execution time. Line numbers
in the figure refer to the client-side version of the exporting script.

4.4 Benchmarking the PDF export

Converting a presentation into a PDF file is not as efficient as encoding the assets for the
video export since the SVG slides are converted to individual PDFs before merging them
into one. Table 4.6 summarizes the impact had on the conversion speed contingent upon
the SVGZ option and its policy. The PDF for the load test contains 5 slides (208 kB), the
tutorial has 178 taking up 13.2 MB of space, respectively.

Load Test Tutorial
Policy SVGZ Data written [kB] Time [s] Data written [MB] Time [s]

- false 597 0.698 10.3 28.4
Best speed true 370 0.713 24.7 10.9

Best compression true 358 0.724 24.5 11.1

Table 4.6: Benchmarks for the PDF export

6https://sonarcloud.io/
7https://rbspy.github.io/

35

https://sonarcloud.io/
https://rbspy.github.io/

4 Benchmarking

Pro
to

ty
pe

Sk
ip

PNG
co

nve
rsi

on

Dele
te
re
mo
ve
_a
dj
ac
en
t

se
nd
cm
d fo

r ch
at

an
d

cu
rso

r

IO
im

pro
ve

m
en

ts

Fas
ter

XPA
TH: cu

rso
r/

ch
at

XM
L

Rea
der

: cu
rso

r/
ch

at

Fas
ter

XPA
TH: white

boar
d

XM
L

Rea
der

: white
boar

d

« ov
er

+=

Queu
e fo

r pan
zo

om
s/

sli
des

XM
L

Build
er

In
ter

val
tre

e

Re-a
dd

effi
cie

nt re
m

ov
e_

ad
jac

en
t

FFm
peg

ba
se
-u
ri

su
pport

0

100

200

300

400

500

600

700

800

900

1,000

1,100 1,080

675

512

384 372

263
222

91
60 58 39 27 23 22 2

En
co

di
ng

[s
]

Figure 4.1: Timeline and impact of the performed optimization steps on the tutorial

36

4.4 Benchmarking the PDF export

(u
n
k
n
o
w
n
)
[c

 f
u
n
c
tio
n
]

b
lo
c
k
 i
n

 s
v
g
_
e
x
p
o
rt

 -
 e
x
p
o
rt
_
p
re
s
e
n
ta
tio
n
.r
b
:6
3
9

(u
n
k
n
o
w
n
)
[c

 f
u
n
c
tio
n
]

_
n
e
s
te
d
_
s
tr
u
c
tu
re
s
 -

 /
v
a
r/
lib
/g
e
m
s
/b
u
ild
e
r/
x
m
lb
a
s
e
.r
b
:1
7
9

b
lo
c
k
 i
n

 s
v
g
_
e
x
p
o
rt

 -
 e
x
p
o
rt
_
p
re
s
e
n
ta
tio
n
.r
b
:6
2
9

m
e
th
o
d
_
m
is
s
in
g

 -
 /
v
a
r/
lib
/g
e
m
s
/b
u
ild
e
r/
x
m
lb
a
s
e
.r
b
:9
5

ta
g
!
-
/v
a
r/
lib
/g
e
m
s
/b
u
ild
e
r/
x
m
lb
a
s
e
.r
b
:8
7

_
s
ta
rt
_
ta
g

 -
 /
v
a
r/
lib
/g
e
m
s
/b
u
ild
e
r/
x
m
lm
a
rk
u
p
.r
b
:3
0
7

_
in
s
e
rt
_
a
tt
ri
b
u
te
s
 -

 /
v
a
r/
lib
/g
e
m
s
/b
u
ild
e
r/
x
m
lm
a
rk
u
p
.r
b
:3
2
4

(u
n
k
n
o
w
n
)
[c

 f
u
n
c
tio
n
]

b
lo
c
k
 i
n

 _
in
s
e
rt
_
a
tt
ri
b
u
te
s
 -

 /
v
a
r/
lib
/g
e
m
s
/b
u
ild
e
r/
x
m
lm
a
rk
u
p
.r
b
:3
2
3

_
a
tt
r_
v
a
lu
e

 -
 /
v
a
r/
lib
/g
e
m
s
/b
u
ild
e
r/
x
m
lm
a
rk
u
p
.r
b
:3
3
3

_
e
s
c
a
p
e
_
a
tt
ri
b
u
te

 -
 /
v
a
r/
lib
/g
e
m
s
/b
u
ild
e
r/
x
m
lb
a
s
e
.r
b
:1
6
2

_
e
s
c
a
p
e

 -
 /
v
a
r/
lib
/g
e
m
s
/b
u
ild
e
r/
x
m
lb
a
s
e
.r
b
:1
4
8

e
n
c
o
d
e

 -
 /
v
a
r/
lib
/g
e
m
s
/b
u
ild
e
r/
x
c
h
a
r.
rb
:1
5
7

(u
n
k
n
o
w
n
)
[c

 f
u
n
c
tio
n
]

b
lo
c
k
 i
n

 r
e
n
d
e
r_
w
h
ite
b
o
a
rd

 -
 e
x
p
o
rt
_
p
re
s
e
n
ta
tio
n
.r
b
:6
1
2

(u
n
k
n
o
w
n
)
[c

 f
u
n
c
tio
n
]

(u
n
k
n
o
w
n
)
[c

 f
u
n
c
tio
n
]

(u
n
k
n
o
w
n
)
[c

 f
u
n
c
tio
n
]

b
lo
c
k
 (
2

 l
e
v
e
ls
)
in

 r
e
n
d
e
r_
w
h
ite
b
o
a
rd

 -
 e
x
p
o
rt
_
p
re
s
e
n
ta
tio
n
.r
b
:6
0
8

s
v
g
_
e
x
p
o
rt

 -
 e
x
p
o
rt
_
p
re
s
e
n
ta
tio
n
.r
b
:6
4
0

m
e
th
o
d
_
m
is
s
in
g

 -
 /
v
a
r/
lib
/g
e
m
s
/b
u
ild
e
r/
x
m
lb
a
s
e
.r
b
:9
5

ta
g
!
-
/v
a
r/
lib
/g
e
m
s
/b
u
ild
e
r/
x
m
lb
a
s
e
.r
b
:8
7

e
x
p
o
rt
_
p
re
s
e
n
ta
tio
n

 -
 e
x
p
o
rt
_
p
re
s
e
n
ta
tio
n
.r
b
:6
8
1

re
n
d
e
r_
w
h
ite
b
o
a
rd

 -
 e
x
p
o
rt
_
p
re
s
e
n
ta
tio
n
.r
b
:6
1
3

(u
n
k
n
o
w
n
)
[c

 f
u
n
c
tio
n
]

<
m
a
in
>

 -
 e
x
p
o
rt
_
p
re
s
e
n
ta
tio
n
.r
b
:6
9
0

Fi
gu

re
4.

2:
Fl

am
eg

ra
ph

w
it

h
a

cu
to

ff
fla

m
e

w
id

th
of

0.
1%

fo
r

th
e

tu
to

ri
al

w
he

n
SV

G
Z

is
on

an
d

FF
m

pe
g

re
fe

re
nc

es
of

f.
Pa

th
s

w
er

e
sh

or
te

ne
d

or
om

m
it

ed
,a

nd
th

e
ba

ck
gr

ou
nd

w
as

re
m

ov
ed

37

5 Conclusion

All requirements listed in Section 1.4 were fulfilled.

5.1 Deployment

Two separate PRs were submitted to BBB’s repository with the video1 and PDF export
code2. To this end, BBB’s contributor license agreement was signed and sent in. Fred
Dixon, BBB’s product manager, has stated that the script will be turned into a workflow
that can be separately installed starting from BBB version 2.5, planned towards the end
of 2021. Introducing the exporter not as an extension to the presentation workflow but
as a complementary feature maintained by the community prevents upcoming changes
to BBB’s core from being held back by compatibility issues with the script. He reasons
that the attention of BBB developers needs to be focused on the central components of
the product to ensure it is shipped in a stable state [Dix21b].

5.2 Feedback

BBB community members seemed to welcome the exporter. Stephen Dame from
HostBBB stated that "the approach scales very well" [Dam21] and offers free con-
versions from a link on his website, besides offering the exporter as a premium feature
to his private customers. Felipe Caetano implemented the code on the BBB cluster of a
Brazilian university (Universidade Federal de Juiz de Fora)3, saying that the "solution
is simple, yet efficient and elegant." [Cae21] Hiroshi Suga, a biology professor at the
Prefectural University of Hiroshima and BBB contributor, called the exporter "the best
one" in his "personal opinion." [Sug21a]

5.3 Future work

New features are being added to BBB 2.4, some of which are displayed during the replay
of a recording and therefore need to be addressed by the exporting script. It is scheduled
to launch in September 2021 officially. The recording’s public chat will contain the
polling results and links to external videos shared during the meeting, besides making

1https://github.com/bigbluebutton/bigbluebutton/pull/12533
2https://github.com/bigbluebutton/bigbluebutton/pull/13016
3https://www2.ufjf.br/ufjf/

39

https://github.com/bigbluebutton/bigbluebutton/pull/12533
https://github.com/bigbluebutton/bigbluebutton/pull/13016
https://www2.ufjf.br/ufjf/

5 Conclusion

instructor messages easier to discern by printing them in bold.4 Exported BBB 2.4
recordings did not show these upgrades: formatting and contents of the chat remained
consistent with BBB 2.3.

Additionally, enabling a webcam filter to blur out the background will be a privacy
option users have. No action should be required on the exporter’s part as long as the
filters appear in the processed webcams video file. This equally applies to a PR adding
the external shared videos to the deskshare file.

An eraser and marker function for the whiteboard may be on BBB’s roadmap as well,
given the PRs5 6 by Hiroshi Suga. Supporting these new shapes is challenging due to
extensive SVG clipping and masking, again using references that FFmpeg has difficulties
with. The exporter currently does not support either tool.

Together with a dynamic adjustment of the chat’s framerate to guarantee no message
is missed when more messages come than what can fit in the chat area, a method to
determine the CHAT_CANVAS_WIDTH and CHAT_CANVAS_HEIGHT constants automatically on
a per-export basis should be implemented to further improve its efficiency. A closer look
into hardware acceleration options for FFmpeg using the GPU is warranted, as well as
checking how it handles splitting the deskshare video into multiple overlays to remove
the intervals in which the deskshare is blank. Think Modular, a startup providing a
commercial BBB hosting service, requested more flexible layout customization options
to hide the webcams and anonymize chat names due to privacy concerns. Access to
the rendered output file should only be granted to those logged in. They also vouched
for prettier output in terms of the layout’s design, a suggestion initially made by end-
users of an Iranian BBB provider7. Changes would entail adding separation lines to
distinguish the chat from the cameras and whiteboard, increasing the margins between
them as well.

Likewise, Blindside Networks, the company that founded BBB, envisions that the code
handling whiteboard annotations can be reused in the HTML5 client to bring work done
on documents during breakout rooms back into the main session. This enhancement
could potentially arise from the PDF exporting script, which, as it stands, requires
performance improvements since users would not find a wait of up to half a minute to
move slides between rooms acceptable. Speed gains could come from extending librsvg
to accept a base URI parameter, apart from combining the final PDF directly from the
SVGs once librsvg uses their page size to assemble multipage PDFs.

4https://docs.bigbluebutton.org/2.4/new.html
5https://github.com/bigbluebutton/bigbluebutton/pull/11018
6https://github.com/bigbluebutton/bigbluebutton/pull/11021/commits
7https://github.com/danielpetri1/bbb-recording-exporter/issues/41#issue-972486167

40

https://docs.bigbluebutton.org/2.4/new.html
https://github.com/bigbluebutton/bigbluebutton/pull/11018
https://github.com/bigbluebutton/bigbluebutton/pull/11021/commits
https://github.com/danielpetri1/bbb-recording-exporter/issues/41#issue-972486167

Acronyms

AAC Advanced Audio Coding

BBB BigBlueButton

CLI Command-Line Interface

CPU Central Processing Unit

CRF Constant Rate Factor

FPS Frames per second

GES GStreamer Editing Services

GPU Graphics Processing Unit

GUI Graphical User Interface

GZIP GNU zip

HTML Hypertext Markup Language

IO Input/Output

ISO International Organization for Standardization

JPEG Joint Photographic Experts Group

41

Acronyms

JSON JavaScript Object Notation

PDF Portable Document Format

PNG Portable Network Graphics

PR Pull Request

RSS Resident Set Size

SVG Scalable Vector Graphics

TUM Technical University of Munich

URI Uniform Resource Identifier

UTF Universal Transformation Format

W3C World Wide Web Consortium

WebVTT Web Video Text Tracks

XHTML Extensible HyperText Markup Language

XML Extensible Markup Language

XPATH XML Path Language

42

Glossary

Base64 Format providing a textual representation of binary data using 64 characters.
16, 17, 34, 35

deskshare Sharing the computer’s screen with others. Portmanteau formed by combin-
ing desktop and share. 2, 3, 5, 9, 14–16, 24–26, 40, 49

gem Instance of an open-source Ruby library. 13, 17–20, 22, 23, 28, 34, 35

panzoom Act of zooming into a slide and moving it around. Blend of panning and
zooming. 2, 3, 8, 11, 18, 20, 21, 23, 27

SVGZ Losslesly compressed SVG file using GZIP. 15, 23, 31, 32, 35, 37, 45, 47

workflow Conversion process a recording goes through in order to be published in
another format. 3, 5, 28, 39

43

List of Figures

3.1 Default output video layout . 15
3.2 Example chat from Listing 2.3 rendered onto the canvas 19
3.3 Mouse pointer rendered with FFmpeg . 20
3.4 Example whiteboard timeline intervals . 21
3.5 Example overlapping whiteboard shapes 21
3.6 Exported video layers in FFmpeg . 26
3.7 Download buttons in Greenlight, in two variants 29

4.1 Timeline and impact of the performed optimization steps on the tutorial 36
4.2 Flamegraph for the tutorial when SVGZ is on and FFmpeg references off 37

45

List of Tables

4.1 Hardware information for Mac Mini’s M1 system on a chip 31
4.2 Comparison between reference recordings used for benchmarking purposes 32
4.3 Example impact of the CRF parameter on the rendered video file size . . 32
4.4 Example impact using the SVGZ and base-uri options 32
4.5 Sample impact of the thread count and chat canvas size on exporting speeds 33
4.6 Benchmarks for the PDF export . 35

47

Listings

2.1 Example captions.json file . 6
2.2 Example English subtitles in captions_en.vtt 6
2.3 Example chat messages in slides_new.xml 7
2.4 Example cursor.xml file . 8
2.5 Example panzooms.xml file . 8
2.6 Example shapes.svg strokes . 10
2.7 Comparison between BBB 2.2 and 2.3 annotations 11
2.8 Example shapes.svg poll fragment . 11
2.9 Example slide reference in shapes.svg . 12
2.10 Example shapes.svg canvas text . 12

3.1 Preamble of the exporter derived from BBB’s template 14
3.2 Centering the deskshare video in the exporter’s whiteboard area 15
3.3 Determining a shape’s interval start (shape_enter) and end (shape_leave) 18
3.4 Example FFmpeg commands to crop the chat canvas 19
3.5 Ruby code from which the mouse pointer SVG is built 20
3.6 Generated mouse pointer SVG . 20
3.7 Example commands sent to FFmpeg with the mouse pointer’s position . 21
3.8 remove_adjacent method, invoked when REMOVE_REDUNDANT_SHAPES is set 22
3.9 Example FFmpeg whiteboard_timestamps for the whiteboard slideshow 24
3.10 FFmpeg command used to export the recorded meeting with deskshare . 25
3.11 Example MP4 video metadata, containing chapter marks 27
3.12 Method to maintain the original slide order for the PDF export 28

4.1 Innefficient remove_adjacent, executed for every whiteboard frame . . . 33

49

Bibliography

[Adl21] J.-l. G. M. Adler. Zlib Manual, version 1.2.11. Sept. 7, 2021. url: https:
//zlib.net/manual.html (visited on Jan. 15, 2017).

[Ber08a] M. de Berg; Otfried Cheong; Marc van Kreveld; Mark Overmars. “Com-
putational Geometry: Algorithms and Applications.” In: 3rd ed. Springer,
2008. Chap. 10, pp. 220–226. isbn: 978-3-540-77974-2. doi: 10.1007/978-3-
540-77974-2.

[Ber08b] M. de Berg; Otfried Cheong; Marc van Kreveld; Mark Overmars. “Com-
putational Geometry: Algorithms and Applications.” In: 3rd ed. Springer,
2008. Chap. 10, pp. 231–237. isbn: 978-3-540-77974-2. doi: 10.1007/978-3-
540-77974-2.

[Ber21] D. Berman. Accessibility Compliance Analysis And Opinion. July 2021. url:
https://bigbluebutton.org/accessibility/ (visited on Sept. 7, 2021).

[Cae21] F. Caetano. Comment on the project’s issue tracker. June 7, 2021. url: https://
github.com/danielpetri1/bbb-recording-exporter/issues/28#issue-
911531735 (visited on Sept. 7, 2021).

[Dam21] S. Dame. Comment on BBB-Exporter’s issue tracker. July 9, 2021. url: https:
//github.com/danielpetri1/bbb- recording- exporter/issues/40#
issuecomment-901082740 (visited on Aug. 18, 2021).

[Dixa] F. Dixon. BigBlueButton’s Architecture Documentation. url: https://docs.
bigbluebutton.org/2.3/architecture.html (visited on Sept. 7, 2021).

[Dixb] F. Dixon. BigBlueButton’s Recording Documentation. url: https://docs.
bigbluebutton.org/dev/recording.html (visited on Sept. 7, 2021).

[Dix12] F. Dixon. Enable users to download a recording as video. May 3, 2012. url:
https://github.com/bigbluebutton/bigbluebutton/issues/1969 (vis-
ited on Sept. 7, 2021).

[Dix21a] F. Dixon. Additional recording formats are not automatically enabled when their
packages are installed. May 2, 2021. url: https://github.com/bigbluebutton/
bigbluebutton/issues/12241 (visited on Sept. 7, 2021).

[Dix21b] F. Dixon. BigBlueButtonWorld - Roadmap for BigBlueButton. July 2, 2021. url:
https://www.youtube.com/watch?v=pkd_F8hJwgM&t=2005s (visited on
Sept. 7, 2021).

[Fas19] Fast Ruby contributors. Fast Ruby - Array. Mar. 16, 2019. url: https://
github.com/JuanitoFatas/fast-ruby#array (visited on Sept. 7, 2021).

51

https://zlib.net/manual.html
https://zlib.net/manual.html
https://doi.org/10.1007/978-3-540-77974-2
https://doi.org/10.1007/978-3-540-77974-2
https://doi.org/10.1007/978-3-540-77974-2
https://doi.org/10.1007/978-3-540-77974-2
https://bigbluebutton.org/accessibility/
https://github.com/danielpetri1/bbb-recording-exporter/issues/28#issue-911531735
https://github.com/danielpetri1/bbb-recording-exporter/issues/28#issue-911531735
https://github.com/danielpetri1/bbb-recording-exporter/issues/28#issue-911531735
https://github.com/danielpetri1/bbb-recording-exporter/issues/40#issuecomment-901082740
https://github.com/danielpetri1/bbb-recording-exporter/issues/40#issuecomment-901082740
https://github.com/danielpetri1/bbb-recording-exporter/issues/40#issuecomment-901082740
https://docs.bigbluebutton.org/2.3/architecture.html
https://docs.bigbluebutton.org/2.3/architecture.html
https://docs.bigbluebutton.org/dev/recording.html
https://docs.bigbluebutton.org/dev/recording.html
https://github.com/bigbluebutton/bigbluebutton/issues/1969
https://github.com/bigbluebutton/bigbluebutton/issues/12241
https://github.com/bigbluebutton/bigbluebutton/issues/12241
https://www.youtube.com/watch?v=pkd_F8hJwgM&t=2005s
https://github.com/JuanitoFatas/fast-ruby#array
https://github.com/JuanitoFatas/fast-ruby#array

Bibliography

[FFma] FFmpeg contributors. FFMPEG An Intermediate Guide: subtitle options. url:
https://en.wikibooks.org/wiki/FFMPEG_An_Intermediate_Guide/
subtitle_options (visited on Sept. 8, 2021).

[FFmb] FFmpeg contributors. FFmpeg Formats Documentation: concat. url: https:
//ffmpeg.org/ffmpeg-formats.html#concat (visited on Sept. 8, 2021).

[FFm17] FFmpeg contributors. FFMpeg Documentation: Slideshow. Sept. 16, 2017. url:
https://trac.ffmpeg.org/wiki/Slideshow (visited on Sept. 7, 2021).

[FFm20] FFmpeg contributors. FFmpeg: Hardware Acceleration. Nov. 18, 2020. url:
https://trac.ffmpeg.org/wiki/HWAccelIntro (visited on Sept. 7, 2021).

[FFM21] FFMpeg contributors. H.264 Video Encoding Guide. Mar. 11, 2021. url: https:
//trac.ffmpeg.org/wiki/Encode/H.264 (visited on Sept. 8, 2021).

[Fru20] A. Frumusanu. The 2020 Mac Mini Unleashed: Putting Apple Silicon M1 To The
Test. Nov. 17, 2020. url: https://www.anandtech.com/show/16252/mac-
mini-apple-m1-tested (visited on Sept. 7, 2021).

[GNOa] GNOME contributors. RsvgHandle. url: https://developer-old.gnome.
org/rsvg/unstable/RsvgHandle.html#rsvg- handle- new- from- data
(visited on Sept. 7, 2021).

[GNOb] GNOME contributors. Security and locations of referenced files. url: https:
//gnome.pages.gitlab.gnome.org/librsvg/doc/librsvg/index.html
(visited on Sept. 7, 2021).

[MDN21a] MDN contributors. MDN Web Docs: <g>. June 10, 2021. url: https://
developer.mozilla.org/en-US/docs/Web/SVG/Element/g (visited on
Sept. 7, 2021).

[MDN21b] MDN contributors. MDN Web Docs: Paths. Mar. 25, 2021. url: https://
developer.mozilla.org/en-US/docs/Web/SVG/Tutorial/Paths (visited
on Sept. 7, 2021).

[MDN21c] MDN contributors. MDN Web Docs: viewBox. Aug. 30, 2021. url: https:
//developer.mozilla.org/en-US/docs/Web/SVG/Attribute/viewBox
(visited on Sept. 7, 2021).

[Neu+08] A. Neumann, D. Schepers, C. Lilley, E. Dahlström, C. McCormack, N.
Ramani, S. Hayman, C. Northway, V. Hardy, A. Shellshear, A. Emmons,
D. Jackson, A. Grasso, O. Andersson, J. Ferraiolo, A. Quint, and R. Berjon.
Scalable Vector Graphics (SVG) Tiny 1.2 Specification. W3C Recommendation.
W3C, Dec. 22, 2008. Chap. 10. url: https://www.w3.org/TR/2008/REC-
SVGTiny12-20081222/.

[Nok21] Nokogiri contributors. Class: Nokogiri::XML::Reader. Sept. 7, 2021. url:
https://www.rubydoc.info/github/sparklemotion/nokogiri/Nokogiri/
XML/Reader (visited on Sept. 7, 2021).

52

https://en.wikibooks.org/wiki/FFMPEG_An_Intermediate_Guide/subtitle_options
https://en.wikibooks.org/wiki/FFMPEG_An_Intermediate_Guide/subtitle_options
https://ffmpeg.org/ffmpeg-formats.html#concat
https://ffmpeg.org/ffmpeg-formats.html#concat
https://trac.ffmpeg.org/wiki/Slideshow
https://trac.ffmpeg.org/wiki/HWAccelIntro
https://trac.ffmpeg.org/wiki/Encode/H.264
https://trac.ffmpeg.org/wiki/Encode/H.264
https://www.anandtech.com/show/16252/mac-mini-apple-m1-tested
https://www.anandtech.com/show/16252/mac-mini-apple-m1-tested
https://developer-old.gnome.org/rsvg/unstable/RsvgHandle.html#rsvg-handle-new-from-data
https://developer-old.gnome.org/rsvg/unstable/RsvgHandle.html#rsvg-handle-new-from-data
https://gnome.pages.gitlab.gnome.org/librsvg/doc/librsvg/index.html
https://gnome.pages.gitlab.gnome.org/librsvg/doc/librsvg/index.html
https://developer.mozilla.org/en-US/docs/Web/SVG/Element/g
https://developer.mozilla.org/en-US/docs/Web/SVG/Element/g
https://developer.mozilla.org/en-US/docs/Web/SVG/Tutorial/Paths
https://developer.mozilla.org/en-US/docs/Web/SVG/Tutorial/Paths
https://developer.mozilla.org/en-US/docs/Web/SVG/Attribute/viewBox
https://developer.mozilla.org/en-US/docs/Web/SVG/Attribute/viewBox
https://www.w3.org/TR/2008/REC-SVGTiny12-20081222/
https://www.w3.org/TR/2008/REC-SVGTiny12-20081222/
https://www.rubydoc.info/github/sparklemotion/nokogiri/Nokogiri/XML/Reader
https://www.rubydoc.info/github/sparklemotion/nokogiri/Nokogiri/XML/Reader

Bibliography

[Pro] T. G. Project. Using RSVG with GIO: Functions. url: https://developer-
old.gnome.org/rsvg/unstable/rsvg-Using-RSVG-with-GIO.html#rsvg-
handle-new-from-stream-sync (visited on Sept. 7, 2021).

[Sch08] D. Schepers. SVG 1.2 Tiny Test Suite Implementation Matrix. Nov. 13, 2008.
url: https://www.w3.org/Graphics/SVG/1.2/Tiny/ImpReport.html
(visited on Sept. 7, 2021).

[Sug21a] H. Suga. Comment on BBB’s issue tracker. Aug. 7, 2021. url: https://github.
com/bigbluebutton/bigbluebutton/issues/12935#issuecomment-894724794
(visited on Sept. 7, 2021).

[Sug21b] H. Suga. Optional real-time update of whiteboard annotations (2.3). May 11, 2021.
url: https://github.com/bigbluebutton/bigbluebutton/issues/12345
(visited on Sept. 7, 2021).

[Wil+18a] E. Willigers, D. Schulze, D. Storey, C. Lilley, B. Brinza, and A. Bellamy-
Royds. Scalable Vector Graphics (SVG) 2. Candidate Recommendation. W3C,
Oct. 4, 2018. Chap. 11. url: https://www.w3.org/TR/2018/CR-SVG2-
20181004/.

[Wil+18b] E. Willigers, D. Schulze, D. Storey, C. Lilley, B. Brinza, and A. Bellamy-
Royds. Scalable Vector Graphics (SVG) 2. Candidate Recommendation. W3C,
Oct. 4, 2018. url: https://www.w3.org/TR/2018/CR-SVG2-20181004/.

[Wil+18c] E. Willigers, D. Schulze, D. Storey, C. Lilley, B. Brinza, and A. Bellamy-
Royds. Scalable Vector Graphics (SVG) 2. Candidate Recommendation. W3C,
Oct. 4, 2018. Chap. 8. url: https://www.w3.org/TR/2018/CR- SVG2-
20181004/.

53

https://developer-old.gnome.org/rsvg/unstable/rsvg-Using-RSVG-with-GIO.html#rsvg-handle-new-from-stream-sync
https://developer-old.gnome.org/rsvg/unstable/rsvg-Using-RSVG-with-GIO.html#rsvg-handle-new-from-stream-sync
https://developer-old.gnome.org/rsvg/unstable/rsvg-Using-RSVG-with-GIO.html#rsvg-handle-new-from-stream-sync
https://www.w3.org/Graphics/SVG/1.2/Tiny/ImpReport.html
https://github.com/bigbluebutton/bigbluebutton/issues/12935#issuecomment-894724794
https://github.com/bigbluebutton/bigbluebutton/issues/12935#issuecomment-894724794
https://github.com/bigbluebutton/bigbluebutton/issues/12345
https://www.w3.org/TR/2018/CR-SVG2-20181004/
https://www.w3.org/TR/2018/CR-SVG2-20181004/
https://www.w3.org/TR/2018/CR-SVG2-20181004/
https://www.w3.org/TR/2018/CR-SVG2-20181004/
https://www.w3.org/TR/2018/CR-SVG2-20181004/

	Acknowledgments
	Abstract
	Zusammenfassung
	Contents
	The BigBlueButton Web Conferencing System
	Introduction
	Functionality supported by the web player
	Existing approaches
	Requirements
	Functional requirements
	Non-functional requirements
	Additional features

	Theoretical Background
	Recording phases
	Encoding of the processed files
	Captions
	Chat
	Cursor
	Panzooms
	Video files
	Whiteboard

	Implementation
	Post-publish script example file
	Constants and switches
	Client-side export
	Exporting the presentation
	Whiteboard shape conversion
	Parsing whiteboard timestamps
	Rendering the chat
	Rendering the cursor
	Rendering the whiteboard
	The interval tree data structure
	Exporting whiteboard frames
	Rendering the video
	Adding captions and chapter marks

	PDF export feature
	Adding a base-uri option to FFmpeg
	Integration into Greenlight

	Benchmarking
	Performance improvements
	Static Analysis
	Dynamic Analysis
	Benchmarking the PDF export

	Conclusion
	Deployment
	Feedback
	Future work

	Acronyms
	Glossary
	List of Figures
	List of Tables
	Listings
	Bibliography

