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Abstract

A hybrid methodology for the efficient assessment of liquid rocket engines’
thermoacoustic stability is analyzed. Approaches to overcome identified de-
ficiencies are proposed and evaluated. Building on that, the soundness and
perspectives of the procedure are discussed.

To provide a basis for the study, a validation of rocket single flame simu-
lations, which the methodology relies on, is performed. This includes the
development and application of an approach to obtain representative OH*

radiation images from the numerical results.

A revised procedure for the calculation of the quasi one-dimensional mean
flow that is used in the acoustic simulations is developed. It retains certain
characteristics of the single flames while being consistent with the Euler
Equations. Several variants of the mean flow calculation are tested, showing
minor differences compared to other modeling uncertainties. An investiga-
tion of the impact of radial mean flow stratification on the stability pre-
dictions reveals that while oscillation frequencies are reproduced well with
a quasi one-dimensional mean flow, damping rates are severely changed by
radial gradients.

A modification of the flame response simulations is proposed to suppress
the eigenacoustics of the reduced simulation domain. A significant impact
of the simulation approach and the modeling details of the Flame Transfer
Function on the stability predictions is found.

Due to the high uncertainties in both, the mean flow related damping and
the flame response, it is concluded that no sound validation based on the
overall stability behavior can be conducted. Further development of the
procedure requires additional validation data.
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Zusammenfassung

Ein hybrider Ansatz zur effizienten Vorhersage der thermoakustischen Sta-
bilität von Flüssigraketentriebwerken wird untersucht. Lösungsansätze für
gefundene Defizite werden entwickelt und es erfolgt eine Einschätzung von
Belastbarkeit und Potential der Methode.

Als Grundlage für die Untersuchungen werden die Einzelflammenberechun-
gen, denen eine hohe Bedeutung in der Prozedur zukommt, validiert. Dies
umfasst die Entwicklung eines Ansatzes zur Berechnung von OH*-Bildern
aus den numerischen Ergebnissen.

Eine verbesserte Prozedur zur Berechnung der quasi-eindimensionalen
Grundströmung für die akustischen Simulationen wird entwickelt. Der
Ansatz erhält charakteristische Eigenschaften der Einzelflammen und
erfüllt die Euler Gleichungen. Verschiedene Grundströmungsvarianten wer-
den verglichen, die Unterschiede sind vernachlässigbar gegenüber an-
deren Modellierungsunsicherheiten. Eine Untersuchung radial stratifizierter
Grundströmungen zeigt, dass die Schwingungsfrequenzen mit dem quasi-
eindimensionalen Ansatz gut getroffen, die Dämpfungsraten aber stark von
radialen Gradienten beeinflusst werden.

Die Methode zur Berechnung der Flammenantwort wird modifiziert, um die
Eigenakustik der Rechendomäne zu unterdrücken. Der Simulationsansatz
sowie die Modellierungsdetails der Flammentransferfunktion wirken sich
deutlich auf die Stabilitätsvorhersagen aus.

Aufgrund der hohen Unsicherheiten in der passiven Dämpfung wie auch
der Flammenantwort kann eine Validierung der Methodik nicht allein an-
hand des Stabilitätsverhaltens erfolgen. Zur weiteren Entwicklung werden
zusätzliche Validierungsdaten benötigt.
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1 Introduction

Since the early days of space flight [2] thermoacoustic instabilities have been
a crucial issue in the design of liquid rocket engines. The interaction of the
combustion chamber acoustics with the combustion process may lead to
mutual amplification with the possible consequences ranging up to engine
breakdown and mission failure. An instability arises if a feedback loop is
formed by the oscillations of the flow fields in the combustor and heat re-
lease fluctuations. There are many different coupling mechanisms leading to
a specific flame response, like an impact of the acoustics on the propellant
mass flows entering the chamber from the feeding system as well as mod-
ifications of mixing or evaporation [3]. Being a necessary prerequisite for
the design of reliable engines, the avoidance or suppression of combustion
instabilities is of major technical interest. In the following, an outline of the
characteristics (Sec. 1.1) and the classification of combustion instabilities
(Sec. 1.2) is given in order to clarify the scope of the present work. The goal
and structure of the thesis are given thereafter in Sec. 1.3.

1.1 Characteristics of Combustion Instabilities

The basic principle of thermoacoustic combustion instabilities is shown in
Fig. 1.1. A feedback loop is formed between the eigenacoustics of the cham-
ber and the flame’s response to these perturbations. If the energy fed to
the oscillations by the flame dynamics exceeds the damping capabilities
of the chamber, an instability arises and amplitudes increase. Eventually
non-linear behavior e.g. flame response, wave propagation or flow dynamics
may cause the formation of a limit cycle where the amplitudes reach an
upper limit. Possible consequences of combustion instabilities reach up to
the destruction of the engine due to increased thermal or mechanical loads.
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To suppress combustion instabilities manipulations of any of the involved
processes is performed. The most common approach is the application of
damping devices that dissipate fluctuation energy. A change of the flame
response by modifying the combustion process is usually more complex as
it involves e.g. modifications of the injectors or operating conditions. To
efficiently apply any of the above measures to an engine, a numerical pre-
diction of the system’s stability is desirable. This is particularly relevant as
an experimental determination of the stability behavior requires full scale
testing of the design.

The detailed mechanisms leading to the feedback loop described above are
highly case dependent. A review of the processes relevant for the test cases
in the present work is given in Sec. 3.1.2. In the following, a more general
view is taken. First, the basic characteristics of combustion instabilities are
introduced. Then different classification systems for combustion instabilities
from literature are presented and used to identify the types of instabilities
the present work focuses on.
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1.1 Characteristics of Combustion Instabilities

The mere occurrence of oscillations in the combustion chamber is not a suf-
ficient criterion for a combustion instability [4]. A certain level of perturba-
tions is always present due to the turbulent nature of the flow-processes. For
small fluctuations (pressure amplitudes typical smaller than 5% of the mean
value [5]), combustion is considered to be smooth as opposed to rough com-
bustion. Rough combustion is further distinguished into a non-detrimental
type, which is characterized by rather uncorrelated fluctuations, and a detri-
mental type, which is considered a combustion instability. It is constituted
by the presence of a coordinating process that feeds organized oscillations
which in turn sustain the process. As pointed out by Culick [1] the term
combustion instability does not mean that the combustion process itself is
unstable but that the coupled system of combustion and gas-dynamics in
the chamber is unstable, as described by a feedback loop (cf. Fig. 1.1).

A common approach to assess the thermoacoustic stability of a system is
the Rayleigh criterion. It is based on the concept that the effect of heat
release fluctuations on the combustor’s acoustics depends on the phase offset
between both processes. To get a quantitative measure of this phase relation
the product of heat release (q′) and pressure fluctuations (p′) are integrated
over one oscillation period and the combustor volume:

∫

V

∫

f−1

q′p′dtdV̌

{
< 0 stable

> 0 unstable
. (1.1)

If the integral in Eq. 1.1 is negative, the combustor is expected to be stable,
while for a positive value the heat release fluctuations have an destabilizing
effect on the system. The actual stability of the chamber then depends
on whether the energy fed to the oscillations exceeds the available damping
capabilities. This criterion despite its simplicity is rather useful for the quick
assessment of processes’ tendencies regarding stability. It considers only the
driving part. It requires knowledge of the heat release response to pressure
perturbations. The exact mechanisms that lead to a combustion instability
take many forms.

3



Introduction

1.2 Classification of Combustion Instabilities

As the field of thermoacoustics is wide, a classification of the present work’s
topic within the different types of combustion instabilities is given. In lit-
erature, different approaches to subdivide instabilities can be found. The
most general one is a rather coarse differentiation according to principal
mechanisms [5] and typical associated frequencies: Chugging (10–400 Hz)
describes low frequency fluctuations, mainly due to a coupling of feed sys-
tem or structure and combustion chamber. Buzzing (400–1000 Hz) refers
to an interaction of combustion and flow in the feed system. Screeching
(>1000 Hz) comprises instabilities that arise from acoustical resonance of
the chamber and its interaction with the combustion. However, the cate-
gorization based on the combination of frequency ranges and mechanism is
not unambiguous. So the type of instabilities covered in the present work
would be usually considered as high frequency screeching but the feed sys-
tem is involved in the driving mechanim as well. For this reason, alternate
classification approaches are considered in the following. These are not to
be seen as contradiction to each other but  lfocus on different aspects for
classification as shown in Fig. 1.2.

Depending of the onset of an instability [1]: Linear Instabilities develop
from an infinitesimal disturbance that grows in time whereas Triggered In-
stabilities require a certain level of initial perturbation in order to form.
An example for linear instabilities is the combustion chamber D (BKD) [6]
which is studied in the present work.

A different classification criterion is the way the instability is sustained [7].
A Driven Instability is not the result of a feedback loop but rather a response
to some external mechanism. It fades, once the forcing stops. An example for
this type of instability are artificially excited experiments [8] used to study
the reacting flow’s response to acoustic perturbations. In contrast, Self-
Excited Instabilities are self-sustaining with the oscillations directly leading
to an energy gain from the combustion response. Strictly speaking, the
definition of forced instabilities does not match the above concept of the
oscillations being sustained by a feedback loop between flame and acoustics.
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Nevertheless, this type of instability is commonly referred to as combustion
instability.

The extent of the system that is involved in the instability is taken as
distinctive feature by Barrère et al. [9]. Like the classification based on
principal mechanisms introduced at the beginning of this section, the ap-
proach by Barrère et al. is not able to account for the huge variety of in-
stability mechanisms. However, two of the proposed categories cover the
majority of relevant cases: Combustion Chamber Instabilities are related
to the flow processes in the combustor alone, System Instabilities involve
additional components like the feed system. The sub-categories given for
these classes [9] are defined too narrow to be of use for a general classifica-
tion and not considered here. For the sake of completeness only the third
class, Inctrinsic Instabilities is mentioned, where the combustion process
itself becomes unstable instead of the coupled system of acoustics and heat
release.

1.3 Thesis Objective and Structure

To efficiently predict the stability behavior of an engine already in early
design stages, numerical methods are essential, especially as robust exper-
imental studies require full scale testing of the system with all its acousti-
cally relevant components. To allow for numeric stability studies applicable
within industrial development processes, a hybrid methodology has been
under development for several years [3,10–12]. It combines linear perturba-
tion analyses with flame response characterizations based on single flame
simulations. The different components of the procedure have been assem-
bled in a previous study [13] to obtain stability predictions of a cryogenic
H2/O2 engine. The present work covers the consolidation and validation of
both the overall methodology and its components. On this basis revisions
are proposed to address potential weaknesses. Finally, an assessment of the
method’s soundness and capabilities is given. The approach followed in the
present work relies on three steps:
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1. First, the previous developments of the methodology’s different aspects
are discussed. Weaknesses are identified and a revised version of the
procedure is proposed.

2. The components of the stability assessment procedure are validated
both by studying their sensitivity towards modeling uncertainties as
well as by comparison to experimental findings.

3. The consequences that the considering modeling options have on the
stability calculations are evaluated. The soundness of the predictions is
discussed critically and suggestions for subsequent research activities
are derived.

The thesis is structured as follows: First, the theoretical background for the
subsequent methodology analysis and development is introduced in Chap.
2. An overview over basic modeling aspects from literature and previous
studies is given. The information in this chapter will be referred to dur-
ing the analyses and model derivations in the remainder of the work, in
favor of a clear separation between background and new findings. There-
upon (Chap. 3) the experimental and theoretical reference cases that will
be used for the later application and validation of the stability prediction
approach are introduced. This includes a review of previous findings re-
garding the occurring instability mechanisms, which will be useful for the
assessment of the numerical results’ plausibility. Based on the fundamen-
tals and the knowledge of the target configurations, Chap. 4 addresses the
stability analysis procedure. After an overview of the overall concept, its
components are considered separately. For each part of the procedure, the
previous development and the state that the present work starts from are
outlined, shortcomings and necessary analyses are identified. On this basis
a revised version of the stability assessment procedure is developed along
with approaches to conduct the analyses. The chapter provides the basis for
the subsequent analysis and validation of the stability assessment approach.
As the methodology relies heavily on simulations of a single rocket engine
flame, these are the starting point of the subsequent application of the pro-
cedure. In Chap. 5 the numerical setup for the simulations is specified. An
approach to obtain flame radiation images in a way that is consistent with
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the single flame simulation setup and allows for the validation of the numer-
ical results is developed and applied in the subsequent validation. Taking
the validated CFD approach for single flame simulations the componentwise
evaluation of the stability assessment procedure is started with the passive
chamber acoustics in Chap. 6. The modeling of the flame feedback is ad-
dressed subsequently in Chap. 7. Combining the findings and approaches
from the previous two chapters, the role of the different modeling choices in
the context of the overall stability assessment is conducted in Chap. 8. The
findings are used to assess reliability and prospects of the approach. Finally
in Chap. 9 the conclusions of the work are given.
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2 Fundamentals

The analysis and further development of the rocket engine thermoacous-
tic stability assessment procedure relies on several fundamental principles
ranging from engine design to flow and radiation modeling. In this chapter
the basic concepts from literature and previous studies that the remainder
of this work relies on are introduced. Starting point is a survey of the thrust
chambers’ basic configuration (Sec. 2.1) and the associated flow patterns.
The equations used to model the flow fields are introduced thereafter (Sec.
2.2). These equations are mainly applied in the context of single flame (cf.
Sec. 5.1) and mean flow calculations (cf. Sec. 4.2.5) as well as the devel-
opment of the stability assessment procedure (Chap. 4). To describe small
perturbations from a flow mean state, the Linearized Euler Equations (LEE)
are employed (Sec. 2.3). They are used for the acoustic analyses in this work
(cf. Sec. 4.1). When applied to the case of a uniform cylindrical duct flow, an
analytical solution of the isentropic LEE can be obtained, which allows for
the basic explanation of a thrust chamber’s acoustic behavior (Sec. 2.4) and
is of relevance for the design of the stability assessment procedure (Chap.
4). Finally, the computation of flame radiation is addressed (Sec. 2.5). This
topic is a necessary prerequisite for the radiation-based single flame valida-
tion, which is outlined in Sec. 5.2 and performed in Sec. 5.3.

2.1 Thrust Chamber Structure and Flow Fields

The basic design of rocket thrust chambers influences the engines’ acoustic
behavior (cf. Sec. 2.4) and sets the framework for the discussion and further
development of the stability assessment procedure in Chap. 4. In the fol-
lowing, an introduction to the system and its components is given. Further
information can be found e.g. in the book of Sutton and Biblarz [5].
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2.1 Thrust Chamber Structure and Flow Fields

Rocket engines convert the energy chemically stored in the propellants to
kinetic energy of the flow whose exit impulse provides the thrust. This con-
version occurs in the thrust chamber. Depending on the type of application,
a wide range of designs exists. For the present work main and upper stage
liquid rocket engines for space launchers are of relevance. A representative
configuration of this engine type is shown in Fig. 2.1a. The release of chem-
ical energy occurs in the combustion chamber by multiple diffusion flames,
forming in the mixing region between the fuel and oxidizer mass flows. In
the convergent-divergent nozzle the heated flow is accelerated to supersonic
velocities to convert the thermal into kinetic energy. As the convergent noz-
zle part can cover a substantial portion of the combustor, the combination
of cylindrical part and convergent nozzle region is referred to as combustion
chamber in the remainder of this work. Its downstream boundary is defined
by the sonic line associated with the choked nozzle flow, which acoustically

Ma = 1

Igniter

Fuel dome

Ox domeOx dome

Resonator

Cooling

Diffusion
flames

Faceplate

(a) Overview (b) Injection element

Figure 2.1: Thrust chamber structure
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decouples the chamber from its surroundings. The propellants are injected
via multiple (up to several hundreds) injection elements. Together with the
face plate they form the upstream boundary of the combustion chamber.

A typical injector configuration is shown in Fig. 2.1b with the fuel being
injected concentrically around the oxidizer. At the upstream end of the oxi-
dizer injector there is a throttle to induce a pressure loss for decoupling the
chamber from the dome and the upstream feed system. The propellants are
distributed to the injection elements by their respective domes, which again
are fed by a supply system containing turbopumps to raise the propellants’
pressure from storage to pre-injection conditions. The actual cycle type used
for the propellant feed system is not of relevance in the current work and
the reader is referred to other publications [5] for further information. To
ensure the thermal integrity of the chamber walls, regenerative cooling can
be applied, usually using the fuel mass flow as coolant. Resonators may be
included in the design to modify the chamber acoustics in order to suppress
combustion instabilities. They are placed close to the faceplate to avoid ex-
posure to the hot combustion gases. Finally, the igniter is integrated in the
injection head at the centerline of the chamber.

Propellants are typically injected cryogenic at supercritical pressures and
low temperatures (around 100 K, cf. Chap. 3). The mixture ratio is slightly
fuel rich as the optimum for the achievable exit velocity is located there.

The acoustic behavior of the chamber is strongly influenced by the fluid
flow. Its principal structure is shown in Fig. 2.2 for a single flame and its
associated injection element. The color code represents the temperature dis-
tribution. Constantly low temperatures are present in the injection system.
In the chamber, after an initially strongly stratified diffusion flame with a
distinct hot gas zone, the flow homogenizes further downstream at a com-
bustion temperature of more than 3000 K. The underlying mixing structure
is shown in detail view B by means of the mixture fraction f , i.e. the local
fraction of mass originating from fuel (cf. Sec. 5.1.3). After injection, the
fuel spreads towards the chamber wall, dominating the composition inside
the recirculation zone. The oxidizer forms a dense core at the centerline of
the flame. Between both components a mixing region develops, where the
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ṁf
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Ma
0 0.1

Figure 2.2: Flow fields of a single flame

combustion occurs. It can be characterized by the iso-line of stoichiometric
mixture fraction, fstoich. Emanating from the small gap between fuel and ox-
idizer injection, the stoichiometric line first bends outwards, then inwards,
forming a bulb. After a region of nearly constant radius, the flame contour
closes towards the centerline due to the fuel rich operating conditions. The
initial bulb results from the strong volumetric expansion of the cryogenic
oxidizer core and is considerably weaker for ideal gas injection conditions.
Aside of the dominant recirculation zone originating from the backward fac-
ing step formed at the transition from injector to chamber, the flow direction
is mainly axial. Mixing occurs via turbulent exchange between oxidizer and
fuel rich regions, which is sufficient to ensure a rather homogeneous flow at
the chamber end.

In the oxygen injector, the throttle at the connection to the dome causes
a disturbance of the pipe flow (Fig. 2.2, Detail A). The contraction from
the dome to the throttle leads to a local flow acceleration followed by a
deceleration once the injector diameter increases again. This area jump
causes the formation of a recirculation zone at the downstream side of the
throttle. The flow in the fuel injector is of minor relevance in this study and
not covered here.
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2.2 Fluid Dynamic Equations

The acoustic characterization of the configuration outlined in Sec. 2.1 re-
quires knowledge of the flow fields inside the rocket combustion chamber.
The equations governing the numerical simulations of a single flame (cf.
Sec. 5.1) as well as the calculation of perturbations for the acoustic analy-
sis (cf. Sec. 2.3 and 4.1) are each derived from a common set of equations
describing the dynamics of the flow. These equations are introduced in the
following. In the beginning, basic concepts for the description of mixtures
and turbulence are introduced (Sec. 2.2.1) along with the relevant equa-
tions of state and the concept of incompressibility (Sec. 2.2.2). Thereafter,
mass and momentum conservation are addressed in Sec. 2.2.3. As a detailed
discussion of the Navier-Stokes equations can be found in an abundance of
sources (see e.g. [14]), their outline is kept short here. Energy conservation
is covered separately (Sec. 2.2.4). It is introduced as conservation of total
energy, forming the basis for the derivation of any other form of this prin-
ciple used in the current work. The enthalpy equation, which is used for
the single flame calculations (Sec. 5.1.3), is developed from the total energy
equation afterwards, followed by the chemical enthalpy balance equation
used for heat release calculations as described in Sec. 5.1.3.

2.2.1 Basic Concepts

As prerequisites for the introduction of the equations of state (Sec. 2.2.2)
and the fluid dynamic equations (Sec. 2.2.3 and 2.2.4) the concepts of mix-
ture properties and turbulence treatment are introduced in the following.

The fluid inside the rocket combustion chamber is composed of multiple
species, whose concentrations vary across the flow. The equations presented
in the following sections 2.2.2 to 2.2.4 are formulated for the mixture as
opposed to its components. This approach requires to calculate the mixture
properties from those of the individual species. In general, a generic fluid
property φ is composed of an ideal part and a real gas correction (cf. Sec.
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2.2 Fluid Dynamic Equations

2.2.2):

φ = φideal + φreal =
∑

i

φiyi + ∆φreal

φ = h0
f , cv, cp, ∆es, H, E

. (2.1)

The different variables that φ represents (2nd line in Eq. 2.1) are introduced
later, upon use. Their ideal part can be calculated from the species mass
fractions yi while the real gas correction depends on the used equation of
state and the mixing law (see Sec. 2.2.2 and 5.1.2). For the enthalpy of
formation h0

f only the ideal part in Eq. 2.1 is considered. So any enthalpy
of mixing is neglected for this property. As the dominating species in the
fluid composition can be approximated as an ideal gas at standard state
conditions this approach is justified. The further use of this concept is ad-
dressed in Sec. 5.1.3. The transport properties (thermal conductivity λ and
dynamic viscosity µ) are subject to more complex mixing laws [15]. The
specification of these properties is addressed in Sec. 5.1.2.

Aside of the just discussed multicomponent composition, high turbulence is
another characteristic trait of the flow in a rocket combustion chamber. For
the numerical description of the turbulent flow fields, ensemble averaging of
Reynolds or Favre type is applied. In this concept the field variables φ are
decomposed in their mean (̄ ) and turbulent fluctuating part (′)

φ = φ̄+ φ′ . (2.2)

The overbar denotes Reynolds averaging, i.e. an unweighted ensemble av-
erage. However, in order to retain the structure of the equations that are
introduced in the subsequent sections 2.2.3 and 2.2.4, only the mean density
ρ and pressure p are Reynolds averaged. The other variables are replaced
by their Favre averages

φ̃ =
1

ρ
ρφ . (2.3)

That way, the Reynolds averaged product of density and another variable
can be replaced according to

ρφ = ρφ̃ , (2.4)
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thus allowing to separate the fields. The practical application of this mod-
eling concept is addressed within the discussion of the respective equations
in Sec. 2.2.3 and 2.2.4.

2.2.2 Equations of State and Incompressibility

In general, there are two types of equations of state (EOS), thermal and
caloric. The thermal EOS relates local pressure p, temperature T and den-
sity ρ of the fluid, whereas the caloric EOS describes the dependence of
the sensible energy es or enthalpy hs on the state variables. If not specified
otherwise, the term equation of state in this work refers to both the thermal
and caloric EOS. So if e.g. the use of a cubic EOS is stated, this means that
not only the cubic thermal EOS is used but also the corresponding caloric
one. Two different sets of EOS are of relevance here (cf. Sec. 2.3 and 5.1.2),
the common ideal EOS and a cubic real gas EOS. They are introduced
in the following. Moreover, the concept of incompressible flow is used for
certain simulation types in this work (cf. Sec. 4.3.1.3), which is addressed
thereafter.

The ideal gas EOS neglects any interactions between the molecules of the
fluid. The corresponding thermal and caloric EOS read

p = ρRT (2.5a)

∆es = ∆hs −
p

ρ
=

∫ T

Tref

cvdŤ =

∫ T

Tref

(cp −R)dŤ (2.5b)

with ∆es denoting the difference of sensible energy, Tref a fixed reference
temperature, cv the specific isochoric heat capacity and cp the specific iso-
baric heat capacity. Their ratio gives the isentropic coefficient of an ideal
gas

κ =
cp
cv

(2.6)

or

cp = R
κ

κ− 1
, cv =

R

κ− 1
. (2.7)
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For detailed flow simulations under rocket combustion chamber conditions,
the ideal gas assumption is in general not appropriate to describe the low
temperature-high pressure propellant streams at injection conditions (cf.
Sec. 3). The thermal equation of state does not follow Eq. 2.5a but deviates
by a real gas factor Z

Z =
p

ρRT
. (2.8)

For these cases a cubic real gas EOS is used. The corresponding thermal
EOS has the general form

p =
RT

1/ρ− b+ c
− α

1/ρ2 + δ/ρ+ ε
. (2.9a)

The definition of the parameters b, c, α, δ and ε depends on the exact
choice of the EOS. The same applies to the caloric EOS, which includes a
correction term ∆es,real analogous to Eq. 2.1 to extend the caloric ideal gas
equation 2.5b:

∆es =

∫ T

Tref

cvdŤ + ∆es,real . (2.9b)

For details, see the references given in Sec. 5.1.2.

The thermal equations of state 2.5a and 2.9a provide a coupling between the
local pressure and density, describing the general case of a compressible flow.
Compressibility is a necessary prerequisite to capture acoustic waves. In the
present work, the suppression of acoustics is desirable in certain cases (cf.
Sec. 4.3.1.3). Therefore incompressibility is employed. In an incompressible
flow, density is decoupled from pressure:

∂ρ

∂p

∣∣∣∣
T,yi

= 0 . (2.10)

However, density variations can still occur due to a change of temperature
or flow composition. Thus, the often used modeling of incompressible flow
via a divergence-free velocity field does not apply here. To close the flow
equations introduced in the following sections 2.2.3 and 2.2.4, a relation be-
tween density, temperature and flow composition is required. In the present
work, this coupling is achieved by evaluating the thermal EOS 2.9a at a
fixed reference pressure, as will be discussed in Sec. 5.1.2.
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2.2.3 Mass and Momentum Conservation

For the fluid mixture the conservation of mass and momentum is described
by the Navier-Stokes equations, reading

∂ρ

∂t
+∇ · (ρu) = 0 (2.11)

and
∂

∂t
u+ (u · ∇)u = −1

ρ
∇p+

1

ρ
∇ · τ , (2.12)

respectively. Here ρ denotes the density, u the velocity vector, p the pressure
and τ is the shear stress tensor

τ = µ

(
S − 2

3
∇ · uI

)
(2.13)

with the dynamic viscosity µ, the strain rate tensor S and the identity ma-
trix I. For turbulent flow, the Reynolds Averaged Navier-Stokes (RANS)
equations are solved. These provide directly the results for the ensemble
averaged flow fields (Sec. 2.2.1) and are obtained by averaging Eq. 2.11
and 2.12. The resulting equations retain their original structure but den-
sity and pressure are replaced by their ensemble and velocity by its Favre
average. However, averaging Eq. 2.12 leads to unclosed Reynolds stresses τt
that are subtracted from the RHS:

∂

∂t
ũ+ (ũ · ∇) ũ = −1

ρ
∇p+

1

ρ
∇ · (τ − τ t) (2.14)

with
τ t = u′ · u′ . (2.15)

The Reynolds stresses are modeled via the Boussinesq approximation: The
viscosity in Eq. 2.13 is replaced by an effective viscosity

µeff = µ+ µt (2.16)

with the turbulent viscosity µt accounting for the increased momentum
transport due to turbulence. More information on the applied turbulence
closure is given in Sec. 5.1.1.
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2.2.4 Energy Conservation

In addition to mass and momentum, energy is conserved in the flow as well.
In the following, this principle is formulated by means of the total energy E
(Eq. 2.17). The corresponding equation 2.18 is the common starting point
for the derivation of any other description of energy conservation in this
work, be it the subsequently derived enthalpy equation 2.21 that is used for
the single flame simulations (Sec. 5.1.2) or the pressure equation of the Euler
Equations (Sec. 2.3). A different energy balance that will be of relevance
later is the chemically bound energy h0

f , which will be used for heat release
calculations (cf. Sec. 5.1.3). The corresponding equation is introduced at
the end of the current section.

The total energy E is composed of three components:

E = h0
f + ∆es +

1

2
u2 . (2.17)

The enthalpy of formation h0
f is the chemically bound energy, the sensible

energy difference is in general calculated according to Eq. 2.9b and the last
term in Eq. 2.17 is the kinetic contribution. Neglecting viscous dissipation,
the total energy conservation equation reads

∂ρE

∂t
+∇ · [u (ρE + p)] = −∇ · (qλ + qm) (2.18)

with the diffusive fluxes due to heat conduction qλ and mass transfer qm.
According to Fourier’s and Fick’s laws these are calculated as

qλ = −λ∇T (2.19)

qm = −
∑

i

DiEi∇yi (2.20)

with the thermal conductivity λ and the mass diffusion coefficient of species
i, Di. Note that Eq. 2.20 neglects explicit real-gas mixture effects.

In the single flame simulations (Sec. 5.1.2) a different formulation of the en-
ergy conservation principle Eq. 2.18 is used. For unity turbulent and molec-
ular Lewis numbers along with Reynolds averaging to handle turbulence,
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the energy equation 2.18 can be rearranged as

∂ρH̃

∂t
+∇ ·

(
ũρH̃

)
=
∂p

∂t
+∇ ·

(
λeff
cp
∇H̃

)
. (2.21)

Here the total enthalpy

H = E +
p

ρ
(2.22)

is used as conservation variable. The effective thermal conductivity is com-
posed of the molecular value and the turbulent contribution:

λeff = λ+
µt
Sct

. (2.23)

The turbulent part covers turbulent enthalpy transport associated with tem-
perature gradients as well as turbulent flow due to species diffusion. For
approximately isobaric flows Eq. 2.21 is often simplified by dropping the
first term on the RHS.

In contrast to the total energy that sums up all relevant energy forms, the
enthalpy of formation h0

f represents the chemically bound part alone. Its
source term Sh0

f
is directly linked to the volumetric heat release due to

combustion, q, via
q = −Sh0

f
. (2.24)

By combining the transport equations of the different species, an equation
describing the mixture enthalpy of formation as defined in Sec. 2.2.1 is
obtained:

∂ρh̃0
f

∂t
+∇ ·

(
ρũh̃0

f

)
= ∇ ·

(
µ

Sc
+

µt
Sct
∇h̃0

f

)
+ S̃h0

f
(2.25)

with the Schmidt number Sc and its turbulence counterpart Sct.

2.3 Linearized Euler Equations

The Linearized Euler Equations (LEE) are used to describe the acoustic
perturbations in the combustion chamber as discussed further in Sec. 4.1.
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They are the basis of the acoustic analyses presented in Chap. 6 and 8.
Moreover, the analytic solution for duct flow acoustics discussed in Sec. 2.4
is obtained for a special case of the LEE. For linear rocket engine acous-
tics viscous and turbulence effects can be considered secondary. Thus the
flow equations describing momentum and energy conservation (Eq. 2.12,
Eq. 2.18) can be simplified by dropping the diffusion terms. In combina-
tion with the continuity equation 2.11, the Euler Equations are obtained.
If deviations from the mean state are small, the perturbations induced by
the chamber acoustics can be described by linearization, leading to the Lin-
earized Euler Equations. In their general form, the LEE model the linear
temporal perturbations of a non-isentropic, frictionless, three-dimensional
flow. In this section their basic form, covering the fluctuations of the prim-
itive flow variables density, velocity and pressure, is introduced. Starting
point are the basic assumptions going into derivation of the form of the
LEE used in the present work (Sec. 2.3.1). Thereupon the actual equations
are discussed (Sec. 2.3.2), with focus on the pressure fluctuation equation.
Finally, the general structure of the LEE solution is addressed (Sec. 2.3.3).

2.3.1 Basic Concepts

In the following, the assumptions and simplifications that underlie the LEE
as used in the present work are outlined. This concerns the perturbation
approach, the used EOS and the modeling of fluid property fluctuations.

The LEE describe the linear perturbations from a reference state, the mean
flow. This corresponds to the decomposition of the flow fields into a steady
mean (̄ ) and a significantly smaller transient perturbation (′):

φ = φ+ φ′, |φ′| <<
∣∣φ
∣∣ . (2.26)

This approach is formally similar to the turbulence modeling concept de-
scribed in Sec. 2.2.1 (Eq. 2.2). However, the LEE are used to calculate the
fluctuating part instead of the mean, as it is done in the context of turbu-
lence modeling.

The form of the LEE used in this work is based on the assumption that the
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fluid behaves like an ideal gas (Eq. 2.5). Despite the local relevance of real
gas effects in the chamber (cf. Sec. 2.2.2, Sec. 5.1.2) the simplification is
justified due to the way the mean flow is calculated. This will be discussed
in Sec. 4.2.

For an ideal gas, the isentropic coefficient κ depends on temperature and
local fluid composition. Its temperature dependence is usually small and
thus the influence of T ′ on κ is neglected. Moreover, it is assumed that the
impact of fluctuations in the local flow composition on κ and molar mass are
of minor relevance. So the isentropic coefficient κ and specific gas constant
R are modeled as constant in time, i.e.

κ = κ, R = R . (2.27)

From Eq. 2.27 together with Eq. 2.7 the stationarity of the specific isochoric
and isobaric heat capacities follows directly:

cv = cv, cp = cp . (2.28)

Note that Eq. 2.27 does not imply a temporally constant speed of sound c

since for an ideal gas

c′ =
√
κRT

′
=

1

2

√
κR

T
T ′ , (2.29)

i.e. the sound speed fluctuates with the local flow temperature. In contrast
to the aforementioned properties, fluctuations of the enthalpy of formation
cannot be neglected in general. These go directly into the flame response,
which is an essential part of the thermoacoustic characterization of a com-
bustion chamber (cf. Sec. 4.1). Finally, the simplification of a temperature
independent isentropic coefficient is applied to the mean flow in the deriva-
tion of the pressure fluctuation equation as well. Usually, an effective value
of κ corresponding to a representative specific heat capacity would be used
in this context. However, in this work the isentropic coefficient is used to
achieve certain acoustic characteristics of the mean flow. The details includ-
ing the exact calculation procedure used to obtain the isentropic coefficient
are subject of Sec. 4.2 and not considered further at this point.
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2.3.2 Perturbation Equations

With the prerequisites given in Sec. 2.3.1 the LEE are introduced. Focus
is placed on the pressure fluctuation equation, which represents the energy
conservation principle in the LEE. Thereafter, the solution structure of the
presented equations is shortly addressed.

To derive the LEE, first the Euler Equations are obtained from the conser-
vation Equations given in Sec. 2.2 by dropping the diffusive terms. Then the
perturbation approach (Eq. 2.26) is inserted into the Euler Equations and
only linear terms are kept. For the mass (Eq. 2.11) and momentum (Eq.
2.12) equations the result is straightforward:

∂ρ′

∂t
+∇ · uρ′ + u · ∇ρ′ +∇ρ · u′ + ρ∇ · u′ = 0 (2.30)

and
∂u′

∂t
+ (u · ∇)u′ + (u′ · ∇)u = −1

ρ
∇p′ + 1

ρ2
∇pρ′ . (2.31)

To complete the description of the flow perturbations, a pressure equation is
required. Starting point for its derivation is the energy equation 2.18. Drop-
ping diffusive transport terms in accordance with the basic assumptions of
the LEE leads to

∂ (ρE)

∂t
+∇ · [u (ρE + p)] = 0 . (2.32)

Inserting the definition of the total energy, Eq. 2.17, rearranging under usage
of a vector identity1 and employing Eq. 2.11 and 2.12 gives (cf. App. A)

ρ
∂∆es
∂t

+ ρu · ∇∆es + p∇ · u = −
(
∂ρh0

f

∂t
+∇ ·

(
ρuh0

f

)
)

. (2.33)

This equation is completely equivalent to the total energy conservation
Equation 2.18 as no simplifications have been introduced so far. Lineariza-
tion of Eq. 2.33 under usage of the assumptions from Sec. 2.3.1 results in

1The identity ∇ (φ · φ) = 2 (φ · ∇)φ+ 2φ× (∇× φ) is combined with φ · (φ× (∇× φ)) = 0.
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(cf. App. A)

∂p′

∂t
+ u · ∇p′ + u′ · ∇p+ κ (p∇ · u′ + p′∇ · u)− 1

κ− 1
(u′p+ up′) · ∇κ

= −Tref (u′ρ+ uρ′) ·
(

R

κ− 1
∇κ−∇R

)
− (κ− 1)

[
∂(ρh0

f)

∂t
+∇ ·

(
ρuh0

f

)
]′

.

(2.34)

To interpret the right-hand side (RHS) of Eq. 2.34 it is rewritten as

RHS = −(κ− 1)

[(
∂(ρh0

f)

∂t
+∇ ·

(
ρuh0

f

)
)′
− (ρu)′∇ R

κ− 1
Tref

]

= − (κ− 1)

[
∂(h0

f − cvTref)
∂t

+ ρu · ∇
(
h0
f − cvTref

)
]′ .

(2.35)

For the last transform in Eq. 2.35 it has been used that ∂(cvTref)/∂t = 0
due to the time-independent cv assumption (Eq. 2.28). The term in square
brackets in Eq. 2.35 is similar to the transport equation for the enthalpy of
formation (Eq. 2.25). It can be represented as the fluctuating heat release
due to combustion q′ (Eq. 2.24) along with a modification that accounts
for the reference sensible energy at Tref . This modification effectively moves
the reference temperature for the calculations on the left hand side (LHS)
of Eq. 2.34 to 0 K. However, in the remainder of this work it is neglected to
ensure consistency with the form of the LEE used in previous works [12].
This simplification is justified since for the majority of the mean flow (cf.
Sec. 6.1.1) Tref is significantly lower than the local flow temperature T .
Thus, recalling Eq. 2.9b it can be considered to be of minor importance.
Adapting the notation of the heat release from Eq. 2.24 and 2.25 the final
form of the pressure fluctuation equation reads

∂p′

∂t
+u·∇p′+u′·∇p+κ (p∇ · u′ + p′∇ · u)− 1

κ− 1
(u′p+ up′)·∇κ = (κ−1)q′ .

(2.36)

Eq. 2.30, 2.31 and 2.36 together constitute the Linearized Euler Equations
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as used in the present work. Their application in the context of the stability
assessment procedure is addressed in Sec. 4.1.

2.3.3 Solution Structure

For the stability analysis eigensolutions of the LEE (Eq. 2.30, 2.31 and 2.36)
are calculated (cf. Sec. 4.1). The solution structure consists of three contri-
butions [16]:

� Acoustic perturbations propagate as waves. They are isentropic and
associated with irrotational velocity perturbations.

� Vortical, solenoidal velocity perturbations are convected with the mean
flow.

� Entropy perturbations are convectively transported as well but are not
associated with a velocity amplitude.

Strictly speaking, only the first one is of acoustic nature. However, all three
parts contribute to the fluctuation energy in the chamber and thus the sta-
bility behavior. Thus, if not stated explicitly otherwise, the term acoustics
is used to refer to the superposition of all three perturbation classes in the
following. This also seems appropriate as the eigenfrequencies of interest
are clearly dominated by the acoustic mode, which is accompanied by the
other two perturbation types.

2.4 Analytical Cylinder Acoustics

As outlined in Sec. 2.1, the basic design of a rocket combustion chamber is
composed of a cylindrical section ending in a convergent nozzle. Although
neglecting the nozzle contraction may appear as a somewhat crude geomet-
rical approximation, it has been found [12] that the chamber’s basic acoustic
behavior can be well characterized by analyzing isentropic perturbations in
a uniform, one-dimensional cylinder flow. The governing principles of such
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a configuration are of major importance in the design of the stability as-
sessment procedure (Sec. 2.3.3). In the following, the equation describing
the acoustic perturbations for the above flow type is introduced (Sec. 2.4.1).
Thereupon its analytical solution is outlined (Sec. 2.4.2) along with the de-
scription of the associated perturbation energy. Finally, a discussion of the
consequences for rocket combustion chamber acoustics is given in Sec. 2.4.3.

2.4.1 Pressure Perturbation Equation

The differential equation describing the acoustic perturbations in a uniform,
one-dimensional cylindrical duct is obtained by combining the mass (Eq.
2.30) and momentum (Eq. 2.31) equations of the LEE with the isentropic
relation between pressure p and density ρ:

p′ = c2ρ′ . (2.37)

Along with the uniformity of the mean flow,

∇φ = 0, u = ux , (2.38)

the partial differential equation

1

c2

D2p′

Dt2
− ∂2p′

∂x2
+
∂2p′

∂r2
+

1

r

∂p′

∂r
+

1

r2

∂2p′

∂θ2
= 0 (2.39)

is obtained. The mean flow material derivative of a scalar reads

D

Dt
=

∂

∂t
+ u · ∇ . (2.40)

The analytical solution of this equation is outlined in the following section
2.4.2.

2.4.2 Analytical Solution

The analytical solution for the pressure perturbation equation 2.39 at an os-
cillation frequency of interest ω is the superposition of an, in general infinite,
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number of modes. Modes can be categorized in three types, longitudinal,
tangential and radial, corresponding to the dimension along which their am-
plitude distribution varies primarily2. Each mode potentially contributes to
the pressure fluctuations p′ via its complex amplitude distribution, resulting
in

p′ =
∞∑

m=0

∞∑

n=0

p̂mn exp(iωt) . (2.41)

The index m denotes the tangential order of a mode, n is its radial order.
The associated amplitude patterns will be addressed further below.

The complex pressure amplitude distribution in Eq. 2.41 is given by

p̂mn = Pmn(x)Rmn(r)Θmn(θ) (2.42)

with its axial, radial and circumferential shape functions

Pmn = ρc
(
F̂mn exp

(
−ikx+

mnx
)

+ Ĝmn exp
(
−ikx−mnx

))
(2.43a)

Rmn = Jm (krmnr) (2.43b)

Θmn = Aθ−
mn exp (imθ) + Aθ+

mn exp (−imθ) . (2.43c)

F̂ and Ĝ denote the complex amplitudes of the right and left running plane
waves, Jm is the mth Bessel function of first kind and A±mn are the amplitudes
of the counterclockwise and clockwise rotating circumferential contributions
respectively.

The scalar wave number known from the one-dimensional solution of the
non-convective Helmholtz Equation

k =
ω

c
(2.44)

is replaced by separate axial and radial wave numbers

kx±mn =
k

1−Ma2


−Ma±

√
1−

(
krmn
k

)2

(1−Ma2)


 (2.45a)

krmn =
smn
R

. (2.45b)

2As discussed later, the amplitudes of e.g. a cut-off tangential mode decreases in axial direction.
However, within each cross-section the circumferential amplitude distribution is scaled by a constant factor
and does not change qualitatively.
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Figure 2.3: Cross-sectional complex pressure amplitude distribution; ab-
solute value (top) and phase (bottom)

Ma denotes the Mach number of the mean flow, R is the duct radius and
smn is the nth root of the first derivative of Jm. For Ma = 0, the norm of
the vector formed by these two wave numbers amounts to the value given
by Eq. 2.44.

In this work the longitudinal, radial and transverse eigenmodes are referred
to as Li, Rn and Tm respectively with i, n and m the associated mode
order. Besides the pure modes, combinations of all three can occur. The
normalized cross-sectional pressure amplitude distributions are given by Eq.
2.42 and 2.43, independent of the up-and downstream boundary conditions.
For selected pure and combined modes they are shown in Fig. 2.3.

The velocity fluctuations are obtained by inserting Eq. 2.41 into the lin-
earized momentum equations. The solution structure follows Eq. 2.41 with

ûx,mn = Ux,mn(x)Rmn(r)Θmn(θ) (2.46a)

ûr,mn = Ur,mn(x)
dRmn(r)

dr
Θmn(θ) (2.46b)

ûθ,mn = Uθ,mn(x)
Rmn(r)

r

dΘmn(θ)

dθ
. (2.46c)
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The axial functions in Eq. 2.46 are given by

Ui,mn = ζ+
i,mnF̂ exp

(
−ikx+

mnx
)

+ ζ−i,mnĜ exp
(
−ikx−mnx

)
(2.47)

with

ζ±x,mn =
kx±mn

k −Makx±mn
(2.48a)

ζ±r,mn = ζ±θ,mn =
i

k −Makx±mn
. (2.48b)

Besides the perturbations of velocity and pressure, their relation to the fluc-
tuating energy is of relevance for the development of the stability analysis
procedure, particularly for the mean flow calculation procedure (Sec. 4.2.2).
In the following, the description of acosutic energy is illustrated for the cur-
rently discussed duct flow configuration. Many approaches have been taken
to describe the energy associated with the flow perturbations. A rather
general form is given by Myers [17]. For isentropic fluctuations along with
constant sound speed the acoustic energy becomes

E ′ =
p′

2ηs
+
ρ

2
u′ · u′ + p′

c2
u · u′ (2.49)

with the isentropic compressibility

ηs =
1

ρc2
. (2.50)

The acoustic energy (Eq. 2.49) obeys the equation

∂E ′

∂t
+∇ ·W ′ = D′ (2.51)

with the acoustic energy flux vector W ′ and the source term D′. For purely
acoustic perturbations (cf. Sec. 2.3.3) in isentropic, inviscid flow of an ideal
gas they read

W ′ = ρu · u′u′ + +uu · u′ρ′ + p′u′ +
1

ηs
up′2 (2.52)

D′ = 0 . (2.53)
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2.4.3 Implications for Rocket Combustion Chamber Acoustics

In rocket engine combustion instabilities longitudinal modes are typically
of minor importance [5, 18]. The high mass flow leaving the nozzle leads
to significant damping effects due to the convective transport of oscillation
energy despite the generation of perturbations by the accelerated flow in the
nozzle. Radial and transverse modes pose a more serious danger for engine
stability. Most commonly, transverse oscillations are the source for critical
instabilities, including the test case which this work focuses on.

The frequencies of the transverse modes are strongly connected to the axial
wave number via the so-called cut-on frequency ωco: The axial wave numbers
(Eq. 2.45a) become complex below an oscillation frequency

ωmn,co = smnc

√
1−Ma2

R
(2.54)

as the squareroot term in Eq. 2.45a becomes negative. According to Eq.
2.43a a imaginary wave number leads to a spatial decay of the amplitudes
in the direction of wave propagation. To visualize the evanescence of am-
plitudes the case of a T1 mode with a purely right running plane wave
(Ĝ10 = 0 in Eq. 2.43a) and a standing circumferential amplitude distribu-
tion (Aθ−

mn = Aθ+
mn in Eq. 2.43c) is considered. For krmn/kmn = 1.16 and a

flow Mach number of Ma = 0.1 the resulting normalized pressure amplitude
distribution is shown in Fig. 2.4. Three influencing factors can be identified
that determine the cut-on frequency: first, the mode order via the Bessel
derivative roots, which are shown in Fig. 2.5. With increasing radial and
tangential order, the values of the roots increase and thus the cut-on fre-
quency for the respective modes becomes higher. Second, the sound speed,
which is governed by the combustion process via the local temperature and
flow composition. Its axial distribution obtained as area weighted average
across the chamber cross-section is shown for the cylindrical region of an
H2/O2 engine with length lc in Fig. 2.6. The last factor in Eq. 2.54 is mainly
linked to the chamber’s geometry. However, in the front part of the chamber,
the radius is constant and the influence of combustion on the sound speed
determines the development of the cut-on frequency. The initial region of
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lower sound speed has been found to be decisive for the potentially unsta-
ble eigenmodes of the engine that is considered in the present work [12,13].
The associated instability mechanisms are covered in Sec. 3.1.2. A T1 mode
can form at a frequency determined by the level of sound speed at this
plateau but is cut-off further downstream, limiting the occurrence of high
amplitudes to the region close to the faceplate [12, 13].

2.5 Flame Radiation Modeling

In the present work experimental radiation images are used to validate the
single flame calculations. In this section, an overview over the fundamen-
tals of radiation modeling from literature and previous works is given. The
discussed principles and models are the basis on which a sound concept for
the calculation of OH* radiation images for turbulent rocket engine flames
is developed in Sec. 5.2, which is subsequently used for single flame valida-
tion in Sec. 5.3. Besides the OH* radiation around the center wavelength
of λc ≈ 310 nm, the broadband blue radiation is characteristic for H2/OT
flames and of interest in the present work.

In the following, the basic concept of flame radiation modeling is intro-
duced (Sec. 2.5.1). Submodels required for OH* emission (Sec. 2.5.2) and
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absorption (Sec. 2.5.3) calculations are outlined subsequently. Finally, blue
radiation is covered in Sec. 2.5.4. A more detailed introduction to the topic
of radiative transport and the absorption and emission mechanisms is given
e.g. by Modest [19].

2.5.1 Radiation Description

The microscopic principle governing flame radiation is visualized in Fig. 2.7.
For conciseness a simplified, quasi one-dimensional representation is chosen
although the shown processes are in general isotropic. The radiation per-
ceived by an observer is the result of emission and absorption along his
line-of-sight. For the case of flame radiation, both processes are governed
by different states of the fluid’s molecules and the transition between these
states. First, there is the ground state, which is the reference constitution
of a species. In contrast, the excited state is energetically higher than the
ground state. A molecule can be excited by different mechanisms, e.g. by
the absorption of a photon or during a chemical reaction. When a molecule
falls back from its excited to its ground state a photon is emitted at a wave
number ν that is determined by the energy difference between both states.
This mechanism is the source of flame radiation. Its modeling principles are
discussed in Sec. 2.5.2 and Sec. 2.5.4. The reverse process, i.e. the excita-
tion of a molecule due to absorption, reduces the perceived radiation (cf.
Sec. 2.5.3). In general, multiple species contribute to emission and absorp-
tion. For the OH* radiation calculations in the present work, however, it is
sufficient to consider OH as emitting species. The blue radiation emission
is addressed in Sec. 2.5.4. Concerning absorption, at most self-absorption

Viewing
direction

Photon

Excited

Ground state

Transition

Passive species

Figure 2.7: Radiation principle
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is accounted for, which refers to absorption by the same species that is
emitting radiation.

For the quantitative description of the radiation process, the spectral in-
tensity Is is used. It denotes the radiative energy flow per solid angle and
unit area normal to the path as well as per a spectral variable s. Common
choices for the spectral variable are the wavelength (s = λ) or the optical
wave number (s = ν). The experimental validation data used in the scope
of the present work provide the integral value

I =

∫

∆s

Isds (2.55)

with ∆s the spectral range of interest. The conversion between wave length
and wave number specific spectra can be obtained from the equality of the
integral intensity of both descriptions (see App. B). The spatial development
of the spectral intensity is described by the radiative transport equation.
When considering a one-dimensional ray and a system that is steady with
respect to radiative time scales ([20, 21]), this equation reads [19,21]

∂Is
∂x

= −ksIs + es . (2.56)

Here ks denotes the spectral absorption coefficient and es is referred to as
spectral emission coefficient [19].

To evaluate Eq. 2.56 the absorption coefficient and the source term es need
to be modeled. Approaches to calculate OH* emission are given in Sec.
2.5.2. Absorption is discussed in Sec. 2.5.3. The model derived by Fiala [21]
for blue radiation is considerably simpler than that of OH* and is addressed
separately in Sec. 2.5.4.

2.5.2 OH* Emission Modeling

The emission coefficient es constitutes the source term in the radiative trans-
port equation, Eq. 2.56. There are several models available to calculate the
local emission of OH* radiation. The classical model combines an emissivity
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with the black body radiation intensity to provide a quantitative estimation
of the emission coefficient. A more basic approach is to assume proportion-
ality of OH* radiation to the OH* concentration. Such a model provides
a qualitative distribution without absolute intensity values. In this section,
the classical approach is introduced, followed by an overview of different
ways to obtain OH* concentrations for the basic model. The relation be-
tween the different approaches will be discussed in Sec. 5.2.1.

2.5.2.1 Classical Gas Radiation Approach

The classical approach for gas radiation proposes [19]:

es = εsIb,s (2.57)

with the emissivity εs. Ib,s is the spectral black body radiation intensity,
which for the wave number as spectral variable (s = ν) reads

Ib,ν =
2hc2

l

ν3

(
exp

(
hclν

kBT

)
− 1

)−1

. (2.58)

The index ν denotes that the radiation is given wave number specific. The
term cl refers to the speed of light, kB is the Boltzmann constant and h the
Planck constant. Under local thermodynamic equilibrium Kirchhoff’s law is
valid, stating

εs = ks , (2.59)

i.e. the emissivity equals the absorption coefficient, which is discussed in
Sec. 2.5.3.

2.5.2.2 OH* Concentration Approach

The second type of emission models assumes proportionality between OH*

concentration and emission. It only requires the calculation of spatial dis-
tribution of OH*, which is discussed in the following.

Two effects lead to the emission of OH*-radiation: thermal and chemical
excitation. According to the summary given by Fiala [21,22] the dominant
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chemical excitation mechanism is the combination of atomic hydrogen and
oxygen during collision with a third body Q:

O + H + Q 
 OH∗ + Q . (2.60)

The second contribution to the OH* formation is the thermal excitation or,
contrary, quenching of OH* by the collision with other molecules, which can
be modeled as

OH + Q 
 OH∗ + Q . (2.61)

Fiala [21] studied the importance of both mechanisms by comparing the
reaction rates occurring in one-dimensional counterflow diffusion flames.
At high temperatures thermal excitation rates clearly exceed the chemical
ones. The cross-over temperature where thermal excitation becomes domi-
nant lays between about 2500 K and 2900 K, depending on the used reaction
mechanism. Basis of the used reaction description was the H2/O2 mecha-
nism by Ó Conaire et al. [23], patched with the rate coefficients for chemical
OH* formation (Eq. 2.60) by Kathrotia et al. [24] as well as the coefficients
for thermal quenching (Eq. 2.61) provided by Tamura et al. [25]. However,
as pointed out by Fiala the rate coefficients for the chemical formation of
OH* are subject to high uncertainty. Likewise the set of thermal excitation
or quenching reactions has been calibrated for lower temperatures only with
no solid data available for the high temperature range.

The explicit calculation of the OH* concentration from a reaction mecha-
nism using Eq. 2.60 or Eq. 2.61 has been termed the Detailed Chemistry
Radiation Model by Fiala et al. [22]. While this is a rather detailed model
to obtain the OH* distribution, several approaches have been proposed to
simplify this procedure. In the most basic case, the OH* distribution is
approximated by ground state OH [26]. A more elaborate approach is the
Equilibrium Filtered Radiation Model (EFRM-A)3 proposed by Fiala et
al. [22]. It is based on chemical equilibrium

[OH∗]

[OH]
= exp

(
−∆∗µ0

OH

RmT

)
∼ exp

(
− hcl
kBλT

)
(2.62)

3Fiala used the term EFRM to referr to the emission model and EFRM-A for a combination of the
EFRM with self-absorption. As in the present work only the case including self-absorption is of relevance,
the term EFRM-A is used all over in favor of a concise nomenclature.
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with ∆∗µ0
OH denoting the difference of standard state Gibbs free energy be-

tween excited and ground state OH. The proportionality relation in Eq. 2.62
has been introduced by Fiala [21, 22] based on the assumption of thermal
excitation of a single state with the corresponding wave length λ. Practi-
cally, Eq. 2.62 is evaluated at the center wave length λc of the considered
spectrum.

2.5.3 Absorption and Net Emission

The solution of the radiative transport Equation 2.56 as well as the evalua-
tion of the classical gas phase emission coefficent (Eq. 2.57) requires knowl-
edge of the absorption coefficient. An extensive number of absorption data
is given in the HITRAN database [27]. The data are provided as spectral
line intensities Sref at reference conditions, from which the corresponding
values S at the state of interest are calculated as described by Rothman
et al. [28]. However, in a spectrum the absorption lines are not sharp but
rather blurred around their peak wave number. Data for two mechanisms
that contribute to the blurring, pressure broadening (described by a Lorentz
profile) and Doppler-broadening (modeled as Gaussian curve), are provided
in HITRAN. The superposition of both contributions is described via a
Voigt profile V leading to

kmol = VS . (2.63)

The resulting quantity is a spectral absorption coefficient per molecule, kmol,
which can be converted to the spectral absorption coefficient via

k = kmolNA [OH∗] (2.64)

with the Avogadro constant NA and the molar OH* concentration [OH∗].

The net emission from a volume of spatially constant absorption and emis-
sion coefficient can be evaluated analytically from Eq. 2.56 [21] yielding

Is =
es
k

[1− exp (−k (x− x0))] + Iν,0 exp (−k (x− x0)) . (2.65)

Here Is,0 denotes the intensity of the radiation entering the domain (at
coordinate x0) and x the one-dimensional coordinate of the radiation path.
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The net emission is given by the first term in Eq. 2.65 while the second term
represents the radiation transmitted through the volume. For large distances
x − x0 the net emission approaches the value es/k and the transmitted
emission becomes zero. For the classical gas phase radiation model Eq. 2.65
can be reformulated using Eq. 2.57 to give

Is = Ib,s + (Is,0 − Ib,s) exp (−ks (x− x0)) , (2.66)

i.e. in the long distance limit the spectrum exiting the uniform volume
approaches that of a black body.

For the EFRM-A model Fiala proposed a combination of the wave-length
independent emission described in the previous section and an absorption
model, where a set of reduced absorption coefficient

kr =
k

[OH]
(2.67)

is fitted to approximate the relation

dI

I
= −kr,i[OH]x . (2.68)

2.5.4 Blue Radiation

While originating from chemiluminescence, the exact source of blue ra-
diation is subject to some uncertainty. Fiala [21] refers to the works of
Diederichsen et al. [29], Gaydon [30] and the later studies of Padley [31]
and Vanpee et al. [32] to identify two potential reactions leading to the
excited states emitting blue radiation:

OH + H −−→ H2O
∗ (2.69a)

OH + OH −−→ H2O2
∗ . (2.69b)

From spatially resolved radiation images, the reaction Eq. 2.69b is identified
to better describe the flame structure [21]. For the qualitative emissions of
blue radiation, the relation

eblue ∼ [OH]2 (2.70)
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is proposed. As the flame is optically thin with respect to the blue radiation,
no absorption needs to be considered, yielding simple line of sight integration
as appropriate for obtaining the flame image:

Iblue =

∫ x

x0

ebluedx̌ . (2.71)

The blue radiation modeling according to Eq. 2.70 and Eq. 2.71 is used for
the radiation based single flame validation in Sec. 5.3.4.
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3 Test Cases

Three test cases are studied in the present thesis for various purposes. The
combustion chamber D (BKD), an H2/O2 combustion chamber run at the
German Aerospace Center (DLR), is the most important one. It is used
for the validation of the stability assessment procedure in Chap. 6 to 8
as well as the evaluation and calibration of the single flame simulations in
Sec. 5.3. In contrast, the virtual demonstrators TCD2 and TCD3 are thrust
chamber concepts designed by ArianeGroup that feature key aspects of next
generation main stage rocket engines. The TCDs will be used to evaluate
the relevance of the nozzle correction for the acoustic predictions in Sec. 6.2.
The numerical setup used for the simulation of the test cases is given in Sec.
5.1. In the present section, the specifications of the different configurations
are introduced, starting with BKD (Sec. 3.1) and followed by the TCDs
(Sec. 3.2).

3.1 BKD

The BKD, shown in Fig. 3.1, is the main test case in the present work, used
for the development and validation of the stability assessment procedure.
It is a multi-element H2/O2 rocket combustion chamber operated on a test
bench at the DLR. Its performance parameters fall within the lower range of
upper-stage engines [33]. Several load points have been tested, some of them
thermoacoustically stable whereas others showed self-excited combustion
instabilities. The geometry and operating conditions relevant for the present
work are specified in Sec. 3.1.1. An overview of the various BKD studies
dealing with combustion stability is given subsequently (Sec. 3.1.2).
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3.1.1 Specifications

The BKD is composed of the injection system, a cylindrical chamber section
and the nozzle (Fig. 3.1a). The main dimensions are listed in Tab. 3.1a.
Due to the focus of the present work on the chamber acoustics, only the
convergent part of the nozzle is considered. The primary instrumentation is
contained in a measurement ring close to the faceplate.

The injection head (Fig. 3.1b) comprises 42 elements through which H2 and
O2 are injected coaxially. The element geometry is specified in Fig. 3.1c and
Tab. 3.1b, the oxidizer dome is shown in Fig. 3.1a with its dimensions given
in Tab. 3.1c. The cylindrical volume at the center of the dome belongs to
the ignition system.

Table 3.1: BKD specifications

(a) Combustion chamber

cylinder section nozzle section film cooling slot

� length � throat length r inner r outer sector angle
80 225.5 50 48.8 39.95 40.45 29°

†
lengths given in mm

(b) Injectors

common oxidizer fuel

no. rec
� length taper

angle
bevel

�

post mouth thr post thr inner outer
42 2 3.6 3.7 1.9 68 3.1 20° 0.3×45° 4 4.5

†
lengths given in mm

(c) Oxidizer dome

height
�

base upper igniter
14.4 74.8 46 12

†
lengths given in mm

(d) Instrumentation

dynamic pressure static pressure window

x angular offset x � x
5.5 45° 5.5 80.5 125.5 18 8

†
lengths given in mm
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injection
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(a) Longitudinal sketch
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(b) Injection pattern and measurement ring
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Fuel
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(c) Injector element

Figure 3.1: BKD combustion chamber geometry
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Table 3.2: Operating points with optical window access

stability pc, bar O/F †
ṁ, kg s−1 T, K

O2 H†2 film O2 H2 film

LP1 stable 51.39 5 3.4 0.68 0.043 114.4 102.4 290
LP2 unstable 81.35 4.92 5.37 1.09 0.043 112.7 103.4 292

†
excluding film cooling

The measurement ring (Fig. 3.1b) comprises eight dynamic pressure sensors
and fiber optical probes for measuring OH* radiation. In later experiments,
an optical access window has been added to allow the recording of 2D flame
radiation images. The window is film-cooled with hydrogen that is injected
at the outer side of the injector head (cf. Fig. 3.1b and Tab. 3.1a). A notch in
the chamber wall initially gives room to the coolant flow and starts bending
towards the regular chamber diameter at an angle of about 1.8°, 18.8 mm
downstream of the face plate. Three static pressure sensors are placed along
the chamber wall. The instrumentation specifications that are relevant in
the present work are summarized in Tab. 3.1d. Further information can be
found in the publication of Armbruster et al. [6].

Numerous load points have been investigated for the BKD (cf. Sec. 3.1.2)
with typical operating pressures lying between 50 bar and 80 bar. In this
work, the operating points of a newer measurement campaign [6] are con-
sidered as these feature optical window access to the flame that allows for
additional validation of the simulated flame structure. The specifications of
these load points, a stable one at a chamber pressure of about 50 bar and
an unstable one at about 80 bar, are given in Tab. 3.21. To assess the state
of the propellants at injection, their crtitical points are given in Tab. 3.3.
As can be seen from Fig. 3.2 the injection conditions of H2 are clearly su-
percritical whereas O2 is injected in a transcritical state for LP2. For LP1
the O2 injection temperature is subcritical, while the chamber pressure is
only slightly higher than the critical pressure of O2.

1Note that the load point IDs have been reused in different experimental studies [6, 33], which is why
LP1 and LP2 covered here are not identical to those provided for previous test-runs although they share
the same name.
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Table 3.3: Propellant
critical points

O2 H2 CH4

pc, bar 50.4 13.0 46.1
Tc, K 154.6 33.2 190.6

0 100 200
0

50

100

O2

H2

CH4

LP1

LP2

T, K

p,
b

ar

ox
fuel
critical point
TCD2
TCD3
BKD

Figure 3.2: Injection conditions

3.1.2 Previous Studies

The thermoacoustic behavior of the BKD has been subject to both numeri-
cal and experimental studies. To provide the research context for the present
work’s results in terms of the BKD’s acoustic behavior, an overview of the
findings from previous studies is given in the present section, starting with
the experiments and followed by the modeling approaches.

A characterization of the BKD stability behavior for several load points is
conducted by Gröning et al. [34], focusing on different mixture ratios and
chamber pressures. The study also contains an overview of several post-
processing approaches that are used to extract information from the ex-
perimental BKD data. The T1 mode is found to be dominant whenever an
instability occurs. An analysis of the mode orientation shows a spinning
behavior with a varying character of rotation, where unstable load points
tend to show more standing behavior. In a subsequent study [35] the impact
of the fuel temperature on the chamber stability is considered by varying
the mixture ratio and chamber pressure for two different hydrogen temper-
atures. The impact of the chamber pressure on the eigenfrequencies is found
to be minor compared to that of hydrogen temperature and mixture ratio.
The reason is the different sensitivity of the sound speed in the combus-
tion chamber to these parameters. Regarding the instability mechanism, a
coupling with the oxygen injection system is brought up. Moreover, signifi-
cant oscillations, termed x-modes, are found at frequencies that cannot be
associated with certain cylinder modes. These eigenfrequencies show a dif-
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ferent dependence on the operating conditions than the identified cylinder
modes and are reckoned to possibly originate from the hydrogen manifold.
Concerning the stability behavior no clear correlation with the hydrogen
temperature is identified. However, the finding that unstable modes tend to
become more standing is confirmed. A more extensive study on the role of
hydrogen temperature [36,37] is conducted by means of an injection temper-
ature ramping test. It is found that the impact of the hydrogen temperature
on the sound speed distribution in the chamber is a dominant factor for the
chamber eigenfrequencies. The possiblity of the x-modes originating from
the hydrogen injector is ruled out [37]. The source of instabilities in the
BKD is studied further [33]. By evaluating data obtained from the opti-
cal probes along with the dynamic pressure measurements, a mechanism
deciding about (in)stability is determined: Resonances in the oxygen in-
jectors lead to oscillations of the heat release in the flame. Consequently,
the frequency of these oscillations depends on the injector length and the
sound speed of the oxygen but is rather independent of the processes in
the combustion chamber. If an eigenfrequency of the combustion chamber
coincides with one of the heat release frequencies, pressure amplitudes in
the chamber increase, indicating an unstable load point. This mechanism is
pointed out to be consistent with the impact of the fuel temperature on the
stability behavior since chamber eigenfrequencies, and thus the agreement
between heat release and pressure fluctuation frequencies [36], depend on
the hydrogen temperature. An analysis [38, 39] of the phase differences of
the OH* and pressure signals for the T1 mode confirms a frequency offset
between both signals. When analyzing short time-windows the phase offset
is found to cluster around zero for an unstable load point while a stable case
shows a more even distribution of phase differences. The role of the injector
dynamics is studied further by Armbruster et al. [6]. They install the op-
tical access window and analyze 2D OH* and blue radiation flame images.
A DMD analysis reveals longitudinal structures in the flame dynamics of
an unstable load point, supporting the suggested role of the injectors in the
destabilization of combustion. In this context, hydrodynamic instabilities at
the throttle are found to excite the injector acoustics. However, in contrast
to previous test runs the heat release fluctuations at the injector eigenfre-
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quencies, which were discussed above, were not found for the stable load
point considered in this study.

Besides the experimental studies, several numerical approaches have been
undertaken to reproduce and explain the stability behavior of the BKD.
This paragraph gives an overview of works based on Large Eddy Simulations
(LES), findings obtained with hybrid methods are covered subsequently. A
preliminary LES study of a single flame2 as well as the full configuration on
a coarse mesh have been conducted for an unstable load point by Urbano
et al. [40, 41]. The results show a reasonable overall agreement despite a
slight underestimation of the mean chamber pressure and an overestima-
tion of the propellant domes’ pressures. The T1 mode is clearly visible at a
frequency close to the experiment, however no instability occurrs for the in
fact unstable load point. Even after exciting the domain, the acoustic fluc-
tuation decay quickly. Nevertheless, acoustic coupling between the chamber
T1 and the oxygen injectors is found, particularly at the outer injection ring
with the injector L2. A finer mesh is used in a subsequent study [42], yet
not reaching the target mesh size proposed in the previous studies. Two
load points, a stable and an unstable one are considered. Both are pre-
dicted to be linearly stable by the LES. However, with sufficiently strong
initial perturbation, a limit cycle is reached for an unstable load point with
a pressure RMS of about 15 % of the chamber mean pressure. For both
cases, the T1 mode is predicted to be standing. Again, coupling between the
chamber T1 and the oxygen injectors occurs. A solution of the Helmholtz
equation in the chamber agrees well with the mode shapes and frequencies
extracted from the LES. An analysis of the individual flames reveals that
the heat release fluctuations in flames located at the pressure anti-node are
significantly stronger than those observed in the nodal region, indicating
a correlation between the pressure and heat release fluctuations. However,
the authors of the study point out that this does not necessarily imply that
the pressure fluctuations themsevlves are driving the flame response. The
mean contribution to the Rayleigh index of the chamber occurs in the ini-
tial flame region close to the face plate. Further analysis of the simulated

2In contrast to the present work (cf. Sec. 5.1.4), a downscaled version of the chamber nozzle has been
included in the single flame domain.
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limit cycle [43] addresses heat release fluctuations and Rayleigh indices of
individual flames. It is found that, at equal fluctuation amplitudes relative
to the respective mean velocity, the flame is more sensitive to velocity fluc-
tuations at the hydrogen than at the oxygen injector mouth. The proposed
instability mechanism is that the pressure fluctuations in the front region of
the chamber give rise to velocity fluctuations at the hydrogen injector which
drive a shear layer instability. An assessment of the role of the individual
flames not only in terms of driving but also damping [44] shows that all
flames are driving the instability with the strongest contributions coming
from flames close to a pressure antinode. At the same time the flames from
the inner two injector rings contribute to the damping in the chamber, pre-
dominantly those close to a pressure node. A comparison of the T1 and R1

mode showed that despite weaker driving, the R1 amplitudes are similar to
those of the T1 due to different damping. Schmitt et al. [45] has studied
another stable load point along with an unstable counterpart with higher
hydrogen injection temperature. The LES shows a self-excited instability,
however the experimentally stable load point is predicted to be unstable
and vice versa.

A different approach has been followed by Kaess et al., who studied the
BKD using the tool PIANO-SAT to solve the LEE in time domain for
stable and unstable conditions on a quasi one-dimensional mean flow. The
flame response is extracted as function of pressure oscillations from a single
flame CFD simulation. While the oscillation frequencies are reasonable, the
stability behavior is not captured correctly, with both load points being
predicted to be stable.

3.2 Virtual Thrust Chamber Demonstrators

To study the impact of the flow acceleration in the nozzle on the mean
flow and the associated chamber acoustics (cf. Sec. 6.2), several virtual
Thrust Chamber Demonstrators (TCDs) are employed as test cases. The
TCDs are three engine concepts specified by ArianeGroup to feature key
technologies for next generation rocket engines. Regarding thermoacoustic
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stability, two of the configurations can be considered to be critical. TCD2
[46] is an H2/O2 engine designed with a lower than usual injection pressure
loss. While this reduces the power requirements of the turbopumps, the
potential for acoustic coupling between chamber and feed system increases.
One central aspect of TCD3 [47] is its fuel flexibility. Besides H2/O2 it
shall also be operational with the propellant combination CH4/O2. As CH4

combustion is in general more susceptible to instabilities than H2 flames, the
methane load point of TCD3 is considered as second relevant demonstrator
test case.

Both TCDs represent main stage engines with about 1000 kN of thrust
and a gas generator engine cycle. The combustion chamber geometries and
main dimensions are given in Fig. 3.3 and Tab. 3.4. The BKD is shown for
comparison. The injection patterns are shown in Fig. 3.4a. Both cases are
designed with a high number of 396 and 468 injection elements respectively,
shown in Fig. 3.4b with the dimensions given in Tab. 3.5. Note that for
the TCDs the bevel is at the opposite side of the throttle compared to the
BKD (Fig. 3.1c). The higher number of injection elements for TCD3 fits
into nearly the same chamber diameter as TCD2 due to the significantly
smaller size of the slit for fuel injection, while the diameter of the oxygen
mouth changes only weakly. The operating conditions are given in Tab.
3.6. The nominal chamber pressures are at 100 bar and oxygen is injected
transcritical, the respective fuel at supercritical conditions (Tab. 3.3, Fig.
3.2).

TCD2 TCD3 BKD

Figure 3.3: TCD chambers

Table 3.4: TCD chamber specifica-
tions

cylinder section nozzle section

� length � throat length
TCD2 390 169 260 251
TCD3 400 213.2 255 266.8

†
lengths given in mm
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30°

TCD2 TCD3

(a) Injection pattern

TCD2

TCD3

BKD

ox element

mouth

faceplate

x

(b) Injection elements

Figure 3.4: TCD injection systems

Table 3.5: TCD injection system specifications (see also Fig. 3.1c)

common oxidizer fuel

no. rec
� length taper

angle
bevel

(aperture)
�

post mouth thr post thr inner outer
TCD2 396 2 6 6.7 3.75 78 5.5 8° 112° 7.6 10
TCD3 468 4 5.5 6.3 3.75‡ 78‡ 5.5‡ 8° 112° 7.2 8.2

†
lengths given in mm ‡ not specified for TCD3; taken from TCD2

Table 3.6: TCD operating conditions

propellants pc, bar O/F
ṁ, kg s−1 T, K

ox fuel ox fuel

TCD2 H2/O2 100 6 194.3 32.4 95 110
TCD3 CH4/O2 100 3.4 218.55 64.28 95 230
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4 Stability Assessment Procedure

In the present chapter the concept of the stability assessment procedure
is outlined. The method is designed to determine the acoustic behavior of
the type of configuration discussed in Sec. 2.1. It takes into account the
characteristic acoustic behavior of a rocket combustion chamber as covered
in Sec. 2.4.3. In the following, the overall structure of the procedure is
outlined before its main components are discussed in more detail. The highly
test case specific single flame simulations are covered separately in Sec.
5.1. This makes it easier to apply the methodology to a wider range of
cases by selecting the flame simulation details to meet the requirements
of the respective operating conditions and injector design. The analysis of
the procedure by means of the test cases of the current work (Chap. 3) is
conducted in Chap. 6 to 8.

The stability prediction is carried out as an eigenvalue analysis of the per-
turbed chamber flow where the imaginary part of the complex eigenfre-
quency characterizes the stability behavior. The computationally lean sta-
bility assessment relies on a hybrid methodology, i.e. mean state, flame re-
sponse and finally perturbations are calculated separately from each other.
This way the different simulations can be optimized in terms of computa-
tional domain, grid resolution and modeling complexity to cover only the
sub-processes that characterize the respective model component. Calculat-
ing the acoustics of the chamber requires to include the whole chamber
volume into the computational domain, whereas the combustion dynamics
are characterized using a single flame. However, to obtain the flame response
the local flow dynamics and mixing need to be accurately resolved, while
the acoustic length scales are of the same order as the chamber dimensions
and thus can be computed on a much coarser grid using a simplified mean
flow.
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An overview of the stability assessment procedure is given in Fig. 4.1. It is
organized in four components:

� Mean flow

� Flame response

� External components

� Stability computation

The connecting part is the stability computation of the chamber by means of
a perturbation analysis. This step requires the results from the other three
components. The mean flow (Sec. 4.2) is the reference state for which the
perturbation analysis is carried out. It is modeled as quasi one-dimensional
and based on the radially averaged properties of a single flame simulation.
The flame response (Sec. 4.3) characterizes the feedback of the flame when
exposed to acoustic perturbations. It is obtained from an artificially ex-
cited single flame simulation that requires eigenfrequencies and pressure
amplitude distributions from an acoustic analysis without flame feedback
as input. Finally, external components can be coupled to the acoustic anal-
ysis. Absorbers or the injection system are modeled as impedance boundary
conditions or scattering matrices to capture their impact on the oscillations
in the numerically resolved chamber parts. In the following, the stability as-
sessment procedure components are discussed in more detail, starting with
the perturbation modeling for the acoustic analysis (Sec. 4.1), followed by
the calculation of the mean flow (Sec. 4.2) and finally the flame response
(Sec. 4.3). The present work focuses on these main components. Considering
the open issues addressed in this thesis, dome coupling is of minor impor-
tance and not considered further in favor of a concise analysis (cf. Sec.
4.1.2.1). An analysis of the impact of absorbers on the chamber acoustics
has been given elsewhere [48].
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Stability Assessment Procedure

4.1 Perturbation Analysis

The stability assessment procedure contains two simulations of the cham-
ber acoustics. One is the final step of the stability calculation, in which
the modal damping rate is obtained. The other one provides mode shape
and oscillation frequencies for the excitation simulations that are used to
characterize the flame response (cf. Sec. 4.3). The acoustic simulations are
actual perturbation analyses that solve the LEE (Eq. 2.30, 2.31 and 2.36)
on a domain covering the whole chamber (cf. Sec. 4.1.2). In this section,
the modal analysis that is used for the characterization of the chamber
acoustics is introduced along with the Bloch ansatz, which allows to con-
duct the acoustic simulations in two-dimensions (Sec. 4.1.1). The numerical
treatment and selection of boundary conditions are given in Sec. 4.1.2. The
calculation of the mean flow is discussed in Sec. 4.2. Perturbation simula-
tions are conducted for the passive acoustic characterization (Chap. 6) and
the final stability assessment (Chap. 8).

4.1.1 Modal Analysis

The chamber’s acoustics and stability behavior are obtained in form of a
modal analysis. The analysis is conducted to either characterize the cham-
ber’s passive acoustics or to calculate the stability prediction including the
flame response. The difference between both cases is the specification of the
heat release fluctuations on the RHS of the pressure fluctuation equation
2.36. For the passive characterization the heat release fluctuations are set
to zero. For the stability computation they need to be included. The di-
rect representation of the heat release fluctuations using the linear enthalpy
of formation fluctuations (Eq. 2.35) is not applicable. The main reason is
that the acoustic analysis is carried out for a simplified mean flow (cf. Sec.
4.2). The flames are not resolved individually, so perturbations of the de-
tailed flow patterns required for the evaluation of the enthalpy of formation
balance equation 2.25 are not available. Instead, the flame response is mod-
eled via a flame transfer function that is obtained based on single flame
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4.1 Perturbation Analysis

simulations as described in Sec. 4.3.

The perturbation calculations are carried out as eigensolution study in fre-
quency space. Each eigensolution corresponds to a chamber mode with the
eigenvector representing the complex perturbation amplitudes (φ̂) of the
flow fields. The associated complex eigenfrequency consists of the real val-
ued oscillation frequency ω and the damping rate α:

Ω = ω + iα . (4.1)

The damping rate denotes the exponential decay of the oscillation amplitude
in time and ultimately determines the modal stability behavior with α ≥ 0
indicating a stable mode and vice versa. Combining complex amplitude and
frequency gives the fluctuations of a quantity φ as

φ′ = φ̂ exp(iΩt) . (4.2)

An eigenvector can be scaled by a non-zero constant and remains an eigen-
vector. Thus the obtained complex amplitude distributions describe the
relative distribution of the fluctuations in the field but do not provide an
absolute scale of the occurring oscillations.

The modal analysis requires a transformation of the time domain equa-
tions 2.30, 2.31 and 2.36 into frequency space, which is done via a Fourier-
transform. In this process, the structure of the equations is retained with
the perturbations quantities φ′ being replaced by their complex amplitudes
φ̂ and the time derivative ∂/∂tφ′ by the frequency space pendant iΩφ̂. The
perturbation description can be further simplified by taking advantage of
the circumferential structure of the acoustic solution in a cylindrical duct
flow (cf. Sec. 2.4.2, Eq. 2.43c), following the Bloch approach [49]. Thereto,
the complex amplitude is replaced by its two-dimensional distribution φ̃
in a reference plane combined with an analytic ansatz for its azimuthal
dependence:

φ̂ = φ̃ exp(imθ) (4.3)

with m the transverse order of the mode of interest. Experimentally, the
circumferential distribution of the pressure fluctuations has been found to
correspond well to the duct flow solution as well, so the analytic ansatz Eq.
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4.3 is considered a reasonable approximation even for the non-isentropic
and non-uniform case. Solving for φ̃ instead of φ̂ allows to perform the
perturbation calculations on a two-dimensional domain even for modes with
transverse character.

The actual amplitude distributions can be reconstructed from the two di-
mensional solution during post-processing. Due to the positive sign of the
exponent, the ansatz of Eq. 4.3 corresponds to a clockwise rotating mode
(cf. Eq. 2.43c). However, the general circumferential distribution consists of
clockwise and counter-clockwise rotating modes. As the mean flow is swirl-
free, the only equation that contains derivatives in circumferential direction
is the circumferential momentum equation:

iΩûθ + ur
∂ûθ
∂r

+
ur
r
ûθ + ūz

∂ûθ
∂z

= −1

ρ

∂p̂

∂θ
. (4.4)

Noting that
∂Θ−/∂θ

Θ−
= −∂Θ+/∂θ

Θ+
= im , (4.5)

it can be concluded that for the left- and right-turning contributions the
following is valid:

φ̂+ =

{
φ̂−, φ 6= ûθ

−φ̂−, φ = ûθ
. (4.6)

Thus the correct reconstruction of the circumferential velocity amplitude as
superposition of left and right rotating mode is

ûθ = − i

m
ũθ
(
Aθ−
mn exp(imθ)− Aθ+

mn exp(−imθ)
)

, (4.7)

while it is

φ̂ = − i

m
φ̃
(
Aθ−
mn exp(imθ) + Aθ+

mn exp(−imθ)
)

(4.8)

for all other perturbation variables.

4.1.2 Numerical Setup

The perturbation analysis consists of an eigensolution study based on the
LEE (Sec. 2.3). The equations 2.30, 2.31 and 2.36 are solved using the sta-
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Figure 4.2: Domain for perturba-
tion simulation

Table 4.1: Perturbation boundary
conditions

color type specification

wall û · n = 0

A) inlet
ρ̂ū · n+ ûρ̄ · n = 0

ŝ = 0
B) interface scattering matrix
outlet p̂ = 0

bilized finite element method with the software COMSOL Multiphysics®.
The present section starts with the introduction of the computational do-
main and boundary conditions. Thereafter the aspect of flow stabilization
is addressed.

4.1.2.1 Computational Domain and Boundary Conditions

The computations are carried out for the whole combustion chamber, rep-
resented as two-dimensional axis-symmetric domain (cf. Sec. 4.1). The as-
sociated geometry of a generic rocket thrust chamber is shown in Fig. 4.2
with the boundary conditions summarized in Tab. 4.1. Fig. 4.2 shows two
separated regions, the combustion chamber and the oxidizer dome further
upstream. In the present work, only the combustion chamber is consid-
ered. However, in the overall concept of the stability assessment procedure
(Fig. 4.1) the dome can be coupled to the chamber via a scattering ma-
trix, allowing to account for dome acoustics without the need to resolve
the small-scale structures of the injection system. The wall boundaries are
acoustically hard. The outlet is positioned in the slightly supersonic region
of the nozzle. This way the growth of numeric instabilities in the supersonic
nozzle part is avoided while the chamber acoustics are still decoupled from
the environment by the sonic conditions at the throat. Consequently, the
choice of the boundary conditions at the exit is of minor importance. A
zero pressure fluctuation condition is found to be favorable for the numeric
stability. The inlet of the chamber is considered acoustically neutral (zero
mass flux fluctuations).
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L

(ρ̂u + ρû) · n = 0

(ŝ = 0)

û · n = 0

p̂ = 0

x
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Field Value

ux 100 m s−1

ur 0
c 347 m s−1

ρ 1 kg m−3
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Figure 4.3: Role of entropy boundary condition

In contrast to previous work [12] a constraint for the entropy ŝ is posed
at the inlet in addition to the acoustic part of the boundary condition. It
accounts for the usage of the non-isentropic set of equations. The necessity
of this approach is demonstrated for the simple case of a longitudinal mode
in the cylindrical duct shown in Fig. 4.3. A uniform flow of air at ambient
conditions and a velocity of 100 m s−1 is specified along with an acoustically
neutral upstream and a constant-pressure downstream boundary condition.
The density amplitudes of the longitudinal three-quarter wave eigenmode
are shown in Fig. 4.3 for two cases: one with a zero entropy fluctuation
condition at the inlet and one with just the acoustic boundary conditions.
For the zero entropy fluctuation setup, the resulting pressure and density
fluctuations are related isentropically. For the case with the entropy unspec-
ified, the pressure profile remains nearly identical but non-isentropic fluc-
tuations lead to deviations in the density amplitudes (Fig. 4.3). So despite
the principle absence of entropy sources within the just discussed setup, the
calculated eigenmode may induce an entropy perturbation already at the
inlet when only acoustic boundary conditions are used. For this reason, a
zero entropy fluctuation boundaray conditions is used at the chamber inlet
for the perturbation simulations throughout the present work.
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4.1 Perturbation Analysis

4.1.2.2 Stabilization

The numerical discretization of a convective equation with finite elements
has a side effect of acting like an artificial negative viscosity [50]. This may
impact the results and numerically destabilize the solution. As countermea-
sure, an artificial stabilization term is added to the equations. The amount
of stabilization impacts both eigenfrequencies and amplitude distributions
of the modal solution. A comparison [51] of two common approaches, the
Streamline Upwind Petrov-Galerkin and the Galerkin/Least-squares (GLS)
method, for acoustic simulations showed no significant difference. Following
previous works [12, 13] GLS stabilization is applied. For this approach, the
stabilization term added to the weak form of the discretized equations reads
for an individual element that covers the domain Ωe [50]

T =

∫

Ωe
τL(W)RdV (4.9)

with R the residual of the equation to be solved and L(W) the differential
operator of the equation applied to the weighting function. The remaining
parameter τ controls the distribution of stabilization in the domain. The
parameter may depend on mesh size and further parameters of the equation.
While for simple 1D problems an exact solution for τ , that gives the correct
amount of dissipation to balance the numeric destabilization, is possible, a
general solution for complex cases is not available. As in previous works, the
formulation of Ullrich et al. [52] that is based on evaluating the formulation
given of Le Beau et al. [53] for the LNSE is used:

τ = τs max
ndim

(
hi

|ūi|+ c

)
(4.10)

with ndim the number of dimensions, hi the characteristic size of the cell in
dimension i and τs a constant parameter controlling the amount of stabiliza-
tion. While its impact on the oscillation frequency in the present application
is usually small, ατ may notably affect the damping rate. Schulze [12] cal-
ibrated the value of ατ by minimizing the offset between the calculated
eigenfrequencies of the two orthogonal eigensolutions that belong to each
transverse mode and found a value of ατ = 0.1. This approach, however,
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Figure 4.4: Influence of stabilization on radial velocity amplitudes

is not applicable to 2D calculations with the Bloch approach, as here only
one transverse eigensolution is obtained. Instead, basic properties of the so-
lution field are used for calibration. Thereto the radial profile of the radial
velocity amplitude is evaluated at the chamber inlet. There, no significant
entropy or vorticity fluctuations are expected and the amplitude distribu-
tion in the inlet cross-section can be assumed to result from the cylinder
acoustics. For a T1 mode this implies that the radial gradient of the radial
velocity fluctuations becomes zero at the chamber axis. As can be seen from
Fig. 4.4 the value of this gradient depends on the stabilization parameter.
For the shown case an initial region with ατ . 0.1 can be identified in which
the zero-gradient condition is fulfilled by the solution. This agrees well with
the value from the previous 3D studies. As the nozzle region is particularly
prone to numeric instabilities, in some cases it has been found appropriate
not to keep ατ constant but to notably increase its value with the Mach
number.

4.2 Mean Flow

The mean flow is the reference state for the calculation of the perturbations
in the combustion chamber, as discussed in Sec. 4.1. The flow in the com-
bustor is dominated by a high number of diffusion flames, whose detailed
resolution requires a significantly higher grid density than that necessary to
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capture the large scale acoustic modes. Thus, during the development of the
stability assessment procedure several approaches have been taken to get a
simplified but still acoustically representative mean flow. In the following,
an overview of the different strategies used in previous works is given (Sec.
4.2.1) and open issues are addressed. On this basis, a revised approach is
developed in Sec. 4.2.2, leading to several consistent mean flow calculation
procedures. They are evaluated and compared with each other in Chap. 6.
To allow for the application of the mean flow approaches to thrust chamber
configurations where the convergent nozzle section constitutes a significant
portion of the chamber volume, a nozzle correction is proposed in Sec. 4.2.3.
Its impact on the chamber acoustics is evaluated in Sec. 6.2. Finally, a strat-
egy to systematically assess the impact of radial stratification in the mean
flow on the perturbation solutions is developed (Sec. 4.2.4), which is the
basis for the corresponding analysis in Sec. 6.3. The numerical setup for the
mean flow calculations is summarized in Sec. 4.2.5.

4.2.1 Previous Works

In the context of the development of the stability assessment procedure
acoustic simulations of rocket combustion chambers have been performed by
Pieringer [10], Török [11] and Schulze [12]. Their approaches share the con-
cept of a quasi one-dimensional, inviscid mean flow with no radial stratifi-
cation in the cylindrical chamber section and two-dimensional flow-patterns
occurring only due to the nozzle.

The mean flow used by Pieringer [10] is computed as two-dimensional CFD
solution of a quasi uniform flow through chamber and nozzle. The flow is
injected uniformly along the chamber faceplate at completely mixed and
burned conditions. The injection composition and state of the fluid are
calculated from chemical equilibrium with the CEA [15] code. After the
cylindrical chamber section is passed rather uniformly, the usual nozzle
flow structures are obtained further downstream. A comparison with exper-
imental data has not been conducted. Török [11] uses the same principle ap-
proach. However, instead of relying on chemical equilibrium calculations, he
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extracts the flow properties at the outlet of a single flame simulation. Com-
pared to an experiment, the T1 eigenfrequency is overestimated by about
25 %. The step from a quasi uniform to a quasi one-dimensional mean flow
has been taken by Schulze [12,13]. Like before, a two-dimensional simulation
of the full domain is conducted. However, the flow composition is specified
depending on the axial location along with a corresponding energy source
term representing the process of combustion along the chamber. The species
mass fractions and energy source term are obtained by radially averaging
the flow fields of a steady single flame simulation. To ensure that the axial
sound speed distribution matches the single flame results, the density1 of
the mean flow is adapted in a post-processing step via

ρ =
κp

c2
1D

. (4.11)

The axial sound speed profile c1D is extracted from the single flame simu-
lation by area weighted radial averaging:

c1D =
1

A

∫ R

0

c2πrdr (4.12)

with A the local cross-sectional area and R the corresponding outer radius.
A comparison to experimental oscillation frequencies has shown a signifi-
cant improvement compared to the uniform approaches. This is explained
by the T1 mode being anchored at the faceplate where the unmixed (and
thus unburned) flow possesses a lower sound speed, which leads to lower
eigenfrequencies compared to the completely burned state.

The usage of the density calculation according to Eq. 4.11 ensures that
the sound speed distribution is representative of the single flame results
and thus the eigenfrequencies are captured correctly. However, due to the
density scaling during post-processing the results no longer fulfill the Euler
equations, which were solved in the mean flow CFD simulation. This has
several drawbacks:

� If temperature is not adapted along with density, the LEE solutions
1As the LEE are formulated in terms of pressure and density rather than temperature (cf. Eq. 2.30,

2.31 and 2.36), density scaling can be used to modify the sound speed in the flow.
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become sensitive towards a change of the state variables used to de-
scribe the mean flow in the governing equations. A form of the LEE
(cf. Sec. 2.3.2) that is based on mean temperature and pressure will
behave different than one that depends on mean pressure and density.

� The violation of the flow equations can be interpreted as inducing
source terms of mass, momentum and energy in the mean flow. These
may impact the acoustic results in an unknown way, questioning their
validity.

A revised mean flow calculation procedure that does not have these issues
is derived in the next section 4.2.2.

4.2.2 Revised Mean Flow Calculation

Considering the results of the studies discussed in Sec. 4.2.1, an axially
non-uniform mean flow appears to be a necessary prerequisite to capture
the essential acoustics of the chamber. While the small-scale flow struc-
tures are primarily associated with radial and circumferential gradients,
the axial dimension of the diffusion flames is comparable to the geometric
length of the chamber. Thus, the inclusion of axial gradients in the mean
flow does not primarily interfere with the requirement of a computationally
efficient procedure. Altogether, an approach is required to obtain a quasi
one-dimensional flow solution in the whole chamber, which is consistent
with the Euler Equations. At the same time it must reproduce the axial
distributions of certain flow properties or fields (see below), which are ob-
tained from single flame simulations. In this section, a general approach to
fulfill above requirements is developed. Different choices for the axial pro-
files reproduced by the mean flow are discussed, leading to three different
versions of the mean flow calculation procedure. These are tested in Sec.
6.1.

The basic structure of the mean flow calculation procedure is shown in Fig.
4.5. It consists of three steps:
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1. Single flame simulation: A steady simulation of a single rocket-engine
flame is calculated. Its solution is used in the next step to obtain the
one-dimensional profiles for the simulation of the whole chamber. The
setup for the single flame simulation depends on the test case under
consideration. For the present work it is described in Sec. 5.1.

2. Extraction of axial profiles: From the single flame solution obtained
in the previous step one-dimensional profiles are extracted based on
radial averaging or the heat release extraction procedure discussed in
Sec. 5.1.3.

3. Quasi one-dimensional simulation: In the final step to obtain the mean-
flow a two-dimensional axis symmetric CFD simulation of the whole
chamber is conducted. Several procedures are used at run-time and
during post-processing to make sure that the profiles obtained in the
previous step are met by the solution while complying with the gov-
erning equations.

In the following, the chamber simulation in step three is discussed. Focus
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Figure 4.5: Procedure for the the two-parameter mean flow calculation
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is placed on the way the solution is manipulated to reproduce the desired
one-dimensional profiles in the cylindrical chamber section. The selection of
the profiles that are reproduced and their calculation from the single-flame
results are discussed thereafter. Finally, the treatment of the nozzle section
is addressed.

In the final calculation of the chamber mean flow (third step in Fig. 4.5) the
steady Euler Equations (inviscid form of Eq. 2.11, 2.12 and 2.18) are solved
on a domain covering the whole combustion chamber. The flow is injected
uniformly across the whole faceplate area at the average temperature of the
single flame simulation after the recess. By design, the flow stays quasi one-
dimensional, with its axial development based on several radially averaged
fields of the single flame solution (see below). The radial averaging rises
the lowest flow temperatures from the cryogenic injection temperatures to
a level where an ideal gas EOS (cf. Sec. 2.2.2) can be applied. This is the
justification for the usage of the ideal gas simplification in the derivation of
the LEE (Sec. 2.3). The flow is considered to be composed of a pseudo-fluid.
As discussed below, the properties of this fluid are chosen to ensure that
certain flow characteristics of the single flame simulation are reproduced by
the mean flow. Thus, the presence of different species and the associated
heat release are not included in the model. To nevertheless account for the
impact of combustion on the axial development of the flow temperature, an
energy source is employed. It is extracted from the single flame results as
described in Sec. 5.1.3. The specific heat capacity is modeled via 7-coefficient
JANAF polynomials [15]. Their coefficients are given as axial distribution,
computed from the radial mass flow weighted average

φ1D =
1

Aρux

∫ R

0

ρuxφ2πrdr (4.13)

of species mass fractions in the single flame. The full setup for the chamber
simulation is summarized in Sec. 4.2.5.

There are three stages where flow properties can be altered in a CFD so-
lution: pre-processing, at simulation runtime and post-processing. The first
stage is uncritical in terms of equation consistency. As the governing equa-
tions are solved during the simulation, any manipulation of properties or
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boundary conditions during pre-processing automatically becomes part of a
solution that complies with said equations. Likewise, influencing the solution
at run-time is unproblematic. As the solution is obtained iteratively, once
convergence is achieved, the results comply with the governing equations
as well as any sub-models employed. However, special attention is required
when manipulating fields during post-processing. There, the alteration of
e.g. a single thermodynamic state variable may cause incosistencies in the
EOS or with the governing equations (cf. Sec. 4.2.1). While the alteration of
multiple variables is possible in accordance with the EOS, incompatibilities
e.g. of an altered density with the velocity field in terms of mass conser-
vation (Eq. 2.11) are to be expected. However, manipulation of properties
that enter the flow equations in an integral sense is possible. This refers to
the specific isobaric or isochoric heat capacities cp or cv. They influence the
flow solution by relating the sensible enthalpy or energy to the local flow
temperature. This conversion takes the form of a temperature integral (Eq.
2.5b). Thus, the value of e.g. cp at the flow temperature can be changed
without inducing inconsistencies with the energy equation, as long as the
integral value (cf. Eq. 2.5b)

∆hs =

∫ T

Tref

cpdŤ (4.14)

remains constant.

To ensure that the mean flow is consistent with the governing equations as
well as the ideal gas EOS, the only option to influence the solution are the
fluid properties. This can be interpreted as introducing a pseudo-fluid. It
goes into the flow solution via its specific heat capacity and the specific gas
constant. According to the previous discussion, the gas constant must be
altered either during pre-processing or at simulation run-time as it directly
relates thermodynamic state variables (Eq. 2.5a). In contrast, the value
of the specific heat capacity at the solution temperature may be changed
during post-processing. According to Eq. 2.7 a change of the specific heat
capacity at a given specific gas constant corresponds to a modification of the
isentropic coefficient κ. So the isentropic coefficient can be directly adapted
during post processing. The corresponding specific heat capacity is then
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Table 4.2: Summary of mean flow calculation procedures

Methodology single flame pre-processing run-time post-processing

density scaling [12] c1D - - ρ = κp/c2
1D

c-i c1D, ηi,1D ρ1D = (ηi,1Dc1D)−1

R = p
ρ1DT κ =

c21D
RT

, cp = R κ
κ−1c-s c1D, ηs,1D ρ1D = (ηs,1Dc

2
1D)
−1

c-κ c1D, κ1D - R =
c21D
κ1DT

κ = κ1D, cp = R κ
κ−1

obtained from Eq. 2.7. In summary, there are two variables that can be
altered to obtain specific flow profiles, the isentropic coefficient and the
specific gas constant. In general, this allows to reproduce axial profiles of
two flow fields or properties, leaving several options to calculate the mean
flow. Possible choices are discussed in the following.

To fully specify the mean-flow calculation procedure, the axial profiles that
are reproduced by the solution need to be selected. Three choices are dis-
cussed, corresponding to three different calculation procedures. They are
summarized along with the previous ‘density scaling’ approach by Schulze
[12] (cf. Sec. 4.2.1) in Tab. 4.2. The most important axial profile to be re-
produced by the mean flow is the sound speed, which determines the real
part of the eigenfrequency. The sound speed can be adapted in two ways:
by changing the isentropic coefficient as

κ = c2
1D

ρ

p
(4.15)

or the gas constant according to

R =
c2

κT
. (4.16)

Note that the second option (Eq. 4.16) requires that the final distribution
of the isentropic coefficient is already known at run-time since the specific
gas constant cannot be changed during post-processing.

After accounting for the desired sound-speed distribution via Eq. 4.15 or
Eq. 4.16, one more axial profile is to be selected in order to specify the mean
flow. First, the usage of Eq. 4.15 is considered, i.e. the specific gas constant
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is the remaining parameter to be specified. To this end, two characteristic
acoustic properties are considered as second profile to be reproduced by the
mean flow. The inverse of the field impedance (admittance)

ηi =
1

ρc
, (4.17)

relates the acoustic pressure to the velocity fluctuations, as can be easily
seen by comparing Eq. 2.43a with Eq. 2.47. The isentropic compressibility
(Eq. 2.50) plays a significant role in the relation between pressure fluctu-
ations and fluctuation energy (cf. Eq. 2.49). According to their definitions
either of the field impedance or the isentropic compressibility can be re-
produced at a given sound speed by adapting the density. To this end, the
specific gas constant is calculated from the local flow temperature, pressure
and a target density ρ1D as

R =
p

Tρ1D
. (4.18)

The target density profile is obtained during pre-processing. For the field
impedance based approach it is calculated as

ρ1D =
1

ηi,1Dc1D
(4.19)

with the profiles of field admittance and sound-speed obtained according
to Eq. 4.13. The approach to reproduce sound speed (Eq. 4.15) and field-
impedance (Eq. 4.18 and 4.19) with the mean flow is referred to as c-i
method. If instead sound speed (Eq. 4.15)and isentropic compressibility are
to be reproduced (c-s approach), the target density profile for the evaluation
of Eq. 4.18 is obtained according to

ρ1D =
1

ηs,1Dc2
1D

. (4.20)

Alternatively to adapting the sound speed distribution via the isentropic
coefficient (Eq. 4.15) there is the option to correct the sound-speed via the
gas-constant (Eq. 4.16). This approach leaves the isentropic coefficient to
be specified. According to the pressure fluctuation equation 2.36 κ has a
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strong impact on the influence the flame feedback has on the perturbations.
This leads to the third revised approach, which, besides the sound speed, re-
produces the averaged (Eq. 4.13) isentropic coefficient2 κ1D. The mean flow
calculation based on the profiles of sound speed and isentropic coefficient is
termed c-κ approach.

While the concepts just outlined are the core part of the mean flow calcula-
tion, their applicability is restricted to the cylindrical part of the chamber.
As the single flame simulations do not capture the flow patterns in the
nozzle section, the profiles of sound speed, isentropic compressibility and
field impedance do not account for the increasing flow velocity and thus
decreasing temperatures in this region. If the combustion process is suffi-
ciently complete at the end of the cylindrical section, the flow properties
may be treated as frozen. The chamber domain is split into two parts at the
location of the nozzle entrance x0. In the front part, x ≤ x0, where the flow
can be considered to be incompressible, the previously described approach
is followed. From that point onward (x > x0) the isentropic coefficient and
the gas constant are kept constant with their qualitative radial distribution
being conserved:

κ|x,rn= κ|x0,rn

R|x,rn= R|x0,rn

, rn = r/R (4.21)

with R the local outer radius of the chamber. For the c-i and c-s approaches
the isentropic coefficient is gradually adapted along the nozzle during post-
processing, to match the value from the chamber simulation at the nozzle
throat 3. That way it is ensured that the sound speed at the nozzle throat
matches that from the CFD solution. The location of the sonic line is re-
tained and the correct acoustic boundary condition is set for the chamber.
For cases where there is still significant heat release in the nozzle, a correc-
tion of the heat release profile from the single flame simulations is proposed
in the next section 4.2.3 to account for the flow acceleration in the nozzle.

2Note that the role of κ in the flame feedback term might suggest alternate extraction procedures, e.g.
by basing κ1D on the regions of highest heat release fluctuation. However, that level of detail is not to be
considered yet as will be seen in Chap. 8.

3Such an adaption is not necessary for the c-κ method as κ = κ1D already matches the single flame
results.
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4.2.3 Nozzle Correction

The basic treatment of the nozzle flow according to Eq. 4.21 is based on
the assumption that no significant reaction occurs in the nozzle and the
relevant heat release has already been completed in the cylindrical chamber
section. However, depending on the chamber design (cf. Fig. 3.3 in Sec. 3.2)
the convergent nozzle section may cover a significant part of the chamber
length. To modify the heat release distribution obtained from the single
flame simulation in order to account for the flow acceleration in the nozzle,
a non-iterative procedure has been proposed by Chemnitz et al. [54]. Later
an improved, iterative procedure based on one-dimensional flow equations
[55] has been used. This version of the nozzle correction is outlined in the
following.

The process of the nozzle correction is visualized in Fig. 4.6 for a repre-
sentative flow through the nozzle with the contour shown in Fig. 4.6a. To
correct the heat release for the flow acceleration (Fig. 4.6b), a Lagrangian
point of view is taken: As a fluid element passes through the single flame
domain, mixing dominated combustion leads to heat release. Assuming that
mixing and thus combustion proceeds at the same rate irrespective of the
absolute velocity, the volumetric heat release in a region of axial dimension
∆x that the fluid needs the time ∆t = ∆x/ux to pass through leads to the
heat release correction

q = qref
ux,ref
ux
≈ qref

ux,0
ux

. (4.22)

Here ref denotes a reference value that is interpolated from the single flame
simulation as described below. The associated flow velocity in the single
flame simulation can be approximated by its value at the nozzle entrance
(index 0) as combustion in the nozzle is rather advanced and the impact on
the overall density is minor compared to the compressibility related density
changes. This simplification is justified by a simple estimate: Along the
nozzle, the flow velocity increases by a factor of about four. To lead to a
comparable acceleration, density would have to decrease by a factor of four
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Figure 4.6: Interpolation principle for nozzle correction

since

(ρux)1D =
1

A

∫

A

ρuxdA = const. (4.23)

within each nozzle cross-section. As the single flame simulation can be con-
sidered as rather isobaric in terms of mean pressure, the density decrease
again corresponds to an increase of the temperature by a factor of four (Eq.
2.5a), given rather small changes of the molar mass and thus the specific
gas constant. The equilibrium temperature of the chamber flow is below
3500 K. Thus, for combustion related density changes to cause the same
flow acceleration as the nozzle, the flow temperature at the nozzle inlet
must not exceed a value of 800 . . . 900 K. So there is a considerable range of
nozzle inlet temperatures where the temperature is high enough to allow for
combustion related density changes to be neglected (T >> 800 K) despite
heat release still going on (T < 3500 K).

To evaluate Eq. 4.22, the heat release rate qref needs to be interpolated
from the single flame domain. The interpolation principle is shown in Fig.
4.6. As the heat release correction (Eq. 4.22) corresponds to a modified
axial distribution of the mixing process, which dominates combustion, a
direct geometrical interpolation is not appropriate. Instead, combustion is
parametrized in terms of its progress, i.e. the heat release is treated as
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function of the heat released upstream, leading to the interpolation rule

qref |x = qSF |xSF ,

∫ x,SF

x0

qSFAdx̌ =

∫ x

x0

qAdx̌ (4.24)

with x the axial position in the chamber simulation and xSF the corre-
sponding interpolation location in the single flame simulation. Eq. 4.24 can
be interpreted as an interpolation via the time that a fluid element has
passed since entering the nozzle rather than the axial distance from the
nozzle entrance (cf. Fig. 4.6c).

Equation 4.22 in combination with Eq. 4.24 constitutes a procedure to ob-
tain the heat release distribution in presence of a nozzle from a single flame
simulation. In its initial form [54] this procedure has been applied non-
iteratively by performing a CFD nozzle flow simulation without heat re-
lease, extracting the axial velocity distribution, evaluating the correction
equations and then performing another nozzle flow simulation including the
corrected heat release rate. However, the heat released in the nozzle is ex-
pected to change the axial velocity distribution, which is not accounted for
in the non-iterative approach. Moreover, the need for an additional CFD
simulation is unfavorable. Thus, the equations for one-dimensional, friction-
less flow with heat addition and area change are solved instead. As the heat
source contribution to these equations causes a singularity at sonic condi-
tions, the nozzle domain is split into three parts: A shortened convergent
section that ends slightly before the nozzle throat (Ma ≤ 0.99), a divergent
section that starts in the slightly supersonic regime (Ma =≥ 1.01) and a
transsonic region that links both. In the sub- and supersonic regions, the
full equations are solved, while in the transsonic section the flow is consid-
ered isentropic. As the heat release is already low at the throat location,
this approximation is acceptable. In the given context, the Mach number in
the transsonic region is determined by the ratio of the local cross-sectional
area to the throat area alone. Thus, the subsonic part of the transsonic sec-
tion poses a Mach number boundary condition at the end of the convergent
section. Together with the mass flow and total temperature at the nozzle
inlet a boundary value problem is obtained. The governing equations are
introduced in the following.
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The flow equations for the nozzle correction are based on steady, one-
dimensional, frictionless flow of and ideal gas with constant isentropic coef-
ficient and specific heat. For a constant cross-section, this setup corresponds
to a Rayleigh flow, with the only source of entropy being the heat release.
For isentropic conditions a relation between Mach number and cross section
is available. The total differential of the Mach number can be constructed
as superposition of these two contributions:

dMa =
∂Ma

∂s

∣∣∣∣
A=const

ds+
∂Ma

∂A

∣∣∣∣
s=const

dA . (4.25)

The partial differentials in Eq. 4.25 are given by Truckenbrodt [56], leading
to the relation

dMa

Ma
=

1 + κMa2

2 (1−Ma2)

dq

cpT︸ ︷︷ ︸
dMa
Ma |A=const

−2 + (κ− 1)Ma2

2 (1−Ma2)

dA

A︸ ︷︷ ︸
dMa
Ma |s=const

. (4.26)

The heat source dq in Eq. 4.26 is mass specific and related to the volumetric
heat release q cf. Eq. 2.24 via

dq =
q

ρux
dx =

qA

ṁ
dx . (4.27)

Furthermore, closure of Eq. 4.26 requires the temperature distribution,
which is obtained via the differential of the isentropic relationship between
static and stagnation (index t) temperature:

dT

T
=

1− κ
1 + κ−1

2 Ma2
Ma dMa+

1

1 + κ−1
2 Ma2

dTt . (4.28)

Again this differential consists of two contributions, the isentropic expansion
in the first term and the change of stagnation temperature due to heat
addition in the second term. The latter can be replaced via

dTt =
dq

cp
. (4.29)

Inserting Eq. 4.29 into Eq. 4.28 and eliminating the term dq/(cpT ) via Eq.
4.26 a temperature differential in dependence of Mach number and area
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change is obtained:

dT

T
= 2

1− κMa2

1 + κMa2

dMa

Ma
+

2

1 + κMa2

dA

A
. (4.30)

Eq. 4.30 together with Eq. 4.26 and the heat release correction Eq. 4.22
and 4.24 are a closed set of equations describing the nozzle flow in the
chamber in the presence of heat release. Their solution yields the velocity
distribution in the nozzle and thus via Eq. 4.22 and 4.24 the corrected heat
release profile. With this profile, the mean flow is calculated as described in
Sec. 4.2.2. However, now the source term distribution that represents the
heat release does not only cover the cylindrical part of the chamber but
includes the nozzle section as well. The impact of the nozzle correction on
chamber acoustics is studied in Sec. 6.2.

4.2.4 Radially Stratified Mean Flow

The efficiency of the stability assessment procedure partly relies on neglect-
ing radial and circumferential gradients in the mean flow. This has been
reasoned [12] by the compactness of the flow-normal small scale structures
as compared to the acoustic length scales. At the same time, a significant
amount of field-damping, a stabilizing mechanism arising from the axial
gradients in the mean flow, has been found. Nevertheless, the consequences
that neglecting radial gradients has for the stability predictions have not
been studied explicitly. To better assess the soundness of the mean flow
concept (Sec. 4.2.2), the impact of radial gradients on the chamber acous-
tics is considered in Sec. 6.3 of the present work. For this purpose, several
mean flow solutions are calculated, which are equal in terms of their under-
lying axial profiles (cf. Sec. 4.2.2) but differ in terms of radial stratification.
A first approach to this topic has been given in a previous study [57] by im-
posing radial gradients of varying intensity on a mean flow while retaining
the averaged one-dimensional profiles. This analysis is extended in Sec. 6.3
of the present work. The partly revised underlying calculation procedure for
the stratified mean flow is described in the following.

The basic idea of flow stratification relies on the mean flow calculation
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approach outlined in Sec. 4.2.2. However, instead of one dimensional axial
profiles (1D), a two-dimensional target distribution (2D) is used in Eq. 4.15
and 4.18, respectively:

κ = c2
2D

ρ

p
(4.31)

R =
p

Tρ2D
. (4.32)

The reference distributions are obtained by applying analytical radial strat-
ification functions ψφ to the one-dimensional profiles of sound speed (φ = c)
and density (φ = ρ):

φ2D = φ1Dψφ . (4.33)

They are designed in a way that on radial averaging according to Eq. 4.13
the one dimensional profiles are retained, i.e.

(φ2D)1D = φ1D , φ = c, ρ . (4.34)

Analogously, the heat release is stratified via a stratification function ψq.
In the following, the radial structure of a single flame is discussed. On this
basis, the radial stratification functions for the different fields are developed.

The principal radial structure of a single BKD flame, calculated with the
setup described in Sec. 5.1, is shown in Fig. 4.7. The temperature (Fig.
4.7b) possesses a clear peak in the mixing layer along a wide portion of the
chamber. In contrast, already a short distance downstream of the faceplate
the sound speed profile (Fig. 4.7c) is characterized by a high value region
close to the wall and a trough at the core of the flow. Depending on the
axial location, the transition between both regions varies in shape. The
difference between temperature and sound speed arises from the different
flow properties: While the inner region of the flame is oxygen rich, the outer
part has a higher fraction of hydrogen, which has a low molecular weight,
leading to a higher sound speed. In the downstream region of the chamber
both profiles have homogenized. The density (Fig. 4.7d) shows the strongest
relative change along the chamber radius. The cryogenic injection of oxygen
leads to a density of O103 kg m−3. In contrast, densities that are three orders
of magnitude smaller occur in the combustion products.
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Figure 4.7: Flow stratification from a single flame simulation

Based on the above discussion of radial stratification along a single flame,
the stratification functions ψφ are developed. In general, all flow fields are
subject to the stratification arising from the diffusion flame structure. How-
ever, in favor of a concise analysis, stratification is not applied to all mean
flow fields at once. The flow properties, represented in the perturbation
equations by the isentropic coefficient and the specific gas constant, mostly
influence the impact of the flame response on the acoustics (Eq. 2.36). As
the stratification analysis in Sec. 6.3 is conducted for a passive flame, i.e. no
feedback is considered, these flow properties are kept approximately con-
stant in radial direction4. The most important flow property for the real

4These properties are not exactly constant due to the approximative character of the stratified en-
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valued eigenfrequency is the sound speed. Consequently, its stratification
function forms the basis, from which the other fields’ stratification is de-
rived.

Starting point for deriving the mean flow’s stratification functions is the
sound speed:

c2D = c1Dψc . (4.35)

To ensure that the differently stratified mean flows possess the same axial
sound speed profile with respect to the averaging procedure Eq. 4.13, it is
required that

1

A

∫ R

0

ψcdA = 1 . (4.36)

At the same time the reduction of stratification along the chamber must be
explicitly modeled, mimicking the effect of turbulent mixing on the flow. To
conveniently account for these two aspects, the following approach is taken
for the stratification function:

ψc = 1 + Aψψxψr . (4.37)

The second term in Eq. 4.37 describes the local relative deviation from
the mean profile. It contains a stratification amplitude Aψ that governs
the maximum deviation from the mean. The radial stratification function
ψr defines the shape of the variable’s variation in radial direction. It takes
values between ψr = −1 and ψr = 1 and fulfills Eq. 4.36. Finally the
axial stratification function ψx is used to represent the mixing process by
decreasing from a value of ψx = 1 at the beginning of the stratified region
to ψx = 0 at its end. Recalling the previous discussion of the structure of
the sound speed field, the radial stratification function is chosen as a cosine
connecting a minimum value at the flame axis to the maximum value at the
outer boundary:

ψr = cos(2πnfl
r

R
) . (4.38)

ergy source derivation discussed below. Imperfections in the resulting radial temperature distribution are
reflected in the gas constant as the target density is reproduced exactly by design of the mean flow calcu-
lation (cf. Sec. 4.2.2.). The stratification of the corrected isentropic coefficient, which is calculated during
post-processing, can be considered to be minor as it only needs to compensate for radial pressure variations
which are low compared to the mean pressure.
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Figure 4.8: Mean flow stratification

The parameter nfl defines the number of flame structures placed along
the chamber radius. The shape of the radial sound speed stratification for
a single flame is shown in Fig. 4.8c. As the flow is still considered two-
dimensional, which is necessary to sufficiently resolve the gradients on the
computational grid, each flame structure takes the form of a flame ring
as shown in Fig. 4.8a. The axial decay of stratification is parametrized by
two variables: the starting location xs separates the initial, rather unmixed
region from the zone where mixing occurs. The mixing process is completed
at x = xf , downstream of which the flow is homogeneous. The complete
axial stratification function reads

ψx =





1, x ≤ xs

0.5
(

1 + cos
(
x−xs
xf−xs

))
, xs < x < xf

0, x ≥ xf

(4.39)

and is visualized in Fig. 4.8b.

With the unstratified isentropic coefficient and gas constant the appropriate
stratification function for the temperature can be derived using the ideal
gas sound speed as

ψT = ψ2
c . (4.40)

Since the temperature distribution is governed by the heat release, Eq. 4.40

74



4.2 Mean Flow

needs to be converted into a stratified heat source distribution. Assuming
uniform mass flux and neglecting kinetic energy, the appropriate relation
reads

q =
ṁcp
A

∂T

∂x

=
ṁcp
A

(
dT1D

dx
ψ2
c + 2T1Dψc

∂ψc
∂x

)
.

(4.41)

So the stratified heat release distribution is composed of two contributions,
one describing the rise of the overall sensible enthalpy level in axial direction
and one equalizing part that represents the mixing process. The first con-
tribution can be represented by an axial reference temperature distribution
T1D. It must be set properly to ensure that the total heat release at each
axial position in the chamber is matched:

1

A

∫ R

0

qdA = q1D . (4.42)

To calculate the one-dimensional reference temperature distribution, Eq.
4.41 is inserted along with the definition of the stratification function (Eq.
4.37 to Eq. 4.39) into Eq. 4.42. After evaluation of the area weighted radial
average an inhomogeneous ordinary differential equation of first order is
obtained:

dT1D

dx
+ cx3T1D =

A

ṁcp

q1D

cx1
, with

cx1 = 1 +
A2
ψψ

2
x

2
, cx2 = A2

ψψx
dψx
dx

, cx3 =
cx2

cx1
.

(4.43)

The initial value problem defined by this ODE and the inlet temperature

T1D|x=0 =
1

cx1A

∫ R

0

TdA

∣∣∣∣
x=0

(4.44)

can be readily solved to give

T1D =

[
T1D|x=0

cx1
+

A

ṁcp

∫ x

0

q1D

cx1
exp

(∫ x

0

cx3dˇ̌x

)
dx̌

]
exp

(
−
∫ x

0

cx3dx̌

)

(4.45)
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with the derivative

dT1D

dx
=

A

ṁcp

(
q1D

cx1
− cx3T1D

)
. (4.46)

The result can be interpreted as follows: The gradient, Eq. 4.46, goes into
the first addend of Eq. 4.41. The term cx1 corresponds to the radial average

cx1 =
1

A

∫ R

0

ψ2
cdA (4.47)

and thus the normalization of the first term in Eq. 4.46 compensates for
the non-unity radial area average of the squared stratification function that
is applied to the reference heat release profile. The second term arises from
the equalizing contribution in Eq. 4.41 not averaging to zero.

Finally, the stratification function for the density is required. As the pressure
is rather constant within each cross-section the temperature stratification
function combined with radially constant flow properties suggests

ψρ =
1

ψ2
c

, (4.48)

see Fig. 4.8c for a comparison of stratification functions. This choice is con-
sistent with the observed flow patterns as the regions of high density are
located in the core of the flame. Recalling Fig. 4.7d, it stands out that the
density stratification that has been derived from the sound speed distri-
bution is weaker than that encountered in a BKD flame, which is a result
of the real gas modeling in the latter. More important, the stratification
functions Eq. 4.35 and 4.48 match the c-s as well as the c-i methodologies
(cf. Tab. 4.2). On radial average, both the isentropic compressibility (c-s
approach)

1

A

∫ R

0

(
1

ρc2

)
dA =

1

A

∫ R

0

(
1

ρ1Dc2
1D

)
dA =

1

ρ1Dc2
1D

(4.49)

and the field impedance (c-κ approach)

1

A

∫ R

0

(
1

ρc

)
dA =

1

ρ1Dc1D

1

A

∫ R

0

ψdA =
1

ρ1Dc1D
(4.50)
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correspond to their one-dimensional profiles. As moreover the isentropic
coefficient is constant for both approaches, they are also compatible with
the c-κ mean flow calculation procedure.

Analogously to the equalizing heat source used to represent turbulent and
diffusive energy transport (cf. Eq. 4.41), a momentum source term is de-
fined, which relaxes the flow to a uniform distribution of axial momentum,
using local flow velocity and the length of the mixing zone as characteristic
parameters:

Sux = cu

(
ṁ

A
− ρux

)
ux (4.51)

with cu a constant controlling the strength of the equalizing momentum
source.

Combining the mean flow calculation procedure outlined in Sec. 4.2.2 with
two-dimensional reference profiles (Eq. 4.33) based on analytic stratification
functions (Eq. 4.37) provides a methodology to obtain mean flow fields with
controlled radial stratification. The approach is completed by the stratifi-
cation functions for sound speed (Eq. 4.35), heat release (Eq. 4.41) and
density (Eq. 4.48). The stratification is controlled by two parameters, the
stratification amplitude and the number of flame structures along the cham-
ber radius. The functions’ design ensures that the calculated mean flows are
equivalent in terms of the averaging procedures that are used to obtain the
quasi one-dimensional mean flow in Sec. 4.2.2. On this basis, the impact of
radial stratification on the chamber acoustics is studied in Sec. 6.3.

4.2.5 Numerical Setup

In the present section the domain geometry and boundary conditions for
the previously outlined mean flow calculation (Sec. 4.2.2 and 4.2.4) are
summarized. The solution domain covers the whole chamber, as shown in
Fig. 4.9. Since the flow is quasi one-dimensional, a rather coarse computa-
tional grid can be applied. The boundary conditions are given in Tab. 4.3.
In accordance with the employed Euler Equations, which neglect viscous
transport (cf. Sec. 2.3), the wall is modeled as adiabatic free slip wall. The
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Figure 4.9: Domain for mean flow
simulation

Table 4.3: Mean flow boundary
conditions

color type specification

wall u · n = 0
inlet ṁ, T
outlet supersonic

mass flow is injected uniformly across the chamber cross-section at a tem-
perature calculated as area weighted cross-sectional average of the single
flame temperature at the axial position of the faceplate. At the outlet, the
flow is supersonic, so no explicit boundary conditions are specified there.

4.3 Flame Feedback

Flame feedback is the potential driver of combustion instabilities. Within
the stability analysis it appears as source term in the LEE pressure equa-
tion 2.36 as discussed in Sec. 4.1. This source is modeled based on a Flame
Transfer Function (FTF), which relates the heat release fluctuations to the
perturbation variables. Since the dynamics of mixing and combustion that
govern the heat release in the chamber may include non-linear processes,
the FTF is obtained from a solution of the Navier Stokes Equations to-
gether with the energy conservation equation (Eq. 2.11, 2.12 and Eq. 2.21).
In line with the target of a computationally efficient procedure, the flame
response is extracted from a single flame simulation (cf. Sec. 5.1). Previ-
ous studies [3, 58] have identified two principle coupling mechanisms be-
tween acoustics and combustion: Pressure coupling refers to heat release
perturbations corresponding pressure fluctuations. It occurs in pure form
at pressure antinodes. Velocity coupling describes the response of the single
flame to transverse velocity fluctuations, which can be extracted at a veloc-
ity anti-node. At all other locations the flame response can be considered
as superposition of these two contributions. In a previous BKD study [12],
the pressure coupling mechanism has been found to have a considerably
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stronger impact on the chamber stability than velocity coupling.

In the following, the process to retrieve the flame response for both coupling
types are discussed. Focus is placed on the calculation of the heat release
perturbations arising from pressure and velocity oscillations. The way the
results are converted to FTFs is discussed in Sec. 7.2. In the present section,
for each coupling mechanism (Sec. 4.3.1 for pressure and Sec. 4.3.2 for veloc-
ity coupling) an overview of the previous results and modeling approaches
is given. Deficiencies of theses methods are addressed and a revised form
of the FTF extraction procedure is presented. Velocity coupling is used in
the context of single flame simulation validation in Sec. 5.3.3, the pressure
response is studied in Chap. 7 and applied in the stability analysis in Chap.
8.

4.3.1 Pressure Coupling

Pressure coupling describes the flame response to acoustic pressure fluc-
tuations in the chamber. The corresponding heat release fluctuations are
modeled via an FTF, following the generic approach:

q̂ = ˆFTF pp̂ref
qref
pref

. (4.52)

Here qref and pref are reference mean values and p̂ref refers to a reference
pressure amplitude. The choice of these quantities is not unambiguous and
will be discussed in Sec. 7.2. The flame transfer function for pressure cou-
pling is calculated from the heat release and pressure fluctuations of a single
flame located at a pressure anti-node. Thus the key component to charac-
terize the flame response is to impose the relevant flow perturbations that
a flame in the pressure anti-node of a transverse chamber mode is exposed
to on a single flame simulation. Previous works on this topic are summa-
rized in Sec. 4.3.1.1. The deficiencies of the developed excitation procedures
are analyzed, taking into account the mechanisms that lead to heat release
fluctuations in transverse modes in Sec. 4.3.1.1. On this basis a revised ap-
proach to obtain heat release fluctuations associated with transverse modes
from single-flame simulations is proposed in Sec. 4.3.1.3. It is studied for
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Figure 4.10: Nomenclature for the single flame excitation geometry

a BKD load point (cf. Sec. 3.1) in Sec. 7.1 and employed for the stability
analysis in Chap. 8.

4.3.1.1 Previous Development

The common idea for the pressure FTF calculation in previous work is to
consider the flame as acoustically compact in cross-stream direction and to
stimulate pressure fluctuations whose axial distribution corresponds to those
obtained from an acoustic simulation (cf. Sec. 4.1) of the complete chamber.
This approach is also referred to as pressure excitation. The relation between
chamber and excitation simulation domain is shown in Fig. 4.10 (see also
Sec. 5.1.4). The single flame domain (outer radius RSF ) is located within
the combustion chamber (outer radius R). The different coordinates are
introduced in the following upon use.

Schmid and Sattelmayer [58] use source terms to mimic the effect of trans-
verse chamber acoustics on a single flame. The pressure fluctuations at the
pressure anti-node of a transverse mode are induced by the local addition
and subtraction of mass due to the mass flux arising from acoustic fluctua-
tions (cf. Fig. 4.11, point A). Consequently, to study the impact of pressure
fluctuations on the flame dynamics, mass is harmonically injected and ex-
tracted at the lateral boundaries of the single flame domain.

The mass source for the above excitation method is calculated based on a
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target (subscript t) pressure fluctuation given as5

p′t = p̂t exp(iωt)cos(kξ) , (4.53)

which represents the pressure fluctuations that shall be imposed on the
flame. In Eq. 4.53 ω is the oscillation frequency of the mode under consider-
ation, k = ω/c is the wave number (cf. Eq. 2.44) and ξ is the circumferential
coordinate, linearized at the location of the flame under consideration as
shown in Fig. 4.10. So this approach replaces the analytical circumferential
solution for a curved geometry, Θmn = cos(mθ) (cf. Eq. 2.42 and 2.43),
with a local cartesian approximation, Θmn = cos(kξ). As already stated
by Schmid and Sattelmayer [58] the value of the wave number k does not
match the actual radial wave number of a transverse mode (Eq. 2.45b in
Sec. 2.4). The phase of the pressure amplitude is set constant across the
domain in this initial approach. To obtain the velocity fluctuations at the
boundary of the single flame domain that correspond to the target pres-
sure fluctuation Eq. 4.53 is inserted into the ξ-wise (cf. Fig. 4.10) linearized
momentum equation. Mean flow gradients are neglected. The mass to be

5The complex exponential form of the harmonic oscillations is used here for consistency with the
other derivation in this work. The original derivation has been performed for a sinusoidal target pressure
perturbation.
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injected into the single flame domain is approximated by multiplying the
calculated velocity fluctuations with the mean density, giving

dṁ′r
As

= u′ξρ̄ = i
p̂t
c
|sin (−kξ)nξ| exp(iωt) (4.54)

with n the outward facing normal vector of the single flame domain bound-
ary and As its shell surface, see Fig. 4.10. Schmid [3] extends the approach
by using an axially dependent value of the target pressure amplitude with
a distribution based on the analytical duct-flow acoustics solution (Eq. 2.42
and 2.43). Along with the mass source, momentum and energy source terms
are derived to account for the mass addition in the respective conservation
laws.

A validation of the approach has been conducted by comparing the target
pressure amplitude distribution (Eq. 4.53) to the pressure oscillations that
are actually obtained in the pressure excitation simulation [3]. For homo-
geneous flow excellent agreement has been found. However, once flow in-
homogeneties were included in the calculations, severe differences between
the target pressure profile and the resulting amplitude distribution were
observed. Two reasons were identified: First, the sound speed used for the
evaluation of Eq. 4.54 has not been adapted based on the local flow. Sec-
ond, inconsistencies between the unsteady pressure profile imposed at the
outlet of the single flame domain and the pressure fluctuations arise from
the occurrence of axial acoustic waves in the simulation.

The pressure excitation procedure that the present work starts from is a
modification of the above approach by Schmid and Sattelmayer, which has
been introduced by Schulze [12]. He replaced the analytical axial distribu-
tion of the pressure amplitude by the amplitude profile obtained from a
perturbation simulation of the studied configuration. Likewise, the sound
speed is taken as the one-dimensional profile used in the mean-flow calcula-
tions (cf. Eq. 4.12). However, this approach still has the deficiency that the
pressure fluctuations that occur in the excited single flame simulation do not
match the target pressure fluctuations used to derive the source term (Eq.
4.54). A study by Chemnitz and Sattelmayer [54] showed that this devia-
tion between target and actual pressure fluctuations can have a tremendous
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impact on the stability prediction. Depending on whether the target or the
actually occurring pressure fluctuations are used for the FTF-calculation,
the calculated stability behavior changed from stable to unstable. This topic
is addressed further in Sec. 8.1.

An alternative approach to those described above has been taken by Török
[11]. A periodically moving wall that follows the velocity u′ξ is placed at a
lateral domain boundary. The wall velocity is set uniform along the whole
domain. A second approach that he proposed is the usage of a modified
pressure and an isentropically adapted temperature and density as input
for the chemical kinetic calculations. Both excitation methods result in sig-
nificantly different pressure amplitude and phase distributions across the
chamber. Neither approach matches the target pressure amplitude. The re-
sults have not been validated or used further.

4.3.1.2 Single Flame Domain Acoustics and Pressure Coupling Mechanisms

As outlined in the previous section 4.3.1.1 the main issue of the mass-source
based single flame excitation is that the target pressure fluctuations which
are meant to be imposed on the flow differ from those that are actually ob-
tained in the simulation. The practical consequences that this deviation has
for the stability predictions will be discussed in Sec. 8.1. In the present sec-
tion the mechanisms leading to the observed pressure fluctuation mismatch
are discussed. To understand the way these mechanisms reflect in the heat
release fluctuations, an analysis of the processes that characterize the re-
sponse of a single flame to a transverse chamber mode is conducted. The
discussion is the basis for the subsequent development of a revised pressure
response calculation procedure in Sec. 4.3.1.3.

The fundamental problem that causes a deviation between the pressure
fluctuations obtained in the simulation and the target profile is the differ-
ent acoustic behavior of the full chamber and the single flame domain at
the excitation frequency. As discussed in Sec. 2.4.2 the stability-relevant
transverse chamber modes are cut-on only close to the face plate. Further
downstream, their amplitudes decline in axial direction. The radius of the
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single flame domain is considerably smaller than that of the whole chamber
(cf. Sec. 5.1.4). Thus, it has a higher cut-off frequency than the chamber
(cf. Eq. 2.54) and the chamber T1 frequency corresponds to longitudinal
fluctuations in the single flame domain. The periodic injection and extrac-
tion of mass according to Eq. 4.54 models the acoustic mass-flow that the
single flame in a pressure anti-node of the chamber T1 would be exposed
to. However, in addition to the pressure fluctuations that are expected from
the mass sources inside the single flame domain, the domain’s own, longitu-
dinal acoustics are excited. Thus in the single flame simulation longitudinal
pressure fluctuations are superimposed on those corresponding to the mass
source terms. This explanation will be confirmed by BKD single flame re-
sults in Sec. 7.1. To understand the impact that acoustic perturbations have
on the heat release, the mechanisms governing its fluctuations are analyzed
in the following.

The combustion in the chamber occurs in diffusion flames developing be-
tween the coaxially injected propellants (cf. Sec. 2.1). In such configurations,
heat release is governed by the injection conditions, cross-streamwise mix-
ing and finally chemical reaction. In the following, the impact that acoustic
pressure fluctuations have on any of these processes is discussed. Regarding
the injection conditions the primary response mechanism to be expected is
a change of the propellants’ mass flows due to a change of the injector’s
counter pressure in the chamber. In principle, the temperature and density
changes that accompany the pressure fluctuations at the chamber inlet af-
fect the injection conditions as well. However, for these changes to have a
significant impact on the flow in the chamber, very high acoustic amplitudes
are required. So this mechanism is not relevant for linear stability analyses.
In the chamber, heat release is strongly affected by cross-streamwise mixing.
It is only weakly dependent on the absolute pressure level but is governed
by turbulence and hydrodynamic shear-layer instabilities. In contrast, reac-
tion kinetics are in general subject to pressure influences. However, in the
present study this sensitivity can be neglected. To demonstrate this aspect,
the maximum temperature as well as the temperature profile as function
of mixture fraction (cf. Sec. 5.1.3) are shown in Fig. 4.12 for the two pro-
pellant combinations H2/O2 and CH4/O2. The profiles are calculated from
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Figure 4.12: Pressure sensitivity of equilibrium temperatures

local chemical equilibrium (cf. Sec. 5.1.3), which is justified as combustion in
the chamber is mixing-dominated. The qualitative shape of the temperature
profiles in Fig. 4.12b and Fig. 4.12c is pressure independent but the maxi-
mum temperature changes. The development of the temperature maximum
via pressure is given in Fig. 4.12a. The curves for the considered propellant
combinations do not show significant differences. Particularly in the high
pressure range, the sensitivity of the maximum temperature to pressure is
low. The ratio of relative fluctuations is rather constant along the whole
pressure range:

∂Tmax
∂p

p

Tmax
≈ 0.04 , (4.55)

i.e. the relative amplitude of temperature fluctuations to be expected by di-
rect pressure effects on chemistry is only 4 % of the imposed relative pressure
amplitude.

Following the previous explanations, the actual pressure value is of minor
importance for the heat release fluctuations. However, the pressure fluctu-
ations of a transverse mode come along with a mass flow that periodically
enters and leaves the domain normal to the flame axis. This cross-stream
mass flow directly influences the mixing of the radially stratified flow. The
effect of longitudinal modes on the flow significantly differs from that asso-
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ciated with a transverse oscillation. Instead of impacting radial mixing, they
induce axial velocity fluctuations, leading to a periodic axial displacement
of the flow. In conclusion the actual pressure fluctuations occurring in the
chamber are of secondary importance for the flame response. Instead, for
transverse modes the associated cross-stream mass flow oscillations are the
dominant mechanism impacting the heat release. The pressure amplitudes
observed in the single flame simulation are a superposition of the source
term related fluctuations and longitudinal acoustics. In this case the rela-
tion between pressure and heat release fluctuations obtained in the single
flame simulations does not correctly reflect the flame dynamics associated
with a transverse mode.

4.3.1.3 Revised Pressure Excitation

The previous approaches to characterize the pressure coupling mechanism
were directed at reproducing a certain pressure rise in a compressible flow
by mass injection or manipulating the domain geometry. As pointed out in
Sec. 4.3.1.2 the key issue in this undertaking is the change of the domain’s
acoustic behavior when considering a single flame volume instead of the
whole chamber. However, the actual pressure fluctuations in the chamber
can be considered to be of minor importance for the heat release fluctua-
tions. Instead, the acoustic-induced mass flow has the dominating impact
on the flame response (cf. Sec. 4.3.1.2). Based on this concept, a revised
version of the pressure excitation is developed in the present section. The
basic idea is to avoid influences of the single flame domain’s eigenacoustics
by modeling the flow as incompressible6 (cf. Sec. 2.2.2). The impact of the
transverse acoustics on the mode is brought into the simulation by modeling
the transport processes associated with the acoustic mass fluxes. They are
represented by volumetric source terms, which are derived in Sec. 4.3.1.3.1.
The presence of source terms in incompressible flow induces additional, non-
acoustic flow oscillations. This aspect is discussed in Sec. 4.3.1.3.2. There,
also a dynamic modification of the local density is proposed to reduce the

6Several approaches to suppress longitudinal dynamics, like the usage of non-reflecting outlet boundary
conditions or inserting a region of high viscosity at the chamber end, remained unsuccessful.
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Table 4.4: Source terms for pressure excitation

Flow Combustion & Turbulence

conservation Eq. source φ variable source φ

mass (Eq. 2.11) Eq. 4.59 – turb. kinetic energy Eq. 4.68 k
momentum
(Eq. 2.12)

x Eq. 4.70, 4.68 ux turb. dissipation rate Eq. 4.68 ε
r Eq. 4.68 ur mean mixture fraction Eq. 4.68 f

enthalpy (Eq. 2.21) Eq. 4.68 H mixture fraction variance Eq. 4.68 f ′2

negative side effects from incompressible flow modeling in the single flame
computations. The flame response obtained from the approach derived in
the present section is evaluated for the BKD in Sec. 7.1 and applied in the
stability analysis in Chap. 8.

4.3.1.3.1 Excitation Source Terms The mass fluxes induced by acoustic
fluctuations (cf. Sec. 4.3.1.3) cause additional convective transport. To
model the effect that this convection has on the single flame solution, source
terms for the equations describing flow (Eq. 2.11, 2.12 and 2.21, cf. Sec. 5.1),
combustion (cf. Sec. 5.1.3) and turbulence (cf. Sec. 5.1.1) are derived in the
following. Starting point is the mass source term for the continuity equa-
tion. Based on the result, source terms for the other equations are derived.
Finally, an additional, pressure-related momentum source is proposed to
account for the axially non-constant excitation pressure amplitudes. The
resulting source terms are summarized in Tab. 4.4.

The acoustically induced mass flows are the result of transverse velocity
fluctuations. For a flame located at a pressure antinode, these fluctuations
are small but not zero due to the finite cross-section of the single flame
domain. The associated flow pattern is not axissymmetric, i.e. the induced
velocity fluctuations have a radial as well as circumferential component. In
the present work, like in the previous one [12], the pressure-response calcu-
lations are based on two-dimensional simulations (cf. Sec. 5.1) for compu-
tational efficiency. So any cross-stream mixing modulation is purely radial.
The injection at the domain boundary (cf. Sec. 4.3.1.1) is replaced by a vol-
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umetric source term distribution. This way no representative sound speed
profile for the calculation of the mass sources according to Eq. 4.54 needs
to be determined. Moreover, the time delay between the injection of the
excitation mass flow at the boundary and the injected mass reaching the
center of the single flame domain is eliminated. The findings of Chemnitz
and Sattelmayer [57] showed that the presence of radial flow gradients in
the mean flow does not significantly alter the pressure mode shape of the
chamber T1 mode. In contrast, the radial velocity perturbations were clearly
influenced by radial stratification of the sound speed distribution. Thus it
seems appropriate to assume a constant pressure amplitude within each
flame cross-section for the derivation of the source term. In this case, the
target amplitude distribution (Eq. 4.53) becomes

p′t = p̂t exp(iωt) . (4.56)

The pressure-related isentropic density change is calculated as (cf. Eq. 2.37),

∂ρ

∂t
=

1

c2

∂p

∂t
. (4.57)

The mass source S ′m shall represent the convection due to radial acoustic
mass flux fluctuations. It is obtained from the linearized continuity equation
2.30. Since the single flame is considered axis-symmetric, circumferential
gradients vanish, giving

S ′m ≡ −
1

r

∂

∂r
(rρur)

′ Eq.2.30
=

∂ρ′

∂t
+ ux

∂ρ′

∂x
+
∂ux
∂x

ρ′ + ρ
∂u′x
∂x

+
∂ρ

∂x
u′x . (4.58)

Due to the long flame and the primarily radial stratification of the flow the
term depending on the axial gradient of the mean-flow velocity is neglected.
The last two terms in Eq. 4.58 contain the axial velocity fluctuations and
their gradient, respectively. Due to the transverse nature of the mode, axial
velocity fluctuations are predominantly induced by secondary mechanisms.
The evanescence of the pressure amplitudes due to the change of the cut-on
frequency along the chamber length (cf. Sec. 2.4) causes fluctuations of the
axial pressure gradient, which in turn lead to axial velocity fluctuations (cf.
Eq. 2.31). Likewise, axial mean flow gradients may induce axial velocity
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perturbations according to Eq. 2.31. Neglecting the corresponding terms
and combining Eq. 4.57 and 4.58 leads to the source term formulation

S ′m =
1

c2

(
∂p′t
∂t

+ u
∂p′t
∂x

)

≈ 1

c2

(
∂p′t
∂t

+ u
∂p′t
∂x

)
.

(4.59)

To obtain Eq. 4.59 temporal and axial gradients of the sound speed have
been assumed to be small. The approximation in Eq. 4.59 adds the second
order convection term 1/c2u′ ∂p

′

∂x to the RHS. This adaption is advantageous
for the implementation of the source term calculation in the single flame
simulations. The consistency of the mass source according to Eq. 4.59 with
the mass flow excitation of Schmid et al. (Eq. 4.54) is shown in the following.
Thereto, the radial excitation mass flow per axial distance is calculated from
both equations and the results are compared.

First, the additional assumptions used in the derivation of Eq. 4.54 are
applied to Eq. 4.59, namely a purely axial density and sound speed profile
as well as negligible convection. Integrating Eq. 4.59 within one cross section
and using the harmonic ansatz for p′ gives for the total radial mass flow per
axial distance

dṁ′r
dx

=

∫

Asf

S ′mdǍ = iπR2
sf

ω

c2
p̂t exp(iωt) (4.60)

with Asf the cross-sectional area of the single flame domain. For the ap-
proach of Schmidt et al. (Eq. 4.54) the linearized circumferential coordinate
and the corresponding normal vector component are expressed as

ξ = Rsfcos(φ) , nξ = cos(φ) (4.61)

with φ the angular coordinate of the single flame domain (cf. Fig. 4.10).
An order of magnitude estimation of the sine argument in Eq. 4.54 for a T1

mode gives

Oω
c
ξ =

104

103
10−2 = 10−1 , (4.62)
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so the small-angle approximation sin(ω/cξ) ≈ ω/cξ can be used. Insert-
ing the small-angle approximation along with Eq. 4.61 into Eq. 4.54 and
integrating along the perimeter of the domain cross-section gives

∂ṁ′r
∂x

∣∣∣∣
r=Rsf

=

∫ 2π

0

dṁ′

dAs
Rsfdϕ

= i

∫ 2π

0

cos2(ϕ)dϕR2
sf

ω

c2
p̂t exp(iωt)

= iπR2
sf

ω

c2
p̂t exp(iωt)

(4.63)

with As the single flame domain surface area (cf. Fig. 4.10). This result is
identical to Eq. 4.60, which has been obtained from Eq. 4.59. So the acoustic
mass flows within each cross-section match for both approaches.

Based on the the mass source (Eq. 4.59) now the source terms for the other
transport equations are derived. The mass source represents the net mass
added at a certain location in the chamber due to acoustic-induced mass
flow. The associated radial mass flux at position r in the single flame domain
is obtained as

∂ṁ′r
∂x

=

∫ r

0

S ′m,p′2πřdř . (4.64)

This mass flux impacts any flow field whose transport equation contains a
convective term (cf. Tab. 4.4). However, the mass source term (Eq. 4.59)
only models the redistribution of mass within the domain cross-section.
The velocities associated with the mass flux according to Eq. 4.64 are not
induced. Consequently, the acoustics-related radial convective transport of
other variables needs to be explicitly modeled via source terms as well. The
temporal fluctuations of a variable φ due to convection (subscript conv) read

∂(ρφ)

∂t

∣∣∣∣
conv

= −∇ · (ρuφ)′ (4.65)

or, when considering the radial component,

∂(ρφ)

∂t

∣∣∣∣
conv,r

= −1

r

∂

∂r
(rρurφ) (4.66)

= −1

r

∂

∂r
(rρurφ)− 1

r

∂

∂r

(
1

2π

∂ṁ′r
∂x

φ

)
. (4.67)
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The first term on the RHS of Eq. 4.67 is part of the solution of the excitation
simulation and thus does not need to be modeled explicitly. The effect of
the acoustic mass flow fluctuations on the flow is contained in the second
term of Eq. 4.67. The source term Sφ to model the acoustically induced
convective transport of a variable φ reads:

S ′φ = −1

r

∂

∂r

(
r
ṁ′r
A
φ

)
(4.68)

with ṁ′r according to Eq. 4.64. The source term Eq. 4.68 occurs in all
flow equations except for the continuity equation (see Tab. 4.4). Since this
way only the net-transport due to acoustic induced mass flow is modeled
without inducing the associated acoustic velocity fluctuations, the pressure
excitation is separated from the velocity excitation (Sec. 4.3.2) even more
clearly than in the case of radial mass injection at the domain boundaries
(Eq. 4.54).

The principle behind the convective source term also reflects in the way
Eq. 4.68 is implemented in the solver, visualized in Fig. 4.13. For each
computational cell i the radial mass flux ṁ′r,j at its face Aj is calculated
from Eq. 4.64. Following Stokes’ theorem, the source is then obtained as

S ′φ,i = −1/Vi
∑

j={r±,z±}
ṁ′r,jφkAjnr,j (4.69)

with k the index of the cell upstream of face Aj according to ṁ′r. Vi is
the volume of cell i and nr,ij is the radial component of the face’s outward
pointing normal vector.

The mass source term Eq. 4.58 has been developed under the assumption
that the acoustic pressure fluctuations are constant within each chamber
section. However, the pressure amplitudes change along the chamber axis.
The resulting axial pressure gradient fluctuations cause axial velocity fluc-
tuations (cf. Eq. 2.31). While their impact on the radial mass flux fluctua-
tions has been neglected in the derivation of Eq. 4.59, they can be readily
accounted for in the excited single flame simulation. Due to the incompress-
ible flow modeling, no acoustic pressure fluctuations occur in the single flame
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Figure 4.13: Volume source term principle

simulation and thus the aforementioned pressure gradient fluctuations are
not captured. To nevertheless account for the acoustic pressure gradient
fluctuations an additional source term is applied to the axial momentum
equation, reading

S ′u,∇p′ = −∂p
′
t

∂x
, (4.70)

based on the target pressure fluctuation Eq. 4.56. With Eq. 4.70 all source
terms used for the single flame pressure excitation in this work have been
introduced (cf. Tab. 4.4). Their application has some side-effects on incom-
pressible flow, requiring a dynamic adaption of the local density. The in-
compressible flow dynamics and the development of said density correction
are discussed in the next section 4.3.1.3.2.

4.3.1.3.2 Density Modulation Due to the decoupling of density from pres-
sure, the propagation of acoustic waves is not captured correctly in incom-
pressible flows. An acoustic pressure disturbance immediately affects the
whole domain, allowing only processes whose time scales are much longer
than those of acoustic propagation to be described correctly. While this be-
havior prevents the occurrence of acoustic modes related to the domain’s
eigenfrequencies, incompressible flows still show a dynamic response when
exposed to unsteady source terms. To study these dynamics, an analytical
solution for an incompressible, one-dimensional duct flow with harmonic
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mass addition is derived and analyzed. First, the case of constant density is
considered in order to gain basic understanding of the processes occurring
in excited, incompressible flow. This constant density case is found to po-
tentially cause high velocity oscillations. To suppress these fluctuations, a
second case with harmonically varying density is developed. This approach
can be interpreted as a correction that introduces the compressible density
response associated with a certain acoustic mode into the flow. The flame
responses obtained with the different approaches are compared to each other
in Sec. 7.1.

To study the incompressible flow dynamics a one-dimensional duct is con-
sidered. The domain stretches from x = 0 to x = L and has a constant
cross-sectional area A. The sound speed is constant and the flow is isen-
tropic, i.e. Eq. 4.59 is applicable. Like for the single flame simulations, a
constant mass flow boundary is set at the inlet, ṁ|x=0 = ṁ0, while at the
outlet the pressure is fixed, p|x=L = pout. The harmonic target pressure
fluctuation is given as

p′t = Aexψx sin(ωt) (4.71)

with Aex the target pressure amplitude at x = 0 and ψx the spatial shape
function of the target pressure amplitude with ψx|x=0 = 1. For consistency
with the constant outlet pressure ψx|x=L = 0 is required. Since the flow is
constant in cross-stream direction, the convective axial momentum source
term Eq. 4.68 reads

S ′u = S ′mux . (4.72)

The pressure fluctuation gradient term Eq. 4.70 is neglected.

First, the case of temporally and spatially constant density is considered:

∂ρ

∂t
= 0 , ∇ρ = 0 . (4.73)

Based on the continuity and inviscid momentum equations (cf. Eq. 2.11
and 2.12) an analytic solution for the flow velocity and pressure can be

93



Stability Assessment Procedure

derived (cf. App. C.1), yielding

ux =
1

ρ

(
ṁ0

A
+

∫ x

0

S ′mdx̌
)

(4.74a)

p = pout +

∫ L

x

∫ ˇ̌x

0

∂S ′m
∂t

dx̌dˇ̌x . (4.74b)

For further evaluation of the dynamic velocity and pressure, a target pres-
sure amplitude distribution (cf. Eq. 4.71) is specified, loosely based on the
shape of the axial amplitude distribution of a cut-off T1 mode:

ψx = cos
(x
L

π

2

)
. (4.75)

The mass source is calculated from Eq. 4.59 while neglecting the convective
contribution7. For this case evaluating Eq. 4.74a and Eq. 4.74b gives

ux =
ṁ0

ρA
+ Aex

ω

ρc2
cos(ωt) sin

(x
L

π

2

) 2L

π
(4.77a)

p = pout − Aex
ω2

c2
sin(ωt) cos

(x
L

π

2

)(2L

π

)2

. (4.77b)

Eq. 4.77 can be interpreted as follows: Since the density is constant, any
mass injected by the source terms must be transported convectively in order
to fulfill the continuity equation 2.11. This leads to the velocity fluctuations
(Eq. 4.77a). The acceleration associated with these velocity fluctuations cor-
responds to an unsteady pressure gradient. Along with the constant pressure

7This simplification eases the analytical solution. To confirm its justification the ration between the
convective and the transient contribution in Eq. 4.59 for the shape function Eq. 4.75 is considered:

ux∂p
′
t/∂x

∂p′t/∂x
=
uxπ/(2L)

ω
tan

(
x
π

2L

)

︸ ︷︷ ︸
amplitude ratio

tan(ωt) . (4.76)

For the T1 mode of a representative rocket engine configuration (cf. Tab. 4.5) amplitude ratio << 1 holds
for the most part of the duct. It only fails close to the outlet, where pressure amplitudes are small anyhow.
The same logic applies to the temporal oscillations of Eq. 4.76, which are described by a tangent. The time
range where the convective contribution to the source term Eq. 4.59 becomes equal or exceeds the transient
part in magnitude is considerably small. The convective part in this time range is still significantly lower
than the transient contribution at other time instances. Thus the convection related term in Eq. 4.59 can
indeed be considered secondary compared to the transient part.
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outlet this causes the pressure fluctuations (Eq. 4.77b). Taking the ratio of
actual (from Eq. 4.77b) and target pressure amplitudes (Eq. 4.71) gives8

p′

p′t
= −ω

2

c2

(
2L

π

)2

. (4.78)

So the incompressible pressure fluctuations resulting from the source term
excitation are in opposite phase to the pressure fluctuations used for the
calculation of the source term. For a quantitative assessment of the dynamics
under realistic conditions, a set of specifications based on the T1 mode of
the BKD test cases is considered. The values of the variables required for
the evaluation of Eq. 4.77a and 4.77b for a single flame are given in Tab.
4.5. The pressure fluctuations at the domain inlet are shown for a relative
excitation amplitude of |p̂|t,rel ≡ Aex/pout = 0.01 (cf. Eq. 4.71) in comparison
with the target pressure fluctuations in Fig. 4.14. It is clearly visible that
both curves are in opposite phase to each other (cf. Eq. 4.78). However, as
discussed in Sec. 4.3.1.2 the direct impact of the pressure fluctuations on the
heat release is small. Instead, the mass flow oscillations associated with the
velocity fluctuations (Eq. 4.77a) are of interest, which are discussed below.

As density and volume of the domain are constant over time, the total mass
inside the domain does not change. However, under excitation conditions
a variable part of the mass stored in the domain no longer originates from
the inlet mass flow but has been injected via the excitation source term.
The total mass that has been injected from the source term is obtained

Table 4.5: Model flow specifications based on BKD T1 mode

f = ω
2π

ṁ0 pout r =
√

A
π

L c ρ

10 kHz 0.15 kg s−1 80 bar 6 mm 0.2 m 1500 m s−1 20 kg m−3

8The identical shape of the target pressure fluctuations and those occurring in the flow results from
the ansatz chosen for the spatial distribution in Eq. 4.75 and is not general. E.g. for a linear ansatz
p′t = Aex

(
1− x

L

)
sin(ωt) the resulting pressure fluctuations according to Eq. 4.74b is

p′ = Aex
ω2

c2
sin(ωt)

(
x2

2
− x3

6L
− L2

3

)
.
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Figure 4.15: Contribution of mass source to flow

by integrating the mass source (Eq. 4.59) over time and space9. It can
be considered as upper boundary for the mass in the domain originating
from the excitation. The temporal development of this quantity via one
excitation cycle is shown in Fig. 4.15a. For both excitation amplitudes,
the amount of mass added by the source terms is at least two orders of
magnitude lower than the total mass in the domain. However, this does not
apply to the source term induced mass flow, shown in Fig. 4.15b. While for
|p̂t,rel| = 0.01 the excitation mass flow peaks at around 20 % of the mean
value, for |p̂t,rel| = 0.05 it temporarily even exceeds the inlet mass flow.
This temporarily leads to a reversed flow at the domain outlet. For a more
complex setup like that of a single flame simulation such a flow reversal
might lead to a breakdown of the characteristic flow structures.

As just discussed, the application of source terms to an incompressible,
constant density flow leads to velocity fluctuations. These arise from the
convective transport of the mass brought into or extracted from the flow by
the source terms. The additional convection is necessary in order to fulfill
the continuity equation 2.11 since the isentropic density fluctuations, which

9Note that this integral only balances the mass that has been brought into or extracted from the
domain by the mass source term. It does not account for the outflow of mass originating from the source
terms through the outlet.
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are usually associated with the acoustic propagation of disturbances, are
not captured. To suppress the source-term related velocity fluctuations, a
harmonic density variation is introduced, that accounts for the compressible
density changes corresponding to the target pressure fluctuations:

ρ = ρ+
1

c2
p′t . (4.79)

The mass source term is calculated according to Eq. 4.59 with the target
pressure fluctuations from Eq. 4.71. Under these conditions the analytic
flow solution becomes (cf. App. C.2):

ux =
ṁ0

A ρ|x=0

(4.80a)

p = pout +
ux
c2

∂p′t
∂x

∣∣∣∣
x=0

(
1

ρ|x=0

∫ L

x

ρdx̌+

∫ x

L

ψdx̌

)
+
u2
x

c2
p′t . (4.80b)

At each time instant the velocity is constant across the whole domain and
determined by the inlet mass flux along with the density at x = 0. Since
|ρ̂| << ρ, the velocity fluctuations can be considered as reasonably small.
For the conditions from Tab. 4.5 they are shown in Fig. 4.16. The pressure
fluctuations (Eq. 4.80b) obtained with the target pressure amplitude dis-
tribution according to Eq. 4.71 and Eq. 4.75 are shown for At,rel = 0.01 in
Fig. 4.16a. The fluctuations are considerably lower compared to the constant
density case (Fig. 4.14). The temporal development of the flow velocity (Eq.
4.80a) is shown in Fig. 4.16b. The occurring amplitudes are small compared
to the mean velocity.

In summary, the harmonic density modulation (Eq. 4.79) is a viable ap-
proach to suppress the incompressible flow velocity dynamics arising from
the source terms Eq. 4.59 and Eq. 4.68. Its usage in the context of an actual
flame response calculation is studied further in Sec. 7.1.

4.3.2 Velocity Coupling

Velocity coupling is the second flame response mechanism besides the pres-
sure coupling discussed in Sec. 4.3.1. It refers to the response of the flame
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Figure 4.16: Incompressible flow with harmonic density fluctuations

to transverse velocity fluctuations. Unlike the pressure response, which de-
pends on the mass added to or substracted from the single flame by acous-
tic mass flows, the velocity coupling represents a unidirectional acceleration
without significant net mass flow across the domain borders. The impact
of the velocity response on the chamber stability has been found to be mi-
nor [12] compared to the pressure coupling. However, several studies [12,45]
have found a notable influence on the flow field in the form of flame shorten-
ing. Thus, the flame’s velocity response will be considered for the radiation
based validation in Sec. 5.3.3. Thereto, the velocity fluctuations that a single
flame is exposed to in the presence of a chamber T1 are induced in a single
flame simulation. The corresponding procedure is covered in the present
section. First, an overview of the previous development of this velocity ex-
citation approach is given (Sec. 4.3.2.1), followed by the revised procedure
that is developed in the present work (Sec. 4.3.2.2).

4.3.2.1 Previous Development

Analogously to the pressure response calculation discussed in Sec. 4.3.1
the effect of transverse velocity fluctuations on a single flame is modeled
via source terms. The method is based on the work of Schmid and Sattel-
mayer [58]. A flame in a velocity anti-node of the chamber is considered
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4.3 Flame Feedback

since there pure acoustic velocity fluctuations without superimposed pres-
sure oscillations occur (point B in Fig. 4.11). Due to the asymmetry of the
acoustic velocity at the pressure nodal line three-dimensional simulations
need to be carried out (cf. Sec. 5.1.4). As the flame is insensitive to the
direction of the velocity fluctuations, the heat release fluctuates at double
the excitation frequency [3]. The impact of the chamber’s transverse acous-
tics on the single flame are represented by a cross-stream momentum source
term (see Fig. 4.10 for coordinate definitions)

S ′u,ξ = ρ̄
∂u′ξ
∂t

. (4.81)

Initially, Schmid and Sattelmayer [58] propose to use a global reference
density, which in combination with a constant velocity amplitude leads to
a constant source term. Later Schmid calculates the excitation velocity am-
plitude ûξ based on an equivalent excitation pressure [3] as

ρ̄ûξ =
|p̂t|
csmn

. (4.82)

Schulze [12] applies the same coordinate linearization as in the derivation
of the pressure excitation (cf. Sec. 4.3.1.1, Eq. 4.53), leading to the source
term

S ′u,r = kcos(kξ)p̂texp(iωt) . (4.83)

The analysis of the BKD flame response with the excitation procedure [12]
showed that, despite having a small impact on the stability behavior, the
transverse velocity fluctuations lead to a notable flame shortening. This has
been confirmed by LES-studies of the BKD [45].

4.3.2.2 Revised Velocity Excitation

In the present work, velocity excitation is used in the context of OH*

radiation-image based validation (cf. Sec. 5.3.3). Thereto, a single flame
in the outer injector row is considered, requiring an excitation approach
that takes into account the velocity fluctuations of a specific flame. While
the approach of Schmid (Eq. 4.82) accounts for the mode order via the
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Bessel derivative root smn (cf. Eq. 2.45b), it does not include the depen-
dence of the velocity fluctuations on the radial position in the chamber.
Furthermore, the later introduction of the circumferential pressure distri-
bution’s cartesian approximation (cf. Eq. 4.53, Sec. 4.3.1.1) into the velocity
excitation equations (Eq. 4.83) changes the wave number used in the source
term calculation. In the following, a revised source term is derived that is
based on the full analytical solution for cylindrical duct flow acoustics (cf.
Sec. 2.4). It takes into account results of a previous study regarding the
influence of radial stratification on transverse eigenmodes [57].

The derivation of the revised excitation procedure consists of three steps.
First, a relation between the target pressure amplitude distribution and the
velocity amplitudes at the pressure nodal line is retrieved, based on the
acoustic solution of a uniform duct-flow (cf. Sec. 2.4). From these velocity
amplitudes a momentum source term is derived. Finally, the source term is
corrected for the fact, that the flow is non-uniform across the single flame’s
cross-section. Starting point for the derivations is the circumferential linear
momentum equation (cf. Eq. 2.31). The chamber mean flow is considered
swirl free and there is no radial velocity component. Likewise at the pressure
nodal line there are no radial velocity fluctuations for a transverse mode.
Moreover, in agreement with the original derivation of the source term, axial
convection effects are neglected. The result is the equation

∂u′θ
∂t

= − 1

rρ

∂p′

∂θ
, (4.84)

which is evaluated at the pressure nodal line for a standing transverse
mode of order m. The target pressure amplitude Eq. 4.56 represents a
pressure anti-node, which is located at the chamber wall. To obtain the
cross-sectional distribution of the target pressure amplitude, it is combined
with the radial and circumferential shape functions from the analytic duct
acoustics solution (Eq. 2.43b and 2.43c):

p̂ = p̂t
Rmn

Rmn|r=R
Θmn . (4.85)

The radii r and R here refer to the coordinate frame of the whole chamber
and not the single flame domain. After inserting Eq. 4.85 into Eq. 4.84 the
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target velocity amplitude at the pressure-nodal line is obtained as

ûθ,t = ip̂t
m

ωrρ

Jm (smnr/R)

Jm (smn)
. (4.86)

To evaluate the source term required for the flame excitation the circum-
ferential momentum equation, this time including axial convection, is rear-
ranged. As we consider pure velocity excitation and the mean flow on which
the fluctuations are imposed is rather isobaric, the pressure term vanishes
resulting in

S ′u,θ = ρ

(
∂u′θ
∂t

+ ux
∂u′θ

∂x

)
. (4.87)

The density from the mean flow can be used here as we consider a pres-
sure node, i.e. no acoustic density fluctuations occur. A previous study of
the impact of radial stratification on the acoustics [57] showed that while
the pressure amplitudes are nearly unaffected by radial flow gradients, the
velocity amplitude distribution follows the sound speed stratification. To
represent this result in the excitation procedure, the momentum source is
varied based on the local sound speed:

S ′u,θ = ρ

(
∂u′θ,t
∂t

+ uxρ
∂u′θ,t
∂x

)
c

c1D
. (4.88)

Eq. 4.88 is the source term used for the velocity fluctuations. It is used
within transient single flame simulation following the setup described in
Sec. 5.1. The velocity excitation results are used for the radiation based
single flame validation in Sec. 5.3.3.
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5 Single Flame Simulation

The stability assessment procedure outlined in Chap. 4 relies heavily on sim-
ulations of single rocket flames. To provide a sound basis for the evaluation
and assessment of the procedure and its components in Chap. 6 and 7, in
the present chapter the calculation approach for the single flame simulations
is developed and validated. The chapter is divided in three parts. In Sec.
5.1 the numerical setup for the single flame simulations is discussed. In the
subsequent section 5.2 an approach is developed to obtain OH* radiation
images from the numerical results. These are used together with further
experimental data for the validation of the single flame calculations (Sec.
5.3). The validated setup is the basis for the mean flow and flame response
calculations used in Chap. 6 and Chap. 7, respectively.

5.1 Numerical Setup

In the present section, the modeling for the single flame simulations is in-
troduced. To ensure the appropriateness of the model choices and the nu-
merical setup, a validation of the single flame results is carried out using
experimental data in Sec. 5.3. Different variants of the single flame simu-
lation setup are used. To extract the axial profiles for the mean-flow sim-
ulations, steady, two-dimensional calculations are performed. In contrast,
the characterization of the flame dynamics requires transient simulations,
either in two or three spatial dimensions, depending on the type of flame
response under consideration (cf. Sec. 4.3). While pressure excitation is ap-
plied in two-dimensional simulations, velocity excitation calculations need
to be conducted three-dimensional. The aspects of domain selection and
dimension are addressed further in Sec. 5.1.4 of the present chapter.
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5.1 Numerical Setup

The calculations are carried out with ANSYS® Fluent [59]. This tool offers
real gas modeling capabilities along with customization options [60] that
allow to implement the specific sub-models required for the stability assess-
ment procedure (Chap. 4). The simulations are conducted using Fluent’s
coupled solver, a pressure based algorithm that solves the momentum and
continuity equations simultaneously. This choice along with a strong under-
relaxation of density are necessary to achieve convergence. In the following,
the modeling of turbulence (Sec. 5.1.1), combustion (Sec. 5.1.3) and the
used equation of state (Sec. 5.1.2) are addressed. Finally, domain selection
along with discretization aspects (Sec. 5.1.4) and boundary conditions are
discussed (Sec. 4.1.2.1).

5.1.1 Turbulence Modeling

The single flame results are obtained from Reynolds Averaged Navier Stokes
(RANS/URANS) simulations. This is done with respect to the requirement
of a computationally lean stability assessment procedure1. Turbulence clo-
sure of the RANS equations is achieved using the k-ε model. This choice is
based on a study by Chemnitz et al. [61] that compares numerical results
obtained with different solvers, combustion and turbulence models for a sin-
gle CH4/O2 rocket engine flame with experimental validation data. From
the two most common models, the k-ε and the k-ω-sst model, the k-ε model
has been found to provide significantly better agreement with the experi-
mental data, particularly in combination with a flamelet combustion model.
The turbulent transport of species and energy is modeled as gradient based
flux with the respective diffusivities obtained via turbulent Schmidt (Sct)
and Prandtl (Prt) numbers. For the BKD these are calibrated using exper-
imental data in Sec. 5.3. For the TCDs their values are selected based on a
previous study covering a single-flame rocket combustor fueled with either
H2/O2 or CH4/O2 [62]. Their values are Sct = 1.1 for TCD2 and Sct = 0.7
for TCD3.

1For comparison, the LES of a single BKD load point required a mesh with 10 M cells [40]. The
authors of a full BKD LES study [43] note that, while LES is suitable to help the understanding of
instability phenomena, its cost becomes unreasonable for systematical design studies.
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For the k-ε model specific wall treatment needs to be applied when regions
close to solid boundaries (here at the faceplate and in the injection system)
are resolved. For this purpose, several models are available in Fluent, three
of them seem appropriate for the current application:

� Scalable Wall Functions (SWF)

� Enhanced Wall Treatment (EWT)

� Menter Lechner near wall treatment (ML)

These three approaches have in common that they allow for a flexible wall
resolution, i.e. cells may be placed even within the viscous sublayer, giving
more flexibility in terms of grid generation. In the following, the treatment
of the turbulent quantities for the different wall models is briefly outlined.
Detailed information, also on the treatment of energy and momentum equa-
tions, are given in the Fluent Theory Guide [63]. The Scalable Wall Func-
tions make use of the classical wall function approach, referring to Launder
and Spalding [64]. However, to avoid deterioration for low values of the di-
mensionless wall distance2 y∗ the argument of the wall functions is replaced
by ỹ∗ = max (y∗, 11.225), i.e. the wall nearest cell is treated as having a suf-
ficient distance to the wall to lie within the log-law region of the boundary
layer. For the enhanced wall treatment the flow is divided into a viscos-
ity affected near-wall and a fully turbulent region based on a turbulent
Reynolds number that takes the wall distance as length scale. In the inner
region a low-Reynolds one-equation model [65] is solved and the calculated
turbulent viscosity is smoothly blended with the solution in the outer flow.
The Menter Lechner near wall treatment uses an additional source term in
the k transport equation that accounts for the impact of near wall effects
on turbulence. However, details on the formulation of the source term are
withheld by ANSYS.

As the present work deals with the acoustic stability on system level, lo-
cal effects of turbulence modeling on the solution are of minor importance.

2In Fluent, the dimensionless wall distance y∗ is used. In contrast to the more common y+, the reference
velocity is based on the turbulent kinetic energy rather than the wall shear stress. However, for equilibrium
turbulent boundary layers both definitions give close results [64].
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However, a potential impact of the wall treatment on the large scale flow
properties needs to be considered in the model selection. The wall pressure
profiles obtained from a steady, two-dimensional simulation of BKD load
point LP2 (cf. Sec. 3.1.1) with different wall models are shown in Fig. 5.1a
and are almost identical. More distinct differences are found when evaluat-
ing the flame structure and combustion development in terms of the axial
heat release distribution (Fig. 5.1b) and the contour of stoichiometric mix-
ture fraction (Fig. 5.1c). While the Enhanced Wall Treatment and the Scal-
able Wall Functions produce nearly identical results, the Menter Lechner
approach predicts a slightly shorter flame. In the heat release distribution
this leads to slightly increased values in the front part of the chamber but
an earlier decay. The same behavior is found for LP1 (calculated with the
constant Z approach, see section 5.1.2). So regarding the relevant flow pro-
files the Fluent-specific Menter Lechner approach deviates from the more
established models and no data are available for the test case that allow
for a detailed experimental validation. Therefore the Menter Lechner near
wall treatment is discarded in this work. Since the other two models pro-
duce equivalent results, the Scalable Wall Functions are selected, as they
improve convergence compared to the Enhanced Wall Treatment.

5.1.2 Equation of State

The injection conditions of the different test cases lie in the trans- or slightly
supercritical regime (cf. Fig. 3.2). The adequate modeling of the flow at this
state requires a real gas description. A comparison of the thermal EOS of
several common real gas approaches against data from the NIST database
for BKD conditions [12] showed that the Soave Redlich Kwong (SRK)
model [66] provided the best agreement, with a good prediction of den-
sities, although notable deviations occurred in the sound speed. The SRK
EOS is a cubic EOS, possessing the structure of Eq. 2.9. While there are
additional advanced equations of state, that provide further improvements,
these cannot be implemented in the used solver at reasonable cost.

For the BKD load point LP1 a slightly different approach needs to be taken.
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Figure 5.1: Influence of turbulence wall modeling on single flame results
for BKD LP2

The nominal chamber pressure of this case, which is measured at the mea-
surement ring in the front region of the chamber (cf. Tab. 3.1d and Fig.
3.1), is only slightly above the critical pressure of oxygen. As the pressure
decreases further downstream (cf. Fig. 5.1a) the flow regime becomes sub-
critical, leading to convergence problems. Two approaches to overcome this
issue without devoting unreasonably large resources to the CFD simulations
are considered in the following: a fully incompressible simulation and an
ideal gas description combined with a spatially non-constant but pressure-
independent real gas factor. As the pressure change across the chamber is
small (about 6 % of the nominal value for LP1) and density and temperature
gradients mainly arise from the combustion, an incompressible simulation
can be considered appropriate. Thereto, the density is calculated using the
thermodynamic SRK EOS at the nominal chamber pressure for the local
flow composition and temperature. The alternative is to evaluate the real
gas factor according to Eq. 2.8 at a reference pressure pref that is set to the
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Figure 5.2: Mach number and real gas factor for BKD LP2

nominal chamber pressure, which is supercritical for all BKD load points
considered in this work (cf. Sec. 3.1.1). This method is referred to as ‘Zref ’-
approach in the following. It bases on the incompressible density as well but
corrects it for pressure changes like an ideal gas as

ρ = ρSRK,pref
p

pref
(5.1)

with ρSRK the density calculated at the local flow composition and tem-
perature for the reference pressure pref .

With both approaches no real gas effects are considered in the caloric equa-
tion of state. Since the impermeable domain boundaries are modeled as
adiabatic, total energy redistribution within the flow is of minor impor-
tance. Moreover, the Mach number predominantly lies in the incompress-
ible regime, reaching high values up to Ma = 0.5 only in the hydrogen rich
region (Fig. 5.2, bottom). In contrast, deviations of the real gas factor from
Z = 1 predominantly occur within the dense oxidizer core (Fig. 5.2, top)
and the error introduced by the calorically ideal gas model is considered
acceptable.

To further analyze the impact of the selected EOS on the single flame so-
lution, LP2 is considered. As its operating conditions are well within the
supercritical regime, a reference solution using the SRK-EOS can be calcu-
lated along with the just introduced Zref and the incompressible approach.
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The results are obtained from a steady, two-dimensional calculation with
Sct = 0.7. The heat release for the three models is shown in Fig. 5.3a. The
results with the incompressible and Zref approach are close to each other.
They mainly deviate from the SRK real gas approach in the region between
0.02 m / x / 0.06 m. There the simplified approaches underestimate the
heat release obtained with the SRK EOS. The incompressible solution ob-
tained with a different turbulent Schmidt number (Sct = 0.9 instead of
Sct = 0.7) is included in Fig. 5.3a as well. By comparison, the impact of
the turbulent Schmidt number on the heat release profile is found higher
than that of the selected EOS modeling approach. For the wall pressure
distribution the incompressible results predict a smaller but earlier pressure
drop compared to the SRK EOS (Fig. 5.3b). The Zref model shows good
agreement with the SRK results close to the faceplate and approaches the
incompressible solution further downstream. Overall, the wall pressure dis-
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Figure 5.3: Influence of the compressibility model on single flame results
for BKD LP2

108



5.1 Numerical Setup

Table 5.1: EOS and compressibility in the single flame simulations

Simulation Type
BKD

TCDs
LP1 LP2

steady incompressible SRK SRK
excitation (pressure) incompressbile/Zref incompressible/SRK –
excitation (velocity) – incompressible –

tributions obtained with the three models are quite similar to each other.
Most directly, the impact of the compressibility model is seen in the density
profile at the chamber axis (Fig. 5.3c). There the Zref approach overesti-
mates the density in the oxidizer core as the high value of ∂p/∂ρ in the
vicinity of the critical point is not captured. However, the location of the
density drop shows that the oxidizer core has a similar length for all ap-
proaches. The two-dimensional flame contour is shown in Fig. 5.3d. The
general agreement between the flame shapes obtained with the different
EOS is good. The results obtained with the SRK EOS predict a slightly
shorter and thinner flame compared to the ideal gas and Zref simulations.
For reference, again results from an incompressible calculation at a different
turbulent Schmidt number are included in Fig. 5.3d. Like for the heat re-
lease profile (Fig. 5.3a) the impact of the turbulent Schmidt number on the
flame length is higher than that of the EOS choice. Given the uncertainty
that remains in terms of the calibration of this number (cf. Sec. 5.3) as well
as of the simplification of the computational domain (Sec. 5.1.4 and 5.3.1),
the deviation induced by the adaption of the EOS seems acceptable. An
overview which EOS or compressiblity approach is applied in the different
simulations is given in Tab. 5.1. Due to its near-critical operating condi-
tions, the incompressible approach is used for LP1 if applicable. To study
the impact of compressbility on the excitation results (cf. Sec. 7.1) the Zref
approach is used. As the operating conditions of LP2 and the TCDs are
supercritical and considerably far from the respective propellants’ critical
points (cf. Fig. 3.2), the SRK EOS can be used in these cases.

Beside the EOS, viscosity and thermal conductivity are required to solve
the flow equations. As turbulent processes are dominant in momentum,
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mass and energy transport, those properties are set constant across the
whole chamber. Since the impact of molecular diffusion on the flow fields
is expected to be strongest in the injection system, the values are based
on oxygen at representative injection conditions: µ = 1 · 10−4 Pa s, λ =
0.13 W m−1 K−1.

5.1.3 Combustion Model and Heat Release

To model combustion in the single flame simulations, a non-premixed
flamelet model is used. This choice offers two advantages: solving trans-
port and kinetics of individual species and reactions is avoided and the
turbulence closure of the mean reaction rates can be accounted for by an
efficient statistical approach (see below). The first aspect is of particular
relevance to ensure fuel flexibility of the setup. While there are compact
reaction mechanisms that give reasonable results for H2/O2 combustion,
hydrocarbon fuels like methane require a rather high number of species
and reactions, quickly increasing the computational effort. In the following,
the main characteristics of the flamelet combustion model in the form im-
plemented in Fluent [63] are outlined and a procedure to extract axially
resolved heat-release distributions from the results is introduced.

The basic idea of the flamelet approach is depicted in Fig. 5.4. Combustion
in the flow is considered as an ensemble of small flame structures (flamelets),
here counterflow diffusion flames. The normalized temperature distribution
of such a flamelet is shown in Fig. 5.4b. Besides additional non-equilibrium
or turbulence related parameters (see below), temperature and species com-
position of each flamelet depend on the local mixture ratio between fuel and
oxidizer. This ratio is quantified by the mixture fraction f that varies be-
tween 0 and 1 and corresponds to the local cumulative mass fraction of all
atoms that originate from the fuel stream. The Reynolds averaged distri-
bution of the mixture fraction in the simulatiom domain is obtained from
a transport equation that replaces those of the individual species. The re-
sulting field structure for a single rocket engine flame is sketched in Fig.
5.4a with the mixing between the oxidizer core flow and the fuel rich outer
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Figure 5.4: Flamelet model principle

flow creating a co-flow diffusion flame (see also Sec. 2.1). Given the mixture
fraction field, the temperature and composition of the flow are interpolated
from the flamelet.

The mixture-fraction based approach outlined above allows to apply an
efficient statistical model for turbulence-chemistry interaction (TCI). The
TCI-model accounts for the non-linear effect of non-resolved turbulent vari-
ations of the local mixing on mean temperature and flow composition. The
mixture fraction fluctuations are assumed to follow a β-probability density
function (PDF, P). To fully specify this PDF, the mixture fraction variance
is required in addition to the mean mixture fraction. It is obtained from the
solution of an additional transport equation.

Chemical non-equilibrium is represented via the scalar dissipation, which
is directly related to the strain rate of a counter-flow diffusion flamelet. In
the flow, the scalar dissipation is estimated based on local turbulence and
mixture fraction variance. For zero scalar dissipation, the flamelet is in local
chemical equilibrium, i.e. the flow composition does not depend on reaction
kinetics but is governed by the mixing behavior of fuel and oxidizer.

Besides the just discussed model specific flamelet parameters, the local en-
thalpy and pressure potentially impact the flow composition and tempera-
ture. However, changes in pressure can be neglected for the flamelet gener-
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ation as discussed in Sec. 4.3.1.2 but are accounted for in the calculation of
the flow density if applicable (cf. Sec. 5.1.2). The enthalpy distribution in
the flow is obtained from Eq. 2.21. Consistent with the isobaric treatment
of the flamelets, the temporal pressure derivative in the enthalpy equation
is neglected (cf. Sec. 2.2). In general, the parametrization of the chemistry
in the flame by means of mixture fraction statistics and scalar dissipation
can be carried out at different enthalpy levels. However, Fluent poses some
restrictions to limit the number of interpolation dimensions. When consider-
ing chemical non-equilibrium via the scalar dissipation, only a semi-diabatic
treatment of the flow is available: While density and temperature calcula-
tions take into account the local flow enthalpy, the species mole fractions
are obtained at a fixed reference enthalpy. In contrast, if only equilibrium
flamelets are considered, the enthalpy goes into the local flow composition
as well but strain is neglected. The flamelet tables generated with Fluent
show negligible sensitivity to scalar dissipation, which is why the diabatic
equilibrium model is used in this work. Real gas effects are not included
in the flamelet generation and the real gas density is calculated from flow
composition, temperature and pressure.

Several steps of the stability assessment procedure require the axial heat
release rate distribution. Its mean value goes into the mean flow calculation
(Sec. 4.2) and the flame response is modeled based on the heat release fluc-
tuations (Sec. 4.3). However, the heat release rate is not directly available
from the flamelet model. A tabulation based on the flamelet coordinates is
not applicable as well, as the flow composition is parametrized and not its
temporal derivative. Thus, the heat release is obtained from the transport
equation of the enthalpy of formation (Eq. 2.25). Since only the axial profile
is required, the evaluation can be simplified via radial integration:

qx = −
∫ R

0

Sh0
f
dA = −

∫ R

0

[
ρ
∂h0

f

∂t
+ ρux

∂h0
f

∂x
− ∂

∂x

(
µt
Sct

∂h0
f

∂x

)]
dA− Ah0

f

(5.2a)
with

Ah0
f

= 2πR
(
h0
fρu · nr,u

)
r=R

(5.2b)

accounting for any enthalpy of formation passing in radial direction across
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the domain boundaries, e.g. during the excitation simulations. The term
nr,u denotes the radial unit vector pointing outwards of the domain with
nr,u = 0 for a purely axially oriented surface. The diffusion term in Eq.
5.2a neglects molecular transport as turbulent mixing is dominant.

5.1.4 Computational Domain and Discretization

Single flame simulations are carried out in two and three dimensions. Three-
dimensional simulations are used with and without velocity excitation in
the context of radiation based single-flame validation (cf. Sec. 5.3). All
other simulations in this work, including any TCD calculations, are two-
dimensional. In the following, the selection of the computational domain
for the single flame simulations in 2D/3D is discussed and an overview
of the respective computational grids is given. Finally, the discretization
schemes are addressed shortly. Even though the content of this section is
centered around the BKD test case, the mesh structure and resolution for
the TCD-simulations are analogous.

A generic domain for the single flame simulations is shown in Fig. 5.5. It
comprises a part of the combustion chamber as well as the downstream
region of the injector (cf. Fig. 3.1c). As the fuel is injected in axial di-
rection, the fuel inlet is modeled directly as planar boundary condition at
the back of the recess. Due to the conical shape of the oxygen injector’s
downstream part, a portion of the oxygen post is resolved, up to a short
distance upstream of the taper3. In the excited simulations, not resolving
the full injector ensures that the comparison between compressible and in-
compressible results is not affected by the acoustic response of the injec-
tion system (cf. Chap. 7). The cross-sectional area in the chamber part is
1/ninj of the whole chamber cross-section with ninj the number of injection
elements. That way, if the total mass flow is evenly distributed to the in-
jection elements, representative values of the flow velocity can be expected.

3For some steady cases the injection system including part of the dome volume has been included as
well. However, the impact on the solution in the chamber is negligible.
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Figure 5.5: Single flame domain

For the two-dimensional simulations the domain radius is fully specified
by this condition. However, in the three-dimensional cases the selection of
the single flame domain cross-section’s shape is not unambiguous. Fig. 5.6
shows a segment of the injection pattern of the BKD (cf. Fig. 3.1b), parti-
tioned according to the above criterion regarding the single flame domain’s
cross-sectional area. For comparison, a circular domain is included as well,
which represents the axis-symmetric two-dimensional domain and is simi-
lar to the hexagonal shape used in previous works’s 3D simulations [3, 12].
The shape of the single flame domain’s cross-section depends on the in-
jector row under consideration. The outer row deviates significantly from
the axis-symmetric case, which in turn is more similar to the middle row.
As the three-dimensional simulations are used for validation purposes (cf.
Sec. 5.3.3) and experimental radiation images are dominated by the wall-
nearest flames, the domain shape corresponding to the outer injection row
is selected. The impact of the domain selection on the single flame results is
discussed further in the context of the single flame validation in Sec. 5.3.1.

To discretize the single flame domains, a block structured grid is used. The
radial grid lines are kept strictly orthogonal to the injector axis. This is
done to allow for the explicit evaluation of the excitation source terms as
described in Sec. 4.3.1.3 (Eq. 4.59 and 4.68) as well as the efficient extraction
of the axial heat release distribution (cf. Sec. 5.1.3). For the two-dimensional
BKD cases the grid is shown in Fig. 5.7. The high axial resolution is due to
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Figure 5.6: Injection pattern segment of the BKD

−2.1 −2 −1.9 −1.8

·10−3

1.9

2

2.1

·10−3

fuel

ox

x, m

r,
m

Detail A

−0.2 0 0.2 0.4 0.6 0.8 1

·10−2

0

2

4

6
·10−3

A

x, m

r,
m

Figure 5.7: Computational grid in front region of the BKD

the necessity to resolve axial gradients for the extraction of the heat release
(cf. Sec. 5.1.3). The real gas conditions induce high density gradients at the
edge of the oxidizer core, requiring sufficient radial resolution. A grid study
for BKD LP2 has been conducted, employing a refined and a coarsened
version of the final grid. The cell numbers (ncells) are shown along with
results for global flow structures in Fig. 5.8. The flame length is shown in
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Figure 5.8: Grid study for BKD LP2

Fig. 5.8a. It is calculated as the distance of the position where the contour
of stoichiometric mixture fraction closes at the axis from the faceplate (cf.
Sec. 2.1 and Fig. 5.3d). The error bars indicate the size of the cell within
which stoichiometry is reached. The flame length shows clear convergence
with increasing resolution and changes are already small between the coarse
and the medium mesh. A flattening is observed in the development of the
corner recirculation zone length as well (Fig. 5.8b), not as distinct as for
the flame length but with even smaller relative changes between the grids.
The heat release rate (Fig. 5.8c) shows the same trend and the solution can
be considered to be well grid converged.

The grid for the three dimensional simulations of a single injector domain in
the outer flame row, including the cooling film, is shown in Fig. 5.9. To keep
the computational effort acceptable, the domain is restricted to the region
x < 0.075 m and a coarser grid than in the two-dimensional simulations is
used. Nevertheless, the grid comprises more than 1.2 M cells with about 300
cells along the injection axis.
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Figure 5.9: Computational grid for 3D simulation

The numerical discretization schemes are of second order in space. In time,
bounded second order implicit discretization [63] is used.

5.1.5 Boundary Conditions

The boundary conditions for the two-dimensional single flame simulations
are specified in Fig. 5.10 along with Tab. 5.2. At the inlets, mass flow and
temperature are specified according to the test case descriptions in Chap. 3
(Tab. 3.2 and 3.6). Regarding turbulence, a medium turbulent intensity [59]
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Figure 5.10: Single flame
domain

Table 5.2: Single flame boundary condi-
tions

color type
specification

general turbulence

wall
n · ∇T = 0

SWF
u = 0

inlet T , ṁ I = 0.05, DH

outlet p
symmetry

of

I =

√
2/3k

|u| = 0.05 (5.3)

with k the turbulent kinetic energy, is specified. The turbulent dissipation
rate is estimated using the turbulent length scale lt, which again is calculated
from the hydraulic diameter DH of the respective inlet [59]:

ε =
k3/2

lt
, lt = 0.07DHC

−3/4
µ (5.4)

with the model constant Cµ.

The walls are treated as adiabatic no-slip walls with scalable wall functions
for turbulence treatment, as discussed in Sec. 5.1.1. At the outlet, the pres-
sure is fixed. For the simulations with excitation a constant outlet pressure
is justified, as the modes of interest are of transverse type and cut-off in the
rear part of the chamber, i.e. pressure amplitudes at the outlet are low (cf.
Sec. 2.4.3). A symmetry condition is used to describe the boundary of the
single injector domain towards the chamber volume. This boundary type is
preferred to a free-slip wall as it does not invoke any wall specific turbu-
lence treatment. For the three-dimensional cases the boundary conditions
are mainly identical to those of the two-dimensional setup. However, as a
flame of the outer injector row is considered, the chamber wall is one of
the domain’s lateral boundaries. The film cooling injection is modeled as
additional inlet with mass flow and temperature according to Tab. 3.2.
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5.2 Calculation of OH* Radiation Images

5.2 Calculation of OH* Radiation Images

The validation of the BKD single flame computations in Sec. 5.3 requires
a sound calculation procedure to obtain OH* radiation images from the
numerical results. In the experiment, the recorded radiation is determined
by emission and absorption along line-of-sights through the flame. This
circumstance needs to be accounted for when calculating the numerical
flame images in order to ensure comparability to the experimental data.
The principle approach is shown in Fig. 5.11a. Each point in the OH* im-
age corresponds to the radiation intensity at the end of a line-of-sight. All
lines-of-sight are assumed to be parallel. Where a line-of-sight intersects
the single flame domain, the radiation intensity is altered due to emission
and absorption in the reacting flow. When evaluating the radiation inten-
sity along a line-of-sight, two-dimensional flow results need to be virtually
rotated around the domain axis to obtain the correct distribution of ra-
diative properties (cf. Fig. 5.11). As the resulting flame radiation image is
symmetric with respect to the location of the flame axis, it is sufficient to
calculate only its top half. For three-dimensional cases (cf. Sec. 5.1.4), the
intersections of the lines-of-sight with the flame region need to be calculated
based on the domain geometry, as shown in Fig. 5.11b.

The fundamentals of radiation modeling have been introduced in Sec. 2.5.
Along each line-of-sight, the radiative transport equation 2.56 is solved to
obtain the detected radiation intensity. Three points need to be considered:

� The selection of the emission model.

� The evaluation of the radiative transport equation in turbulent flow.

� The computationally efficient approximation of the radiation’s spectral
dependence.

In the following, the impact of these aspects on the calculated radiation
images are successively analyzed for a rocket flame. For this purpose an
adiabatic, incompressible solution for a BKD-like single flame at 80 bar is
used. The flow is considered to be in local chemical equilibrium, i.e. its local
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Figure 5.11: Calculation principle for numerical OH* images

composition depends only on the mixing between fuel and oxidizer (cf. Sec.
5.1.3). For this configuration, due to the flamelet combustion model, the
fields of mean mixture fraction and mixture fraction variance (Fig. 5.12)
along with the PDF-table fully determine the local composition, tempera-
ture and density of the solution. Thus any of the used radiation models can
be implemented in the frame of a compact post-processing calculation. Fol-
lowing the discussion of the modeling aspects, the numerical implementation
of the OH* image calculation procedure is addressed. Finally, a summary
of the main conclusion from the present chapter is given.

5.2.1 Radiation Model Selection

For the calculation of the OH* radiation image, the radiative transport
equation 2.56 is solved along multiple lines-of-sight (cf. Fig. 5.11). Thereto
the spatial distribution of radiation emission and absorption needs to be
modeled. An overview of the different approaches to calculate these terms
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Figure 5.12: Single flame solution for OH* modeling study

has been given in Sec. 2.5.2 and Sec. 2.5.3 respectively. The modeling op-
tions for the absorption term basically differ in the way the radiation’s
spectral dependence is approximated, which is discussed comprehensively
in Sec. 5.2.3. The models available for the emissivity appear to have more
fundamental differences. Of the emission models presented in Sec. 2.5.2, the
two more elaborate ones are considered further: the EFRM-A model that
has been designed to combine computational affordability with reasonable
accuracy and the classical radiation model that also provides a quantitative
prediction of the radiation intensity. In the following, the discretized form
of the radiative transport equation is introduced, providing the background
to subsequently discuss the emission models.

The radiative transport equation 2.56 forms the basis for calculating the
development of radiation intensity across the flame. The equation is recast
in accordance with the numerical representation of the flow as shown in
Fig. 5.13. The ray is considered to pass through a sequence of volumes with
constant properties. The intersection length between ray and a volume is
termed ∆x. Following Eq. 2.65 the discretized form of the transport equa-
tions reads:

I+
s = e(s) [1− exp (−ks∆x)]︸ ︷︷ ︸

Es,net

+ I−s exp (−ks∆x)︸ ︷︷ ︸
Ts

(5.5)

with the spectral net emission Es,net and the spectral transmission Ts. The
superscripts − and + denote radiation entering and leaving a constant prop-
erty volume respectively.

121



Single Flame Simulation

∆x

viewing
direction

line of sight

flame solution
cell

I+I−

Figure 5.13: Discretized line-of-sight

The structure of Eq. 5.5 allows to directly apply the EFRM-A model in
the form provided in several publications [21, 22, 26]. The model combines
the integral emission according to Eq. 2.62, which is evaluated at the center
wave length λc of the spectral range of interest, with spectrally dependent
absorption:4

e ∼ [OH∗] (5.6)

Es,net ∼ [1− exp (−ks[OH∗])] . (5.7)

Combining these two equations shows a difference compared to the classical
net emission, Eq. 2.65, where the inverse spectral absorption coefficient
appears as pre-factor. The emission term for both models reads

e(s) =

{
es
ks

= Ib,s classical model

∼ [OH∗] EFRM -A
. (5.8)

Inserting Eq. 2.58 and Eq. 2.62 yields

e(s) =





2hc2l
ν3

(
exp

(
hclν
kBT

)
− 1
)−1

classical model

[OH]
(

exp
(
hclν
kBT

))−1

EFRM -A
. (5.9)

As the EFRM-A provides only a qualitative distribution of the OH* radia-
tion, globally constant factors can be dropped for a comparison of the two

4This model always has been applied along with a spectral simplification based on pseudo absorption
coefficients [21, 22, 26]. The approach is used in a fully spectrally resolved form here. That way, the pure
model comparison is separated from the aspect of spectral approximation. This aspect will be addressed
in Sec. 5.2.3.
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models. Furthermore, the window width of the filter is small compared to
the center wave number5 νc; for the BKD measurements: ∆ν

νc
≈ 0.03 and

∆ν3

ν3
c
≈ 0.09. Thus the wave number in the classical model can be replaced

by the center wave number as well. These simplifications lead to:

e(s) ∼





(
exp

(
hclνc
kBT

)
− 1
)−1

classical model

[OH]
(

exp
(
hclνc
kBT

))−1

EFRM -A
. (5.10)

The exponent in Eq. 5.10 contains the second radiation constant c2 = hcl
kB
≈

0.0144 m K. Together with the filter center wave number of νc = 1
310 nm and

an upper temperature limit of Tmax ≈ 3500 K the exponent takes a minimum
value of hcl

kB
νcenter
Tmax

≈ 13.26. Thus, the exponential term is clearly dominant in
Eq. 5.10, which can be approximated as

e(s) ∼





exp
(
−hclνc

kBT

)
classical model

[OH] exp
(
−hclνc

kBT

)
EFRM -A

. (5.11)

So the only significant difference between the emission terms of both models
is the multiplication with the OH concentration for the EFRM-A.

To study the relevance of the deviation between both emission terms in Eq.
5.11, an H2/O2 equilibrium flamelet is considered. Its temperature and [OH]
profiles are shown in Fig. 5.14a. The value of the corresponding exponential
term from Eq. 5.11 is given in Fig. 5.14b. Compared to the temperature
distribution, its peak is considerably narrower. The comparison between
both complete emission terms from Eq. 5.11 (Fig. 5.14c) reveals only small
differences. The peak is governed by the exponential term and including the
OH concentration as pre-factor just leads to a slightly earlier decline at its
super-stoichiometric side. However, the overall profiles are almost identical.
The impact of the radiation model on a complete flame image is shown in
Fig. 5.15. The image has been calculated for a turbulent flame as introduced
in Sec. 5.2.2, where also a more detailed discussion on the image structure

5For consistency with previous publications using the wave-length based equations, νc = 1
λc

is used
here instead of calculating the center wave number based on the wave number range of the spectral analysis
window.

123



Single Flame Simulation

0 0.2 0.4 0.6 0.8 1
0

1

2

3

·103

f

T
,

K

0

5

10

15

20

[O
H

],
m

ol
/m

3

(a) Flame profile

0 0.2 0.4 0.6 0.8 1
0

1

2

3
·10−6

f
ex

p
(−
h
c l
ν c
/(
k
B
T

))
(b) Exponential term

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

f

e (
s)
,n

classical
EFRM-A

(c) Emission profiles

Figure 5.14: Emission distribution across an 80 bar equilibrium flamelet

classic

EFRM-A

IOH∗,n

0 1

x

Figure 5.15: OH* radiation image calculated with the classic and the
EFRM-A approach

is given. As expected from the previous analysis, no significant differences
between the results of the classical and the EFRM-A approach are visible.

As the classical model has the principle advantage of providing a quantita-
tive estimation of the radiation intensity without significant drawbacks in
terms of implementation, it is used in the remainder of this work. Regarding
the calculation of the OH* concentration, the flamelet profile in Fig. 5.14a
confirms the validity of the equilibrium assumption (cf. Sec. 2.5.2.2) as in
the regions of notable OH concentrations the temperature lies fairly above
the crossover value of T ≈ 2700 K given by Fiala [21].
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5.2.2 Turbulence Impact on Radiation Images

The radiation models discussed in the previous section 5.2.1 are designed to
model the radiation properties for a given set of instantaneous temperature
and [OH] data. However, the flow in rocket combustion chambers is highly
turbulent and the flow fields obtained from the RANS simulations represent
average data instead of instantaneous fields. While the RANS equations are
based on ensemble or Favre-averaged values of the mean flow fields (cf.
Sec. 2.2.1), the numerical modeling of combustion used in the present work
provides additional information on the unresolved turbulent fluctuations
of the mixture fraction (Sec. 5.1.3). Via the presumed β-PDF-model for
the mixture fraction statistics, a way to include turbulent influences on
quantitities depending non-linearly on the flamelet variables is available. As
the previously outlined radiation descriptions are highly non-linear in terms
of temperature, this has the potential to significantly affect the computed
radiation images. The role of turbulence in the calculation of the mean OH*

concentration field from ground state OH and temperature (Eq. 2.62) has
been pointed out by Fiala et al. [21, 22]. In the context of rocket engine
flames, this aspect has been approached by Schulze et al. [26]. However, the
influence of turbulence in these studies was restricted to the emission term
of the EFRM-A model (Eq. 5.8).

In the following, an approach is developed to evaluate the radiative trans-
port equation in a way that takes into account turbulence to the extent that
is possible and consistent with the single flame CFD. This concerns the eval-
uation of the emission and transmission terms in Eq. 5.5 in the presence of
turbulence in general, independent of the actually chosen emission model
(Sec. 5.2.1) or spectral approximation (Sec. 5.2.3). Starting from this refer-
ence case, two simplified variants of the radiation calculation in turbulent
flow are introduced and evaluated. They show the relation of the consis-
tent approach to the methods used in previous works [21,26] and require a
lower implementation effort. Following the findings in Sec. 5.2.1 the discus-
sion is carried out for the classical emission model (Eq. 2.5.2.1). To provide
additional insight into the mechanisms leading to the differences between
the radiation images obtained with the different turbulence treatments, the
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development of radiation intensity along a representative line-of-sight is an-
alyzed.

First, the approach which fully accounts for the effect of turbulence on the
radiation calculations is developed. As basis for the derivation the assump-
tions used in the evaluation of the radiative transport equation or implied
by the overall simulation setup are recalled:

1. The statistically resolved influence of turbulence is limited to oscilla-
tions of the mixture fraction. This is the basic assumption that under-
lies the overall setup for the flow simulations.6

2. The cells are statistically independent from each other, i.e. the PDFs
of different cells can be evaluated separately.

3. Each cell is perfectly mixed at all times and the radiation time scale is
small compared to any transient time scales of the flow or turbulence.

4. The flow is approximately isobaric.

With the first and second prerequisites, the turbulent fluctuations manifest
in the Favre-averaged value (cf. Sec. 2.2.1) of a variable φ that follows the
PDF P as

φ̃ =

∫ 1

0

φflPdf . (5.12)

The index fl denotes the flamelet profile of the variable.

The third assumption allows to use Eq. 5.5 for the evaluation of the radiation
intensity. The RHS terms of this equation depend on temperature, pressure,
OH concentration, a spectral variable and the distance ∆x. As the pressure
varies only weakly across the flame, its impact on the results is neglected
(simplification four), leaving four independent parameters. The net emission
and transmission term in Eq. 5.5 can be evaluated separately. Under full

6In the flow equations turbulent transport of momentum, species and enthalpy is included as well.
However, this enters the radiation calculations only indirectly via the fields of mixture fraction and its
variance.
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inclusion of non-linearity into the PDF-integration, the net-emission term
reads

Ẽs,net =

∫ 1

0

Ib,s,f l [1− exp (−ks,fl∆x) ∆x]Pdf (5.13a)

and the transmission becomes

T̃ = I−s

∫ 1

0

exp (−ks,fl∆x)Pdf = I−s α̃s . (5.13b)

The term αs is a transmission factor denoting which fraction of the inci-
dent radiation I−s leaves the volume. In Eq. 5.13b I−s remains outside of
the PDF-integration due to the statistical independence of different cells
(assumption 2). Regarding the evaluation of Eq. 5.13, a tabulation of the
PDF-integrated terms is necessary to keep calculations computationally af-
fordable. The number of table dimensions is determined by the number of
independent parameters in the respective integrand. Aside from the mixture
fraction statistics, the two terms that need to be evaluated in each cell when
applying Eq. 5.13 depend on three coordinates: wave number, temperature
and spatial distance. This makes the table structure rather complex. Pre-
vious works [26] only accounted for the non-linearity of the averaged OH*

concentration (Eq. 5.6) with respect to temperature and ground-state OH.
Otherwise the average of the fluctuating flow field variables were used to
calculate the radiation terms instead of averaging the fluctuating radiation
terms. While such an approach is easier to implement, it does not agree
with the turbulent radiation terms (Eq. 5.13). In the following, two succes-
sively simplified versions of Eq. 5.13 are constructed and evaluated. This
way, the potential for model simplifications is accessed and the relation of
the current results to those of the previous studies is shown.

In the first step of simplification the black body emissivity and the ex-
ponential term in the net-emission are treated as statistically independent.
Under this assumption, their PDF-integration can be carried out separately,
leading to the net-emission term

Ẽs,net ≈
∫ 1

0

Ib,s,flPdf [1−
∫ 1

0

exp (−ks,fl∆x)Pdf
︸ ︷︷ ︸

α̃s

] , (5.14a)
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while the transmission term remains identical to Eq. 5.13b:

T̃ = I−s

∫ 1

0

exp (−ks,fl∆x)Pdf = I−s α̃s . (5.14b)

In Eq. 5.14 the exponential term α̃s occurs in both, net-emission and trans-
mission. As the black-body radiation depends only on temperature and wave
number, now one two-parameter term and the three-parameter absorption
factor need to be evaluated.

In the second simplification step the calculation of the exponential αs is
drawn out of the PDF-integration. Instead a PDF-integrated absorption
coefficient

k̃s =

∫ 1

0

ks,flPdf (5.15)

is used, leading to the net-emission

Ẽs,net ≈
∫ 1

0

Ib,s,f lPdf
[
1− exp

(
−k̃s∆x

)]
(5.16a)

and the transmission

T̃ = I−s exp
(
−k̃s∆x

)
. (5.16b)

With this simplification, the dependence of αs on the spatial distance can
be evaluated explicitly, without needing to be considered in the PDF-
integration. So the absorption term α̃s now depends on only two additional
parameters.

The second simplification comes close to the approach used in previous
studies [21,22,26], where in addition OH concentration is excluded from the
absorption coefficient by using a reduced absorption coefficient ks,r:

k̃s ≈ kmol|T̃ NA︸ ︷︷ ︸
k̃s,r

[OH] , (5.17)

see also Eq. 2.64. Considering the temperature dependence of the line in-
tensity of the OH* bands in the wave length range 305 nm ≤ λ ≤ 315 nm
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Figure 5.16: Impact of the turbulence modeling variant on the OH* image

an impact of this simplification can be expected. However, in light of the
results presented below, this will not be considered in detail.

The ‘reference approach’ (Eq. 5.13), the ‘1st’ (Eq. 5.14) and the ‘2nd sim-
plification’ (Eq. 5.16) are evaluated for the classical radiation model. The
resulting OH* images are shown in Fig. 5.16. The structure is governed
by an increasing intensity along the shear layer, culminating in a distinct
maximum at the outer region of the flame bulge. Further downstream, a
core of lower intensity is surrounded by a high intensity region whose inner
boundary bends towards and finally reaches the flame axis. The impact of
the model variant on the images is severe. Comparing the 1st simplification
to the reference approach shows first of all a notable drop of the core flow
radiation intensity. At the same time, the tip of the core region becomes
less sharp. Only small changes occur in the region upstream of the flame
bulge. Going from the 1st to the 2nd simplification, the normalized intensity
in the core region rises again. This partial reversal of the impact that the
1st simplification has on the radiation image can be explained by comparing
the variants’ equations. When introducing the 1st simplification (Eq. 5.13
to Eq. 5.14), only the net-emission changes, while the transmission term re-
mains identical, with the just shown consequences for the radiation intensity.
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However, from the 1st to the 2nd simplification (Eq. 5.14 to Eq. 5.16) both,
net-emission and transmission are changed similarly. If now the absorption
factor (see Eq. 5.14) decreases due to this modification, net emission as well
as transmission increase. As the outer regions of the radiation image are
less affected by absorption due to the flame’s cross-sectional geometry (cf.
Fig. 5.11b), increased transmission raises the relative core region intensity.
However, even though the relative intensity level in the core region is close
to the reference approach for the 2nd simplification, notable differences re-
main. The flame tip retains the blunt shape from the 1st simplification, and
upstream of the flame bulge the intensity fairly increases above the level of
the reference approach.

To obtain insight into the development of the radiation intensity as a ray
passes through the flame and to relate the results of the present study to
previous works by the author [57], a representative line-of-sight through the
flame is considered as shown in Fig. 5.17. The background radiation is set to
I0 = 0 W m−2 and the position along the line-of-sight is described in terms
of the normalized coordinate ξ, ranging from ξ = −1 at the backside of the
flame to ξ = 1 at the boundary facing the observer.

Along this line, the radiation intensity is calculated for the case with fully
consistent turbulence treatment of the radiation terms (Eq. 5.13) and a sim-
plistic model where emission and absorption in Eq. 5.5 are evaluated directly
from the averaged flow-fields. The latter corresponds to the approach em-
ployed in the previous study [57]. The spatial development of the spectrally
resolved radiation intensity is shown in Fig. 5.18. Accounting for turbulence
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Figure 5.18: Radiation intensity reference solution

has a notable impact on the spectral radiation profile with the spectrum be-
coming more equally distributed. Moreover, the spatial development of the
intensity along the line-of-sight changes as well. This can be seen well from
the integral intensity profiles shown in Fig. 5.18c. For the case of radiation
calculation from averaged flow fields, the intensity decreases considerably
after the peak caused by the first reaction zone and the final intensity is
governed by the emission in the shear layer closest to the observer (cf. [57]).
In the turbulent case, however, the decrease in radiation intensity between
the reaction zones is almost negligible. The significant difference originates
from the strong temperature non-linearity of the black body emissivity (Fig.
5.19a, see also Fig. 5.14b). The temperature and integral emissivity profile
for a flamelet are given in Fig. 5.19c with the peak of the emission being
significantly narrower than that of the temperature. The shape of the PDF
at the location of highest emission along the line-of-sight is included in Fig.
5.19c. It is clearly visible that the turbulent fluctuations reach into the re-
gion of strongest non-linearity, leading to the observed emissitivity increase
of about one order of magnitude. In comparison to the emissivity, the ef-
fect of turbulence on absorption is rather small, as can be seen from the
spectrally averaged absorption coefficient in Fig. 5.19b.
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Figure 5.19: Radiation properties

In summary, each of the discussed simplifications for the calculation of ra-
diative transport in turbulent flow has a notable, non-trivial impact on the
predicted radiation image. Thus, the fully consistent approach (Eq. 5.13),
which includes the most detailed representation of turbulence effects on ra-
diation, is used for the OH* radiation based single flame validation in Sec.
5.3.3.

5.2.3 Spectral Approximation

The discussion in Sec. 5.2.1 and 5.2.2 treated the development of radiation
intensity along the lines-of-sight in a spectrally resolved way. The integral
intensity at the observer’s location has been calculated from the spectrum
afterwards. However, for practical applications this approach is computa-
tionally not affordable due to the high spectral resolution required to cap-
ture the detailed structures of emission and absorption. Several approaches
have been undertaken to remedy this issue, see eg. [19]. For the EFRM-A
model [21,22] the calibration of several pseudo absorption coefficients to ap-
proximate the integral radiation intensity while accounting for the overall
effects of spectral dependence has been proposed. Regarding the classical
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model, a systematic analysis of the simplification of the spectral description
for rocket engine flames has been conducted by Chemnitz et al. [67]. In that
study, the radiation transport along a representative line-of-sight (Fig. 5.17)
through a rocket engine flame were calculated for the λ = 310 nm ± 1 nm
range. The radiation terms in Eq. 5.5 were evaluated from the averaged flow
fields without explicitly considering turbulence (cf. Fig. 5.18b). Different de-
grees of spectral simplification were applied by partitioning the spectrum
into several bands using various methods, as discussed below. Finally, the
rates of convergence of the band approximations towards the fully spectrally
resolved results were compared. In the following, this analysis is extended
to turbulent radiation modeling. First, the principle of band approxima-
tion is introduced. Based on this prerequisite, the spatial development of
radiation intensity is analyzed. Starting point is the spectrally resolved ref-
erence solution with consistent modeling of turbulence effects on radiation,
which has been discussed in Sec. 5.2.2 (Fig. 5.18a). The convergence of the
integral intensity obtained with the band approximations to this reference
solution is then used to assess the performance of the approximations with
the different partitioning methods.

5.2.3.1 Band Approximation

The principle of the band approximation method is to group regions ∆si
of the spectral range of interest ∆s together into so-called bands. Instead
of solving the radiative transport equation 5.5 for the detailed spectrum,
the spectral ranges within each band are treated integrally. The number of
bands nbd needs to be sufficiently high to ensure that the total radiation
intensity is fairly approximated:

nbd∑

i=1

I∆si ≈
∫

∆s

Isds . (5.18)

Together, the bands cover the whole considered spectral range and must
not overlap. However, each single ∆si is not necessarily a connected space.

The band approximated form of the discretized radiative transport equation
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5.5 reads
I+

∆si
= E∆si,net + I−∆siα∆si (5.19)

with

I∆si =

∫

∆si

Isds (5.20)

E∆si,net =

∫

∆si

Es,netds (5.21)

α∆si =
1

∆si

∫

∆si

αsds . (5.22)

To fully define the band approximation, a method is required to partition
the spectral range into the different bands. Two partitioning methods are
considered, which are introduced in the following: The value-based method,
which has been found to provide the best approximation quality at given
computational effort in the previous study [67], and the sequential partition-
ing for reference. These partitioning strategies can be considered as simple
forms of the k-distribution and narrow-band approaches [19], respectively.
They are visualized for an OH absorption coefficient at representative con-
ditions in Fig. 5.20. The alternating colors indicate the different bands, i.e.
the spectrum is split in vertical direction for the sequential and horizontally
for the value based partitioning. The straightforward partitioning approach
is a segmentation of the wave number7 range of interest in bands of equal
width (Fig. 5.20a). This method is referred to as sequential partitioning. Far
better convergence however was reached in the pre-study [67] by dividing
the spectrum based on the value of the absorption coefficient (value based
partitioning, Fig. 5.20b). Thereto the overall range of absorption coefficients
is divided into nbd sections and the spectral ranges falling within each sec-
tion are grouped together. This partitioning method requires a reference
profile of the OH absorption coefficient, which is computed at the chamber
pressure and a temperature of T = 3000 K (Fig. 5.20).

7The wave number is the spectral variable used in the present work. However, the procedure can be
analogously applied to a wave length based description.
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Figure 5.20: Partitioning approaches (nbd = 7)

5.2.3.2 Approximation Quality

With the discussed spectrally resolved reference profiles, the band-
approximation quality of the considered partitioning approaches is eval-
uated. The relative error EI of the integral intensity at the location of the
observer, obtained with the band approximation (Eq. 5.18) is given in Fig.
5.21. The computations have been performed using consistent turbulence
treatment (Eq. 5.13) and cover the full spectral range from the BKD ex-
periment (λc± 5 nm with the center wave length λc = 310 nm). In addition,
results for the reduced wave number range (λc±1 nm) that has been used in
the previous study [57] are included for reference. For both spectral ranges
the relative error of the value based partitioning decreases significantly faster
with increasing band number than that of the sequential approach. Good
results are obtained with less than nbd = 101 bands. At the same time, the
value based approach is only weakly sensitive towards the width of the spec-
tral range. In contrast, the sequential approach requires about nbd = 102

or nbd = 103 bands for satisfactory results. The better convergence of the
value based partitioning is consistent with previous findings for the simple
approach [57]. In the remainder of the present work, value based grouping
with nbd = 5 bands is used to approximate the spectral dependence of the
OH* radiation.
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5.2.4 Numerical Implementation

Following the previous findings, the classical radiation model with full tur-
bulence interaction (Eq. 5.13) is used, combined with the spectral band
approximation (Eq. 5.18) using value based grouping (Fig. 5.20b). The im-
plementation of the band-approach requires an efficient evaluation of the
associated absorption and emission properties. Therefore, analogous to the
flamelet tabulation, for each band the terms in Eq. 5.5 as given in Eq.
5.13a and 5.13b are tabulated as function of mixture fraction, its variance
and enthalpy. As these three parameters determine temperature and OH*

concentration the last free variable is the distance ∆x. To avoid adding
another dimension to the already three-dimensional table, the emission is
approximated by

E∆s,net =

∫

∆ν

Ib,ν (1− exp (−kν∆x)) (5.23)

≈ ce,0 (1− exp (−ce,1∆x)) , (5.24)

while the absorption term

α∆s =
1

∆ν

∫

∆ν

exp (−kν∆x) (5.25)

is modeled as
α∆s ≈ 1 + ca,0 (exp (−ca,1∆x)− 1) . (5.26)

The coefficients ce,0, ce,1, ca,0 and ca,1 are obtained from curve-fitting. As
the fitting functions for emission and absorption are non-linear in terms of

136



5.2 Calculation of OH* Radiation Images

ce,1 and ca,1, respectively, these two coefficients are not tabulated directly.
Instead, in addition to ce,0 and ca,0 a reference value of E∆s and α∆s at a
fixed distance ∆xref is tabulated. Interpolation is then carried out for this
reference value and ce,1 and ca,1 are calculated from the result.

At each enthalpy level the equations 5.24 and 5.24 are evaluated for a lam-
inar flamelet and extended to the mixture fraction variance dimension via
PDF-integration. With the absorption properties for each cell known, Eq.
5.5 can be evaluated. For the three-dimensional cases this is done using ex-
plicit ray-tracing (cf. Fig. 5.11b). For the two-dimensional cases, an efficient
semi-recursive procedure has been developed. Its schematic is given in Fig.
5.22. Fig. 5.22a shows a cross-sectional view of Fig. 5.11a. In radial direc-
tion, the computational grid consists of n cells. For each cell, the radiation
intensity detected at the end of the corresponding line-of-sight through the
flame is calculated. The line-of-sight of a cell iref intersects twice with each
cell from iref to the outer boundary of the domain, i = n. For the calcula-
tion of the radiation intensity, the line-of-sight is split in two. Starting from
cell iref , the development of radiation intensity between ξ = −1 to ξ = 0
is evaluated recursively using the function I+ that takes the cell index i as
argument and returns the radiation intensity I+ of the cell, see Fig. 5.22b
with Eq. 5.5 and Fig. 5.13 for nomenclature. From there on, the right side
between ξ = 0 and ξ = 1 is evaluated explicitly via Eq. 5.5. The final results
is the detected radiation intensity at cell iref .

5.2.5 Summary of Findings

The necessary modeling detail to calculate OH* radiation images from nu-
merical results that are suitable for comparison with the experiment has
been studied. A comparison of emission models showed that the classical
radiation model and the EFRM-A yield nearly identical results with the
classical model having the principle advantage of providing quantitative es-
timations of the radiation intensity. An approach to capture the impact of
turbulence on the radiation images in a way that is consistent with the
CFD simulation setup (Sec. 5.1) has been developed. Any simplification of
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Figure 5.22: Implementation scheme for OH* radiation image calculation

this approach resulted in notable differences between the obtained radiation
images. The spectral approximation of radiation modeling has been studied
for this consistent turbulence treatment. It has been found that a band ap-
proximation using value based spectral partitioning converged well to the
results based on spectrally resolved calculations. Consequently, the OH*

image calculation for the single flame validation in Sec. 5.3.3 will be based
on the classical emission model combined with fully consistent turbulence
treatment and a band approximation of the spectral range.

5.3 Single Flame Validation

The stability assessment procedure (Chap. 4) relies on the numerical flow
fields computed for single flames (cf. Sec. 5.1). In the present section, the
numerical single flame results are validated with experimental data. This is
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done to ensure that the discussion of the results from the different parts of
the stability assessment procedure (Chap. 6 to 8) relies on reasonable flow
predictions and that no deficiencies of the CFD-modeling are attributed
to the methodology. For the BKD, three sets of data are available that
can be used for validation purposes: radiation images of blue and OH*

radiation and static pressure measurements along the chamber wall (cf.
Sec. 3.1). In the following, the experimental data are used to calibrate the
turbulent Schmidt number of the simulations and evaluate the soundness of
the single flame results in terms of flame structure and combustion process.
First, an overview of the flow and flame structure is given (Sec. 5.3.1) with
focus on their connection to the validation data. Starting point for the
actual validation are the wall pressure distributions (Sec. 5.3.2). Then, OH*

radiation images are covered in Sec. 5.3.3, followed by blue radiation (Sec.
5.3.4). Finally, the conclusions of the section are summarized in Sec. 5.3.5.

5.3.1 Flow Structure and Validation Data

The flow structure of a single rocket engine flame has been introduced in
Sec. 2.1. In the present section, a more detailed look at the flow in a BKD
single flame is taken. The impact of the simulation domain (cf. Sec. 5.1.4)
on the solution structure is studied and the relation between the validation
data and the characteristic flow features is addressed.

The combustion occurs in the diffusion flame forming between the oxidizer
and fuel streams. The underlying mixing process governs the reaction pro-
cess (cf. Sec. 5.1.3) and thus the axial distribution of the heat release rate,
shown in Fig. 5.23a for a two-dimensional case. It has two peaks: one at the
end of the recirculation zone and a second one around the location where
the stoichiometric line reaches the axis. The second maximum belongs to a
considerably larger region of high heat release that extends notably beyond
the length of the cold oxygen core before rapidly decreasing to zero. Both
types of validation data, wall pressure and radiation images, are linked to
the combustion process. With an increasing amount of heat released the
average density drops, leading to a decrease of static pressure due to accel-
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Figure 5.23: Relation between flow solution and validation variables

eration effects. At the same time, combustion leads to a total pressure drop,
as known from a Rayleigh flow. The correlation between local heat release
and wall pressure gradient is demonstrated in Fig. 5.23b where the struc-
ture of the main heat release peak is clearly visible in the pressure gradient
distribution. Close to the faceplate however, the recirculation zone governs
the wall pressure profile (Fig. 5.23a) forming a short low-pressure region.
The validation based on the pressure data is conducted in Sec. 5.3.2.

As can be seen from the discussion of OH* radiation modeling in Sec. 2.5
and 5.2 the OH* images are governed by the temperature and OH distribu-
tion across the flame. As the combustion occurs in the form of a diffusion
flame, i.e. reactions and heat release are mixing dominated (cf. Sec. 5.1.3),
the flame radiation is directly linked to the flow structure. If the mixing pro-
cess is not captured correctly, the flame shape observed in the radiation im-
ages cannot be met. Conclusively, the flame radiation images provide access
to the spatial structure of the flow. Nevertheless, they are a two-dimensional
representation of three-dimensional flow fields (cf. Sec. 5.2). The procedure
for the numerical calculation of the flame-radiation images has been de-
signed for a single flame. Technically, the procedure could be adapted to
cover the whole flame cluster of the BKD, however the computational ex-
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pense would be unreasonable. At the same time, the comparison between
numerical results and experiment based on one flame is justified by the ex-
perimental findings. These show a distinct structure of the flame that the
window is centered at. There is no significant distortion from other flames.
Possible explanations are the superposition of the other flames to a rather
homogeneous background radiation and, for OH*-radiation, self-absorption
that reduces the radiation of background flames. The radiation-based vali-
dation is conducted in Sec. 5.3.3 and 5.3.4.

While the general flow characteristics discussed above hold for all single-
flame simulations considered in the present work, the detailed flow struc-
tures are subject to the cross-sectional shape of the selected domain (cf.
Sec. 5.1.4). The two-dimensional simulations correspond to a circular cross-
section, which can be considered a reasonable approximation for the middle
injector row. In contrast, the outer domains are rather longish with a clearly
excentric position of the injector (cf. Fig. 5.6). To give an idea of the un-
derlying flow structures, in the following the flame shape obtained from
three-dimensional calculations of a single flame in the outer injector row is
compared to a two-dimensional axis symmetric case in Fig. 5.24. By design,
for the two-dimensional case, the flame possesses a circular cross-sectional
shape at each axial position. For the three-dimensional results, this is only
the case in the upstream part of the chamber. There, the shape of the diffu-
sion flame is determined by the circular injection of the propellants. As the
flow moves downstream, the impact of the domain geometry on the flame
becomes visible and the flow adapts to the angular cross-section. The flame
becomes flatter in radial direction and is shifted towards the wall. This
comes along with a more complex, three-dimensional structure of the recir-
culation zone, compared to the two-dimensional case. In about the second
half of the flame, the stoichiometric contour reaches the lateral boundaries.
Neighboring flames are no longer clearly separated but form a continuous
flame sheet along the chamber circumference.

Due to the dominant role that mixing has on the flame, the flow fields are
sensitive to turbulent species diffusion. The associated modeling parameter
is the turbulent Schmidt number Sct with an increase of Sct decreasing tur-
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bulent diffusivity and vice versa. In the following two sections (Sec. 5.3.2
and 5.3.3) the experimental results will be used to calibrate the turbulent
Schmidt number. For the unstable LP2 this calibration maps some instabil-
ity effects into the steady solution. Transverse velocity fluctuations reduce
the flame length [12,45]. This flame shortening also occurs in the flow under-
lying the experimental data of LP2. As the steady single flame simulations
do not resolve instability related flame shortening, this phenomenon instead
results in a lower calibrated turbulent Schmidt number. To explicitly study
the impact of flame shortening on the radiation images, a transient simu-
lation with velocity excitation is included for LP2 in Sec. 5.3.3. During the
validation of the associated images, the rotation of the T1 mode in the ex-
periment needs to be kept in mind. Even though the mode tends to become
more standing for unstable cases, the mode orientation changes over time
and data on its position relative to the observation window are currently
not available. Thus the experimental radiation image represents a superpo-
sition of several mode orientations, whereas the excitation in the simulations
is harmonic with a fixed amplitude distribution. Nevertheless, the effect of
the instability on the flame image can be assessed qualitatively (Sec. 5.3.3).

5.3.2 Wall Pressure Distribution

The wall pressure distribution and its relation to the flow structures has
been discussed in the previous section 5.3.1. On this basis, the wall-pressure
based validation is carried out in the following. A comparison of the numeri-
cally calculated profiles from two-dimensional single flame simulations with
experimental data is shown in Fig. 5.25 for different turbulent Schmidt
numbers. The data are normalized by the value of the last sensor position.
This normalization eliminates small differences of the absolute pressure level
from the comparison. This is beneficial for the validation as the axial devel-
opment of the wall pressure is more important than the absolute pressure
value (cf. Sec. 5.3.5), which is strongly influenced by the specification of the
outlet boundary condition (Sec. 5.1.5). The last sensor is selected as refer-
ence since it is located in the region of lowest axial pressure gradients. In the
front and rear region of the chamber the wall pressure is nearly unaffected
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by the turbulent Schmidt number, indicating that neither the size of the re-
circulation zone nor the final degree of mixing reached at the domain outlet
are sensitive to this parameter. However, the magnitude of the axial wall
pressure gradient increases with decreasing turbulent Schmidt number due
to faster mixing and combustion (cf. also [61]). As the first sensor position is
close to the re-attachment point of the recirculation zone and thus lies in a
region of high axial wall pressure gradients, its value is considered to be less
important for the validation than that of the second sensor. The comparison
of experimental and numerical data shows that for LP1 a value of Sct = 0.5
or Sct = 0.6 is appropriate. Since those values lie at the lower range of typ-
ical turbulent Schmidt numbers, Sct = 0.6 is selected. For LP2 the Schmidt
number is slightly higher with Sct = 0.7 giving the best approximation of
the experimental data. The selection of the turbulent Schmidt number will
be considered further in the OH* radiation based validation (Sec. 5.3.3).

The changes in the wall pressure distribution are associated with a change of
the flame length. Fig. 5.26 shows the axial distance between the downstream
tip of the stoichiometric contour (cf. Sec. 2.1 and 5.3.5) and the faceplate
in dependence of the turbulent Schmidt number. The flame lengths of both
load points lie within the same range. The dependence of the flame length on
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the turbulent Schmidt number is nearly linear with a slightly lower slope for
LP2 than for LP1. The selection of the computational domain does not sig-
nificantly impact the flame length. Indeed, at constant turbulent Schmidt
number, the three-dimensional results of LP2 give a higher flame length
than the two-dimensional ones. However, as the turbulent Schmidt number
is calibrated individually for each case, the flame length is adjusted to follow
the experimental data, and the observed differences are compensated for by
a different value of the turbulent Schmidt number. The observed impact of
the domain geometry can be explained as follows: In the two-dimensional
case, flow and flame can expand uniformly across the domain cross-section.
In contrast, in the three-dimensional domain lateral expansion is limited
by the narrower circumferential shape of the domain (cf. Sec. 5.1.4). Even
though there is more volume available towards the chamber wall, the react-
ing flow does not fully occupy this volume, as can be seen from Fig. 5.24.
Instead, the deflection of the flame towards the outer regions of the do-
main leads to a further contraction in lateral direction. So effectively, in the
three-dimensional simulations the flame occupies a smaller cross-sectional
area than in the two-dimensional cases, explaining the higher flame length.
Compared to LP2, LP1 has an about 60 % lower total mass flow (cf. Sec.
3.1). Thus the impact of the computational domain’s cross-sectional shape
on the flame length is lower. At the same time other effects like the deflec-
tion of the flame towards the chamber wall have a stronger relative impact
on the development of the flow. Moreover, the different mass-flows of LP1
and LP2 lead to differences in turbulence and thus mixing, which affects
the flame length as well.

The impact of the turbulent Schmidt number on the heat release (Fig. 5.27a)
is consistent with the wall pressure distribution. The increase of the pressure
gradient’s magnitude with lower values of Sct corresponds to an increase of
the main peak of the heat release distribution. As this means increased
mixing and combustion in the upstream part of the chamber, the heat re-
lease decreases in the downstream section. The dominant consequence of
the domain selection is a notable increase of the maximum value of the
narrow first peak (cf. Fig. 5.27b, 5.27c). This can be probably attributed
to the changed structure of the recirculation zone. Further downstream the
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Figure 5.27: Axial heat release distribution

differences between the two and three-dimensional results are minor.

5.3.3 OH* Radiation Images

In addition to the one-dimensional validation via the wall pressure, the
prediction quality of the two- or three-dimensional flow structure can be
assessed via flame radiation images. The process to obtain images from the
numerical results that are comparable to the experimental ones has been
discussed in Sec. 5.2. On this basis, the radiation based validation is carried
out in the following. Thereto, three types of simulation are considered. As
reference cases, three dimensional simulations are used. They are conducted
on a domain that represents a flame in the outer injector row (cf. Sec. 5.1.4),
which corresponds to the flame visible in the experiment (cf. Sec. 3.1). In
three dimensions both steady and for the unstable LP2 unsteady simula-
tions with velocity excitation (cf. Sec. 4.3.2) are conducted. The excited
simulations are used to study the effect of acoustic-induced flame shorten-
ing on the images. The third simulation type to be considered is the basic
two-dimensional setup (Sec. 5.1) that corresponds to the single flame simu-
lations used for the evaluation of the stability assessment procedure in the
remainder of this work (Chap. 6 to 8).

146



5.3 Single Flame Validation

ox

f

(a) Sct = 0.5

ox

f

(c) Sct = 0.7

IOH∗,n

low

high

x
θ

ox

f

(b) Sct = 0.6

ox

f

(d) Sct = 0.8

Figure 5.28: Experimental (bottom) and numerical (top) OH* radiation
for LP1 from three-dimensional simulations

OH* radiation images from steady three-dimensional simulations of LP1 for
different turbulent Schmidt numbers are shown along with the experimen-
tal ones in Fig. 5.28. In the experiment, intensity initially increases until at
about one quarter of the window a region of high intensity forms, marked by
the black iso-line in Fig. 5.28. Further downstream, this zone bends around
a low-intensity core. Inside the high intensity area, a peak region of highest
intensities can be identified. The overall structure of the numerical radia-
tion image agrees with the experimental one. Radiation intensity grows from
low values at the inlet, forms a high intensity peak region and develops a
low-intensity core further downstream. However, two deviations are found
that can be attributed to the missing background radiation in the numeric
images: Close to the faceplate the numerical results show that radiation in-
tensity increases along the shear layer in the plane of observation, but lower
intensities are predicted in the core and the outer region. In contrast, the
experiment shows a more uniform intensity distribution across the image
height. The same applies further downstream, where the high intensity re-
gion around the core is surrounded by a zero-intensity outer region in the
numeric results. In contrast the experiment shows high intensities up to the
outer edge of the image. These deviations can be explained by the distribu-
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tion of the hot combustion products in the visible part of the flame: In the
region close to the faceplate, they are concentrated in a thin shear layer and
even further downstream they do not reach the domain boundary. Thus the
background radiation from the other flames determines the radiation inten-
sity in these regions. The shape of the low-intensity core strongly depends
on the turbulent Schmidt number. For Sct = 0.5 (fig. 5.28a) the shape of
the core flow region, marked by a black intensity iso-line, agrees well with
the experiment. The high intensity region is reasonably met by the simula-
tion. Only the location of the maximum intensities appears to be slightly
further upstream in the numerical solution. However, the associated struc-
ture is weak in the experiment and thus to be taken into account with care.
For higher turbulent Schmidt numbers (Fig. 5.28a, 5.28b and 5.28d) the
structure and position of the core region changes, leading to considerable
differences in the observed radiation pattern.

For LP2 the radiation images from three-dimensional simulations, with and
without velocity excitation, are shown in Fig. 5.29. The pricniple structure
of the image is the same as just discussed for LP1. However, two significant
deviations between numerical results and experiment are visible, which do
not change qualitatively for different turbulent Schmidt numbers. First, the
core region is considerably less intense and wider in the experiment. Sec-
ond, an offset between the axial location of the high intensity regions occurs.
This might be explained by the fact that LP2 is unstable. Previous BKD
studies with LES [42] and excited RANS [12] simulations showed that in-
stabilities and particular the transverse velocity fluctuations shorten the
flame. To test this hypothesis, a transverse velocity excitation simulation as
described in Sec. 4.3.2 is conducted. A pressure amplitude of 1 bar is used
for the excitation. This choice has been made due to the uncertainty of the
mode orientation (cf. Sec. 5.3.1). On the one hand the value lies consider-
ably below the maximum amplitudes observed in the experiment (2.3 bar or
4.5 bar peak to peak [6]), but on the other hand can be expected to already
have a notable impact on the solution with |p̂|/p̄c > 1 %. The resulting im-
age, averaged over one oscillation period, is shown in Fig. 5.29c. A slight
improvement of the structures on the upstream side of the high intensity re-
gion is visible (bottom). However, the intensity difference between the peak
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Figure 5.29: Experimental (bottom) and numerical (top) OH* radiation
for LP2 from three-dimensional simulations

and the core region is even more reduced, increasing the deviation from the
experiment (Fig. 5.29c, top).

While the three-dimensional simulations are more accurate at representing
the single flame domain than two-dimensional ones, their computational
cost is too high for the stability assessment procedure. For this reason, the
impact of the reduction to two dimensions is further investigated in the
following with the focus on the comparison of the numerical results with
the experimental data including the effect of the choice of the turbulent
Schmidt number (Sec. 5.3.2).

Thus, the results of the two-dimensional, axis symmetric simulations are
used in the actual stability assessment procedure. They are considered in
the following. Besides the general comparison of numerical results and ex-
periment, an extension of the calibration of the turbulent Schmidt number
in Sec. 5.3.2 is of interest.

The impact of the turbulent Schmidt number on the radiation images for
LP1 can be seen from the OH* radiation intensity distribution shown in Fig.
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Figure 5.30: Impact of turbulent Schmidt number on OH* radiation image
of LP1

5.30. The images are normalized with the local intensity maximum in the
flame bulge. In the following, focus is placed on the impact of the turbulent
Schmidt number on the radiation image structure. At low turbulent Schmidt
numbers a thin region of increased intensity connects the peak zones in the
bulge region. Downstream, the intensity decreases towards the low-intensity
core. With increasing turbulent Schmidt number the core intensity becomes
higher, causing the aforementioned pattern to vanish. Beyond Sct = 0.9 the
region of maximum intensity in the flame bulge becomes longer and the core
region is divided into two zones by an additional streak of slightly increased
intensity. The numerical results for turbulent Schmidt numbers below Sct =
0.9 agree with the structures observed in the experimental images (cf. Fig.
5.28). The characteristic high-intensity region at the upstream boundary of
the core is reproduced better as the turbulent Schmidt number gets lower.
This agrees with the findings of the wall pressure based validation for LP1
(Sec. 5.3.2) which showed good agreement between numerical results and
experiment at low turbulent Schmidt numbers.

A direct comparison between numerical results and experiment is shown
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Figure 5.31: Experimental and 2D numerical OH* radiation

in Fig. 5.31a. For the two-dimensional case, the location of the intensity
maximum is even slightly better reproduced than for the three-dimensional
results (cf. Fig. 5.31). In the upstream region of the image, the numerical re-
sults predict a stronger radial intensity gradient than the experiment while
the intensity difference between peak and core region is slightly underesti-
mated. However, the overall structures of the numerical images agree well
with the experiment.

For LP2 a comparison of the two-dimensional OH* images from the simu-
lation (Fig. 5.31b) with the experiment shows the same trend as the three-
dimensional cases (Fig. 5.29). In the simulations the high intensity region is
located further downstream than in the experiment. However, at the same
time the impact of the turbulent Schmidt number (Fig. 5.32a) is consider-
ably weaker than for LP1 and only small changes of the core zone are visible.
Thus, an additional verification of the turbulent Schmidt number calibra-
tion from Sec. 5.3.2 cannot be conducted based on the shape of the core
zone. Nevertheless, the position of the low intensity core depends slightly
on the turbulent Schmidt number. This is illustrated by the position of
the initial intensity peak on the flame axis, which constitutes the upstream
boundary of the core region, shown in Fig. 5.32b. A linear dependence of
this location on the turbulent Schmidt number is observed, consistent with
the flame length trend discussed in Sec. 5.3.2.
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Figure 5.32: Impact of turbulent Schmidt number on OH* radiation image
of LP2

5.3.4 Blue Radiation

Besides the OH* radiation, blue radiation images are available for the BKD.
As discussed in Sec. 2.5.4 previous studies came to the conclusion that self-
absorption is negligible and the flames can be considered optically thin
regarding blue radiation. Thus the corresponding images can be obtained
from the numerical solutions by simple line-of-sight integration of the blue
radiation emissions, which are obtained from Eq. 2.70. The resulting im-
ages from the three-dimensional simulations of LP1 are shown for different
turbulent Schmidt numbers in Fig. 5.33. The numerically calculated struc-
tures differ notably from the experimentally observed ones. The calculated
images possess a structure similar to the OH* images, which originates
from the approximation of emission via the squared OH concentration (Eq.
2.70). In contrast, the experiment shows a rather continuous increase of the
radiation intensity in downstream direction. Close to the flame axis, inten-
sities are lower. These deviations cannot be explained by the negligence of
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Figure 5.33: Experimental (bottom) and numerical (top) blue radiation
for LP2

back-ground radiation from other flames in the chamber. As all flames are
anchored at the injector, they are located at equal axial positions. Thus any
superposition of several flames can lead to blurring of the image structures
in radial direction but not to the different axial intensity development visible
in Fig. 5.33. As these major deviations between simulation and experiment
occur only for the blue radiation, whereas pressure profiles (Sec. 5.3.2) and
OH* images (Sec. 5.3.3) agree well, it is concluded that there is a deficiency
in the calculation procedure for the blue radiation images. However, further
investigation of blue radiation modeling approaches is beyond the scope of
this work and the validation is thus based on the other available data.

5.3.5 Summary of Findings

To provide a sound basis for the application of the stability assessment
procedure (Chap. 4) the single flame calculations for the BKD load points
LP1 and LP2 have been validated using experimental data. The turbulent
Schmidt numbers that give the best agreement between simulation results
and experiment have been determined for later use in this work. A rela-
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tion between the axial static pressure profiles and the mean heat release
in the chamber has been shown and by appropriate selection of the tur-
bulent Schmidt number good agreement between the experimental static
pressure measurements and the two-dimensional numerical results has been
achieved. The flame structure has been assessed via OH* radiation images.
The subsequent comparison to experimental data showed good agreement
for LP1 in both, the two- and three-dimensional case. For LP2 the overall
flame structure has been met reasonably well, however the high intensity
regions are shifted downstream in the simulation compared to the experi-
ment. Evaluating the effect of acoustic velocity fluctuations on the images
revealed an improvement of the predicted flame structure on the upstream
side of the high intensity zone, however in the rear part of the measurement
window deviations increased. Regarding blue radiation, severe differences
between numerically obtained and experimental flame images have been
found. Those can be attributed to deficiencies in the available blue radia-
tion model. Nevertheless, the good agreement in terms of the wall pressure
distribution along with the overall comparable flame structures indicates
that the results obtained with the simulation setup from Sec. 5.1 adequately
represent the flames in the combustion chamber.
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6 Passive Chamber Acoustics

Using the test cases outlined in Chap. 3 the stability assessment procedure
described in Chap. 4 is evaluated based on the validated single flame sim-
ulation setup from Chap. 5. The evaluation is divided in several steps. In
the present chapter, the acoustics of a flow without flame feedback (passive
acoustics) are considered. This type of simulation provides the oscillation
frequency and target pressure amplitude distribution for the flame response
calculation (cf. Sec. 4.3). While the flame response significantly impacts the
outcome of the stability predictions via the damping rate, the oscillation
frequencies and mode shapes are affected rather weakly. Thus the basic
acoustic characteristics of the chamber can be assessed from the perturba-
tion solutions for a passive configuration, which is conducted in the present
chapter. Based on the results of the passive acoustic analysis, the flame re-
sponse calculations are carried out in Chap. 7. The final stability assessment
is addressed in Chap. 8.

Besides the perturbation simulation approach (Sec. 4.1) the simulation of
the passive chamber acoustics requires the mean flow, whose calculation
procedure has been developed in Sec. 4.2. This allows to study the impact
that the various mean flow calculation approaches (c-s, c-i and c-κ, cf. Tab.
4.2) have on the predicted basic acoustics of the chamber. In the present
chapter a validation of the predicted oscillation frequencies is conducted
(Sec. 6.1) considering the different mean flow variants given in Sec. 4.2.2.
The sensitivity of the acoustics towards the single flame simulations is eval-
uated and the experimentally observed modes are identified. Thereupon, in
Sec. 6.2 the nozzle correction developed in Sec. 4.2.3 is tested for the TCDs
(cf. Sec. 3.2). Finally, the impact of radial stratification on the chamber
acoustics is addressed in Sec. 6.3. The findings are summarized in Sec. 6.4.
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6.1 Validation of Quasi 1D Approaches

The basic idea of the mean flow calculation procedure is to reproduce charac-
teristic acoustic properties of the chamber flow with a quasi one-dimensional
flow. In Sec. 4.2.2 three different variants have been introduced, each repro-
ducing the axial sound speed distributions and either isentropic compress-
ibility (c-s), field impedance (c-i) or isentropic coefficient (c-κ) profiles. In
the present section these approaches are evaluated for the BKD (cf. Sec.
3.1). In a first step, the resulting mean flow fields are compared directly
(Sec. 6.1.1).Then, a characterization of the chamber’s T1 mode is conducted
(Sec. 6.1.2) with the different mean flow variants and the computed eigenfre-
quencies are compared to measured PSDs. To study the impact of the single
flame modeling on the computed chamber acoustics, the sensitivity of the
complex eigenfrequencies to the flame length is included in the discussion.

6.1.1 Mean Flow Fields

The quasi one-dimensional mean flows obtained with the three calculation
variants c-s, c-i and c-κ (cf. Tab. 4.2) are discussed in the following for the
BKD. The Focus of the present subsection lies on the results for LP1, the
mean flow for LP2 is addressed along with its acoustic characterization in
Sec. 6.1.2.

The quasi one-dimensional mean flow results are characterized by the axial
flow profiles. Three profiles are most relevant for the acoustic calculations:
The sound speed governs the real valued eigenfrequency. The density is the
main distinctive feature between the c-s and the c-i approaches as both
differ in the pre-processed target density distribution (Eq. 4.19 and 4.20).
The isentropic coefficient has a major influence on the impact of the flame
response on the acoustics, which is discussed in Sec. 8.2. For LP1, the re-
spective profiles are shown in Fig. 6.11. By design the sound speed (Fig.
6.1a) is identical to the one-dimensional profile in the cylindrical chamber

1Note that to achieve convergence for the c-κ approach the inlet temperature had to be slightly changed
for both LP1 and LP2. However, the offset is insignificant.
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Figure 6.1: Axial mean flow profiles for BKD LP1

section for all three approaches. Deviations however occur in the nozzle part.
There the profiles of the c-s and c-i approaches are still very similar, but
the c-κ model behaves different. This is explained by the adaption of the
mean flow in the nozzle region during post-processing (cf. Sec. 4.2.2). For
the c-s and c-i approaches, the isentropic coefficient is gradually changed
across the nozzle to the value obtained in the CFD simulation at the throat.
For the c-κ flow no such adaption is required as the κ-distribution is not
changed during post-processing.

The density distribution is quite similar for all three mean flow variants.
Particularly for the c-i and c-s approaches, the profiles are nearly identical.
Conclusively, there is no significant difference between the result of the
radial density averaging based on isentropic compressibility and on field
impedance. The density profiles resulting from the c-κ model, while similar
in shape, possesses lower values in the front region of the chamber. Further
downstream, however, all profiles are nearly identical. The most significant
difference is found in the distribution of the isentropic coefficient (Fig. 6.1c):
The c-i and c-s approaches show higher values than the c-κmethod along the
whole cylindrical section. The difference is strongest close to the faceplate.
Due to the aforementioned adaption of the isentropic coefficient in the nozzle
to ensure correct sonic conditions, the isentropic coefficient of the c-s and
c-i models matches that of the c-κ approach at the nozzle throat.
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6.1.2 Eigensolutions

In the following, the impact of the mean flow variants discussed in Sec. 6.1.1
on the T1 mode in the chamber is addressed for LP1 and then for LP2.

The T1 frequencies and damping rates obtained with the different mean flow
variants for LP1 are shown in Fig. 6.2a along with the frequency of the peak
value from the measured PSD. Consistent with the findings for the mean
flow, the c-s and c-i approaches are almost identical in terms of damping
rate as well as oscillation frequency. The c-κ approach however predicts
an about 150 Hz lower eigenfrequency. The sound speed distribution (Fig.
6.1a) suggests that this might result from the rear part of the chamber.
The T1 mode, which is dominant close to the faceplate, exhibits certain
pressure amplitude in the nozzle region as well, see also Sec. 2.4. Thus, the
lower sound speed in the nozzle part of the chamber can have an influence
on the associated eigenmode even if it is predominantly anchored at the
faceplate. However, considering that the deviation of the eigenfrequencies
computed with the different mean flow models is in the percent range it can
be concluded that the contribution of the rear chamber amplitudes to the
overall T1 mode is low. The explanation is backed up by the distribution of
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Figure 6.2: Sensitivity of the complex eigenfrequency to mean flow mod-
eling for LP1
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Figure 6.3: Sensitivity of axial pressure amplitude distribution to mean
flow modeling for LP1

the pressure amplitude shown in Fig. 6.3a as well, where the main difference
between the c-κ and the c-s or c-i approaches is the phase distribution in
the nozzle region of the chamber. The relative impact of the model choice
on the damping rate is slightly higher, amounting to about 5 % between c-i
or c-s and c-κ approach respectively. Regarding the experiment, all three
models overpredict the oscillation frequency by up to about 500 Hz. The
agreement is slightly better for the c-κ than the other two models, however a
notable offset remains. This discrepancy gives reason to consider the impact
of further modeling parameters on the acoustic predictions.

Recalling the single flame validation in Sec. 5.3 it has been found that,
while reasonable agreement between numerical and experimental flow struc-
tures has been achieved, the calibration of the turbulent Schmidt num-
ber is still subject to some uncertainty. For the c-s approach, the complex
eigenfrequency obtained with several values of this parameter is shown in
Fig. 6.2b. With increasing turbulent Schmidt number the oscillation fre-
quency decreases. Within the common range of turbulent Schmidt numbers,
0.6 ≤ Sct ≤ 1, the change of the osciallation frequency is about 800 Hz and
thus considerably stronger than between the different mean flow models.
The relation between turbulent Schmidt number and oscillation frequency
is approximately linear as can be seen from Fig. 6.2c. Recalling the flame
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Figure 6.4: Mean flow model impact on passive acoustics for LP2

length study (Fig. 5.26) this implies that a linear relation between flame
length and eigenfrequency exists with an increase in flame length corre-
sponding to a decrease of oscillation frequency. The impact of the turbulent
Schmidt number on the oscillation frequency can be explained by the sound
speed profile (cf. Fig. 6.1a). A decrease of the turbulent Schmidt number
leads to faster mixing and combustion in the chamber and thus to a higher
first peak of the sound speed, while the peak location is nearly unaffected.
The T1 mode frequency follows the increase of the sound speed in the up-
stream part of the chamber (cf. Sec. 2.4.3), whereas the change of the sound
speed gradient has only a minor impact on the acoustics. This indicates that
the T1 mode frequency is governed by the level of the sound speed whereas
the size of the region that is decisive for the frequency is less sensitive to
the sound speed distribution: This interpretation is backed by the axial
pressure amplitude distribution shown in Fig. 6.3b where only slight dif-
ferences are visible for the different turbulent Schmidt numbers. Likewise,
the damping rate (cf. Fig. 6.2b) is nearly independent of the choice of the
turbulent Schmidt number. For LP2 the impact of the mean flow model on
the results is analogous to that for LP1 as can be seen from the summary
given in Fig. 6.4. However, in contrast to LP1, for LP2 using the turbulent
Schmidt number chosen based on the single flame calculations in Sec. 5.3
gives very good agreement between experimental and numerically calculated
eigenfrequencies.
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The previous discussion has focused on the T1 mode. A broader assessment
of the overall system characteristics is obtained when considering a wider
frequency range of the PSD covering different mode types. Based on the
findings regarding the turbulent Schmidt number, Sct = 0.8 is used here
for the analysis of LP1. For the mean flow calculation the c-s model is
employed. This selection is somewhat arbitrary as the oscillation frequencies
are considerably more sensitive to the turbulent Schmidt number than the
mean flow model selection.

The measured PSD along with the numerically obtained oscillation frequen-
cies is shown in Fig. 6.5a. In the lower frequency range only longitudinal
modes are present. The dominant peak in this region is located between
2 kHz and 3 kHz and met with reasonably accuracy by the numerical re-
sults. At higher frequencies of up to 10 kHz the peaks in the PSD are less
distinct than in the lower frequency range. Nevertheless the calculated eigen-
frequencies seem to deviate stronger from the apparent PSD peaks. The
outlet boundary condition has been considered as possible factor impacting
the level of agreement in this region. Unlike the lower transverse or radial
modes the longitudinal modes in general possess non-zero amplitudes in
the rear part of the chamber. Despite the theoretical decoupling of chamber
acoustics from the outlet boundary condition by the choked nozzle flow, the
type of the outlet boundary condition might numerically impact the results.
Therefore, the longitudinal modes have been reevaluated for an acoustically
non-reflecting boundary condition at the outlet. The change of the boundary
condition leads to a slight increase of the eigenfrequencies but the agreement
of the numerical results with the experiment does not change notably. So
the decoupling of the chamber acoustics from the outlet boundary condition
is adequately captured by the numerical setup and the deviations between
numerical results and experiment are caused by the modeling approach.

The transverse, radial and combined modes are clearly visible in the PSD.
Starting with the T1 mode the PSD peaks can be identified with good accu-
racy. Aside from the pure transverse or radial modes also combined modes
appear, like the T1L1 or R1L1 mode. In general, the higher the frequency
the more ambiguous the mode identification becomes. For example the T2L2
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Figure 6.5: Measured PSD and numerically computed eigenfrequencies

mode frequency is nearly identical with that of the R1 mode and there are
plenty additional longitudinal and combined modes in the upper frequency
range of the plot that are not shown here.

For LP2 the measured PSD is shown in Fig. 6.5b. The unstable T1 mode
is clearly visible. Its frequency is met very well by the numerical analysis.
This also applies to the other higher modes where the agreement is even
better than for LP1.

Altogether, the frequency distribution is met well for both load points.

162
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6.2 Nozzle Correction

Due to the long cylindrical section of the BKD, combustion is nearly com-
pleted when the flow enters the nozzle. Thus, no heat release in the nozzle
region has been accounted for in the previous analysis (Sec. 6.1). However,
combustion chambers like those of the TCDs are designed more compact,
potentially leading to part of the combustion occurring in the convergent
nozzle section. In Sec. 4.2.3 an approach has been introduced to account
for heat release in the nozzle by modfiying the results of the constant cross-
section single flame simulations (cf. Sec. 5.1). In the following, the impact of
this procedure on the mean flow and the subsequent acoustic simulation are
addressed for TCD2 and TCD3. A more general discussion on the acoustic
properties of the TCDs has been given elsewhere [54,55].

To obtain the necessary data on the reacting flow in the rear section of
the nozzle, the length of the single flame domain is extended down to the
position of the nozzle throat. The resulting temperature field is shown along
with the chamber contour in Fig. 6.6. For both cases, the cold oxidizer
core ends upstream of the onset of the convergent nozzle part. However,
the sound speed distribution in Fig. 6.7 shows that there is still some, yet
weak, reaction in progress in the rear part of the single flame domain. The
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Figure 6.6: Single flame temperature field and chamber contour (single
flame field scaled by a factor of 4 in radial dimension)
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Figure 6.8: Heat release correction

flow properties required for the evaluation of the one-dimensional nozzle
equations 4.26 and 4.28 are obtained at the domain outlet. The corrected
and uncorrected heat release is shown in Fig. 6.8. The acceleration of the
flow in the nozzle leads to a slight reduction of the volumetric heat release
compared to the uncorrected case. However, considering the overall heat
release distribution, the deviation is rather insignificant. The reasons is that
for both TCDs the nozzle correction takes effect in a region downstream of
the main heat release zone, which falls within the cylindrical part of the
chamber.

To assess the impact of the nozzle correction on the chamber acoustics, the
lowest longitudinal and transverse eigenmodes are calculated. For TCD2
there are two close-by T1 modes, one (T1,nz) in the nozzle section and the
classical T1 that is determined by the region of lower temperature near the
faceplate (cf. Fig. 6.9). The complex eigenfrequencies of these modes are
shown in Fig. 6.10a. As expected from the mean flow results, the impact of
the nozzle correction on the eigenfrequencies is marginal in terms of both
oscillation frequency and damping rate. The same applies to TCD3 (Fig.
6.10b).
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Figure 6.10: Complex eigenfrequencies

6.3 Effect of Stratification on Acoustics

The mean flow calculation procedures evaluated in Sec. 6.1 are all based on a
quasi one-dimensional flow pattern that reproduces certain radially averaged
properties from a single flame simulation. The underlying assumption is
that the radial and circumferential stratification due to the diffusion flame
structures in the chamber do not significantly impact the acoustics. In the
present section the validity of this simplification is investigated. In Sec.
4.2.4 a model has been introduced to impose a controlled stratification on
the mean flow while retaining identical results in terms of the averaging
procedures underlying the quasi one-dimensional approaches (Sec. 4.2.2).
This stratification approach is applied now to a combustion chamber whose
geometry and axial mean flow profiles (Fig. 6.11) are based on the BKD. The
parameters for the axial stratification function Eq. 4.39 are given in Tab.
6.1. The two remaining parameters, stratification amplitude Aψ and number
of flame structures nfl are varied systematically in the following. Due to the
design of the stratification functions a maximum amplitude of Aψ = 0.4 is
used as otherwise the local temperature minima drop to unreasonably low
levels.

The derivation of the heat source (Eq. 4.41, 4.45 and 4.46) of the stratifi-
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Figure 6.11: Axial profiles for stratified mean flow

Table 6.1: Param-
eters in Eq. 4.39
and 4.51

Parameter Value

l1 0.015 m
l2 0.1 m
cu 5

cation model is based on the assumption of a radially uniform mass flux.
To assess the validity of this assumption, the axial distribution of the mass
flux standard deviation σρux normalized by the mean mass flux ρux within
each chamber cross-section is shown in Fig. 6.12 for nfl = 3. The higher the
stratification amplitude is the stronger the deviation from a radially uni-
form flow gets. After the initial deviations in the flame region the standard
deviation approaches zero as the flow homogenizes towards the end of the
cylindrical section. Thereafter the two-dimensional flow effects associated
with the nozzle region set in. However, these are of no concern for the strat-
ification model, which is applied only in the cylindrical chamber section.
The maximum relative standard deviation has a value of about 0.1, which
is acceptable.

The oscillation frequencies of the studied configuration for a continuous
variation of the stratification amplitude are shown in Fig. 6.13a. Despite all
shown results having the same averaged (Eq. 4.12) sound speed distribution,
the eigenfrequencies change with the number of flames as well as the strati-
fication amplitude. This is explained as follows. The basic interpretation of
the chamber acoustics is based on the analytic duct flow solution (cf. Sec.
2.4). However, this solution is only valid for one-dimensional flow. The area
weighted averaging of the sound speed has proven to be a rather robust ap-
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Figure 6.13: Stratified flow complex eigenfre-
quencies

proximation, providing a good estimation of the actual eigenfrequencies (cf.
Sec. 6.1.2 and [12]). However, it is not derived from an explicit description
of stratified duct flow acoustics but rather heuristic in nature. Thus the ob-
served deviations in eigenfrequency occur, but they remain smaller than 5 %.
For all considered numbers of flame structures the eigenfrequency decreases
with increasing stratification. This is in agreement with a previous study [57]
with a slightly different stratification approach. The magnitude of the fre-
quency gradient ∂f/∂Aψ increases with increasing stratification amplitude,
while showing a notable sensitivity to the number of flame structures. As
nfl increases, the frequency gradient at Aψ = 0 becomes weaker, whereas its
magnitude at high stratification amplitudes increases. A possible explana-
tion for this behavior lies in two different stratification related mechanisms
that impact the eigenacoustics. For the case with a single flame structure
the flow varies radially at a length scale similar to that of the T1 mode.
So an immediate impact of stratification on the acoustics can be expected.
In contrast, with increasing flame numbers the radial dimension of a single
flame structure gets smaller (cf. Eq. 4.37) and the single flame becomes
more compact compared to the wave length of the T1 mode. This length
scale difference accounts for the initially weaker frequency gradients with
respect to the stratification amplitude at lower flame numbers. However,

167



Passive Chamber Acoustics

according to Eq. 4.37 the radial sound speed gradient in the flow is propor-
tional to nflAψ, i.e. with increasing flame number the radial gradients get
stronger. Strong radial gradients notably affect the perturbation solution
as shown previously [57]. So, the higher sensitivity of the eigenfrequency to
the stratification amplitude around Aψ = 0 for low flame numbers is caused
by the similar length scales of radial flow structures and acoustics. With in-
creasing stratification the impact of gradient induced perturbations on the
eigensolutions (cf. [57]) becomes stronger and finally exceeds the previous
mechanism.

The damping rates for the stratified mean flow are shown in Fig. 6.13b.
The curves exhibit a small initial incline of the damping rate with stratifi-
cation amplitude, followed by a region of lower increase or even decline. At
higher stratification amplitudes damping becomes stronger again with the
damping rate gradient increasing continuously. With an increasing number
of flame structures the initial incline of the damping rate becomes weaker
but the damping rate gradient at high stratification amplitudes increases.
This behavior is analogous to that of the oscillation frequencies, which has
been discussed previously. The increase of damping with stratification devi-
ates from the behavior observed in the previous study [57]. There, nfl = 2
flame structures and a stratification amplitude up to Aψ = 0.3 were con-
sidered. While the relative absolute change of the damping rate as well as
the shape of the curve were comparable to those of the corresponding case
in the present study, the previous work showed a decrease of the damping
rate with increasing stratification amplitude. This shows that the impact of
stratification on the damping rate strongly depends on the specification and
setup of the specific case. Unlike the real valued eigenfrequency that primar-
ily depends on the sound speed distribution, the damping rate is addition-
ally linked to other fields like density and temperature. For an unstratified
flow Aψ = 0 the dominant damping mechanism is the so-called field damp-
ing [12], which is related to axial flow gradients. When radial stratification
is increased (Aψ > 0) axial gradients are affected as well. This comes from
the axial dependence of the stratification function according to Eq. 4.39,
which thus directly influences the field damping. This modification of the
damping behavior due to changed axial gradients superimposes with pure
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radial-gradient related mechanisms like vortex-shedding. From the complex
eigenfrequencies only the net-effect on damping is visible. Compared to the
unstratified case with only axial gradients, damping increases by up to 50 %.
Thus stratification is concluded to potentially exert a tremendous impact
on the stability predictions.

6.4 Summary of Findings

The impact of the mean flow modeling on the passive chamber acoustics has
been analyzed. The selection of a specific mean flow model (c-s, c-i, c-κ, cf.
Sec. 4.2.2) has only a minor influence on the complex eigenfrequency. While
the c-s and c-i results are very similar, the c-κ model predicts both lower
oscillation frequencies and damping rates. However, the difference is small
compared to the impact of the choice of the turbulent Schmidt number in
the single flame simulations on the oscillation frequencies. In contrast, the
turbulent Schmidt number does not impact the damping rate. If optimized
turbulent Schmidt numbers are employed in the single flame simulations,
the overall chamber acoustics observed in the experiment are well repre-
sented by the computed eigensolutions in terms of oscillation frequencies.
The nozzle correction, introduced to account for flow acceleration in the
rear part of compact combustion chambers (Sec. 4.2.3), has negligible effect
on the complex eigenfrequencies. Radial flow gradients have been found to
severely impact the eigensolutions. While the relative change of the oscil-
lation frequency is small in the considered parameter range, the damping
rate varies by up to 50 %. The consequences of these findings for the overall
stability assessment will be further discussed in Sec. 8.3.
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After the discussion of the mean flow calculation and associated passive
chamber acoustics in Chap. 6, the present section covers the dynamic flame
response in terms of pressure coupling. It is the second prerequisite for
the application of the stability assessment procedure (cf. Fig. 4.1, Chap.
4). The approaches used in the present chapter have been developed in Sec.
4.3. The flame response simulations employ the source terms derived in Sec.
4.3.1.3 and follow the setup described in Sec. 5.1. The necessary excitation
frequencies and target pressure amplitude distributions are obtained from
the passive acoustic analysis (cf. Sec. 6.1). The present chapter covers pres-
sure coupling alone, which has been identified to govern potential driving
of high frequency instabilities in the BKD [12,42,43]. Velocity coupling (cf.
Sec. 4.3.2.2), which has been studied in the context of the radiation-based
single flame validation in Sec. 5.3.3, is not investigated further because this
mechanism does not lead to any response at the excitation frequency [3].
The findings of the present chapter are used further during the stability
analysis in Chap. 8.

Flame Transfer Functions represent the dynamic flame response in the per-
turbation simulations (cf. Sec. 4.1). Their calculation consists of two parts.

� First, the dynamic response of a single rocket engine flame located at
a pressure antinode to the chamber acoustics is simulated. The cham-
ber acoustics lead to the target pressure fluctuation distribution, from
which excitation source terms are calculated. The corresponding proce-
dures from previous works (Sec. 4.3.1.1) as well as a revised approach,
(Sec. 4.3.1.3) that is tested in the following, have been introduced pre-
viously.

� From the flame response results an FTF is extracted, which is used to
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model the heat release fluctuations in Eq. 2.36.

The above steps are addressed sequentially for the BKD in Sec. 7.1 and
Sec. 7.2, respectively. For the sake of comparability between compressible
and incompressible results, the injector is not fully resolved in the corre-
sponding simulations (cf. Sec. 5.1.4). The findings of the present chapter
are summarized in Sec. 7.3.

7.1 Flame Response

The calculation of the FTF is based on the one-dimensional heat release
fluctuations. These fluctuations are represented by their complex amplitude
distribution along the single flame domain, obtained from an excitation
simulation (cf. Sec. 4.3.1). In the present section, flame response results
for the BKD are studied to provide a basis for the discussion of the FTF
extraction procedure in Sec. 7.2. By comparing results from the revised,
incompressible approach (Sec. 4.3.1.3) with compressible simulations, the
impact of the longitudinal acoustics on the flame is evaluated. To avoid
additional influences of the injector dynamics in the compressible cases, the
injector is not resolved. The following discussion covers the results for LP1.
The findings for LP2 are similar and shortly addressed at the end of the
present section.

The heat release fluctuations are extracted from the flamelet based flow
solution as described in Sec. 5.1.3. Since this procedure relies on gradient
calculations and thus is prone to oscillations, spatial filtering is applied. The
amplitude distributions of pressure and heat release are obtained by fitting
a complex exponential (Eq. 4.2) to the phase averaged results with Ω set
to the excitation frequency. Based on the passive acoustic calculations (cf.
Chap. 6) LP1 is excited at a frequency of f = 10.6 kHz with the excitation
amplitude distribution shown in Fig. 7.1.

The complex heat release amplitude distributions of LP1 are shown for the
compressible and incompressible case in Fig. 7.2. The axial distribution of
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Figure 7.1: Excitation pressure profile for BKD LP1
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Figure 7.2: Heat release amplitude distribution for BKD LP1

the heat release fluctuations is governed by two peaks. The first one belongs
to a region ranging from the faceplate to x ≈ 0.02 m, irrespective of the
compressibility approach. The magnitude of the heat release amplitudes is
considerably larger for the compressible than for the incompressible case. In
the incompressible case a local minimum with a close to zero heat release
amplitude occurs at x ≈ 0.012 m that is associated with a phase jump of
∆∠q̂ ≈ −π. Aside from that, the phase is roughly continuously decreasing
along the region of the first amplitude peak, covering a range of ∆∠q̂ ≈ 3π.
The second dominant peak stretches to x ≈ 0.08 m. Its magnitude is about
equal for both compressibility approaches. However, in the region between
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Figure 7.3: Compressible pressure amplitude distribution for BKD LP1

x ≈ 0.045 m and x ≈ 0.07 m the compressible case shows a significant drop
in the heat release amplitudes. In the downstream part of the chamber
(x > 0.07 m), the compressible results possess two additional heat release
peaks, whereas the incompressible heat release fluctuations are nearly zero.

To explain the occurrence of the two additional peaks in the downstream
region of the chamber in the compressible case as well as the local drop of
heat release amplitudes in the second main peak, the pressure amplitude
distribution obtained from the single flame simulation is evaluated. As dis-
cussed in Sec. 4.3.1.2, this distribution in general does not match the target
or excitation pressure distribution, which is obtained from the chamber’s
acoustic analysis and used to evaluate the source terms (cf. Tab. 4.4 and
Sec. 4.3.1.1). Both distributions are shown for the compressible LP1 results
in Fig. 7.3. The mismatch of both curves can be ascribed to longitudinal
acoustics of the single flame domain, which is confirmed by the absolute
amplitude values in Fig. 7.3a. The shape of the initial decline of the pres-
sure amplitudes is reasonably met, even though the rate of decrease in the
simulation results is higher than that of the excitation profile. The most
significant difference, however, is the presence of pressure amplitude peaks
in the downstream part of the chamber in the simulation. In contrast the
excitation pressure shows a continuous decline of amplitudes in axial di-
rection. The shape of the additional peaks clearly indicates the presence of
a standing longitudinal wave. The constant-pressure outlet (cf. Sec. 5.1.5)
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imposes a node at the domain end. The wave length associated to the struc-
tures in the rear chamber region is λ ≈ 0.14 . . . 0.15 m which agrees well
with the wave length of λ = 0.14 m that is obtained for a sound speed of
c = 1500 m s−1 at the excitation frequency. The phase jump of ∆∠p̂ ≈ −π
between both amplitude peaks supports the conclusion that the pressure
fluctuations in the downstream chamber part are of longitudinal nature.
The longitudinal oscillations stretch into the high amplitude region close to
the faceplate and impact the amplitude profile and phase (Fig. 7.3b) from
x ≈ 0.05 m onward. Further upstream, the excitation mass flow dominates
the domain acoustics. In conclusion, the additional heat release fluctuation
peaks downstream in the chamber as well as the small drop at x ≈ 0.05 m,
which occur in the compressible simulation, can be attributed to longitudi-
nal eigenacoustics.

Comparing the pressure phase distributions obtained in the single flame
simulations to those of the target pressure fluctuations (Fig. 7.3b) shows
that the trend observed in the simulation opposes the excitation profile in
the first quarter of the chamber: While the phase of the calculated pres-
sure fluctuations stagnates or even decreases in axial direction, the excita-
tion profile’s phase increases. Further downstream, the longitudinal domain
acoustics cause a notable difference between the target and the obtained
pressure phase distribution.

The pressure amplitude distributions for the incompressible case are shown
in Fig. 7.4. After a short plateau close to the faceplate, the amplitudes
decline nearly linearly down to zero at the constant pressure outlet. The
phase is nearly constant along the whole domain. A comparison to the ex-
citation profile is not appropriate as the mechanisms leading to pressure
fluctuations differ significantly (cf. Sec. 4.3.1.3.2). However, the impact of
the density modulation can be evaluated. A comparison to the case with-
out density correction shows that the amplitudes are reduced by a factor of
about two. This indicates that the incompressible flow dynamics are indeed
partly suppressed by this approach. However, there are still significant pres-
sure fluctuations remaining. These can be ascribed to the higher complexity
of the single flame compared to the model flow used for the derivation of the
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Figure 7.4: Pressure amplitude from incompressible excitation simulation
of BKD LP1

density correction in Sec. 4.3.1.3.2, which is based on the isentropic change
of the local density in a uniform mean flow. However, the actual flow in the
single flame domain is stratified and the source terms do not only add to and
subtract mass from the domain but the local mixture ratio is changed as
well, leading to combustion related density changes. These processes cannot
be accounted for in a general way as they highly depend on the detailed flow
solution. As the actual pressure value has only a weak impact on the heat
release rate (cf. Sec. 4.3.1.2), the presence of the pressure fluctuations them-
selves does not pose a problem for the incompressible approach. At most,
the flow processes leading to the fluctuations potentially affect the solution.
A comparison of the compressible and incompressible results allows for some
implications regarding the validity of the compressible case. For a discussion
of the validation possibilities for the flame response calculations see Chap.
9. The first heat release peak (Fig. 7.2) is about four times stronger for the
compressible than for the incompressible simulation, which corresponds to
the compressible pressure amplitude at the faceplate, exceeding the target
pressure amplitude by a factor of four (Fig. 7.3a). This indicates that the
incompressible simulation captures the impact of the pressure fluctuations
on the flow correctly.

The previous discussion bases on results obtained at a single excitation pres-
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Figure 7.5: Impact of the excitation amplitude on the flame response of
BKD LP1; amplitude (top) and phase (bottom)

sure amplitude. To verify the linearity of the calculated flame response, sim-
ulations at amplitudes ranging from 0.1 bar to 1 bar have been conducted.
The corresponding heat release amplitude distributions are shown in Fig.
7.5, normalized by the excitation pressure at the face plate. The normal-
ization allows to assess the linearity of the calculated flame response as for
perfectly linear behavior the curves match. This is accomplished to a sat-
isfactory degree. A notable impact of the excitation strength on the noise
arising from the heat release rate extraction procedure (cf. Sec. 5.1.3) is ob-
served: Higher excitation amplitudes lead to a smoother axial distribution.
This indicates that noise from the gradient evaluation in Eq. 5.2a increases
less with increasing excitation amplitude than the heat release fluctuations.

At higher excitation amplitudes the heat release fluctuations change more
fundamentally. For the compressible case, this can be clearly seen for the
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Figure 7.6: Normalized heat release amplitude distributions for BKD LP2

first peak (Fig. 7.5a). While the normalized amplitude level is constant for
an increase of the excitation amplitude from 0.1 bar to 0.5 bar, it decreases
at an excitation amplitude of 1 bar, indicating non-linear saturation. The
calculated pressure amplitudes saturate as well, showing an analogous de-
crease in magnitude.

For LP2 similar tendencies are observed as for LP1, although the overall
level of heat release fluctuations is lower. The associated amplitudes are
shown in Fig. 7.6, the pressure in Fig. 7.7. For the compressible simulations
of LP2 the SRK EOS is used in contrast to the Zref model for LP1 (cf. Sec.
5.1.2, Tab. 5.1). So the compressibility model has no qualitative impact on
the previously discussed behavior.

7.2 FTF Modeling

In the perturbation simulations the impact of the flame feedback on the
acoustic stability is represented by the heat release fluctuation term on the
RHS of Eq. 2.36. For the evaluation of this term, an FTF is required as
described by Eq. 4.52 for the pressure response. In the present section, two
approaches to model this FTF based on the flame response calculations
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Figure 7.7: Normalized pressure amplitude distributions for BKD LP2

(Sec. 7.1) are discussed:

� The zonal integration model of Zahn [68] has been used in previous
BKD stability analyses [12, 13]. It proposes a simple relation between
heat release and pressure fluctuations, which is extracted from the cal-
culated flame response, aiming at a compensation for the impact of
undesired flow dynamics on the simulation results.

� The modeling of the flame response based on the spatial distribution
of the heat release fluctuations, which becomes viable as the incom-
pressible single flame simulations aim for the calculation of the flame’s
response to the excitation pressure fluctuations while avoiding inter-
ference from the simulation domain’s eigenacoustics.

Modeling, advantages and disadvantages of the two approaches are ad-
dressed in the following sections 7.2.1 and 7.2.2, respectively. The FTF
models are applied during the stability analysis in Chap. 8.

7.2.1 Zonal Integration

The zonal integration model relates the integral heat release in individual
flame segments to the pressure fluctuations at reference locations, one per
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segment. In the following, the general form of the model is introduced and
its advantages and drawbacks are discussed (Sec. 7.2.1.1). Thereafter, the
selection of the reference pressure variable is addressed (Sec. 7.2.1.2), before
the specification of the model parameters for the BKD (Sec. 7.2.1.3).

7.2.1.1 Model Description

For the zonal integration FTF model the flame is axially divided into n

segments, with segment i covering the space ∆xi. Within each segment, the
heat release fluctuations are integrated and normalized by the respective
mean heat release. By relating these normalized heat release fluctuations to
the normalized pressure oscillations, the FTF is calculated as

ˆFTF p,i =

∫
∆xi

q̂Adx∫
∆xi

q̄Adx
︸ ︷︷ ︸

q̇∆x,rel,i

p̄ref
p̂ref,i

. (7.1)

The reference pressure fluctuations p̂ref,i are the pressure fluctuations that
the flame responds to, evaluated at the reference location of segment i. The
evaluation of the reference pressure fluctuations is discussed below. The
mean reference pressure pref is used to make the FTF dimensionless. Its
selection is rather arbitrary, as it is compensated for during the redimen-
sionalization of the heat release fluctuations in Eq. 4.52. A common choice is
the nominal chamber pressure (cf. Tab. 3.2). In the following, the term ref-
erence pressure is used to refer to the reference pressure fluctuations rather
than the mean reference pressure.

The main advantages of the zonal integration model are:

� Due to the usage of multiple zones the model might partly compensate
for the impact of the domain’s eigenacoustics on the flame response. As
a spatially resolved relation between heat release and pressure fluctu-
ations is extracted from the flame response, the FTF is basically able
to model the flame feedback for a pressure amplitude distribution that
differs from the one of the excited single flame simulation. However,
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for this compensation to work, the governing mechanisms coupling the
heat release to the pressure fluctuations must not be changed by the
domain’s eigenacoustics, which cannot be assumed in general (cf. Sec.
4.3.1.2).

� If the zone boundaries are determined ahead of the simulation, the
amount of data that needs to be stored is reduced.

� For the flamelet combustion modeling the noise resulting from the heat
release rate calculation based on the enthalpy of formation (cf. Sec.
5.1.3) is reduced due to the spatial integration.

However, in terms of modeling accuracy there are several drawbacks:

� The model is based on a rather simple relation between heat release and
pressure fluctuations. First of all, there is no possibility to distinguish
between the contributions to the heat release fluctuations that arise
from longitudinal and transverse acoustics, respectively. This simplicity
limits the approach’s ability to adapt the flame response to certain
pressure amplitude distributions.

� The piecewise integral treatment of the flame response reduces the spa-
tial resolution of the heat release fluctuations in the perturbation sim-
ulations. The resolution cannot arbitrarily be increased by using more
segments as with an increasing number of segments the dependence of
the local heat release fluctuations on the upstream perturbations is not
captured. For high segment numbers Eq. 7.1 describes a direct coupling
between the local heat release and pressure fluctuations, which does not
represent the actual flame response mechanisms (cf. Sec. 4.3.1.2).

� A detailed, case-specific analysis of the mechanisms governing the flame
response is required in order to adequately select the segments’ bound-
aries and the reference pressure locations.
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7.2 FTF Modeling

7.2.1.2 Reference Pressure Fluctuations

The reference pressure fluctuations p̂ref,i (cf. Eq. 7.1) couple the heat release
fluctuations obtained from the flame response calculations to the pressure
oscillations in the perturbation simulations. Besides the specification of the
respective segments’ reference locations, which are addressed in Sec. 7.2.1.3
for the BKD, there is a second aspect to be considered in the case of com-
pressible simulations: As discussed in Sec. 7.1 there are two different pres-
sure fluctuation distributions, the target pressure fluctuations used for the
calculation of the source terms and the ones actually obtained as solution
of the excited single flame simulation. The choice of the amplitude distri-
bution that the reference pressure fluctuations are evaluated from can have
tremendous consequences for the stability analysis, which will be addressed
in Sec. 8.1. In the following, a general discussion of the reference pressure
selection is given.

The pressure fluctuations obtained from the single flame simulation have
been used as reference variables in previous studies [12, 13]. The usage of
these fluctuations is necessary if the flame response’s distortion by the sim-
ulation domain’s eigenacoustics shall be compensated for. However, the po-
tential of such a correction is limited as a superposition of heat release fluc-
tuations from transverse and longitudinal acoustics is related to a superpo-
sition of transverse and longitudinal pressure fluctuations, i.e. the different
mechanisms contributing to the flame response cannot be separated.

A major drawback of using the single flame pressure fluctuations as ref-
erence for the FTF caclulation results from the different level of detail in
the perturbation and the flame response simulations. Dynamic flame radia-
tion images measured at the BKD [6] showed longitudinal structures arising
from the L2 mode of the LOX-post and propagating into the chamber [6]. If
a single flame simulation captures this phenomenon, it impacts the calcu-
lated pressure amplitudes. However, in the perturbation simulations for the
chamber’s stability predictions (cf. Sec. 4.1) the detailed injection geometry
is not included and the impact of injector-related longitudinal structures on
the pressure fluctuations is not accounted for. In this case the pressure fluc-
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tuations obtained from single flame simulations are not suitable to couple
the associated heat release fluctuations to the pressure fluctuations in the
perturbation simulations.

Taking the target pressure amplitudes used for the source term calculations
as reference for the FTF calculation ensures consistency between the FTF
and the perturbation simulation. However, this choice does not allow to
potentially correct the flame response for distortions resulting from the sin-
gle flame simulation concept. Thus, it requires that the excited single flame
simulations adequately represent the flame’s response to the target pressure
fluctuations, without significant distortions.

In summary, the target pressure fluctuations are the preferable variable to
describe pressure coupling, due to its consistency with the perturbation sim-
ulations. The only reason for considering the pressure fluctuations from the
single flame simulations as reference variable is the attempt to compensate
for the impact of simulation domain’s eigenacoustics on the flame response
calculations.

7.2.1.3 Parameter Specifications for the BKD

The application of the zonal model (Eq. 7.1) in the BKD stability analysis
(Sec. 8.1) requires the specification of segment numbers, boundaries and
reference pressure locations. In the present work, these parameters are se-
lected based on the findings of Zahn [68], which has been employed for the
FTF modeling in previous BKD Studies [12,13].

Based on a study of the spatial distribution of the heat release fluctuations
in a single flame simulation using Dynamic Mode Decomposition, Zahn [68]
split the flame into two regions: The near-field ranges from the faceplate
up to the boundary coordinate xbd = 0.015 m1 and the far-field covers the
downstream part of the flame. In previous studies [12,13] the middle of the
near field has been selected as location for the reference pressure fluctua-

1Schulze [12] reported a boundary value of xbd = 0.013 m. However, the center point was still given
as 0.5xbd = 0.0075 m and his calculations also suggest that the original boundary coordinate given by
Zahn [68] has been used.
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tions. In the far field, the fluctuations of turbulent kinetic energy has been
proposed as coupling mechanism [68] since the reaction rate of the com-
bustion model used in the simulations is governed by this variable. Thus,
the location of the maximum turbulent kinetic energy fluctuations has been
selected as the far field reference location [12,13].

In the present work, the zone boundary is set to xbd = 0.02 m, corresponding
to the boundary between the two heat release fluctuation peaks of the flame
response (cf. Fig. 7.2, Sec. 7.1). The reference pressure location of the near
field is adapted accordingly to xbd/2.

7.2.2 Spatially Resolved Heat Release Fluctuations

The zonal integration model (Sec. 7.2.1) provides an FTF that decribes
the generalized spatial relation between the heat release and the reference
pressure fluctuations. This spatial descripton is obtained at the cost of a
rather low axial resolution of the flame feedback. However, previous works
[12] showed that including flame feedback in the perturbation simulations
only has a weak effect on the calculated mode shape. As the occurrence of
acoustic modes is avoided in the incompressible single flame simulations,
there is no need to correct the flame response for this kind of disturbance
either. So for the incompressible case the spatial distribution of the heat
release amplitudes is directly used to represent the flame response in the
perturbation simulations. This approach implies that the incompressible
flow dynamics that remain despite the density correction (cf. Sec. 7.1) do
not significantly impact the flame response results, an assumption, which
currently cannot be validated definitely due to the lack of detailed reference
data. The FTF takes the form

ˆFTF =
q̂

p̂ref

pref
qref

=
q̂x
p̂ref

pref
qx,ref

. (7.2)

The reference mean pressure pref and the reference mean heat release qref
are used for the normalization of the heat release and need to be compen-
sated for when evaluating the heat release fluctuations according to Eq.
4.52. They may be chosen arbitrarily.
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Since the pressure fluctuations obtained in the incompressible single flame
simulations do not result from the propagation of acoustic waves at sound
speed, they are not comparable to those of the perturbation simulations.
Thus, the only reasonable choice for the evaluation of the reference pressure
fluctuation in Eq. 7.2 is the target pressure amplitude distribution. Since the
impact of the flame feedback on the mode shapes calculated in the acoustic
simulations is small, the selection of the location for the reference pressure
fluctuations becomes arbitrary, as long as the associated pressure amplitude
is non-zero.

7.3 Summary of Findings

The flame response of the BKD has been evaluated based on the procedure
introduced in Sec. 4.3.1. A comparison between results from compressible
and incompressible simulation has been conducted to assess the role of the
domain’s eigendynamics in the flame response calculations. The compress-
ible pressure fluctuations showed clear longitudinal acoustic structures in
the downstream part of the chamber that also affect the high amplitude
region close to the faceplate. These structures are successfully avoided by
using an incompressible flow model. For this type of simulation the proposed
density modulation (Sec. 4.3.1.3.2) considerably reduced the incompressible
flow dynamics resulting from the application of the source terms. However,
due to the complex nature of the reacting flow, notable pressure fluctuations
were remaining. A comparison of the amplitude ratio obtained in compress-
ible and incompressible simulations indicated that the incompressible ap-
proach adequately reproduces the flame response associated with the target
pressure fluctuations. However, as there are no sufficiently detailed flame
response data available, a final conclusion regarding the prediction qual-
ity of the incompressible approach cannot be drawn. The aspect of further
validation possibilities is addressed in Chap. 9.

Two options to model FTFs based on flame response calculations have been
discussed. The zonal integration approach offers some, though severely lim-
ited, capabilities to compensate for disturbances in the flame response cal-
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culations. Its drawbacks concern the spatial flame response resolution and
the necessity to use the single flame pressure simulations for the aforemen-
tioned correction approach to work. Indeed, the usage of the target pressure
fluctuations is clearly preferable for coupling the heat release to the pressure
fluctuations via an FTF but requires the flame response results to represent
the impact of the target pressure fluctuations on the flame without signifi-
cant deviations. For such flame response data, the axial distribution of the
heat release fluctuations can be directly used in the stability analysis, with-
out creating a generalized spatial FTF model. When possible, this approach
is to be preferred as it offers a detailed spatial distribution of the flame re-
sponse and does not rely on an a-posteriori correction of the flame response
calculations. The impact of the different FTF modeling approaches on the
stability predictions is studied in Sec. 8.1.
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8 Stability Analysis

To obtain the stability predictions, perturbation simulations are conducted
that include the flame feedback, combining the mean flow discussed in Sec.
6.1 with the flame response modeling from Chap. 7. The impact that these
two components and the associated modeling choices have on the stability
prediction is discussed in the present chapter. First, the effect of the FTF-
model on the complex eigenfrequencies is addressed (Sec. 8.1), followed by
a discussion of the role of the mean flow modeling (Sec. 8.2). The findings
are summarized in Sec. 8.3.

8.1 Role of the FTF Model

The flame transfer function represents the flame dynamics in the pertur-
bation analysis (cf. Sec. 4.3.1). In Chap. 7 different approaches to obtain
the flame response based on single flame simulations as well as to model
the FTF based on this flame response have been discussed. In the present
section the impact of different FTF modeling approaches on the stability
predictions is studied. An overview of the used FTFs is given in Tab. 8.1.
The FTF based on the heat release fluctuation distributions from incom-
pressible single flame simulations as well as the target pressure distribution
(q̂-t-inc.) is the preferred concept (cf. Sec. 7.3). To assess the effect that
the domain eigenacoustics in the single flame simulations have on the sta-
bility prediction, the q̂-t-cmp. approach is included in the anlaysis, which
differs from the q̂-t-inc. model only in terms of compressibility modeling in
the flame response calculation. When it comes to the zonal model, the z-sf-
cmp. approach, which has been used in previous works, is the equivalent to
the q̂-t-inc. approach as it includes a correction for the single flame domain
eigenacoustics. Again, the impact of this correction on the stability predic-
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Table 8.1: Flame response modeling for the stability analysis

ID Single Flame Simulation FTF Model Reference Pressure

q̂-t-inc.
q̂-distribution target

incompressible
q̂-t-cmp. compressible
z-t-cmp.

zonal
target compressible

z-sf-cmp. single flame compressible

tion can be assessed, by studying the results obtained with the z-t-cmp.
approach, which is based on the target pressure fluctuation.

The results in the present section have been obtained with the c-s mean
flow model (cf. Sec. 4.2.2 and 6.1). The impact of the mean flow calculation
approach on the prediction is analyzed in Sec. 8.2.

The complex eigenfrequencies of the T1 mode obtained with the different
FTF models from Tab. 8.1 are shown in Fig. 8.1 along with the results from
the passive acoustic analysis (cf. Sec. 6.1). First, the q̂-t-inc. approach is
considered, which relates the spatial distribution of the heat release am-
plitudes to the target pressure fluctuations. Compared to the case with-
out flame feedback, the oscillation frequencies are shifted to lower values
when including the FTF in the simulation. However, the changes of oscil-
lation frequencies are minor compared to the incompressible FTFs’ impact
on the damping rates, which results in the prediction of severe linear in-
stabilities for both LPs. To assess the impact of the longitudinal domain
acoustics of the flame response calculations on the stability prediction, re-
sults obtained with the compressible q̂-t-cmp. FTF modeling approach are
considered. Again, the calculated oscillation frequencies become lower for
both LPs, but the decrease is stronger than for the q̂-t-inc. approach. The
impact on the damping rates, however, is opposed to the one observed for
the compressible flame response, with the q̂-t-cmp. results showing even
a slight stabilization of the acoustics. So apparently the outcome of the
stability prediction is governed by the choice of the flame response calcula-
tions’ compressibility model rather than the load point. While the change
of damping rates observed with the compressible approach is considerably
lower than that of the incompressible one, this does not apply to the mag-
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Figure 8.1: BKD stability predictions for FTFs based on the target pres-
sure distribution

nitude of the respective heat release fluctuations (cf. Sec. 7.1, Fig. 7.2).
Since for LP1 the maximum heat release amplitudes are about four times
higher for the compressible than the incompressible simulations (cf. Fig.
7.2), it can be concluded that the different strengths of the FTFs’ effects on
the stability predictions are caused by the phase distributions of the heat
release fluctuations, which is plausible according to the Rayleigh criterion
(Eq. 1.1).

Besides the calculations using the spatial heat release amplitude distribu-
tions for flame response modeling, stability calculations with FTFs based on
the zonal approach (z-t-cmp., z-sf-cmp.) have been performed for LP1. The
zonal pendant to the q̂-t-inc. model is the z-sf-cmp. approach, as it includes
a correction for the side-effects of a compressibile flame response calculation.
Like with the q̂-t-inc. approach, both oscillation frequency and damping rate
are reduced, even though the frequency shift as well as the destabilization
are considerably weaker for the zonal model. The compressibility correc-
tion is removed from the zonal model by using the z-t-cmp. approach. For
this FTF, the calculated oscillation frequency is nearly identical to the one
obtained with compressibility correction. However, the damping rate is sig-
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nificantly reduced, resulting in the prediction of slightly unstable behavior.
This is in agreement with the results of a previous study that found the sta-
bility prediction to depend on the selected reference pressure variable [55].
Compared to the results obtained with the approaches based on the spatial
heat release amplitude distributions (q̂-t-inc., q̂-t-cmp.) the impact of the
compressibility correction on the stability prediction is different. While for
the heat release amplitudes using the incompressible flame response results
leads to a considerable reduction of the damping rate, the opposite holds for
the zonal approaches. So it can be concluded, that both models that correct
the FTF for the single flame domain’s eigenacoustics have a destabilizing
effect on the calculated acoustics. However, the impacts of the different ap-
proaches to account for the effect of the single flame domain’s eigenacoustics
on the flame response are contrary to each other.

Finally, the sensitivity of the results obtained with the zonal model to the
selection of the boundary is addressed. For a variation between 0 mm ≤
xbd ≤ 50 mm the range of oscillation frequencies and damping rates is shown
in Fig. 8.1. The oscillation frequency is found to vary rather moderately by
about 300 Hz, whereas the damping rate covers a range of about 80 % of
its mid-range value. Nevertheless, the previous findings from the present
section still hold.

8.2 Role of the Mean Flow Model

Different approaches to calculate the mean flow that are consistent with
the Euler Equations and at the same time reproduce certain axial profiles
extracted from single flame simulations have been developed in Sec. 4.2.2
and evaluated in Sec. 6.1. Three different mean flow variants have been
introduced (cf. Tab. 4.2), which are based on the axial distributions of sound
speed and isentropic compressibility (c-s), sound speed and field impedance
(c-i) or sound speed and isentropic coefficient (c-κ), respectively. In the
following, the impact of the mean flow model selection on the stability
predictions is studied. To model the flame response, the spatial distribution
of the heat release fluctuations is coupled to the acoustic pressure via the
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target pressure fluctuation (p̂-t-inc. and p̂-t-cmp., cf. Tab. 8.1). As found
in Sec. 8.1, these approaches exhibit a stronger impact on the stability
predictions than the zonal model and thus is expected to show the role of
the mean flow model more clearly than the other ones.

The mean flow solutions obtained with the different calculation procedures
and the associated passive chamber acoustics have been evaluated in Sec.
6.1. It has been found that the c-s and c-i approaches provide quite similar
results. The main difference compared to the c-κ approach is the isentropic
coefficient (cf. Fig. 6.1c). While the impact this difference has on the damp-
ing rate is low in the case without flame response, the same is not expected
for active flames with feedback. As can be seen from Eq. 2.36 the isentropic
coefficient affects the coupling between heat release and pressure fluctua-
tions:

iωp̂+ ... = (κ− 1) q̂ . (8.1)

As κ usually takes values between 1.2 and 1.6 the subtraction of 1 increases
the sensitivity of the effect that the flame feedback has on the acoustics
significantly.

For both load points the complex eigenfrequencies of the T1 mode, obtained
with the different mean flow models are shown in Fig. 8.2 for the different
FTFs as well as the passive acoustics. Qualitatively, for all mean flow mod-
els including the flame response leads to the same behavior that has been
discussed in Sec. 8.1: The oscillation frequency decreases, an FTF based on
compressible flame response results has a stabilizing effect on the acoustics
and an FTF extracted from incompressible calculations leads to negative
damping rates.

For both LPs it stands out that with the q̂-t-inc. flame response model the
damping rates obtained for the c-κ mean flow are higher than those for
the c-s and c-i approaches. The weaker impact of the flame feedback on the
acoustic stability for the c-κ mean flow is in agreement with the lower values
of κ obtained for this approach (cf. Fig. 6.1 and Eq. 8.1). When the com-
pressible q̂-t-inc. FTF is used, nearly identical damping rates are predicted
with all mean flow models. A possible reason for this different behavior is
the spatial distribution of both, κ (Fig. 6.1c) and the heat release fluctu-
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Figure 8.2: Impact of mean flow modeling on complex BKD eigenfrequen-
cies

ations (Fig. 7.2). Given the different phase distributions of compressible
and incompressible heat release fluctuations, the main contribution to the
change of the damping rates may arise from different regions of the cham-
ber, depending on the compressibility model used for the flame response
calculations. As the isentropic coefficient varies across the chamber length
as well (cf. Fig. 8.1), these regions may be affected differently by a change
of the mean flow calculation procedure.

Besides the damping rates, the flame feedback affects the oscillation frequen-
cies. Again, the effect of the mean flow modeling on the frequency depends
on the flame response modeling. The oscillation frequencies obtained with
the incompressible flame feedback modeling (q̂-t-inc.) show similar offsets
between the different mean flow models for both load points. For the com-
pressible flame response (q̂-t-inc.) the frequencies predicted with the c-κ
approach show a considerable offset to those obtained with the other mean
flow models, like already observed for the passive acoustics.
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8.3 Summary of Findings

The impact of the flame response and mean flow modeling on the stability
assessment has been studied.

The flame response modeling clearly governs the stability prediction. When
using incompressible flame response calculations combined with the axial
heat release amplitude distribution and target pressure fluctuations for FTF
modeling (q̂-t-inc.) as proposed in Sec. 7.2.2, a severely unstable T1 mode
is predicted. In contrast, FTFs based on compressible flame response com-
putations (q̂-t-cmp.) have a stabilizing effect on the calculated chamber
acoustics. These different results are caused by the phase distributions of
the heat release fluctuations obtained with the respective compressibility ap-
proaches. The FTFs following the zonal approach (z-t-inc., z-sf-inc.) both
reduced the predicted damping rates, however considerably weaker than the
q̂-t-inc. approach. Depending on whether the target pressure fluctuations or
those obtained from the flame response simulations are used for the FTF
extraction, the T1 mode is predicted to be unstable or stable respectively. So
all three modeling choices, zonal/amplitude distribution, target/calculated
pressure fluctuations as reference and incompressible/compressible flame
response calculations can change the stability prediction from stable to un-
stable.

The impact of the different one-dimensional mean flow models on the sta-
bility prediction is rather small. The c-κ approach shows some differences
in damping rates and oscillation frequencies in comparison with the c-s and
c-i models. However, the changes are not nearly as significant as for the
different flame response modeling approaches. However, this conclusion ap-
plies only to the comparison between the different one-dimensional mean
flows, not for the impact of radial stratification (Sec. 6.3) on the stability
prediction.
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9 Conclusions

The present work contributes to the development of a computationally ef-
ficient procedure to predict the thermoacoustic stability of rocket engines.
The reliability of the methodology’s main components has been assessed,
accounting for their sensitivity to modeling uncertainties. Revised modeling
approaches have been proposed to address deficiencies of the procedure and
their impact on the stability predictions has been studied. In the present
chapter the conclusions regarding the procedure’s components as well as its
overall capabilities are given. Starting point are the mean flow modeling and
the related acoustics, followed by the flame response and the stability calcu-
lations. Finally, capabilities and prospects of the procedure are addressed.

To ensure a sound basis for the analyses, a validation of single rocket engine
flame simulations has been conducted. In this context several findings re-
garding the calculation of flame radiation images have been obtained, which
have been summarized in Sec. 5.2.5 and 5.3.5.

Mean Flow A mean flow calculation procedure that is consistent with the
Euler Equations while reproducing axial profiles obtained from radially av-
eraged single flame results has been developed. Three different variants have
been specified, which reproduce the sound speed combined with either the
isentropic compressiblity (c-s), the field impedance (c-i) or the isentropic
coefficient (c-κ). An acoustic analysis of the chamber showed that:

� The c-s and the c-i approaches provide nearly identical results in terms
of mean flow and associated complex eigenfrequencies. The oscillation
frequencies of the c-κ results are slightly lower but still similar to those
obtained with the other models.

� The impact of the turbulent Schmidt number used in the single flame
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simulations on the oscillation frequency is higher than that of the mean
flow model choice, whereas the damping rate is nearly unaffected.

� The effect of the accelerated nozzle flow on the heat release distribution
is negligible in terms of the passive chamber acoustics, even for compact
chamber designs.

A study of the consequences that radial mean flow stratification has for the
calculated chamber acoustics found that:

� The oscillation frequency is preserved well by the mean flow calculation
procedure, changing less than about 5 % due to the stratification.

� Neglecting radial gradients can have a tremendous impact on the pre-
dicted damping rates, which change by up to 50 % within the studied
parameter range.

So the most important development at issue for the mean flow modeling
is to account for the effects of radial stratification on the damping in the
combustion chamber.

Flame Transfer Functions A revised excitation approach based on incom-
pressible flow modeling has been developed to avoid an impact of the simu-
lation domain’s eigenacoustics on the calculated flame response. The study
of the flame response results showed that:

� In compressible simulations with excitation longitudinal acoustic
modes resulting from the reduced radial domain size occur, impact-
ing the pressure as well as the heat release fluctuations. The resulting
flame response is not representative for the transverse chamber mode.

� The incompressible approach successfully suppresses the formation of
acoustic eigenmodes. By a harmonic density modulation, the issue of
incompressible flow dynamics is considerably mitigated.

A discussion of FTF modeling led to the conclusions that:
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� If the excitation simulations adequately represent the effect of the
chamber acoustics on the flame, the corresponding heat release am-
plitude distribution can directly be used for the FTF modeling.

� The excitation pressure distribution is the appropriate choice for the
coupling of the flame response to the perturbation simulations. How-
ever, its usage requires knowledge of the flame’s response to the exci-
tation pressure without significant disturbances.

For further development of the flame response modeling, detailed validation
data for the flame’s dynamic behavior are required.

Stability Prediction Acoustic perturbation simulations including flame
feedback yielded the following findings for the components’ impact on the
stability prediction:

� The c-s and c-i mean flow models provide similar stability predictions.
For some cases the strength of the flame response’s impact on the
stability is lower for the c-κ approach, due to the different distribution
of the isentropic coefficient.

� The compressibility model used in the flame response calculations can
alter the system’s stability prediction from stable to severely unstable.

� The FTF modeling choices have a tremendous impact on the predicted
damping rates.

Overall Assessment and Prospects On the basis of the componentwise anal-
ysis, an assessment of the methodology’s current state and further perspec-
tives is given in the following.

The perturbation analysis is currently the most mature part of the sta-
bility assessment. A procedure to determine the amount of numeric sta-
bilization required for the modal analysis is available for both two- and
three-dimensional simulations. By using Bloch functions two-dimensional
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simulations of transverse modes are conducted, which allows for finer com-
putational grids and thus a higher grid-independence of the results.

An adequate representation of the rocket engine flames via cost-efficient
RANS-simulations is possible as well. However, the specification of the ap-
propriate turbulent Schmidt number is crucial, which can for example be
based on experimental data.

The high uncertainties in the mean flow and the flame response modeling
prohibit an application of the stability assessment procedure in its current
form. Effectively addressing these issues requires additional validation data:
Currently, the only validation data for the chamber’s thermoacoustic behav-
ior are the system’s stability behavior. While flame radiation images give
qualitative insight into the mechanisms of the flame response, even with
a thorough selection of the evaluation models, the level of detail required
for a direct validation of the flame response calculation cannot be reached.
So the validation of the thermoacoustic prediction currently can only be
based on the overall system’s stability. Given the considerable amount of
uncertainty in the procedure’s different components, the result of such a
top-level validation is no reliable indicator for the approache’s soundness.
Even if the overall stability behavior is reproduced correctly, for instance an
underestimation of passive damping due to the one-dimensional mean flow
might compensate for a too weak flame response.

For the flame response validation, getting the necessary detailed insight
into the flow processes from an experiment seems hardly possible. In this
case, data from an Large Eddy Simulation would be a valuable reference.
However, the chamber dynamics need to be correctly reproduced by the
LES, which is currently not the case (cf. Sec. 3.1.2). For the mean flow,
experimental studies covering the impact of cross-streamwise gradients on
the acoustics of a passive configuration can be used to gain validation data.

While the structure underlying the stability assessment procedure consti-
tutes a reasonable concept for the efficient simulation of rocket engine acous-
tics, further development needs to be undertaken in order to obtain a reliable
tool for stability predictions.
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A LEE Pressure Equation

The derivation of the LEE pressure equation 2.34 is shown step by step in
the following. First, the derivation of the sensible internal energy equation
2.33 from the total energy conservation equation 2.18 is addressed. That
equation is transformed into a pressure equation using the ideal gas EOS
2.5. Thereupon, the linearization and manipulation of Eq. 2.33 leading to
Eq. 2.34 is outlined.

The starting point for the derivations is the non-diffusive form of the total
energy conservation Equation:

∂ (ρE)

∂t
+∇ · [u (ρE + p)] = 0 . (2.32)

Inserting Eq. 2.17 and rearranging while noting that

u · ∇
(u · u

2

)
= u · [(u · ∇)u+ u× (∇× u)]

= u · (u · ∇)u
(A.1)
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After dropping the terms that become zero due to mass (Eq. 2.11) and
momentum conservation (Eq. 2.12), Eq. 2.33 is obtained:

ρ
∂∆es
∂t

+ ρu · ∇∆es + p∇ · u = −
(
∂ρh0

f

∂t
+∇ ·

(
ρuh0

f

)
)

. (2.33)

For the further modification of Eq. 2.33 the differential of the linearized
sensible energy is required. From Eq. 2.9b its general form follows as

d∆es =

∫ T

Tref

dcvdŤ

︸ ︷︷ ︸
dΓ

+cvdT . (A.3)

and the temperature differentials can be replaced according to the thermal
ideal gas EOS 2.5a

dp

p
=
dT

T
+
dρ

ρ
+
dR

R
. (A.4)

Due to the assumption of the local fluid properties being constant in time,
the expressions obtained from Eq. A.3 and A.4 for temporal derivatives
differ from those of spatial gradients. The respective terms are given in
Tab. A.1.

Next, a pressure equation is derived from Eq. 2.33. Thereto the energy dif-
ferentials Eq. A.5a and A.5b are inserted into Eq. 2.33 and the temperature
is replaced via Eq. 2.5a, A.6a and A.6b. Noting that ∂φ/∂t = ∂φ′/∂t the
following pressure equation is obtained:

cv
R

(
∂p

∂t
− p

ρ

∂ρ

∂t

)
+
cv
R
pu ·

(
1

p
∇p− 1

ρ
∇ρ− 1

R
∇R

)
+ ρu · ∇Γ + p∇ · u

= −
[
∂(ρh0

f)

∂t
+∇ ·

(
ρuh0

f

)
]

.

(A.7)

Expressing cv by κ and R, adding and subtracting p
κ−1∇·u and rearranging
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φ ∆es T

φ′ cvT
′ (A.5a)

p′

ρR
− 1

ρ2

p

R
ρ′ (A.6a)

∇φ cv∇T +

∫ T

Tref

1

κ− 1
∇R− R

(κ− 1)2∇κdŤ
︸ ︷︷ ︸

∇Γ

(A.5b)

T

(
1

p
∇p− 1

ρ
∇ρ− 1

R
∇R

)

(A.6b)

∇φ′ cv∇T ′ +
1

κ− 1
∇RT ′ − R

(κ− 1)2∇κT ′
︸ ︷︷ ︸

∇Γ′

(A.5c)
T ′

T
∇T +

1

ρR

(
∇p′ −∇pp

′

p

)

− p

ρ2R

(
∇ρ′ −∇ρρ

′

ρ

)

(A.6c)

Table A.1: Differentials for sensible internal energy ∆es and temperature
T following Eq. A.3 and A.4

results in

1

κ− 1

(
∂p

∂t
+ u · ∇p− p

ρ

(
∂ρ

∂t
+ u · ∇ρ+ ρ∇ · u

)

︸ ︷︷ ︸
=0

+p∇ · u− p

R
u · ∇R

)

+ ρu · ∇Γ + p∇ · u = −
[
∂(ρh0

f)

∂t
+∇ ·

(
ρuh0

f

)
]

.

(A.8)

After using the continuity equation, the final form of the pressure equation
reads:

∂p

∂t
+ u · ∇p− p

R
u · ∇R + (κ− 1)ρu · ∇Γ + κp∇ · u

= −(κ− 1)

[
∂(ρh0

f)

∂t
+∇ ·

(
ρuh0

f

)
]

.
(A.9)
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LEE Pressure Equation

So far, the only simplification that has been applied since starting from
the non-diffusive total energy conservation equation 2.32 is the time-
independece of the fluid properties R and κ due to the usage of Eq. A.6a
and A.5a.

Now the linearization is performed. Combining Eq. A.5c with Eq. A.6a gives

(κ−1)ρ̄ū·∇Γ′ =
1

R

(
p′ − p

ρ
ρ′
)
u·∇R− 1

κ− 1

(
p′ − p

ρ
ρ′
)
u·∇κ . (A.10)

Inserting Eq. A.10 into Eq. A.9 results in

∂p′

∂t
+ u · ∇p′ + u′ · ∇p+ κ (p∇ · u′ + p′∇ · u)

+
1

R

(
−p
ρ
uρ′ − u′p+R(κ− 1) (u′ρ+ uρ′)

∫ T

Tref

1

κ− 1
dŤ

)
· ∇R

− 1

κ− 1

(
p′ − p

ρ
ρ′
)
u · ∇κ−R(κ− 1) (u′ρ+ uρ′) ·

∫ T

Tref

1

(κ− 1)2
∇κdŤ

= −(κ− 1)

[
∂(ρh0

f)

∂t
+∇ ·

(
ρuh0

f

)
]

.

(A.11)

For a temperature independent isentropic coefficient this simplifies to

∂p′

∂t
+ u · ∇p′ + u′ · ∇p+ κ (p∇ · u′ + p′∇ · u)

+
1

R

(
−p
ρ
uρ′ − u′p+R(T − Tref) (u′ρ+ uρ′)

)
· ∇R

− 1

κ− 1

((
p′ − p

ρ
ρ′
)
u+R(T − Tref) (u′ρ+ uρ′)

)
· ∇κ

= −(κ− 1)

[
∂(ρh0

f)

∂t
+∇ ·

(
ρuh0

f

)
]′

(A.12)

and after replacing T via the ideal gas equation of state 2.5a the final form
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of the pressure fluctuation equation is

∂p′

∂t
+ u · ∇p′ + u′ · ∇p+ κ (p∇ · u′ + p′∇ · u)− 1

κ− 1
(u′p+ up′) · ∇κ

+ Tref (u′ρ+ uρ′) ·
(

R

κ− 1
∇κ−∇R

)

= −(κ− 1)

[
∂(ρh0

f)

∂t
+∇ ·

(
ρuh0

f

)
]′

.

(A.13)
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B Radiation

Conversion between wave length specific and wave number specific spectral
radiation intensity:

I =

∫ νe

νs

Iνdν =

∫ 1/νe

1/νs

Iλdλ = −
∫ λe

λs

Iλd

(
1

ν

)
=

∫ λe

λs

1

ν2
Iλdν (B.1)

and thus

Iν =
1

ν2
Iλ = λ2Iλ . (B.2)
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C Incompressible Flow Dynamics

During the development of the pressure excitation procedure in Sec. 4.3.1.3.2
the response of a one-dimensional, incompressible flow to a volumetric mass
and the associated momentum sources is studied. The analytic solutions for
the cases of spatially and temporally constant density (Sec. C.1) as well as
spatially non-constant density that fluctuates harmonic in time (Sec. C.2)
are derived in the following.

The common setup for both cases is a duct of cross-sectional area A with a
constant mass flow inlet and a constant pressure outlet:

ṁ|x=0 = ṁ0 (C.1a)

p|x=L = pout . (C.1b)

As the flow is one-dimensional,

∂φ

∂r
=
∂φ

∂θ
= 0, ur = uθ = 0 (C.2)

holds. The mass source is calculated as (cf. Sec. 4.3.1.3.2)

S ′m =
1

c2

(
∂p′t
∂t

+ ux
∂p′t
∂x

)
(4.59)

from the target pressure fluctuation

p′t = |p̂|tψx sin(ωt) . (4.71)

The momentum source that corresponds to the mass source (Eq. 4.59) is
obtained by evaluating Eq. 4.68 for one-dimensional flow (Eq. C.2), yielding

S ′u,x = Smux . (C.3)
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Incompressible Flow

Based on Eq. 2.11 and Eq. 2.12 along with Eq. C.2 the inviscid mass and
continuity equations with source terms are obtained as

∂ρ

∂t
+ ux

∂ρ

∂x
+ ρ

∂ux
∂x

= Sm (C.4)

and
∂ux
∂t

+ ux
∂ux
∂x

= −1

ρ

∂p

∂x
+ Su,x . (C.5)

As there is no mean source in the flow but just the fluctuating source terms,

Sφ = S ′φ (C.6)

holds in Eq. C.4 and C.5. With the above prerequisites the analytic solutions
for the constant density (Sec. C.1) and harmonically oscillating density (Sec.
C.2) are derived.

C.1 Constant Density

Constant flow density is described as

∂ρ

∂t
= 0 , ∇ρ = 0 . (C.7)

Inserting Eq. C.7 along with Eq. C.6 into the one-dimensional continuity
equation C.4 yields

∂ux
∂x

=
1

ρ
S ′m . (C.8)

By integration of Eq. C.8 under usage of the mass flow inlet boundary
condition Eq. C.1a, the velocity distribution is obtained as

ux =
1

ρ

(
ṁ0

A
+

∫ x

0

S ′mdx̌
)

. (4.77a)

From Eq. 4.77a the temporal and spatial velocity derivatives can be calcu-
lated:

∂ux
∂t

=
1

ρ

∫ x

0

∂S ′m
∂t

dx̌ (C.9a)

∂ux
∂x

=
1

ρ
S ′m . (C.9b)
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C.2 Fluctuating Density

Inserting Eq. C.9 into the momentum equation C.5 under usage of Eq. C.6
gives

∂p

∂x
= −ρ∂ux

∂t
(C.10)

and after integration under consideration of the outlet pressure boundary
condition Eq. C.1b:

p = pout +

∫ L

x

∫ ˇ̌x

0

∂S ′m
∂t

dx̌dˇ̌x . (4.74b)

C.2 Harmonic Density Fluctuations

The harmonically varying density is modeled as

ρ = ˆrho+
1

c2
p′t (4.79)

with the spatially and temporally constant mean part ˆrho. Inserting Eq.
4.71 into Eq. 4.59 yields the mass source term

S ′m =
1

c2

∂p′t
∂t

+ ux
1

c2

∂p′t
∂x

. (C.11)

Inserting Eq. 4.79 and Eq. C.11 along with Eq. C.6 in the one-dimensional
continuity equation C.4 yields a zero velocity gradient:

∂ux
∂x

= 0 . (C.12a)

Integrating Eq. C.12a under consideration of the inlet boundary condition
Eq. C.1a gives the expression for the velocity

ux = ux|x=0 =
ṁ

A ρ|x=0

(C.12b)

with the temporal derivative

∂ux
∂t

= − ux
ρ|x=0 c

2

∂p′t
∂t

∣∣∣∣
x=0

. (C.12c)
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Incompressible Flow

Inserting Eq. C.12 along with the source term Eq. C.11 into the momentum
equation Eq. C.5 and integrating under consideration of Eq. C.1b yields the
pressure distribution in the flow:

p = pout −
∫ L

x

(
ρ
∂ux
∂t

+ uxS ′m
)
dx̌

= pout −
∂ux
∂t

∫ L

x

ρdx̌+
ux
c2

∫ x

L

∂p′t
∂t
dx̌+

u2
x

c2
+

∫ x

L

∂p′t
∂x̌

dx̌

= pout +
ux
c2

∂p′t
∂x

∣∣∣∣
x=0

(
1

ρ|x=0

∫ L

x

ρdx̌+

∫ x

L

ψdx̌

)
+
u2
x

c2
p′t .

(C.13)
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[16] R. Ewert and W. Schröder. Acoustic Perturbation Equations Based
on Flow Decomposition via Source filtering. Journal of Computational
Physics, 188(2):365–398, 2003.

[17] M. K. Myers. Transport of Energy by Disturbances in Arbitrary Steady
Flows. Journal of Fluid Mechanics, 226:383–400, 1991.

[18] L. Vingert, P. Gicquel, and D. Lourme et al. Fundamental Mechanisms
of Combustion Instabilities, chapter Part 2, pages 145–399. AIAA,
1995.

[19] M. F. Modest. Radiative Heat Transfer. Elsevier, 3rd edition, 2013.

208



BIBLIOGRAPHY

[20] U. Boltendahl. Spektroskopische Bestimmung der Temperatur-
und OH-Konzentrationsverteilung in einer Laminaren H2-O2-
Diffusionsflamme. PhD thesis, RWTH Aachen, 1974.

[21] T. Fiala. Radiation from High Pressure Hydrogen-Oxygen Flames and
its Use in Assessing Rocket Combustion Instability. PhD thesis, Tech-
nische Universität München, 2015.

[22] T. Fiala and T. Sattelmayer. Assessment of Existing and New Modeling
Strategies for the Simulation of OH∗ Radiation in High-Temperature
Flames. CEAS Space Journal, 8(1):47–58, 2016.
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