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Abstract: In this paper, we propose a concurrent learning-based indirect model reference
adaptive control approach for multivariable piecewise affine systems as an enhancement of
our previous work. The main advantage of the concurrent learning-based approach is that the
linear independence condition of the recorded data suffices for the convergence of the estimated
system parameters. The classical persistent excitation assumption of the input signal is not
required. Moreover, it is proved that the closed-loop system is stable even when the system enters
the sliding mode. The numerical example shows that the concurrent learning-based approach
exhibits better tracking performance and achieves parameter convergence when compared with

our previously proposed approach.
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1. INTRODUCTION

Most of the engineering systems are characterized by
nonlinearity and hybrid (continuous states mixed with
discontinuous events) phenomenon, which complicates the
analysis of such systems. There already exist various
approaches and methods in the control community to
analyze and control linear systems. This motivates the
concept to model the hybrid systems or approximate the
nonlinear systems with a set of linear systems, such that
the existing approaches for linear systems can also be
applied to nonlinear and hybrid systems.

Piecewise affine (PWA) systems, as a kind of switched
systems, are proposed to realize this concept because of
its universal approximation capability. The state space in
PWA systems is partitioned into several convex regions by
hyperplanes. Each region is viewed as a linear subsystem,
which can be obtained by linearizing the nonlinear system
around certain operation point. If the trajectory of state
goes through different regions, the dynamics of the PWA
system switches among the corresponding subsystems.

The major challenges we face when we apply the control
theory into the real world are model uncertainties and dis-
turbances from the environment. With large uncertainties
and disturbances, a single pre-tuned controller might not
be able to stabilize the closed-loop system. By using adap-
tive control, the control gains are adapted to eliminate the
negative influence of the disturbances and uncertainties.
For the adaptive identification of PWA systems, both hy-
perplanes and subsystem parameters are to be estimated.
In Kersting and Buss (2015), the hyperplane estimation is
explored by using the total least square approach, while

subsystem parameter identification is studied in Kersting
and Buss (2017a).

In the literature, there exist various adaptive control
approaches for switched systems. The work of Sang and
Tao mainly focuses on the model reference adaptive control
(MRAC) of piecewise linear (PWL) systems. Sang and Tao
(2012a) and Sang and Tao (2012b) represent the results of
state tracking and output tracking, respectively.

Di Bernardo et al. develops various MRAC approaches
for PWA systems in control canonical form. di Bernardo
et al. (2013) provides a passivity-based MRAC approach
whereas di Bernardo et al. (2016) extends the previous
results to the case where the sliding mode can not be
neglected. Moreover, this method has its counterpart for
the discrete-time case and is presented in Bernardo et al.
(2013).

All of the above-mentioned MRAC methods are direct
MRAC approaches in the sense that the controller gains
are updated based on tracking error without estimating
the system parameters. Considering the case, where the
identification of system parameters is a part of the control
objective, the indirect MRAC can be applied. In indirect
MRAC, the control gains are updated based on the esti-
mated system parameters. In Kersting and Buss (2017b),
an indirect MRAC for multivariable PWA systems is pro-
posed. The asymptotic convergence of tracking error is
proved by using a common Lyapunov function. Under
the persistently exciting (PE) condition, all the estimated
subsystem parameters are proved to converge to the real
values.



The PE assumption requires that the input signals should
contain different frequencies. This causes oscillations and
vibrations in the real engineering systems, which might
be harmful to the plants. A recently proposed approach,
concurrent learning Chowdhary et al. (2013), replaces the
restrictive PE condition with some mild assumption on the
linear independence of the recorded data.

This work enhances the indirect MRAC approach pre-
sented in Kersting and Buss (2017b) by integrating concur-
rent learning. Without requiring the PE condition, the pro-
posed approach guarantees the convergence of the subsys-
tem parameters to their real values. Besides, the controller
gains are converged to the nominal values. Moreover, the
closed-loop system is proved to be stable when the system
enters the sliding mode. Compared to the previous ap-
proach, the concurrent learning-based approach exhibits
better tracking performance and guarantees parameter
convergence without PE input signals.

The rest of this paper is structured as follows. Section
2 defines the PWA systems and introduces the MRAC
approach. The concurrent learning-based indirect MRAC
is displayed in Section 3. The stability proof and conver-
gence analysis are also provided. The validated through
a numerical simulation in Section 4. The conclusion and
discussion are followed in Section 5.

2. PRELIMINARIES AND PROBLEM
FORMULATION

In this section, the definition of PWA systems and the
model reference adaptive control approach are revisited.

A piecewise affine system with s € N subsystems takes the
form

j::Aix—&—Biu—i-fi, 1=1,2,---,s (1)
where x € R™ and u € RP represent the state of the PWA
system and control input. The system matrix 4; € R®*"™,
the input matrix B; € R™*P and the affine term f; € R™
characterize the dynamics of i-th subsystem.

The state space of a PWA system is partitioned into s
convex regions 2;,4 = 1,---,s. The boundaries of the
convex regions can be described by a set of hyperplanes
in the state space, which are analytically expressed by a
set of inequalities

Q, = {a: € R"|H, m =< 0} (2)

where a hyperplane is expressed by one row of H;. The
operator =< represents < or < in the element-wise. In the
context of PWA systems, the region partitions do not
exhibit overlap, i.e., Q; N Q; = 0,7 # j. The following
indicator function can be utilized to determine the current
activated subsystem

1, if z7(t) € Q;
xilt) = {0, otherwise ®)
Since there is no overlap among the regions, we have
Soi_ixi =1and x;(¢)x;(t) =01if i # j.

Here we make an usual assumption in the study of the
adaptive control of PWA systems (see di Bernardo et al.
(2013), di Bernardo et al. (2016), Bernardo et al. (2013))
that the partitions of the state space is known, which

means that the indicator function x;(¢) is also known. In
the case, where the PWA system is used to approximate
an uncertain nonlinear system, the region partitions can
be determined by the designer. Based on the partitions,
one can proceed with controller design as we will present
in this paper.

The goal of the MRAC is to enforce the trajectory of the
controlled system to track the trajectory generated by a
reference model. Consider a PWA reference system

where A, = >0 AmiXi» Bm = Y.;_1 BmiXis fm =
>, fmiXi are the parameters of the reference system.
T, € R™ and r € RP denote the state of the reference
system and reference input.

For simplicity and without loss of generality, we assume
that the space partition of the reference system is the
same as the one of the controlled PWA system. If more
flexibility is desired in the practice, each convex region
of the controlled PWA system can be further divided into
several regions with the same subsystem parameters, while
different subsystem parameters can be designed for these
regions of the reference system.

Assume each subsystem of the reference system is stable
and thus there exists symmetric and positive definite
matrix P; € R™" for given symmetric and positive
definite matrix Q; € R™*™ such that

AL P+ PiAy; = —Qi. (5)
In this work, a common quadratic Lyapunov function
(CQLF) is assumed to exist, i.e. P, = P. In general, the
existence of the common P matrix requires the matrix set
A,,.; to fulfill some conditions as shown in Shorten et al.
(2003). However, the reference system is given by the user
and can be designed to fulfill the conditions to have CQLF.
Therefore, this assumption is not restrictive.

The concept of indirect MRAC is to update the control
gains based on the estimated parameters. For switching
systems, the parameters of each subsystem are estimated
separately and each subsystem has its corresponding con-
trol gains. If i-th subsystem is activated, the parameters
of this subsystem are estimated and the corresponding
control gains are adapted by using the estimated i-th
subsystem parameters. Therefore, the control law takes
the form

u(t) = Ky (t)a(t) + K (O)r(t) + Kg(t), (6)
with

Ky =Y xiKui, Ko=) xilu, K=Y xiKp.
=1 i—1 i—1

(7)
where K ; € RP*", K,; € RP*" and K¢; € RP denote the
control gains for ¢-th subsystem.

The problem we would like to solve in this work is for-
mulated as follows: Given a reference system and a PWA
system with known state space partitions and unknown
subsystem parameters A;, B; and f;, design an adaptive
control law u(t) such that the state x(t) of the PWA system
tracks the state x,,(t) of the reference system and the
system parameters converge to their real values without
PE input signals.



3. MAIN RESULTS

In this section, we present the concurrent learning-based
indirect MRAC approach for PWA systems. The control
and adaptation laws are derived and the stability proof is
provided.

Inserting (6) into the PWA system equation (1) yields

&= x4
i=1

Letting the closed-loop system (8) equal to the reference
system (4), we obtain the matching equations

Anmi = Ai + Bi K,
B,.; = B;K};, (9)
for = £+ B.K3,,
where Kz;, K7;, K3, are called nominal control gains. They
are obtained by solving matching equations if all the
subsystem parameters A;, B;, f; are known and B; has full
column rank fori=1,---,s
K} = Bl (Ami — A2),
K}; = B! By,
K;z = Bj(fmi - fi),

with (-)' denoting the Moore-Penrose pseudoinverse.

i + BiKy)x + B Kyir + (BiKyi + fi)) (8)

(10)

The classical indirect adaptive control approach updates
the control gains by replacing the system parameters in
(10) with the estimated parameters. This, however, may

introduce singularity by calculating B;r (t). To avoid this
problem, we follow our previous work Kersting and Buss
(2017b) to apply the dynamic gain adjustment approach.
Define the closed-loop estimation errors as

eai = A; + BiKyi — A,
Bi — BiKri - Bmi7 (11)
ri = fi + BiKyi — fmis

where A;, B; and fi denote the estimated system param-
eters of i-th mode. Based on the closed-loop estimation
errors, the control gains adaptation obeys

K, = —S! BF e ai,
Kyi = =S B}iei,
Ky = =S Bl ey

We assume that the matrices S; € RP*P exist and are
known such that K;S; are symmetric and positive defi-
nite. This is a common assumption in the adaptive control,
see Tao (2014). It remains to determine the adaptation
law for parameter estimation. Our proposed concurrent
learning-based approach combines the current data and
recorded history data for the estimation

A= AS + AR, B, = BS + BR, f, = f°+ fR. (13)
with the superscript C representing the parameter adapta-

tion with the current data, while the superscript R means
the adaptation with the recorded data.

(12)

Suppose & denoting the predicted states, we define

b= And+ > (A — Awi)e + Biu+ fi)x
=1

(14)

The parameter update law based on the current data and
closed-loop estimation errors takes the form

AY = —y;Paa” — e,
BY = —xiPau" —en KL — epi K5 — 4K, (15)
f8=—xiP& — ey,

where T = & — x denotes the prediction error of system
states.

The idea of concurrent learning is to use the history data
concurrently to update the estimated parameters. Suppose
Ti;,Wi;, Ty; to represent the j-th recorded state, input and
derivative of state of i-th subsystem, we define ¢;; as

e, (1) = Ai(D)wi, + Bi(t)ws, + fit) — &, (16)
and insert (1) to replace &;; leading to

)
ei, (1) = (Ai(t) — Ay, + (Bi(t) — Bi)us,

i + (filt) = f)
= ity + Biltyus, + fi(t).

(17)

propose the following update law based on the recorded
data

. q

iR T

Aff = —xiv ) eial,
J=1

. q

AR T

Bff = —xiv Y _eiul,
i=1
q

R

= =X E Eijs

i=1

where ¢ denotes the number of recorded data and ¢ > n+
p + 1 holds, y is a positive scaling factor.

(18)

Compared with the approach proposed in our previous
paper Kersting and Buss (2017b), the concurrent learning-
based method proposed here supplements the additional
adaptation terms (18), which depend on the recorded data.
Now we proceed to explore, how the modified adaptive
law affects the control and parameter convergence. The
state tracking and parameter identification performance
are summarized in the following theorem.

Theorem 1. Consider a reference system (4) with CQLF.
The PWA system (1) with known state space partitions
and unknown subsystem parameters is controlled by (6)
with the adaptation laws (12), (11) and (13). Let the
recorded data stacks Z; € R("tPT1X4 contain n+p+1 lin-
early independent vectors z;, = [;v;‘c, ul  1])T. If the input
matrices B; have full column rank, the pairs (Apmi, Bmi)
are controllable, then the state of the PWA system asymp-
totically tracks the reference state x,,. Furthermore, the
estimated parameters fli, Bi, fi converge to their true val-
ues and the control gains Kg;, K,;, Ky; converge to the
nominal gains as t — oo.

Proof. Consider the following candidate Lyapunov func-
tion



1 1o S . N
V=@ PE+ oY ((ALA) + (B Bi) + [ fi
(19)
with My; = (K, S;)~! € RP*P, Taking the time derivative
of V yields

. 1 . .
V= §(§;TP5: + 27 P%)

Vi

+ > (r(AT A) + (BT BE) + T f°)
i=1

Voa

=1

V2b
+ 3 (tr(ATAR) + te(BIBE) + JT 1F)
=1

Vs
(20)
Inserting the parameter update law based on current data
(15), indirect update law of control gains (12) and closed-
loop estimation error (11) into Vi, Va, and Vi yields

(% Z QmiX:)T
i=1

Vi+ Vag + Vap = —

S

- Z(tr(sﬁism) +tr(ehepi) + tr(e?isfi))

i=1

(21)
Detailed derivations of this step can be found in Kersting
and Buss (2017b). Substituting the A%, BF and £ in V3
with (18) gives

S
=2 X (er( 4] Z%
i=1

V3ai

) + tr BTZEZ ;.
.7

Jj=1

VShi

+ tr(-fiT Z €i; ))

—_———
Vagi

(22)
Inserting (17) into Va,; yields

q q q
(AT (A Y _wiyly + Bi ) jwiyaly + fi ) al)
j=1 j=1 j=1

e o - ijirr;
=tr(A] [4; B; f;] |22, wiwi |)

15 ij

2,
—_————

&1

Viai = ytr

(23)

Using the property of trace tr(X7Y) = vec(X)Tvec(Y),
(23) can be further transformed as

Vi = vvec(fli)Tvec([[li B; fl} £14) (24)
Recalling the compatibility of vectorization with Kro-
necker product vec(ABC) = (CT ® A)vec(B), it follows

V3az 7V€C(A )Tvec( n [A B fz] §14) (25)
= yvec(A)T (], ® L)vec([4; B; f])
Similarly, we can obtain
Vapi = yvee(By)" (&3, @ In)vec([A; B; fi]) (26)
and
Vagi = yvee(f;)" (€5 ® I,)vec([A; B; fi]) (27)
with r
Zj x%uaj‘ Z] Li;
Goi = | 2o upuy | &= | Do) i (28)
§ Wi j
Summing up Vgai, Vapi and Vs £ yields
V%m + VSbi + V3fi
~ i R (SR & o
=v[vec(A;) vec(B;) vec(fi)T] &1 @ I, Vec([ B; f; ] )
& 01,
o e o
_’YVGC( [A Bz 2] )T §2TZ & In VGC([Al Bl fz])
&hel,
(29)
Note that
oI, iyl iy
gel,| = Z uz7x3j Uiy, Wi | ® I
637,; ® I J .’tgj Ui ; 1 (30)
l'i].
= (Z Ui [xij Ui 1])T®I”
j 1
Therefore, we obtain
Vsai + V3bi + V3fi = 79751‘52' (31)
with
Li - I
== (Z wi, | @6, wi, )T @I, 0; =vec([A; B; fi])
j 1
J
(32)

So the derivative of the candidate Lyapunov function
becomes

. ~ 1 S ~ S SO
V=- JUT(§ D Quixa)E =7 Y xif; Eib;
=1 i=1

S
=Y (tr(ehiens) + tr(ehieni) + tr(efiess)-
i=1

The linear independence of the n+p+1 vectors z;, implies
the full rank of the data stack Z;, from which it follows
that Z;Z!" is positive definite. Since the identity matrix I,,
is positive definite, the Kronecker product =; = ZiZiT ® 1,
is also positive definite, which together with the positive
definiteness of Q,; implies the negative semidefiniteness
of V.

(33)

Now we consider the case, where the closed-loop system
exhibits sliding mode behavior. V' along the sliding mode
solution needs to be analyzed. According to the Filippov



concept Filippov (2013), we evaluate the convex combina-~
tions of the vector fields around the sliding surface. This

can be done by substituting x; € {0,1} with x; € [0,1] in
the expression of V. Hence, we have
Z QumiXi)& <0 (34)
and
hd ~, ~
—v Y xibi =:6; <0, (35)

i=1
which leads to the negative semidefiniteness of V even
when the system enters sliding mode. This indicates
the boundedness of state prediction error Z, estimated
subsystem parameters AZ-,Bi7 fz (and equivalently 0, e
Loo) and control gains K,;, K, Ky;. This further im-
plies €44,€Bis€f8 € Loo. Moreover, from V it follows
€Ai,EBiEfi € Lo and él € L.

From the boundedness of & and €4;,€pi,6f € Lo N Lo,
it follows &,e4,ep,ey — 0 as t — oo, z,u € L and
limy_y oo ( — ) = 0.

Furthermore, the recorded data x;,,u;; € L due to the
boundedness of z,u. This together with 6, € Lo results
in €;; € L. Considering (18) we have AlR, Bf“, flR €L
From (15) we can obtain AC BC fic_ € L. Therefore,
let 6; = Vec([{liBifiD and it yields 9}-,6‘2 € Lo, which
togetherAwith 0; € Loo N Lo legds to 8; — 0 ast — oo.
Hence, A; — A;,B; — B; and f; — f; ast — oo.

Finally, we study the convergence of the controller gains.
Considering the full column rank assumption of B; and
taking the convergence of Az, Bl, f“sA ,€pi and ey; into
(11), we can conclude that K,; — K}, K,; — K, and
Ky — K} as t — 0.

Remark  One condition to guarantee the convergence
of the control and subsystem parameters is the linear
independence of the sampled data vectors {z;,}. Here
we use the singular value maximizing data recording
algorithm proposed in Chowdhary and Johnson (2011)
to maximize the singular value of the data stack Z; and
obtain rich information. By doing so the condition of linear
independence can be fulfilled faster.

4. NUMERICAL VALIDATION

In this section, the proposed concurrent learning-based
MRAC approach is validated through a numerical exam-

ple.

We take the mass-spring-damper system from Kersting
and Buss (2017b) to validate the proposed algorithm. The
system is shown in the Fig. 1, where m; = kg, mo = 1kg
denote the masses, d = 1Ns/m is the damping factor,
p1, p2 represent the displacement of the two spring, F, Fb
are the forces operated on the masses, respectively. The
left mass is connected with the static wall by a spring
with static spring constant ¢g = 1N/m whereas the two
masses are connected with the right spring, which has a
stiffness with a PWA characteristics

2 F 14# F %
o Fe(p1,p2)

% —VVWA—

Z my ]:I ma

22 T T

77 I I

2 d ! d :

¢ D1 . D2
— —

Fig. 1. The mass-spring-damper system

10N /m, if |po—p1| <1m
Fc(plvp?) = 1N/ma 1fp2 — D1 > 1m (36)
100N /m, ifpo —p1 < —1m

Defining the state vector = = [p1, p1, p2, Do)’ and the input
vector u = [F1, FQ]T, the system dynamics can be written
as a PWA system in the state space form as (1). The
reference system is chosen as

0O 1 0 0 00
. 2510 0 0 2% 0
tm=1 49 o o 1 |Tmt|o ool 6D
0 0 —25-10 0 25

which exhibits a decoupling motion of the two masses.
The control goal of our approach is to enforce dynamics of
the controlled PWA system to track the trajectory of the
reference system.
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o 10 20 3 40 50 60 70 8 90 _ 100
2 5 : : : : ‘ ‘ ‘ ‘ with CL
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-5 L . . L . . L . - reference
o 10 20 30 4 5 60 70 80 U 1
- \ \ \ \ \ \ \ ] with CL
g / ‘ ‘ / ‘ ‘ / ‘ [—without CL|
o 10 20 30 40 50 60 70 80 9eoho
#19 ‘ - : : - : ‘ ‘waim o
%—*—” —withou
-10 LT 1 lf—rJ\\ 1 'fv—"\ L - reference
0 10 20 30 40 50 60 90 100
HE R = \ ’ H wnasc]
S [1] L [ [ 7wnhoutCL
0 10 20 30 40 50 60 100

1[s]

Fig. 2. State tracking performance of indirect MRAC with
and without concurrent learning

We use the reference signal r = [ry, 5|7, where r; =
3sin(0.5t) and ro is a periodic rectangular wave switching
among the values {—2,0,2} with time interval T = 30s.
The scaling factor v is specified to be 20. The same com-
mon P matrix is utilized as in Kersting and Buss (2017Db).
Besides, the singular value maximizing data recording
algorithm is utilized to manage the data for concurrent
learning.

Fig.2 shows the state tracking performance of the indi-
rect MRAC approach with and without concurrent learn-
ing. ‘CL’ in the legends stands for ‘concurrent learning’.
The black dashed lines depict the states of the reference
model. The red lines and blue lines show the states of
the controlled PWA system with and without concurrent
learning, respectively. No significant difference between
the performance of the two approaches is observed for
the positions(z; and z3). However, we can see that the
red trajectories of the velocity components(zo and x4)



exhibit fewer peaks compared to the corresponding blue
lines. Hence, using concurrent learning improves the state
tracking performance of the controlled system.

20
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Fig. 3. Parameter convergence of indirect MRAC with and
without concurrent learning

In Fig.3, the norm of the parameter estimation errors 6; by
using algorithms with and without concurrent learning are
displayed in red and blue lines, respectively. By using con-
current learning, ||6;|| converges to zero for Vi € {1,2,3}.
Compared to the concurrent learning-based approach, the
approach from our previous work exhibits unsatisfactory
convergence performance of the parameter estimation er-
rors.

Fig.4 displays the convergence of the controller gains of
subsystem 2 (the controller gains for other subsystems are
similar and thus not shown because of clarity) by applying
concurrent learning-based MRAC approach. The dashed
lines represent the nominal gains and the solid lines stand
for the adaptation gains. The elements in the gain matrices
are distinguished by different colors. We can see that the
controller gains converge to their nominal values, which
validates the conclusion of Theorem 1.

5. CONCLUSION

In this paper, we propose a concurrent learning-based
indirect MRAC approach for multivariable PWA systems.
With the proposed approach, the controlled PWA system
tracks the trajectory of the reference system asymptoti-
cally. With the common Lyapunov function, the closed-
loop system is stable under arbitrary switching and in
sliding mode. Furthermore, if the recorded data of concur-
rent learning is linearly independent, the system param-

I 1 I I ! | |
10 20 30 40 50 60 70 80 90 100

: :
Ky2100

50 f;;g//

0\ [ e R N S L L L

0 10 20 3 40 50 60 70 80 90 100

10
K

0 ~—

) SEESEE— S e S

10 20 30 40 50 60 70 80 90 100

Fig. 4. Convergence of controller gains with concurrent
learning-based indirect MRAC

eters converge to their real values and the control gains
converge to the nominal gains. The simulation shows an
improvement of the state tracking and parameter estima-
tion performance when compared with our previous work.
Future work will be focused on relaxing the assumption of
known region partitions of the PWA systems.
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