
FAKULTÄT FÜR INFORMATIK

DER TECHNISCHEN UNIVERSITÄT MÜNCHEN

Master’s Thesis in Informatics: Games Engineering

Enabling Massive Parallelism for the
AutoPas Demonstrator MD-Flexible using

Adaptive Domain Decomposition

Jacky Körner

FAKULTÄT FÜR INFORMATIK

DER TECHNISCHEN UNIVERSITÄT MÜNCHEN

Master’s Thesis in Informatics: Games Engineering

Enabling Massive Parallelism for the AutoPas
Demonstrator MD-Flexible using Adaptive Domain

Decomposition

Realisierung von Massivem Parallelismus für den
AutoPas Demonstrator MD-Flexibe mit Hilfe von

Adaptiver Domänen Unterteilung

Author: Jacky Körner

Supervisor: Univ.-Prof. Dr. Hans-Joachim Bungartz

Advisor: Fabio Alexander Gratl, M.Sc.

Date: 15.10.2021

I confirm that this master’s thesis is my own work and I have documented all sources and
material used.
Munich, 15.10.2021 Jacky Körner

Acknowledgments

I want to thank the Scientific Computing Chair at TUM for enabling me to do the Master’s
Thesis in this topic and Fabio Gratl for being a relaxed and helpful supervisor.

Additionally, I want to say sorry to all my friends and family who had to relinquish my
presence at multiple events and who complained about me being a workaholic, only because
I tried to put as much time as expected from a student into this project. Thank you for
your patience!

vii

viii

Abstract

Real world scenarios in molecular dynamics simulations are highly complex and cannot
be efficiently approximated by single core applications. To achieve convincing results in a
reasonable amount of time, scientists use supercomputers with a large number of compute
units.

So far, the demonstrator MD-Flexible for the AutoPas particle simulation library was
limited to a single process. MD-Flexible now has been turned into a massively parallel
application using MPI for inter-processor communication and adaptive domain decomposition
for workload balancing. It subdivides the simulation domain into a regular grid which is either
balanced by ALL’s Tensor method or by the here presented Inverted Pressure method. After
taking a brief introduction into Molecular Dynamics and Adaptive Domain Decomposition,
we take a look at the technologies involved in the parallelization of MD-Flexible and compare
it to other well known massively parallel Molecular Dynamics applications. Before going
into detail about the implementation of massive parallelism, we explain on a high level how
MD-Flexible worked before and what has changed during the implementation. Next, we
describe the details about the adaptive domain decomposition, the resulting inter-process
communication and other requirements that arise from the parallelization. The result has
been evaluated by running three scenarios with up to 128 processes. The best speedup we
achieved using 128 processes is 40. The performance of the parallelization is investigated
during the evaluation and several suggestions are given on how it can be improved.

ix

x

Contents

Acknowledgments vii

Abstract ix

I. Introduction and Background 1

1. Introduction 2
1.1. General Applications for Massive Parallelism 2

1.2. Massive Parallelism for AutoPas’ MD-Flexible 2

2. Theoretical Background 4
2.1. Molecular Dynamics . 4

2.1.1. The N-Body Problem . 4

2.1.2. Reducing the Complexity of MD Simulations 4

2.2. Adaptive Domain Decomposition . 6

2.2.1. Different Domain Decompositions 6

2.2.2. Handling Communication and Inter-Domain Forces 8

3. Technical Background 10
3.1. AutoPas . 10

3.2. MD-Flexible . 11

3.3. ALL . 14

3.4. Technologies . 14

3.4.1. MPI . 14

3.4.2. Visualization Toolkit . 15

4. Related Work 16
4.1. GROMACS . 16

4.2. LAMMPS . 16

4.3. ls1-mardyn . 17

II. Refactoring MD-Flexible 18

5. High Level Application Architecture 19
5.1. Old Application Architecture . 19

5.1.1. Overview . 19

5.1.2. Initialization of the Simulation Component 20

xi

Contents

5.1.3. The old Simulation Loop . 21

5.2. New Application Architecture . 22

5.2.1. Overview . 22

5.2.2. Initialization of the new Simulation Component 23

5.2.3. The new Simulation Loop . 24

5.2.4. Minor Application Features . 24

6. Implementation 26

6.1. Adaptive Domain Decomposition . 26

6.1.1. Setting up the Regular Grid Decomposition 26

6.1.2. Diffuse Load Balancing of Regular Grid using the ALL load balancing
library . 31

6.1.3. Diffuse Load Balancing using the Inverted Pressure Method 32

6.2. Point-to-Point Communication for Sending and Receiving Particles 35

6.2.1. Serialization and Deserialization of Particles 36

6.2.2. Sending and Receiving Point-to-Point Messages 37

6.2.3. Step-wise communication with neighbor domains 38

6.3. Serial Simulation . 42

6.4. Meaningful Metadata . 43

6.5. Visualizing the Parallel Simulation . 44

6.5.1. Parallel Vtk Writer . 44

6.5.2. Creation of particle records . 45

6.5.3. Visualization of domains . 45

6.5.4. Additional information about domains and particles 48

III. Evaluation 51

7. Evaluation 52

7.1. Speedup And Efficiency . 52

7.1.1. Setup . 52

7.1.2. Results . 53

7.2. Detailed Discussion of the Scenarios Performances 54

7.2.1. Performance of Spinodal Decomposition Scenario 55

7.2.2. Performance of Falling Drop Scenario 55

7.2.3. Performance of Exploding Liquid Scenario 56

7.3. Comparing ALL’s Tensor Method the Inverted Pressure Method 58

IV. Future Work 60

8. General Performance Improvements 61

8.1. Configurable Load Balancing Interval . 61

8.2. Soften the Minimum Cell Size Restriction 61

xii

9. Improving the Adaptive Load Balancing 62
9.1. Improving Inverted Pressure . 62

9.1.1. Global Balancing along a coordinate axis 62
9.1.2. Improving Stability . 63

9.2. Increasing parallelism . 63

10.Other Improvements and possible Features 65
10.1. Thermostat and Homogeneity . 65
10.2. Extended Subdivision Constraint . 65
10.3. Proper Testing . 65

V. Summary 66

VI. Appendix 69

Bibliography 73

Part I.

Introduction and Background

1

1. Introduction

Molecular Dynamics Simulations are very complex by nature, not only due to the rules
defined by a specific scenario but also due to their increasing scale. For several decades now,
MD simulations are computed on massively parallel systems such as the supercomputers at
the Leibniz Rechenzentrum1. But without properly designing and implementing scalable MD
applications, researchers will not gain any advantage from a supercomputer’s computational
power. To harness this power applications requires additional development time and technical
knowledge. In return for this investment, previously unfeasible tasks can be realized in
a reasonable amount of time. In other words, massive parallelism can heavily reduce the
time-to-solution.

1.1. General Applications for Massive Parallelism

The usefulness of massively parallel applications extends far beyond Molecular Dynamics
simulations. Predicting weather and climate[8] or natural disasters like earthquakes[12] are
computationally very challenging tasks and greatly benefit from supercomputers to swiftly
create accurate results.

In general, every computational task requiring large amounts of data benefits from a
parallel implementation. This is also the case in medicine where it is key to quickly visualize
data, for example, created by computer tomography. If doctors have faster access to
the visualized data, they are able to develop a diagnosis and treatment much earlier[13].
Pharmaceutic companies require the visualization of data created by electron microscopes
to analyze errors in concoctions or to reproduce products of other companies.

Massive parallelism is also heavily used to speed up the training of neural networks.
Researchers at the TU Kaiserslautern managed to achieve a speedup of six when training a
residual neural network on 256 cores by using a layer-parallel approach[5].

1.2. Massive Parallelism for AutoPas’ MD-Flexible

With AutoPas being one of the few auto-tuning libraries, demonstrating its effectiveness
when using many nodes is essential. Many MD scenarios are very non-homogeneous and can
greatly benefit from node level tuning.

Although AutoPas is a node-level auto-tuning library, its demonstrator application MD-
Flexible does not need to be limited to a single node. In fact, because of the complexity of
MD simulations, users are much more interested in the performance of AutoPas on large
scale machines when used in a (MPI) parallelized software.

Having a demonstrator with multiple well known scenarios running on massively parallel
systems benefits the adaption rate for the AutoPas library. Possible users now are able to

1https://www.lrz.de/english/

2

https://www.lrz.de/english/

1.2. Massive Parallelism for AutoPas’ MD-Flexible

quickly compare performance and implementation to other MD libraries, use MD-Flexible
as a basis for their own simulations, and decide whether AutoPas is suited to their purpose.

Until now, MD-Flexible has not been able to demonstrate the inter-node tuning feature
implemented in AutoPas. Including massive parallelism in MD-Flexible turns it into a
feature-complete demonstrator.

3

2. Theoretical Background

Before we talk about how massive parallelism has been integrated into MD-Flexible, it is
important to understand the purpose of Molecule Dynamics simulations and why they are
extremely complex. Based on this knowledge, we can highlight techniques from Adaptive
Domain Decomposition and other methods to reduce the time-to-solution.

2.1. Molecular Dynamics

The purpose of Molecular Dynamics is ”understanding the properties of assemblies of
molecules in terms of their structure and the microscopic interactions between them”[2].
These interactions occur on a microscopic range and time scale and, therefore, cannot be
observed properly using traditional methods. In addition, not every environment is suited
for practical experiments. For instance, how would researchers be able to observe the nuclear
fusion occurring in the inside of the sun? Molecular Dynamics simulations allow researchers
to visualize arbitrary scenarios which are only limited by compute resources. From those
visualizations they are able to gain previously unobtainable insights.

2.1.1. The N-Body Problem

Molecular Dynamics Simulations are categorized as N-Body Simulation. In simple words,
N-Body Simulations consist of particles interacting with each other. Depending on the
range of the interactions, the simulations can turn into a problem of O(N2) complexity,
because each of the N particles interacts with every other particle, with N corresponding
to the number of particles in the simulation. Reducing this complexity is one of the main
challenges in MD and is referred to as the N-Body Problem. Interactions can be categorized
into long-range and short-range interactions. Both have dedicated solutions to this problem.

2.1.2. Reducing the Complexity of MD Simulations

Short-range interactions are most prevalent in Molecular Dynamics. Their complexity can
be reduced by minimizing the number of particles which need to be checked whether they
interact with a particular particle or not. The distance check used to determine if an
interaction occurs between particles uses a cutoff radius rc: If a particle lies within this
radius around another particle, these two particles will interact with each other. Along
with the naive Direct Sum approach, there are two other common techniques to reduce
the number of distance checks called Linked Cells and Verlet Lists. Understanding
these approaches is important when introducing massive parallelism as they influence which
particles need to be communicated between processors.

4

2.1. Molecular Dynamics

Figure 2.1.: Depicts a constructed exploding liquid scenario. Looking at the red particle,
with the green circle indicating the cutoff distance, the distance check needs to
be applied to every other particle within the domain, when using the Direct
Sum approach. 55 distance checks need to be performed for the red particle.

Figure 2.2.: Using the Linked Cells approach, the number of particles which need to be
checked for the red particle has been reduced to 6 because only the particles
within the blue cell and the particles within the neighboring cells need to be
checked. Two of the 6 particles are actually within the cutoff radius.

Figure 2.3.: The Verlet Lists approach reduces the number of distance checks for the red
particle to 5. Additionally, the three particles which are close to being within
the cutoff radius are likely to migrate into the radius in upcoming iterations.
The light green circle represents rc + rskin while the dark green circle represents
rc.

The simple Direct Sum approach (see Figure 2.1) is only using the cutoff radius as a
criterion to determine required interactions. Here, the distance check needs to be performed
for every particle which results in a complexity of O(N2).

The Linked Cells works by cutting the simulation domain into cells with a side length
which is larger or equal to the cutoff radius. Now only the particles in the neighboring cells
need to be tested if they lie within the interaction radius (see Figure 2.2). This reduces
the complexity to O(N) if the number of cells is proportional to the number of particles.

5

2. Theoretical Background

Nonetheless, some particles will be tested which are, in the worst case, two times the diagonal
of a cell apart, which is more than two times the cutoff radius.

To overcome this issue, the Verlet Lists approach creates a list of neighbor particles for
every particle, where each neighbor is likely to interact with this respective particle (see
Figure 2.3). This can be achieved by increasing the cutoff radius by a skin width rskin. Using
this skin includes particles into the lists which are likely to become interacting neighbors in
the near future. This also allows the simulation to reuse the same Verlet Lists over multiple
iterations. Reconstructing these lists every time step would degrade the approach to the
Direct Sum. When constructing the Verlet Lists with the help of the Linked Cells approach,
the complexity of the distance checks can be reduced to O(N). In addition, the worst case
distance of a possibly interacting particle is reduced to rc + rskin instead of two times the
diagonal of a cell as in the Linked Cells approach. To determine which particles will be part
of the Verlet List for a specific particle, only the particles in the same cell or in adjacent
cells need to be checked.

2.2. Adaptive Domain Decomposition

Not only is it essential to minimize the number of distance checks to reduce the runtime
of a simulation, but also to parallelize the simulation with help of Adaptive Domain
Decomposition.

This concept refers to the process of subdividing the simulation domain into subdomains
while maintaining a balance between those domains over the course of the simulation. The
resulting subdomains are distributed among a set of processes which are responsible for
simulating their assigned region. Balance is maintained by ensuring that each process
performs a similar amount of work. This can be achieved by resizing the subdomains
according to the topology of the domain or the work performed by the processes. A
developer implementing Adaptive Domain Decomposition faces three major challenges:
Actually creating a proper decomposition, handling the communication between processes,
and balancing the work performed by the processes.

2.2.1. Different Domain Decompositions

A domain can be subdivided in many ways, from a simple grid decomposition, to a hetero-
geneous mesh decomposition constructed out of different polygons. To decide which type
of decomposition is most suitable depends not only on the scenario or the time available
to implement a solution, but also on the hardware topology of the system on which the
scenario is simulated. A system’s layout influences communication time and a proper domain
subdivision can reduce congestion in it’s communication network. The hardware aspect will
not be considered during the integration of massive parallelism into MD-Flexible, because
the main goal is to focus on Adaptive Domain Decomposition.

Two well known tools for domain decomposition are Grids and Octrees. While MD-
Flexible only provides a regular grid decomposition, the advanced octree decomposition is
well worth mentioning in this context.

Regular Grid Decomposition subdivides the domain into a grid of subdomains, where
the number of subdomains is equal to the number of processes. Not only is it easy to

6

2.2. Adaptive Domain Decomposition

implement, but the domain neighbor lists, which are required later for communication, only
have to be computed a single time. Additionally, the grid does not need to be reconstructed
during load balancing. The developer just needs to shift the respective division planes
between the subdomains. Unfortunately, this comes with a major drawback: The subdomains
cannot be resized arbitrarily because they are restricted to the same neighbors / position in
the subdivision grid. When increasing the size of a single subdomain, every other subdomain
in the respective column needs to be enlarged, too, even if they are well balanced.

Figure 2.4.: A grid decomposition of the Exploding Liquid scenario.

In contrast to the Grid Decomposition a tree-based subdivision like the Octree Decom-
position generates a locally refined mesh which is generated by subdividing each domain
recursively into eight equal sized subdomains. The recursion stops if a subdomain contains
less than a predefined number of particles or has reached a minimum domain size. Because
the number of subdomains may be larger than the number of available processes, they need
to be explicitly assigned to a process. This can be very challenging, because not only is it
required to balance the workload of the processes but also to minimize the communication
between processes. Additionally, parts of the decomposition need to be recomputed during
load balancing. Consequently, the domain neighbor lists need to be recomputed. Therefore,
the computational costs of maintaining a proper Octree Decomposition are potentially much
higher compared to the Grid Decomposition.

Alternatively to stopping the recursion based on the particle count, it can be stopped
as soon as the subdomain count is equal to the number of processes available. Using this
approach, each subdomain can be assigned to a single processor. Unfortunately, this does
not result in a well balanced decomposition, because some subdomains of the octree might
have very few particles or might even be empty (see quadtree example in Figure 2.5). On
top of that, the user is restricted to use a number of processes which is a multiple of eight.

Figure 2.5.: A quadtree decomposition with four levels on the exploding liquid scenario. A
quadtree is the equivalent to an octree but in 2D instead of in 3D. It is clearly
visible that some of the subdomains do not contain any particle which leaves
processes inactive if every process is assigned a single subdomain.

7

2. Theoretical Background

After creating the domain subdivision, each process only knows about its own subdo-
main(s). Therefore, to retain a continuous and realistic simulation processes are required to
communicate with each other.

2.2.2. Handling Communication and Inter-Domain Forces

The majority of this communication comes from particles which may migrate from one
subdomain to another, or from particles of an adjacent domain required to compute all
forces on particles within the domain. In the second case, the communicated particles are
considered halo particles. These particles are not actually owned by the receiving process,
but are nonetheless stored on the process’s local memory. Which particles are considered
halo particles is determined by a halo region surrounding every subdomain. The designer of
the simulation needs to define the width of the halo region which can be oriented around the
cutoff radius and the skin width used in Verlet Lists method. To be able to communicate
the particles, a process needs to know which other processes own the domains adjacent to
his own. Maintaining those domain neighbor lists can be, depending on the subdivision,
very expensive because it requires synchronization and additional communication between
the processes.

Using halo particles comes with several drawbacks. First of all, every halo particle is an
additional particle which needs to be simulated within a subdomain increasing the total
workload on the processors. Second, this concept does not take advantage of Newton’s
third law Fij = −Fji where Fij is the force exerted from particle j on particle i. For each
halo particle, we do a force calculation which will also be calculated on the process owning
the original particle. On top of that, storing the halo particles consumes additional local
memory and keeping them up to date introduces additional communication every time step.

An alternative to halo particles is the eighth shell method [7]. Using this method, a process
receives all particles within cutoff radius around it’s domain from seven neighbor processes
in total, assuming that the simulation domain has been divided into a regular grid. The
receiving process then calculates the force updates for owned particles and all particles it
received. The results for each particle are then send to their original processes.

An equivalent method in 2D could be considered a fourth shell method. According to the
the authors of the paper about Algorithms for Highly Efficient Load-Balanced, and Scalable
Molecular Simulation[7], the method can be described in the following way: Assuming a
two dimensional domain is decomposed into a regular grid, the neighbors of a subdomain
can be categorized into quadrants. The neighbor domain above the reference domain is
tagged as N for ”north of domain” while the domain at the top left of the reference domain
is tagged as NE for ”north-east of domain”. Following this approach, each neighbor domain
receives a unique tag from the following tag list: N , NE, E, SE, S, SW , W , and NW .
An example for this setup is illustrated in Figure 2.6. Each subdomain then receives the
relevant particles from the quadrants locally tagged as N , NE and E, calculates the force
updates for all particles, and sends the results back to the quadrants. Simultaneously the
reference domain sends the particles required from the quadrants tagged as S, SW and
W . The processes responsible for those quadrants calculate the force updates and send
the results back to the reference domain. Now the domain can correctly update it’s owned
particles. A visualization in 2D and in 3D can be seen in Figure 2.6.

8

2.2. Adaptive Domain Decomposition

A E

N NE

SW

W

NW

S SE

rc

Figure 2.6.: The left image displays the fourth shell scheme. The particles in the blue region
owned by cells E, NE and N are send to A who calculates all force interactions.
The right image displays the eighth shell method where the particle information
in the regions marked from 1 to 7 are communicated to the corner cell marked
with a 0 [7]. rc refers to the cutoff radius.

The eighth shell method reduces the amount of local memory required to store particles of
neighbor domains and allows the simulation to calculate each force update only a single time.
It therefore takes advantage of Newton’s third law, thereby reducing the computational work
required for the force calculations. With this method the processes need to communicate
twice every time step which may strain the network.

The decision which approach to use should depend on the simulation and the hardware.
A simulation which is compute bound and running on a supercomputer with a fast network
would definitely profit from the eighth shell method. On the other hand, a communication
bound simulation should consider using the halo particle approach.

Although the eighth shell method is in theory more efficient, MD-Flexible implements
halo particles. AutoPas containers do not calculate forces between particles which they do
not own. Until this is changed, AutoPas does not support the eighth shell method.

9

3. Technical Background

But what actually is the purpose of AutoPas? Because a large amount of MD-Flexible’s
features are directly linked to AutoPas we will have a look at the library and MD-Flexible
itself. Additionally, we will learn details about ALL and the most important technologies
used for the parallelization of MD-Flexible.

3.1. AutoPas

AutoPas is a C++ library allowing users to automatically tune the node-level performance
after integrating it into their particle simulations. It has been developed by the Chair for
Scientific Computing in Computer Science at the Technical University of Munich.

AutoPas acts as a data container which handles particle updates, node-level optimizations
and shared memory parallelization. For the users, the AutoPas container is a black box which
only allows them to initialize particle properties, access particles, and define short-range force
interactions between particles. In addition to the black-box container, AutoPas provides a
functor and a particle class for the Lennard-Jones potential commonly used in molecular
dynamics.

To minimize the number of distance checks when determining required pairwise interactions
between particles, AutoPas chooses between Linked Cells, Verlet Lists, the combination
of both, or other algorithms based on the two methods. Which optimization approach is
chosen is determined during tuning phases where the performance of selected methods will
be tracked for several iterations. The method with the best performance will then be used
for the simulation until the next tuning phase is triggered. Users can decide to share the
tuning results with other AutoPas containers running on different nodes if they use MPI
parallelization within their simulation. The containers then commit their tuning results
into a common knowledge base which can be used by other containers to decide which
optimization strategy they want to employ.

AutoPas is not required to run on multiple nodes and therefore the inter-node tuning
feature needs to be enabled manually. The library can be used in a massively parallel
simulation nonetheless which is demonstrated by the example application MD-Flexible. The
demonstrator uses the interface functions addParticle(), addOrUpdateHaloParticle(),
updateContainer(), resizeBox(), getNumberOfParticles(), iteratePairwise(), and
getCutoff() which are all provided by the AutoPas container. Two iterators, also provided
by the AutoPas container, allow MD-Flexible to access specific particles within the container.
The addParticle() and addOrUpdateHaloParticle() functions can be used to include
additional particles into the container, the updateContainer() function updates it’s the
internal data, returns particles which left the container’s domain boundaries and indicates if
it actually has been updated. The domain boundaries can be changed using the resizeBox()
function. The getNumberOfParticles() function is used to retrieve how many particles
are currently simulated by the container. iteratePairwise() allows users to pass a functor

10

3.2. MD-Flexible

which will then be used to calculate pairwise interactions between particles. Using the
getCutoff(), the cutoff distance configured for the container can be retrieved.

In addition to the already mentioned interface members, MD-Flexible uses several setters
and other functions to configure the AutoPas container during initialization. All interface
functions are documented either in the source code or in the official AutoPas documentation
on github1.

3.2. MD-Flexible

The MD-Flexible application is intended to be a showcase for AutoPas. It serves not only as
a means to evaluate AutoPas’ potential but also helps developers to integrate it into their
own applications, themselves.

After downloading and building the application, the users can run several basic scenarios.
These scenarios are generated using particle clusters of a predefined shape like a sphere
or several types of blocks. The blocks differentiate themselves by the way the particles
are positioned inside the block. The particles within the blocks can either be very close
packed, positioned according to a Gauss or Uniform distribution or positioned on a grid.
Alternatively to using these objects to initialize the particles, the users are also able to load
a previously recorded simulation state. The particle objects and other configuration values,
including all AutoPas parameters, can be defined for each scenario individually either by
using command line arguments or a configuration file.

The Falling Drop scenario uses three different objects to simulate a drop falling into a
body of the same liquid as can be seen in Figure 3.1. The sphere object is used to create
the drop and the body of liquid is created using the grid where the particles are packed
closest. Because the scenario employs a global force to simulate gravity, particles need to be
prevented from falling ”below ground”. For this reason, the setup incorporates a grid block
of particles with an infinite mass. The high mass prevents the particles from moving which
leaves the grid block acting like a floor. In general, the scenario uses periodic boundaries so
particles can wander from one side of the simulation domain to the other.

The Spinodal Decomposition Equilibration uses the grid block object to fill the
domain with particles. The simulation then runs for one million iterations leaving the
particles in an equilibrium state. The record of this state is required by the Spinodal
Decomposition scenario. Starting from this record, the scenario then drops the temperature
forcing the particles to build clusters. Figure 3.2 shows the scenario after 30000 iterations.

The last scenario for which MD-Flexible provides a configuration file is the Exploding
Liquid scenario visible in Figure 3.4. It also uses the block with the closest packed particles
as initial state to simulate a rapidly expanding liquid.

1https://github.com/AutoPas/AutoPas

11

https://github.com/AutoPas/AutoPas

3. Technical Background

Figure 3.1.: The initial state of the Falling Drop scenario. Here, it is easy to discern which
particles have been initialized using the sphere object.

Figure 3.2.: The final state of the Spinodal Decomposition scenario with 30000 iterations.

12

3.2. MD-Flexible

Figure 3.3.: The Exploding Liquid scenario at 250 iterations in the simulation. This image
has been created using the test configuration described in Subsection 7.1.1.

Figure 3.4.: The Exploding Liquid scenario after 50000 iterations in the simulation. This
image has been created using the test configuration described in Subsection 7.1.1.

All of these scenarios can be run using a single or multiple processes. Based on number of
processes, MD-Flexible will automatically generate a grid decomposition. The users can also
configure along which coordinate axes the application is allowed to subdivide the simulation
domain. For instance, because the Falling Drop scenario employs a global downwards force,

13

3. Technical Background

it might be reasonable to limit the subdivision to the x and y axis because gravity will then
implicitly balance the load along the z axis. How this restriction is realized will be described
in Subsection 6.1.1.

3.3. ALL

The new MD-Flexible application implements two approaches to the adaptive load balancing
of the grid decomposition. A custom algorithm based on pressure (see Subsection 6.1.3) and
the Tensor Method provided by ALL2 which is developed by the Simulation Laboratory
Molecular Systems of the Juelich Supercomputing Centre at the Research Centre Juelich
(Forschungszentrum Jülich GmbH) in Germany. The library is free of charge and provides
three load balancing schemes commonly used with simulations employing domain decompo-
sition: The Tensor Method, the Staggered Grid Method and the Histogram Method. While
the Tensor method assumes that individual domains can be balanced by equalizing the load
in each cartesian direction, the Staggered Grid Method takes a hierarchical approach to
balance the load on the processes. First, all domains will be balanced which share the same
cartesian coordinate index in the highest dimension (z in 3D). Afterwards, the planes in
the decomposition sharing the same coordinate index considering the next lower dimension
(y in 3D) will be balanced. Last, the individual subdomains load is compared with the
direct neighbors and shifted along the next lower dimension (x in 3D). It results in better
load balancing compared to the Tensor Method, but requires the domain neighbor lists to
be updated. The Histogram Method works globally and requires the creation of partial
histograms to compute a global histogram and, finally, a global work distribution. The
partial histograms can be created by calculating the number of particles along a direction
in each dimension. This results in the most optimal load balancing but causes the most
communication. [6]

The Tensor Method has been implemented in MD-Flexible mainly because its simplicity.
It also suits best to compare and evaluate the performance of the Inverted Pressure load
balancing method, as both use a non-staggered grid for domain decomposition.

3.4. Technologies

AutoPas and MD-Flexible are implemented in C++ and use OpenMP for thread-level paral-
lelism, the Message Passing Interface (MPI) for node-level parallelism and the Visualization
Toolkit (VTK) to display the generated data.

3.4.1. MPI

As mentioned in the theoretical background, processes need to communicate information
between each other. This is achieved with help of MPI which has grown to be the industry
standard for message passing between processes since it’s initial release in 1994. There are

2https://slms.pages.jsc.fz-juelich.de/websites/all-website/

14

3.4. Technologies

many implementations of the interface like OpenMPI3, the Intelr MPI Library4 or MPICH5.
MPI supports a wide range of features commonly used in HPC.

In short, MPI is an interface to pass messages between processors. It provides methods
for point-to-point, all-to-one, one-to-all, and all-to-all communication, as well as tools for
explicit synchronization. In addition, users are able to group processes into communicators
allowing them to restrict communication to a specific set of processes.

An application which integrates MPI is classified as Single-Program-Multiple-Data (SPMD).
This means that the application runs the same code on multiple processes, which are called
ranks, where each rank is responsible for a different set of data. In this class of application,
there is always a tradeoff between introducing redundant computations and additional
communication. The developers need to make a decision which option they prefer. This will
come up several times in Part II.

3.4.2. Visualization Toolkit

The Visualization Toolkit6 (VTK) provides software for displaying and manipulating scientific
data. It is developed by the company Kitware7 which also develops other well known tools
like CMake and Paraview8.

The toolkit offers different file types to visualize various kinds of scientific data9. Each file
type offers a serial definition used by applications which only run on a single process and a
parallel definition for multi process applications. For instance, for visualizing image data
VTK defines two XML file types: .vti for serial applications and .pvti for parallel applications.
The toolkit also provides equivalent file types for rectilinear grids (.vtr and .pvtr), structured
grids (.vts and .pvts), unstructured grids (.vtu and .pvtu), and unstructured data (.vtp and
.pvtp).

VTK also includes C++ libraries to generate files of each file type, which then can be
displayed using Paraview. Alternatively, these records can also be generated manually which
is the case in MD-Flexible.

3https://www.open-mpi.org/
4https://software.intel.com/content/www/us/en/develop/tools/oneapi/components/mpi-

library.html
5https://www.mpich.org/
6https://vtk.org/
7https://www.kitware.com/
8https://www.paraview.org/
9https://kitware.github.io/vtk-examples/site/VTKFileFormats/

15

https://www.open-mpi.org/
https://software.intel.com/content/www/us/en/develop/tools/oneapi/components/mpi-library.html
https://software.intel.com/content/www/us/en/develop/tools/oneapi/components/mpi-library.html
https://www.mpich.org/
https://vtk.org/
https://www.kitware.com/
https://www.paraview.org/
https://kitware.github.io/vtk-examples/site/VTKFileFormats/

4. Related Work

Because Massive Parallelism has been around for several decades, there are some well
established molecular dynamics projects implementing their own approaches to domain
decomposition, or workload sharing, in general.

4.1. GROMACS

GROMACS1 was first introduced in 1995 by H.J.C Berendsen, D. van der Spoel and R. van
Drunen[3]. Although initially, users had to pay to get access to GROMACS, it is now licensed
under GNU Lesser General Public License. It is primarily designed for the simulation of
biomolecules, supports GPU acceleration using Nvidia’s CUDA GPU programming language
and is updated multiple times a year.

In contrast to MD-Flexible, GROMACS does not use halo regions to store particles of
neighbor domains. Instead it uses the eight shell method to avoid the redundant force
calculations. Also it uses a staggered grid approach allowing subdomain boundaries to shift
almost independently along a single dimension. This improves the overall load balancing
as it enhances the local refinement capabilities of the grid decomposition. But because
the domain neighbor lists may change during rebalancing, maintaining a staggered grid
introduces additional communication as processes are required to update their domain
neighbor lists every time the subdomains have been rebalanced. [1]

4.2. LAMMPS

Another well known project is LAMMPS2. It is based on LAMMPS 2001 which has been
developed under a cooperative research & development agreement since 1990. The current
release is licensed under the GNU general public license version 2. It is still being developed
and on average releases one update each year. LAMMPS simulations can run on hybrid
compute clusters containing both GPUs and CPUs[4].

In addition to a full shell spatial-decomposition scheme using halo particles, LAMMPS
implements two alternative decomposition approaches.

The Atom-Decomposition disperses all particles equally to all processors. The particles
which are assigned to a single processor need not to be spatially related in any way. Each
processor then is responsible for simulating the assigned particles during the entire simulation
which means that particles do not move between processes. This approach not only requires
all-to-all communication in each iteration, but also ignores Newton’s third law. According to
the paper by Steve Plimpton, Atom-Decomposition runs best on a small number of processes
or setups where communication cost are expected to be negligible[10].

1http://www.gromacs.org/
2https://www.lammps.org/

16

http://www.gromacs.org/
https://www.lammps.org/

4.3. ls1-mardyn

The second decomposition scheme takes the force matrix F , consisting of all force in-
teractions between particles, and distributes the required force interactions equally to all
processes. If only short-range interactions are being considered, this force matrix F is sparse
and can be efficiently distributed using well known block-decomposition schemes common in
linear algebra. The Force-Decomposition scheme also requires all-to-all communication to
update the force matrix, but takes advantage of Newton’s third law[10]. If the relation N/P
is small, where N refers to the number of particles and P to the number of processes, this
approach outperforms LAMMPS’ spatial decomposition approach which performs better
with growing N/P . [10]

4.3. ls1-mardyn

The last project we want to mention is the ls1-mardyn3 Molecular Dynamics code base
originally developed by the High Performance Computing Center Stuttgart in collaboration
with several German universities. Now, it is mainly extended and maintained by the Chair
of Scientific Computing at the Technical University of Munich. It focuses on the simulation
of thermodynamics and nanofluidics. In 2019 a simulation using ls1-mardyn achieved the
world record for the largest particle simulation with over 20 trillion particles[11].

When it comes to load balancing, ls1-mardyn uses an approach similar to k-d trees. It
recursively subdivides the simulation domain along division planes which are perpendicular
to a coordinate axis. To guarantee the best load balancing, the optimal division plane with
the least load imbalance is selected from all possible division planes. The recursion will stop
a soon as every subdomain has been assigned to a process. ls1-mardyn also supports diffuse
load balancing based on the ALL load balancer. [9]

3https://www.ls1-mardyn.de/home.html

17

https://www.ls1-mardyn.de/home.html

Part II.

Refactoring MD-Flexible

18

5. High Level Application Architecture

Before massive parallelism was enabled in MD-Flexible, it implemented only thread-level
parallelism, mainly through AutoPas. The design also did not incorporate a possible massively
parallel implementation in the future. In other words, integrating massive parallelism turned
out to be a challenging task, not only because of the complexity imposed by the domain
decomposition and the load balancing, but also because several application components were
not suited for usage in a parallel environment.

5.1. Old Application Architecture

5.1.1. Overview

Figure 5.1.: An overview of the
old MD-Flexible ap-
plication.

The original application consists of four major components.
The Parser, the Configuration, the AutoPas Container,
and the Simulation. All components are represented in
their own class, while the AutoPas container is provided by
the AutoPas library. An overview of the program flow can
be seen in Figure 5.1. The Parser is responsible for parsing
and validating a provided configuration file while the Con-
figuration is taking care of storing the parsed values and
for the initialization of the simulation domain. The Simu-
lation component needs to be initialized using an AutoPas
container and a valid Configuration. It is responsible for
the initialization of the particles and for the orchestration
of the simulation. The particles are initialized based ei-
ther on the objects defined in the configuration file (see
Section 3.2) and / or on a checkpoint file and are then
assigned to the AutoPas container. Subsequently, the
simulation will be executed. If it is successful and the
respective configuration parameters have been set, the
application prints execution statistics to the console and
creates a configuration file containing the configuration
which has been used for the simulation.

The Configuration component provides functions to initialize the particles based on objects.
Aside from this fact, the initialization of the component is very straightforward and therefore
unimportant for the refactoring of MD-Flexible. The same holds for the creation of the
AutoPas container as it’s implementation was not touched during refactoring.

19

5. High Level Application Architecture

5.1.2. Initialization of the Simulation Component

Figure 5.2.: An overview of the
old initialization of
the Simulation com-
ponent.

It is necessary, though, to look at how the Simulation com-
ponent has been initialized in the old application. The
important steps are summarized in Figure 5.2. During
the initialization of the AutoPas container MD-Flexible
defines the extend of the container’s simulation domain,
along with several other configuration parameters. In
the old application, the size of the domain corresponds
to the global simulation domain. It is therefore defined
by the global box’s minimum and maximum coordinates
represented by the front bottom left corner and the back
top right corner of the global domain. After the container
has been initialized, the particles will be created using the
checkpoint file, if it has been configured, along with the
objects defined in the configuration. Because the container
encapsulates the whole simulation domain, it is certain
that it will hold every particle in the simulation. This
allows us to blindly assign the particles to the container,
which is not the case in the new application, as we will
show later in Subsection 5.2.2. In the last step of the Sim-
ulation initialization, the Thermostat is initialized which
is responsible for maintaining the temperature during the
simulation.

Figure 5.3.: This figure shows the shifting of migrating particles in a 2-dimensional domain
with periodic boundaries. The red and green circles represent particles and the
arrows migration and shift translations. The left picture shows the particles
before leaving the domain and their movement directions, the middle picture
shows the particles being shifted along the horizontal coordinate axis, and the
right picture shows the particles being shifted along the vertical coordinate axis.
Note, that the red particles need to be shifted twice so that they end up in their
proper position.

20

5.1. Old Application Architecture

5.1.3. The old Simulation Loop

Figure 5.4.: An overview of MD-
Flexible’s old simulation
loop.

The simulation loop (see Figure 5.4) is the heart of the
application and has seen most of the changes during
the integration of massive parallelism. Initially, it con-
sisted of five major steps, based on the Verlet-Störmer
Integration: The update of the particle positions, the
application of the boundary conditions to particles
which leave the simulation domain, the particle force
update, the particle velocity update, and last, the
temperature update.

As the first step, MD-Flexible calculates the new
particle positions based on the current velocity and
the current forces acting on each particle. This update
may cause particles to leave the simulation domain,
but because MD-Flexible uses periodic boundary con-
ditions, these particles need to be shifted, accordingly.
This is handled by the Boundary Conditions step. It
is essential to understand what is happening here as
the same problem needs to be addressed for a subdi-
vided domain. Leaving particles may cross a single
domain boundary for each dimension. In 2D, they
may cross two boundaries at the same time (three
boundaries in 3D) as can be seen in Figure 5.3. After

the migration is complete, the Boundary Conditions step creates the halo particles required
for a correct simulation of the particles near the periodic boundaries. This is illustrated in
Figure 5.5.

rc

Figure 5.5.: The creation of the halo particles in two steps. The left picture displays the
initial particles from which the halo particles will originate. The middle picture
shows the first step where the original particles are duplicated and the duplicates
shifted along the horizontal coordinate axis to their proper halo positions. The
right picture shows the third step, this time shifting and duplicating all relevant
particles (halo and originals) along the vertical coordinate axis. In both steps,
only the particles within the cutoff radius of the domain boundary need to be
addressed. The cutoff radius rc is equal to the width of a small cell.

21

5. High Level Application Architecture

Understanding the particle migration and the halo particle creation is very important, not
only for the sequential application, but also for the parallel version. Wrong implementations
can break any approach for the load balancing, which will be discussed later in Section 6.1.

The next two steps in the simulation loop update the forces acting on the particles and the
particles’ velocities. Both steps are not touched during the parallelization of MD-Flexible
and therefore will not be discussed in detail.

The last step in the loop is the update of the Thermostat which calculates the average
temperature of the simulation using the kinetic energy of the particles. In the sequential
application the resulting temperature automatically corresponds to the global temperature.
This is not the case in the parallel version and therefore needs to be addressed in the
implementation.

5.2. New Application Architecture

Figure 5.6.: An high level overview of MD-
Flexible after massive paral-
lelism has been enabled.

The massively parallel application has seen sev-
eral changes compared to the sequential version.
Before getting into detail about the implementa-
tion we need an overview of those changes and
want to understand why they have been imple-
mented. It is also important to keep in mind that
an application which integrates MPI is classified
as SPMD as mentioned in Subsection 3.4.1.

5.2.1. Overview

The new application flow includes some addi-
tional steps and changed how some of the pre-
viously existing steps work. An overview of the
flow can be seen in Figure 5.6.

As in the old architecture, the first step is
the initialization of the configuration component
based on the configuration file and / or on com-
mand line parameters. In contrast to the old
application, the particles will be initialized dur-
ing this first step instead of at the start of the
simulation. Each process loads all particles in
the global domain as the processes do not yet
know for which part of the domain they will be
responsible. This is decided in the new Regular
Grid Decomposition component which is initial-
ized directly after the initialization configuration
component. Based on the global domain bound-
aries and the number of available processes, the
Regular Grid Decomposition subdivides the do-
main into subdomains and decides for which subdomain the current process is responsible.
Alongside means to migrate particles and to update halo particles, it also provides functions

22

5.2. New Application Architecture

to update the domain decomposition using a diffuse work metric. All this is described in
detail in Section 6.1. Each process also gets assigned a domain index corresponding to
the MPI rank and a three dimensional domain ID corresponding to the position of their
subdomain in the decomposition grid.

This information is important when loading a potentially provided checkpoint. Particles
loaded from a checkpoint can be directly assigned to the correct process, if the currently
running application uses the same number of processes as were used when the checkpoint has
been created. If this is not the case, each process again needs to load all particles and then
only add those which lie within their subdomain into their respective AutoPas container.

After the domain decomposition has been created and eventual checkpoints have been
loaded, the Simulation component can be initialized and started.

5.2.2. Initialization of the new Simulation Component

Figure 5.7.: The inititilaztion of the Simu-
lation component in the mas-
sively parallel application.

The first step in the new simulation initialization
visualized in Figure 5.7 prepares the environ-
ment for the creation of the parallel recording
of simulation states. In the old application, the
Simulation component handled the creation of
the simulation records. This has been moved to
a new Parallel VTK Writer component which
provides functions to record the current state of
the particles and the current domain decomposi-
tion. This component will be described in detail
in Subsection 6.5.1.

Aside from the Parallel VTK Writer, the ini-
tialization of the new simulation component is
very similar to the old version. The AutoPas
container is not provided with the global domain
boundaries but is configured with the current
processes’ subdomain, and the creation of the
particles has been moved to the configuration
component, as mentioned before.

23

5. High Level Application Architecture

5.2.3. The new Simulation Loop

As in the old application, the new simulation loop (see figure Figure 5.8) is executed as long
as additional iterations are required, and again, the first step within the loop is to update
the particle positions. Afterwards, the application updates the AutoPas container and, if an
update of the AutoPas container actually occurred, rebalances the subdomains and migrates
the particles.

Figure 5.8.: The new Simulation Loop.

The boundary update step has been removed
because the boundary conditions are handled
during particle migration and the halo particle
update. The particles only need to be shifted
if their new position lies outside the global do-
main boundaries. This depends on the receiving
neighbor, who is determined before particles are
communicated. Additionally, the old implemen-
tation of the boundary condition update is not
compatible with the new communication scheme
described in Section 6.2.

After the halo particles have been exchanged,
only the updates for the particle forces and ve-
locities, as well as the update of the Thermostat
remain to be performed in the simulation loop.
Because the global domain has been subdivided,
the Thermostat step requires global communica-
tion to determine the current temperature. Here,
every process calculates the temperature of it’s
respective subdomain before receiving the local
temperature of the other processes so it can cal-
culate the global average.

5.2.4. Minor Application Features

So far, only the major features required to per-
form the actual MD simulation have been dis-
cussed. Additionally, MD-Flexible includes a
progress bar, a logger to get information during
runtime, and a simulation summary providing
data about the execution time of some steps in
the simulation.

The progress bar and the logger can be toggled and will only be displayed on the root
process’s output stream. The Timer component tracks the total execution time of the
application, the time it took to initialize the simulation, and the time required for the actual
simulation. Additionally, it tracks the timings for the update of the particle positions, forces
and velocities, the creation of the simulation records, the exchange of migrating particles
and halo particles, time required for load balancing, and thermostat update. All timings are
tracked locally for all the processes and will be summed up and printed to the configured

24

5.2. New Application Architecture

output stream at the end of the simulation. On top of that, the Timer also tracks the work
performed by a process since the last decomposition update. This work is not printed to the
output stream, but is used as a metric for the load balancing step in the simulation loop.

25

6. Implementation

Now that we have an idea of what has changed during the integration of massive parallelism
into MD-Flexible, we can take a detailed look at the implementation. It followed four major
goals: Retaining the possibility to run MD-Flexible serially, generating meaningful metadata
to be able to evaluate the application and to identify potential problems, the visualization of
particles and domain decomposition, and finally to enable massive parallelism using adaptive
domain decomposition.

6.1. Adaptive Domain Decomposition

The adaptive domain decomposition is the biggest addition to MD-Flexible. It influences all
other aspects of the refactoring and, therefore, is discussed, first.

6.1.1. Setting up the Regular Grid Decomposition

Before anything else, the global domain is decomposed into subdomains during the initial-
ization of the new RegularGridDecomposition class. With the help of MPI Comm size(),
MD-Flexible retrieves the number of available processes and decomposes the global domain
into an equal amount of subdomains which is stored in the variable subdomainCount. Each
MPI rank is then assigned a single subdomain. Note that the implementation does not
use MPI functions directly. It uses wrappers, instead, which have been created to retain
the capability to compile MD-Flexible without MPI. This is discussed in detail in section
Section 6.3. For the sake of simplicity, we will use the function names defined by MPI
instead of the function names defined by the MPI wrapper.

The new DomainTools class provides the function generateDecomposition() which is
responsible for generating the decomposition grid. This function takes, along with the
number of desired subdomains, an array containing three boolean values. These values
indicate which dimensions can be subdivided. An element of the array represents dimension
x, y, z, respectively. If a value is true, the corresponding dimension can be subdivided. This
allows users to restrict the subdivision to specific dimensions to do implicit load balancing
(refer to the end of section Section 3.2 for a detailed explanation).

The decomposition is generated by factorizing the variable subdomainCount with the
help of prime factorization1 using the Regular Grid Decomposition Generation algorithm
presented in Figure 6.1. After the prime factorization, the two smallest factors are multiplied
with each other to reduce the number of factors until there are only three or less left, one
for each subdividable dimension. This minimizes the difference in the number of cuts along
each dimension. As soon as the number of prime factors is less or equal than the number
of subdividable dimensions, the prime factors are stored in the decomposition variable.

1https://www.tutorialspoint.com/prime-factor-in-cplusplus-program

26

https://www.tutorialspoint.com/prime-factor-in-cplusplus-program

6.1. Adaptive Domain Decomposition

The variable stores the number of subdivisions along each dimension and is used for the
definition of the local subdomain and, later, for communication.

Algorithm 1: Regular Grid Decomposition Generation

Input: subdomainCount, subdivideDimension
Output: decomposition

1 Function generateDecomposition(subdomainCount, subdividableDimension):
2 int[3] decomposition
3 list primeFactors

// Calculate prime factorization

4 while subdomainCount % 2 == 0 do
5 primeFactors.push back(2)
6 subdomainCount = subdomainCount / 2

7 for i ← 3; i ≤ subdomainCount; i = i + 2 do
8 while subdomainCount % i == 0 do
9 primeFactors.push back(i)

10 subdomainCount = subdomainCount / i

// Determin number of subdividable domains

11 int numberOfSubdividableDimensions
12 for element in subdivideDimension do
13 numberOfSubdividableDimensions += element

// Shirnk factors to number of subdividable domains

14 while primeFactors.size() > numberOfSubdividableDimensions do
15 sort(primeFactors)
16 set firstElement = primeFactors.front()
17 primeFactors.pop front()
18 primeFactors.front *= firstElement

// Assign factors to decomposition

19 for i ← 3; i ≤ subdomainCount; i = i + 2 do
20 if not primeFactors.empty() and subdivideDimension[i] then
21 decomposition[i] = primeFactors.front()
22 primeFactors.pop front()

23 else
24 decomposition[i] = 1

25 return decomposition

Figure 6.1.: Algorithm to create a regular grid decomposition based on a target number
of subdomains and subdividable dimensions. It factorizes the number of sub-
domains using prime factorization and generates a grid subdivision from the
resulting factors.

27

6. Implementation

x

y

z

Figure 6.2.: A visualization of the planar communicators in a 3-by-3 grid decomposition of a
cube domain. In the left cube, all subdomains which share an equal x-coordinate
are grouped into a single communicator. The middle cube shows the grouping
by y-coordinate and the right cube by z-coordinate. The highlighted domain
has the domainId [2,1,0].

After the decomposition grid has been generated, the cartesian MPI communicator, which
is used for inter process messages, is initialized using MPI’s MPI Cart create() function.
Each subdomain is assigned a domainIndex which corresponds to the process’s rank within
the new communicator.

This information, along with the decomposition is then used to generate the local
domain’s id in the process grid. The domainIndex is passed to the MPI Cart get() function
to retrieve the position of the current process’s subdomain within the grid. The position is
then stored as the domainId, which afterwards is used to initialize the planar communicators
required for the Inverted Pressure load balancing algorithm described in Subsection 6.1.3.
It is important to note, that the domainId referes to a three-dimensional array storing the
position of the domain in the decomposition grid, while the domainIndex refers to the index
of all subdomains within an enumeration. Every process in the cartesian communicator
which shares an index at the same position in the domainId is considered part of the same
planar communicator, making each process part of three planar communicators. Figure 6.2
visualizes these communicators in a 3-by-3 grid decomposition. They are created using MPI’s
MPI Comm split() function. The method requires, along with the original communicator
and the domainId, a key which defines the rank of the process within the new communicator.
This key is generated by enumerating each process within the new communicators plane.

Before defining the process’s subdomain extent, the RegularGridDecomposition stores
the extent of the global simulation domain. The size of the process’s subdomain is determined
by the domainId and by the number of subdivisions along each dimension that are stored
in the decomposition variable. The width of a subdomain is defined by the number of
subdomains and by the global domain’s width along a coordinate axis. The resulting
subdomains all have the same side lengths. The minimum and the maximum value in a
subdomain are stored as localBoxMin and localBoxMax and are calculated according to
the process’s domainId, as can be see in the algorithm presented in Figure 6.3.

28

6.1. Adaptive Domain Decomposition

Algorithm 2: Initialization of a processes subdomain minimum and maximum
value
Input: domainId, decomposition, globalBoxMin, globalBoxMax
Output: localBoxMin, localBoxMax

1 Function initializeLocalBox():
2 for i ← 0 to 2 do
3 int localBoxWidth = (globalBoxMax[i] - globalBoxMin[i]) / decomposition[i]

4 localBoxMin[i] = domainId[i] * localBoxWidth + globalBoxMin[i]
5 localBoxMax[i] = (domainId[i] + 1) * localBoxWidth + globalBoxMin[i]

// Directly assign globalBoxMax value to avoid any numeric

errors

6 if domainId[i] == decomposition[i] - 1 then
7 localBoxMax[i] == globalBoxMax[i]

Figure 6.3.: Algorithm to determine front bottom left corner (minimum) and back top right
(maximum) coordinates of a process’s subdomain.

x

y

z

Figure 6.4.: The index of the highlighted subdomain is computed by summing up the number
of blue domains first, then adding the number of red domains and finally the
number of green domains.

The domain neighbor lists required for communication are created as the previous to
last step during the initialization of the RegularGridDecomposition class. Generating
the domain neighbor list does not require any communication between processes because
domainIndex and domainId are directly correlated. Therefore, the domain neighbors
domainIndex (which corresponds to the rank of the neighbor process) can be derived from the
current process’s domainId using the algorithm displayed in Figure 6.5. To map an id to the
corresponding index, the DomainTools library provides the function convertIdToIndex().
How this conversion works is illustrated in Figure 6.4. The communication scheme which is
described later in this Chapter only requires the direct neighbors excluding any diagonal
neighbors. Consequently, it is enough to compute six neighbor indices which are stored

29

6. Implementation

Algorithm 3: Initialization of the current process’s domain neighbors

Input: domainId, decomposition
Output: neighborDomainIndices

// Algorithm for domain neighbor initialization

1 Function initializeNeigborIndices():
2 int[6] neighborDomainIndices
3 for i ← 0 to 2 do

// Calculate index of left / preceeding neighbor

4 int neighborIndex = i * 2
5 int[3] preceedingNeighborId = domainId preceedingNeighborId[i] =

(preceedingNeigborId[i] + decomposition[i]) % decomposition[i]
6 neighborDomainIndices[neighbourIndex] =

convertIdToIndex(preceedingNeighbourId, decomposition)

// Calculate index of right / succeeding neighbor

7 int[3] succeedingNeighborId = domainId
8 succeedingNeighborId[i] = (++succeedingNeigborId[i] + decomposition[i]) %

decomposition[i]
9 neighborDomainIndices[neighbourIndex + 1] =

convertIdToIndex(succeedingNeighbourId, decomposition)

10 return neighborDomainIndices

// Algorithm to convert a domain id to its corresponding index

11 Function convertIdToIndex(domainId,decomposition):
12 int domainIndex = 0
13 for i ← 0 to 2 do
14 int accumulatedTail = 1
15 if index < decomposition.size() - 1 then
16 accumulatedTail = accumulate(decomposition.begin() + index + 1,

decomposition.end(), 1);

17 domainIndex = domainIndex + accumulatedTail

18 return domainIndex

Figure 6.5.: Algorithm to determine the current process’s domain neighbors. The resulting
indices correspond to the respective process’s rank. The function accumulate

is a placeholder to the c++ standard library function std::accumulate. Here, it
accumulates the given range by multiplying the values.

30

6.1. Adaptive Domain Decomposition

in pairs of left and right neighbors along each dimension. This means, that the first two
values in the resulting array correspond to the left and right neighbor along dimension x,
the second two values to the left and right neighbor along dimension y and the last two
values along dimension z.

Setting up the ALL’s Tensor load balancer is the final step in the initialization of the
decomposition. To initialize the load balancer, the following parameters are required: The
method which will be used for load balancing, the cartesian communicator which has been
created earlier, the number of dimensions used in the simulation, and a minimum subdomain
size. Refer to ALL’s official documentation2 for a detailed description on how to initialize
the load balancer.

During the initialization of the RegularGridDecomposition class, a flag mpiCommu-

nicationNeeded is enabled if multiple processes have been allocated for the application. It is
disabled otherwise. This flag is used to ensure that no communication occurs if MD-Flexibe
only runs on a single process and is discussed in more detail in Section 6.3.

6.1.2. Diffuse Load Balancing of Regular Grid using the ALL load balancing
library

Most of the variables initialzied during domain decomposition are used either for the
communication between processes or the Inverted Pressure load balancing method. ALL’s
Tensor load balancing method only requires the cartesian communicator at initialization
and the local box coordinates of the subdomain owned by the current process. During the
balancing step illustrated in Listing 6.1, MD-Flexible converts the local box boundaries to
the type ALL::Point which is defined by the library. These points then are passed to the
ALL load balancer along with the process’s performed work. Afterwards, MD-Flexible calls
the library function balance() which calculates the balanced local box coordinates. They
can then be retrieved using the getVertices() function and assigned to the local box.

To calculate the coordinates of the balanced local box, ALL takes the difference of the
work done by the process grid plane on the right and the left of the shiftable boundary. The
difference is then normalized and divided by combined domain sizes of the two involved
process grid planes along the shift direction. This means, ALL’s Tensor method does not
consider the global work along the shift axis, similar to the Inverted Pressure method, as we
will see in Subsection 6.1.3.

The shift length is also scaled by a factor 1
γ to improve the stability of the method. The

gamma value is calculated on the fly and cannot be influenced by the user.

The balanced coordinates are only calcualted by a single process in the process grid plane
an need to be communicated to the other processes afterwards.

1 void balanceWithAllLoadBalancer (const double &work) {
2 std : : vector<ALL : : Point<double>> domain (2 , ALL : : Point<double>(3)) ;
3
4 for (int i = 0 ; i < 3 ; ++i) {
5 domain [0] [i] = localBoxMin [i] ;
6 domain [1] [i] = localBoxMax [i] ;
7 }

2https://slms.pages.jsc.fz-juelich.de/websites/all-website/

31

https://slms.pages.jsc.fz-juelich.de/websites/all-website/

6. Implementation

8
9 a l lLoadBalancer−>s e tVe r t i c e s (domain) ;

10 a l lLoadBalancer−>setWork (work) ;
11 a l lLoadBalancer−>balance () ;
12
13 std : : vector<ALL : : Point<double>> updatedVert i ces = al lLoadBalancer−>

g e tVe r t i c e s () ;
14
15 for (int i = 0 ; i < 3 ; ++i) {
16 localBoxMin [i] = updatedVert i ces [0] [i] ;
17 localBoxMax [i] = updatedVert i ces [1] [i] ;
18 }
19 }

Listing 6.1: Implementation of the load balancing using ALL’s TENSOR method.

6.1.3. Diffuse Load Balancing using the Inverted Pressure Method

The Inverted Pressure load balancing method is based on the scenario depicted in Figure 6.6:
Two adjacent closed volumes of air each with a different air pressure press against a movable
wall between the domains.

A Bh

x0 x1 x2

Figure 6.6.: Base scenario of the Inverted Pressure Load Balancing Method. A and B are
the domains with different pressure and the red line represents the movable
wall. h represents the height of the domains and x0, x1 and x2 the coordinates
required to calculate the width of the domains.

If we assume that the pressure in domain A is higher compared to domain B, the pressure
of domain A would shift the movable wall to the right until the pressure in A and B are
equalized. But how do we calculate the new ideal position x′1 where the pressure is balanced?
First, we define pressure as ”work per area” in a given domain. So the pressure would be

PA = wA/aA

where wA is the work performed in domain A and aA refers to the area of A. The pressure
is defined for B, equivalently. As mentioned before, the scenario is in an equilibrium state if
PA = PB. With the area of the domains being aA = (x1 − x0) ∗ h and aB = (x2 − x1) ∗ h,
the following equation describes the balanced domains:

wA
(x1 − x0)h

=
wB

(x2 − x1)h

32

6.1. Adaptive Domain Decomposition

Unfortunately, using this equation to calculate the balanced x-position of the shiftable
wall would increase the area of A and therefore the work performed in A. This is exactly
the opposite of our goal. To counteract this, we just use the inverse of the pressure resulting
in the following equation:

(x1 − x0)h

wA
=

(x2 − x1)h

wB

Solving this equation for x1 tells us where to position the movable wall for a perfectly
balanced workload between domain A and B:

x′1 =
wBx2 + wAx0

wA + wB
(1)

The Inverted Pressure load balancing algorithm uses this equation to balance adjacent
planes in the process grid generated by the domain decomposition. For this, we first have to
calculate the average work performed in all subdomains in a process grid plane and send
the result to the respective neighbor process in the adjacent plane. Because the algorithm
only performs a local update, it is not required to share the average work of any other
process grid planes than the adjacent one. Having received the neighbor plane’s average
work, each participating process can calculate the shifted position, independently. This is
done in parallel for every pair of adjacent process grid planes along a coordinate axis. The
domains are first balanced along the x-axis, then along the y-axis and finally along the z-axis.
The algorithm does not consider already shifted planes but only uses the plane coordinates
as they were at the start of the load balancing.

Because the algorithm only takes the two adjacent planes into account, it is not globally
optimal and may even shift the minimum boundary of a domain to the right of the maximum
boundary. To counteract this, the load balancer only shifts the boundary by half of the
distance between the ”optimal” position and the old position. This does not reduce the
efficiency of the balancing because equation (1) only assumes that a single domain boundary
is shifted. In most cases though, both boundaries along a coordinate axis are shifted. So the
domain boundaries are shifted from both sides by half of the ”optimal” distance. Figure 6.7
and Figure 6.8 illustrate the algorithm in pseudo code. First, we need to make a backup
of the old local box coordinates as the local box might get overwritten before all data has
been sent. Also, it is important to use the old box values for the balancing of the domains.
Otherwise the balancing might create gaps between the domains which are not simulated by
any process.

The algorithm contains two separate loops which both iterate over the three coordinate
axis. The average work in a process grid plane is calculated during the first loop, along with
the non-blocking send calls to communicate the result to the respective neighbor processes.
The Allreduce(), Send() and Recv() functions used in the algorithm are placeholders for
MPI functions. The second loop handles the receive calls for the previously communicated
data. When the work of the adjacent plane has been received, the algorithm calls the
balanceAdjacentDomains() function which is part of the DomainTools library. Before
applying the balanced position to the local box, it is shifted by half of the original distance
in direction of the respective local box value. This prevents the minimum boundary from
shifting beyond the maximum boundary, as mentioned in the beginning of the previous
paragraph.

33

6. Implementation

The balanceAdjacentDomains() function does nothing more but evaluating equation (1)
which we derived in the beginning of the section.

This is the Inverted Pressure Method currently implemented in MD-Flexible. As we
will see in Part IV, there is much potential for improvement when it comes to efficient
communication and precision of the load balancing.

Algorithm 4: First half of Inverted Pressure Load Balancing

Input: work

1 Function balanceWithInvertedPressureLoadBalancer(work):
2 double[3] oldLocalBoxMin = localBoxMin
3 double[3] oldLocalBoxMax = localBoxMax
4 double[3] distributedWorkInPlane

// Iterator over coordinate axes

5 for dimensionIndex ← 0 to 2 do
// Calculate number of domains in process grid plane

6 int domainCountInPlane = decomposition[(i + 1) % dimensionCount] *
decomposition[(i + 2) % dimensionCount]

// Calculate average work in process grid plane

7 distributedWorkInPlane[i] = work
8 if domainCountInPlane ¿ 1 then
9 Allreduce (work, distributedWorkInPlane[i], planarCommunicators[i])

10 distributedWorkInPlane[i] = distributedWorkInPlane[i] /
domainCountInPlane

// Identify left and right neighbor

11 int leftNeighbor = neighborDomainIndices[i * 2]
12 int rightNeighbor = neighborDomainIndices[i * 2 + 1]

// Send work and box coordinates to the left and right neighbor

13 if localBoxMin[i] != globalBoxMin[i] then
14 Send (distributedWorkInPlane[i], leftNeighbor)
15 Send (oldLocalBoxMax[i], leftNeighbor)

16 if localBoxMax[i] != globalBoxMax[i] then
17 Send (distributedWorkInPlane[i], rightNeighbor)
18 Send (oldLocalBoxMin[i], rightNeighbor)

Figure 6.7.: The first half of the load balancing using the Inverted Pressure method.

34

6.2. Point-to-Point Communication for Sending and Receiving Particles

Algorithm 5: Second half of the Inverted Pressure Load Balancing

Input: work

1 Function balanceWithInvertedPressureLoadBalancer(work):
// Iterate over coordinate axes

2 for dimensionIndex ← 0 to 2 do
// Identify left and right neighbor

3 int leftNeighbor = neighborDomainIndices[i * 2]
4 int rightNeighbor = neighborDomainIndices[i * 2 + 1]

5 double neighborPlaneWork, neighborBoundary, balancedPosition
// Receive work from neighbour and balance left boundary

6 if localBoxMin[i] != globalBoxMin[i] then
7 Recv (neighborPlaneWork, leftNeighbor)
8 Recv (neighborBoundary, leftNeighbor)
9 balancedPosition = balanceAdjacentDomains (neighborPlaneWork,

distributedWorkInPlane[i], neighborBoundary, oldLocalBoxMax[i], 2 *
(cutoffWidth + skinWidth))

10 localBoxMin[i] += (balancedPosition - localBoxMin[i]) / 2

// Receive work from neighbour and balance right boundary

11 if localBoxMax[i] != globalBoxMax[i] then
12 Recv (neighborPlaneWork, rightNeighbor)
13 Recv (neighborBoundary, rightNeighbor)
14 balancedPosition = balanceAdjacentDomains

(distributedWorkInPlane[i], neighborPlaneWork, oldLocalBoxMin[i],
neighborBoundary, 2 * (cutoffWidth + skinWidth))

15 localBoxMax[i] += (balancedPosition - localBoxMax[i]) / 2

Figure 6.8.: The second half of the load balancing using the Inverted Pressure method.

6.2. Point-to-Point Communication for Sending and Receiving
Particles

With the regular grid decomposition set up, the only thing left for the processes to do before
the start of the actual simulation is to initialize their respective AutoPas container. As
mentioned in Subsection 5.2.2, each process only adds those particles to the container which
lie within their own subdomain. Consequently, processes need to communicate during the
runtime of simulation. To be exact, for any migrating particle or halo particle, following
particle attributes have to be included in the messages: Id, position, velocity, force, old
force, and type id. For us, it is not important to understand the purpose of these attributes.
It is only important to recognize, that the attributes have multiple data types.

35

6. Implementation

6.2.1. Serialization and Deserialization of Particles

The challenge here is to send the heterogeneous data using MPI, while MPI, by default, only
supports messages of a single data type. On top of that, particles are not communicated one
particle at a time, but in groups. To be able to send a single or multiple particles using a
single MPI message, each particle needs to be serialized, send and finally deserialized, once
received by another process.

In C and C++, the simplest way to serialize heterogeneous data is to store the data in
a struct, create a pointer of the desired message type pointing at the struct in memory,
and then pass this pointer to MPI. This also can easily be done using a vector of structs.
Unfortunately, this approach requires developers to modify code at multiple locations, if the
communicated data changes.

MD-Flexible avoids this by making use of the C++ fold expressions which have been
introduced in C++173. The application implements a custom library called Particle-

SerializationTools for the purpose of serializing and deserializing particles. It provides a
function serializeParticle() which stores a particle’s data at the end of a provided vector
of type char. The library also contains the function deserializeParticle() to restore the
data of a single particle, and the function deserializeParticles() to deserialize data of
multiple particles. The class MoleculeLJ, which is used in MD-Flexible for the particles,
defines an enumeration containing all attributes of the particle. Additionally, it provides a
generic getter to retrieve any of those attributes. The fact that this getter is generic allows
MD-Flexible to use the before mentioned fold expressions. Listing 6.2 shows an example of
how a developer might use the getter to retrieve a particle’s velocity.

1 MoleculeLJ p a r t i c l e ;
2 std : : array<double , 3> v e l o c i t y {} ;
3 v e l o c i t y [0] = p a r t i c l e . get<MoleculeLJ : : AttributeNames : : ve loc i tyX >() ;
4 v e l o c i t y [1] = p a r t i c l e . get<MoleculeLJ : : AttributeNames : : ve loc i tyY >() ;
5 v e l o c i t y [2] = p a r t i c l e . get<MoleculeLJ : : AttributeNames : : ve loc i tyZ >() ;

Listing 6.2: Example of MoleclueLJ’s generic getter used here to retrieve the particle position.

The serializeParticle() and the deserialzieParticle() functions are both wrap-
pers for a corresponding generic function which actually implements the de-/serialization.
Listing 6.3 shows the implementation of the serializeParticle() function.

1 template < s i z e t . . . I>
2 void s e r i a l i z e P a r t i c l e Imp l (const Part ic l eType &pa r t i c l e , s td : : vector<char> &

s e r i a l i z e dP a r t i c l e ,
3 std : : index sequence<I . . . >) {
4 // S e r i a l i z e p a r t i c l e a t t r i b u t e s
5 s i z e t s t a r t Index = 0 ;
6 std : : vector<char> a t t r i bu t e sVec t o r (At t r i bu t e sS i z e) ;
7 (s e r i a l i z eA t t r i b u t e<I>(p a r t i c l e , a t t r ibute sVec to r , s t a r t Index) , . . .) ;
8
9 // Add s e r i a l i z e d a t t r i b u t e s to s e r i a l i z e d p a r t i c l e

10 s e r i a l i z e d P a r t i c l e . i n s e r t (s e r i a l i z e d P a r t i c l e . end () , a t t r i bu t e sVec t o r . begin ()
, a t t r i bu t e sVec t o r . end ()) ;

11 }

Listing 6.3: The implementation of serializeParticle using the expansion operator.

3https://en.cppreference.com/w/cpp/language/fold

36

https://en.cppreference.com/w/cpp/language/fold

6.2. Point-to-Point Communication for Sending and Receiving Particles

The function takes a set of indices, called an index sequence, as template argument. In
Listing 6.3 it is represented by the template parameter I. As can be seen in line 12 of
Listing 6.3, the fold expression then takes care of calling an additional generic function
serializeAttribute() for every index in the index sequence. The implementation of the
serializeAttribute() function, presented in Listing 6.4, calls the generic getter provided
by the MoleculeLJ class.

1 template < s i z e t I>
2 void s e r i a l i z eA t t r i b u t e (const Part ic l eType &pa r t i c l e , s td : : vector<char> &

att r ibuteVector , s i z e t &s ta r t Index) {
3 const auto a t t r i b u t e = p a r t i c l e . get<Att r ibute s [I]>() ;
4 const auto s i zeOfValue = s izeof (a t t r i b u t e) ;
5 std : : memcpy(&at t r i bu t eVec to r [s t a r t Index] , &at t r i bu t e , s i zeOfValue) ;
6 s t a r t Index += sizeOfValue ;
7 }

Listing 6.4: Implementation of the particle attribute serialization.

The Attributes array, used when passing a value to the template parameter of Mole-
cyleLJ’s get() function, is defined in the ParticleSerializationTools library and con-
tains the enumeration values of all the particle attributes which we want to send to another
process. This array is one of the two locations which need to be maintained by developers,
if the communicated attributes would change. The second location is the AttributesSize

variable, also defined in the ParticleSerializationTools library. This variable stores the
accumulated size of all communicated particle attributes in bytes and is required to initialize
the target buffer for the serialized attributes, as can be seen in line 6 of Listing 6.3.

So even when using the fold expression, developers need to update two locations in the
source code when changing the particle attributes which are relevant for other processes.

The implementation for the deserializeParticle and the deserializeParticles func-
tions follows the same principles and will not be discussed in detail.

6.2.2. Sending and Receiving Point-to-Point Messages

The ParticleSerializationTools are used by the ParticleCommunicator class which
handles point-to-point communication of particle data in MD-Flexible.

The ParticleCommunicator is initialized with the MPI communicator created by the
RegularGridDecomposition class and provides, among others, the sendParticles method
which receives a vector of unserialized particles and the rank of the receiving process. The
function then serializes the particles and sends the data to the receiver using the non-blocking
MPI Isend function. Non-blocking means, that the program continues execution, without
making sure that the message has actually reached it’s target. On the one hand, this
allows MD-Flexible to overlap communication and therefore increases overall concurrency
in the program. On the other hand, non-blocking sends allow the program to delete
the message content from memory before it actually has been sent to the receiver. To
avoid this issue, the ParticleCommunicator stores each send request and the connected
data in vectors. The users then have to call the function waitForSendRequests() if they
want to make sure, that every message successfully reached it’s receiver. When calling
waitForSendRequests(), every issued send is checked for completion, in which case the
send request and the corresponding message buffer are deleted.

37

6. Implementation

Along with the sendParticles() function for sending messages, processes receive messages
by calling the receivceParticles() function. Here, particles are deserialized and appended
to a buffer provided by the user. The method uses the blocking MPI Receive() function to
wait for expected sends. Using a blocking function prevents deadlocks with help of implicit
synchronization between the sender and the receiver. On top of that, the receiver requires
the expected data to continue it’s execution.

6.2.3. Step-wise communication with neighbor domains

With the point-to-point communication in place, every tool required for processes to com-
municate with their domain neighbors is set up. Now it is time to talke about the employed
communication pattern which should minimize the strain the application puts on the network.
This reduces the risk of congestion, consequently reducing wait times, and can either be
achieved by sending less data overall or by sending fewer messages at a time. While the
solution in MD-Flexible focuses on the latter, Subsection 2.2.2 introduced the eighth shell
method which not only reduces the number of messages but also the average size of the
communicated data. Nonetheless, independent of how an application handles inter domain
force calculation, the amount of messages sent at once can be reduced by using the step-wise
communication scheme.

To understand the advantages of step-wise communication we will look at a naive approach
first. Generally, in a 3D regular grid subdivision of a domain with periodic boundaries,
every process has a total of 26 neighbors with which it has to exchange information in each
iteration. This can be simply implemented by sending 26 messages at once, consequently
putting a massive strain on the network, because every process sends these messages at a
single point in time resulting in a total of 26×p requests. p refers to the number of processes
which have been allocated for the application.

x

y

z

1

2

3

Figure 6.9.: The step-wise commmunication pattern for a 3D regular grid decomposition of
a cube domain. Here, only the communication to the right neighbor along the
respective coordinate axis is visualized. Assuming a particle migrates from the
blue to the yellow domain, it gets send first from blue to red, then from red to
green and last from green to yellow.

The load on the network can be spread out over time by splitting the communication
into three steps. Each step then handles only those messages passed to a neighbor along a
specific coordinate axis. Practically this means, that in the first step messages are send to
the left and right neighbor along the x-axis, the second step sends messages along the y-axis

38

6.2. Point-to-Point Communication for Sending and Receiving Particles

and the last step along the z-axis. Figure 6.9 displays this approach while only visualizing
the communication to the right. Every process sends 3× 2 messages, making a total of 6
messages. Compared to the naive approach, step-wise communication not only spreads the
communication out, but also reduces the number of total of messages sent by a process.

Algorithm 6: Exchange of Migrating Particles

Input: autoPasContainer, emigrants

1 Function exchangeMigratingParticles(autoPasContainer, emigrants):
2 for dimensionIndex ← 0 to 2 do
3 vector<ParticleType> immigrants, remainingEmigrants,

particlesForLeftNeighbor, particlesForRightNeighbor

// Retrieve neighbors from neighbor list

4 int leftNeighbor = neighborDomainIndices[(dimensionIndex * 2) %
neighborCount]

5 int rightNeighbor = neighborDomainIndices[(dimensionIndex * 2 + 1) %
neighborCount]

// Determine which particles need to be sent to the left and

right neighbor.

6 categorizeParticlesIntoLeftAndRightNeighbor (emigrants,
dimensionIndex, particlesForLeftNeighbor, particlesForRightNeighbor,
remainingEmigrants)

7 emigrants = remainingEmigrants

// Communnicate particles to the respective

8 sendAndReceiveParticlesLeftAndRight (particlesForLeftNeighbor,
particlesForRightNeighbor, leftNeighbor, rightNeighbor, immigrants)

// Add particles to AutoPas container

9 for particle in immigrants do
10 if isInsideLocalDomain (particle.getPosition())) then
11 autoPasContainer.addParticle(particle);

12 else
13 emigrants.push back(particle);

// Add remaining emigrants to current container

14 for particle in emigrants do
15 autoPasContainer.addParticle(particle);

Figure 6.10.: Exchange of migrating particles using step-wise communication where each
rank only needs to communicate with 6 neighbors instead of 26 (as in the
naive approach). The function sendAndReceiveParticlesLeftAndRight()

contains sends and is called 3 times over the loop iterations resulting in a total
of 6 communications.

39

6. Implementation

Algorithm 7: Identifying particles for the left and right neighbor along a desired
coordinate axis
Input: particles, direction, leftNeighborParticles, rightNeighborParticles,

uncategorizedParticles

1 Function categorizeParticlesIntoLeftAndRightNeighbor(particles, direction,
leftNeighborParticles, rightNeighborParticles, uncategorizedParticles):

2 double[3] globalBoxLength = sub (globalBoxMax, globalBoxMin)

// Reserve memory to reduce amount of memory allocations.

3 leftNeighborParticles.reserve(particles.size() / 3)
4 rightNeighborParticles.reserve(particles.size() / 3)
5 uncategorizedParticles.reserve(particles.size() / 3)

6 for particle in particles do
7 double[3] position = particle.getPosition()
8 if position[direction] < localBoxMin[direction] then
9 leftNeighborParticles.push back(particle);

// Apply boundary condition

10 if localBoxMin[direction] == globalBoxMin[direction] then
11 position[direction] = min (nextafter (globalBoxMax[direction],

globalBoxMin[direction]), position[direction] +
globalBoxLength[direction])

12 leftNeighborParticles.back().setPosition(position)

13 else if position[direction] ≥ localBoxMax[direction] then
14 rightNeighborParticles.push back(particle)

// Apply boundary condition

15 if localBoxMax[direction] == globalBoxMax[direction] then
16 position[direction] = max (globalBoxMin[direction], position[direction]

- globalBoxLength[direction])
17 rightNeighborParticles.back().setPosition(position);

18 else
19 uncategorizedParticles.push back(particle);

Figure 6.11.: Sorts particles into containers which are sent to the left or right neighbor,
respectively. This function also applies the boundary conditions to any particle
which is sorted into one of the before mentioned containers.

The step-wise communication scheme is also rather easily implemented which is illustrated
in Figure 6.10. The algorithm loops over every dimension. In every loop iteration it
takes the emigrating particles and classifies them into ”for left neighbor” or ”for right
neighbor” depending on their position. The correct neighbors are identified using the
neighbor list generated during the domain decomposition (see Subsection 6.1.1). Along with
the categorization, the function categorizeParticlesIntoLeftAndRightNeihbor() also

40

6.2. Point-to-Point Communication for Sending and Receiving Particles

applies the boundary conditions discussed in Subsection 5.1.2. The implementation of this
function is illustrated in Figure 6.11. As can be seen in the Figure 5.3, the green particles
migrating to the top and the bottom domain are not shifted during the first step. Equivalently,
they are not communicated during the first step which is why they cannot yet be assigned
to the left or right neighbor during the first loop iteration and therefore have to be stored as
emigrants for the next loop iteration. Once the particles have been sorted out, they are send
to their respective neighbors using the function sendAndReceiveParticlesLeftAndRight()

(see Figure 6.12). This function also stores any particles received as potential immigrants.
They are then added to the AutoPas container, if they actually lie within the local domain,
or are included into the emigrants to be forwarded to other neighbors in later iterations of
the loop. After exiting the loop, all remaining emigrants are added to the AutoPas container.
Here, we do not need to check if they lie within the local domain, because every emigrant
that is left meets this condition.

The function categorizeParticlesIntoLeftAndRightNeihbor() described by Figure 6.11
works simply by checking the particles position along the desired coordinate axis. If it lies
left of the local boxes minimum, the particle is included into the leftNeighborParticles

and to the rightNeighborParticles, if it lies on or right of the local boxes maximum. If
none is the case, the particle is included into the uncategorizedParticles. Additionally,
particles are shifted to the other side of the global box domain, if the respective local box
boundary is equal to the global box boundary. This boundary condition update is applied
in lines 11-13 and 17-19 of Figure 6.11, depending on the particle’s categorization.

Algorithm 8: Sends / receives particles to / from the left and right neighbor

Input: particlesToLeft, particlesToRight, leftNeighbor, rightNeighbor,
receivedParticles

1 Function sendAndReceiveParticlesLeftAndRight(particlesToLeft,
particlesToRight, leftNeighbor, rightNeighbor, receivedParticles):

2 if mpiCommunicationNeeded and leftNeighbor != domainIndex then
3 ParticleCommunicator particleCommunicator(communicator)

4 particleCommunicator.sendParticles(particlesToLeft, leftNeighbor)
5 particleCommunicator.sendParticles(particlesToRight, rightNeighbor)

6 particleCommunicator.receiveParticles(receivedParticles, leftNeighbor)
7 particleCommunicator.receiveParticles(receivedParticles, rightNeighbor)

8 particleCommunicator.waitForSendRequests()

9 else
10 receivedParticles.insert(receivedParticles.end(), particlesToLeft.begin(),

particlesToLeft.end())
11 receivedParticles.insert(receivedParticles.end(), particlesToRight.begin(),

particlesToRight.end())

Figure 6.12.: Sends particles to the left and right neighbor while also receiving potential
immigrants.

41

6. Implementation

The before mentioned function sendAndReceiveParticlesLeftAndRight() illustrated
in Figure 6.12 encapsulates the communication of the categorized particles. Not only does it
send them to their respective targets but also receives potential immigrating particles. Here,
we make use of the ParticleCommunciator class introduced in Subsection 6.2.2.

6.3. Serial Simulation

Although this paper focuses on parallelization, the main purpose of MD-Flexible is to be a
suitable demonstrator for AutoPas. Therefore, users might not be interested in the parallel
performance of multiple containers but rather in the effectiveness of AutoPas’ auto-tuning
feature. For this reason it is important to retain the possibility to run MD-Flexible only
using a single process.

Practically, this means that MPI should only be used if multiple processes have been
allocated for the program execution. This is achieved with a wrapper library called WrapMPI

which actually has been implemented by the AutoPas library. This wrapper allows the
users to exclude MPI during compile time, making it impossible to execute MD-Flexible
with multiple processes while using the generated binary. Whether MPI is included during
compile time is decided by a cmake option called MD FLEXIBLE USE MPI which can be
enabled by appending MD FLEXIBLE USE MPI=ON to the cmake command or toggling
it in the ccmake front-end. This option is disabled by default.

1 inl ine int AutoPas MPI Comm size (AutoPas MPI Comm comm, int ∗ s i z e) ;
2
3 #i f de f ined (AUTOPAS INCLUDE MPI)
4 inl ine int AutoPas MPI Comm size (AutoPas MPI Comm comm, int ∗ s i z e) {
5 return MPI Comm size (comm, s i z e) ;
6 }
7 #else
8 inl ine int AutoPas MPI Comm size (AutoPas MPI Comm comm, int ∗ s i z e) {
9 i f (nu l l p t r == s i z e) {

10 return AUTOPAS MPI ERR ARG;
11 }
12 ∗ s i z e = 1 ;
13 return AUTOPAS MPI SUCCESS;
14 }
15 #endif

Listing 6.5: Example for wrapped MPI function.

If MPI has been included during compile time, MD-Flexible can be executed with any
number of processes. When only a single process is allocated for the application, MD-
Flexible behaves the same way as if MPI had not been enabled. This is ensured using the
flag mpiCommunicationNeeded which has been set during the initialization of the regular
grid decomposition (see end of Subsection 6.1.1).

Using preprocessor directives, the WrapMPI library either implements dummy functions
which essentially do nothing if MPI has not been enabled. Otherwise, it implements functions
which actually call the respective MPI function. In both cases, the functions have the same
name and signature allowing the developer who uses the WrapMPI library to avoid considering
the fact that MPI might not be available. The Listing 6.5 contains an example using
the MPI Comm size() function. Note that the signature of the AutoPas MPI Comm size()

42

6.4. Meaningful Metadata

function takes the type AutoPas MPI Comm as input; WrapMPI does not only wrap MPI
functions but also MPI data types and objects. Also note that the preprocessor directive
at line 3 of the listing uses the macro AUTOPAS INCLUDE MPI. This variable is used in
several locations within MD-Flexible’s source code and is defined by cmake if the option
MD FLEXIBLE USE MPI has been enabled.

6.4. Meaningful Metadata

MD-Flexible generates statistics for every simulation, since before the integration of massive
parallelism. The statistics include execution times of specific steps, like the time required
for force calculation and position updates. If a simulation uses multiple processes, these
timings do not truthfully represent the actually required CPU time because they only would
represent the data of a single process. To counteract this, the local timings are summed
up at the end of the simulation using MPI Allreduce(). The actual wall-clock time is only
reported by the rank 0 and does not require any communication.

As discussed in Subsection 5.2.3, MD-Flexible’s new version replaced the boundary update
timer by the load balancing, particle migration, and halo particle exchange step timers.
For each of them, the CPU time is tracked separately so that they can be included in the
simulation statistics.

Listing 6.6 shows an example of the statistics generated at the end of a simulation. The
timings below line 6 are sorted in different groups which are indicated by the indentation
level of a line. The percentage at the end of a line represents the share of time a measurement
took within the respective group. For example: The Simulate time consists of the steps
PositionUpdate, Boundaries, ForceUpdateTotal, VelocityUpdate and LoadBalancing, where
the load balancing makes 9% of the time of the Simulate group.

1 Total number o f p a r t i c l e s at the end o f S imulat ion : 75741
2 Owned : 16675
3 Halo : 59066
4 Standard Deviat ion o f Homogeneity : 1 .47451
5
6 Measurements :
7 Total accumulated : 17959766231497 ns (17959 .766 s)
8 I n i t i a l i z a t i o n : 71810561 ns (0 .072 s) = 0.000%
9 Simulate : 17959654071423 ns (17959 .654 s) = 99.999%

10 Posit ionUpdate : 86561143040 ns (86 .561 s) = 0.482%
11 Boundaries : : 10112193291433 ns (10112 .193 s) = 56.305%
12 HaloPart ic leExchange : 9915536248451 ns (9915.536 s) = 98.055%
13 Migrat ingPart ic l eExchange : 196657042982 ns (196.657 s) = 1.945%
14 ForceUpdateTotal : 6020681077604 ns (6020.681 s) = 33.523%
15 ForceUpdatePairwise : 5955739910281 ns (5955.740 s) = 98.921%
16 ForceUdpateGlobalForces : 64805311767 ns (64 .805 s) = 1.076%
17 ForceUpdateTuning : 3197595651990 ns (3197.596 s) = 53.110%
18 ForceUpdateNonTuninng : 2758144258291 ns (2758.144 s) = 45.811%
19 VelocityUpdate : 75474193135 ns (75 .474 s) = 0.420%
20 LoadBalancing : 1651394223867 ns (1651.394 s) = 9.195%
21 One i t e r a t i o n : 199551711 ns (0 .200 s) = 0.001%
22 Total wal l−c l o ck time : 665177619839 ns (665 .178 s) = 3.704%
23

43

6. Implementation

24 Tuning i t e r a t i o n s : 18792 / 90000 = 20.88%
25 MFUPs/ sec : 0 .0175047
26 GFLOPs : 322.128
27 GFLOPs/ sec : 0 .0179362
28 Hit ra t e : 0 .764462

Listing 6.6: Example statistics created at the end of a simulation

Along with the timings, several other statistics are reported at the end of any simulation.
When it comes to the evaluation of AutoPas, the most interesting are, aside from the
timings, the number of tuning iterations within the simulation and the resulting GFLOPs
and GFLOPs/sec.

6.5. Visualizing the Parallel Simulation

While the performance statistics discussed in the previous section are important for the opti-
mization of the simulation, researchers require an actual visualization to gain any meaningful
insights. The serial version of MD-Flexible already enabled the user to create recordings
of the simulation which then could be visualized using Paraview (see Subsection 3.4.2).
When executed with multiple processes, each process would create it’s own set of files which
then had to be loaded into Paraview one by one, manually. This could become very time
consuming if the simulation used a large amount of processes. Unfortunately, the legacy
version of the VTK files used by MD-Flexible does not support recordings created by multiple
processes. For users to be able to easily visualize their ”parallel” data, MD-Flexible now
uses modern XML based file formats4 defined by the Visualization Toolkit. Each of VTK’s
file formats exists in two variants: One for recording actual data (referred to from here as
data file), and the parallel file format (referred to from here as parallel file) for grouping
several data files together so they can be loaded as a single record. Users can then create
data files for each rank separately, group those files together using the corresponding parallel
file, and load all data files at once by opening this parallel file.

MD-Flexible uses the format for structured grids for the visualization of domains, and, to
visualize the particles, the format for unstructured grids. Files of both formats use a specific
type: .vts for the structured grid and .vtu for the unstructured grid. The corresponding
parallel files use ’p’ as prefix in their file type, i. e. .pvts and .pvtu. Examples for both file
formats can be seen in Figure 6.13 Figure 6.14, Figure 6.16, and Figure 6.17.

6.5.1. Parallel Vtk Writer

The new Parallel VTK Writer component is responsible for recording the simulation states.
It allows users to configure a prefix (also called session name) for the generated records
and an output folder for the newly created files. It also provides interfaces to create
parallel records for structured and unstructured grid files. These functions are called by the
Simulation component during the simulation loop at a specific iteration interval defined by
the user.

At the start of the simulation, the host process (rank 0) creates an output folder (if it
does not exist yet), generates the parallel files and shares the output location and session

4https://kitware.github.io/vtk-examples/site/VTKFileFormats/

44

6.5. Visualizing the Parallel Simulation

1 <?xml v e r s i on =”1.0” encoding=”UTF−8” standa lone=”no” ?>
2 <VTKFile byte o rde r=”Li t t l eEnd ian ” type=”PUnstructuredGrid ” ve r s i on =”0.1”>
3 <PUnstructuredGrid GhostLevel=”0”>
4 <PPointData>
5 <PDataArray Name=” v e l o c i t i e s ” NumberOfComponents=”3” format=” a s c i i ”
6 type=”Float32”/>
7 <PDataArray Name=” f o r c e s ” NumberOfComponents=”3” format=” a s c i i ”
8 type=”Int32”/>
9 <PDataArray Name=”typeIds ” NumberOfComponents=”1” format=” a s c i i ”

10 type=”Float32”/>
11 <PDataArray Name=”i d s ” NumberOfComponents=”1” format=” a s c i i ”
12 type=”Float32”/>
13 </PPointData>
14 <PCellData/>
15 <PPoints>
16 <PDataArray Name=”po in t s ” NumberOfComponents=”3” format=” a s c i i ”
17 type=”Float32”/>
18 </PPoints>
19 <PCells>
20 <PDataArray Name=”types ” NumberOfComponents=”0” format=” a s c i i ”
21 type=”Float32”/>
22 </PCells>
23 <Piece Source=”example 0 . vtu”/>
24 <Piece Source=”example 1 . vtu”/>
25 </PUnstructuredGrid>
26 </VTKFile>

Figure 6.13.: Example of the parallel file for the unstructured grid format with two referenced
data files.

name with all other processes. During the simulation, each rank creates it’s own data files
in the target folder.

6.5.2. Creation of particle records

As mentioned before, MD-Flexible uses the VTK file format for unstructured grids to create
the recordings of the particle states. The Parallel VTK Writer records velocities, forces, type
ids, ids, and positions of the particles. Each of these data requires their own DataArray

containers in the unstructured grid data file and an equivalent PDataArray definition in
the parallel file. A single particle’s data is then stored as a row within the respective data
array, as can be seen in Figure 6.14. VTK considers the records created by different ranks
as Piece. The parallel file contains a list of pieces which are considered part of a single
recorded iteration. This can be seen in line 23 and 24 of Figure 6.13.

6.5.3. Visualization of domains

When it comes to the visualization of the domains, the structured grid file format requires
the start and end indices of a domain along each dimension in the subdivision grid. These

45

6. Implementation

1 <?xml v e r s i on =”1.0” encoding=”UTF−8” standa lone=”no” ?>
2 <VTKFile byte o rde r=”Li t t l eEnd ian ” type=”UnstructuredGrid ” ve r s i o n =”0.1”>
3 <UnstructuredGrid>
4 <Piece NumberOfCells=”0” NumberOfPoints=”4”>
5 <PointData>
6 <DataArray Name=” v e l o c i t i e s ” NumberOfComponents=”3” format=” a s c i i ”
7 type=”Float32”>
8 0 0 0
9 0 0 1

10 0 1 0
11 1 0 0
12 </DataArray>
13 <DataArray Name=” f o r c e s ” NumberOfComponents=”3” format=” a s c i i ”
14 type=”Float32”>
15 0 0 0
16 0 0 0
17 0 0 0
18 0 0 0
19 </DataArray>
20 <DataArray Name=”typeIds ” NumberOfComponents=”1” format=” a s c i i ”
21 type=”Float32”>
22 0
23 0
24 0
25 0
26 </DataArray>
27 <DataArray Name=”i d s ” NumberOfComponents=”1” format=” a s c i i ”
28 type=”Float32”>
29 0
30 1
31 2
32 3
33 </DataArray>
34 </PointData>
35 <CellData/>
36 <Points>
37 <DataArray Name=”p o s i t i o n s ” NumberOfComponents=”3” format=” a s c i i ”
38 type=”Float32”>
39 0 0 0
40 0 0 1
41 0 1 0
42 1 0 0
43 </DataArray>
44 </Points>
45 <Cel l s>
46 <DataArray Name=”types ” NumberOfComponents=”0” format=” a s c i i ”
47 type=”Float32”/>
48 </Ce l l s>
49 </Piece>
50 </UnstructuredGrid>
51 </VTKFile>

Figure 6.14.: Example of a data file for the unstructured grid format containing the data of
four particles.

46

6.5. Visualizing the Parallel Simulation

indices are called the extent of a domain. A parallel structured grid file contains the extent
of the global domain and the extents of all subdomains. The global extent or WholeExtent
is defined in line 3 of the Figure 6.16 and the extents of the two subdomains in lines 28
and 29. The data files also contain the extent of single subdomain as can be seen in line
three and four in Figure 6.17. The extent of a domain can be computed using the function
getExtendOfSubdomain() (see Listing 6.7) provided by the newly implemented Domain
Tools library. The function calculates the extent based on the respective process’s rank
which can directly be mapped to the subdomain’s position in the decomposition grid using
the convertIndexToId() function which takes a domainIndex or rank and converts it to
the corresponding coordinates in the subdivision grid.

Along with the extent, the structured grid files need to contain the eight vertices of
each referenced subdomain while the parallel file contains the corner vertices of the global
domain. These vertices can easily be derived from the minimum and maximum values of
the respective domain.

Additionally, the parallel file needs to provide the vertices of the global domain’s corners,
while the data files provide the vertices of their respective subdomains. An example of a
domain visualization is illustrated in Figure 6.15.

1 std : : array<int , 6> getExtentOfSubdomain (const int subdomainIndex , const std : :
array<int , 3> decomposit ion) {

2 std : : array<int , 6> extentOfSubdomain {} ;
3
4 const std : : array<int , 3> subdomainId = convertIndexToId (subdomainIndex ,

decomposit ion) ;
5
6 for (s i z e t i = 0 ; i < 3 ; ++i) {
7 extentOfSubdomain [2 ∗ i] = subdomainId [i] ;
8 extentOfSubdomain [2 ∗ i + 1] = subdomainId [i] + 1 ;
9 }

10
11 return extentOfSubdomain ;
12 }

Listing 6.7: Implementation of the getExtendOfSubdomain function.

47

6. Implementation

Figure 6.15.: A visualization of the subdivision generated for the falling drop scenario shortly
after the start of the simulation using 27 ranks.

6.5.4. Additional information about domains and particles

Both the structured and unstructured grid files can contain additional information about the
particles or domains. The information again needs to be declared in the respective parallel
file along with the actual data stored in the data file.

The structured grid records the domain id, rank, and data about the state of the AutoPas
container responsible for the simulation of the subdomain. Most of the data is stored as
integer values corresponding to an enumeration defined by AutoPas. For instance, the cell
property DataLayout recorded in line 15 to 17 of Figure 6.17 stores as value 0 which refers
to the ”Array of Structs” layout. Unfortunately, users have to look into the source AutoPas’
source code to retrieve the meaning behind the enumeration values. Using string values
to store the data either stopped Paraview from loading the recordings or the Paraview’s
animation feature would cause the program to freeze.

The particle positions, the velocities, forces types, and ids of the particles are recorded
by the unstructured grid format. As in the structured grid format, the data is stored in
DataArray’s as can be seen in lines 6-33 of Figure 6.14.

48

6.5. Visualizing the Parallel Simulation

1 <?xml v e r s i on =”1.0” encoding=”UTF−8” standa lone=”no” ?>
2 <VTKFile byte o rde r=”Li t t l eEnd ian ” type=”PStructuredGrid ” v e r s i o n =”0.1”>
3 <PStructuredGrid WholeExtent=”0 1 0 1 0 2” GhostLevel=”0”>
4 <PPointData/>
5 <PCellData>
6 <PDataArray type=”Int32 ” Name=”DomainId” />
7 <PDataArray type=”Float32 ” Name=”Ce l l S i z e Fa c t o r ” />
8 <PDataArray type=”Int32 ” Name=”Container ” />
9 <PDataArray type=”Int32 ” Name=”DataLayout” />

10 <PDataArray type=”Int32 ” Name=”Fu l lCon f i gu ra t i on ” />
11 <PDataArray type=”Int32 ” Name=”LoadEstimator ” />
12 <PDataArray type=”Int32 ” Name=”Traver sa l ” />
13 <PDataArray type=”Int32 ” Name=”Newton3” />
14 <PDataArray type=”Int32 ” Name=”Rank” />
15 </PCellData>
16 <PPoints>
17 <DataArray NumberOfComponents=”3” format=” a s c i i ” type=”Float32”>
18 −0.5 −0.5 −0.5
19 50 .5 −0.5 −0.5
20 −0.5 30 .5 −0.5
21 50 .5 30 .5 −0.5
22 −0.5 −0.5 37 .296
23 50 .5 −0.5 37 .296
24 −0.5 30 .5 37 .296
25 50 .5 30 .5 37 .296
26 </DataArray>
27 </PPoints>
28 <Piece Extent=”0 1 0 1 0 1” Source=”example 0 . vt s”/>
29 <Piece Extent=”0 1 0 1 1 2” Source=”example 1 . vt s”/>
30 </PStructuredGrid>
31 </VTKFile>

Figure 6.16.: Example of the parallel file for the structured grid format with two referenced
data files.

49

6. Implementation

1 <?xml v e r s i on =”1.0” encoding=”UTF−8” standa lone=”no” ?>
2 <VTKFile byte o rde r=”Li t t l eEnd ian ” type=”StructuredGrid ” ve r s i on =”0.1”>
3 <StructuredGrid WholeExtent=”0 1 0 1 1 2”>
4 <Piece Extent=”0 1 0 1 1 2”>
5 <CellData>
6 <DataArray type=”Int32 ” Name=”DomainId” format=” a s c i i ”>
7 1
8 </DataArray>
9 <DataArray type=”Float32 ” Name=”Ce l l S i z e Fa c to r ” format=” a s c i i ”>

10 1
11 </DataArray>
12 <DataArray type=”Int32 ” Name=”Container ” format=” a s c i i ”>
13 6
14 </DataArray>
15 <DataArray type=”Int32 ” Name=”DataLayout” format=” a s c i i ”>
16 0
17 </DataArray>
18 <DataArray type=”Int32 ” Name=”LoadEstimator ” format=” a s c i i ”>
19 0
20 </DataArray>
21 <DataArray type=”Int32 ” Name=”Traver sa l ” format=” a s c i i ”>
22 20
23 </DataArray>
24 <DataArray type=”Int32 ” Name=”Newton3” format=” a s c i i ”>
25 0
26 </DataArray>
27 <DataArray type=”Int32 ” Name=”Rank” format=” a s c i i ”>
28 1
29 </DataArray>
30 </CellData>
31 <Points>
32 <DataArray type=”Float32 ” NumberOfComponents=”3” format=” a s c i i ”>
33 −0.5 −0.5 18 .398
34 50 .5 −0.5 18 .398
35 −0.5 30 .5 18 .398
36 50 .5 30 .5 18 .398
37 −0.5 −0.5 37 .296
38 50 .5 −0.5 37 .296
39 −0.5 30 .5 37 .296
40 50 .5 30 .5 37 .296
41 </DataArray>
42 </Points>
43 </Piece>
44 </StructuredGrid>
45 </VTKFile>

Figure 6.17.: Example of a data file for the structured grid format.

50

Part III.

Evaluation

51

7. Evaluation

Now that massive parallelism is implemented in MD-Flexible, it is time to evaluate it’s
effectiveness. For this, we will have a look at speedup and parallel efficiency for the
three scenarios Falling Drop, Explosive Liquid, and Spinodal Decomposition described in
Section 3.2. Afterwards we will compare ALL’s Tensor load balancer to our custom Inverted
Pressure load balancer.

All of the tests have been run on the CoolMUC-2 cluster segment of the LRZ Linux
cluster. Table 7.1 shows the hardware specification of the cluster.

CPU
Vendor

CPU
CPUs per

node
Threads per

CPU
Frequency
(turbo)

Memory
(DDR4) per

node

Intel
Xeon

E5-2697 v3
2 14 × 2

2.6 (3.6)
GHz

64 GB
(Bandwidth
120 GB/s -
STREAM)

Table 7.1.: CoolMUC2 Hardware specificationa

ahttps://doku.lrz.de/display/PUBLIC/CoolMUC-2

7.1. Speedup And Efficiency

7.1.1. Setup

To test the speedup and the efficiency, the scenarios have been simulated using both
implemented load balancers, each with eight test runs. For each test run, the number of
processes has been doubled, starting with only a single process, with the eighth test using
128 processes.

For the tests of the Falling Drop scenario, MD-Flexible’s default configuration has been
used where the size of grid block used to simulate the floor is 51× 31× 1, the grid block
representing the body of liquid is 48× 28× 10 large and the sphere representing the drop
has radius 6. The AutoPas container rebuilds the verlet skin every 10 iterations with a skin
radius of 0.3 and a cutoff radius of 3. The simulation contains 16675 particles and runs for
90000 iterations.

For the Exploding Liquid scenario a simulation domain size of 60× 180× 60 and a closest
packed block of size 40× 30× 40 has been chosen with the simulation running for 50000
iteration containing 68600 particles. The verlet skin radius is 0.2 with a cutoff radius of 2
and a verlet rebuild frequency of 2.

To create the record used for the Spinodal Decomposition scenario, a grid block of size
80× 80× 80 has been simulated for 100000 iterations to create an equilibrium state which

52

https://doku.lrz.de/display/PUBLIC/CoolMUC-2

7.1. Speedup And Efficiency

then has been loaded into a simulation domain of 120× 120× 120 to simulate the Spinodal
decomposition. The cutoff radius is 2.5, the verlet skin radius is set to MD-Flexibles default
value of 0.2, and the verlet skin rebuild frequency is 10. Being the largest of the three
scenarios, Spinodal Decomposition simulates 511806 particles.

7.1.2. Results

Before getting into the reasons for the performance, it is important to note that the scenario
size used for the Falling Drop scenario was selected too small to run with 128 ranks because
both load balancing methods employ a minimum box size. The small size has been selected
to reduce the runtime of the scenarios on few processes and is the reason why there are data
points missing in the diagrams at 128 processes for this scenario. In addition, the Inverted
Pressure load balancer breaks the simulation of the Falling Drop scenario when running
with 64 processes. The Exploding Liquid scenario breaks starting at 128 ranks. This is why
for this load balancer there are again data points missing at 64 ranks. The reason will be
investigated during the detailed discussions of the scenarios in Section 7.2. The Spinodal
Decomposition scenario finished successfully using Inverted Pressure on 64 and 128 ranks.

1 2 4 8 16 32 64 128

100

101

102

Number of Processes

Speedup

1 2 4 8 16 32 64 128
0

0.5

1

Number of Processes

Efficiency

Figure 7.1.: Speedup and Efficiency of the parallelization for MD-Flexible’s three scenarios.
Legend: Falling Drop, Exploding Liquid, Spinodal Decomposition, Ideal Speedup.
A continuous line indicates that the Inverted Pressure load balancing method
has been used and a dashed line that ALL’s Tensor method has been used.

The speedup and the efficiency of the parallelization are illustrated in Figure 7.1. As is
clearly visible, the current parallelization is suboptimal. With a speedup of approximately
40 with 128 processors, looking at the ALL load balanced run of the Spinodal Decomposition
scenario represented by dotted teal line. We do not take nearly full advantage of the
additional processing power. The scenarios Falling Drop and Exploding Liquid performed
even worse with a speedup of under 10 on 64 processes using ALL’s Tensor load balancer.
Only the Spinodal Decomposition does not display a large drop in efficiency starting at 4
processes but drops increasingly fast the more ranks are employed.

The low performance is caused by several problems. Some of them are specific to a certain

53

7. Evaluation

scenario and will be explained in Section 7.2. The main factor which affects all scenarios is
the rebalancing of the decomposition in every iteration. Normally, the subdomains should
be rebalanced only at a specific interval, for example every 100 iterations. The resulting
effect is clearly visible in Figure 7.2. For most of the tests, the percentage taken by the
load balancing compared to the total time stays constant up to 16 processes. From 32
ranks on, the percentage increases drastically for each scenario. The increasing number of
subdivisions along each coordinate axis slows down the load balancing because more and
more process grid planes are involved. Additionally, the number of particles which need to
be communicated increases drastically. For instance, the Exploding liquid scenario simulates
68600 particles but requires 77450 halo particles on 64 ranks.

Another aspect influencing overall performance are the MPI Allreduce() calls at several
locations during an iteration which explicitly synchronizes all processes and, therefore,
increases wait times. This is another reason for the steep increase visible in Figure 7.2.
With an increasing number of processes, their synchronization takes longer, resulting in
even longer wait times. An alternative for MPI Allreduce() would be a fan-in and fan-out
communication discussed in Part IV.

A last factor influencing the perfromance is the fact, that for the test runs with more
than 16 processes, 16 tasks have been allocated for every compute node, leaving almost no
taks for thread-level parallelism.

1 2 4 8 16 32 64 128

0

0.2

0.4

0.6

Number of Processes

Load Balancing Percentage of Total Execution Time

Figure 7.2.: Percentage of load balancing time compared to total execution time. Legend:
Falling Drop, Exploding Liquid, Spinodal Decomposition. A continuous line
indicates that the Inverted Pressure load balancing method has been used and
a dashed line that ALL’s Tensor method has been used.

7.2. Detailed Discussion of the Scenarios Performances

With the Spinodal Decomposition displaying the best performance, we will first have a
look at this scenario, before investigating the bad performances of the Falling Drop and

54

7.2. Detailed Discussion of the Scenarios Performances

Exploding Liquid scenarios.

7.2.1. Performance of Spinodal Decomposition Scenario

The Spinodal Decomposition scenario has by far the biggest domain size and simulates the
most particles. So why does it have the best performance out of all the three scenarios?

Compared to the other scenarios, the Spinodal Decomposition has the lowest particle
density gradient throughout the simulation domain. This means, that the particles are
spread out more homogeneously compared to the Falling Drop and the Exploding Liquid
scenario which minimizes the effect of the bad local refinement employed by a regular grid
decomposition as mentioned in Subsection 2.2.1. The Spinodal Decomposition implicitly
ensures that every process has a similar amount of work. Looking at Figure 7.3, it is clearly
visible that all of the subdomains at the top of the simulation domain do not contain any
particles leaving the respective process without work. This is caused by a minimum cell
size required by both the ALL and the Inverted Pressure Load balancer. The fact that the
scenarios sizes of Falling Drop and Explosive Liquid have been configured too small also
plays into their bad performance.

Figure 7.3.: Bad Local Refinement in the Falling Drop Scenario. Many of the subdomains
do not contain any particles.

7.2.2. Performance of Falling Drop Scenario

While the Falling Drop scenario displays a steep decrease in efficiency with increasing
number of ranks, the efficiency curve only starts to drop drastically starting with 8 ranks and
afterwards shows a slightly more even slope. This is, again, because of a rapidly changing
density gradient along the z-dimension (up) and the bad local refinement of the regular grid
decomposition. With 8 processes, the z-coordinate axis is subdivided the first time resulting
in some subdomains having very few to no particles.

55

7. Evaluation

As mentioned before, the small scenario size plays into the bad performance as well. On
64 ranks, the simulation requires 77221 halo particles compared to the 16675 ”real” particles.
These halo particles have to be updated in every iteration inducing a massive amount of
communication. On top of that when using more than 16 processes, the minimum cell size
employed by the load balancing causes processes to be idle, as mentioned in Subsection 7.2.1.

1 2 4 8 16 32 64 128
0

0.5

1

Number of Processes

Efficiency

1 2 4 8 16 32 64 128

0

0.2

0.4

0.6

Number of Processes

Load Balancing Percentage

Figure 7.4.: Load Balancing percentage and Efficiency in the Falling Drop Scenario. A
continuous line indicates that the Inverted Pressure load balancing method has
been used and a dashed line that ALL’s Tensor method has been used.

7.2.3. Performance of Exploding Liquid Scenario

Looking at the graphs in Figure 7.5, the Exploding Liquid scenario behaves similarly to the
Falling Drop scenario. While the latter reached 60% load balancing in overall execution time
at 64 ranks, the Exploding Liquid scenario reaches the same percentage at 128 ranks. And
although the efficiency stays constant between 4 and 32 to ranks, it displays a huge drop at
4 ranks with the Inverted Pressure method. Here, the load balancer displays an oscillating
behavior even though the domains are balanced in the initially generated decomposition.
The two states of this oscillation are illustrated in Figure 7.6. These oscillations also have
been observed in the Falling Drop scenario and can occur if the particles are very clumped
up. Looking at the first image in Figure 7.6 the two domains on the right side do all the
work. Therefore the algorithm shifts the left boundary of those domains a large distance to
the right, basically jumping over the particle cloud instead of splitting it. If the particles
are this close this generates the decomposition which mirrors the previous one, as can be
seen in the second image of the Figure. This oscillation continues until the particles migrate
beyond one of the ”oscillation boundaries”. As soon as more processors are involved, such
large oscillations become impossible because the subdomain size, along with the difference
in the performed work within the subdomains, decreases. Therefore, the efficiency remains
constant up to 64 processes. This oscillation behavior can be fixed, as we will learn in
Subsection 9.1.2.

56

7.2. Detailed Discussion of the Scenarios Performances

1 2 4 8 16 32 64 128
0

0.5

1

Number of Processes

Efficiency

1 2 4 8 16 32 64 128

0

0.2

0.4

0.6

Number of Processes

Load Balancing Percentage

Figure 7.5.: Load Balancing Percentage and Efficiency in the Exploding Liquid Scenario. A
continuous line indicates that the Inverted Pressure load balancing method has
been used and a dashed line that ALL’s Tensor method has been used.

Figure 7.6.: Oscillation pattern in the early Exploding Liquid scenario. The decomposition
oscillates between the two configurations until particles have traveled far enough
to the left/right for the decomposition to become more stable.

57

7. Evaluation

7.3. Comparing ALL’s Tensor Method the Inverted Pressure
Method

The previous graphs suggest that ALL’s Tensor method performs slightly better compared
to the Inverted Pressure method. But this advantage does not result in a better overall
execution time as can be seen in Figure 7.7. In Subsection 7.2.3 we observed that the Inverted
Pressure method generates larger oscillations between boundary positions. Consequently,
more particles need to be migrated after each load balancing, compared to the Tensor
method. Looking at Figure 7.8, this seems to be true when a small amount of processes
is involved. When using a larger amount of processes, the Inverted Pressure method gains
stability and requires less time for the migration of particles than the Tensor method.
Looking at Figure 7.9, the Tensor method performs slightly better again. In general, a
good decomposition requires less halo particles to be exchanged. While at many of the data
points the Tensor and the Inverted Pressure method perform equally, the former displays
an overall better performance. Only in the Exploding Liquid scenario can we find large
differences in the communication times. This again is caused by the oscillating behavior
described in Subsection 7.2.3. Although only two domains need to exchange particles, they
have to exchange a large amount consequently investing more time in communication.

In the end, both load balancing approaches show similar performance. Nonetheless ALL’s
Tensor method is more reliable and displays less oscillations. As we will learn in Section 9.1,
the performance of the Inverted Pressure can be improved. But until the suggested features
are implemented, the Tensor Method is the better choice when conducting experiments.

2 4 8 16 32 64 128

0

0.2

0.4

0.6

0.8

1

·104

Number of Processes

Execution Time (seconds)

Figure 7.7.: The total execution times of the scenarios using ALL’s Tensor method and
Inverted Pressure. Legend: Falling Drop, Exploding Liquid, Spinodal Decompo-
sition. A continuous line indicates that the Inverted Pressure load balancing
method has been used and a dashed line that ALL’s Tensor method has been
used. The execution time on a single rank has been omitted in the graph to
enhance the resoution at the other data points.

58

7.3. Comparing ALL’s Tensor Method the Inverted Pressure Method

1 2 4 8 16 32 64128

0

200

400

600

Falling Drop

1 2 4 8 16 32 64128

0

2,000

4,000

6,000

Exploding Liquid

1 2 4 8 16 32 64128

0

200

400

600

800

Spinodal Decomposition

Figure 7.8.: The times used for particle migration using ALL’s Tensor method and Inverted
Pressure. Legend: A continuous line indicates that the Inverted Pressure load
balancing method has been used and a dashed line that ALL’s Tensor method
has been used.

1 2 4 8 16 32 64128
0

0.5

1

1.5

·104
Falling Drop

1 2 4 8 16 32 64128
0

1

2

·104
Exploding Liquid

1 2 4 8 16 32 64128
0

0.5

1

1.5

·104
Spinodal Decomposition

Figure 7.9.: The times used for the exchange of halo particles using ALL’s Tensor method
and Inverted Pressure. Legend: A continuous line indicates that the Inverted
Pressure load balancing method has been used and a dashed line that ALL’s
Tensor method has been used.

59

Part IV.

Future Work

60

8. General Performance Improvements

8.1. Configurable Load Balancing Interval

As mentioned during Chapter 7, the load balancing during every iteration is one of the
principle causes of the bad performance. This can be fixed rather easily by including
an additional load-balancing-interval configuration parameter. Users can then define an
iteration interval, when the load balancing should take place. Considering that in some
cases, load balancing might not be required at all this variable should also allow users to
turn it off completely, for example, by setting the interval to zero. This is useful in the
Falling Drop scenario if the domain decomposition is restricted to the horizontal coordinate
axis. As mentioned at the end of Section 3.2, the gravity employed in the Falling Drop
scenario ensures an implicit load balancing if only the horizontal coordinate axis has been
subdivided.

It might even be useful to adaptively adjust the load balancing interval over the runtime
of a simulation. The Exploding Liquid scenario displays a rapid change of the particle layout
during the early phase which might require a higher load balancing frequency compared to
later phases of the simulation.

8.2. Soften the Minimum Cell Size Restriction

Another aspect which limits the efficiency of the load balancing is the minimum cell size
defined for both ALL’s Tensor and the Inverted Pressure method which is currently restricted
by the cutoff and skin radius. Therefore, the load balancers are not able to properly distribute
the work of areas in the simulation domain with a high density of particles. Allowing a
subdomain to have a side length smaller than the cutoff radius does require processes
to communicate beyond their direct neighbors. This can easily be implemented with an
additional loop during the step-wise communication which iterates over all neighbors along
a direction. The additional communication might outweigh the advantage but it is definitely
worth investigating on properly configured test scenarios.

61

9. Improving the Adaptive Load Balancing

9.1. Improving Inverted Pressure

The Inverted Pressure method slightly underperforms compared to ALL’s Tensor method,
omitting the fact, that it seems to be very unstable above 32 ranks.

9.1.1. Global Balancing along a coordinate axis

Currently both the Tensor and the Inverted Pressure method do not globally balance the
subdomains along a coordinate axis. The Inverted Pressure method can be extended to
include the global balancing.

W0 W1 W2 W3 W4

x0 x1 x2 x3 x4 x5

Figure 9.1.: Global load balancing scenario for Inverted Pressure along a single coordinate
axis.

As can be seen in Figure 9.1, we now want to use all the weights along a coordinate axis
to calculate a global load balancing using the inverted pressure method. The function (1)
derived in Subsection 6.1.3 only takes the weights of those domains into account which lie
adjacent to the boundary we want to shift. Let’s first rewrite the function for an arbitrary
boundary xn.

x′n = (Wnxn+1 + Wn−1xn−1)
1

Wn−1 + Wn
(2)

Now let the maximum number of boundaries, including the global domain boundaries,
be B. This leaves us with the corresponding work Wn of the nth subdomain, and shiftable
boundaries at positions x1 to xB−2 (see Figure 9.1). To consider the global work we take
the weights of all subdomains to the left of the current shiftable boundary and the weights
of all subdomains to the right, instead of just the weight of the adjacent domains. Taking
this into account, equation (2) will look like this:

x′n = ((xn − x0)
n−1∑
i=0

Wi + (xB−1 − xn)
B−2∑
i=n

Wi)
1∑B−2

i=0 Wi

62

9.2. Increasing parallelism

From now on we will omit the fraction at the end of the previous term because it does
not depend on n. If we factorize the function with respect to the x-values we get following
result:

x′n = x0

n−1∑
i=0

Wi + xn(

n−1∑
i=0

Wi −
B−2∑
i=n

Wi) + xB

B−2∑
i=n

Wi

Setting an =
∑n−1

i=0 Wi and bn =
∑B−2

i=n Wi yields the following function:

x′n = anx0 + (an − bn)xn + bnxB

Using Figure 9.1 as setup, B is equal to 6. For this specific amount of subdivisions, when
writing the previous function as matrix vector multiplication, and including the constant
term we omitted earlier, we get following system of equations:

1∑B−2
i=0 Wi

1 0 0 0 0 0
a1 (a1 − b1) 0 0 0 b1
a2 0 (a2 − b2) 0 0 b2
a3 0 0 (a3 − b3) 0 b3
a4 0 0 0 (a4 − b4) b4
0 0 0 0 0 1

x0
x1
x2
x3
x4
x5

 =

x′0
x′1
x′2
x′3
x′4
x′5

This can easily be parallelized using techniques from sparse linear algebra. Along with

the communication improvements suggested in Section 9.2 this does not only improve the
precision but also the speed of the Inverted Pressure load balancer.

9.1.2. Improving Stability

In contrast to the Inverted Pressure method, ALL’s Tensor method employs a damping
factor 1

γ to improve the stability. A similar approach can be implemented in the Inverted
Pressure algorithm.

Instead of using a damping factor, though, I would suggest remembering the last 4
positions of a domain boundary and, using this histogram, to calculate a weighted average
of the new and the old positions. The weights should decrease with the ”age” of a value in
the histogram. This will strongly increase the stability of the method, if the weights have
been chosen wisely. As a drawback, the algorithm is not able to quickly adapt to a new
topology, anymore. This might be negligible, though, because rapid topology changes are
very rare in most MD scenarios.

It should be enough to store the last 4 positions, as the weights should decrease exponen-
tially with the age of a weight. For this reason, further values may not be necessary as they
would have a diminishing influence on the result.

9.2. Increasing parallelism

As mentioned in Subsection 7.1.2, another way to improve performance is to reduce the
number of explicit synchronization points mostly imposed by the use of MPI Allreduce().

63

9. Improving the Adaptive Load Balancing

During the load balancing with Inverted Pressure, all ranks within a planar communicator
compute the same function to determine a new boundary. Instead of using MPI Allreduce(),
each rank should send the required data to the root rank within the respective communicator
which is considered a fan-in operation. The root rank then calculates the new boundary
and sends the result back to the other ranks using the fan-out communication pattern. This
can be achieved only using point-to-point communication methods, allowing processes to
do different work. For example, the balancing needs to be done six times (2 times per
dimension) for each planar communicator which can be performed in parallel by processes
with rank 0 to 5, if there are this much processes available within the communicator.

Another explicit synchronization point induced by MPI Waitall() lies at the end of the
particle migration and the halo particle exchange. It has been introduced to make sure
that the send buffers are cleared after their message reached the receiver. At this point,
the process waits for all pending send requests to finish. Instead of waiting, send buffers
should be cleared as soon as the requests were successful which can be determined using
the MPI Status. In this case, the requests need to be checked perpetually which can be
achieved using an independent worker thread.

64

10. Other Improvements and possible
Features

10.1. Thermostat and Homogeneity

Two aspects of MD-Flexible have not been parallelized properly, so far. Both the thermostat
and the homogeneity require a calculation of a global average over all subdomains. Currently,
this is implemented naively using MPI Allreduce() before dividing the reduced sum by
the number of subdomains. This approach does introduce an error into the calculation of
the global temperature and homogeneity as it does not consider the specific sizes of the
subdomains. The local values need to be weighted according to their respective subdomain
size. A small subdomain should have less impact on the global average as a large subdomain.

10.2. Extended Subdivision Constraint

As mentioned in Subsection 6.1.1, MD-Flexible allows users to restrict the subdivision of
the simulation domain to specific coordinate axis. This can be extended by restricting the
maximum number of cuts along an axis, allowing even more fine tuning. The simulation
domain of the Exploding Liquid scenario has a size of 60×180×60. So the y-axis is three
times as large than the x- and z-axis. To reduce the surface area of each subdomain, it
is necessary to limit the amount of subdivisions of the x- and z-axis so that most of the
cuts are applied on the y-axis. Minimizing the surface area of the subdomains is key to
reducing the number of halo particles in the simulation. This will reduce the amount of force
interactions calculated between halo particles and owned particles while also decreasing the
communication effort.

10.3. Proper Testing

In view of the bad configuration used for the Falling Drop and Exploding Liquid tests
another thorough test session is required. When it comes to strong scaling, the size of
the tests needs to be increased to support parallelization with 128 and more processes. A
suitable subdivision configuration for the Exploding Liquid scenario has to be employed to
minimize maximum surface area of the subdomains. On top of that, a series of weak scaling
tests have to be designed to get a thorough impression of the weak scaling behavior of both
load balancing approaches.

65

Part V.

Summary

66

Before the integration of massive parallelism into MD-Flexible is discussed in detail,
we summarized the most important aspects of Molecular Dynamics and adaptive domain
decomposition. Here we talk about the N-Body problem and the Linked Cells and the Verlet
Lists methods used to reduce the computational complexity of MD simulations. Further
we discuss two approaches to domain decomposition: Grid Decomposition and Octree
Decomposition. To handle inter domain forces, which are imposed by the domain subdivision,
we investigate the halo particle approach and the eighth shell method. Afterwards we have a
short look at similar projects, namely GROMAKS, LAMMPS, and ls1-mardyn, and provide
a short overview of AutoPas and introduce its demonstrator MD-Flexible.

The domain decomposition employs a regular grid decomposition which is generated using
prime factorization. Users are able to restrict the subdivision along specific coordinate axis.
The inter process communication has been realized using MPI and a step wise communication
scheme to reduce the total number of messages. Particle data is serialized into char arrays
before they are send to another process which then, once it received the package, deserializes
them. Using the C++ fold expressions, the serialization and deserialization is mostly generic
and requires low maintenance effort when particle attributes are introduced or removed.

We did not only implement the external load balancer ALL but also derived the custom
load balancing algorithm called the Inverted Pressure method. We describe the idea on
which the custom method is based and derive the equation which is then used for the load
balancing. The method displays similar efficiency compared to ALL’s Tensor method, is
rather easy to understand and can be improved in multiple directions. In addition, we did
lay the foundation for the integration of other decomposition approaches like the staggered
grid or the octree decomposition.

With the help of VTK and Paraview, the massive parallel simulations can be visualized
properly and the XML file formats used for the visualization can be extended easily.

The implementation has been tested on three simulation scenarios: Falling Drop, Ex-
ploding Liquid and Spinodal Decomposition. They have been executed on the CoolMUC2
supercomputer standing at the Leibniz Rechenzentrum. During the evaluation of the gen-
erated data, several points of potential improvement of the currently implemented load
balancing have been discovered along with some stability issues of the Inverted Pressure
load balancer. Afterwards we provide solutions to some of those shortcomings and derive an
equation which allows the Inverted Pressure method to balance the subdomains globally
along a coordinate axis.

Although we achieved the goal of integration massive parallelism with the help of adaptive
domain decomposition into MD-Flexible, the result does does lack in efficiency. This is not
only a result of the drawbacks of the regular grid which has been chosen as decomposition
scheme, but also because of other issues damping the performance of the parallelization. In
particular, load balancing the domains on each iteration needs to be removed so that MD-
Flexible is a proper demonstrator for AutoPas and it’s capabilities with massive parallelism.
Nonetheless, this issue is easily fixed and will not dampen the performance of MD-Flexible
for long.

67

68

Part VI.

Appendix

69

List of Figures

2.1. Direct Sum on constructed Exploding Liquid Scenario 5

2.2. Linked Cells on constructed Exploding Liquid Scenario 5

2.3. Verlet Lists on constructed Exploding Liquid scenario 5

2.4. A grid decomposition of the Exploding Liquid scenario 7

2.5. Quadtree decomposition on constructed Exploding Liquid scenario 7

2.6. Fourth and eighth shell method . 9

3.1. Initial state fo the Falling Drop scenario . 12

3.2. Final state of the Spinodal Decomposition scenario 12

3.3. Intermediate state of the Exploding Liquid scenario 13

3.4. Final state of the Exploding Liquid scenario 13

5.1. Old initialization of the Simulation component 19

5.2. Old initialization of the Simulation component 20

5.3. Shifting of migrating particles . 20

5.4. MD-Flexible’s old simulation loop . 21

5.5. Halo Particle Creation . 21

5.6. Overview of the new MD-Flexible application 22

5.7. New Initialization of the Simulation component 23

5.8. New Simulation Loop . 24

6.1. Algorithm to create regular grid decomposition 27

6.2. Planar Communicators in a 3-by-3 grid decomposition 28

6.3. Algorithm to determin box coordinates . 29

6.4. Conversion from domain id to domain index 29

6.5. Algorithm to determine the current process’s domain neighbors 30

6.6. Base scenario of Inverted Pressure Method 32

6.7. Inverted Pressure - First half . 34

6.8. Inverted Pressure - Second half . 35

6.9. Step-wise communication pattern in 3D . 38

6.10. Exchange of migrating particles using step-wise communication 39

6.11. Sorting of particle for left and right neighbor 40

6.12. Send and receive particles to the left and right neighbour 41

6.13. Parallel Unstructured Grid File . 45

6.14. Data file of the unstructured grid format . 46

6.15. Falling Drop scenario on 27 ranks . 48

6.16. Parallel file of the structured grid format . 49

6.17. Data File of the structured grid format . 50

70

List of Figures

7.1. Speedup and Efficiency of MD-Flexible’s scenarios 53
7.2. Percentage of load balancing time compared to total time 54
7.3. Bad Local Refinement in the Falling Drop Scenario 55
7.4. Load Balancing percentage and Efficiency in the Falling Drop Scenario . . . 56
7.5. Load Balancing Percentage and Efficiency in the Exploding Liquid Scenario 57
7.6. Oscillation pattern in the Exploding Liquid scenario 57
7.7. The total execution times of the scenarios using ALL’s Tensor method and

Inverted Pressure . 58
7.8. The times used for particle migration using ALL’s Tensor method and Inverted

Pressure . 59
7.9. The times used for the exchange of halo particles using ALL’s Tensor method

and Inverted Pressure . 59

9.1. Global Inverted Pressure scenario . 62

71

List of Tables

7.1. CoolMUC2 Hardware specification . 52

72

Bibliography

[1] M. J. Abraham, T. Murtola, R. Schulz, S. Páll, J. C. Smith, B. Hess, and E. Lindahl.
Gromacs: High performance molecular simulations through multi-level parallelism from
laptops to supercomputers. Elsevier, 2015.

[2] M. P. Allen. Introduction to molecular dynamics simulation. Technical report, Centre
for Scientific Computing and Department of Physics, University of Warwick, 2004.

[3] H. Berendsen, D. van der Spoel, and R. van Drunen. Gromacs: A message-passing
parallel molecular dynamics implementation. Computer Physics Communications, 1995.

[4] W. M. Brown, P. Wang, and S. J. P. ans A. N. Tharrington. Implementing molecular
dynamics on hybrid high performance computers - short range forces. Computer Physics
Communications, 2011.

[5] S. Günther, L. Ruthotto, J. Schroder, E. C. Cyr, and N. Gauger. Layer-parallel training
of deep residual neural networks. Technical report, TU Kaiserslautern, 2018.

[6] R. Halver, S. Schulz, and G. Sutmann. All - a loadbalancing library, c++ / fortran li-
brary. https://gitlab.version.fz-juelich.de/SLMS/loadbalancing/-/releases.
accessed on 2021-13-10.

[7] B. Hess, C. Kutzner, D. van der Spoel, and E. Lindahl. Gromacs 4: Algorithms for
highly efficient load-balanced, and scalable molecular simulation. Journal of Chemical
Theory and Computation, 2008.

[8] E. H. Müller and R. Scheichl. Massively parallel solvers for elliptic partial differential
equations in numerical weather and climate prediction. Technical report, Put institution
here, 2014.

[9] C. Niethammer, S. Becker, M. Bernreuther, M. Buchholz, W. Eckhardt, A. Heinecke,
S. Werth, H.-J. Bungartz, C. W. Glass, H. Hasse, J. Vrabec, and M. Horsch. ls1 mardyn:
The massively parallel molecular dynamics code for large systems. Journal of Chemical
Theory and Computation, 2014.

[10] S. Plimpton. Fast parallel algorithms for short-range molecular dynamics. Journal of
Computational Physics, 1995.

[11] N. Tchipev, S. Seckler, M. Heinen, J. Vrabec, F. Gratl, M. Horsch, M. Bernreuther,
C. W. Glass, C. Niethammer, N. Hammer, B. Krischok, M. Resch, D. Kranzlmüller,
H. Hasse, H.-J. Bungartz, and P. Neumann. Twetris: Twenty trillion-atom simulation.
The International Journal of High Performance Computing Applications, 2019.

73

Bibliography

[12] S. A. Wirp, A.-A. Gabriel, M. Schmeller, E. H. Madden, I. van Zelst, L. Krenz,
Y. van Dinther, and L. Rannabauer. 3d linked subduction, dynamic rupture, tsunami,
and inundation modeling: Dynamic effects of supershear and tsunami earthquakes,
hypocenter location, and shallow fault slip. Frontiers in Earth Science, Jun 2021.

[13] W. Xiao, A. Sabne, P. Skadhnagool, S. J. Kisner, and S. P. Bouman, Charles A.and Mid-
kiff. Massively parallel 3d image reconstruction. Technical report, Purdue University,
High Performance Imaging LLC, Microsoft Corporation, 2017.

74

	Acknowledgments
	Abstract
	Introduction and Background
	Introduction
	General Applications for Massive Parallelism
	Massive Parallelism for AutoPas' MD-Flexible

	Theoretical Background
	Molecular Dynamics
	The N-Body Problem
	Reducing the Complexity of MD Simulations

	Adaptive Domain Decomposition
	Different Domain Decompositions
	Handling Communication and Inter-Domain Forces

	Technical Background
	AutoPas
	MD-Flexible
	ALL
	Technologies
	MPI
	Visualization Toolkit

	Related Work
	GROMACS
	LAMMPS
	ls1-mardyn

	Refactoring MD-Flexible
	High Level Application Architecture
	Old Application Architecture
	Overview
	Initialization of the Simulation Component
	The old Simulation Loop

	New Application Architecture
	Overview
	Initialization of the new Simulation Component
	The new Simulation Loop
	Minor Application Features

	Implementation
	Adaptive Domain Decomposition
	Setting up the Regular Grid Decomposition
	Diffuse Load Balancing of Regular Grid using the ALL load balancing library
	Diffuse Load Balancing using the Inverted Pressure Method

	Point-to-Point Communication for Sending and Receiving Particles
	Serialization and Deserialization of Particles
	Sending and Receiving Point-to-Point Messages
	Step-wise communication with neighbor domains

	Serial Simulation
	Meaningful Metadata
	Visualizing the Parallel Simulation
	Parallel Vtk Writer
	Creation of particle records
	Visualization of domains
	Additional information about domains and particles

	Evaluation
	Evaluation
	Speedup And Efficiency
	Setup
	Results

	Detailed Discussion of the Scenarios Performances
	Performance of Spinodal Decomposition Scenario
	Performance of Falling Drop Scenario
	Performance of Exploding Liquid Scenario

	Comparing ALL's Tensor Method the Inverted Pressure Method

	Future Work
	General Performance Improvements
	Configurable Load Balancing Interval
	Soften the Minimum Cell Size Restriction

	Improving the Adaptive Load Balancing
	Improving Inverted Pressure
	Global Balancing along a coordinate axis
	Improving Stability

	Increasing parallelism

	Other Improvements and possible Features
	Thermostat and Homogeneity
	Extended Subdivision Constraint
	Proper Testing

	Summary
	Appendix
	Bibliography

