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Abstract

Cells are the building blocks of life, understanding their functions, cell fate decisions and
interplay with other cells is crucial to pin-point mechanisms that might get dysregulated
and promote disease development. This information is only accessible at the single-cell
resolution, therefore it is not surprising that single-cell RNA sequencing studies have been
on the rise in recent years. This technology empowers the profiling of millions of cells by
now and allows to reveal cellular heterogeneity, novel cell types, signalling networks and
provides a mean to study altered patterns in pathological conditions.

Throughout the presented work, three major diseases of the lung are studied via single
cell RNA-sequencing technologies: interstitial lung disease ILD, chronic obstructive pul-
monary disorder COPD, and the recently emerged coronavirus disease COVID-19. The
obtained transcriptomic profiles can be leveraged to chart disease progression. However,
as tissue samples are most often obtained from patients with end stage disease, the mech-
anisms that initiate disease development would be impossible to observe. For many years,
the laboratory mouse (Mus Musculus) has remained the quintessential research animal
of choice for studying human pathology. Accordingly, to increase the information recov-
ery as much as possible, transcriptomic analyses were performed on cells from a variety
of origins, ranging from lung organoid cultures, mouse models up to in vivo patient tissue.

I first explored the course of early lung development. The dense temporal resolution
enabled a characterization of gene expression changes along the differentiation trajec-
tory. Thereafter, scRNA-seq data obtained from mouse models was utilized to study the
response of acute and chronic lung injury. As a result, the dynamics of mouse lung re-
generation could be chartered for the first time at single-cell resolution. This led to the
discovery of a transient cell state that precedes the regeneration of depleted cell popula-
tions. The hypotheses were extended to human patients suffering from lung fibrosis and
further experimental validation. The comparison to the human setting pointed towards
defective terminal differentiation of lung stem cells during regeneration and increased in-
tercellular communication between pathological cell states, ultimately promoting patho-
genesis. In a subsequent part the focus was shifted towards COPD, particularly to how
the accumulation of infiltrating immune cells in response to harmful particle exposure
leads to tissue damage. Pre-existing experimental data suggested the prevention of such
tissue damage via inhibition of certain signalling pathways. An appropriate mouse model
enabled the dissection of these mechanisms at the cellular level. The final part revolves
around COVID-19 and its effect on the adaptive immune cells. Here I validated the cor-
respondence of the derived antigen-induced T cell signatures from in vitro experiments in
human patient data.

Overall, affected cell populations, cell state shifts and alterations in cellular commu-
nication following some sort of perturbations were of interest in all of these data sets. In
each sub-project I focused on the most intriguing aspects, which will be laid out in greater
detail throughout this thesis.





Zusammenfassung

Zellen bilden den Grundbaustein allen Lebens, ihre Funktionen, Entscheidungen während
der Differenzierung und Zusammenspiel mit weiteren Zellen zu verstehen ist ein wesentlicher
Punkt um die Mechanismen aufzufinden, die vermutlich fehlreguliert sind und letztendlich
zu einer Krankheitsentwicklung führen. Diese Information ist nur auf der Einzelzell- ebene
zugänglich, daher ist es nicht verwunderlich dass Einzellzell-RNA Sequenzierungs- meth-
oden in den letzten Jahren an hoher Beliebheit gewannen. Diese Technologie befähigt
uns heutzutage Millionen von Zellen zu messen und die zelluläre Heterogeneität, neue
Zelltypen und Signalnetzwerke aufzuzeigen, und stellt damit Mittel zur Verfügung, um
die veränderten Muster in pathologischen Bedingungen zu erforschen.

Im Verlauf dieser Arbeit werden drei bedeutende Lungenkrankheiten mittels Einzellzell-
RNA Sequenzierung untersucht: interstitielle Lungenerkrankung ILD, chronisch obstruk-
tive Lungenerkrankung COPD und die vor kurzem aufgetretene Coronavirus-Krankheit
COVID-19. Die erhaltenen Transkriptome können genutzt werden, um den Krankheitsver-
lauf abzubilden. Jedoch sind die Gewebsproben meist aus Patienten, die sich im Endsta-
dium der Krankheit befinden, daher wäre es nicht möglich die Mechanismen einzufangen,
welche eine Krankheitsentwicklung anstoßen. Seit vielen Jahren wird die Labormaus
(Mus Musculus) als essentielles Versuchstier eingesetzt, um die menschliche Pathologie zu
erforschen. Dementsprechend wurden transkriptomische Analysen basierend auf Zellen
aus unterschiedlichsten Quellen durchgeführt. Diese reichen von Organoidkulturen über
Mausmodelle bis hin zu in vivo Gewebsproben aus Patienten.

Zunächst habe ich den Verlauf der frühen Lungenentwicklung erkundet. Die dichte
Zeitauflösung ermöglichte eine Charakterisierung der Genexpressionsveränderungen ent-
lang der Differenzierung. Anschließend wurden scRNA-seq Daten basierend auf einem
Mausmodell genutzt, um die Reaktionsmuster in Bezug auf akute sowie chronische Lun-
genverletzungen zu studieren. In einem Teil konnte die Dynamik der Lungenregenera-
tion in Mäusen erstmals in Einzelzell-Auflösung beschrieben werden. Dies führte zu dem
Auffinden eines transienten Zellzustandes, der einer Regeneration der dezimierten Zellpop-
ulationen vorausgeht. Die aufgestellten Hypothesen wurden auf Humanpatienten, die an
Lungenfibrose erkrankt waren, ausgeweitet. Ein Vergleich zu der menschlichen Situa-
tion wies auf einen fehlerhaften Differenzierungsprozess der Lungenstammzellen während
der Regeneration hin. Zudem wurde verstärkte interzelluläre Kommunikation zwischen
pathologischen Zellzuständen aufgefunden, welche höchstwahrscheinlich zu einer Krankheit-
sentstehung beiträgt. In einem folgenden Teil wurde der Fokus auf COPD gelegt, ins-
besondere wie die Anhäufung von einwandernden Immunzellen als Reaktion auf schädliche
Substanzen zu Gewebsschäden führt. Vorherige experimentelle Daten, basierend auf In-
hibition gewisser Signalwege, wiesen auf eine Vorbeugung solcher Schäden hin. Durch
angemessene Mausmodelle konnten die zugrundeliegenden Mechanismen auf zellulärer
Ebene weiter aufgeschüsselt werden.

Der finale Teil behandelt die Auswirkung von COVID-19 auf die Zellen des adap-
tiven Immunsystems. Hierbei konnte ich abwägen, wie gut sich die Antigen-induzierten
Signaturen in T Zellen, die aus in vitro Experimenten abgeleitet wurden, mit Transkrip-
tomdaten aus Humanpatienten decken.
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Now, here, you see, it takes all the running
you can do, to keep in the same place.

The Red Queen Hypothesis
Lewis Caroll - Through the Looking Glass

Chapter 1

Introduction

During the Red Queen’s race that takes place in Lewis Carroll’s Through the Looking-
Glass, Alice could not move forward despite constantly running. While panting, she points
out “Well, in our country, you’d generally get to somewhere else - if you run very fast for
a long time”. The queen responds that in her country, things worked a little differently.
If one would like to get somewhere, they would have to run at least twice as fast as that.
This statement - although fitting for painting the picture of the bizarre world of wonder-
land that Alice ended up in - reflects an essential aspect of evolutionary biology. Leigh
Van Valen was among those that recognized the applicability to their work and termed it
the Red Queen’s Hypothesis.1 A species is under constant pressure to adapt and overcome
challenges better and faster than competing species in order to survive and ensure the
transfer of its genes to future generations.

However, this quote can not only be applied in an evolutionary sense but captures the
trend that science has been undergoing in general. It has become increasingly easier to
share methods, reagents, results and also failures across the globe. This sets the perfect
environment for the fast development of new hypotheses and their adaptation based on
rapid feedback from renowned peers. In recent years, technological advances have led to
an explosion of data, especially in the biological field. These span from a few molecule
sequences, that can be stored in text files, up to atlas-level measurements for a large num-
ber of samples, for which whole data bases have to be set up. Accompanying the rapid
increase of data, an equally growing number of methods is necessary to make sense of the
accumulation of information. Many methods described in this thesis have been developed
in the last few years, are constantly being improved, and likely will be obsolete and re-
placed by superior approaches in the near future. Nevertheless, the consequences in this
case are not as drastic as the extinction of an entire species. On the contrary, the speed at
which biological research is progressing will not only enable deciphering mechanisms that
have been inaccessible thus far, but will also have positive effects on society at large. As
one of science’s main objectives is to improve people’s health and general well-being, the
contemporary surge should and is being used for knowledge acquirement and propagation.

We will have to keep running to keep the pace.



2 CHAPTER 1. INTRODUCTION

1.1 Key technologies for the characterization of cells

Figure 1.1: SEM of cork (tissue
from bark of the cork oak tree),
showing its cell structure2.

Individual cells are the smallest unit of an organism
and generally referred to as the building blocks of life.
The term “cell” has been coined by the English physi-
cist Robert Hooke (1635 – 1702). He described his ob-
servations with microscopes in his book Micrographia
(1665) and was the first to visualize a microorganism,
the microfungus Mucor.3

Interestingly, when Hooke was looking at a thin slice
of cork under his microscope, the small box-like units
he saw reminded him of “cells”, the rooms in which
Christian monks used to live and meditate in (from
Latin cella, meaning a small room). Although Hooke
used the word in a different context, the term cell still
remains up to this date.4,5

The human body is estimated to be made up of 4 x 1013 cells,6 each of them manag-
ing their gene expression program and maintaining intercellular interactions in order to
ensure normal cellular function. Already small dysfunctions are sufficient to disrupt these
processes, leading to flawed phenotypes or, in the worst case, manifest as human disease.
As shown by cancer, the malfunctions generated in one single cell result in uncontrolled
cell growth, potentially spreading throughout larger parts of the tissue and ultimately
leading to the demise of an entire organism. In order to capture such dysfunctions, it
remains a major challenge to understand biological processes and their interplay at the
lowest level, e.g. pin-point the cells which play a role in certain diseases’ progression. The
process of classifying cells based on their properties has been ongoing since more than 150
years. Traditionally, it was mainly based on the cell’s morphology, such as location, size
or shape.7

Already in the 1930s Ernst Ruska, Reinhold Rüdenberg and many others sought to find a
way to visualize micro-organisms. Rüdenberg for instance aimed to overcome limitation
of contemporary low resolution capture of the submicroscopic polio virus, and to provide
strategies for the diagnosis and treatment of cases of polio. With that goal, electron mi-
croscopy came into existence. By using a beam of accelerated electrons these microscopes
provide a thousand-fold higher resolution than light microscopes. Not only viruses could
be visualized, but also the structure of small biological specimen, such as micro-organisms,
cells or crystals, enabling a distinction from each other based on their structural features.8

Only a decade later in 1941, Albert Coons first described immunostainings, a method
that harnesses the principle of antibodies binding to specific antigens.9 By coupling a
fluorescent dye to antibodies specific to pneumococcal antigens and incubating with in-
fected animal tissues, Coons showed that the antibodies remained specific for their target
bacterial strains. Unlike uninfected tissues, antibodies in infected tissue agglutinated the
bacteria and fluoresced brightly after excitation by ultraviolet light. The technique spread
quickly across research disciplines, showing that it is possible to localize certain proteins
of interest in biological tissues.10
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In 1965, Fulwyler described a device that was capable of isolating biological cells of in-
terest.11 This was achieved by suspending the cells in a conducting medium and capturing
them in droplets. A stream of droplets is generated, in which each droplet is electrically
charged according to their measured volume. By entering an electric field, those droplets
that contain cells that are to be separated from the mixture are deflected accordingly into
a collection tube.
A few years later, Bonner et al. developed Fluorescence-Activated Cell Sorting (FACS)
based on Fulwyler’s separation technique.12 Instead of an electric charge, the sorting pa-
rameter was cell fluorescence. The medium flows ideally one cell at a time through a laser
beam, where a light signal is produced whenever a fluorescent cell crosses the laser beam.
It became possible to tag cells by different fluorescent markers (e.g. by reactions with
fluorescently labelled antibodies) which recognize specific surface markers. Additional
physio-chemical features such as cell size, forward and sideward scatter can be measured
and enabled sorting of the cells into distinct populations based on these characteristics.13

Given the technological progress at every step, an increasingly detailed description
of each cell type was facilitated. Nonetheless, some limitations remained, for instance
the techniques up until then could only be employed on easily dissociable tissues. By
restricting fluorescent labelling to surface markers, a rather targeted approach was en-
forced. This relies heavily on prior knowledge of known cell type markers and does not
allow the systematic discovery of yet undescribed cell types. Furthermore, it became clear
that morphologically indistinguishable cells can still exhibit drastically different molec-
ular functions. Characterizing cells based on superficial features such as morphology or
the presence of a small number of markers alone does not reflect the whole picture.14,15

Instead, over years efforts were made that tried to dig into the underlying roots that cause
these outward features rather than merely looking at their manifestation.

The phenotype, i.e. the observable traits of cells, depends on the genetic information
stored in their DNA. The transfer of that information happens via gene expression, a pro-
cess that is carried out by all known organisms and shown in Fig. 1.2b. The information of
the DNA is replicated into messenger RNA (mRNA), which is transported into the cyto-
plasm and gets translated to an amino acid sequence. After additional post-translational
modifications that further influence the structure and properties, the final products in
form of proteins are generated. Proteins are known as the molecular machinery of life as
they maintain cellular functions.
Gene expression is regulated by the turnover of gene transcripts, indicated by the amount
of copies of each expressed gene within in a cell. Measuring the expression levels reveals
a snapshot of the set of RNA molecules present in a biological system, which ultimately
dictates what cells are doing or what they are capable of at a given point in time. Scientist
started discerning that altered patterns of gene expression reflect many cellular decisions
regarding survival, growth and differentiation.16 It became alluring to further determine
factors that regulate the expression, be they nutritional, hormonal, environmental or due
to certain pathological conditions that arise in aberrant environments, e.g. disease. This
led to a rising interest in quantifying transcription and paved the way for a variety of
methods. There were three techniques prevalently applied for measuring mRNA, which
are still in common usage up to this day.
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Figure 1.2: Conversion of genetic information to phenotype. a Structure and com-
ponents of an eukaryotic cell. b Flow of genetic information in a biological system. DNA
is transcribed in the cell’s nucleus (transcription), resulting mRNA travels to ribosomes in
cytoplasm where proteins are synthesized using mRNA as template (translation). c Additional
post-translational modifications change protein structure and diversify their function. Partly
adapted from Alberts (2008)17 and Wang et al. (2014).18

The first, and most extensively used at that time, was Northern blotting, described
by Alwine et al. in 1977.19 Its underlying principle is the use of electrophoresis to sep-
arate RNA samples by size and detect it on a membrane. In an initial step total RNA
is extracted from a tissue and immobilized on a solid membrane. A hybridization probe
with a base sequence complementary to the sequence of the target mRNA is prepared.
Hybridization signals can then be detected and allow a quantification of transcript levels
of the gene of interest.20 Although Northern blotting remains one of the key techniques
in molecular biology, it does require relatively large amounts of input RNA.
The second method, the reverse transcription polymerase chain reaction (RT-PCR), pro-
vides considerable increase in sensitivity over Northern blotting and remains one of the
most sensitive methods to detect (even low-abundance) gene transcripts. It is an in vitro
method that combines amplification of defined mRNA sequences and their detection into
one single step. After reverse transcribing mRNA into complementary DNA (cDNA),
these sequences form the templates for exponential amplification using polymerase chain
reaction (PCR). This reaction incorporates a heat stable DNA polymerase in order to
amplify double-stranded DNA in an exponential manner. PCR consists of three main
steps: heat denaturation, primer annealing and primer elongation.21 Fluorophores are
then added to monitor the amplification rates. These are excited and generate a light
signal when bound to double-stranded DNA (PCR product), thus the PCR product con-
centration correlates with fluorescence intensity. After each amplification cycle, in which
the amount of DNA sequences doubles, the fluorescent signal is measured and allows an
accurate quantification of the mRNA levels.22

In contrast to the first two methods, fluorescence in situ hybridization (FISH) enables
localization of transcripts to specific cells within a tissue. It circumvents the requirement
of artificially amplifying the mRNA and averaging the signal across many cells from dif-
ferent locations. FISH is an adaptation of the approach presented by Joseph Gall and
Mary Lou Pardue in 1969.23 Molecular hybridization uses labelled DNA or RNA sequences
as natural probes, as a way to localize their complementary counterpart in a biological
sample. When the probe meets its target sequence, detectable hybridization occurs. Non-
specifically paired sequences will be cleared away in the washing steps and only strongly
bound strands remain hybridized. In the original study this was demonstrated using
radioactive copies of a ribosomal DNA sequence and detecting biding events in tissue
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autoradiographically.24 Following this work, Rudkin and Stollar replaced the radioactive
labels in hybridization probes by fluorescent labels. Briefly, after denaturation of both
target and probe sequences, hydrogen bonds can form between complementary sequences
in the subsequent hybridization step. The sites of hybridization can then be detected
directly in their tissue context using a fluorescent microscope.25

Facilitated by technological advances, the simultaneous analysis of expression levels
of thousands of genes was rapidly made possible. The DNA microarray hybridization
system was introduced by Patrick O. Brown’s group in 199526 and is conceptually simi-
lar to FISH. Thousands of microscopic DNA fragments are fixated on solid surfaces for
hybridization analysis of corresponding, fluorescently labelled genes. As the signals are
localized to spots on the array, it is easier to detect and quantify the hybridization sig-
nals. DNA microarrays provide a platform for screening the gene expression patterns in
virtually any biologic sample in a more parallelized format.27

Furthermore, by using a two-colour fluorescence labelling approach or separate microar-
rays, it is possible to assess whether genes are differentially expressed. One could compare
hybridization events of the same target genes, once in diseased and once in healthy tissue.
As the expression response of thousands of genes could be monitored in a coordinated
fashion by such arrays, their popularity in biomedical research did rise drastically: The
amount of studies that employed this method increased exponentially in the 1990s. For
instance, microarrays were widely employed for the cancer research, providing a tool to
determine molecular differences between healthy and malignant cells but also to identify
genes that are implicated in tumor formation or progression.28 Despite their broad appli-
cation, the methods were not perfect yet and faced certain limitations, such as reliance
upon existing knowledge about genome sequences and distortion of signals due to high
background levels of cross-hybridization.

In a more recent surge, the field of genomic research has been revolutionized by the
advent of DNA sequencing. High-throughput sequencing technologies enabled massive-
parallelization and further reduction in labour and cost to sequence millions of reads
in a single run, making these methods accessible for whole-transcriptome analyses. Re-
markably, by this method termed RNA sequencing, certain limitations encountered by
microarrays could be overcome. It has been shown that the detection is not restricted to
transcript-specific probes any longer, instead novel transcripts could be recovered. Fur-
thermore, rare or low-abundance transcripts could be detected by simply increasing the
sequencing coverage, allowing to find lowly expressed genes that might still show differ-
ential pattern in pathological conditions.29,30

Therefore, it is not surprising that over the years the measurement of transcriptome-wide
gene expression has switched from microarrays to sequencing.31 With these breakthroughs
in genomics and transcriptomics, together with innumerable other key technologies, the
complex regulatory networks present in biological samples could be assessed in a more
systematic fashion - providing the means to identify new genes and pathways that play
essential roles in disease progression, or to discover targets for novel therapies.

As RNA sequencing constitutes the foundation of this thesis, the next section is ded-
icated to outline the progression and key aspects of the method.
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1.2 Increasing the resolution of transcriptomics

Scientists around the globe came together in an effort to completely map all genes present
in the human genome, physically as well as functionally. The research program was based
on two key insights that arose in recent decades:32

1. a global views on genomes could greatly improve biomedical research, by allowing
researchers to tackle problems in a comprehensive and unbiased fashion

2. the creation of such global views would require a communal effort in infrastructure
building, unlike anything previously attempted in biomedical research

This international effort laid the groundwork for accelerating biomedical research. It pro-
vided a reference for genomic sequences and enabled to pin-point anchoring points (e.g.
proteins, genes, single nucleid polymorphism SNPs) that were significantly altered in dis-
ease. One level of mining the genome sequence for biological information would be by
exploring the transcriptome at a given time, as a way to reflect the active genes that
control the processes occurring in the cells.

As described in the previous section, RNA sequencing was a major breakthrough at
the start of this century, replacing the widely used microarrays for measuring gene ex-
pression levels of a large number of input cells. A basic overview of the main steps in
a standard RNA-seq protocol is given in Fig. 1.3. The first step is the extraction and
purification of RNA from a sample of interest followed by an enrichment of target RNAs.
Most commonly used is poly(A) capture, to select for polyadenylated RNAs. Next, the
molecules are fragmented to appropriate size and reverse transcribed into double-stranded
cDNA. The strands are flanked with adapters at their 3’ and 5’ ends and amplified by
PCR, using the adapter sequences as primers. After sequencing the library (see section
2.3), the transcripts can be mapped against a reference genome to enable gene annotation
and further downstream data analysis.
The capability to assess the transcriptome for a biological sample showed potential to be
integrated into a variety of research areas. By progressive cost reductions and paralleliza-
tion, the high throughput approach of RNA-seq became accessible to a larger number
of scientists. Especially its main application, which is quantification of gene regulation,
enabled uncovering the molecular processes and components in an organism.

cDNA Library

Reverse transcription, PCR, 
adapter ligation and sequencing

Target mRNA

Extract mRNA

...TCATAGGGATGATCGTTGATCAACAGGAACACTGA...

ATAGGGAT...
TCGTTGAT...

AACACTGA...

gene2 gene3gene1

Biological sample

Map sequenced reads to reference 
genome to assign gene names

Alignment

Figure 1.3: Scheme of the experimental steps in a RNAseq protocol. The cDNA library
is built by isolating RNA targets from biological samples, reverse transcribing, amplifying and
tagging mRNAs with sequencing adapters. After sequencing, the reads are mapped against a
reference genome. Adapted from Wang et al. (2019).31

Of particular interest was the identification of gene sets that show alternating patterns
across conditions. The settings to which the analyses could be applied to seemed endless,
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comparing the gene expression between different tissues, genotypes, stimulations, time
points, disease states etc. In clinical research for instance RNA-seq revealed the gene
response to certain stimulations, providing a platform to assess the efficacy of therapeutic
drugs.31 Nonetheless, the quantification could be delineated even further, as was shown
by recent developments in the transcriptomic field.

The gene expression measurement methods described above have retrospectively been
titled bulk RNA-seq, as these were based on bulk tissue samples. Such samples contain
ensemble measurements from a mixture of input cells. The major assumption is that the
averaged assays catch the dominant biological mechanism of the individual cells belonging
to the population. On the one hand, this assumption is necessary to create an expressive
data set to allow further analyses. On the other hand, there are potentially cells whose
behaviours are far from the mean.33 Together with the rise of RNA-seq in the early 00’s,
opinions arose on how averaged data sets do not necessarily reflect the character of any
single cell in them, obscuring cell-to-cell variations in a given population.34 The averaged
approach is appropriate enough for the study of homogeneous samples, however medical
research would benefit greatly from an increased resolution.

Heterogeneity is a property of cell populations and implies the presence of cell-to-cell
variability with respect to certain cellular traits, e.g. their morphology or their level of
proteins. Cellular heterogeneity had often been conflated with noise before studies of gene
expression or protein levels in mammalian tissues began to reveal that there is cell-to-cell
variance, even within similar cell types in the same tissue.35 Not only is this variance
non-neglectable, stochastic fluctuations in levels of gene expression can play a critical
biological role and trigger cell fate decisions. Such differences in expression explain how
apparently identical cells in a homogeneous environment can exhibit strikingly diverse
behaviour.36 Defining cell types and states opens the door to assessing compositions in
both homeostatic and perturbed conditions. Fig. 1.4 gives an illustrative example why
in certain cases the analysis at single-cell level can be beneficial. Given a small farm with
different species of animals with clearly distinguishable features, there are two routes for
conducting studies on this population. The first one is in a bulk fashion (Fig. 1.4a),
meaning one considers and averages the features across all species. The resulting signal
would rather reflect a mythical creature, containing parts of every animal, incapable of
resolving the heterogeneity in the population. In the second one each animal is considered
separately prior to measurement of their features, which would yield a clearer picture of
the population of interest (Fig. 1.4b). Relating back to transcriptomics, one measures
the profiles of biological tissues (farm), for which the composition of cell types (species)
is in many cases not known in advance.

Purifying cells into distinct populations on the basis of well-established markers is one
way of resolving the transcriptomic signal. Nonetheless, many of such markers still ob-
scure some subpopulations, e.g. CD14+ monocytes do all share CD14 expression, but can
be further divided into subtypes with distinct characteristics.39 This approach will not
work for yet undescribed cell states, and poses a fundamental limitation as the discovery
of such condition-specific states is one of the main interests of tissue analysis.
The cells transition between multiple states particularly during developmental processes.
Cell plasticity is commonly illustrated using the analogy of Waddington’s landscape of
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Figure 1.4: Comparison of well-established bulk transcriptomic approach with single-
cell transcriptomic analysis. a Visual example demonstrating how information loss occurs
after averaging over population. b Prior separation of animal species (figuratively cell popula-
tions) leads to a clearer representation, enabling more granular analyses. c Cell differentiation
along Waddington’s landscape. Uncovering temporal dynamics is hardly possible by averaging
signal of all cells at a time point due to unsynchronized processes. Instead order cells by
their underlying time. d Misleading conclusions arise if no proper separation of cell types is
performed, e.g. correlation of gene A and B in multiple subpopulations. Partly adapted from
10x37 and Trapnell (2015).38

possible states.40 Waddington described an uneven landscape comprised of valleys, cor-
responding to likely cell states, and hills, reflecting unlikely cell states. A cell’s devel-
opmental path is similar to a marble rolling down from the peak of this landscape, but
instead of following a single trajectory, there are multiple potential paths influenced by
the landscape’s layout (Fig. 1.4c).

Cells often behave in an asynchronous manner along their gradual differentiation, mak-
ing it difficult to put clear boundaries. Instead it might be more correct to catalogue cell
types in a first layer and stratify their different flavors in a second layer, in form of so-
called cell states which are induced in response to external factors. This characterization
poses a challenge in itself and is hardly possible to tackle with bulk measurements, as
these destroy the boundaries of individual cells. Single-cell technology on the other hand
can not only determine a cell’s location on this landscape, i.e. its stage in development,
but furthermore assess the molecular mechanisms that shape the landscape itself.38

Apart from the decreased accuracy, averaging across many cells can lead to incorrect
conclusions altogether. In a hypothetical example, if a population is a mixture of two
subpopulations with different expression levels of a gene A and gene B, it will not be
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possible to capture correlation trends without properly separating them by type before-
hand (Fig. 1.4c). Additionally, one major pitfall is that it is unclear whether the changed
expression pattern of a given gene arises due to up-/down-regulation in each cell, or can
simply be attributed to the frequency change of a specific cell type population. As another
example, a down-regulation could be indicated by measuring a gene’s levels after certain
drug treatment, whereas in reality the cell type expressing the gene of interest has been
partially depleted instead.

Ensemble measurements are neither as labour intensive nor complex due to much lower
levels of technical noise. Data acquired on single-cell level scales up to several thousands
of cells and is intuitively harder to process. Technical errors and unwanted variability
can be introduced to the data set, which could be misinterpreted as important biological
heterogeneity where there is none.33 Although certain computational approaches can be
adapted from existing ones, more sophisticated quality control steps and normalization
methods have to be developed tailored to the larger, more artefact-heavy data sets.
Nonetheless, putting in extra effort and establishing analyses at a much higher resolution
allows to tackle biological problems that have been inaccessible this far. There are funda-
mental limitations in ensemble measurements which make them unsuited for the study of
heterogeneous systems. Although this field is still relatively new, the power of single-cell
RNA-seq (scRNA-seq) was highlighted in a vast number of studies already (Fig. 1.5). In
the last decade considerable growth in the field of scRNA-seq methods has been made,
both on the experimental as well as the computational side. This technology has been
used to assess the transcriptomic profiles of a variety of organs, including regions of the
brain,41,42,43 the retina,44,45,46 the pancreas47,48,49 and for early embryonic development in
model organisms.50,51 Further potential applications range from systematic discovery of
new cell types, to determining cell-fate decision points and key players during differenti-
ation, up to resolving main pathways and mechanisms that are involved in pathogenesis
at an unprecedented level of resolution.

0

25

50

75

100

month of publication

nu
m

be
r o

f d
at

a 
se

ts

single-cell RNAseq Data Sets (GEO)a b
GSE150170

GSE161228

GSE156683

GSE146026

GSE140493

GSE130711

GSE116672

GSE115978GSE118723

GSE103322
GSE89567

GSE72056

0

5000

10000

15000

month of publication

nu
m

be
r o

f s
am

pl
es

country
a
a
a
a
a
a

China
Germany
Israel
USA

other

Samples per scRNAseq Data Set (GEO)

Tang 2009
Macosko 2015

Mus musculus (1325)
Homo sapiens (962)
Homo sapiens and
Mus musculus (136)
Danio rerio (35)
Drosophila 
melanogaster (34)
Gallus gallus (16)
Rattus norvegicus (16)
Arabidopsis thaliana (14)
Caenorhabditis elegans (8)
other (149)

01
.20

10

01
.20

12

01
.20

14

01
.20

16

01
.20

18

01
.20

20

United Kingdom

01
.20

10

01
.20

12

01
.20

14

01
.20

16

01
.20

18

01
.20

20

c Proportion of studied Organisms (GEO)

Figure 1.5: Growth of single-cell RNAseq data sets in Gene Expression Omnibus
GEO from 2010 to 2020. a Number of scRNA-seq data sets and b number of samples
per data set per month. First data set (Tang et al.)52 and publication introducing droplet-
based capture methods (Macosko et al.)44 are highlighted. Upper 2 Percentile are coloured by
country listed in GEO. c Pie chart showing proportions of organisms studied.



10 CHAPTER 1. INTRODUCTION

1.3 Recent advances in single-cell RNA-sequencing

In recent years numerous assays have been proposed and optimized to work at the level of
single cells, getting more refined, less labour-intensive and incorporating high-throughput
approaches. The next section will give an overview of the key technologies that have en-
abled such a drastic rise in popularity and applicability of scRNA-seq. The first attempt
at sequencing an entire transcriptome at the level of one single cell dates back to 1992,
when Eberwine and colleagues tried to understand how changes at the molecular level
lead to different functional properties, even in a small number of morphologically similar
cells.53 The authors successfully dissociated cells from a defined region of a rat hippocam-
pus, reverse transcribed the recovered mRNA of a selected few genes and finally increased
the product using linear amplification in a first, and PCR amplification in a second step.

Several years later in 2009, a transcriptome-wide investigation of solely one manually
picked cell was performed for the first time. Building on the concept of DNA microarrays,
Tang et al. managed to incorporate the benefits of next-generation sequencing into single-
cell transcriptome analysis.52 In many conditions, especially early embryonic development,
only a small number of cells is available in the biological system, whereas profiling tech-
niques require microgram amounts of total RNA. Tang and colleagues could showcase
that their modified workflow of whole-transcriptome amplification and gene expression
analysis could reliably recover the expression of manually picked blastomeres from early
mouse development and detect 75% more genes compared to the standard microarray.
With these primary approaches, the perks of single-cell resolution were demonstrated and
made generally accessible by commercial assays and high-throughput methods.
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It is not surprising that the workflow has been continuously optimised in the follow-
ing years and fueled a consistent increase in the number of cells that could be studied
at once.55,54 With the introduction of sample multiplexing, i.e. assaying many cells in
parallel, microfluidic technologies and improved cell capture methods, the data set sizes
jumped to several thousands of cells. These numbers continue to rise even further (Fig.
1.6). By now, a plethora of methods have been introduced for scRNA-seq analyses, each of
which has different strengths and weaknesses. The choice of protocol should be guided by
the specific research question, whether one would prefer profiling larger number of cells
at lower transcript coverage, e.g. to profile cell type composition in general, or rather
quantify condition effects at higher sensitivity in only selected populations of cells.56

The initial steps of scRNA-seq protocols are reminiscent of the steps in RNA-seq and
shared across different platforms. This encompasses cell isolation, lysis, reverse transcrip-
tion, amplification and finally sequencing as described previously. The main difference
is the additional physical separation into smaller reaction chambers, or alternatively the
labelling of gene transcripts such that they can be traced back to their cell of origin.
The points in which scRNA-seq methods typically diverge from each other can be boiled
down to how the following key challenges are addressed: automatic single-cell isolation,
transcript amplification and sequencing method.54 A broad overview of most commonly
applied technologies is given in Fig. 1.7. For cell isolation, the protocols can be roughly
divided into three categories. The first would be microfluidic devices that trap cells inside
hydrogel droplets, such as inDrop,57 Drop-seq44 and the commercialized 10x Genomics
Chromium.45 The major advantage of the droplet strategy is the rapid compartmen-
talisation into single-cell reaction chambers at a frequency of several thousand droplets
in seconds, enabling massive parallelization and reaction throughput at relatively low
cost.58,59 These techniques are heavily featured for data generation throughout this work,
and are therefore described in more detail in section 2.1.
Although differing in details of sequence design and material, the droplets in all three as-
says are designed to simultaneously capture beads and cells. The on-bead primers contain
a PCR handle, a cell barcode, an unique molecular identifier of 4-8 bp sequence (UMI)
for amplification bias correction, and a poly-T tail.59 However, it has been established
that only up to 10% of transcripts will be retrieved and reverse transcribed,60 making
the detection rates of droplet-based methods relatively low compared to other capture
methods. Still, many studies have shown that despite this low sequencing depth a robust
identification of cell identity is possible. Their cost-efficient capture and library produc-
tion of large number of cells make these methods attractive for certain scenarios, e.g. if
the overall composition, or identification of rare subpopulations are the main interest.

The second isolation category is the physical separation of cells into 96-well plates.
Coupled to cell-sorters, such as FACS or by using micro pipetting, cells are placed in
individual wells containing lysis buffer. Up to 500 cells can be analyzed in a single
experiment, each capturing 5 000 to 10 000 genes. However, due to this set-up, reverse
transcription has to be carried out in each well separately, leading to numerous pipetting
steps and potential technical noise and batch effects.56 The increased sensitivity comes
at a higher cost, power simulations illustrated how Drop-seq in particular is more cost-
efficient for very large number of cells, whereas the plate-based methods SCRB-seq,61

MARS-seq62 and Smart-seq263 allowed superior characterization for fewer cells.64
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Figure 1.7: Key differences of prominent scRNA-seq technologies. a Cell capture can
be performed using nano-liter droplets, separation into 96-well plate-based or by the automated
C1 chips. b Droplet- and some plate-based methods enable pooled transcript amplification
using cellular barcodes, allowing for only 3’ sequencing. Other plate-based methods and Flu-
idigm C1 enable full-length sequencing due to PCR amplification per individual well. Adapted
from Ziegenhain et al. (2017)64 and Papalexi et al. (2018).56

Nonetheless, any cell that can be sorted can be analyzed, allowing greater generaliz-
ability. Coupled with their high sensitivity, plate-based methods are especially fitting for
small-scale experiments with a focus on specifically sorted cells. The last isolation strat-
egy is a commercial tool for passive cell capture released by Fluidigm. The C1 system is
a microfluidic chip designed to load and separate cells into very small reaction chambers
in an automated manner, combining the RNA extraction and library preparation step
into one and decreasing manual labour tremendously. Its major drawback however is the
amount of cells required as minimum input, which is more than 10 000. It is also advised
to use rather homogeneous cells for the analysis, as cells will reach differently distant lo-
cations on the chip based on their size and introduce a location bias.55 Again, the higher
detection rates are bound to a higher cost, making this technology better suited if a se-
lected population of cells is of interest.
The UMI design in the droplet-based methods, and some of the plate-based methods,
makes it possible to distinguish between original transcripts and amplification duplicates
after PCR. While this reduces the number of PCR reactions to one per experiment/plate,
it also restricts the subsequent sequencing to 3’ as the cell barcodes and PCR handles are
added to only that end of the transcript. Full-length sequencing covering the full gene
body is possible for certain plate-based methods and Fluidigm C1, as the amplification
step is carried out on individual wells separately. This allows to recover not only gene
expression, but also splicing variants and B/T cell receptor repertoire diversity. However,
the number of PCR amplification reactions is equal to the number of cells that are being
profiled, rendering this approach unsuited for studies encompassing large cell numbers.56
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1.4 Anatomy and cell types of the lung
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The human lung is a complex, paired organ found on either side of the heart with the
main purpose of performing gas exchange. It is connected to the most proximal airway,
the trachea, by its right and left bronchi, bordered by the concave-shaped diaphragm and
enclosed by a membrane referred to as the pleura (mesothelium in mice). The lung can
be divided into two smaller units, the so-called lobes. In humans, the right lung consists
of three lobes (superior, middle, and inferior), whereas the left lung consists of two lobes
(superior and inferior).66

Each of the two main bronchi divides further into progressively narrower airways (bron-
chioles). The main bronchi are reinforced with hyline cartilage, whereas the bronchioles
are surrounded by smooth muscles for structural support. Starting with the trachea, the
air passes through many branchings of airways before reaching the most distal part, the
alveoli. Here the airways and blood vessels unite in form of thin alveolar epithelial cells
and the fine capillary network that covers them.67 Alveoli are the units facilitating gas
exchange, as alveolar and capillary walls meet and enable gases to move across. These
start appearing in the 17th to 19th generation of airways at the respiratory bronchioles.
The first 16 generations of airways are referred to as the conducting zone, that proceeds
via the transitional zone to the respiratory zone which starts at the 20th generation65 (Fig
1.8b).
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By now 45 histological cell types of the adult human lung have been discovered, each
with distinct location, structure and function. In a recent molecular profiling study this
number increased further, defining 58 lung populations by their gene expression profiles
and anatomical regions.68

Roughly, these lung cell types can be assembled into the main compartments epithelium,
endothelium, stroma, pleura/mesothelium, neurons and immune cells. The cellular com-
position and structural organization varies depending on the location along the proximal-
distal axis, adding another spatial layer to the cell type classification.

Under normal conditions, turnover in the lung is relatively slow compared to other
organs, but sufficient to maintain homeostasis. In adults, stem cells are a pivotal point
of proliferative hierarchies. They can, either directly or through a sequence of divisions,
give rise to specialized cells with unique functional properties. In the context of injury
response however, proliferation is enhanced in order to rapidly restore normal proportions
of cell types and accommodate repair.69 The heterogeneity in cellular composition, and
therefore different stem cell populations, provides diverse response strategies depending
on the spatial context at the site of the perturbation. With improved technologies, the
potential cell hierarchies are becoming increasingly well-described.
The next section will provide a coarse overview of cell types in the lungs and their estab-
lished differentiation hierarchies.

Epithelium

Epithelium refers to cells covering the surfaces of the body that are exposed to the outside
world and lines the exterior of organs and therefore provide the first barrier of protection.
In the case of the lung, the trachea, bronchi and bronchioles are lined by a pseudo-
stratified epithelium, i.e. one that consists of a single layer or irregularly shaped cells,
all connected to the basement membrane. Underlying the epithelium are blood vessels,
smooth muscles/cartilage, stromal fibroblasts and nerves. The epithelial cells of the lung
can be subdivided into airway and alveolar types.

Human and mice airways have a very similar structure, however the cellular compo-
sition and structure diverges in some points. For instance, in humans the small airway
changes to a more uniformly shaped cuboidal epithelium only at the most distal cells at
the bronchioalveolar duct junctions, whereas in mice much of the small airway is com-
posed of a cuboidal epithelium.70

Due to their constant exposure, the airway epithelial cells have evolved to provide a cer-
tain level of host protection. Atop the epithelium lies a mucuous layer, which traps any
incoming micro-organisms or particles and will sweep those upwards via the so-called
mucouciliary escalator. Involved in this process are secretory cells, which continuously
produce mucins and antimicrobial peptides, and ciliated cells whose cilia beat in unison to
remove debris.70 Interspersed into the airway epithelium are the KRT5+TP63+ basal cells,
which act as progenitor cells to self-renew or replenish secretory and ciliated cells dur-
ing homeostasis and repair.71 Additionally, submucousal glands are cellular arrangements
containing mucous-secreting cells as well as basal cells. In humans both submucousal
glands and basal cells can be found throughout the conducting airways, but are confined
to the trachea and primary bronchi in mice lungs.70
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A subtype of the secretory cells are the goblet cells, located predominantly in the
larger airways, and gradually replaced towards the smaller airways by another secretory
type, the club cells.72 Club cells are conventionally characterized by their expression of
secretoglobins (e.g. SCGB1A1, SCGB3A1, SCGB3A2)73, whereas goblet cells continu-
ously secrete mucins (e.g. MUC5AC, MUC5B).74 Alongside the basal cells, club cells act
as progenitors that on the one hand can produce new ciliated cells,75 and on the other
hand were shown to de-differentiate into a basal cell phenotype, persisting over long term.
The latter was validated by lineage-tracing of Scgba1a1+ or Atpv1b1+ labelled secretory
cells in a mouse trachea model in which specifically basal cells were depleted.76 Under
normal physiological conditions there are few goblet cells, however these may proliferate
excessively in response to acute or chronic injuries. Such goblet hyperplasia results in ex-
aggerated mucous production/accumulation and eventually leads to airway obstruction.
While the mucous layer typically exhibits protective functions, mucous hypersecretion is a
cardinal feature of many severe respiratory conditions, including asthma, chronic obstruc-
tive pulmonary disease and cystic fibrosis.77 There are also some rare cell types scattered
throughout the airways, such as pulmonary neuroendocrine cells (NEC) or ionocytes.78

NEC make up less than 1% of the epithelium, but can be present in groups (neuroen-
docrine bodies) more distal of the airways.79

Alveolar ducts connect the respiratory bronchioles to a cluster of alveoli, which are
many small grape-like sacs with elastic walls that can stretch during air intake. The alve-
oli consist of three main cell types, two types of alveolar cells and alveolar macrophages,
phagocytic cells that roam the alveolar space and remove debris and pathogens that have
reached the alveoli. The alveolar structure is supported by extracellular matrix proteins
secreted by alveolar fibroblasts, and is surrounded by capillary cells.67

Alveolar type 1 cells (AT1) are highly permeable to gases and extremely thin, elongated
cells which cover 95% of the alveolar surface area while making up only 8% of total cells
in the human lung.80 Interspersed among these are alveolar type 2 cells (AT2), which are
much smaller and cuboidal in shape. AT2 cells secrete pulmonary surfactant, a substance
composed of phospholipids and proteins (SFTPA, SFTPB, SFTPC) that reduces the sur-
face tension of the alveoli and prevents alveolar collapse during breathing.80

Apart from maintaining homeostatic turnover of AT1 cells, AT2 cells have been shown
to possess proliferative and stem cell properties.70,72 Several decades ago, it was demon-
strated how their stem cell function gets triggered in response to injury, causing AT2 cells
to self-renew and to replenish the AT1 population.81 This could be confirmed by recent
lineage tracing analyses in mice, in which AT2 cells proliferated and contributed to alve-
olar renewal and repair after bleomycin injury (a chemotherapy drug causing transient
disruption of alveolar structure) and hyperoxia.82,83 With the increased resolution that
can be achieved nowadays, even intermediate differentiation state of AT2 cell en route to
AT1 cells could be described in more detail in vivo repair models, revealing an enrichment
of genes associated with cellular senescence, DNA-damage response signalling and TP53,
TGFβ pathways.84

Whether there is a distinct subpopulation that participates in alveolar repair, or whether
the full population can potentially differentiate further remains an open question. Stem
cell function is fueled by Wnt signals emanating from the niche for stem cells - not only in
the lung, but multiple organs.85 Interestingly, a Wnt-responsive AT2 cell subset marked by
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Axin2 expression demonstrated enhanced organoid formation and increased proliferation,
whereas Wnt-inhibition shunts their differentiation towards AT1 cell lineage. Although it
is not clear how well the results obtained from injury models correspond to alveologenesis
during early lung development, it is hypothesized that dysfunctional repair mechanisms
contribute significantly to disease pathogenesis. The presence and accumulation of ab-
normal epithelial cells in particular was demonstrated in human disease (more details in
section 1.5). Interestingly, some disease-specific cell population show high similarity to
the transient AT2 population after injury, alluding to a potential defective repair and
persistence of these transient states.84,86

Further research particularly on the alveolar compartment is necessary to understand the
mechanisms of injury response and repair and will inform new therapy strategies.
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Figure 1.9: Lineage hierarchies in the lung epithelium. Basal cells act as stem cells in
lung airway and can replenish secretory and ciliated cells. In the alveoli, AT2 cells adopt this
role. Exemplary cell type markers are indicated. Adapted from Tata et al. (2017).70

Leukocytes

The majority of cell types that were captured in the presented whole lung specimen are of
the leukocyte compartment. These are also known as white blood cells and are important
components of the immune system. To perform their protective functions, or in response
to chemical signals, leukocytes routinely leave the bloodstream to migrate to different
locations in the body using the vascular system as a highway. They can cross physical
barriers either by emigration, adhesive crawling or under extreme cellular deformation
(“squeezing”) through adjacent cells in blood vessel walls.87 Leukocytes are derived from
hematopoietic stem cells in the bone marrow and are classified broadly according to their
structure into granulocytes, which contain abundant granules in their cytoplasm (neu-
trophils, eosinophils, basophils, mast cells) and agranulocytes, with far fewer granules
(monocytes, macrophages, lymphocytes).88

Granulocytes are terminally differentiated cells. The most abundant leukocyte in hu-
mans are neutrophils. They are the first responders to the site of infection or invading
pathogens, which they can eliminate via their granules containing antimicrobial agents.
As effector cells of the innate immune system, neutrophils play a key role in the overall im-
mune and inflammatory response.89 Due to their pivotal role, dysfunctions in neutrophils
can lead to the pathogenesis of a many human diseases, including, various lung diseases,
autoimmune and inflammatory diseases and cancer.90,91 Eosinophils on the other hand
represent 2–4% of the total leukocyte count. The prevailing theory is that eosinophils
participate in innate immune responses to parasites, in particular they secrete chemicals
that destroy organisms that are too big for any white blood cell to phagocytize. The
number of eosinophils in the blood and some tissues increases by 20-fold or more known
during specific immune responses and in allergic diseases, including forms of asthma.92,93
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The rarest leukocytes are Basophils, which comprise less than 1% of their total count.
Because of their low abundance, it is hard to obtain these cells, thus their functions are
less known. They generally intensify the inflammatory response and release histamines
and heparins, a process which dilates blood vessels, counteracts blood clotting, and alle-
viates migration of recruited white blood cells.94

The two main types of agranulocytes can be distinguished by their cell lineage. They
originate either from lymphoid stem cells (lymphocytes) or myeloid stem cells (mononu-
clear phagocytes) in the blood. Myeloid progenitors give rise to both dendritic cells (DC)
and monocytes. DCs are antigen-presenting cells that trigger and regulate the adap-
tive immune response, while monocytes are described as cells that circulate the blood
in order to scavenge dying cells or pathogens, and populate tissues as macrophages in
the steady state.95,96 Monocytes can be divided into three populations with distinct sur-
face markers and functions: classical (CD14+CD16-, in mice: Ly6Chigh CD43low), non-
classical (CD14lowCD16+, in mice Ly6low CD43high), and intermediate (CD14+CD16+).39

In steady-state conditions, non-classical monocytes patrol the resting vasculature and
clear damaged endothelial cells, while classical monocytes circulate and survey tissues
without differentiating.97 In inflammatory milieu however, classical monocytes have been
shown to differentiate into macrophages and monocyte-derived dendritic cells, thereby
linking the innate defense to the adaptive immune responses. Monocytes display re-
markable adaption to the challenged environment and ability to migrate to sites of need,
actively shaping inflammation and its resolution in tissues.98,99

Likewise, macrophages show substantial heterogeneity in their phenotype and function
as they occupy multiple tissue niches. They can have fixed locations or wander through
tissues in order to respond to invading pathogens and support tissue homeostasis by re-
moving dead cells and debris.
The major tissue-resident macrophage populations, such as liver kupffer cells, microglia in
the brain and lung alveolar macrophages, are established prior to birth, derived from em-
bryonic precursors that are either yolk sac macrophages or fetal liver monocytes.100,101,102

Particularly in the lung, there are two classes of macrophages, merely separated by the
thin alveolar wall: the more abundant alveolar macrophages (AM) residing within the
lumen of the alveoli, and the interstitial macrophages (IM), arising from blood monocytes
and residing within the lung parenchyma. Their location provokes different functions,
apart from the phagocytosis of foreign particles. AMs catabolise the surfactant of the
alveoli while IMs are assumed to be essential in tissue remodelling/maintenance as well
as antigen presentation.103,104 Recently, two distinct IM subtypes have been described,
located adjacent to either nerve fibers (Lyvelow) or blood vessels (Lyvehigh).105

These populations can maintain themselves during adulthood by self-renewal. How-
ever, macrophage number often expands dramatically in diseased tissues, mostly due to
recruitment of circulating monocytes which then accumulate at the diseased sites.97

In response to substantial loss of embryonic-derived AM, monocytes are recruited to
where the micro-environment shapes them into cells that closely resemble tissue-resident
macrophages.106 A direct link between the monocyte-derived AM and lung injury response
has been established, as their depletion ameliorated disease severity, whereas similar de-
pletion of tissue-resident AM did not have an effect on pathogenesis.
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Interestingly, the monocyte-derived AM persist long-term in the lung even after injury
resolution.107

The above described leukocytes mostly represent the innate arm of immunity, which
is critical for protection and neutralization of pathogens. They recognize non-self cells,
which can be cancer cells, pathogen-infected cells or other cells with abnormal surface
proteins. The non-specific initial inflammatory response further informs and directs a
more effective reaction. The adaptive arm of the immune response is mediated largely by
lymphocytes, which arise from lymphoid stem cells in the bone marrow, and mature in
lymphatic tissues. The three major types are natural killer cells NK, B cells and T cells.108

T cells migrate through the lymphoids in steady state and initiate the response. Dur-
ing maturation in the thymus, each T cell obtains an unique T cell receptor (TCR) with
a variable chain, responsible for a T cell’s specificity. Innate immune cells such as neu-
trophils, macrophages, DCs or NK cells are capable of “presenting” an antigenic peptide
(epitope) derived from the pathogen via their major histocompatibility complex (MHC)
class I or II, to which the epitope is then covalently bound. Upon interaction with the
naive T cell, the antigen can be recognized by the TCR, T cell activation occurs and an
immune response is triggered to defend against the infectious challenge. The subsequent
expansion generates two different subtypes, either helper CD4+ T cells, involved in cy-
tokine and chemokine secretion to recruit new immune cells, or cytotoxic CD8+ T cells,
more streamlined to eliminate the infected host cell by the release of cytotoxins.109

B cells on the other hand mature in the bone-marrow and constitute the second com-
ponent of the adaptive immune response. Less like the cell-mediated response of the
T cells, B cells are primarily responsible for the antibody-mediated immunity, in which
the produced antibodies bind and neutralize invading bacteria or viruses in response to
antigen-presentation by other immune cells. After elimination of the pathogen, both T
and B cells can differentiate to long-lived memory cells, which retain information on the
encountered pathogen. Upon reinfection, the cells are able to mount a protective immune
response tailored to the invading pathogen at a much faster pace (acquired immunity).110
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Figure 1.10: Hematopoietic stem cells HSC give rise to all blood cell types. Leuko-
cytes originate either from myeloid (CMP) or lymphoid stem cells (CLP). CMP additionally
generate erythrocytes, mast cells and megakaryocytes (not shown). Cell type markers are
indicated. Adapted from Hematology: Clinical Principles and Applications (2020).108
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Endothelium

Surrounding the alveoli at the distal parts of the lung lies a mesh of capillary vessels, pro-
viding the respiratory surface for the transfer of oxygen into the blood. The endothelium
refers to structural cells that form the inner surface of these blood vessels. As this cell
layer lies between the blood, airway and lung parenchyma, it acts as a selective barrier
and enables leukocytes to migrate from the vessel to the tissue when necessary as well as
normal blood flow.108 Additional to the structural aspect, lung endothelial cells secrete
cytokines, chemokines, interleukins, adhesion molecules, and growth factors to maintain
tissue function.111 In healthy lungs an intact endothelium prevents the aggregation and
adhesion of platelets and leukocytes to vessel walls. Activated by changes in their cellular
niche, e.g. by injury, endothelial cells can initiate a coagulation pathway, leading to the
formation of a fibrin network and adhesion of platelets.112

Akin to the AT1 and AT2 cells that line the alveolar epithelium, the other side across the
air-blood barrier has recently been described to consist of two interlaced populations: the
CAR4+EDNRB+ aerocytes (aCap), mainly involved in leukocyte migration and in close
contact with AT1 cells to enable gas exchange. The second type are the FCN3+EDN1+

general capillaries (gCap), proposed as a capillary stem cell in homeostasis and repair.113

Mesenchyme

The extracellular matrix (ECM) provides physical support to tissues, and actively in-
fluences cells’ behavior in both health and disease. Alterations in composition, stiffness
or injury initiate a reparative process to maintain tissue architecture and instruct cells
to accumulate and replace damaged tissue.114,115 The replacement occurs via secretion
of ECM components by fibroblasts, which can produce the ECM’s structural proteins
(fibrous collagen, elastin) and adhesive proteins (laminin, fibronectin). They are involved
in a variety of additional roles, such as ECM maintenance, wound healing, inflammation
and tissue fibrosis, accompanied by the ability to produce and react to a broad array of
cytokines and growth factors.114

The stromal cells in the lung show considerable heterogeneity already in healthy condi-
tions, which has yet to be resolved. Each subtype has a distinct anatomical location and
potential to respond to certain chemical signals that promote their activation.116 It is
assumed that the major collagen-producing cells in the lung are a subset of the fibrob-
lasts, the myofibroblasts. These generate contractile forces to activate integrin-bound
TGF-β and are characterized by their expression of the actin proteins ACTA2 and alpha-
smooth muscle actin (α-SMA).117 However, it is still poorly understood which cell popu-
lation forms the source of these ECM-secreting cells in the context of disease. The most
prominent model suggests that a sub-population of residual stromal cells are activated
in response to inflammatory stimuli, start proliferating and secreting ECM. Other con-
troversial models propose an external origin, either from peripheral blood (fibrocytes),118

or even from alveolar epithelial cells, which lose their epithelial characteristics and gain
mesenchymal properties, in a process called epithelial-mesenchymal transition (EMT).119

Although, it should be noted that the literature on EMT is rather conflicted.115,120

As fibroblasts play a vital role in wound healing, their dysfunctions and uncontrolled
matrix production can lead to a pathological scarring that is intrinsic to many fatal lung
diseases (see section 1.5.2). Despite their key roles, the mechanisms and heterogeneity of
these cells still have to be fully elucidated.
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1.5 Pulmonary diseases

The lung is one of the organs most exposed to the external environment and therefore
constantly subjected to harmful substances. These materials encompass a variety of
agents, ranging from chemical substances (Nitrogen dioxide NO2, ozone O3, sulphur diox-
ide SO2), particulate matter (tobacco smoke, exhaust fumes), biological components (e.g.
allergens, derived from fungal spores and allergenic pollen) to bacteria or viruses in the
atmosphere.121

Accordingly the lung requires the ability to protect itself from adverse effects caused by
dangerous agents. There is a multitude of mechanisms in place to defend the organism.
However, inhalation of such airway pollutants interferes with these mechanisms and can
lead to airway injury, that can vary in both cause and effect. This further facilitates the
development or exacerbation of pulmonary diseases.122
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Figure 1.11: Leading causes of death worldwide. a Top 10 causes of death ranked by
number of reported deaths in year 2000 and 2019. b Contribution of top 10 causes of death
to global death numbers in percentage (year 2019). Raw data taken from the World Health
Organization.123

It is not surprising that diseases affecting the lung are among the top global causes
of death, in regard to the total number of lives lost. The World Health Organization
(WHO) recently released a report Global Health Estimates 2020, in which they present
health data and trends of 160 diseases and injuries annually from 2000 to 2019. The
10 leading causes of death can be roughly grouped into cardiovascular (ischaemic heart
disease, stroke), respiratory (chronic obstructive pulmonary disease, lower respiratory in-
fections) and neonatal conditions (Fig. 1.12a). In 2019, these accounted for 55% of the
55.4 million deaths worldwide, while chronic obstructive pulmonary disease (COPD) alone
was responsible for 6% of total deaths and ranked third on this list (see Fig. 1.12b). The
most deadly communicable diseases are lower respiratory infections. Although the num-
ber of deaths decreased, these still claimed at 2.6 million lives in 2019.124 Lung cancers
are among the most common and serious types of cancer. The major risk factor for lung
cancer is smoking, which accounts for 75-80% of these deaths. This form of cancer is
typically preventable, however it is usually diagnosed at an incurable stage.125

Respiratory conditions in general affect millions of people globally and make up a
great portion of disease-related deaths. Even if the disease does not lead to the passing of
an individual, the quality of their life will be heavily impaired. As is the case with many
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health-related fields, respiratory research to improve treatment and possibly even the pre-
vention of pathogenesis remains indispensable. This became gravely clear especially in
2020. The year shaped by the COVID-19 pandemic, caused by the novel coronavirus
SARS-CoV-2, affected not only diseased patients but heavily restricted the lives of non-
infected individuals as well. There was a pressing need to understand its pathogenesis,
mobilizing large numbers of researchers worldwide in search of coping mechanisms and
vaccines. As this outbreak occurred recently, it was not considered yet in the latest re-
ports provided by WHO and is covered separately in section 1.5.3.

There are many additional types of respiratory diseases with varying symptoms and
causes. For this thesis the focus will be on three common lung condition areas by the
means of one specific example respectively. The first would be obstructive lung diseases
characterized by increased resistance to airflow (e.g. COPD, Asthma). The second would
be restrictive conditions, in which the expansion of the lung is confined (e.g. ILD). Many
of these diseases, if severe enough, can lead to respiratory failure, which would be the last
covered condition (e.g. ARDS).126
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Figure 1.12: Overview of main lung diseases and their characteristics. a Comparison of
manifestations in restrictive (lung cannot fully expand with air) to obstructive lung conditions
(lung cannot fully exhale air). Both cases lead to shortness of breath. b Scheme of airway
and alveolar structure in healthy lungs. c Pathologies of three major lung diseases. In COPD,
the small airways are thickened by inflammation, fibrosis and mucous, leading to emphysema
and disruption of alveolar attachments. In IPF, the activated epithelium secretes mediators
that recruit and activate fibroblasts, which grow resistant to apoptosis and persistently secrete
ECM. In ARDS, oedema fluid builds up, first in the interstitium and later in the alveoli.
d Histology of lung sections from healthy patients and patients with pulmonary diseases.
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1.5.1 Chronic obstructive pulmonary disease COPD

The Global Initiative for Chronic Obstructive Lung Disease GOLD describes COPD as127

“a common, preventable and treatable disease that is characterized by persistent
respiratory symptoms and airflow limitation that is due to airway and/or alveolar

abnormalities usually caused by significant exposure to noxious particles or gases and
influenced by host factors including abnormal lung development.”

Among the key drivers for COPD are cigarette smoking and old age and the likelihood
of an outbreak is higher in patients above 40 years of age, with a peak prevalence at 65
years.128 Due to the population growth and its increased average age, the number of global
COPD deaths has increased further in recent years.129 Especially in developing countries
the prevalence has risen strikingly, partially due to the exposure to other forms of air
pollutants additional to cigarette smoke.130,131 Interestingly, not all smokers and exposed
individuals develop an airway obstruction. There is evidence showing that non-smokers
may develop the disease as well, indicating that there is a genetic susceptibility to the
disease.132 As the name implies, this disease is characterized by progressive airflow ob-
struction that is only partly reversible, inflammation in the airways, and systemic effects
or comorbities. Patients typically have chronic cough, impaired exercise tolerance and
shortness of breath over several years due to difficulty exhaling all air from the lungs, also
known as air trapping.

COPD can be classified via the GOLD guidelines (see Tab. 1.1), based on the forced
expiratory volume in 1 second (FEV1, air volume that can be forcefully exhaled in 1
second) and forced vital capacity (FVC, air volume of air that can forcibly be blown out
after full inspiration). In healthy individuals typically above 70% of the vital capacity
can be exhaled in the first second. Due to the airflow limitation, this ratio can be heavily
decreased along disease progression. The disease burden is often aggravated in patients
with other severe conditions, which can be due to bacterial or viral infections.

GOLD1 GOLD2 GOLD3 GOLD4
(mild) (moderate) (severe) (very severe)

FEV1:FVC < 0.70 < 0.70 < 0.70 < 0.70
FEV1 > 80% 79–50% 40-30% < 30%

Table 1.1: GOLD guideline for classification of COPD stages.127

Pathogenesis

The progressive airflow limitation is caused by two major pathologic processes: Destruc-
tion of the lung parenchyma (emphysema) and remodeling/narrowing of small airways
(chronic inflammation). Excessive mucous production by epithelial cells can also con-
tribute to the airway obstruction. The relative contributions of these processes vary from
person to person. Emphysema is characterized by the destruction of the gas-exchanging
surfaces of the lung (alveoli), consequently leading to the loss of alveolar attachments of
the small airways. In healthy individuals elastin fibers are involved in keeping the airways
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open, enabling alveolar air to be expired. In COPD the narrowed airways together with
emphysema decrease lung elastic recoil and diminish the ability of the airways to remain
open during expiration.133,126

The inflammation is caused as response to the inhalation of irritants (cigarette smoke,
biomass fuel, air pollutants) and involves both innate and adaptive immunity. As a first
line of defense increased numbers of neutrophils and macrophages are recruited into the
lung as acute inflammatory response, supported by activation of airway epithelial cells and
mucous secretion. There is a correlation between numbers of neutrophils, macrophages
and lymphocytes in the parenchyma and the degree of inflammation as the disease pro-
gresses.134 Particularly the alveolar macrophages play a key role in orchestrating the
inflammatory response. They release inflammatory mediators after activation, which in
turn attract other proinflammatory cells, such as circulating neutrophils, monocytes, and
lymphocytes.133,135

Figure 1.13: Central role of alveolar
macrophages in COPD. AM, either tis-
sue resident or derived from circulating mono-
cytes, secrete inflammatory mediators (TNF-
α, CXCL1, CXCL8, CCL2, LTB4) that orches-
trate the inflammatory process. Release of
elastolytic enzymes (matrix metalloproteinases
MMP, cathepsins) causes elastolysis, which
contributes to emphysema together with cyto-
toxic T cells. Release of TGF-β1 may induce
fibrosis of small airways. Taken and adapted
from Barnes et al. (2014)133 and (2015).130
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The repair process aims to remodel damaged tissue and return it to its previous state.
However, the regenerative mechanisms of the lung are severely compromised in COPD.
AM have shown reduced phagocytic uptake of bacteria as well as defects in clearance of
apoptotic cells in COPD patients.136,137 This accumulation of apoptotic cells and bacte-
rial colonization may contribute to the failure to resolve inflammation in COPD. Due to
increased numbers of T and B lymphocytes in the lungs, these cells can be organized as
lymphoid follicles in COPD. The number of airways containing such lymphoid follicles has
been shown to increase with disease progression.138 Furthermore, excessive release of the
enzyme lysosomal elastase from both neutrophils and alveolar macrophages after smoke
exposure is hypothesized be involved in the pathogenesis of emphysema. This results
in the destruction of elastin (a structural protein of the lung) and cleavage of type IV
collagen (involved in integrity of the alveolar wall).139,126

Although being a lung disease, COPD is often associated with other chronic conditions.
The most common comorbidities are ischaemic heart disease, diabetes, skeletal muscle
wasting, osteoporosis, depression, and lung cancer. The frequent association of these
severe diseases suggests common risk factors and pathways. As example, tobacco smoke
was shown to be a major risk not only for COPD but also for cardiovascular disease,
osteoporosis, and lung cancer as well.140
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1.5.2 Interstitial lung disease ILD

The American Thoracic Society and European Respiratory Society ATS/ERS published
an international consensus statement in 2000 on the diagnosis of IPF as141

“a specific form of chronic, progressive fibrosing interstitial pneumonia of unknown
cause, occurring primarily in older adults, limited to the lungs, and associated with the

histopathologic pattern of Usual Interstitial Pneumonia.”

The interstitium of the lung fills the space between the alveolar epithelium and the
capillary endothelium. It is a lace-like network of tissue that extends throughout the
lung area and structurally supports the alveoli. One side of the capillary consists of the
fused basement membranes of the epithelial and endothelial layers. On the other side the
interstitium is usually wider and is involved in fluid exchange across the endothelium,
whereas the thin side is responsible for most of the gas exchange.126

Interstitial lung disease (ILD) is an umbrella term for disorders affecting the interstitium
and is typically characterized by inflammation and lung fibrosis. The symptoms include
dyspnea, which typically worsens on exercise, shallow breathing and irritating cough.
The development of lung fibrosis is associated with underlying disorders, such as sar-
coidosis, involving granulomatous tissue, i.e. collections of inflammatory cells that form
lumps, chronic occupational exposures (silicosis, asbestosis), or hypersensitivity pneu-
monitis, which develops as reaction to inhaled organic dust or fumes. Pulmonary fibrosis
can also arise due to unknown causes and thus be idiopathic in nature (IPF), which is the
most common form of ILD.142 IPF has a median survival of 3 to 5 years after its diag-
nosis and is generally viewed as a disease of aging, as its prevalence increases drastically
with age, mostly affecting adults after their fifth decade of life. In patients older than
65 years, the estimated amount of cases is as high as 400 per 100,000 people.143 The key
feature of IPF is progressive scarring and thickening of the interstitium due to accumula-
tion of extracellular matrix in the distal lung, rendering the lung stiff and compromising
its main function of facilitating gas exchange. For the diagnosis of IPF other ILDs with
known causes have to be excluded and the presence of usual interstitial pneumonia UIP
on surgical lung biopsy is required, which is characterized by patchy chronic inflamma-
tion (alveolitis), small aggregates of proliferating fibroblasts (fibroblastic foci) and cystic
spaces with thickened walls composed of dense collagen and fibrous tissue (honeycombs,
formed by dilated bronchioles, which lead to the destruction of alveolar architecture).144,145

Pathogenesis

The lung exhibits remarkable repair mechanisms that allows the well-orchestrated replace-
ment of dead or damaged cells after injury. This includes146

1. Initial response: Epi-/endothelial cells release inflammatory mediators at injury site

2. Platelets: Coagulate to prevent blood loss and increase permeability of blood vessels

3. Inflammatory phase: Neutrophils and macrophages are recruited to clear dead cells

4. Proliferation and migration of fibroblasts: Deposition of extracellular matrix, which
in turn provides structural and biochemical support to neighbouring cells

5. Final remodelling and resolution: Restores normal tissue architecture
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The causes that lead to the development of IPF are not completely understood, still
there is rising evidence proposing that repair mechanisms might be dysregulated. IPF
potentially arises when repetitive epithelial injury to the lung triggers an abnormal re-
generation response.126,145 Macrophages, as crucial regulators of fibrosis, have been at the
center of several recent publications in the field. They are often in close proximity to
fibroblastic foci and have been shown to be involved in ECM processing through secretion
of matrix metalloproteases or by direct uptake of collagen. During the aberrant regen-
eration cascade in IPF their numbers increase and they produce profibrotic cytokines,
contributing to pulmonary fibrosis.147,103 In a recent publication Aran et al. (2019)148

could identify a profibrotic macrophage subtype that appears after bleomycin injury in
mouse lungs. The cell type localized to the fibrotic niche and exerted a transitional profile
between alveolar and monocyte-derived macrophages. While macrophages are well studied
in mouse models, the knowledge about their role in human lung fibrosis is still incomplete.
There has been evidence that proinflammatory cytokines (e.g. macrophage inflammatory
protein CCL18, Chitinase CHI3L1), produced by AM during aberrant wound-healing, are
elevated in BAL fluids of IPF patients.

Figure 1.14: Maladaptive responses to in-
jury in IPF underlying the fibrotic pro-
cess. Activated epithelium releases growth fac-
tors, matrix metalloproteinases MMPs and fur-
ther signals that induce activation of fibrob-
lasts (TGF-β1, FGF), which grow resistant to
apoptosis and persistently produce ECM. Resi-
dent AM are activated and circulating mono-
cytes are recruited to modulate fibrotic re-
sponses and secrete inflammatory mediators
(CCL18, CXCL13, IL-10, TNF-α). Adapted
from Martinez et al. (2017)145 and Desai et
al. (2018).149
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The role of lymphocytes in fibrosis is still controversial. It is known that lymphocytes
are not required for the experimental induction of fibrosis in mice,150 nonetheless regula-
tory T cells for instance can produce the Interleukin IL-10 and platelet-derived growth
factor TGF-β, having the potential to both promote or suppress fibrosis depending on
the context.149

Although increase of inflammatory cells suggested that IPF is a principally inflammatory
disease, many studies have shown that the important aspect lies rather in the complex
cross talk between the alveolar epithelium and mesenchymal cell types.142 There are find-
ings identifying hyperplastic AT2 cells that overlie fibroblastic foci. Such AT2 cells can
be aberrantly active and secrete elevated levels of mediators that promote the migra-
tion and expansion of fibroblasts. These include TGF-β (primary inductor of fibroblast
to myofibroblast differentiation), connective tissue growth factor CTGF, several matrix
metalloproteinases (e.g. MMP1, MMP7, MMP19) and a number of chemokines (e.g. the
immune cell-attracting chemokine CCL18 and certain interkeukins).151 The activated fi-
broblast can grow resistant to apoptosis and continuously secrete ECM components, an
accumulation thereof leading to an unresolvable fibrotic scar.
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1.5.3 Acute respiratory distress syndrome ARDS

The 1994 American European Consensus Conference defined the following pathological
findings as the gold standard for diagnosis of ARDS:152

“ARDS requires the presence of an acute onset, persistent dyspnea, bilateral infiltrates
on chest radiograph consistent with pulmonary edema, and the lack of evidence of

cardiogenic pulmonary edema or a pulmonary artery occlusion.”

In 2011 this standard was updated to the Berlin definition, which furthermore estab-
lished that the respiratory failure has to occur within one week of a known insult or new
or worsening respiratory symptoms and that the respiratory failure could not be explained
by cardiac function/volume overload. Depending on the level of blood oxygenation, the
diagnosis of ARDS can be categorized into “mild”, “moderate” and “severe”. Patients
typically encounter difficulty in breathing, progressive respiratory failure from pulmonary
edema and often require mechanical ventilation because of severe arterial hypoxemia.153

ARDS commonly develops as an end result of a variety of insults to the lung. Crit-
ical to its pathogenesis is epithelial injury, the extent of which is also indicative of the
severity of ARDS. The injury can be due to pneumonia by bacterial and viral products,
hyperoxia or extrinsic factors, including sepsis from non-pulmonary sources, pancreatitis
and major trauma (blunt or penetrating injuries, burns). As a result of the initial injury,
proinflammatory cytokines are released for the activation and recruitment of neutrophils.
These neutrophils subsequently release reactive oxygen species, proteases and cytokines
that damage AT1 cells and capillary endothelial cells, leading to a disruption of the tight
barrier properties and increased permeability of alveolar endothelial and epithelial barri-
ers to liquid and proteins.126

In healthy conditions both AT1 and AT2 cells have the ability to absorb excess fluid from
the airspaces via ion transport channels. Once the oedematous fluid is absorbed into the
lung interstitium, it can be removed by lymphatics and the lung microcirculation. The
increased permeability during pathogenesis of ARDS however leads to an extravascular
accumulation of oedematous fluid rich in proteins, neutrophils and red blood cells into
the alveolar space and interstitium, as well as in the appearance of hyaline membranes,
which are composed of proteins and dead cells that line the alveoli.154,155

The recent surge in coronavirus disease 2019 (COVID-19) had far-reaching effects on
a global scale. In its most severe form, COVID-19 manifests as ARDS and is associated
with prolonged ventilator dependence in intensive care units and high mortality.156 The
next section will give a brief introduction to this type of acute respiratory syndrome.

Coronavirus disease 2019 COVID-19

Coronaviruses are a diverse group of viruses infecting many different animals, and can
cause mild to severe respiratory infections in humans. COVID-19 is caused by the highly
transmissible and pathogenic severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2).157 Starting with reports of several cases of pneumonia of unknown cause in Wuhan
back in late December 2019, the number of confirmed cases increased explosively to several
thousands. Mere weeks later on 30 January, the WHO declared the novel coronavirus
outbreak a public health emergency of international concern.158
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Figure 1.15: Global impact of COVID-19 in 2020 a Number of globally reported COVID-
19 cases and deaths by region. X-axis shows week, y-axis shows number of cases as bars (left)
and number of global deaths (right) as dashed line. b Choropleth map of countries coloured
by total number of reported COVID-19 cases. c COVID-19 cases and deaths split by region
as defined by WHO. For each region, the 10 countries with highest number of total deaths are
highlighted. Raw data taken from World Health Organization (retrieved: 30.Dec.2020).159

Despite heavy containment measures and travel restrictions over months, the ongo-
ing outbreak of COVID-19 poses an extraordinary threat to the global public health
(Fig. 1.15) and has claimed over 4,5 Mio lives (source: Johns Hopkins University, as
of September 2021). COVID-19 manifestation in patients ranges from mild symptoms
(fever, fatigue, dry cough) up to severe respiratory failure. The vast majority of young
people show only mild disease or are asymptomatic, whereas older people above 60 years,
in particular men with comorbidities, have a greater risk of developing a severe respiratory
disease.160

The viral envelope is coated by spike glycoprotein (S), envelope (E), and membrane
(M) proteins. Viral cell entry is facilitated by binding to the human host factor Angiotensin-
Converting Enzyme 2 (ACE2) as the target receptor for SARS-CoV161 (Fig. 1.16). Certain
host proteases are needed for cleavage of the virus’ spike protein and mediating the viral
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entry, such as the Type II Transmembrane Serine Protease TMPRSS2,162 Cathepsin L
and Furin.163 The ACE2 receptor is found on the epithelium of a number of organs such
as the intestine, endothelial cells in the kidney and blood vessels. The main sites of ACE2
and TMPRSS2 co-expressing cells were rigorously investigated and shown to be mainly
in nasal secretory cells, bronchial branches and AT2 cells in the lung and ileal absorptive
enterocytes, explaining some of the tissue tropism of SARS-CoV-2.164,165

Upon binding to epithelial cells, SARS-CoV-2 starts replicating and migrating further
down to alveolar epithelial cells in the lungs, potentially triggering a strong immune re-
sponse due to the rapid expansion of the virus. The initial inflammatory response attracts
T cells to the site of infection in order to eliminate infected cells, facilitating recovery in
most people. In some patients however, the host immune response is dysfunctional and
clearance of the virus is not achieved. Instead, the cytokine storm involving proinflamma-
tory cyto- and chemokines (TNF-α, IL-1, IL-6, IL-8) induces respiratory distress which
may progress to acute lung injury or ARDS during the incubation period of 1 to 14
days. Post-mortem lung tissue histology of deceased COVID-19 patients confirmed char-
acteristics of ARDS, including diffuse alveolar damage, hyaline-membrane formation and
interstitial mononuclear infiltrates, reflecting the inflammatory nature of the injury.166

Figure 1.16: SARS-CoV-2 entry mechanism.
The virus binds to ACE2 as the host target cell
receptor in synergy with the host’s transmembrane
serine protease TMPRSS2. Upon membrane fusion,
the viral genome is released into the host cytoplasm
where it replicates and maturates. After viral assem-
bly and maturation, the virus is released. Adapted
from Hu et al. (2021)157 and Cevik et al. (2020).166
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1.6 Human Cell Atlas HCA

The 150 year old effort of characterizing all cell types present in an organism is still un-
fulfilled, but far from unreachable. On the contrary, the advances as described in the
first section, and the recent progress in methods, especially high throughput single-cell
profiling, have accelerated the potential completion of this endeavour.
Akin to the Human Genome Project, which aimed to build a reference map for all human
genes, a comparable reference map of the molecular phenotypes of cells in healthy human
tissue would pave the way for systematic studies of physiological states, developmental
trajectories, regulatory circuits and cell-cell interactions. Just a few years ago, the idea
of the Human Cell Atlas emerged, an international effort incorporating diverse scientific
expertise in order to provide a harmonized framework and description of all cells in the
human body. This will not be limited to transcriptomic profiles alone, but is planned
to be connected with classical cellular descriptions like spatial location, morphology and
function as well in the near future.14
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Notably, the lung was the central focus of biological research in recent months, and of
great interest for medical research long before the pandemic. The Lung Cell Atlas forms
the flagship-project of the HCA, as the lung was among the 12 priority organs within the
consortium. Although more than 40 discrete cell types have been reported, new findings
and novel cell states continue to be identified, making it evident that our understanding
is still incomplete.78

Among many other things, the year 2020 has show-cased how fast researchers across
the globe join forces and are willing to share data in order to tackle a contemporary crisis,
accompanied by a pressing need for immediate insights.
Large-scale collaborations provide statistical power that is required to uncover underlying
patterns. For instance, in a recent study by Muus and colleagues (2021)167 the integration
of over 200 donors across different ethnicities, the majority of which were part of unpub-
lished data sets at that time, enabled to find associations of COVID-19 to age, sex and
smoking status. Many more studies have already proven the convenience of this inter-
national effort, identifying virus-affected cell populations across tissues at the necessary
resolution.165,164,168

1.7 Outline of this thesis

In the following, the overall structure of this thesis will be outlined briefly. A graphical
overview is given in Fig. 1.17. After having introduced the main experimental protocols
and relevant parts of lung biology as a solid groundwork, chapter 2 provides further
details on the workflow, pre-processing steps and tools that were frequently used during
data analysis. The results section is divided into 4 sub-chapters, which give a brief context
and rational for each project and then list the relevant outcome of analysis. Their order
mirrors the chronological appearance during my PhD period.
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Figure 1.17: Outline of this thesis’ results chapter. a Chapter 3.1 Introduction of
longitudinal scRNA-seq data sets in the form of a differentiation trajectory starting from iPS.
b Chapter 3.2 Bleomycin-induced lung injury and its correspondence to human ILD. c Chapter
3.3 Inhibition of LTβR signalling and its cellular characterization via CS-exposed mice.
d Chapter 3.4 Derive ex vivo signatures of T cells from severely affected COVID-19 patients.
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A general overview of the cell populations, affected cell types and frequency shifts is
added as a common starting point for most analyses, followed by a more specific descrip-
tion of the relevant aspects of each project individually.

Chapter 3.1 revolves around an early project that describes the lung development
starting from human induced pluripotent stem cells up to lung progenitors. Due to the
dense time points of sampling with Drop-seq, a detailed description of gene expression and
their temporal patterns along the differentiation was possible. Already prior to access-
ing the transcriptomes, the co-existence of lung progenitors and hepatocytes during the
differentiation protocol has been perceivable. The genes potentially driving this lineage
specification are therefore additionally explored on the single-cell level.

Chapter 3.2 embodies the main project, as most of the time was devoted to the ex-
ploration of the corresponding data sets. The mechanisms involved in lung regeneration
were characterized using the bleomycin model to mirror acute lung injury. The mouse
model captures aspects of human lung fibrosis, therefore the focus shifted towards the
main affected cell types: the epithelial compartment and their interaction with stromal
populations. In the second part of this chapter, the transferability to human disease,
particularly pulmonary fibrosis, is assessed. This generated hypotheses regarding dysreg-
ulated regeneration that could drive disease pathology, particularly the accumulation of
transient cell states that persist in human disease.

Chapter 3.3 inverts the approach and starts out with observation from human pa-
tients with obstructive pulmonary disease. Particularly the formation of lymphoid follicles
in disease was of interest, and how these could be dispersed following a novel therapeutic
approach. The cellular mechanisms for its efficacy however were not entirely clear, and
were explored using a cigarette smoke exposure mouse model. Furthermore, given the
developments during the writing of this thesis, this mouse data was suited for another
unrelated research question. The status of smoking impacted the development of the coro-
navirus disease 2019, and could be linked to an increased expression of the main entry
factor in some epithelial populations from smoke-exposed mice.

Chapter 3.4 is the final chapter and was in fact not anticipated as part of this work.
It focuses on the recently emerged SARS-CoV-2 pathogen and particularly its effects on
T cells, which are essential in the host’s adaptive immune response. Antigen-specific
gene expression changes were derived from an targeted in vitro experiment, in which T
cells from severely diseased patients were either stimulated with the virus antigen or left
unstimulated. The derived signatures were validated in a number of COVID-19 patient
cohorts. Finally, the induced changes were set into broader context by exploring cellular
communication with other immune cells.

The pre-processing and quality control for each of these projects is structured according
to the overriding workflow which will be introduced in chapter 2. Following a section-wise
description of the projects, the discussion will build an overarching theme by connecting
the key messages and relate these to recent movements in the field. To streamline the
chapters and avoid overcrowding, the exact filtering criteria and final parameters for
visualization of each of the data sets are listed in the appendix.
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1.8 Scientific publications

During the course of my PhD, I was involved in the preparation and publication of several
articles. The following list shows submitted manuscripts and peer-reviewed publications
relevant for each chapter of this thesis:

Chapter 1 - Differentiation trajectory of human pluripotent stem cells

• Ori O*, Ansari M*, Angelidis I, Theis FJ, Schiller HB and Drukker M. Single cell
trajectory analysis of human pluripotent stem cells differentiating towards lung and
hepatocyte progenitors. Manuscript submitted.

Chapter 2 - Bleomycin-induced lung injury and human ILD

• Strunz M*, Simon LM*, Ansari M, Kathiriya JJ, Angelidis I, Mayr CH, Tsidiridis
G, Lange M, Mattner LF et al. and Theis FJ, Schiller HB. Alveolar regeneration
through a Krt8+ transitional stem cell state that persists in human lung fibrosis.
Nat Commun. 2020 Jul 16; 11(1):3559.

• Mayr CH*, Simon LM*, Leuschner G, Ansari M, Schniering J, Geyer PE, Angelidis
I, Strunz M, Singh P, Kneidinger N, et al. and Theis FJ, Schiller HB. Integrative
analysis of cell state changes in lung fibrosis with peripheral protein biomarkers.
EMBO Mol Med. 2021 Apr; 13(4):e12871.

Chapter 3 - Cigarette smoke-exposed mice and human COPD, COVID-19

• Conlon TM*, John-Schuster G*, Heide D, Pfister D, Lehmann M, Hu Y, Ertüz
Z, Lopez MA, Ansari M, Strunz M, Mayr C, Angelidis I, et al. and Königshoff
M, Heikenwalder M, Yildirim AÖ. Inhibition of LTβR signalling activates WNT-
induced regeneration in lung. Nature. 2020 Dec; 588(7836):151-156.

• Muus C*, Luecken MD*, Eraslan G*, Sikkema L*, Waghray A*, Heimberg G*,
Kobayashi Y*, Vaishnav ED*, Subramanian A*, Smillie C*, Jagadeesh KA*, Duong
ET*, Fiskin E*, Triglia ET*, Ansari M*, Cai P*, Lin B*, Buchanan J*, Chen S*,
Shu J*, Haber AL*, Chung H*, Montoro DT*, et al. and Human Cell Atlas Lung
Biological Network. Single-cell meta-analysis of SARS-CoV-2 entry genes across
tissues and demographics. Nat Med. 2021 Mar; 27(3):546-559.

Chapter 4 - Ex vivo signatures of SARS-CoV-2-reactive T cells

• Fischer DS*, Ansari M*, Wagner KI*, Jarosch S, Huang Y, Mayr CH, Strunz M,
Lang NJ, D’Ippolito E, et al. and Theis FJ, Busch DH, Schiller HB, Schober K.
Single-cell RNA sequencing reveals ex vivo signatures of SARS-CoV-2-reactive T
cells through ’reverse phenotyping’. Nat Commun. 2021 Jul; 12(1):4515.

* indicates equal contribution.
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Further publications

Within collaborations, I was involved in further projects which are not specifically dis-
cussed in this thesis. The contributions were mostly scRNA-seq data analyses and have
resulted in the following co-authorships:

• Angelidis I*, Simon LM*, Fernandez IE, Strunz M, Mayr CH, Greiffo FR, Tsitsiridis
G, Ansari M, Graf E, Strom TM, and Theis FJ, Schiller HB. An atlas of the
aging lung mapped by single cell transcriptomics and deep tissue proteomics. Nat
Commun. 2019 Feb; 10(1):963.

• Fischer A*, Koopmans T*, Ramesh P, Christ S, Strunz M, Wannemacher J, Aichler
M, Feuchtinger A, Walch A, Ansari M, et al. and Schiller HB, Rinkevich Y. Post-
surgical adhesions are triggered by calcium-dependent membrane bridges between
mesothelial surfaces. Nat Commun. 2020 Jun; 11(1):3068.

• Hadrup N, Zhernovkov V, Jacobsen NR, Voss C, Strunz M, Ansari M, Schiller
HB, Stoeger T, et al. and Saber AT, Vogel U. Acute Phase Response as a Biologi-
cal Mechanism-of-Action of (Nano)particle-Induced Cardiovascular Disease. Small.
2020 May; 16(21):e1907476.

• Ziegler CGK*, Allon SJ*, Nyquist SK*, Mbano IM*, Miao VN, Tzouanas CN, Cao
Y, Yousif AS, Bals J, Hauser BM, Feldman J, Muus C, et al. and Shalek AK,
Ordovas-Montanes J, HCA Lung Biological Network. SARS-CoV-2 Receptor ACE2
Is an Interferon-Stimulated Gene in Human Airway Epithelial Cells and Is Detected
in Specific Cell Subsets across Tissues. Cell. 2020 May; 181(5):1016-1035.

• Ansari M, Fischer DS and Theis FJ. Learning Tn5 Sequence Bias from ATAC-seq
on Naked Chromatin. ICANN 2020. Lecture Notes in Computer Science, 2020 Oct;

• Lange M, Bergen V, Klein M, Setty M, Reuter B, Bakhti M, Lickert H, Ansari M,
Schniering J, Schiller HB, Pe’er D, and Theis FJ. CellRank for directed single-cell
fate mapping. Nat Methods. 2022 Feb;19(2):159-170.

• Spix B, Butz ES, Chen CC, Rosato AS, Tang R, Jeridi A, Kudrina V, Plesch E,
Wartenberg P, Arlt E, Briukhovetska D, Ansari M, Günsel GG et al. and Grimm
C. Lung emphysema and impaired macrophage elastase clearance in mucolipin 3
deficient mice. Nat Commun. 2022 Jan;13(1):318.

• Chakraborty A, Mastalerz M, Ansari M, Schiller HB and Staab-Weijnitz CA.
Emerging Roles of Airway Epithelial Cells in Idiopathic Pulmonary Fibrosis. Cells.
2022 Mar;11(6):1050.

• Günsel GG*, Conlon T*, Jeridi A*, Kim R, Ertüz Z, Lang NJ, Ansari M, Novikova
M, Jiang D, Strunz M et al. and Yildirim AÖ. The Arginine Methyltransferase
PRMT7 Promotes Extravasation of Monocytes resulting in tissue injury in COPD.
Nat Commun. 2022 Mar 14;13(1):1303

• Wu X, Bos IST, Conlon TM, Ansari M, Verschut V et al. and Gosens R. A
transcriptomics-guided drug target discovery strategy identifies receptor ligands for
lung regeneration. Sci Adv. 2022 Mar 25;8(12):eabj9949.
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Submitted manuscripts

Finally, there are several projects at our institute that are still under active compilation,
or submitted to peer-reviewed journals. Author listings and titles are subject to change.

• Kalgudde Gopal S*, Stefanska AM*, Ansari M, Jiang D, Ramesh P, Bagnoli JW,
Correa-Gallegos D, Christ S, Angelidis I, et al. and Schiller HB, Rinkevich Y. Fate
restricted stromal fibroblasts and adipocytes demonstrate multi-modal responses to
tissue injury. Manuscript submitted and under review.

• Leuschner G*, Mayr CH*, Ansari M, Seeliger B, Frankenberger M, Kneidinger N,
Hatz RA, Anne Hilgendorff A, Prasse A, Behr B, Mann M and Schiller HB. A pro-
teomics workflow reveals predictive autoantigens in idiopathic pulmonary fibrosis.
Manuscript submitted.

Work in Progress

• Voss C*, Ansari M*, Strunz M, Angelidis I, et al. and Theis FJ, Schiller HB,
Stoeger T. Cracking nanotoxicology’s bottleneck: single-cell transcriptomics to de-
cipher nanomaterial specific pulmonary cellular response patterns.
Manuscript in preparation.

• Stoleriu MG*, Ansari M, Heydarian M, Strunz M, Voss C, Schamberger AC,
Schneider JJ, Gerckens M, Burgstaller G, Castelblanco A, et al. and Stoeger T,
Schiller HB, Hilgendorff A. Altered basal cell state in end stage COPD propagates
to differentiated progeny and causes secretory to ciliated cell imbalance.
Manuscript in preparation.

• Schniering J*, Mayr CH*, Ogar P, Strunz M, Angelidis I, Lang NJ, Ansari M et
al. and Schiller HB. Diversity and dynamics of stromal-parenchymal cell crosstalk
in alveolar lung regeneration. Manuscript in preparation.

• Yang L, Heumos L, Angelidis I, Strunz M, Ansari M, Zhou S, Mayr CH, Simon
LM, Theis FJ. and Adler H, Schiller HB. Single-cell transcriptomic dissection of
virus induced immunopathology in interferon gamma receptor null mice.
Manuscript in preparation.

• Yan H*, Ansari M, Lehmann M, et al. and Schiller HB, Koenigshoff M. Dissecting
the cellular and molecular abnormalities of distal lung epithelial progenitor cells in
COPD. Manuscript in preparation.

* indicates equal contribution.





Chapter 2

Methods

2.1 Droplet-based capture methods

ScRNA-seq was the method of choice to tackle the objectives throughout this thesis. In
particular droplet-based capture methods were used to generate the data sets, due to
their cost efficiency and high throughput as described in section 1.3. Drop-seq has been
introduced by Macosko et al. in 201544 and is based on the encapsulation of cells into
nanoliter-sized droplets by the means of microfluidic devices and specialized microbeads.
A barcoding strategy was developed in order to retain a molecular memory of the cell
identity a mRNA was isolated from (Fig. 2.1). Additional to a cell and molecule spe-
cific sequence, the primers on a beads contain a PCR handle to enable amplification in
later steps. A cell’s mRNA is instantly released upon lysis when it is encapsulated in
a droplet, and is captured by barcoded oligonucleotides that are attached on the ideally
co-captured beads. All droplets are collected and broken to release the STAMPs, PCR
and reverse transcription are carried out for the capture and amplify the transcripts and
finally tagmented, which is the random cut of the transcripts and the addition of se-
quencing adapters, resulting in single cell libraries that are ready for sequencing. The
beads contain more than 108 individual primers sharing the same cell barcode but differ
in unique molecular identifiers, which enables mRNA transcripts to be digitally counted
and traced back to the cell they originated from later on.
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Figure 2.1: Drop-seq: capture single cells along with sets of uniquely barcoded
beads. Scheme of single-cell mRNA-seq library preparation with Drop-seq. The tissue of
interest is dissolved into individual cells. A microfluidic device enables capturing these cells in
nanoliter droplets containing lysis buffer. Each droplet ideally compartmentalizes one cell and
one microparticle (bead, with barcoded primers on its surface). The primers on each bead
contain an unique cell barcode (BC) and an additional unique molecular identifier (UMI). Upon
lysis of each cell within a droplet, its mRNAs bind to the primers. The mRNAs are reverse
transcribed (RT) to cDNAs and amplified using PCR, forming the RNA-seq library containing
the transcriptomes of each single cell. Adapted from Macosko et al. (2015).44



36 CHAPTER 2. METHODS

2.2 Experimental methods

The purchases of reagents and experimental procedures listed in this section were all
performed by colleagues as indicated in the corresponding chapter. Nonetheless, the
essential steps in generating the scRNA-seq data sets that were used in the presented
studies are outlined briefly.

2.2.1 Differentiation of iPSCs to NKX2-1+ lung progenitors [section 3.1]

Stem cell maintenance. Human iPSC line NKX2-1eGFP+ (Hannover Medical School)169

was maintained in feeder-free conditions (StemMACS iPS-Brew XF, Miltenyi Biotech)
and passaged with Accutase (Sigma-Aldrich) on tissue cell culture plates pre-coated with
1:100 dilution of Geltrex Basement Membrane Matrix in DMEM/F-12 (ThermoFisher).

Differentiation protocol. To induce definitive endoderm differentiation, hiPSCs
were maintained in iPSC-Brew and when reached 80% confluency (day 0), the cells were
rinsed with DPBS and incubated in Accutase (Sigma-Aldrich) for 10 minutes, at 37°C. The
detached cells were triturated into single-cell suspensions and seeded onto 24-well plates
pre-coated with 1:40 Growth Factor Reduced (GFR) Matrigel (Corning), in a density of 2
x 10 cells/cm. Cells were immediately treated with 100ng/ml activin-A, 1µM CHIR99021,
and 10µM Y-27632 (RD Systems), in Definitive Endoderm Basal Media (DE-BM). On
days 1-6 the DE-BM was supplemented with 100ng/ml activin-A, 1µM CHIR99021 (RD
Systems) and 0.25mM (day 1) and 0.125mM (days 2-6) sodium butyrate (Sigma-Aldrich).
For the foregut endoderm stage the Basal Mediums (FE-BM1 and FE-BM2) were pre-
pared as follows, FE-BM1: DMEM/F12, 1 x GlutaMAX, 1 x B-27 and N-2 supplements,
50U/ml of penicillin/streptomycin, 0.05mg/ml of L-ascorbic acid and 0.4mM of monothio-
glycerol or FE-BM2: 75% IMDM, 25% Ham’s F-12, B27 supplement and N2 supplement,
0.05% bovine serum albumin, 1 x GlutaMAX, 50U/ml of penicillin/streptomycin, and
0.05mg/ml of L-ascorbic acid, 0.4mM of 1-thioglycerol. On day 6 DE cells were collected
with Accutase for 10 minutes at 37°C and re-plated in a density of 1:2-1:4 onto GFR
Matrigel-coated plates. The cells were treated for 2 days (days 6, 7) with 50ng/ml SHH
(RD Systems), 2µM dorsomorphin (Tocris) and 10µΜ SB431542 (Miltenyi Biotec), sup-
plemented with 10µM Y-27632 (RD Systems) for the first 24 hours. On day 8 the medium
was changed to FE-BM1.
To induce the lung progenitor stage on day 10, the medium was switched to FE-BM1
or BM2 containing 20ng/ml recombinant human BMP4 (RD Systems), 50nM retinoic
acid (Sigma-Aldrich), 3µΜ CHIR99021 and 20ng/ml rhFGF10 (RD Systems). For the
inhibition of Notch and TGF-β pathways, 10µΜ SB431542 and 100µM DAPT (TOCRIS
Bioscience) were additionally used at the LP induction stage of differentiation respectively.
[Taken from Ori et al. (2021)170]

2.2.2 Animal handling [section 3.2 and 3.3]

All mice used in the presented studies were purchased from Charles River, Germany, and
maintained at the animal husbandry of the Helmholtz Zentrum München, Munich, Ger-
many. Pathogen-free female C57BL/6J mice were purchased from Charles River Germany
and maintained at the appropriate biosafety level at constant temperature and humidity
with a 12h light cycle. Animals were allowed food and water ad libitum.
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Mice were randomly allocated into experimental groups with no statistical methods used
to predetermine sample size. Sample sizes were chosen based on similar studies from
the literature and sufficient to detect statistically significant differences between groups.
All animal experiments were approved by the ethics committee for animal welfare of the
local government for the administrative region of Upper Bavaria (Regierungspräsidium
Oberbayern) and were conducted under strict governmental and international guidelines
in accordance with EU Directive 2010/63/EU.

Bleomycin treatment. Mice were divided randomly into two groups and treated
with either saline (PBS) or bleomycin (Bleo). Lung injury and pulmonary fibrosis were
induced by single-dose administration of bleomycin hydrochloride (Sigma Aldrich), which
was dissolved in sterile PBS and given at 2U/kg (oropharyngeal instillation) and 3U/kg
(intratracheal instillation) bodyweight. Mice were sacrificed at designated time points af-
ter instillation. Animals were under strict observation with respect to phenotypic changes,
abnormal behaviour and body weight loss. [Taken from Strunz et al. (2020)171]

Cigarette smoke exposure and LTβR–Ig treatment. CS was generated from
3R4F Research Cigarettes (Tobacco Research Institute, University of Kentucky), with
the filters removed. Mice were whole-body-exposed to active 100% mainstream cigarette
smoke of 500mg m−3 total particulate matter for 50 min twice per day for 4 and 6 months
in a manner mimicking natural human smoking habits. CO concentrations in the ex-
posure chamber were constantly monitored by using a GCO 100 CO Meter (Greisinger
Electronic) and reached values of 288 ± 74 ppm. All mice tolerated CS-mediated CO
concentrations without any sign of toxicity, with CO-Hb levels of 12.2 ± 2.4%. In two
parallel experiments, mice were treated with an LTβR–Ig fusion protein (80µg intraperi-
toneally, weekly) (muLTβR-muIgG, Biogen Idec) or control-Ig (MOPC, Biogen Idec) for
2 months, starting from 2 and 4 months of CS exposure. Control mice were kept in a
filtered air environment, but exposed to the same stress as CS-exposed animals. 24 hours
after the last exposure, mice were sacrificed. [Taken from Conlon et al. (2020)172]

2.2.3 Human tissue handling [section 3.2 and 3.4]

Human tissue of the Munich cohorts were obtained from the bioArchive of the
Comprehensive Pneumology Center Munich (CPC-M). Written informed consent was re-
ceived from all patients, and the study was approved by the local ethics committee of the
Ludwig-Maximilians University of Munich, Germany (EK 333-10 and 382-10). ILD lung
tissue for single-cell analysis was freshly obtained after lung transplantation at the Uni-
versity Hospital Munich and compared to lung tissue of non-CLD patients as tumor free,
uninvolved lung tissue freshly obtained during tumor resections, performed at the lung
specialist clinic “Asklepios Fachkliniken Munich-Gauting”. All participants gave written
informed consent. The study was approved by the local ethics committee of the Ludwig
Maximilians University (LMU), Munich, Germany. [Taken from Mayr et al. (2021)173]

T cells and antigen-specific stimulation. Munich cohort patients were PCR-
confirmed SARS-CoV-2 positive, admitted to the ICU in the University Hospital of the
Ludwig-Maximillian’s University, Munich (n = 5), or the Asklepios Lung Clinic Munich-
Gauting, Gauting (n = 4), for treatment of severe COVID-19 requiring invasive, mechan-
ical ventilation. PBMCs and TA samples were taken at the end of April 2020.
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Written informed consent was obtained from the donors or their care-givers, usage of the
blood samples was approved according to national law by the local Institutional Review
Board (Ethikkommission der Medizinischen Fakultät der LMU München) and samples
were used according to legal provisions defined by the German Infection Protection Act.
[Taken from Fischer et al. (2021)174]

2.2.4 Generation of single-cell suspensions for whole-lung tissue

Mouse lungs. Single-cell suspensions were generated as previously described.175

Briefly, lung tissue was perfused with sterile saline through the heart and the right
lung was tied off at the main bronchus. The left lung lobe was subsequently filled with
4% paraformaldehyde for histologic analysis. Right lung lobes were removed, minced,
and transferred for mild enzymatic digestion for 20–30 min at 37 °C in an enzymatic
mix containing dispase (50 caseinolytic U/ml), collagenase (2mg/ml), elastase (1mg/ml),
and DNase (30µg/ml). Cells were harvested by straining the digested tissue suspension
through a 40 micron mesh. [Taken from Strunz et al. (2020)171, Conlon et al. (2020)172]

Human lungs. Lung tissue was processed as previously described.173 Briefly, around
1.5g of tissue per sample was manually homogenized into smaller pieces and cleared by
washing excessive blood through a 40-lm strainer with ice-cold PBS before tissue digestion.
The tissue was transferred into enzyme mix consisting of dispase, collagenase, elastase,
and DNase for mild enzymatic digestion for 1h at 37°C while shaking. Enzyme activity
was inhibited by adding PBS supplemented with 10% FCS. Dissociated cells in suspension
were passed through a 70-lm strainer and pelleted. The cell pellet was resuspended in
red blood cell lysis buffer and incubated shortly at room temperature to lyse remaining
red blood cells. After incubation, PBS supplemented with 10% FCS was added to the
suspension and the cells were pelleted. [Taken from Mayr et al. (2020)173]

Peripheral blood. PBMC were isolated from whole blood by gradient density cen-
trifugation (Biocoll) and frozen in FCS + 10% DMSO (Merck) for liquid nitrogen storage.
T cells were cultured in RPMI 1640 (Gibco) supplemented with 5% human serum, 0.025%
l-glutamine, 0.1% HEPES, 0.001% gentamycin, and 0.002% streptomycin- PBMCs were
stimulated with 0.6 nmol of SARS-CoV-2 spike protein-peptide mix (PepTivator SARS-
CoV-2 Prot S, Miltenyi). CD3+CD4+ and CD8+ T cells were sorted by flow cytometry,
centrifuged and the supernatant was carefully removed. Cells were resuspended in the
Mastermix + 37.8µl of water before 70µl of the cell suspension were transferred to the
chip. After each step, the integrity of the pellet was checked under the microscope. From
here on, 10x experiments have been performed according to the manufacturer’s protocol
(Chromium next GEM Single Cell VDJ V1.1, Rev D). Quality control has been performed
with a high sensitivity DNA Kit (Agilent 5067-4626) on a Bioanalyzer 2100 and libraries
were quantified with the Qubit dsDNA hs assay kit.

Tracheal aspirates. TAs were digested with 4ml dispase (50 units/ml) (Corning)
and 25µl DNase (30µg/ml) (Qiagen) at 37°C for 10 min with occasional shaking. The
digestion was then stopped with 10ml of ice-cold 10% FCS/PBS. To obtain single-cell
suspensions, the digestion mix was passed through a 70µm cell strainer. Red blood cell
lysis was performed only when necessary by incubating the cells with 3ml RBL buffer at
RT for 1 min. [Taken from Fischer et al. (2021)174]
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2.2.5 Single-cell RNA-sequencing

Transcriptomic profiling with scRNA-seq was performed according to the original proto-
cols for Drop-seq44 and 10x,45 respectively. Drop-seq was used for the data sets shown
in chapter 3.1 (iPS differentiation), chapter 3.2 (bleomycin-treated mice, Munich patient
cohort) and chapter 3.3 (smoke exposed mice). 10x Chromium was used for the data set
in chapter 3.4 (PB T cells and TA from Munich COVID-19 patients).

Drop-seq The collected cells were taken up in PBS supplemented with 10% FCS,
counted using a Neubauer chamber, and critically assessed for single-cell separation and
viability. Cells were aliquoted in PBS supplemented with 0.04% of bovine serum albumin
and loaded for Drop-seq at a final concentration of 100 cells/ll. Dropseq experiments were
performed according to the original protocols.44,64 Briefly, using the microfluidic device
(Nanoshift), single cells (100/µl) were co-encapsulated in droplets with barcoded beads
(120/µl, ChemGenes) at rates of 4000µl/h. Droplet emulsions were collected for 10–20
min/each prior to droplet breakage by perfluorooctanol (Sigma-Aldrich). After breakage,
beads were harvested and the hybridized mRNA transcripts reverse transcribed. Unused
primers were removed by the addition of exonuclease I (New England Biolabs), follow-
ing which beads were washed, counted, and aliquoted for pre-amplification using a total
of either 10 (IPS) or 12 PCR cycles (bleomycin, human ILD, CS-exposed mice). PCR
details: Smart PCR primer AAGCAGTGGTATCAACGCAGAGT (100 µM), 2× KAPA
HiFi Hotstart Readymix (KAPA Biosystems), cycle conditions: 3 min 95 °C, 4 cycles of
20 s 98 °C, 45 s 65 °C, 3 min 72 °C, followed by 8 cycles of 20 s 98 °C, 20 s 67 °C, 3 min
72 °C, then 5 min at 72 °C). For the CS-exposed mice study, the quality of the single
cell transcripts and later the sequencing recovery was improved by subjecting beads to
Klenow enzyme treatment, as described for the Seq-Well single cell protocol.176

PCR products were pooled sample-wise and purified twice by 0.6x clean-up beads (Clean
NA). Prior to tagmentation, cDNA samples were loaded on a DNA High Sensitivity Chip
on the 2100 Bioanalyzer (Agilent) to ensure transcript integrity, purity, and amount. For
each sample, 1ng of pre-amplified cDNA from an estimated 1000 cells was tagmented by
Nextera XT (Illumina) with a custom P5-primer (Integrated DNA Technologies; primer:
AATGATACGGCGACCACCGAGATCTACACGCCTGTCCGCGGAAGCAGTGGTA-
TCAACGCAGAGT*A*C (10 µM). Single-cell libraries were sequenced in a 100 bp paired-
end run on the Illumina HiSeq4000 using 0.2 nM denatured sample and 5% PhiX spike-in.
For priming of read 1, 0.5 µM Read1CustSeqB (primer: GCCTGTCCGCGGAAGCAGT-
GGTATCAACGCAGAGTAC) was used.

10x Chromium. The cells were counted, diluted to 1000 cells/µl, and loaded on the
10x Chromium Next GEM Chip G with a targeted cell recovery of 10,000. The following
steps were completed according to the manufacturer’s protocol (Chromium Next GEM
sc 3’ Reagent Kits v3.1). Libraries have been pooled according to their minimal required
read counts (35,000 or 50,000 reads/cell for 3’ gene expression libraries, 20,000 reads/cell
for 5’ gene expression libraries, and 5000 reads/cell for TCR libraries). Illumina paired-
end sequencing was performed with 150 or 200 (3’ gene expression) and 100 cycles (5’ gene
expression and TCR libraries) on a NovaSeq 6000. [Taken from Fischer et al. (2021)174]
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2.3 Sequencing transcripts with Illumina platform

Compared to the first sequencing approaches, which sequenced one DNA fragment at a
time, next generation sequencing extends this process across millions of fragments in a
massively parallel fashion. Currently the Illumina platform remains as the most dominant
platform with respect to sequencing of biological molecules.177
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Figure 2.2: Sequencing by synthesis used by Illumina platforms. Fragmented, double-
stranded target sequences are loaded onto a flow cell and bind to oligos on the surface which
are complementary to the library adapters. One end is fixated on the surface, while the free
end can interact with nearby primers, forming a bridge structure. A second strand is produced
by PCR. After several cycles, clonal clusters of the initial sequences are generated through
bridge amplification. Primer, DNA polymerase and modified nucleotides are supplemented. In
each cycle, only one nucleotide will be added to all fragments in one cluster, as nucleotides
have additional 3-O-azidomethyl group that prevents further base additions. After washing
away unbound bases, the new base for each cluster can be detected by the fluorescent signal.
Adapted from Goodwin et al. (2016)178 and Illumina.179

Illumina’s HiSeq 4000 and NovaSeq were the instruments used for generating the raw
data presented in this thesis. The next generation sequencing workflow of both relies on
4 basic steps (see Fig. 2.2 for details). First, the library is prepared by fragmenting the
target molecules to appropriate sizes. As Illumina works with DNA as input, the mRNA
is reverse transcribed to cDNA. Second, the library is loaded onto flow cells in which the
fragments are fixated on the surface. In the third step each fragment is amplified via PCR
and forms a distinct clonal cluster. In a last step, the sequence of each cluster is deter-
mined by a process called sequencing by synthesis. In each cycle a fluorescently labelled
nucleotide is added. These are modified versions of the natural occurring nucleotides, as
their ribose 3-OH group is blocked in order to prevent further elongation by the DNA
polymerase. The emissions of each flow cell are recorded and the incorporated base in
each cluster is called. The fluorophore, blocking group and unbound molecules are washed
away and the next cycles of DNA synthesis for the next position can start. To generate
reads of length n, the cycle is repeated n times.179,178

The raw outputs from the sequencer are stored in so-called binary base call (BCL) files.
These are generated in real time and for every cycle the base call and quality information
is saved in binary format. For further processing, this format is typically converted to
FASTQ, a text file that stores both raw sequence data and quality scores for each detected
read: >ReadID

READ SEQUENCE

SEQUENCING QUALITY SCORES
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The scRNA-seq protocols are sequenced with paired-end sequencing. In the droplet-based
methods of choice, two reads per transcripts are generated and gathered by the sequencer.

• Read1 (barcoded read): contains cell and molecular barcode used to trace from
which transcript in which cell the tagged read originated

• Read2 (biological read): contains portion of the transcript’s genomic sequence

2.4 Alignment of sequenced reads to reference genome
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Figure 2.3: Extraction of single-cell transcriptomes from droplet-based platforms.
After sequencing and trimming the RNA-seq library, the cDNA sequences (typically 50bp) are
aligned to a reference genome in silico, in order to infer the encoded genes. Thanks to the cell
barcodes and UMIs attached to each transcript, the number of transcripts for each gene can
be counted and linked back to their cells of origin. Finally, the integer numbers of detected
transcripts are arranged into raw count matrices, each column corresponding to a cell and
each row to a gene. Adapted from Macosko et al. (2015).44

The FASTQ files are the raw format of the scRNA-seq data that can be accessed
computationally. Raw reads can also be stored as a BAM file, which is a more efficient,
highly compressed file format. Here, Illumina’s bcl2fastq and Picard’s FastqToSam are
employed for the conversion to unmapped BAM files. The processing steps that produce
the raw count matrices are summarized into pipelines and provided as Drop-seq-tools180

(Broad Institute, v2.1.0) for Drop-seq experiments, as well as CellRanger181 for 10x exper-
iments (10x Genomics, v3.1.0). These are largely overlapping, thus the following section
will sketch the main procedure shared by the two workflows, instructed by their docu-
mentations.

Bases from the cell- and molecular barcode of the barcoded reads are transferred over
to the genomic reads and converted to one combined BAM containing single-ended reads.
At this point, reads which show low quality are already discarded. Reads are trimmed
such that the adapter at the 5’ as well as the 3’ poly-A tails are removed from the fi-
nal genomic reads. For Drop-seq, the cell barcode is extracted from bases 1-12 and the
molecular barcode from bases 13-20 of the barcode read. For 10x the ranges are slightly
different, 1-16 for the cell barcode and 17-26 for the molecular barcode.

To determine from where on the genome the reads originated from, the alignment is
done using STAR182 (Spliced Transcripts Alignment to a Reference, v2.5.2), an aligner
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that performs splicing-aware alignment of the short, non-continuous reads to a reference
genome. The reference genome is figuratively the photograph on a puzzle box, it is used
as template to annotate the transcripts’ raw sequences with their encoded genes. The
genomes are provided as combination of two input files:

1. Fasta file: includes a identifier line beginning with “>unique identifier” followed
by the nucleotide sequence of the corresponding gene

2. Genome annotation file GTF: includes information about gene structure e.g.
annotations, transcripts, exons, start and end position on chromosome

The genomes of frequently used model organisms can be downloaded from main genomic
data bases, in this case the Human Genome Build 38 (GRCh38) and Mouse Build 10
(GRCm10). In certain cases custom genomes had to be generated, e.g. for the inclusion
of the transcript from the SARS-CoV-2 virus (NCBI Reference Sequence: NC 045512.2)
in order to detect those additionally to the human genes.
During the alignment, reads are classified based on whether they are sense, antisense,
exonic, intronic or whether their splicing pattern is compatible with transcript annota-
tions associated with that gene. The output from STAR alignment are aligned BAM files,
which specify where in the genome the reads mapped to, however the information given
by the cell and molecular barcode is lost. These annotations are recovered in a step which
merges data from the previous unmapped BAMs with the gene and exon information from
the new aligned BAMs. In an attempt to clean the BAM files, the UMI sequences are
scanned for sequencing errors and repaired if possible.

To count the gene transcripts digitally, the reads that were confidently mapped are
placed into groups that share the same barcode, UMI, and gene annotation. To account
for sequencing or PCR errors, the tools allow the UMIs to differ by a single base (Ham-
ming distance of 1) to be merged. Attributed to the cell barcodes, each observed barcode,
UMI, gene combination can be counted and returned in form of the count matrices. Each
matrix for one sample has the dimension number of cell barcodes x number of genes, and
each entry denotes how many molecules were assigned to a particular gene in a cell.

The final steps of the workflow are cell-calling algorithms which scan the count matrices
and remove low quality cells. Drop-seq-tools provides a variety of thresholding parameters,
such as the number of expected cells in the sample, minimum number of transcripts per
cell or even a pre-defined list of barcodes that should be retained. For the runs presented
here at least 200 detected genes were required to keep a cell. CellRanger does this in a
two-step process. First, a cutoff based on total molecules per cell defines good-quality
cells. The cutoff is defined as 0.1 * 99th percentile of top n barcodes (ranked by UMI
counts), where n is the number of expected cells. Second, cells which may have lower
RNA content due to biological reasons are recovered. The RNA profile of each barcode
not called cell in the first step is compared to the background model that represents
empty cells. Barcodes whose RNA profile strongly disagrees with the background model
are added to the set of positive cell calls. The output of both pipelines is given as both
full raw and filtered count matrices, the latter include only cells that remained after
cell-calling. The filtered versions compose the final input which is then subjected to the
pre-processing and analysis methods detailed in the next sections.
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2.5 Computational single-cell RNA-seq data analysis

The field of scRNA-seq is relatively immature. Nevertheless, or rather because of its
recency, scRNA-seq data analysis is a rapidly moving field and every year the number
of methods developed increases drastically.183 Experimental bulk RNA-seq methods are
similar to the single-cell counterparts, likewise some approaches for single-cell data anal-
ysis can be adapted from already existing tools. Despite its popularity, there is currently
no standardized analysis pipeline available yet.
The workflow maintained throughout this thesis is customly put together based on the
standard steps proposed in popular single-cell analysis packages, particularly Seurat (R
library)184 and scanpy (python package).185
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Figure 2.4: Standard workflow of single-cell data analysis and potential applications.
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Prior to describing the individual data sets and results, the next section will outline the
pre-processing of the raw count matrices that is fundamental to each analysis presented in
this work. A graphical depiction of the quality control and potential downstream analyses
is given in Fig. 2.4. The individual steps are heavily inspired by vignettes from Seurat,
which is currently the leading tool with respect to single-cell data analysis developed by
the Satija Lab,186,187 as well as the best-practice recommendations described in Lücken et
al. (2019).188 The starting point are the sample-wise integer count matrices which are ob-
tained after alignment using CellRanger (10x) or Drop-seq-tools (Drop-seq), with respect
to the experimental platform. In the first step the matrices for each sample included in a
project are concatenated into one large count matrix and each cell is annotated with the
meta data information that is available for the biological sample it originated from, e.g.
sample name, health state, time point, clinical information.

2.5.1 Quality control

As the effort that has to be put into cleaning the data set scales with its complexity,
the task of establishing a good quality base line is more tedious for single-cell data sets
compared to bulk methods. For downstream analysis it is crucial that effects of technical
artefacts and low quality features are removed. At the first level, only those cells that are
deemed “real” cells are retained. Notably, incomplete cell lysis or failures during library
preparation can result in low-quality cells. In a few cases barcodes can mistakenly label
multiple cells, a phenomenon which occurs if two cells are encapsulated by one droplet
(doublets, or multiplets for multiple cells), or do not assign any cell at all, in case there
was no cell captured in the original droplet. At this point a light first cell filtering has
occurred already, as the alignment pipelines have inbuilt methods to discard potentially
damaged cells. However, the remaining cells should still be manually inspected and fil-
tered based on additional parameters.
The criteria typically used to assess the cell quality are the number of genes expressed,
the number of total reads detected and the percentage of expression contributed by mi-
tochondrial genes.189 To examine the distributions of these criteria, the library sizes of
each cell, i.e. its total number of transcripts detected, is visualized via bar and violin
plots. Outliers might be low-quality cells or empty droplets, which typically have very
few genes and should be excluded. An average value of mitochondria-encoded genes in
a cell is estimated at 10% to 20%. Cells with low number of counts but high fraction
of mitochondria-encoded genes are indicative of dying cells whose mRNA leaked through
broken membranes, retaining only mitochondrial RNA. On the other side of the spectrum,
particularly high number of counts and genes may mark doublets, and should be removed
as well, as a doublet reflects a hybrid transcriptome which cannot be computationally as-
signed uniquely to one cell. The algorithm used in scrublet is a more elegant solution to
detect doublet cells. Based on the raw count matrix it simulates artificial multiplets and
builds a nearest neighbour classifier.190 Additionally to the harsh thresholds, scrublet
was run on top to retrieve a predicted doublet score for each cell.

Corresponding to removing cells with poor quality, genes whose expression level is
considered undetectable should be discarded as well. Genes are retained if their corre-
sponding transcripts are detected in a reasonable minimum number of cells, else they
are not substantially contributing to the cellular heterogeneity. These characteristics are
highly dependent on the experimental workflow and data set specific, therefore the fil-
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tering thresholds should be chosen after manual exploration of the data quality. Also,
during downstream analyses certain suspicions could arise, e.g. whether an expected cell
population is missing or some clusters are formed dominated by relatively low counts etc.
It can therefore be beneficial to re-evaluate the chosen cut-offs once a more tangible view
of the data is established.

2.5.2 Normalization and log-transformation

The number of counts for each cell is influenced by factors such as cell size, sampling
efficiency, bias during PCR amplification etc. Cells that are larger in size are expected to
have higher count levels, whereas quiescent cells have temporarily decreased levels. These
differences in numbers do not account for biological effects and vary from cell to cell,
preventing the direct comparison of transcripts across cells. Normalization of single-cell
RNA sequencing data is critical to eliminate such cell-specific biases and obtain a com-
mon scale of relative expression abundances instead.191 Normalization methods that are
well-established for bulk RNA are not suited for the single-cell resolution. Particularly
the sparsity of the data, i.e. the high amount of zero counts, and the dropout effect, i.e.
genes are expressed but not detected, are common pitfalls in these data sets.192

One widely used strategy adopted from bulk RNA is global-scaling, which normalizes
the expression within each cell by a constant scaling factor. For example, the counts per
million (CPM) normalization divides each cell by its total number of reads (library size)
and multiplies it by 106. This approach is simple, yet not robust to the presence of differ-
entially expressed genes, as a small number of highly expressed genes can dominate the
transcriptome.193 By normalization, either differential effect can be masked, or be falsely
induced in remaining genes. This approach further assumes that all differences in library
size arise only due to artefacts and discard the biological component, which is not given in
most real scRNA-seq data sets. Popular variants of these method are reads per kilobase
(RPK), reads per kilobase million (RPKM) or fragments per kilobase million (FPKM).
These additionally adjust counts by the length of the respective gene.186

The method frequently used in the presented analyses is taken from scran.191 Instead of
calculating the size factors on a single-cell basis, it pools multiple cells for a more robust
cell-specific size factor estimation. The summation across cells leads to fewer zero entries,
circumventing the problem of high amounts of zeroes. These size factors are then decon-
volved to yield cell-based factors. This approach allows for more cellular heterogeneity
and has shown consistently good performances.188,192 It should be noted that a normaliza-
tion step could be performed to correspondingly weight all genes equally for downstream
analyses. This is done by scaling gene counts to have zero mean and unit variance. It is
still discussed whether the expression level is indicative of the genes importance, therefore
in order to rather retain this information, the scaling will be skipped in the workflow.

Many downstream tools operate on normally distributed data, which is typically not
the distribution underlying the gene expression. Consequently, the matrices are log trans-
formed after normalization to ensure that the downstream procedures operate on relative,
rather than absolute expression differences. As log transformation is not possible for zero
values, it is common practice to add 1 as a pseudo-count prior to taking the log.
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2.5.3 Feature selection

Single-cell data sets are capable of capturing more than 20 000 genes for human or mouse
studies. However, large amounts of genes can be neglected depending on the research
question. For instance, genes that are variable across different organs would be rather
uninformative when studying only the heart. Apart from these, there would still be many
genes that do not exhibit substantial variation across samples.194 Rather, genes of interest
are those that contribute to cellular heterogeneity, or show specific expression patterns
only in response to certain stimuli. On the one hand as a mean to purify those biological
signals of interest, on the other as necessary step to mitigate computational burden, the
count matrices are reduced to only the most informative genes.

There are different approaches for the identification of meaningful genes in the field,
here the subset of highly variable genes (hvgs) are considered. Notably, while the hvgs will
be the basis for the subsequent computationally more intense dimensionality reduction and
visualization stages, the non-informative genes will not be discarded and still available for
downstream analyses. The number of genes can vary and is commonly chosen depending
on the data set. The hvgs will be identified as described by Satija et al. (2015),195 for
which genes are divided into 20 bins based on their mean expression. Their dispersion
is calculated, which is defined as the variance divided by the mean expression of a gene
across all cells. As input the normalized and log-transformed matrix is used, although it
is also possible to use the raw count data. Within each bin of similar average expression,
the dispersion measure is z-normalized and compared to all other genes, returning the
bin-wise hvgs. As an additional step to avoid selecting genes that are primarily variable
due to expression differences between experimental batches, this selection was modified
slightly. The binning is performed on each experimental batch separately prior to the
dispersion measure calculation. Only those gene that were marked as highly variable in
at least a certain number of samples will be deemed as overall highly variable. This step
can be seen as a light batch correction, as the data space that will be generated in the next
stages will be less dominated by biologically unrepresentative batch genes. Furthermore,
to avoid distortion of expression signals due to proliferation state, curated genes associated
to cell cycle are also removed from the hvgs list.

2.5.4 Louvain clustering

A crucial step in exploratory analyses is to condense information and group cells based
on their similarities. The collective of cells can be viewed as a big network that can be
decomposed into sub-units. Such sub-communities are sets of highly interconnected nodes
and typically represent cell types, or even cell states that get induced after perturbations.
As cell type identification and discovery are the basis for all of the downstream analyses,
the community structure needs to be uncovered.
The algorithm of choice in this thesis has been the Louvain algorithm, which optimizes the
modularity in a heuristic fashion. Modularity reflects the relative density of edges inside
a community with respect to the edges outside. The algorithm starts with optimizing
locally on smaller communities, before grouping them into bigger nodes and repeating
the procedure.196 The parameter resolution controls the number of resulting clusters.
Finally, clusters can be annotated with cell types based on the expression levels of known
marker genes, or be declared novel in case they do not resemble any described cell types.
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2.5.5 Dimensionality reduction

The technological advances in recent decades have led to the era of Big Data, informa-
tion processing and storing became feasible in increasingly lesser time. More data means
more raw material for data exploration, however new challenges were introduced along
the way. Single-cell data sets can encompass more than 20 000 genes and the number
of cells nowadays easily scales up to several tens of thousands. When computationally
analyzing such a wealth of data, one problem that is encountered is referred to as the
curse of dimensionality. With increasing dimensionality the required volume to contain
that data increases drastically.197

Fortunately, biological systems show the natural property of being low-dimensional at
their core. The cell’s machinery and transcription programs are tightly controlled in a
spatial and temporal manner, allowing genes to be grouped together with other genes
based on their highly correlated expression patterns. Instead of describing the feature
space with all genes, it would be sufficient to represent it as a summarization of these
modules.198 Heimberg et al. developed a mathematical framework to evaluate the trade-
off between sequencing depth and the amount of biological information that can be ex-
tracted reliably. Remarkably, the study found that dominant transcriptional programs
are highly noise-tolerant and could still be identified at 1% of conventional read depths.199

Down-scaling does not only enable downstream analyses in the first place, but also
visualizes the data in a way that lets humans process it intuitively at one glance. As the
human eye is known for its abilities to detect visual structures, the high-dimensional data
has to be projected into lower dimensional spaces, ideally into 2D or 3D maps that still
preserve the underlying biological manifold.
A first minor reduction has already taken place when focusing on the potentially most
interesting genes during feature selection. Removing likely uninformative genes further
reduces the noise and makes calculations more memory and time efficient. The process of
characterizing the data and the relationship between individual data points using fewer
features is known as dimensionality reduction. There are a number of methods that
achieve this, the ones further used in this work are briefly introduced in the next section.

3m
24m

PCA t-SNE UMAP diffmapa b Sftpc expression

louvain
cluster

PCA

UMAP diffmap

t-SNE

Figure 2.5: Comparison of established visualization techniques. a Linear (PCA) and
non-linear methods (t-SNE, UMAP, diffmap). The latter are known to preserve global struc-
tures, while UMAP tendentially excels in this regard. b Sftpc expression demonstrates how
finer populations structures of AT2 cells and their global context are captured by the methods.
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Principal Component Analysis PCA

The oldest and probably best known linear dimensionality reduction method is principal
component analysis (PCA), which was first introduced by Karl Pearson (1901)200 and
developed independently by Hotelling (1933).201 The central idea is to reduce the dimen-
sionality of the data to a smaller number of components while conserving the variation
present as much as possible.
Mathematically, PCA is an orthogonal linear transformation of the data, containing po-
tentially correlated observations, to a new coordinate system. This is achieved by finding
a small number of uncorrelated variables, the so-called principal components (PC). The
PCs are ordered, such that the greatest variance lies along the first component, the second
greatest on the second component and so on. The new subspace is specified by the PCs in
form of orthogonal vectors, each succeeding component being orthogonal to the previous
one.202

The covariance matrix C to vector x contains the covariance between the ith and jth

element of x. For any k = 1, 2, ...n the kth PC is given by the kth largest eigenvalue of
C λk and αk is the corresponding eigenvector. Hence α1 is the eigenvector corresponding
to the largest eigenvalue λ1 of C. After establishing the first principal component, the
next one is calculated by looking for a linear function uncorrelated with αT1 x while having
maximum variance. This is continued such that at the kth step a linear function αTk x is
found which maximizes variance while being uncorrelated with all previous linear functions
αT1 , ...alpha

T
k−1. Consider the original data as a matrix, each of the rows representing a

sample x i and each column a certain feature n j. The transformation is defined as a linear
combination of the original parameters. Each row vector of the original data set is then
mapped to a new vector via the linear function

PCk = αTk x = αk1x1 + αk2x2 + ...+ αknxn =
n∑
i=1

αkixi

in which T denotes the transpose and α the vector of n constants which are called the
coefficients of the linear transformation (−1 ≤ αki ≤ 1).202

There are as many components as features in the data, but typically the first few
components are sufficient for further calculations, as they already account for most of the
total variation in the original values. In many cases visualizing the first two components
as scatter plot gives a good first overview, e.g. for detection of outliers or sub-structures
in the data. PCA has been used in a vast number of single-cell genomics studies and is
incorporated into many standardized workflows. The PCs effectively capture dominant
biological trends in the data by representing the highly covariant gene modules in form
of fewer vectors than the original gene expression space.

However, non-linear dimensionality reductions have gained popularity in the last years,
as they are able to avoid overcrowding in the visual representation and appear superior in
capturing the underlying clusters.203 Still, PCA remains a widely-used pre-processing step
to summarize the data, and the first n PCs are often propagated to other dimensionality
reduction approaches as their initial starting point.
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t-Stochastic Neighbour Embedding t-SNE

Linear methods such as PCA focus on maintaining the distance of dissimiliar points in
the reduced space. It finds directions of maximal variance and tends to discard variation
along other directions, obscuring finer patterns of the population structure.204 As the gene
expression space is inherently low-dimensional as described above, it is typically more es-
sential to preserve proximity of similar data point in the reduced space. One non-linear
approach to overcome this limitation would be t-SNE, introduced by van der Maaten and
Hinton in 2008.205 The t-SNE approach visualizes the data by mapping each data point
to a location in a 2 or 3 dimensional map, aiming to find a representation of those points
in the lower dimensional plane that corresponds to the similarity in the original space.

xi
xj

xi

t-SNE: find mapping such that DKL(P||Q) is minimized

Low dimensional space

p(xi, xj) q(xi, xj) xj

High dimensional space R n Figure 2.6: Scheme of t-SNE algo-
rithm. Distance between two data points
is given by p(xi, xj) in high dimension and
q(xi, xj) in low dimension. Data points in
low dimensional space are embedded such
that Kullback Leibler divergence DKL is
minimized.

The basis for this algorithm is Stochastic Neighbour Embedding SNE, which converts
Euclidean distances to conditional probabilities for the representation of similarities be-
tween data points. An important input parameter to set is perplexity, which is an estimate
of the size of the neighbourhood. It puts a border between the local and global aspects
of the data and influences the bandwidth of the Gaussian kernels σi = variance of the
Gaussian centred on xi. One should evaluate different values for perplexity, with low
perplexities local structures dominate, but for too large values, the algorithm shows a
poor performance.206

Given data point xi and xj, the conditional probability pi,j is “the conditional proba-
bility that xi would pick xj as its neighbour, if neighbours were picked in proportion to
their probability density under a Gaussian centred at xi”. It is given by

pij =
exp(−‖xi − xj‖2/2σ2

i )∑
k 6=i exp(−‖xi − xk‖2/2σ2

i )

The bottom part of the fraction normalizes over all pairs of points involving xi. Fol-
lowing this, picking a particular pair of points will be proportional to the similarity of
the points, i.e. similar points (close together in the high dimensional space) will have
a large pi,j. A similar conditional probability qi,j can be constructed for the low dimen-
sional counterparts yi and yj. In both cases the probability of the event xi = xj is set to 0.

However, data sampled from a very high dimensional space cannot be accurately
represented in a two dimensional map. As example, in a 10 dimensional plane it is
possible for ten data points to mutually have the same distances, whereas there is no
way to show this for the 10 point in a two dimensional map. The Student-t distribution
circumvents that problem. This distribution is much more heavy tailed than a Gaussian
one, allowing moderate distances in the higher dimension to be modelled by much larger
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distances in the map. Essentially, points that are far apart from one another would have
little effect on the joint probabilities, thus such dissimilar point are modelled far apart in
the map. Therefore, when computing the similarity between data points yi and yj in the
low dimension map, t-SNE uses a Student-t distribution.

qij =
(1 + ‖yi − yj‖2)−1∑
k 6=i(1 + ‖yi − yk‖2)−1

For the calculation of pij in high dimensional space, Gaussian distributions are main-
tained. The aim of t-SNE is to arrange the n points in a low dimensional space such that
the similarities qij between low dimensional points match pij as closely as possible. Intu-
itively, pij and qij being equal indicates a successful low dimensional data representation
of the higher dimensional data.
The Kullback Leibler divergence is a measure for divergence between probability distribu-
tions. The points in the low dimensional map should be laid out in a way that minimizes
this divergence between the two conditional probabilities pi,j and qi,j.

C = DKL(P‖Q) =
∑
i

∑
j

pij log
pij
qij

where P (Q) denotes a joint conditional probability distribution in the high (low) dimen-
sional space. Large pij modelled by small qij equals a large penalty in the Kullback Leibler
divergence. It leads to a big effect on the cost function, as one multiplies by the log of
a large value. In contrast, small pij which are modelled by large qij lead to a smaller
penalty. Essentially, the focus lies on preserving local structures without considering
dissimilar data points in an equal amount.205,207

Uniform Manifold Approximation and Projection UMAP

Non-linear dimensionality reduction algorithms avoid overcrowding of data points on the
lower dimensional representation. Particularly t-SNE remained one of the most used
methods in the community. Still, due to the rising sample sizes in contemporary bio-
logical data, it became apparent that its computation time and scaling to larger data
sets are not optimal. Furthermore, while it is successful in revealing local similarities,
it often disregards larger global structures.203 Recently another non-linear dimensionality
reduction technique titled Uniform Manifold Approximation and Projection UMAP was
proposed by McInnes and colleagues,208 which is highly competitive with the widely used
t-SNE for the visualization of biological heterogeneity. It is growing in popularity due to
its superior run time performance and its claim to preserve more of the global topology
from the high dimensional feature space.203

Mathematically it builds upon Laplacian eigenmaps from Belkin and Niyogi,209 a tech-
nique which presumes that the data in the high-dimensional space is essentially embedded
on a low dimensional manifold. Following assumptions are made:208

1. There exists a manifold on which the data would be uniformly distributed

2. The underlying manifold of interest is locally connected

3. Preserving the topological structure of this manifold is the primary goal
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The underlying structure is represented by a Riemannian manifold M, i.e. a space
that locally resembles an Euclidean space with well-defined notions of distances, angles,
and volumes. Computationally, the Riemannian manifold here can be described as a
weighted graph, built from information of the k nearest neighbours for each data point
(k-nearest-neighbour graph (knn)). The main input parameters for UMAP are the number
of nearest neighbours that define neighbourhood boundaries during graph construction
and the minimum distance.

The algorithm can be divided into three phases. First, a weighted knn graph is con-
structed in high dimensions, in which the nearest neighbours are weighted more heavily.
This focus on preserving neighbourhood structure rather than absolute distances allows
for densely populated regions to be “strechted out”, circumventing the overcrowding prob-
lem in the lower dimension as noted earlier.204

xi

xj

r xi

(A, μ) (A,ν)

UMAP: optimize the cross entropy C((A, μ), (A,ν)) between two sets 

High dimensional space R Low dimensional space

M

n Figure 2.7: Scheme of UMAP algo-
rithm. The input data points from X =
(x1, x2, . . . , xn) are uniformly drawn from
a Riemannian manifold M, then mapped
into Rn. Local topological structures
(A, µ) and (A, ν) for k = 3 are constructed
and compared using cross entropy C.

These topological constructions are based on a measure that approximates the dis-
tance of any two data points xi and xj ∈ X = x1, x2, . . . , xn in the high dimensional
manifold. A sphere centered on data point xj with fixed radius ri contains its k nearest
neighbours. Because the data is uniformly distributed, such a sphere can be centered
for any other data point xj and should have approximately fixed volume and capture
its k nearest neighbours. The distance d(xi, xj) is then defined such that the value for
any data point within this sphere is close to 1, while the values for points outside get
exponentially smaller the farther they are away from the local neighbourhood of xi (see
dashed lines in Fig. 2.7). To approximate the manifold, these spheres (or better, local
metric spaces) are represented by fuzzy simplicial sets. In this subtype of mathematical
sets the membership of elements is not given via yes or no classifications, but instead each
element has a certain degree of membership. These are denoted by a reference set A and
a membership strength function µ that maps the elements of A to a value between 0 and
1, µ : A 7→ [0, 1]. Conceptually, each element in a reference set A corresponds to a cell
and µ quantifies the neighbourhood relation within A.

In the second phase a low dimensional layout of this graph, which preserves the estab-
lished neighbourhood structure as much as possible, is computed using the same approach.
In a final step the layout of the low dimensional map is optimized, such that it minimizes
the error between the two topological representations. For this. The cross-entropy C
between the two sets (A, µ) and (A, ν) is optimized using stochastic gradient descent.208

C = ((A, µ), (A, ν)) =
∑
a∈A

(
µ(a) log

(
µ(a)

ν(a)

)
+ (1− µ(a)) log

(
1− µ(a)

1− ν(a)

))
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Diffusion Maps and Diffusion Pseudotime

The last dimensionality reduction method used in this thesis are diffusion maps. These
are non-linear methods and were introduced by Coifman and Lafon (2005).210 In contrast
to the previous methods, diffusion maps emphasize transitions in the data and are prefer-
ably used for the study of continuous processes such as differentiation or cell state shifts.188

Given by the nature of scRNA-seq capture protocols, cells have to be destroyed in
order to retrieve their transcriptomic profiles at a given time point. Consequently, gene
expression measurements reflect snapshots of discrete cell states at various stages, rather
than a continuous read-out of the cells’ gene dynamics over time. Nonetheless, the tempo-
ral profile of a single cell is intrinsically encoded in its gene expression, making it possible
to reconstruct this information computationally. One method that attempts to order
cells based on their underlying cellular time adopted diffusion maps into its algorithm
and made this dimensionality reduction method more accessible to the biological field.211
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diffMap: use eigenvectors of transition matrix as new coordinates 
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reflects p(x, y)y
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Figure 2.8: Scheme of diffusion maps.
Construction of a transition matrix that
describes random walks between data
points. Transition probabilities p are
higher for points that are close (well-
connected in the manifold). Embed data
such that Euclidean distance approximates
diffusion distances.

Briefly, diffusion maps utilize eigenvectors of Markov matrices as coordinates for their
embedding in a low dimensional Euclidean space. A measure of connectivity is defined
between two data points x and y as the probability to jump from x to y in one step of
a random walk over the knn graph of the data. Intuitively, the connectivity is higher
for points that are nearby than for those far apart. A Gaussian kernel k(x, y) is used to
specify these probability in terms of a likelihood function.

connectivity(x, y) = p(x, y) =
k(x, y)

α
∝ k(x, y)

with α being a normalization factor for sampling density. This kernel has to be symmetric
k(x, y) = k(y, x) and also preserve positivity k(x, y) ≥ 0. Inside a given neighbourhood,
this kernel is assumed to be an accurate measure of similarity, whereas outside the measure
is less reliable and quickly goes to zero. Based on this, a row-normalized diffusion matrix
P is constructed, where each entry gives the connectivity between two data points pxy.

Diffusion Matrix P =

(
p(x, x) p(x, y)
p(y, x) p(y, y)

)
=

(
pxx pxy
pyx pyy

)
To consider more than one step, the power of the diffusion matrix is taken. This can

be clarified with following construction, let t be 2 in a 2 x 2 diffusion matrix P .

Diffusion Matrix P 2 =

(
pxxpxx + pxypyx pxypyy + pxxpxy
pyxpxy + pyypyx pyypyy + pyxpxy

)
=

(
p2(x, x) p2(x, y)
p2(y, x) p2(y, y)

)
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p2(x, x), which is the probability to start at x and end up in x within two steps, is
pxxpxx + pxypyx. This encompasses the two probabilities to simply stay at x and to move
to y and back to x again.
During the diffusion process the probabilities of P t are calculated for larger values of t.
Paths that do follow the underlying structure of the data have a higher probability. If the
points are dense, i.e. highly connected along the geometric structure, the paths consist
of short high probability steps. Whereas paths that do not follow it have longer jumps,
lowering the paths overall probability.197

By separating highly likely paths from others, this process has an important role in
revealing structure and reducing noise in the data. The similarity of two points x and y
is established by summing up the probabilities of all possible paths of length t connecting
them. It is given as diffusion distance Dt(x, y)

Dt(x, y)2 =
∑
z∈X

|pt(x, z)− pt(y, z)|2 =
∑
z∈X

|P t
xz − P t

zy|2

where z is any other data point in the data set. This metric is in accordance with the
concept of clusters: For the diffusion distance Dt(x, y) to be small, pt(x, z) and pt(y, z)
have to be roughly equal. This is achieved if there are many high probability paths of
length t between x and y. In essence, if x and y are close and in a highly connected
sub-part of the data, they are well-connected via z. Since the geometry information is
accumulated and propagated, Dt captures the similarity of points along the underlying
structure.

Coifman and Lafon showed that this metric can be calculated based on the eigenvectors
ψk and corresponding eigenvalues λk up to a certain accuracy δ212

Dt(x, y) =

s(δ,t)∑
l=1

λ2t
l (ψl(x)− ψl(y))

 1
2

where s(δ, t) is the maximal value for l such that |λl|t > δ|λl|t. Finally, dimensionality
reduction is performed by mapping the data points into a new lower dimensional Euclidean
space (diffusion space) formed by the eigenvectors. This embedding should be such that
the Euclidean distance between data points is equal to the diffusion distance, ensuring
that distance in the new space reflects the relationship between data points in terms of
their connectivity.

Diffusion Map Ψt(x) = (λt1ψ1(x), λt2ψ2(x), . . . , λts(δ,t)ψs(δ,t)(x))

where ψk is the kth eigenvector of the normalized matrix P and λk is the associated eigen-
value, indicating its importance. The components of Ψt(x) are called diffusion coordinates
(DC). The reduction is done by retaining those DCs associated with the dominant eigen-
vectors, as these approximate diffusion distance best.
In summary, by iterating the Markov transition matrix, i.e. running the random walk
forward, diffusion coordinates are constructed. Embedding data points along these coor-
dinates allows to represent the data’s intrinsic geometry in a lower dimensional space.
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Diffusion Pseudotime dpt

With respect to scRNA-seq, the data set is given as a matrix of the dimension cells x
genes. The transition matrix can be interpreted as the cells’ probabilities to differentiate
towards potential fates. The pseudo-temporal ordering of cells along such an hypothetical
trajectory can be established by measuring cell similarity in gene expression, assuming
that developmental processes dominate their transcriptomes. One method accomplishes
that by directly building upon the concept of diffusion maps and estimating a diffusion
pseudotime (dpt). For that case, the diffusion map algorithm applied in this thesis includes
slight alterations from the original approach as proposed in Haghverdi et al. (2016). The
major change would be that instead of using a fixed global Gaussian kernel width, here
instead a local Gaussian kernel width for each cell is estimated, based on a cell’s distance
to its k nearest neighbours. Effectively, a weighted knn graph of the data is constructed.211

For the dpt calculation a modified version of the transition matrix T is used. M is
defined as T without the first eigenspace. As the first eigenvalue λ0 with corresponding
eigenvector ψ0 is associated with the steady state, this modification excludes the possibility
to stay in the current state. M shares the same eigenvectors with T except for ψ0. Further,
the connectivity measure diffusion distance introduced by Coifman et al. relies on the
input parameter t, i.e. the fixed length of the random walks. In contrast to the original
metric, dpt is independent of t as the transitioning probabilities for any two cells are
computed by summing over all random walk of arbitrary lengths.

M =
∞∑
t=1

T̃ t =
∞∑
t=1

(T − ψ0ψ
T
0 )t

Given a predefined root cell, the accumulated transition matrix M is calculated. The
transition probabilities for a cell x are stored in a vector M(x, .), represented as a row of
M . Finally, the diffusion pseudotime for two cells x and y is calculated as the Euclidian
distance between their two vectors.

dpt(x, y)2 = ||M(x, .) – M(y, .)||2 =
∑
z

(M(x, z) – M(y, z))2

dpt(x, y) =

(
n−1∑
i=1

(
λi

1 – λi

)
– (ψi(x) − ψi(y))

) 1
2

2.5.6 K-nearest neighbour graph knn

Complex systems can be represented as networks G = (V,E), in which the fundamental
compartments form the vertices V , and a measure of similarity the corresponding edges
E. Compartments share more edges and a higher density of internal links, whereas links
to other compartments occur more sparsely.213 In the context of biological tissues, the
cells represent the elementary units (nodes) and the edges connect cells with similar
transcriptomic profile. Identifying the different compartments present in the data enables
to assess cell populations of different sizes and densities. Therefore, after dimensionality
reduction the cells are further abstracted into a k-nearest neighbour (knn) graph, in which
cells will be connected to its k nearest neighbours.



2.5. COMPUTATIONAL SINGLE-CELL RNA-SEQ DATA ANALYSIS 55

Partition-based graph abstraction PAGA

PAGA214 is based on the knn graph. Instead of presenting the graph at single-cell res-
olution, the PAGA graph shows the connectivity structure of the data at a more coarse
level. Partitions are typically the Louvain cluster at an appropriate resolution, as these
correspond to cell types in the data, but can be experimentally validated labels as well.

The task of connecting different cell types by their underlying biological mechanisms
is commonly not achieved by looking at isolated paths of single cells. With the partition-
ing approach, PAGA follows a group of similar cells that pass through several partitions,
achieving a higher confidence level. The connectivity of an edge between two partitions
can be quantified based on a statistical model comparing the real number of inter-edges to
the number of inter-edges expected under random assignment. This connection strength
reflects the confidence in the presence of an actual connection and can be used to discard
noise-related, spurious edges. Finally, a denoised lower dimensional topology with con-
nected and disconnected regions is obtained, preserving the underlying topology of the
data and enhancing its interpretability. PAGA was part of a recent trajectory inference
comparison study215 which evaluated 45 tools on the following criteria: prediction accu-
racy, scalability, usability and prediction robustness. PAGA was one of the few methods
next to Slingshot216 and SCORPIUS,217 performing well across the board.

Partitioned single-cell
expression data

knn graph
(node = single cell)

Dimensionality
reduced space

PAGA graph
(node = cell partition)

Figure 2.9: Outline of the PAGA algorithm. Knn graph together with coarse clustering
of cells build the input for this method. The edges between any two partitions are weighted
by a statistical measure of connectivity. After excluding low-weight edges, underlying coarse
topology is revealed in form of a 2D map. Adapted from Wolf et al. (2019).214

2.5.7 Batch correction using BBKNN

Through global efforts such as the Human Cell Atlas, the generation and sharing of large
collections of scRNA-seq data sets has been accelerated. Nowadays the atlas-level studies
often do not only include samples that span conditions and spatial locations, but also
data generated from multiple labs or across multiple technologies.
While this is a great way of gaining statistical robustness and finding effects that might
have been overlooked in individual data sets, unwanted side-effects can be introduced.
Batch effects arise when biologically equivalent samples are handled in different experi-
mental runs. Slight variations in the procedure can already introduce variation that does
not reflect the underlying biology, such as different individuals handling the material or
external factors (e.g. temperature, unknown sources of contamination). Naturally, this
hampers meaningful interpretation of the data.
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Biological variation, e.g. inherent to cell types/states or induced after perturbation,
should be kept separate from variation that is not of interest in the scope of a study, e.g.
naturally given between individuals or technical artefacts. Ideally experiments should be
designed in a way in which the distinction of these types is easily possible. As this is
not always the case, batch effects should be accounted for in downstream analyses while
retaining biological variation. Many common approaches assume that all data sets share
at least one cell type or overall exhibit the same expression structures across all data sets.
With such strong assumptions these methods are prone to over-correction, especially when
the data sets have considerable differences in cellular composition. Much like the choice
of experimental technology for a study, the method for batch correction should be guided
by the specific goals.

A recent large-scale benchmarking study218 evaluated the performances of several avail-
able integration methods, determining BBKNN,219 Scanorama220 and scVI221 as best per-
formers, particularly on complex integration tasks.
Batch variations can distort the knn graph, leading to major connections only in between
rather than across batches. This disconnected structure is not representative for samples
with similar cell type populations. BBKNN’s core assumption is that cells of each cell type
are present in all of the user-defined groups and any cell type variation across batches
is only due to technical artefacts. Thus the algorithm motivates inter-batch edges and
constructs a batch-balanced graph by identifying a cell’s nearest neighbours in each user-
defined group independently. Similar cell types across batches will be grouped together
while unrelated cell types stay unconnected.219 However, it should be noted that this ap-
proach will mask rare populations that are only present in some batches. Owing to the
favourable run time and with the main objective of avoiding over-correction in mind, this
graph-based methods was incorporated. Particularly because it returns a batch-balanced
knn graph and does not alter the underlying gene expression values, batch effects will be
reduced via BBKNN in the following analyses. The corrected neighbourhood graph serves
as the basis for the downstream methods whenever appropriate.
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Figure 2.10: UMAP using uncorrected vs. batch-corrected knn graph. a Uncorrected
knn graph results in patient-specific cluster, well-recognizable in EpCAM+ epithelium.
b After BBKNN correction on patients, biologically meaningful variation appears conserved in the
embedding. Cells of individuals visually overlay while disease-specific shifts are still discernible.
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2.5.8 Ambient gene correction using SoupX

Droplet-based RNA capture methods enable rapid processing of a large number of cells
in parallel. During that process however certain phenomena can arise that distort the in-
terpretation of data. Next to doublets or empty cells, non-endogenous mRNA transcripts
from damaged droplets can be present in the input solution. Such ambient background
contamination with cell-free RNA (soup) is present in even high-quality data sets and will
muddle the profiles of each cell.
This confounding is non-negligible and should ideally be removed before computational
analysis. The R package SoupX222 demonstrates a reasonable approach to quantify and
purify ambient contamination and was therefore incorporated into the workflow.

Briefly, SoupX attempts to recover the true molecular abundance of the genes in each
cell by estimating the ambient mRNA expression profile. This approach is based on cells
that are considered empty, i.e. droplets with less UMIs than a defined threshold detected
and assumes that background contamination does not differ between cells.
The fraction of UMIs originating from the soup can be identified in an automated ap-
proach, in which the markers of each cell cluster are identified first. For the estimation
of the contamination fraction, the true number of count for these is assumed to be 0 in
clusters in which the gene is not a marker. This is repeated across all strong marker genes
and provides a set of estimates, from which the most common value will be chosen as
the final estimate of the contamination fraction. The additional step of looking at the
count distributions from a cluster perspective helps to overcome the sparsity of scRNA-seq
data. Alternatively, the contamination fraction can also be set manually. In the following
analyses, this parameter was always set to 0.3 as it reflects a reasonable contamination
fraction for the data sets presented.
In a final step the expression of each cell is modified using both the ambient mRNA
expression profile and contamination fraction, producing a corrected matrix of counts,
which was used in place of the original count matrix in downstream analyses.
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a Gene expression of common ambient genes before correction on scRNA-seq data of human
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2.5.9 Differential gene expression analysis

Once the data set contains only those cells with sufficient quality and is available in a
clean version, the foundation for downstream analysis to extract and describe the under-
lying biological mechanism is set.

A first step is typically to put biological meaning into the previously detected sub-
communities using prior knowledge. The clusters group cells that are highly similar to
each other and can be annotated with cell types based on the expression levels of known
marker genes, or be declared novel in case they do not resemble any described cell types or
states at that time. The marker genes are identified by the detection of differentially ex-
pressed genes, i.e. focus on genes that are higher expressed in a given cluster compared to
all other clusters. As marker genes are driving the cluster separation, a strong difference
in expression between these groups is expected, which can be assessed and ranked with
simple statistical tests such as Wilcoxon rank-sum test or the t-test.188 There are methods
available to automatically annotate the cell types based on the top marker genes, using
overlaps to known signatures or other enrichment approaches. However, such approaches
are restricted to cell types present in the reference data bases, and manual curation might
be needed to refine the labels based on data-driven exploration.
After the rough structuring of the data into a biologically interpretable framework, the
exploration can be focused on relevant compartments with most interesting patterns. For
instance, many research questions are about uncovering significant changes across condi-
tions, most commonly in healthy controls compared to diseased individuals. One signifi-
cant effort in this area is the detection of differentially expressed genes on the single-cell
scale. This analysis employs a group of statistical tests to establish whether there exists
a significant variation across a set of tested conditions for each gene, ultimately uncov-
ering driver genes or even full cellular programs that play important parts in pathogenesis.

One well-known pit-fall in scRNA-seq data would be the lower capture efficiency com-
pared to bulk measurements, because of which many transcripts tend to be missed during
the reverse transcription. As a result, some transcripts are highly expressed in one cell but
are missed in another, a phenomenon known as a drop-out event. Therefore, in compari-
son to bulk RNA-seq data, scRNA-seq data sets are inherently much more heterogeneous
and exhibit large portions of zero counts, which requires appropriate models to handle
such sparse, complex input.223 One of the first differential expression models for single
cell data was Single-cell differential expression (SCDE),224 which models the expression
as a mixture of two probabilistic processes. The first process models the rate at which
the transcript is amplified and detected at a level correlating with its abundance (with
a negative binomial distribution) and the second considers the drop-out events (with a
low-magnitude Poisson process). This approach was advanced to a hurdle model in the
Model-based Analysis of Single-cell Transcriptomics (MAST),225 based on a two-part gen-
eralized linear model. Here, the mean expression follows a normal distribution while the
dropout component follows a binomial model.
Monocle2 is another popular tool that converts the relative expression in single cells to
consensus counts, a measure of relative transcript counts that aims to eliminate parts of
the technical variability in single cell experiments. These consensus counts are then easier
to model with standard regression techniques compared to the conventional normalized
transcript counts.226
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Throughout this work, differential gene expression analysis will be performed with
diffxpy,227 a python package that covers a wide range of differential expression analysis
scenarios encountered in scRNA-seq and integrates easily into scanpy workflows. In the
most basic application, the model is applied to test for the difference between two groups.
As the Wald test allows for adaptive assumptions on the noise model and for the testing
of more complex effect, e.g. account for different study cohorts or include potential con-
founding factors in the model, it will be the preferred method.

Model differentially expressed genes across time-series

Since many biological systems are dynamic in their character, the longitudinal sampling
of their gene expression can provide clearer insights about how expression levels evolve in
time and which particular genes are driving a biological process. Time-series expression
data is a valuable source of information in order to understand the unfolding of a biolog-
ical process in response to perturbations, and is heavily featured in this work.

Methods for differential gene expression rely on static expression states. However,
due to differences in sampling rates and time variations in biological data in general,
such methods cannot be applied directly to time-series expression data. One promising
approach to obtain a continuous time formulation is by the use of cubic splines, i. e. a
set of piece-wise cubic polynomials to represent gene expression curves.228 During spline
interpolation, low-degree polynomials are fitted to small subsets of the values instead of
fitting a single, high-degree polynomial. This allows for increased control given a set
of regulation points (knots) and generally reduces the interpolation error compared to
polynomial interpolation. It is possible to include time as a continuous covariates in the
model generation with diffxpy, which uses such a spline basis space to represent the
smooth expression trends.

2.5.10 Gene set enrichment analysis GSEA

The meaningful interpretation of the gene lists with condition-specific behaviour is the
next challenge. The genes can be ordered in a ranked list, e.g. based on the amount of
difference across the conditions (log fold change). Instead of focusing on a handful of genes
at the top and bottom of these lists, it is essential to find a way to group genes that share
common biological function or regulation patterns. The Gene Ontology (GO) consortium
has the goal to produce a structured, precisely defined and common vocabulary to describe
the roles of genes and gene products in any organism. With this a comprehensive and
complete source of information on the functions of genes, their cellular localization and
biological processes should be established.229

Gene Set Enrichment Analysis (GSEA) builds on this resource among others. To reveal
their biological relevance, it tests whether certain gene ontology terms are over-represented
in a list of genes. In the following chapters, GSEA will be performed with the python
package GOAtools,230 which uses the latest annotations and organizes results using a
novel GOATOOLS GO grouping method. It is based on the assessment, whether selected
gene sets contain over- or under-representation of certain functional classes, by comparing
the frequency of genes for a particular GO term in the sample to the frequency in the
background. A p-value is then computed, on the basis of Fisher’s exact test and adjusted
with Bonferroni correction.
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2.5.11 Inference of intercellular communication

Finally, to take a step back from the single-cell resolution, it is important to put the
discovered expression patterns into a broader context. Cells react to extracellular signals
produced by neighbouring cells in their microenvironment and complex signalling cascades
are initiated upon the binding of ligands to their cognate receptors. To understand which
processes occur in response to certain stimuli, it is essential to understand the cross-talk
between cells within their respective niches.

Thanks to the measurement of ligands and target receptors across a magnitude of
interacting cell types, it is now possible to decode such intercellular communication net-
works. Whole data bases have been established to chart ligand–receptor relationships.
This not only sheds light on tissue function, but also allows to detect their alterations
in disease. CellPhoneDB231 for instance tries to identify biologically relevant interacting
pairs based on a manually curated data base. The algorithm considers the expression
levels of ligands and receptors within each cell state and performs permutation tests to
predict which molecular interactions show significant cell-state specificity. CellPhoneDB

emphasizes specificity of the ligand–receptor interaction, arguing that some pairs might
be ubiquitously expressed by the cells in a tissue and therefore will not be informative
regarding communication between particular cell states.

Another recent tool is NicheNet,232 that - much like CellPhoneDB - integrates prior
knowledge on ligand-to-target signalling paths. Contrary to similar approaches, it goes be-
yond describing extracellular signals by which cells are capable of communicating. Niche-
Net incorporates a predefined target gene list and infers the effects of sender-cell ligands
on receiver-cell expression. The basis are its weighted networks, data sources which are
integrated and optimized such that the most informative sources contribute more to the
final model. The regulatory potential is introduced as a quantitative measure that is
calculated between all pairs of ligands and target genes, denoting how strongly existing
knowledge supports that a given ligand may regulate the expression of a target gene. This
value will be high if the regulators of the respective gene are downstream of the signalling
network of the corresponding ligand. The signal from a ligand is propagated further start-
ing from its target receptors, factoring in signalling proteins and transcription factors that
are involved in the pathways leading up to the genes at the tail of the cascades.
For the calculation of ligand activity scores, two gene sets are defined: (1) potentially
active ligands in sender cells and (2) a set of affected genes of interest in the receiving
cells. To quantify the ability of each ligand to predict the target genes, the authors chose
the Pearson correlation coefficient. The correlation is calculated between regulatory po-
tential scores of each ligand and the target indicator vector, which reflects whether a gene
belongs to the gene set of interest or not. Eventually, ligands are ranked according to
how well their prior target gene predictions correspond to the observed gene expression
changes resulting from communication with sender cells.

This approach is more advanced than simply matching against a ligand-receptor data
base, and proved to be useful when trying to explain shifts in gene expression, mak-
ing NicheNet especially applicable to trace potential ligands that explain induction of
condition-specific gene expression.



Chapter 3

Results

3.1 Differentiation trajectory of human pluripotent

stem cells to lung and hepatocyte progenitors

The first chapter of this thesis revolves around a project exploring early lung development
at a high temporal resolution with Drop-seq data. Due to the dense time points this data
set has been ideal for the establishment of methods that will be used throughout this work.
As understanding the development of human respiratory tissues is crucial for modelling
and treating lung disorders, much prior knowledge has accumulated over the years and
enabled the validation of the employed analysis angles and results. The work has been
summarized in a manuscript. On 24th February 2021, a not yet peer-reviewed version
has been uploaded to bioRxiv, a free online platform preprints in biological research. The
file is accessible via the link https://www.biorxiv.org/content/10.1101/2021.02.23.

432413v2 or the doi 10.1101/2021.02.23.432413.
Experimental data planning and collection such as organoid cultures, scRNA-seq, FACS-
sorting, and respective statistical analysis were performed by Chaido Ori and Ilias Ange-
lidis. In this project, my contribution encompassed the single-cell data analysis, including
sequence alignment, pre-processing, differential gene expression and trajectory modelling.
Thus, parts of the results in this chapter have been used in the preprint.

Introduction

One of the main questions in stem cell biology is how the cascades of gene regulatory net-
works and signalling pathways give rise to the structure and function of organs. Resolving
these mechanisms enables researchers to characterize adult stem cells and treat disorders,
for example by manipulating their behaviour for therapeutic purposes in humans.

Particularly the foregut endoderm (FE) formation is of interest, as the FE gives rise to
several organs, including the lung and liver. To better understand the aspects of human
development, appropriate experimental models are necessary. Induced pluripotent stem
cells (iPS) have proven to be a powerful tool to study molecular details of the differen-
tiation from definite endoderm (DE) progenitors over FE up to early lung progenitors
(ELP). IPS cells are derived from adult somatic cells and can be reprogrammed into a
pluripotent state. By maintaining embryonic stem cell conditions, their stem cell mor-
phology and growth properties as well as expression of stem cell marker genes can be
maintained.233 Such iPS cells hold promise not only in basic research but also regenera-
tive medicine, as they can propagate indefinitely and give rise to every other cell type in
the body.234
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In the following analysis, the formation of lung foregut precursors in human develop-
ment was investigated by the means of such iPS. The combination of the experimentally
directed differentiation with scRNA-seq provides a strong basis to compose a roadmap
governing human development in vitro. Here, the transcriptomic profiles were assessed
via Drop-seq at a high temporal resolution along the differentiation of human iPS cells.
An established differentiation protocol was optimized and monitored on the tissue and
the transcriptomic level. Briefly, step-wise activation and inhibition of Activin/Nodal
and Wnt/β-catenin signalling leads to appearance of a NKX2-1+ endodermal population
at day 8.235 The expression of this transcription factor specifies definitive endoderm to
respiratory endoderm commitment and is the earliest indication of the establishment of
both respiratory progenitors and thyroid epithelium in the FE. NKX2-1+ cells are highly
enriched for undifferentiated progenitors, which are competent at expressing a variety of
pulmonary specific genes, including surfactant proteins (SP-A, SP-B, SP-C, CC-10).236

Studies have shown that the transcription factor Sonic Hedgehog (SHH) and the Fi-
broblast Growth Factor 10 (FGF10) give cues essential in foregut and lung development.
Mice with a targeted deletion of Shh have foregut defects as early as embryonic day
9.5, showing anomalies similar to those observed in humans with foregut defects. No-
tably, their lung mesenchyme displays enhanced cell death and down-regulation of Shh
target genes.237 The distal mesenchyme regulates the growth and branching of the endo-
derm, Fgf10 for example is expressed in the mesenchyme adjacent to the distal buds.238

Therefore, SHH and FGF10 were supplemented at the second stage of the protocol. Si-
multaneously, the transcriptional states underlying the differentiation were charted by
daily single-cell suspension processing and Drop-seq. This 16 day time-series scRNA-seq
experiment resulted in a total of 10,667 cells used later in downstream analyses.

3.1.1 IPS differentiate towards lung and hepatocyte progenitors in parallel

Prior to data analysis, the validity of the adapted differentiation protocol had to be
assessed. The appearance of lung progenitors was tracked via a human iPS cell line
integrated with the eGFP downstream to the endogenous NKX2-1 promoter. Starting
between days 13 to 15, the formation of eGFP+ progenitors became apparent and their
numbers were significantly increased by supplementation of SHH and FGF10, in both
tested types of basal media BM1 = DMEM/F12 and BM2 = IMDM (Fig. 3.1c).
To evaluate the developmental potential of the appearing eGFP+ lung progenitors, spheroid
3D culture assays were used. Clusters of eGFP+ cells from day 15 of the differentiated
cells were picked and embedded in matrigel with supplementary media in order to promote
the proliferation of lung progenitors in suspension culture. This led to the outgrowth of
the spherical structures, which tripled in size within 7 days and maintained expression of
eGFP. Further treatment by dexamethasone, cAMP and IBMX, which promote matura-
tion of the fetal lung,239 induced expression of proteins characteristic for club and goblet
cells in the proximal region of the lung (SCGB1A1, MUC5AC) referred to as DCI. CHIR
addition lead to Wnt/β-catenin pathway activation, promoting branch development in the
spheroids, while inhibition of TGF-β lead to the spheroids growing substantially larger to
an average size of 1.6 mm by day 35 (DCICS). They also exhibited branches and markers
of AT2 cells (SFTPB, SFTPC) and lower expression of SCGB1A1 and MUC5AC com-
pared to DCI (Fig. 3.1b,d). These results confirmed that the selected cells were indeed
capable of generating lung progenitors.
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Figure 3.1: Differentiation of lung progenitors from human induced pluripotent stem
cells. a Schematic illustration of daily sampling for scRNA-seq on to the first 16 days of the
lung progenitor differentiation protocol to produce eGFP+ lung progenitor cells, spheroids and
organoids. b Immunofluorescence staining of day 35 DCI and DCICS spheroid-organoids for
SFTPC, SFTPB, SCGB1A1 and MUC5AC (scale bar = 20µm). c Quantification of the amount
of eGFP+ cells by flow cytometry on day 15 of differentiation, comparing condition with and
without FGF10+SHH treatment in defined basal media DMEM/F12 (FE-BM1) and IMDM
(BM2). Bars represent mean ± SD, n = 3 biological replicates, ***p ≤ 0.0001 unpaired
two-tailed t-test. d Fluorescence microscopy of day 15 NKX2-1+/eGFP+ cell sectors and a
representative day 22 spheroid produced by embedding a colony in matrigel, and the further
growth of spheroids (Scale bar = 200µm) observed on day 35 with treatments. e Volcano plot
showing differentially expressed genes comparing the eGFP+ and eGFP- sorted populations
on day 15, and the corresponding GO terms of the eGFP- population. f Heatmap displaying
the expression of developmental markers and genes important for lung function based on the
bulk RNA-seq analysis of the indicated conditions (p-value < 0.05, scale displays normalized
log2 expression). g Gene Ontology term enrichment analysis of differentially expressed genes
in eGFP+ and DCICS spheroid-organoids relative to undifferentiated NKX2-1 cells (p-value <
0.05, GO term FDR < 0.05).
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The mRNAs of undifferentiated cells was sequenced in a bulk fashion, in order to char-
acterize the differences across the populations at day 15. Prior to sequencing, the cells
were sorted into DCICS organoids, eGFP+ and eGFP- cells. Expression analysis revealed
FGB up-regulation was the main feature differentiating eGFP-from eGFP+ cells and will
be instructive later on during single-cell analysis (Fig 3.1e). Genes that were higher
expressed in eGFP+ cells and DCICS organoids compared to baseline stem cells have al-
ready been implicated in the formation of respiratory epithelial cells in the lung (FOXA1,
FOXA2, FOXP1, and NKX2-1) as well as branching morphogenesis and differentiation
of the distal lung (RUNX1, MUC1, SFTPC, SFTPB, CLDN18 and NAPSA)240 (Fig 3.1f).

Other genes that were expressed in the negative population were primarily fetal liver
genes, including apolipoproteins (APOA1, APOB) and the plasma protein Alpha Fe-
toprotein (AFP).241 Further GO term analysis showed enrichment of genes involved in
embryonic respiratory lung morphogenesis and alveolar development in eGFP+ progeni-
tors and DCICS organoids, while processes related to liver development were prominent in
eGFP- cells. The co-existence of lung and hepatocyte progenitors on day 15 of the differ-
entiation protocol raised the question of what mechanisms drive the exclusive specification
of these lineages from the FE stage.

3.1.2 Time-resolved single-cell characterization of early lung development

To assess the transcriptomic changes on a daily basis, Drop-seq was performed on the
first 16 days of the differentiation protocol. For pre-processing, the main procedure as
described in section 1.3 was applied, for which the final parameters and thresholds are
listed in the appendix. As 1000 cells were expected per sample, the first 1200 cells with
the highest number of transcripts per cell were included further. This resulted in a total
of 10,667 cells for which the UMAP showed a sequential arrangement of cells, agreeing
with the temporal order of sampling, particularly show-casing the harsh perturbation in
gene expression induced by the medium change after the DE (day 0 to day 6) and FE
stage (day 7 to day 10) (Fig. 3.2a). PAGA was performed to assess the connectivity
of the Louvain clusters (resolution 1) and further corroborated the three major domains
in the high dimensional manifold corresponding to the three stages of the differentiation
protocol (Fig. 3.2b). Next, the the dynamics of gene expression along the differentiation
trajectory from day 0 to 15 was modelled. Louvain cluster marker reflected the temporal
heterogeneity, which was further delineated by inclusion of real time points. For this step,
genes that show significantly altered expression patterns across time were of interest. As
the patterns towards early lung progenitors were of interest, only those cells that were
positive for either eGFP or NKX2-1 from days 11 to 15 were selected for the trajectory
inference. Ribosomal derived genes were excluded from this analysis.

A regression model based on splines was used for this time-course data to model non-
linear effects of continuous variables. For each gene a natural cubic spline with 4 knots
was fit while using the time points of extraction as explanatory variables. UMI counts
of each cell were included in the model as a covariate to account for differences in li-
brary size. As it is non-trivial to interpret p-values across time, the adjusted p-value
solely served as a ranking for the genes, of which the top 200 are depicted in Fig. 3.2f.
Upon closer inspection, well-described transcription factors in undifferentiated stem cells
(POU5F1, NANOG) as well as genes defining the DE stage (SOX17, MIXL1, EOMES,
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CER1, CXCR4 and LEFTY1)240 were indeed among the top ranked genes at earlier time
points, whereas genes important for the formation of lung progenitors (NKX2-1, IRX3)236

came up during later stages, when the commitment towards lung lineage is expected.
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Figure 3.2: Time-resolved analysis of iPSC differentiation using scRNA-seq shows
distinct hierarchy of gene expression changes. a Time point of sampling is colour coded
on the UMAP projection of scRNA-seq transcriptomes. b The connectivity of distinct Louvain
clusters as determined by graph abstraction (PAGA) overlaid onto the UMAP projection. c
Top 5 genes per cluster shown in a dendrogram-sorted dotplot. Normalized expression levels
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developmental markers of the lung and the liver are highlighted.
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To capture overarching trends and avoid focusing on selected markers only, genes were
grouped according to their average expression per day. For the DE and FE stage sepa-
rately, the genes with significant association to time were selected using the spline model
(adjusted p-value < 0.005) and categorized by hierarchical clustering. The dendrogram
tree returned by the hdist() function of the R package stats was cut into 10 clusters,
which were manually re-annotated to 6 final groups for each stage. The average expres-
sions of the 100 genes with the lowest adjusted p-value per cluster are displayed in Fig.
3.3. This clustering approach revealed temporal patterns of stage specific markers, that
corresponded well to literature-based expectations and were consistent with consecutive
expression of DE, FE and lung progenitor markers.
SOX2 is a transcription factor that is essential for maintaining pluripotency of undiffer-
entiated embryonic stem cells and was used as first validation point during day 0 to 6.
Accordingly, cluster A1 showed decreasing levels as the differentiation progressed.
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Figure 3.3: Dissection of the kinetic patterns of genes underlying the differentiation
of lung progenitors and hepatoblasts. a, b Diffusion map of single cells for days 0-6
showing the transition from pluripotency towards DE (a) and FE (b). Scaled mean expression
per gene cluster and associated pathways identified by hierarchical clustering of the genes with
significant associations to days 0-6 (adjusted p-value < 0.005, 6101 genes) and days 6-10
(adjusted p-value < 0.005, 9352 genes). c, d Scaled mean expression of each gene cluster
at the indicated time points, DE stage in (c) and FE stage including day 6 in (d). Grey lines
correspond to the top 100 genes per cluster, ranked by adjusted p-value. Blue lines show the
median expression within each cluster and the kinetics of genes of interest are highlighted.
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Cluster A6 was of particular interest, as major DE genes like EOMES, LHX1, OTX2,
CXCR4, LEFTY1, SOX17 showed gradual up-regulation, peaking at day 6. Further, A6
was enriched in pathways involved in endoderm differentiation and regulation of SMADs
and TGF-β signalling.
During day 6 to day 10 the emergence of lung progenitors is anticipated, and potentially
coincides with the maturation of hepatoblasts. Cluster B1 displays sharp down-regulation
of genes linked to the induction of DE (EOMES, LHX1, GSC, OTX2, SOX1) and GO
pathways associated with meso-endoderm development, which is consistent with the ex-
perimental dual-SMAD inhibition at this stage. Cluster B3 was enriched for epithelial
cell proliferation and tube closure, indicating that the lung progenitor program has been
initiated between days 6 to 10.

Isl1 has recently been shown to regulate the development of lung lobes and trachea-
esophagus tube separation by the activation of Nkx2-1 in mice242 while Irx3 promotes
the proliferation of branched epithelium during lung formation,243 both genes which were
assigned to B3. Cluster B5 on the other hand showed increase in expression over time,
coinciding with the fact that other included genes (FOXA2, FOXP1 and PITX2) are
crucial for the lung morphogenesis and asymmetry in the mouse.244 The GO terms lung
morphogenesis, embryonic organ development and epithelial cell differentiation were also
enriched in this cluster. The desired activation of the SHH pathway was further apparent,
as target genes GLI4 and GLI3245 were assigned to clusters with an up-regulation trend.

3.1.3 Recover gene kinetics during cell fate trajectory branching

In certain clusters with upwards expression pattern, hepatoblast/hepatocyte characteris-
tic genes emerged, including transcription factors specific to the liver (HNF1A, HNF1B,
TBX3) as well as first indications of genes, which are secreted by the liver (APOB,
APOA2, TTR). APOB for instance appeared as early as the second stage of the protocol
(Fig. 3.4a). Particularly at the last stage, there was a strong heterogeneity which was
also reflected in the Louvain clustering. Contrary to cluster 10, cluster 0 and 12 did not
express lung markers, but instead showed higher levels of hepatocyte markers in general
(Fig. 3.4b,c). The expression pattern of FGB, which was the most up-regulated gene in
the eGFP- population during bulk transcriptomics at day 15 (Fig. 3.1e), substantiated
this separation further.

As this data indicated that the lung and liver lineages start separating during the
second stage, it would be interesting to see which genes are associated with either differ-
entiation lineage. Thus, a trajectory analysis was performed on differentiation day 7 to
15, covering the second and third stage of the protocol. To neglect the harsh effect intro-
duced by the media change after day 10 in the embedding, genes that were differentially
expressed between the FE and LP stage (logFC > 1 and < -1) were excluded from the
highly variable gene list. Further, to guide the dimensionality reduction, the signatures
from the initial bulk experiment on day 15 were taken into account. Genes that were sig-
nificantly regulated between eGFP- versus eGFP+ cells (logFC > 1 and < -1, 1294 genes)
were used as input for the subsequent PCA. Following diffusion map calculation, the high
dimensional manifold displayed several branching events. The expression of eGFP and
NKX2-1 was restricted to one of the trajectories, while FGB expressing cells, as proxy for
hepatocyte progenitors, were located on a different trajectory (Fig. 3.4d).
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Figure 3.4: Overview of the single cell data set after filtering. a Violinplots of stage
specific marker genes are shown for the day of sampling. b UMAPs overlaid with expression
of lung progenitor markers NKX2-1 and IRX3, and liver markers AFP and FGB, showing the
visual separation of the two lineages. c Dot plot indicating that markers of the early lung
show higher expression levels in Louvain clusters 10 and 1, whereas markers of hepatocytes
dominate cluster 0 and 12. d Diffusion maps showing that the lung markers NKX2-1 and
eGFP were restricted to one sub branch. The hepatocyte marker FGB was enriched in another
branch encompassing clusters 0 and 5. Diffusion map of cells from day 7 to 15 coloured by
Louvain cluster, stage and NKX2-1 as lung lineage and FGB as hepatocyte lineage marker.

Additional branches (namely cluster 4, 6, 8) showed high expression of ribosomal/mito-
chondrial genes, or non-lung/non-hepatocyte lineage in general, and were therefore ex-
cluded from the analysis. Consequently, the two branches of interest remained, which
originated in the FE stage and had their endpoint in either the lung or hepatocyte pro-
genitor trajectory.
As a proof of principle, the retained cells were scored based on their similarity to the
bulk signature. The cells scoring high for either lung or hepatocyte signature were indeed
enriched in only one of the two branches (Fig. 3.5b). In the last step of the analysis,
the branching event was better characterized to derive a roadmap of genes that drive the
separation of lung progenitors from the liver fate. For this purpose, the differential gene
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expression analysis was again performed with diffxpy227 using the spline basis. To factor
in the asynchronous behaviour of the cells, the diffusion pseudo time was calculated for
the lung (cluster 1, 2, 3) and hepatocyte branch (cluster 2, 3, 5, 0) separately, instead of
relying on the real time point which might not reflect the correct state of all of its cells.

The model should capture genes that show temporally altered expression pattern, and
are differentially expressed across these two branches as well. The input consisted of the
pseudo time as a continuous covariate and a categorical annotation trajectory, implying
which branch each cell was assigned to, as factor to test for. For visualization purposes,
the trajectory-wise pseudo times were manually binned into one shared source (cells from
the FE stage) and 4 additional groups each. Average expression of cells per bin is shown
for top 100 genes ranked by adjusted p-value in Fig. 3.5a. With this model, some key
differences in the lung and hepatocyte differentiation branches could be revealed. As
proof of concept, the expression of lineage specific markers such as NKX2-1, IRX3, and
HNF1B, and FGB was exclusively increased along the expected trajectory (Fig. 3.4c).
Other expression patterns validated the central roles of SHH and Wnt/β-catenin in early
lung development, as key components of the pathway (DKK1, WNT5A, SP5, AXIN2)
exhibited considerably higher expression in the lung branch.
Further, the exclusive expression of SOX2 highlighted the lineage specific activity of this
pathway, as SOX2, canonical Wnt signalling, and FGFs often intersect in the regulation
of self-renewal in development.246 Another pathway that plays a role in the regulation
of embryonic development would be the Notch pathway. HES1 is one of its canonical
transcription factors, while DLK1 is a pathway modulator that is known to be involved
in lung branching and morphogenesis.247 While these two were specifically expressed in
the lung trajectory, another activating canonical ligand (DLL1) showed expression in the
opposite branch. This may indicate that hepatoblasts promote Notch signalling in lung
progenitors by paracrine signalling. Key players of the TGF-β pathway (TGFB2 and
THSB1) show a comparable upregulation in the lung branch as well. It was interesting
to see that the exogenous treatment by SHH and CHIR did apparently not activate these
pathways in the neighbouring hepatoblasts. To mechanistically test the exclusiveness to
the lung trajectory, the Notch and TGF-β pathway were inhibited with the treatment of
the γ-secretase inhibitor DAPT and SB431542 from day 11 onwards, respectively. Quan-
tification of eGFP+NKX2-1+ cells yielded a significant decrease of the lung progenitors
and decrease of NKX2-1 expression overall (Fig. 3.4d,e). These observations highlighted
the involvement of the Notch and TGF-β pathways during lung specification towards lung
progenitors as well as the important role of cross-talk between them.

Conclusion

In summary, the high temporal resolution in this project allowed for a detailed exploration
of the mechanisms and their timing. The analysis of the single-cell data proved to be a
powerful tool to delineate potential drivers that regulate the specification of lung pro-
genitors in the foregut, as the derived patterns could be validated within the biological
setting. Overall, the calculated pseudo time agreed well with the highly resolved time
series of sampling, and the top genes ranked by their association to time reflected much of
what has already been described in the field. The application of diffxpy based on splines
in particular showed to be promising in extracting the genes with interesting temporal
expression patterns, and will therefore be used the chapters to come as well.
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Figure 3.5: Reconstructing the transcriptional transitions from pluripotency to lung
progenitors and hepatoblasts. a Heatmap showing results of unsupervised clustering of
top differentially expressed genes along the lung and liver pseudo time trajectory, respectively.
b Diffusion maps and Louvain clustering representing single cell transcriptomes of days 7-10
(blue) and 11-15 (red). Colour coded scores indicate similarity of single cell transcriptomes
to bulk mRNA-seq data of NKX2.1+eGFP+ and eGFP- populations. c Line plots showing
the expression dynamics of the indicated genes in the respective branches in accordance to
the binned pseudo time ordering (vertical lines represent confidence intervals of 95%). d
Representative flow cytometry and the quantification of NKX2-1+eGFP+ lung progenitors on
day 15 of differentiation, with or without the treatment by DAPT or SB431542 as indicated in
days 11-15 (bars represent mean ± SD, n = 4 biological replicates, ** denotes p-value ≤ 0.01
by unpaired, one-tailed t-test). e Respective fold change of NKX2-1, AFP and FOXA2 on day
15 relative to the parental undifferentiated cells (quantified by qRT-PCR, bars represent mean
± SD, n = 3 biological replicates, unpaired, one-tailed t-test).
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3.2 Bleomycin-induced lung injury leads to transient

cell state that may persist in human lung fibrosis

During the last 3.5 years, the majority of time and effort went into the project described
in the next section. Again, transcriptomic analysis was performed on longitudinal Drop-
seq data, this time in order to characterize the mechanisms that occur in response to
acute lung injury. Focus of this study were the shifts in gene expression space across the
different cell types leading to tissue regeneration, or contrarily, to pin-point mechanisms
that are dysregulated and drive disease manifestation rather than resolution. In the first
part of this chapter, the transcriptomes of whole lungs from mice are chartered for the
purpose of generating hypotheses and gaining an understanding of key mechanisms. To
then evaluate their transferability to human disease, the second part will utilize data of
human ILD patients across several cohorts and assess whether certain insights gained
from the mouse model can indeed be translated to the in vivo reference.
Parts of this chapter address analyses that are part of concluded publications. Therefore,
there will be overlap with the results presented in Strunz et al. 2019171 and Mayr et al.
2021,173 albeit the quality control and annotations have been improved in the data sets.
Additional study cohorts became available in the meantime and have been incorporated
as well, further expanding on some key messages from the listed publications.

Experimental data planning and sample collection, such as scRNA-seq, protein quan-
tification, FACS-sorting, immunohistochemical stainings and respective statistical anal-
yses were performed by Maximilian Strunz, Christoph Mayr and colleagues. Gabriela
Leuschner was responsible for organization of the patient data. Some of the analyses were
inspired by established code from Lukas Simon and heavily incorporated his input.
My contributions in both sub-project include great parts of the computational analysis,
the pre-processing in general (alignment, quality control, visualization), integration across
cohorts regarding the human data set, in silico exploration of cell state shifts and partic-
ularly the characterization of the impaired mechanisms and intercellular communication
in the alveolar epithelium in the mouse and human lungs.

Introduction

As briefly introduced in section 1.4, the lung is made up of a variety of cell types that
are necessary for proper function and displays remarkable potential to regenerate. In
response to injury, certain cell populations become activated and adjust to changes in the
micro-environment. Particularly the stem cell and progenitor populations have the ability
to proliferate and replenish damaged cells. The exact mechanisms driving this repair have
been the subject of a number of recent studies, and will be explored in this chapter.
The factors that lead to the manifestation of ILD remain largely unknown, and due to its
progressive and chronic nature it is difficult to model in animals. Nonetheless, bleomycin
has been shown to elevate proinflammatory cytokines (Interleukin-1 IL-1, Tumor Necro-
sis Factor-α TNF, Interleukin-6 IL6, Interferon-γ IFNG) and to cause fibrotic reactions
within a short period of time after intratracheal instillation. Around day 9 the switch
from an inflammatory response to a fibrotic one occurs.248 Certain histological hallmarks
of IPF patients, such as the deposition of collagen or obliteration of alveolar space, are
well reflected in treated animals, allowing the study of some aspects of human disease.
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The bleomycin-mediated lung injury mouse model was used to simulate early stages of
lung fibrosis, and the induced transcriptomic changes were profiled over a 4 week time-
course (Fig. 3.6a). Drop-seq was performed on day 3, 7, 10, 14, 21 and 28, leading
to a total of 54,786 cells from 28 mice. The time course made it possible to quantify
gene expression shifts, changes in cell type composition and altered cell-cell communi-
cation that arise after injury during the fibrotic phase. Many known mechanisms could
be captured, such as the recruitment and activation of expected cell types. During the
first exploratory analysis a peculiar alveolar intermediate state arose, mainly consisting
of cells from time points after the lung injury. Therefore, the study was extended to a
second more stream-lined experiment. The time points were upscaled to daily sampling
for two weeks and EpCam+ cells were specifically sorted and enriched for using Magnetic
Activated Cell Sorting (MACS), allowing a higher temporal and cellular resolution of the
processes leading to regeneration in the alveolar compartment.

The use of a mouse model enabled a detailed study on the mechanism involved in
fibrogenesis, but does not necessarily reflect human disease in its entirety. In the latter
half of this chapter, some striking aspects are then compared to single-cell data on human
ILD patients. To increase generalizability, a number of recently published ILD scRNA-seq
cohorts were considered in the process. Although this will not unveil the mechanisms that
trigger disease development, it will provide some new insights and potential dysregulated
mechanisms that help shedding light on the pathogenesis.

3.2.1 A time resolved single-cell picture of lung regeneration

gene gene name UNIPROT summary for the encoded protein

ACTA2 Actin Alpha 2 Involved in cell motility, vascular contractility and blood pressure homeostasis.

ARG1 Arginase 1 Arginine metabolism is a critical regulator of innate and adaptive immune

responses. Upon release from granulocytes it accumulates extracellularly during
inflammation and suppressese T cell proliferation and cytokine synthesis.

CCL2, 7 C-C Chemokine
Ligand 2, 7

Chemokines involved in immunoregulatory and inflammatory processes, binding to
chemokine receptors CCR. Chemotactic activity for monocytes and basophils.

CCR1, 2,
5

C-C Chemokine
receptor 1, 2, 5

Chemokine receptor family, whose mediated signal transduction are critical for the
recruitment of effector immune cells to the site of inflammation.

CDKN1A Cyclin dep.
Kinase Inhibitor

Regulator of cell cycle progression at G1, tightly controlled by the tumor suppressor
p53 in response to stress stimuli.

KRT8 Keratin 8 Keratins heteropolymerize to form filaments in the cytoplasm of epithelial cells.

Plays a role in maintaining cellular structural integrity and cellular differentiation.

LCN2 Lipocalin 2 Involved in innate immunity, limits bacterial proliferation by sequestering iron
bound to microbial siderophores.

LGALS3 Galectin 3 Localizes to the ECM, cytoplasm and the nucleus, plays a role in apoptosis, innate

immunity, cell adhesion and T cell regulation.

MFGE8 Lactadherin Promotes phagocytosis of apoptotic cells and has been implicated in wound healing,

autoimmune disease and cancer.

SPRR1A Cornifin-A Envelope protein of keratinocytes, becomes cross-linked to membrane proteins,
resulting in formation of insoluble envelope beneath the plasma membrane.

SPP1 Secreted

Phosphoprotein 1

A cytokine that up-regulates expression of IFNG and IL12. Among its related

pathways is degradation of the extracellular matrix.

Table 3.1: Marker genes for certain injury-induced cell states in whole lung mice data after
bleomycin treatment. Retrieved and shortened gene descriptions from UniProt.249
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Figure 3.6: Longitudinal scRNA-seq analysis reveals injury induced cell type com-
position changes. a Transcriptomes of single cell suspension from murine whole lungs were
analyzed using Drop-seq at indicated time points following bleomycin-mediated lung injury
and projected using the UMAP algorithm. b UMAP with cells colour-coded by treatment and
time point of extraction. c Boxplots of relative frequency of indicated cell type with respect
to all other cell types per individual mouse. PBS mice (n = 8) are treated as day 0 control. d
Separate UMAPs highlighting cells of each time point show-case temporal shifts in the lungs
during injury response. e Scatter plot of PCA results based on synthetic bulks by sample-wise
summation of counts for each gene across cells. The first component separates bleomycin
treated mice from controls, whereas the third component corresponds to the temporal pattern
of the injury response. f Relative composition across all cell types. g Overview of number of
cells (left) and euclidean distance to PBS (right) for each cell type averaged per time point.
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Pre-processing and quality control were carried out as described in the methods chap-
ter, the exact filtering criteria and parameters for the analyses can be found in section
5. A 2D representation of the bleomycin mouse experiment after manual cell type an-
notation is displayed in Fig. 3.6a,b,d. PBS mice were used as uninjured lung reference
and are denoted as day 0. To test reproducibility across replicates, gene expression was
manually summed over cells for each sample in order to generate synthetic bulks, for
which PCA confirmed good agreement of the replicates per time point (Fig. 3.6e). The 5
main lineages were separated and subsequently annotated using canonical marker genes
and previously published scRNA-seq data sets (Fig. 3.7), resulting in 38 final cell type
identities. Most clusters, especially cell types that are present in baseline, contained cells
from both conditions, while some bleomycin-specific cell states were enriched in mice
from later time points. Cell frequency dynamics reflected many well-described processes
in early inflammation (Fig. 3.6c,f). Fibroblast populations are primarily responsible for
the tissue scarring as regular response after injury due to their increased expression of
extracellular matrix proteins, which are necessary to promote proper healing. Activated
myofibroblasts are assumed to undergo apoptotic clearance afterwards, also through in-
teraction with activated macrophages during scar resolution.250 Acta2+ Myofibroblasts in
this data set reflected the prior knowledge, as their numbers were increased during the
fibrotic peak at day 10 to 14 (Fig. 3.7e).
Ly6c2+ classical monocytes were recruited from blood within days after injury and likely
contributed to the appearance of Arg1+ profibrotic macrophages peaking at day 10. Af-
ter initial response, Mfge8+ resolution macrophages started appearing and replaced the
inflammatory macrophages from day 14 onwards.

The increase of cells after induced injury was strikingly apparent in the alveolar epithe-
lial compartment, already in the visual representation. AT1 and AT2 cells were connected
by cells mainly derived from intermediate time points. Subclustering of epithelial cells
separated the alveolar types into four distinct clusters (Fig. 3.7b). AT1 and AT2 cells
could be quickly identified by Sftpc and Rtkn2 expression, respectively. An activated
AT2 state showed up-regulation of injury-induced genes, such as Lipocalin 2 (Lcn2) and
Interleukin-33 (Il33), additional to AT2 markers. Another cluster was characterized by
decreased expression of AT1 and AT2 markers, and displayed an unique gene signature.
Marked by their up-regulation of Keratin-8 (Krt8), a gene encoding a fibrous structural
protein, this cell state was titled Krt8+ alveolar differentiation intermediate (ADI). This
cell state further had higher expression levels of Sppr1a, encoding Cornifin-A that func-
tions as a component of the cross-linked envelope in squamous differentiating cells,251 and
Lgals3, encoding Galectin-3 which plays a role in cell-cell adhesion, macrophage activation
and apoptosis.252

3.2.2 Injury-induced shifts in cellular communication across time

A first exploratory analysis was performed to gain a more detailed understanding of
the altered transcriptomic profiles. The gene expression shifts induced by bleomycin
treatment were calculated with diffxpy227 for each cell type at each time point separately,
using the scaled number of counts as covariates and the treatment as factor to be tested
for. It should be noted that for differential expression analysis certain populations were
combined to meta cell types, as some cell states were only present at intermediate time
points and not in the baseline. In order to ensure a condition to compare to, Krt8+
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ADI and activated AT2 were added to AT2, and resolution/inflammatory macrophages
to AM. For myofibroblasts there is no obvious single origin, therefore all myofibroblasts
were compared to a merged population of baseline (PBS) fibroblasts.
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Figure 3.7: Compartment-wise annotation of cells from bleomycin exposed mice.
a Split view of UMAP, separated by samples exposed to PBS control (left) or bleomycin
(right). b-f Cell type annotation, relative composition within compartment and literature-
derived marker genes of the epithelium (b), mononuclear phagocytes (c), lymphocytes and
granulocytes (d), mesenchyme (e) and endothelium (f). Light gray cells were excluded.
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To quantify the alterations, the amount of up- or down-regulated genes are shown
in Fig. 3.8a. Apart from the neutrophil population, whose cell numbers were too low
to be considered in the test, well-known response patterns could be discerned. Immune
cells such as alveolar/interstitial macrophages, classical monocytes and T cells showed
strongly altered regulations in both directions throughout the time course. Especially the
macrophage populations reacted early to the stimulus and responded by up-regulation
of chemoattractants for several leukocytes (monocyte chemoattractant proteins Ccl2 and
Ccl7, Chemokine ligand Cxcl16, Fig. 3.8c). The corresponding receptors (Chemokine re-
ceptor Ccr1, Ccr2 and Ccr5, Complement C3a Receptor C3ar1, a receptor that stimulates
chemotaxis and granule enzyme release) were not only expressed but also up-regulated in
populations that are recruited to the site of inflammation, particularly monocytes from
the blood and macrophages from the interstitial parts of the lung.
The up-regulated genes (logFC > 0.5 and percentage of expressing cells in the relevant
group > 10%) were then mapped against known receptor-ligand pairs to create communi-
cation networks. Because only induced genes with respect to day 0 cells were considered,
the edges represent the number of pairs for which both the receptor and ligand levels
were increased after bleomycin, not factoring in the communication that happens during
homeostatic conditions. The strong initial communication shifted towards mesenchymal
and endothelial populations at later time points, while AT2 states maintained strong in-
teractions up until resolution of the fibrotic state (Fig. 3.8d). For day 10, the top ranked
receptor ligand pairs are listed in Fig. 3.8e. Overall, the communication died down dra-
matically at day 28, a time point at which the cell populations start resembling their
baseline counterparts.

Although the strong intercellular communication between these immune cell types is
caught instantly by the eye, another strong edge was drawn towards AT2 cells as well.
This population showed the strongest transcriptomic shift after injury, peaking with al-
most 500 up-regulated genes during day 10, which is not unexpected as there was a striking
increase of cell number of the intermediate injury-induced cell state. As bleomycin reaches
down to the alveoli after intratracheal administration, AT2 cells are directly hit by this
reagent. They either get depleted for large parts, or enter another cell state promoting
an inflammatory response. The induced gene program suggested the latter, many of the
up-regulated ligands found corresponding receptors on macrophage populations, such as
the previously listed Lgals3, Cxcl16, and also Annexin A1 Anxa1, which promotes reso-
lution of inflammation and wound healing.
Additional to the immune cell interactions, signalling towards the gCap population was
also occuring. For instance, the Cell Surface Death Receptor Fas plays a central role in the
physiological regulation of programmed cell death, and had corresponding ligands in the
AT2 population (Anxa1, Lgals3, Calm1, Amphiregulin Areg, an epidermal growth factor.)

Many of the up-regulated ligands in myofibroblasts on the other hand are involved in
cell adhesion or cell-matrix interactions (e.g. Integrinβ-1 Itgb1, Serpin Family E Member
Serpine1, Osteopontin Spp1, Fibronectin Fn1, Tenascin C Tnc, Thrombospondin Thbs1).
For many ligands the corresponding receptor lies on other myofibroblast cells as well, sug-
gesting heavy autocrine signalling. Still, the strong edges towards epithelial and stromal
populations motivated a more detailed exploration with focus on these compartments.
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Figure 3.8: Altered pattern of cellular communication across time. a Heatmaps sum-
marizing differential gene expression results for each time point and cell type combination.
Colour indicates number of up-regulated (left) and down-regulated genes (right). b Connec-
tome highlighting contribution of immune cell population during early stage of inflammation
at day 3. Edge colour and width reflects the number of receptor-ligand pairs between the cell
types. c Barplots of logFC values for the receptor-ligand pairs in cell types of interest that
constitute the edges in the network at day 3. d Connectome plot as in (b) separately for
day 10, 14 and 28 to show changes in communication during regenerative response and shift
from immune cells towards mesenchymal compartment. e Barplots of logFC values for the
receptor-ligand pairs in indicated cell types during the peak of fibrosis at day 10.
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Specifically, NicheNet232 was used to predict which ligands from other cell populations
(sender) are most likely to affect target gene expression in a cell population of interest
(receiver) and what their target genes would be. As sender populations all cell types
were chosen, for the final visualization however only the prioritized ligands expressed in
selected populations are displayed, to avoid overcrowded panels. In a first analysis, the
gene signature of classical monocytes and alveolar macrophages at day 3 after bleomycin
treatment was used as target gene signature, respectively (Fig. 3.9). The proposed up-
stream ligands are not only expressed but also up-regulated after bleomycin, particularly
in endothelial populations (e.g. Col4a1, Jam2, Ccl7), fibroblasts (e.g. Thbs1, Tnc, Fn1,
Spp1) and also in the transient alveolar state (e.g. Lgals3, Ceacam1, F11r).
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Figure 3.9: Immune cells react to cellular cues from surrounding cell populations.
a, c Potential ligands explaining gene up-regulation at day 3 in recruited monocytes (a) and
macrophages (c). Regulatory potential of top 30 ligands based on NicheNet’s pearson correla-
tion, restricting to ligands that have been up-regulated in at least one epithelial, mesenchymal
or endothelial cell type upon bleomycin injury. b, d Dotplots visualizing the expression level
and percentage of prioritized ligands implicated in gene expression shifts in monocytes at day
3 (b) and macrophages after bleo (d). Asterisk indicates significant up-regulation of the gene
after bleomycin treatment. For clarity only relevant cell types are shown.
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Figure 3.10: Zoom into inter-cellular signalling between injury-induced cell states.
a, c Potential ligands explaining gene signature in AT2 cells (a) and myofibroblasts (c) after
bleomycin injury. During differential testing, injury-induced alveolar cell states have been
added to the AT2 meta cell type, while baseline fibroblasts from PBS mice were chosen as
reference for myofibroblasts. b, d Dotplots visualizing the expression level and percentage
of prioritized ligands implicated in gene expression shifts in AT2 cells (b) and myofibroblasts
after bleomycin (d). Asterisk indicates significant up-regulation of the gene after bleomycin
treatment. For clarity only relevant cell types are shown. e Starplot reflecting contribution
of each cell type to changes is AT2 (left) and myofibroblast population (right). Edge width
shows score which quantifies the predicted contribution of each cell type to the changes in the
respective receiver cell population. f Schematic of prominent up-regulated ligands involved in
AT2 cell-myofibroblast communication based on NicheNet’s output.
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Cdkn1a appeared as dominant affected gene downstream of many pathways, its en-
coded protein is likely involved in p53 mediated inhibition of cellular proliferation in
response to DNA damage.253 Additional to the increased signalling across compartments,
the proinflammatory response was enhanced by strong autocrine signalling of macrophage
populations, for instance by the up-regulation of inflammatory cytokines such as Ccl2,
Ccl12, Cxcl10.

Following the temporal pattern, the second NicheNet analysis focused on injury-
specific cell states and the potential niche cues responsible for their induction. Fig. 3.10
displays the top ranked ligands explaining gene expression shifts in AT2 cells, notably re-
flecting the Krt8+ ADI signature, and in fibroblast populations likewise the myofibroblast
signature. Expanding on the results in Fig. 3.8e, macrophage populations may interact
with AT2 cells via Lgals3, Anxa1, the LDR Receptor Related Protein Associated Protein
Lrpap1, encoding a receptor-related proteins that might regulate ligand binding activity
along the secretory pathway, Osteopontin (Spp1), which promotes cell-mediated immune
responses, and plays a role in chronic inflammatory and autoimmune diseases,254 and the
Integrin Itgam, implicated in various adhesive interactions of macrophages and their up-
take of coated particles and pathogens. Some of these genes up-regulated in macrophages
also found a corresponding receptor in myofibroblasts (Lgals3, Lrpap1, Fn1). Interest-
ingly, the Connective Tissue Growth Factor CTGF was associated with a large portion of
genes in the myofibroblast signature, which was not surprising due to its association with
TGF-β and its already proven role in the pathophysiology of many fibrotic disorders.255

Along with Itgb1, Thbs1, and many other ligands, the myofibroblasts were indicated to
be capable of generating positive feedback loops.

During cell-cell communication exploration, the proposed interaction routes in be-
tween transient alveolar cell states and the myofibroblasts were of high interest, as they
showed the greatest number of receptor-ligand pairs. Certain pairs indeed underpinned
the hypothesized interactions (Fig. 3.10f), most prominently Lgals3, Itgb1, Serpine2,
Col4a1 and Anxa1, all up-regulated in the Krt8+ ADIs and with the potential to affect
the myofibroblast gene signature. Likewise, eminent myofibroblast marker such as Ser-
pine1, Itgb1, and Tnc, Spp1, Fn1 from Fig. 3.8e, have corresponding receptors in AT2
cell populations.

3.2.3 Transient squamous Krt8+ cell state in alveolar regeneration

Driven by the rise of the intermediate alveolar state, their striking up-regulation of known
inflammatory ligands and their consequent interaction with other activated cell types, the
second transcriptomic profiling experiment aimed at a deep-dive into the epithelial com-
partment for a clearer picture. Lung epithelial cells were specifically selected by sorting
EpCam+ cells using Magnetic Activated Cell Sorting (MACS) prior to the transcriptomic
profiling. Drop-seq was carried out daily up to day 13, and also at separate later time
points up to day 54 after injury (18 time points in total, 2 replicates each, n = 36 mice)
to capture the recovery of the system back to baseline with fully regenerated AT1 cells.
This increase in cellular and temporal resolution should ideally model the rise of Krt8+

ADI and the associated gene programs. After pre-processing and exclusion of remaining,
non-epithelial cells using the filtering criteria as listed in section 5, the final UMAP of
this high resolution epithelial data set is depicted in Fig. 3.11a.
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Figure 3.11: Sampling with higher temporal and cellular resolution affirms a transient
cell state during alveolar regeneration. a Generation of a high resolution data set by
MACS-sorting for EpCam+ cells and profiling with Drop-seq at 18 indicated time points after
bleomycin injury. UMAP of epithelial compartment coloured by cell type, time point and
treatment (n = 36 mice). b Common marker genes for epithelial cell types and the novel
transient cell state characterized by Krt8 expression. c Relative proportions of cell types along
temporal axis highlighting appearance and disappearance of cell states after injury. d Relative
proportions of time points within each cell type. e Scatter plot of PCA results on synthetic
bulks by sample-wise summation of counts for each gene across cells. Replicates appear to
follow a circular pattern aligning with the temporal trend. f UMAP highlighting cells of selected
time point. Note the time dependent movement of cells within the data manifold.

Cell type identities were consistent with the whole-lung experiment described earlier,
capturing the same epithelial populations at much higher cell numbers. The injury-specific
alveolar cell states, which appeared at the earliest measured time point (day 3) in the
whole lung data, was also induced in the epithelial counterpart already as early as day 2.
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Most reassuring was the phenomenon how baseline AT2 cells again switched their ex-
pression towards an activated state with increased expression of inflammatory genes such
as Lcn2, Npc2, Il-33 (Fig. 3.11b). Relative composition analysis revealed the continuing
rise of the Krt8+ ADI state up to day 8-10, from which onwards their presence decreased
over time and disappeared almost entirely at the later days (Fig. 3.11c,d). PCA on
manually sample-wise summed expression data (synthetic bulk) and trends in the UMAP
reinforced the temporal changes in the transcriptomic space, displaying a progressive dis-
tinction to the baseline cells during fibrotic phases and returning to closer resemblance to
non-perturbed lungs after three weeks during the regenerative phase (Fig. 3.11e,f).

In the coming sections, the linear trajectory of AT2 cells towards AT1 cells upon
lung injury will be the main focus. Therefore, as means to model AT1 cell regeneration,
both the whole lung and the high resolution epithelial data set were subset to only the
alveolar compartment including the transient cell states. The two data sets were com-
bined, encompassing 46,264 alveolar cells, and the PCs, knn graph and 2D embeddings
were re-calculated. The resulting UMAP reflected the temporal patterns (Fig. 3.12a,b),
while the diffusion map overlaid with the diffusion pseudo time allowed for a reasonable
ordering of the cells. Scoring cells for gene programs of interest revealed that the Krt8+

ADI cells highly expressed genes involved in cell senescence and pathways associated with
stress-responses and secretion of profibrotic mediators such as p53, MYC, TNF-α via NF-
κB, oxidative phosphorylation and epithelial-mesenchymal transition EMT (Fig. 3.12c),
all pathways previously shown to be crucial for lung regeneration.256,257,258 GSEA with
GOA Tools230 further confirmed the significant enrichment of genes known to be associ-
ated with wound healing, cell migration, ECM interaction and apoptosis in general (Fig.
3.12e).

The differentiation trajectory and gene expression profiles of activated cells over time
proposed the lineage hierarchy of AT2 cells towards alveolar intermediates to AT1 cells. To
gauge which genes and transcriptional regulators drive this differentiation, spline regres-
sion was employed via diffxpy to capture genes that show a significant time-association.
Owing to the dense temporal sampling, the real time points of extraction were used as
continuous covariate to test for, along with the scaled number of counts to account for
differences in cell sizes. Only genes expressed in more than 5% of cells in at least one of the
4 cell types were considered, as a mean to decrease the multiple testing burden. Finally,
the gene expression analysis resulted in 3,082 significantly regulated genes (adjusted p-
value < 0.05). To counteract the drop-out effect and display the results in a more defined
manner, cells adjacent in pseudo time were taken together and their averaged expression
across the resulting 500 dpt bins is shown in Fig. 3.12d. The differentiation trajectory can
further be split into 4 phases, for each the top 20 genes are displayed. The inital phase
was marked by well-described AT2 cell type markers, such as Sftpa1/2, Sftpb, Sftpc. Fol-
lowing the pseudo time, markers of the activated AT2 show increased expression leading
up to the Krt8+ ADI state, whose previously described markers (Sprr1a, Krt8, Lgals3,
Areg) also peak temporally prior to the terminally differentiated AT1 cells. S100 Calcium
Binding proteins are involved in cellular processes like cell cycle progression and differenti-
ation, some of which show increased expression in the differentiation intermediate as well
(S100A6, S100A10 and S100A11). Other striking examples were already encountered in
the previous receptor-ligand analysis, such as Clu, Anxa1, Areg, Cdkn1a, Calm1 among
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Figure 3.12: Differentiation trajectory modelling of AT2 towards AT1 during alveolar
regeneration. a Integrated overview of alveolar epithelial cells from whole lung and EpCam+

enriched data set, coloured by time point and cell type. b Diffusion map visualization of the
alveolar epithelium, highlighting differentiation trajectory over pseudo time. c UMAP coloured
by gene expression scores for indicated signatures (retrieved from MSigDB Hallmark gene sets).
d Heatmap showing scaled expression across the differentiation trajectory for most significant
genes ranked by association to real time. The top gene list was clustered (k = 4) and top 20
genes per cluster are displayed by binning expression values across nearest cells. e A selection
of terms that were significantly (FDR < 0.05) enriched in the Krt8+ ADI signature compared
to all other epithelial cell types. f Line plots illustrating scaled expression levels of selected
intermediate state markers (left) and AT1/AT2 cell type markers (right). Expression values
are averaged per real time point and smoothed for clarity.
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others, demonstrating that many genes that influence the gene expression profiles in other
cell types get increasingly higher expressed during the regenerative response in the alveolar
compartment. This further highlighted the manifestation of strong inter-cellular commu-
nication across niches in response to perturbation.

Finally, terminally differentiated AT1 cells were characterized by high expression of
corresponding marker genes such as Vegfa, Pdpn, Hopx. To link the induced gene ex-
pression changes back to the tangible real time points, the scaled expression in alveolar
cells of manually selected genes is shown in 3.12f. The transient appearance of the Krt8+

ADI cells was further corroborated by the increase of its marker genes during fibrotic
phases and their decrease thereafter. The AT2 cell signature, marked particularly by
the expression of surfactant genes, was drastically decreased upon injury in the alveolar
epithelial compartment, however it started recovering at later days after two weeks. The
regenerative process in AT1 cells was mirrored by the increase of AT1 cell type markers
during regeneration as well. In a recent study the binding of Tp53 to Sox4 and Nupr1
has been observed,84 which are genes implicated in DNA-damage and cellular senescence
pathways and known to regulate cytoskeletal genes.259 The enrichment of these two genes
in the transient population and their persistence of Sox4 expression in AT1 cells suggests
that these play a role in AT2 de-differentiation.

The presence of cytoskeletal regulators such as Sprr1a and Sox4 hinted at cytoskeletal
rearrangements and increased cell contractility in the Krt8+ ADI cells during the final
steps of maturation towards AT1 cells. To capture this injury-induced cell state in its
natural environment and validate its transient emergence, immunostainings of Krt8 were
performed in tissue sections of the lung parenchyma. Indeed, quantification of mean
fluorescence intensity in alveolar space confirmed the transient burst of Krt8 expression
during day 10 to 14 after injury, while Krt8 expression in uninjured control lung and
fully regenerated lungs at eight weeks after injury was mostly restricted to the airways
(Fig. 3.13a,b). Notably, there were rare Krt8+ cells also found in the alveolar space of
control lungs, raising the possibility that the observed cell state also represents natural
homeostatic turnover. Additionally to their appearance, their morphology was examined
via morphometric analysis on 300 micron-thick precision cut lung slices. Cuboidal AT2
cells from control lungs exhibited very low levels of Krt8, whereas in bleomycin-injured
lungs the expression was increased in both Sftpchigh cuboidal cells and Sftpcneg cells with
starting squamous shape. As a means to quantify the mporphological changes, the speric-
ity factor of 21 cells per condition is listed in Fig. 3.13c, describing a significantly flatter
shape of the Krt8+ ADI compared to the baseline AT2 cells.

Intermission

As a first intermediate result the transient appearance of this squamous alveolar differen-
tiation cell state shall be recorded at this point. The transcriptomic profiling using model
organisms was a suitable platform to study their rise. It was possible to describe the gene
programs associated with their appearance and disappearance as they likely proceed to
differentiate towards AT1 cell fate. Notably, these cells displayed morphological changes,
enrichment of senescence genes and appeared to be a potent cytokine-releasing population
majorly involved in cellular signalling. Furthermore, the pronounced role of macrophage
populations during early inflammatory stages, as well as the amplification and transdiffer-
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Figure 3.13: Validation of transient squamous cell state marked by Krt8 expression
in mouse lung tissue. a Fluorescent immunostainings across analysis time points show
nuclei, Krt8 and Sftpc (AT2) and Pdpn (AT1) (scale bar 100 µm). b Quantification of Krt8
mean fluorescence intensity in alveolar space (n = 4 per time point). c Alveolar cell sphericity
analysis of 21 cells per condition reveals elongated cell shape for alveolar Krt8+ cells in precision
cut lung slices. Sphericity of 1 corresponds to round, cuboidal cells, 0 to flat cells. (PBS n
= 2, Bleo n = 2, one-way ANOVA with Dunnett‘s post testing: * p = 0.0376, *** p <
0.0001). d Single cell morphometric analysis on immunostained 300 µm-thick precision cut
lung slices (PCLS) highlight elongation in shape of transient Krt8+ cells (scale bar = 15 µm).
e Maximum projections of confocal z-stacks taken from PCLS are shown for a representative
PBS control mouse and a mouse at day 14 after bleomycin injury.

entiation of fibroblast populations to the activated, ECM-producing myofibroblasts was
properly captured and conveys the validity of the model and results. Intriguingly, it is well
established in the field that epithelial cells that line fibrotic foci in IPF exhibit similar
features of senescence, growth arrest and differentiation blockade.260 The pathological
milieu in lung tissue from patients might correspond in parts to the short-lived, pro-
inflammatory and profibrotic environment after acute injury. Curious to assess how these
observations relate to the respective human disease, similar computational analyses as
just demonstrated are undertaken next by making use of in vivo patient data.
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3.2.4 Multi-cohort integration of single-cell human lung fibrosis data

The field of single-cell genomics is continuously moving and evolving, providing more and
more mechanistic characterizations of pathogenesis, disease progression and cell atlases
that allow their description. During the course of data exploration of the mouse lungs,
pre-prints based on transcriptomic analysis of human ILD patient lungs started appearing.
While interesting ILD-induced shifts and aberrant cell populations were catalogued in a
number of recent studies, a peculiar disease-specific epithelial cell state was of particular
interest. It was first described in the studies from Haberman et al. (2020)86 and Adams
et al. (2020),261 who titled the population aberrant basaloid cells. This population was
entirely absent from healthy donor lungs and co-expresses basal epithelial, mesenchymal
and senescence markers. The published aberrant basaloid signature included many genes
that were encountered during analysis of alveolar regeneration in mice. As the bleomycin
experiment sought to deduce mechanisms in human fibrosis, the targeted comparison of
the induced cell states in both bleomycin-injured mouse and human ILD patient lungs
has been carried out and is described in this second part of the chapter.

For an unrelated project the transcriptional changes in lung fibrosis were profiled on
site, generating whole lung parenchyma single-cell suspensions of end-stage lung fibrosis
tissues (n = 8) as well as uninvolved lung tissue freshly obtained during tumor resections,
denoted as non-fibrotic control tissues (n = 13). A first exploratory analysis revealed
many disease-specific patterns and covered the majority of cell types expected in the lung
(Fig. 5.5). However, potentially due to their fragility and the lower coverage inherent to
the Drop-seq method, aberrant basaloid cells could not be captured in the Munich cohort.
To enable the targeted comparison to mouse alveolar epithelium and furthermore to in-
crease the generalizability of the results, the on-site data set was combined with recently
published human ILD cohorts, namely the priorly mentioned data from Haberman et al.86

(Nashville cohort) and from Adams et al.261 (Newhaven cohort). Reyfman et al. pub-
lished one of the first large-scale ILD patient data sets in 2019,262 which was incorporated
here as well (Chicago cohort). Finally, a yet unpublished data set has been generated as
part of an ongoing collaboration with the Königshoff Lab, in which EpCAM+ cells from
ILD and donor patients were enriched prior to scRNA-seq (Denver cohort). An overview
of number of patients, cells and data source for these cohort is given in Tab. 3.2.
Apart from the enhancement of variability and robustness, one major advantage of these
cohorts is their higher sequencing depth due to transcriptomic profiling with 10x. The
baseline for integration were the filtered count matrices as they were made available by
the authors.

Cohort #control
patients

#ILD
patients

#cells data retrieved from

Munich173 13 8 66,343 generated on site

Chicago262 8 9 73,237 https://metadataplus.biothings.io/geo/GSE122960

Nashville86 12 31 146,348 https://ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE135893

Newhaven261 30 31 202,688 https://ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE136831

Denver 4 3 79,523 generated in collaboration on site

Table 3.2: Overview and origin of data sets considered during integrative analysis.



3.2. BLEOMYCIN-INDUCED LUNG INJURY AND HUMAN ILD 87

The data sets were pre-processed separately according to the general work flow as out-
lined in section 2.5. The final filtering criteria, cell type annotations and corresponding
marker signatures can be examined in Fig. 5.3-5.8. The following analyses are based on
the ensemble of data sets, therefore the results are presented for the integrated data set,
neglecting cohort-specific effects after their initial description. The batch correction was
carried out in a two-step process. At the first level, a list of variable genes was defined
for each of the cohorts separately as follows: The variable genes were calculated for each
patient individually, setting the top 4000 variable genes as “highly variable” (hvgs) for
the corresponding patient. For each cohort the intersection of these genes, annotated as
highly variable across a minimum number of patients, was then defined as cohort-specific
hvgs list. The thresholds were motivated by sample size of each cohort (Munich 4 pa-
tients 8268 hvgs, Chicago 5 patients 4763 hvgs, Nashville 8 patients 6783 hvgs, Nashville
10 patients 7306 genes). Finally, the intersection of the hvgs list yielded 1311 final genes
after removal of cell cycle genes. To account for variation in number of transcripts owing
to the different extraction protocols, the count matrices were scaled data set wise to unit
variance and zero mean. The scaled count matrices were concatenated and PCA was
performed using the defined hvgs list that was conserved across the cohorts. As a second
level of batch correction, the neighbourhood graph was calculated using BBKNN,219 setting
n pcs = 50, neighbors within batch = 20 and batch key = "data set". Cell type
labels were retained as established in the cohort-wise annotation process.

The resulting visualization is shown in Fig. 3.14, demonstrating a general good agree-
ment of annotations across the embedded space. Apart from the Denver cohort, which
encompasses only epithelial cells, the majority of cell types were represented by all data
sets. Nonetheless, variations in cell population frequencies remained, which can be caused
by true biological differences, as well as differences in cell isolation protocols. Some no-
ticeable disparities would be the higher number of captured granulocytes in the Munich
cohort, with comparably low numbers of dendritic cells. The Chicago cohort displayed
overall lower proportions of mesenchymal cells and Newhaven cohort mostly contributed
to the leukocyte compartment, while the Nashvile cohort dominated the endothelial com-
partment of the data (Fig. 3.14b).
The induced compositional changes in the profiled patient lungs were in line with the
epithelial remodelling and ECM expansion known to occur in ILD patients. As laid out
in section 1.5.2, the hallmarks of this disease contain patchy chronic inflammation (alve-
olitis), small aggregates of proliferating fibroblasts (fibroblastic foci) and the phenomenon
of honeycombs, spaces with thickened walls composed of fibrous tissue. Especially the
“bronchiolization”, i.e. a histologic abnormality in which metaplastic epithelial cells that
are thought to be derived from bronchiolar epithelial cells, are typically observed in areas
of the alveolar ducts and alveoli of ILD lungs. The increase of airway epithelial cells was
apparent across all data sets, as their frequency was much higher in the disease condition.
At the same time the numbers of alveolar type cells, which form a substantial fraction of
epithelial cells in the distal healthy lung, were decreased or potentially replaced by airway
cells usually confined to the proximal lung (Fig. 3.14e). Another eye-catching aspect
of the epithelial compartment was the appearance of the previously described aberrant
basaloid cells, restricted to ILD lungs only. These cells were captured by 3 of the consid-
ered data sets after manual re-annotation, and completely missing from the Munich and
EpCAM+ enriched Denver cohorts.
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Figure 3.14: Integrated single-cell atlas of human lung fibrosis reveals disease-
specific cell state and composition changes. a UMAP after integration of 5 patient
cohorts and BBKNN correction of the knn graph, colour-coded by cell type annotation. Anno-
tation was performed data set wise using an established list of marker genes, while considering
published annotations for orientation. b Relative composition for each of the 40 cell types by
data set (upper) and health state (lower), emphasizing disease-specific cell states. c Split view
on UMAPs highlighting health state (first) and patients for each cohort separately, demon-
strating a generally good agreement. d Indicated marker genes that were used to select clusters
for subsetting into epithelial cells (EPCAM), leukocytes (PRTPRC) stromal cells (COL1A1)
and endothelial cells (CLDN5). e Relative composition of cell types within compartment for
integrated data set separated by health state.
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The fibrosis observed in ILD is caused by the ECM expansion and regions of myofibrob-
last foci, defined by accumulation of matrix underneath epithelial cells undergoing injury
and apoptosis, which eventually leads to progressive scarring of the tissue.263 Matching
these descriptions, the fibroblast cell states were all consistently increased in the disease
condition. Apart from the myofibroblasts, which were largely absent in donor lungs, the
overall composition of the stromal department was not shifted towards one particular cell
type, suggesting that many of the distinct fibroblast populations play a role during scar
formation. ILD is a primarily fibrotic disease, although some inflammatory responses
can be observed, especially in areas of such fibrotic foci. In the course of this study, the
focus has been on the epithelial and mesenchymal compartments. Nonetheless, immune
cell types displayed interesting phenotypic changes in ILD lungs as well. Macrophages
for instance are typically marked by high FABP4 expression, which is decreased in ILD
macrophages. Instead, chemoattractants like CCR2, CCL7 or Osteopontin SPP1, all of
which were also up-regulated in alveolar macrophages in mice lungs upon injury, marked
the macrophages in ILD and were therefore titled activated macrophages. These made up
the vast majority of mononuclear phagocytes in disease condition.

Vascular density, i.e. the ration of capillary area to surface area of alveolar walls, has
been found to be gradually decreased at increasing stages of fibrosis.264 In the integrated
object, most of the endothelial populations showed unchanged proportions in health and
disease. One subset however had strongly increased number in ILD lungs. Interestingly, in
the original publication by Adams et al. (2020) the authors described such an expanded
vascular endothelial population. These cells expressed COL15A1 and could be found
in affected regions in the distal parenchyma of IPF lungs. However, these cells were
transcriptomically indistinguishable from systemic bronchial vascular cells from control
patients, which in turn were restricted to the peribronchial vasculature and were never
seen in the lung parenchyma. The expansion of such vascular endothelial cells was evident
after integration as well, and might reflect the expansion of the bronchial vascular network
throughout the IPF lung.261 Such additional spatial information is currently not reflected
by the composition panels, but has to be kept in mind.

3.2.5 Disease progression alters cell type signatures and compositions

Cell type proportions are known to be skewed due to the dissociation bias intrinsic to
single-cell tissue experiments, and hampers an exact description of cell frequency changes
across conditions. As a mean to validate the compositions, a recent bulk RNA-seq study
on lung tissues from 6 control and 10 IPF patients was leveraged (GEO GSE124685).263

To approximate the progression of pathological changes, the authors sampled differentially
affected regions in the same lungs multiple times, resulting in 95 samples. The extent of
fibrosis for each sample was determined using quantitative microCT imaging and tissue
histology and resulted in 3 categories: IPF stage 1, 2, and 3 corresponding to samples
with no, moderate and advanced fibrosis, respectively.

For each of the 3 stages a signature was derived by establishing the differential gene
expression changes against the control lungs. To infer cell type frequency changes from the
bulk transcriptome, the cell type signatures were calculated via scanpy’s tl.rank genes

groups in ILD patients only and the top 50 genes with highest log fold changes for each
cell type were considered further. The enrichment of each signature in a ranked list of
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fold changes was statistically evaluated by the Kolmogorov-Smirnov test, which returns
a p-value score signed by the effect size. Negative and positive values represent deple-
tion and enrichment of the given signature in the ranked list, respectively. As shown in
Fig. 3.15a, significant changes of many cell types were already discernible in early stage
IPF 1, which still harboured more alveolar and capillary cell identities compared to the
more advanced stages IPF 2 and IPF 3. At the other end of the spectrum, immune and
mesenchymal cell population were increasingly more enriched across the fibrotic stages.
The most prominent increases in cell numbers were marked by the goblet and ciliated
cell types, again reflecting the bronchiolization that occurs during pathogenesis. Log fold
changes in the bulk RNA-seq of the top 40 cell type markers derived from the single-cell
data further corroborated the gradual increase of airway epithelial cells, and simultaneous
decrease of alveolar epithelial as well as capillary cells along the disease progression (Fig.
3.15b).

Consistent with the increase in frequency, the myofibroblast signature along with the
aberrant basaloid cell signature was clearly up-regulated in early stages, indicating that
these represent early events in disease progression. The myofibroblast signature features
various collagens and ECM proteins (COL1A1, COL1A2, COL3A1, COL5A1, COL10A1).
Several genes have been up-regulated in the myofibroblasts in bleomycin-injured mice
lungs as well, such as the Collagen Triple Helix Repeat Containing CTHRC1, involved
in vascular remodelling and collagen matrix deposition,265 the Iodothyronine Deiodinase
DIO2, an enzyme shown to be correlated with ILD severity,266 or the Secreted Frizzled-
related Protein SFRP4, that acts as modulator of Wnt signalling.267 Conversely, the
aberrant basaloid signature displayed how these cells express the basal cell markers TP63
and KRT17 in addition to epithelial markers, but were negative for other established
basal markers such as KRT5 and KRT15. Much like the alveolar differentiation inter-
mediate in the mice lungs, genes associated with senescence (Cyclin Dependent Kinase
Inhibitors CDKN2A, CDKN2B, Cyclins CCDN1, CCDN2) were up-regulated in this pop-
ulation. Further, genes involved in degradation of extracellular matrix (Cadherin CDH1,
Serine Protease PRSS2), cell adhesion (Cadherins CDH2, CDH3) and several integrins
and laminins (ITGA2, ITGB6, LAMB3, LAMC2) were included in the signature as well.

Instead of manually checking a small number of genes, a systematic cross-species
comparison of the respective cell type marker signatures was carried out via the Jaccard
index based matchScore268 (Fig. 3.15d).
Although bleomycin administration in mice causes an inflammatory response and does
not reflect the irreversible progression of ILD in human patients, other hallmarks can
be captured in the mouse model, especially during the fibrotic phases.248 As the switch
to a fibrotic response happened during day 10 to 14 in the mouse data set, the cell
type signatures were established with rank genes groups only on mice from day 10 after
bleomycin treatment. Genes with logFC > 1 were considered in the final signature.
Upon inspection of the correlation heatmap in Fig. 3.15d, the strong similarity of mouse
fibroblast and endothelial populations with the human counterparts immediately catches
the eye. Stromal populations from both mice and human have been shown to up-regulate
ECM and adhesion proteins in previous sections, so the high correlation to the human
disease was not surprising and reflected the validity of the model.
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Figure 3.15: Disease progression alters cell type frequencies. a Cell type marker
signatures from integrated ILD data set were used to deconvolve bulk transcriptome from a
published data set across different histopathological stages, representing increasing extent of
fibrosis (GEO GSE124685).263 b Row-scaled heatmaps showing log fold changes of indicated
cell type markers across IPF stages with respect to control patients. Cell type signatures
were derieved from the integrated single-cell data. For the most affected cell types, the top
40 marker genes ranked by logFC are shown. c Heatmaps as in (b), with focus on disease-
induced cell state in fibroblast (myofibroblasts) and epithelial populations (aberrant basaloid).
Log fold chages from bulk IPF data confirm consistently increased expression across all IPF
stages compared to control. d Quantification of signature overlap between ILD patients and
bleomycin-treated mice at different time points using matchScore.268 Human signatures were
established on ILD patients only.
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The cell type signatures were largely conserved across species, as most cell types dis-
played highest resemblance to the corresponding type in the other organism, while the
transcriptomes of human macrophages were slightly shifted towards inflammatory sub-
types from the mice. Another interesting aspect would be the heightened similarity of the
epithelial compartment from human ILD patients to the mesenchymal and endothelial
populations of the mouse at day 10, which was not as apparent the other way around.
Of key interest was the signature overlap in the alveolar epithelial compartment. Akin to
the macrophage phenotypes, the AT2 cells in human displayed slightly higher correlation
to the activated AT2 cells in mouse, likely due to their up-regulation of inflammatory
cytokines and senescence markers. Particularly the correspondence of the injury-induced
Krt8+ ADI to the ILD-specific aberrant basaloid cells served as a first validation of the
hypothesis posed at the beginning of this chapter. Motivated by their similarity, a more
fine-grained comparison was performed and is detailed in the latter part of this section.

In the mouse model the injury is at least partially reversible and does not require
independent intervention, which is a major divergence from the human disease. The data
also reflected lower cell type signature similarity during the resolution phases after 3 weeks
of instillation. It has to be noted that the mouse data was retrieved with much lower
transcript coverage, and many smaller populations could have been under-represented
or missed. For the cell type signature establishment only populations with at least 20
cells at the time point were considered, to comment on the fact why some populations
are not represented in the heatmaps. Especially fibroblast cells were heavily diminished
towards the end of the experiment, concurring with the decrease of ECM deposition and
regeneration at later time points.

3.2.6 Shift in cellular communication towards ILD-induced populations

Similar to the mouse data set, a cell type specific differential gene expression analysis
should reveal that not only cell type frequencies are altered in disease, but also their gene
expression is affected at variable extents across the cell states. Again, diffxpy was used
to test for differences between end-stage lung fibrosis and control tissue, while accounting
for study cohort and difference in sequencing depths. The results were quantified by
displaying the number of up- and down-regulated genes in the heatmaps in Fig. 3.16a,
stratified by cell type and effect size. Overall, the higher sequencing depth achieved by
10x and greater sample size, owing to the integration across multiple cohorts, resulted in a
much more granular and detailed description of the differentially regulated genes compared
to the previous Drop-seq mouse experiment. This level of resolution was carried over to
the cellular interaction analysis presented at later stages.
The effect sizes of the induced signatures resembled the frequency changes as established
during bulk deconvolution, showing major up-regulation of genes in fibroblast and airway
epithelial populations, and down-regulations most prominently in alveolar epithelial and
capillary cell types. The induced gene expression changes in ILD were most similar in
cell types within the respective epithelial, mesenchymal, and leukocyte lineages, meaning
that the up-regulated genes in fibroblasts for instance are more likely to be also regulated
in other mesenchymal cells, rather than in leukocytes and vice versa (Fig. 3.16b). Full
names and annotated functions for a selection of genes can be looked up in the appendix
(Table 5.1). Up-regulation patterns in the most affected cell types generally confirmed
many shifts as they are described in the field.
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Figure 3.16: Disease induces cell type specific shifts in the transcriptomic space.
a Heatmaps summarizing differential gene expression results for each cell type to control
patients. Colour indicates number of up-regulated (left) and down-regulated genes (right).
Columns correspond to number of regulated genes at indicated logFC cut-offs to reflect effect
size of differential expression. b Heatmap demonstrates similarities of gene expression changes
calculated by matchScore on the log fold changes, considering genes up-regulated in ILD with
logFC > 0.5 in indicated cell type. c ILD-induced gene signatures, displaying log fold changes
for top 50 genes in most affected cell types. d Selection of terms that were significantly
enriched after GSEA on the ILD-induced signatures (adj. p-value < 0.05, logFC > 0.5) in
indicated cell types. Number of up-regulated genes used as input were 508 (AT2), 912 (Club),
1897 (Mesothelium) and 337 (gCap).
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Specifically, chronic diseases feature a cellular senescence signature, which has been
increasingly recognized as an important contributor to aging-related diseases like ILD.260

Up-regulated senescence markers in alveolar cells were the kinase inhibitors CDKN1A,
CDKN2A, encoding for p21 and p16, as well as the Cyclins D1 and 2 (CCND1, CCND2).
Furthermore, an increased expression of Wnt pathway ligands has been observed in lung
tissues of IPF patients compared to donor lungs. The Wnt pathway regulates stem and
progenitor cell function and most likely contributes to lung injury and repair. A partial
reactivation in adult tissues following injury might contribute to pathogenesis of chronic
lung diseases.269 Differential expression analysis reflected the literature as certain players
of the Wnt pathway, such as the transcription factor TCF7L1 and the Wnt Ligand Secre-
tion Mediator WLS, were among the most up-regulated genes in the epithelial cell types
(Fig. 3.16c).
Interestingly, further mediators of the Wnt pathway were listed in the AT1 signature, such
as the Wnt Inhibitory Factor WIF1 and the Dickkopf Wnt Signalling Pathway Inhibitor
DKK3. DKK proteins have already be shown to be higher expressed in IPF lung epithelial
cells and are hypothesized to affect impaired epithelial injury and repair processes.270

Fibroblast populations were contributing to this pathway as well, marked by their up-
regulation of soluble frizzled-related proteins (SFRP1, SFRP2, SFRP4), which function
as modulators of Wnt signalling, or by the increase of ROR1 transcripts, a known recep-
tor for WNT5A.271 Much like the activated stromal populations in injured mouse lungs,
fibroblasts from ILD patients displayed significant enrichment of genes associated with
collagen (CTHRC1, COL1A1, COL5A1, COL6A3, COL8A1), ECM (MMP7, TGFB3,
POSTN) and cell adhesion (EPHA3, VCAM1, FAT1, TNFRSF12A). The induced gene
signatures in both aberrant basaloid cells and myofibroblasts overlap largely with their
cell type signatures as described in 3.15c. As these ILD-induced cell states are not present
in control lungs, epithelial and fibroblast populations from control donors were considered
as baseline during differential expression testing. This procedure yielded similar results as
cell type marker signatures, for which all remaining cell types in the lung are commonly
chosen as reference group.
Capillary cells appeared to mirror the pathological processes in the alveoli, as certain
senescence markers (CDKN2B, CCND1, MAP3K8) were higher expressed as well. Addi-
tionally, many genes involved in cell adhesion (CX3CL1, RHOB, CD34, CD93, ICAM1,
IGFBP7, POSTN, TNFRSF12A) and cytokines for inflammatory or immune responses
(CXCL12, CCL2, IL32, IL33) were up-regulated in diseased patients, implicating a com-
munication route towards immune cells. Interleukin-32 for example is known to be ele-
vated in various inflammatory autoimmune diseases and interacts with other inflammatory
cytokines such as TNF-α, IL-1β and IFN-γ.272 Looking at the complete induced gene sig-
natures from a higher perspective, genes involved in the immune system, stress response
and apoptotic processes were among the significantly enriched terms (Fig. 3.16d).

In the next analysis the functional consequences of the induced expression patterns
were augmented with prior information in the context of all cell types in the lung. Analo-
gous to the mouse data, the up-regulated genes (logFC > 0.5 and percentage of expressing
cells in the relevant cell type > 10%) were mapped against a known receptor-ligand data
base. The resulting communication patterns are expected to be driven by the number of
genes that were differentially expressed. Nevertheless, a higher number of induced genes
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is equated with a greater transcriptomic shift in the respective cell type upon disease, and
was therefore not eliminated prior to the matching. Owing to the increased sequencing
depth, the total number of interaction pairs across cell types was considerably higher
compared to the Drop-seq mouse experiment.
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Figure 3.17: Cellular communication drastically shifts towards aberrant disease-
specific cell populations. a Connectome highlighting induced signalling routes in ILD. Edge
colour and width reflects number of receptor-ligand pairs between the cell types. Notably,
pairs are only considered if both the receptor and ligand are up-regulated in ILD (logFC >
0.5). b Barplots of logFC values derived from differential expression analysis control vs. ILD.
Receptor-ligand pairs in cell types of interest for the most prominent edges in the network
in (a) are shown. c ILD-induced gene signatures, displaying logFCs for the top 50 genes
in ILD-induced cell states. During differential gene expression testing in aberrant basaloid
cells, remaining epithelial cells from control patients were used as background. Likewise for
myofibroblast signature control pericytes, adventitial- and lipofibroblasts. d Selection of terms
that were significantly enriched in the myofibroblast signature (adj. p-value < 0.05, logFC
> 1, 249 up-regulated genes as input). e LogFC barplots of receptor-ligand pairs as in (b),
focusing on the pronounced communication between aberrant basaloid and myofibroblast cells.
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Nonetheless, some interesting patterns seemed to be conserved in the human in vivo
reference. The most striking observation was the pronounced communication between
epithelial and stromal populations, particularly among disease-specific cell states (Fig.
3.17a). Intriguingly, this mirrored the picture of bleomycin treated mice at day 14 (Fig.
3.8d). The highest number of interaction pairs was between myofibroblasts and AT2
cells, which included the intermediate populations during differential testing and mostly
reflected the Krt8+ ADI signature at this time point. The display of multiple edges from
and to human fibroblast populations could be attributed to the fact that fibroblast ac-
tivation does resemble a sliding scale of activation rather than an instant switch. This
makes it difficult to set boundaries as fibroblasts proliferate and transdifferentiate towards
myofibroblasts and also plays into the overlap between their disease-induced expression
changes and the myofibrotic signature.

The molecular mechanisms and origin of these myofibroblasts have been the focus
of many studies, but no definite answer has been reached yet. Additional to the many
fibroblast populations that are proposed as source population, studies have shown that
pleural mesothelial cells have the potential to migrate into the pulmonary parenchyma in
IPF and transition into myofibroblasts. Specifically, in a mouse model of lung fibrosis the
mesothelial cells underwent phenotypic transition to myofibroblasts in response to stim-
ulation with the profibrotic mediator TGF-β in vitro.273 Moreover, pleural mesothelial
cells could be found in parenchymal cells of explanted lung tissues from 16 IPF patients,
providing further evidence for their potential to traffic into the lung and contribute to the
myofibroblast population during lung fibrosis.274

The pleural mesothelium is derived from the embryonic mesoderm, whose interactions
with the endoderm by paracrine signals such as Wnt/β-catenin, Bone Morphogenetic Pro-
tein BMP4, Sonic Hedgehog SHH, and the Fibroblast Growth Factor FGF10 are essential
during lung development. It has been proposed that the mesothelium may be involved in
lung injury-repair by reactivation of such developmental programs in adult, which seems
to be dysfunctional in diseased individuals.275 The integrated data also pointed towards an
up-regulation of genes associated with developmental programs such as the NIK/NF-κB
or the Wnt signalling pathway in pathological mesothelial cells (Fig. 3.16d) and an overall
strongly increased expression of potential ligands towards the epithelial compartment in
ILD.

To supplement the edges in the connectome plots, the specific interaction pairs for cell
types of interest are listed in Fig. 3.17b,e and their description can be looked up in the
appendix (Table 5.1). The AT2 cells acted as a source of ligands for the aberrant pop-
ulations, expressing for instance the profibrotic Amphiregulin AREG, the Amyloid Beta
Precursor Protein APP and Nicotinamide Phosphoribosyltransferase NAMPT, involved
in stress response and aging.
Many integrin types (ITGA3, ITGA6, ITGB1), membrane receptors known to be involved
in cell adhesion and tissue repair, were up-regulated in basaloid cells and found corre-
sponding binding partners in AT2 (Laminins LAMB2, LAMC2, transmembrane proteins
CD46 CD151, Syndecan SDC1), general capillaries (collagens COL4A1, COL18A1) and
most of all in myofibroblasts (TNC, COL1A1, VCAM1, FN1, Thrombospondin THBS1,
Cartilage Oligomeric Matrix Protein COMP, and other Integrins such as ITGA8, ITGA9
and ITGAV).
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Aberrant basaloid cells further displayed expression of the Notch signalling receptors
NOTCH2, NOTCH3, for which corresponding ligands are expressed on gCap cells in
particular (Midkine MDK, Jagged Canonical Notch Ligand JAG2). Among the highest
up-regulated receptor and ligand pairs of myofibroblast and aberrant basaloid populations
were many genes associated with the Wnt signalling pathway, for instance the receptors
FZD1, FZD3, FZD6, ROR2, GPC4, RYK. TGF-β is the key player driving myofibroblast
differentiation, thus it is not surprising that many genes of the TGF-β superfamily are
part of the communication between myofibroblasts (Inhibin Subunit Beta INHBA, Trans-
forming Growth Factor Beta TGFB3).

In the next analysis the increased communication between these injury induced cell
states was further explored with NicheNet.232 Ligands were ranked based on their poten-
tial to induce the transcriptomic signature of either aberrant basaloid or myofibroblast
populations, and then linked back to their cell type origins. For this, only cells from
ILD patients were used as input. Motivated by the connectome plots, the following cell
types were chosen as potential sending populations: AT1, AT2, ciliated, club, goblet,
basal, aberrant basaloid, adventitial fibroblasts, lipofibroblasts, myofibroblasts, pericytes,
mesothelium, aCap and gCap. Ligands are shown if they were significantly increased in
ILD in at least one of these cell types.

The general picture painted by the up-regulated receptor-ligands pairs was further
solidified. For instance, myofibroblasts and aberrant basaloid cells greatly affected the
transcriptomic signatures in both directions, while also featuring heavy autocrine sig-
nalling (Fig. 3.18). Many of their induced genes appeared to lie downstream of the
Wnt pathway, or are directly affected by it. In both populations certain ligands of this
pathway, namely WNT7A, WNT7B, WNT9A, WNT10A, SFRP2, DKK1, influenced a
remarkable portion of the target genes. Many of these ligands were induced by the dis-
ease in aberrant basaloid cells, myofibroblasts, and also the mesothelium. The latter
further up-regulated the Fibroblast Growth Factors FGF1 and FGF2, which are among
the top prioritized ligands predicting the myofibroblast signature. Other notable ligands
regarding aberrant basaloid cells would be SFRP2, TGFB3 and TNC, major markers
of the myofibroblast population. Likewise TGFB2, Cell Adhesion Molecule CADM1,
Prostaglandin-Endoperoxide Synthase PTGS2, related to NF-κB signalling, were promi-
nently up-regulated in the basaloid cell state and were associated with the transcriptomic
shifts in myofibroblasts. Additionally, other fibroblast populations and myofibroblasts
themselves provided potent ligands (ITGFB3, SFRP2, Insulin Like Growth Factor IGF1,
Calreticulin CALR).

On a final note regarding cell-cell communication, these signalling patterns are pre-
dictions based on prior knowledge on interacting pairs and induced transcriptomic shifts
stratified by cell type. They appeared to be supported by the established knowledge in
the field, but were not experimentally validated at this point. As cellular signalling is
highly condition and cell type specific, further experiments should ideally be conducted
to provide final functional proof for these processes, but were unfortunately beyond the
temporal scope of this work.
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Figure 3.18: Zoom into inter-cellular signalling between ILD-induced cell states. a,
b Regulatory potential of ligands explaining up-regulated gene signature in disease-specific
aberrant basaloid cells (a) and myofibroblasts (b). During differential testing injury-induced
cells were compared to healthy epithelial and fibroblast populations, respectively. Prioritized
ligands are pre-selected for those up-regulated in at least one of the epithelial, mesenchymal
or endothelial cell types. Top 40 of these ligands ranked by NicheNet’s Pearson correlation
are displayed. c, d Dotplots visualizing the expression level and percentage of prioritized
ligands implicated in gene expression shifts in aberrant basaloid (c) and myofibroblasts (d) in
pathological conditions. Asterisk indicates significant up-regulation of the gene in ILD patients
compared to healthy donors. For clarity only relevant cell types are shown.
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3.2.7 Correspondence of human pathogenesis to regeneration in mouse model

The similarity of the disease-specific cell state to the transient populations in the regener-
ating mouse epithelium has been teased throughout the chapter. Therefore, to conclude
this main passage, the phenotype of the described basaloid cells was put to direct com-
parison with the Krt8+ ADI. It is not clear how the aberrant state arises in disease, and
could potentially be derived from cell populations serving as progenitors for depleted AT1
and AT2 cells. These could be either remaining alveolar cells, or even bronchoalveolar
stem cells, which are known to generate both AT1 and AT2 cells in response to bleomycin-
induced lung injury.115,171 Echoing the trajectory modelling approach in the mouse lungs,
the integrated data was subset to the alveolar epithelial compartment including the aber-
rant basaloid cells. Put more precisely, the possible route of de-differentiation of human
AT2 cells in ILD was the focus of the next analysis.

Aberrant basaloid cells from the different patient cohorts overlapped in the BBKNN-
corrected space and their enrichment in ILD patients was visually pronounced in the
diffusion map (Fig. 3.19a). These terminally differentiated cells were clearly distinguish-
able by their respective cell type markers. Unlike in the mouse experiment, no underlying
temporal ordering was available for the patients, as the cells could hardly be labelled by
progression of the disease. To quantify the gradual decrease in similarity of these cell
types, a pseudo time trajectory was derived using AT2 cells as root population. The
genes’ association to the health state was tested with diffxpy, along with the dpt values,
data set label and the scaled number of counts as covariates. To decrease the multiple
testing burden, only genes expressed in more than 10% of cells in at least one of the cell
types were considered. The expression analysis resulted in 5,997 differentially regulated
genes (adjusted p-value < 0.05). The gene list was divided into 3 main groups: AT1,
AT2 and aberrant basaloid, depending on which cell type showed the highest percentage
of expression for each regulated gene. To counteract the differences in sequencing depth
and drop-out effects during visualization, the expression values of cells adjacent in pseudo
time were averaged. This resulted in 500 dpt bins for AT1, AT2 cells and 20 bins for
basaloid cells due to their much smaller cell number. Expression patterns are displayed
equally across the spectrum by selecting the most significantly regulated genes separately
for each cell type in the heatmaps in Fig. 3.19d. For AT2 the top 40 down- and for the
aberrant basaloid cells the top 40 up-regulated genes were selected, while for AT1 cells
both the top 25 up- and down-regulated genes are shown, all ranked by adjusted p-values.

The de-differentiation of AT2 cells is best reflected by the down-regulation of surfactant
proteins (SFTPA1, SFTPA2, SFTPB, SFTPC, SFTPD) and simultaneous up-regulation
of AT1 cell markers (CAV1, AQP4, RTKN2, EMP2) in the corresponding cell types.
As anticipated, the association to pseudo time also returned many aberrant basaloid
cell state marker (CDH1, CDH2, KRT17), and genes encountered during the previous
communication analysis (CDKN2A, DKK3, WNT10A).
For clarity, the temporal expression patterns of selected markers are displayed as separate
line plots in Fig. 3.19e as well, putting the up- and down-regulations of the respective
gene programs into context with the other alveolar cell types. To emphasize the similarity
of the signatures, the markers of the murine intermediate state as selected in Fig. 3.12f
were inspected as well. The human homologues of the most prominently used markers
Krt8, Sprr1a and Lcn2 showed an interesting behaviour in the AT2 and basaloid subset.
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Figure 3.19: Differentiation trajectory modelling of AT2 either AT1 or aberrant
basaloid state. a Integrated diffusion map of alveolar epithelial cells and aberrant basaloid
cells from 5 disease cohorts, coloured by cell type, health state, pseudo time and cohort.
b, c Diffusion map coloured by prominent cell type marker (b) and gene expression scores
for indicated signatures (c, retrieved from MSigDB Hallmark gene sets). d Heatmap showing
scaled expression in selected cell types across pseudo time. Most significant genes were selected
by ranking their association to pseudo time. The top gene list was clustered (k = 3) and binned
expression values of top 40 genes per cluster are displayed in corresponding cells only. e Line
plots illustrating scaled expression levels of AT1/AT2 cell type markers (right), AT2/aberrant
basaloid markers (middle) and selected markers from the intermediate state in the mouse
trajectory (Fig. 3.12f, right). Pseudo time is binned (n = 10) to average expression values of
adjacent cells and smoothed for clarity. f Selected terms that were significantly (adj. p-value
< 0.05) enriched in the aberrant basaloid signature compared to all other lung cell types.
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While the expression of these genes was generally low in AT2 cells, it gradually in-
creased along the pseudo time and persistently stayed high in aberrant basaloid cells.
Not all genes that peaked during the Krt8+ ADI state showed this pattern, but many key
genes did follow the trend, notably SOX4, S100A6, TNC and SFN.

Scoring the alveolar trajectory in mice for the induced gene signature in aberrant
basaloid cells (111 genes with logFC > 2 in expression test healthy vs. ILD) further
demonstrated their phenotypic similarities, as the correlation score was highest for cells
belonging to the Krt8+ ADI cluster. Conversely, aberrant basaloid cells displayed the
highest correlation to the Krt8+ ADI signature from the mouse data (62 genes from cell
type marker table with logFC > 3). A comparison of epithelial cell type marker in both
organisms in general confirmed that the transient state from mice was most similar to the
disease-induced basaloid cells in human ILD patients (Fig. 3.20a,b). Here, the cell type
marker tables were calculated on only ILD patients and bleomycin-treated mice after day
10, as the fibrotic phenotype was expected to align best at this time point.
Finally, it was validated whether KRT8+ alveolar cells can also be observed in human
acute and chronic lung disease independent of the scRNA-seq data. Human tissue sec-
tions were co-stained for SFTPC and KRT8. No expression of KRT8 was detected in the
alveolar space of non-fibrotic control lungs (n = 9). In sharp contrast, strong alveolar
expression of KRT8 was measurable in lung sections from Influenza-A induced ARDS (n
= 2) and IPF patients (n = 5). In a second round of immunofluorescence analysis, the
specific marker for both Krt8+ ADI and basaloid cells SPRR1A was included. Indeed,
KRT8+SPRR1A+SFTPC- cells were located in close proximity to SFTPC+ cells in fibrotic
areas exclusive to IPF lungs, potentially undergoing fibrotic remodelling and representing
early stages of the disease (Fig. 3.20c,d).

Conclusion

In summary, the herein collected scRNA-seq data allowed for the modelling of cellular
dynamics over a four week time-course after bleomycin lung injury and, together with
independent external data resources and experimental validation, proved the transient
appearance of a squamous Krt8+ alveolar differentiation intermediate en route to re-
generation. Gene expression analyses based on real time points revealed transcriptional
regulators that drive these expression dynamics and implicated the transient population
as a specific source of profibrotic mediators such as Ctgf, Itgb6, Areg, Edn1 and Lgals3.
Still, their functional role in the context of alveolar regeneration remains unclear. Cor-
responding human transcriptomes of patients with the very disease the bleomycin mouse
model aims to reflects were searched for a comparable population. The recently described
aberrant basaloid cells showed remarkable similarity, most pronounced by a number of
overlapping cell type marker as well as their shared communication pattern in the form
of strongly increased interaction between epithelial cell states with the ILD-induced myo-
fibroblast populations.
Together with the spatial location, these observations indicated that aberrant basaloid
cells might be the result of AT2 cells undergoing regenerative repair but failing along the
way, owing to the pathological milieu that promotes defective cell differentiation, which
in addition to increased cellular signalling could lead to the aberrant persistence of the
typically transient regenerative cell states. Further exploration of functional implications
in the context of contemporary findings will be continued in the discussion section.
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Figure 3.20: Cells similar to Krt8+ ADI in mouse lungs persist in human ILD patients.
a UMAP of alveolar mouse epithelium, overlaid with correlation score based on the gene
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ILD, logFC > 4). Diffusion map of integrated human alveolar cells overlaid with correlation
score to Krt8+ signature (derived from differential expression PBS vs bleomycin, logFC >
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based matchScore.268 For the human counterpart, the cell type signatures derived from ILD
patients only was used, whereas the signatures for mice was calculated on bleomycin-injured
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comparison. c Human lung tissue sections from non-fibrotic controls as well as ILD patients
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3.3 Exploration of pathological patterns found in COPD

and COVID-19 lungs via mouse model

Two smaller side-projects spiralled out of another Drop-seq experiment based on a time-
series mouse lung data set. As both of these projects demonstrated the importance of
collaborative efforts and addressed contemporary issues, and more importantly fit with
the general trends presented in this work, I wish to include these as a shorter chapter.

In this study, already established experimental data indicated an important role of
the LTβR signalling in the pathogenesis of COPD. Measurements of bronchoalveolar
lavage (BAL) fluids from a corresponding mouse model and quantitative PCR (qPCR)
on lung biopsies from human COPD patients showed an increased expression of signalling
molecules and ligands associated with that pathway. However, the cellular origins cannot
be delineated by such ensemble measurements. ScRNA-seq was performed in order to
increase the cellular resolution and explore the cell type involvements in greater detail.
Due to unforeseen circumstances, the data set at hand provided a suitable resource for
another project. After large-scale integration of gene expression data from more than
30 human data sets, a cell type-specific associations to smoking status was predicted for
the three SARS-CoV-2 entry factors ACE2, TMPRSS2 and CTSL. Correspondence of
the gene expression shifts in smoke exposed mice from the initial project to the observed
patterns in humans is assessed in the second part of this chapter. The results reported in
this chapter have contributed to the following publications: Conlon et al. accepted and
published in Nature in December 2020172 and Muus C et al. accepted and published in
Nature Medicine in March 2021167 within the framework of the Human Cell Atlas Lung
Biological Network.

Experimental data planning and sample collection, mouse handling, proteomics quan-
tification, FACS-sorting, immunohistochemical stainings, respective statistical analysis
among others were performed by Thomas Conlon and colleagues. Experimental scRNA-
seq profiling was performed by members of the Schiller Lab, while the computational
analysis of the collected data was within my area of responsibility. The original project
has been ongoing for years before my arrival. To narrow down the results, only relevant
parts of the experimental analyses in line with my computational contributions will be
listed in the following chapter.

Introduction

The immune response primarily aims to eradicate dangerous pathogens invading the or-
ganism. However, if the pathogen is constantly replenished as in case of continuous
smoking, the sustained immune response can ultimately result in tissue damage and
chronic inflammation. COPD is characterized by such an enhanced inflammatory re-
sponse, mostly attributed to long-term exposure to toxic gases and particles. Features of
its pathology are the destruction of the gas-exchange areas in the lung, chronic inflamma-
tion leading to remodelling of the small airways, and excessive mucous production that
contributes to airway obstruction. The disease progression has been linked to the extent
of the inflammatory response, as reflected by the number of acute inflammatory cells
and lymphocytes that infiltrate the airways.138 COPD lungs have increased numbers of
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T and B cells, which are often organized into tertiary lymphoid follicles referred to as in-
ducible bronchus-associated lymphoid tissue (iBALT). They appear both in severe human
COPD276 and its animal models based on chronic smoke exposure.277 The formation of
iBALT is also known as lymphoid neogenesis, and is promoted by Lymphotoxin β-receptor
signalling. Activated lymphocytes express the TNF superfamily members Lymphotoxin-
α LTA and -β LTB, which in turn interact with the Lymphotoxin β-receptor LTβR on
stromal organizer cells during chronic inflammation.278

The interaction of LTA, LTB and TNF with their respective receptors triggers down-
stream non-canonical NF-signalling. Members of the NF-κB family of transcription fac-
tors regulate expression of genes crucial to immune responses, cell growth, and apoptosis,
and activation of this pathway results in up-regulation of genes involved in inflammation
and lymphoid organogenesis.279 Specifically, the stimulation of LTβR triggers the release
of chemokines such as CXCL13, which for example attracts B cells into the lymphoid
follicles and creates a positive feedback loop maintaining LTA, LTB expression on lym-
phocytes.277 The signalling cascade further induces the expression of adhesion molecules
in endothelial cells (e.g. Intercellular Adhesion Molecule ICAM1, Vascular Cell-Adhesion
Molecule VCAM1, Peripheral Node Addressin PNAD), that likely initiate mononuclear
accumulation.280

Due to its prominent role in the development of tissue injury, the question arises whether
therapeutic inhibition of LTβR signalling could hamper or even disrupt the formation of
iBALT structures. To understand the gradual formation of these follicles, an appropriate
mouse model is necessary. The abnormal inflammatory response in the lungs during dis-
ease pathogenesis can be induced via cigarette smoke exposure of mice.
In the early acute reaction during the first week of exposure, predominantly neutrophils
and macrophages show a strong influx into the lung. After one month the response shifts
towards a progressive inflammation, characterized by the additional recruitment of lym-
phocytes. Long term exposure, up to 4 months or longer, has been shown to recapitulate
pathological features present in COPD, such as small airway remodelling and tissue dam-
age in form of emphysema.281

In the following section, the increased expression of LTβR ligands in adaptive and
innate immune cells, enhanced non-canonical NF-κB signalling, and enriched LTβR target
gene expression in lung epithelial cells from COPD patients as well as in mice chronically
exposed to cigarette smoke, is demonstrated. Finally, the effects of LTβR signalling
inhibition are explored.

3.3.1 Inhibition of LTβR-signalling disrupts iBALT formation

In order to study COPD pathogenesis, mice were whole-body exposed to mainstream
cigarette smoke (CS). To mimic natural human smoking habits, the exposure lasted 50
minutes per day, for up to 6 months. Baseline control mice were kept separately in a
filtered air environment, but were exposed to the same stress. To explore the therapeu-
tic implications of LTβR signalling inhibition, a sub-group of smoke-exposed mice was
treated with either LT-Ig fusion protein or control-Ig (MOCPC21) for two months, start-
ing from 2 and 4 months after CS. For each time point, 3 control and 5 CS exposed mice
were sacrificed. After 6 months, 5 additional LTβR-treated mice were added and the
transcriptomic profiles of a total of 28 samples were measured with Drop-seq.



3.3. CIGARETTE SMOKE-EXPOSED MICE AND HUMAN COPD 105

Regarding the computational analysis, the pre-processing and quality control was car-
ried out as described in the methods section, the exact filtering criteria and parameters
for the analyses can be found in section 5. One striking observation unique to this data
set was that even after excluding cells with a mitochondrial fraction of more than 20%,
one cluster highly enriched for cells with relatively high number of mitochondrial tran-
scripts still remained (Fig. 3.21). Cells belonging to this cluster featured markers of every
main lineage, thus this cluster was designated as low quality mixture cluster. However, it
is interesting to note that the composition of this cluster appeared to be driven by the
duration of cigarette smoke exposure (Fig. 3.21b). The longer the exposure period of
a given sample, the higher the fraction of cells assigned to the mitochondrial enriched
cluster. Reactive oxygen species (ROS) are well-known in the field and are used as an
important determinant of cancer risk. Tobacco smoke induces oxidative stress by creat-
ing such ROS, to which mitchondria are highly susceptible. Mitochondrial DNA lacks
protective histones and has low repair capacity, instead they increase their copy num-
ber to compensate for damages.282 Interestingly, increased mitochondrial copy number
in circulating blood mononuclear cells of smokers has been described, which additionally
correlated with the number of cigarettes smoked per day.283

Here, the increased mitochondrial percentages could reflect the stress-induced cellular
damage with increased exposure periods. As this cluster contained potentially damaged
cells and would have been difficult to delineate, it was removed from further analysis.
Before exploring the single cell data, the experimental observations that motivated the
transcriptomic analysis are summarized. To evaluate the iBALT formation and the effects
of LTβR signalling inhibition in response to CS exposure, sections from mouse lung were
stained for B220+ B cells and CD3+ T cells, the main constituents of the lymphoid follicles.
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While representative images in control mice did not display any cell aggregates posi-
tive for the two markers, exposure to CS resulted in the development of iBALT as early
as 4 months (Fig. 3.22a,b). After 6 months of exposure, the volume of these aggregates
was drastically enhanced. Treatment of the CS exposed mice with the LTβR-Ig fusion
protein in both the prophylactic (from 2 to 4 months) and therapeutic setting (from 4
to 6 months) led to considerably reduced iBALT formations and even caused dispersion
of the immune cells. Specifically, the number of incidence and volume of iBALT in the
airways was significantly reduced in the LTβR-Ig treated mice compared to their MOCP
treated counter parts.
The tissues structure was further assessed by haematoxylin and eosin (HE) stainings to
skim the lung sections for emphysema formation. Additionally, the extent of airspace
damage was quantified in form of airspace enlargement as mean chord length and the
alveolar surface area in the lung sections. After 4 months of CS, emphysema was fully
established in the mouse lungs. Reduction in LTβR signalling greatly affected the lung
pathogenesis. Prophylactic treatment starting at 2 months prevented emphysema forma-
tion, and therapeutic treatment starting at 4 months even led to a full restoration of lung
tissue (Fig. 3.22c,d). Finally, the amount of airway remodelling can be determined by a
quantification of the accumulated collagen around the airways. Indeed, the airway colla-
gen deposition in the CS exposed mice was increased. LTβR-Ig treatment in turn revealed
a regression in the smoke-mediated airway remodelling compared to the MOCP-treated
mice. The combination of these results strongly suggests a protective or even regenerative
role LTβR signalling blockade during iBALT-mediated pathogenesis.

Having established the consequences of LTβR inhibition on lung tissue level, the cel-
lular and molecular key players involved in these mechanisms were of interest. Following
quality control, the cells were divided into the 5 main lineages and annotated using marker
genes derived from literature and previously published scRNA-seq data sets (Fig. 3.23),
resulting in over 62,635 cells from 29 mice across 4 conditions (Fig. 3.22f,g). Mice within
the same condition showed good agreement in UMAP and PCA space (Fig. 3.23a, Fig.
3.22h), therefore no further batch correction methods were employed.
Consistent with knowledge in the field, certain cell types exhibited stronger changes in
their transcriptomic profile after CS exposure. Noteworthy observations would be the
shift towards a more activated state in AT2 cells, alveolar macrophages and neutrophils.
Comparable to the bleomycin-injury model, the activated AT2 cell state was marked
by up-regulation of Lcn2 and Il-33, and the activated macrophage state likewise by its
increased expression of Spp1 and Ccl6 among other secreted cytokines. A recent publica-
tion has explored single-cell transcriptomic profiles of sorted neutrophil populations, and
established a distinct signature during inflammation in lung tissue.284 Using this signa-
ture as reference, neutrophils were separated into a baseline and an activated state as well.

It should be noted that the gene expression differences for the activated states were
not as drastic as in the previous mouse model, due to the smaller magnitude of introduced
perturbation here. Frequency analysis validated an enrichment of the activated cell states
in the CS condition compared to FA controls. In the lymphocyte compartment, LTβR-Ig
treated mice after 6 months of CS displayed a smaller proportion of neutrophils, compared
to the MOCP counterparts. Apart from these biologically reasonable exceptions, most of
the cell types are represented by cells across all conditions.
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Figure 3.22: Inhibition of LTβR-signalling disrupts iBALT formation in the lungs of
mice exposed to cigarette smoke. a Representative images of immunohistochemical anal-
ysis for B220+ B cells and CD3+ T cells (brown signal) in lung sections from mice exposed to
filtered air (FA) or cigarette smoke (CS) for 4 or 6 months. Mice were additionally treated with
LTβR-Ig or control from 2 to 4 months (prophylactic) and from 4 to 6 months (therapeutic)
(scale bar = 200 µm). b Quantification of lung iBALT as mean iBALT number per airway and
volume of iBALT normalized to surface area of airway basement membrane. c Representative
images of haematoxylin and eosin (HE) stained lung sections from mice, split by exposure
and treatment group (scale bar = 100 µm) d Quantification of airspace enlargement as mean
chord length and alveolar surface area in lung sections from mice. e Quantification of airway
collagen deposition normalized to surface area of airway basement membrane from sections
in c. f Experimental scheme and UMAP embedding of cells from whole lung suspensions
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Figure 3.23: Compartment-wise annotation of cells from smoke exposed mice. a
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3.3.2 Effect of chronic smoke exposure on epithelial and immune cells

Expanding on the insights from compositional cell type changes, differential gene expres-
sion painted a similar picture. The expression shifts induced by smoke exposure were
calculated with diffxpy227 and stratified by cell type. The input parameters consisted
of the scaled number of counts as covariate and the exposure status as factor to test for.
The effect sizes are visualized in form of number of up-regulated genes per cell type in
Fig. 3.24a. Most cell types displayed a time dependant up-regulation of increasingly more
genes. However, the cell types with most differentially regulated genes were the alveolar
macrophages, neutrophils, T cells and airway epithelial cell types. These observations
further corroborated the results from the compositional analysis by linking the increase of
cells from activated cell types to changes in their transcriptomic spaces. As pointed out
earlier, neutrophil and macrophage numbers are increased early on in the CS-exposure
model. Lymphocytes are then additionally recruited once the milieu changes towards
progressive inflammation in response to the sustained smoke exposure. This pattern of
delayed activation was also evident regarding alterations in gene expression space, as T
cells, ciliated and club cells show a striking increase in numbers of up-regulated gene in
mice during later time points of sustained exposure.

At this level of inspection it appeared that LTβR signalling inhibition returned the
transcriptomes of endothelial cells closer to baseline, as the number of up-regulated genes
resembled the results from 4 month mice more closely than the ones from 6 month mice.
Gene set enrichment analysis with GOAtools230 allowed to assess the functional relevance
of the induced gene lists at the last measured time point of CS exposure.
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Figure 3.24: Chronic smoke exposure drastically affects immune and epithelial cells
in the lung. a Heatmaps showing effect quantification of chronic smoke CS exposed mice.
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Consistent with expectations, terms associated with phagocytosis, apoptosis, response
to pathogens, inflammation and general stress response were among the most significantly
enriched terms for alveolar macrophages, neutrophils and AT2 cells. Ciliated cells followed
a different pattern. Due to their essential role in mucouciliary clearance, they also seemed
to enter an activated state after 6 months of exposure (see drastic shift in UMAP space
Fig. 3.23b). To respond to the continuous supply of pathogens, they up-regulated many
genes associated with microtubules and cilium movement.
Smoking has been recognized to suppress mucouciliary clearance in most smokers and
can be improved by smoking cessation. Examination of their airways showed patches
of atypical nuclei and missing cilia, confirming that constant particle exposure induces
detrimental effects on ciliated cell structure and function.285

In the final part of exploration of LTβR inhibition, expression of its signalling molecules
in adaptive and innate immune cells and LTβR target gene expression in cells from COPD
patients as well as in the mouse model was evaluated.
Quantification of mRNA levels determined by qPCR in lung core biopsies from healthy
individuals and patients with COPD revealed an increased expression of the LTβR ligands
LTA, LTB and TNFSF14 (also known as LIGHT) and TNF. Furthermore, its downstream
targets, namely the chemokines CCL2, CXCL8 and CXCL13 displayed significantly higher
levels in COPD patients as well (Fig. 3.25a). To delineate the cellular sources of these
signalling molecules, the corresponding expression is shown for the CS exposure model in
Fig. 3.25b. Expression of the main ligands Lta and Ltb localized mostly to B and T cells.
An alternative LTβR ligand Tnfsf14 was expressed on T cells, NK cells and granulocytes,
whereas Tnf was expressed by all leukocytes in the mouse lungs. Mimicking the human
settings, expression of these genes was significantly increased upon smoke exposure.

Neutrophils are the first line of defense against pathogens, as they phagocytize in-
vading microorganisms and destroy them by the internal generation of reactive oxygen
species and the action of proteases such as elastase or cathepsins.286 This subset is ex-
amined separately in Fig. 3.25c, in which a clear shift correlating with the duration of
smoke-exposure was discernible in the UMAP space. A recent study explored the driver
genes during the transition from immature to mature neutrophils and provided signatures
of neutrophils migrating into inflamed mouse lung.284 Some example genes that were sig-
nificantly higher during inflammation also corresponded to the CS exposure time in the
given data set. These were for instance Interleukin 1 Receptor Antagonist (Il1rn), which
modulates Interleukin 1 related immune and inflammatory responses, particularly in the
acute phase of inflammation. Other examples are the Ferritin Heavy Chain Fth1 and the
Macrophage Inflammatory Protein Ccl3, which is involved in the inflammatory response
through binding to the receptors Ccr1, Ccr4 and Ccr5. The temporal pattern of up-
regulation was particularly apparent for the LTβR ligand TNF. Interestingly, the Nuclear
Factor Interleukin 3 Regulated Nfil3 was also listed in the inflammatory signature, and
has been implicated in the control of IL-1β and TNF production by myeloid cells.287

The gradual expression increase of the listed genes towards longer periods of smoke
exposure reflected the sustained inflammatory milieu. These observations suggested that
neutrophils stay in an activated state, keep releasing inflammatory cytokines, which in
turn influence other cell types and may contribute to their inability to return to baseline.
Literature supports this notion, as neutrophils are the most abundant inflammatory cells



3.3. CIGARETTE SMOKE-EXPOSED MICE AND HUMAN COPD 111

present in the bronchial wall and lumen of COPD patients288 and evidence from cell
culture, mouse models to human patients implicates neutrophil-derived proteases as key
mediators of the tissue damage and associated decline in lung function.286

RNA quantification revealed increased expression of genes associated with non-canonical
NF-κB signalling in COPD lung biopsies. Following a scoring of the whole GO term
signature, it became clear that smoke induced the expression of the corresponding genes
in alveolar epithelial cells. In the mice treated with LTβR-Ig, the average expression of
these genes was reduced and resembled the value distribution of control mice (Fig. 3.25e).
These results indicated that disruption of the LTβR-signalling pathway reverses cigarette-
smoke-induced iBALT formation in lung tissue. The subsequent decrease of non-canonical
activation of NF-κB-signalling in alveolar progenitor cells appeared to be a key element
in initiating the ensuing lung regeneration.
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Figure 3.25: LTβR-signalling is activated in lungs of COPD patients and mice
exposed to cigarette smoke. a Fold change of mRNA expression determined by qPCR in
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signalling molecules of the LTβR signalling pathway. b UMAP highlighting cellular origins of
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3.3.3 Evaluate association of ACE2 expression to smoking habits

As a brief excursion, the focus will be shifted towards a different, equally devastating
pulmonary disease, that has marked the years following 2019, COVID-19.
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This large-scale meta study has been enabled within the global framework of the Hu-
man Cell Atlas consortium. Christoph Muus, Malte Luecken and collegues collected,
integrated and harmonized cell type specific expression of the three SARS-CoV-2 entry
factors ACE2, TMPRSS2 and CTSL from 107 (partially un-published) scRNA-seq studies
from different tissues, along with experimental validation of the key messages.167 In this
study I could contribute by evaluating conserved expression pattern of the entry factors
in the corresponding mouse model.
ACE2+TMPRSS2+ double positive cells were found across the human body, most promi-
nently in the epithelial cells within the ileum, liver, lung, nasal mucousa, testis, prostate
and kidneys.167 Zooming into lung-related locations pin-pointed the secretory goblet and
multiciliated cells in nose and airway and AT2 cells in the distal lung as the main doublet-
positive populations (Fig. 3.26b). Concomitant with the expression patterns in non-
diseased human lungs, the Ace2+Tmprss2+ and Ace2+Ctsl+ double-positive cells were
present primarily in club and ciliated cells in the mice lungs (Fig. 3.26c).

The prevalence of COVID-19 is greater in older people, in particular men with ad-
ditional co-morbidities have an increased risk of developing a severe disease.160 To build
a bridge to the virus’ entry factors, the association of expression levels of ACE2 and
TMPRSS2 to the clinical factors age, sex and smoking habits were modelled using a gen-
eralized linear model, while accounting for technical variation arising from study cohort
and potential covariate interactions, put more precisely:167

Y ∼ age+ sex+ age : sex+ smoking + sex : smoking + age : smoking + dataset

The integrative analysis revealed their cell type specific associations (Fig. 3.26a), ACE2
expression increased with age in AT2 cells, and was elevated in males in airway secretory,
AT1 and AT2 cells. Further, the levels were higher in past or current smokers in basal
and submucousal secretory cells, and lower in AT2 cells.167 As models that approximate
human physiology are essential during pre-clinical studies, it is important to confirm their
correspondence before-hand. Especially the trends regarding the smoking status were
intriguing and motivated a comparison to the patterns in the mouse data at hand.
Upon 2 months of smoke exposure, the proportion of Ace2+ cells as well as Ace2 expression
levels substantially increased in secretory cell populations, but not in AT2 cells compared
to the air exposed controls (Fig. 3.26f,g). The expression profiles of Ace2 in airway ep-
ithelial cells were in agreement with the pattern in the respective human counterparts,
and served as indication to why smokers are more likely to develop severe SARS-CoV-2.

Conclusion

Taken together, by the analysis of lung tissue from patients with COPD coupled to scRNA-
seq of the smoke-exposure mouse model, the induction of LTβR signalling mediators
and their cellular origins could be delineated. Inhibition of this very signalling cascade
dispersed and even prevented the formation of lymphoid follicle structures, potentially
affected by the decrease in non-canonical NF-κB signalling through non-canonical NIK in
alveolar stem cells. The presented projects benefited from the use of a mouse model, as
aspects from both COPD and COVID-19 with regards to human smoking habits could
be mirrored to a substantial degree. These results again show how appropriate models
that approximate human pathology are crucial for pre-clinical studies, as they enable the
identification of key pathways and drug targets that aid in improving human health.
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3.4 Reveal ex vivo signatures of SARS-CoV-2-reactive

T cells through reverse phenotyping

The work presented in the this last chapter will remain within the frame of the lung
disease explored moments ago, the coronavirus disease COVID-19. The focus is shifted
away from stem cells in the lung towards immune cells, particularly the T cells and the
different effects an infection induces in them are explored.
T cells from COVID-19 patients were extracted and stimulated with the SARS-Cov-2 anti-
gen. This allowed to categorize them based on whether they changed their transcriptomic
profile in reaction to the virus or remained non-reactive. The induced transcriptional sig-
natures of currently and previously activated T cells could be characterized and set into
context by comparing them to unperturbed phenotypes of T cells from the respiratory
tract of diseased patients. Finally, the consequences of the gene expression alterations
were assessed by the means of intercellular communication analyses, facilitated by em-
bedding the gained results into larger, recently published data sets.

The herein described results have been drafted into a manuscript, which was officially
accepted for publication in Nature Communications as of 17th June 2021.174 A non-peer-
reviewed version has been uploaded to the medRxiv server, which is a free online platform
for health science preprints. The file is accessible via the link https://www.medrxiv.org/
content/10.1101/2020.12.07.20245274v1 or the doi 10.1101/2020.12.07.20245274. Ex-
perimental data collection such as scRNA-seq, FACS-sorting, antigen-stimulation was
performed by Karolin Wagner and co-authors. Quality control and computational pre-
processing of the PBMC data was performed by David Fischer, and communication anal-
ysis via NicheNet in the latter half by Niklas Lang. My contribution encompass great
parts of the single-cell analysis, in particular processing and analysis of tracheal aspirate
data, merging it with the PBMC data, exploration of antigen-induced gene expression
shift and finally integration and validation of the results using additional patient cohorts.
Therefore, sections of the following chapter have been used in parts in the final manuscript.

Introduction

T cells are integral in the host’s adaptive immune response and clearance of virus-infected
cells of the respiratory system.289 Memory T cells can provide lifelong protection against
pathogens and contribute to long-lasting immunity, an attribute which is commonly ex-
ploited during vaccination against infectious diseases. Previous studies have demonstrated
that SARS-CoV-specific T cells for instance can still be detected many years after infection
in patients who have recovered from SARS.290 Due to the urgency throughout 2020, the in-
terest in better characterizing the in vivo phenotype of T cells reactive to the SARS-CoV-
2 antigens has increased drastically. Immunodominant SARS-CoV-2-antigen specificities
have been identified for this emerging pathogen, and many studies performed phenotypic
characterization of antigen-reactive T cells. The methodologies to assess antigen-reactivity
differ across study, still there is general agreement that SARS-CoV-2-reactive T cells are
activated and differentiate during the course of the immune response. It has been demon-
strated recently that scRNA seq can be used to reveal activation-induced phenotypic
profiles of antigen-reactive T cells.291
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A T cell receptor’s (TCR) clonotype is a unique nucleotide sequence that arises dur-
ing its maturation and provides the cell’s specificity to antigenic peptides. Additional to
the global profile, scRNA-seq enables the cell-specific capture of TCRs and thereby the
identification of the sequences of such antigen-reactive clonotypes.

Here, T cells of severely diseased COVID-19 patients were isolated from the peripheral
blood mononuclear cells (PBMC, n = 2) and tracheal aspirates (TA, n = 9) which will
be referred to as Munich cohort. Consistent with the disease’s risk profile, seven of nine
patients were male and age ranged from 51-82 years. All patients were treated in an
intensive care unit (ICU) and had been on a respirator for 8-38 days at the time of
sampling, from which ultimately 2 patients deceased and 7 patients recovered. ScRNA-
seq was performed for all TA samples (3’ transcriptomics), while PBMC samples were
taken from two patients (GT 3, GT 2) and split into two groups. To isolate antigen-
specific cells later on, the first group was stimulated with a SARS-CoV-2 spike protein
peptide mix, while the second control group was left unstimulated. After extraction of
more than 10.000 CD4 and CD8 T cells with flow cytometry-assisted cell sorting (FACS),
scRNA seq (10x 5’ transcriptomics and VDJ) was performed (Fig. 3.27a). The general
results were consistent in both samples, however will only be shown for patient GT 3 for
clarity hereafter.
Upon in vitro re-stimulation with antigens, the T cells showed a transcriptomic shift and
could be categorized into antigen-reactive or non-reactive based on their up-regulation of
well-known activation markers. The TCR sequence can thereby serve as a natural barcode
to link T cells of the stimulated to the ones from the unstimulated condition, by matching
their in vivo expanded clonotypes with common antigen specificities. This process was
titled reverse phenotyping.

3.4.1 SARS-CoV-2-antigen-induced shifts in PBMC T cells

To assess whether the antigen-stimulation successfully induced transcriptional shifts in the
PBMC cells, the data set was pre-processed following the general workflow described in the
methods section. Briefly, genes that were expressed in at least 10 cells were retained before
cell-wise scaling the expression vectors to a total count of 10,000 and logp1-transforming
the data. Variable genes were selected with scanpy’s pp.highly variable genes(flavor

= "seurat") and used as input for the PCA and subsequent knn graph construction
pp.neighbors(n neighbors = 50). Cell type assignment was done in a two-stage pro-
cess. First, unsupervised clustering returned 32 Leiden groups which were assigned to
either CD4 or CD8 T cells based on their relative mean expression in the group. Second,
cells from clonotypes, which contained both CD4 and CD8 T cells, were assigned to the
major cell type found in the respective clonotype.

One group of cells was visually distinct from all other cells and encompassed mostly
CD4 and CD8 T cells from the stimulated condition (Fig. 3.27a). 2.88% of all stimulated
cells were assigned to this cluster.
After assessing the expression of the gene encoding Interferon-γ (IFNG), a prominent
effector cytokine that is released as a product of antigen-stimulated lymphocytes, it be-
came apparent that this distinct stimulation-induced cluster represented antigen-reactive
T cells. To anchor this hypothesis on more than a single gene, scoring of unbiased ac-
tivation signatures for CD4 and CD8 T cells as previously identified by scRNA-seq was
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performed. While CD4 T cells have been described to show gradually enriched IFN re-
sponse (early activation) and proliferation (late activation) scores, CD8 T cells undergo
sequential transcriptional states reflected by high cytotoxic (early activation) or cytokine
secretion scores (late activation).292 Accordingly, the CD4 T cells showing high prolif-
eration scores and CD8 cells with high cytokine scores were exclusively present upon
stimulation in cluster 29 (Fig. 3.27b). In line with CD8 T cell activation, differential gene
expression analysis confirmed that cluster 29 CD8 T cells showed up-regulation of genes
such as IFNG, TNF, IL2, CCL3, CCL4 or GZMB.

TCR variation is primarily associated with the third complementarity determining
region (CDR3) that interacts specifically with the MHC-bound peptide. Differences in
these regions are generated by somatic rearrangements within the variable (V) and joining
(J) gene segments of the TCRα chain and within the V, D (diversity), and J gene segments
of the TCRβ chain.293 This VDJ recombination can be exploited via VDJ sequencing, in
which VDJ regions are purified and amplified before sequencing, enabling the assessment
and comparison of the clonal heterogeneity of T cells.
CDR3αβ sequences were detected in 92% of the analyzed T cells (69.9% fully paired
CDR3αβ; 3.4% CDR3α only; 26.7% CDR3β only), from which only clonotypes with
identical fully paired CDR3αβ sequences were retained in the analysis.
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Subsequently, clonotypes that underwent transcriptional shifts upon antigenic stimu-
lation were detected by their enhanced IFNG expression. Among clonotypes with at least
three cells per stimulation condition, those with a statistically significant up-regulation
of IFNG after antigen-specific stimulation (two-way ANOVA with Sidak’s multiple com-
parisons test) were defined as antigen-reactive, resulting in each 5 clonotypes for CD4
and CD8 T cells (Fig. 3.28a, b). Apart from clonotype 574, reactive clonotypes were
larger in size, consistent with previous observations in activation and clonal expansion.
As expected, a high fraction of the stimulated cells characterized as antigen-reactive were
assigned to the stimulation-induced Leiden cluster 29. The distinct transcriptional shifts
in specific clonotypes confirmed the presence of antigen-reactive T cells.
Targeted re-stimulation of the cells with SARS-CoV-2 antigens introduces a major bias
compared to the unperturbed cells from diseased patients. Instead, inspecting the clono-
types without re-stimulation would be closer to the in vivo setting and give a more relevant
read-out. Using the TCR sequence as natural barcode, it was possible to link the react-
ing clonotypes back to those from the non-stimulated condition. As non-stimulated cells
reflect the phenotype that reactive cells would have had if they had not been stimulated,
it was possible to explore the unperturbed ex vivo phenotype of antigen-reactive T cells.

It should be noted that the individual clonotypes have different phenotypes a priori,
explaining why some display unique reactivity upon stimulation. For example, after stim-
ulation all reactive clonotypes up-regulated PDCD1, which encodes a surface protein of
B and T cells that regulates the immune response, or down-regulated CXCR4, which is
known to occur during differentiation into T cells with an effector phenotype.294 Con-
trary to these synchronized shifts, stimulation also induced clonotype-specific changes
in CD4 T cells, as clonotype 138 up-regulated TBX21 expression while clonotype 256
down-regulated it (Fig. 3.28f). Such intra-clonal variability adds an additional layer of
complexity which should be kept in mind.

Next, it was attempted to experimentally validate the antigen reactivity of the selected
clonotypes. With the advent of genomic engineering possibilities through tools such as
CRISPR/Cas9, it became possible to replace a T cell’s endogenous receptor by a trans-
genic one. In this process called orthotopic TCR replacement (OTR), transgenic TCRs
can be inserted into specific endogenous gene loci using homology-directed repair, which
places the transgenic TCR under physiological transcriptional control, while simultane-
ously eliminating the endogenous TCR.295

OTR was used to generate TCR-transgenic T cells, by equipping healthy donor T cells
with identified CD4 TCRs selected by the just described screening (reactive TCRs 138,
19, 256 and 574) as well as the TCR of the largest CD4 clonotype (TCR 48). Remark-
ably, the T cells equipped with TCRs defined as reactive all showed SARS-CoV-2 spike
antigen-dependent reactivity, whereas TCR 48 knocked-in T cells did not (Fig. 3.28i)
As clonotypes which had less than three cells in each condition were excluded from the
analysis, small clonotypes (e.g. 1373 and 1904) were not considered during the definition
of reactive clonotypes, although TCR 1904 showed reactivity and two of the cells in the
stimulated condition had a transcriptional shift into cluster with IFNG up-regulation.
Overall, this data functionally validated the SARS-CoV-2 reactivity of the selected TCRs
and reinforced the approach to use IFNG up-regulation after stimulation as read-out to
detect antigen-reactive clonotypes.
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3.4.2 Matching the phenotypes of antigen-reactive T cells to the ones from
the respiratory tract of COVID-19 patients

To investigate the unperturbed phenotypes of antigen-reactive T cells and assess whether
T cells with antigen-reactive signatures can be found in the respiratory tract as well, the
PB data set from one patient was integrated with the previously described TA samples
from an identical as well as eight additional patients.
Already in the UMAP space the TA T cells clustered in-between stimulated and unstimu-
lated reactive clonotypes from peripheral blood and nestled towards the respective T cell
lineage (Fig. 3.29b). Corresponding to the PB CD8 T cells, the TA counterpart showed
high cytokine, cytotoxic scores and increased IFNG expression, while a similar activation
pattern was not detected for CD4 TA cells (Fig. 3.29c).

Many induced molecules that showed distinct patterns in the two stimulation groups
were known to be differentially regulated after re-stimulation in vitro. Antigen-reactive
CD4 T cells strongly up-regulated TNFRSF9 and the effector cytokines IFNG, TNF,
XCL1, XCL2 or CCL3 with respect to unstimulated reactive CD4 T cells. While GZMB
or CCL4 were expressed in both reactive and non-reactive CD4 T cells in the unstim-
ulated condition already, their expression was boosted by stimulation for reactive CD4
T cells only. CXCR4 is known to be more expressed in less differentiated T cells, and
was down-regulated upon T cell activation after stimulation. T cells express co-inhibitory
receptors that regulate T cell function, which negatively modulate TCR signalling and
are essential in maintaining the balance between tolerance and autoimmunity. Notably,
the in vitro stimulated cells reflect T cell activation rather than exhaustion, as such co-
inhibitory molecules (PD-1, LAG3, TIGIT) were almost absent on antigen-reactive cells
before stimulation, and only expressed thereafter.

To further corroborate the comparison, and to better describe the reactive clonotype
signatures, gene expression analyses were performed via diffxpy227 across the different
reactivity groups for CD4 and CD8 T cells separately. The phenotypes of T cells from
the unstimulated condition reflected the in vivo setting more closely and were therefore
subjected to differential expression analysis comparison of SARS-CoV-2-reactive to non-
reactive cells. Antigen-reactive CD8 T cells showed high expression of KLRB1, granzymes,
CCL5 and the cytotoxic marker NKG7, while down-regulating TYROBP, KIR2DL3 and
KLRC3. KLRB1 encodes CD161 which is part of cytotoxic/Th 1 anti-viral T cells and was
identified to be most significantly up-regulated in reactive CD4 T cells, consistent with
a recent study describing the up-regulation after SARS-CoV-2 re-stimulation in vitro.296

TYROBP encodes DAP12 and has known activating as well as inhibitory immune cell
signalling roles when paired with killer inhibitory receptors (KIR) or family members of
the killer lectin like receptors (KLR). Down-regulation of TYROBP and KLR upon CD8
T cells activation has been shown previously as well.297

Regarding respiratory T cells, it was apparent that their transcriptomic profile re-
sembles the antigen-reactive T cell signatures for great parts, for instance the genes up-
regulated in reactive clonotypes with respect to un-reactive clonotypes (IFNG, TNF,
PRF1, NKG7, CCL5, TGFB1, CST7, KLRD1, GZMA, GZMB, GZMH, GZMK) featured
higher expression in the T cells from the respiratory tract than in the non-reactive T cells
from peripheral blood (Fig. 3.29h).
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Figure 3.29: Transcriptional shift of in vitro stimulated reactive T cells is also present
in ex vivo T cells of diseased patients. a Experimental setup, additionally to the PB T
cells from Fig.3.27, cells from tracheal aspirates (TA) of intensive care unit (ICU) patients
with COVID-19 were profiled with 10x. b Integrated UMAP of T cells from both PB and
TA, overlaid with cell type and stimulation status. c UMAPs showing IFNG expression and
enrichment scores of genes associated with cytotoxicity, cytokines and proliferation. d Reac-
tive clonotypes are highlighted in UMAP for both CD4 and CD8 T cells. e Dotplot of genes
associated with cytokines, per cell type and reactivity combination. f Volcano plots showing
differential expression results of PB T cells from non-reactive versus reactive clonotypes, calcu-
lated for each cell type and condition combination. h Dotplot of PB and TA cells for selected
genes from expression testing results, grouped per cell type and reactivity combination.
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Certain transcription factors mediate programs specifically in tissue-resident cell types.
ZNF683 for instance encodes the Tissue Resident Memory T Cell-associated transcrip-
tion factor Hobit, which is expressed in tissue-resident memory T cells after initial antigen
exposure, providing localized protection against pathogens upon reinfection.298 ITGA1 en-
codes CD49a, another tissue resident memory marker, shown to persist at sites of previous
infection.299 Both of these markers were expressed in TA CD8 T cells and distinguished
them from antigen-reactive CD8 T cells from the blood. TA CD8 T cells were generally
very similar to reactive PB T cells - especially from the stimulated condition. This data
indicated that the stimulation induced broad changes in transcriptional profiles, partic-
ularly the up-regulation of some expected activation markers, and could be matched to
the phenotypes of T cells from the respiratory tract of COVID-19 patients.

To test the generalizability of the results on independent cohorts and in order to in-
clude varying levels of severity and more healthy controls, the single cell data from Munich
was extended by recently published samples from bronchoalveolar lavage fluid (BALF)
of COVID-19 patients with severe and mild disease as well as healthy controls. Raw
count matrices from the publicly available cohorts Shenzhen,300 Chicago301 and Berlin302

were re-processed separately following the standard pre-processing workflow and the ex-
tracted T cells were combined into one integrated data set. The subset of T cells encom-
passed 30,033 cells from 28 patients in total. For visualization of the concatenated data
sets, a UMAP and a batch-corrected neighbourhood graph was constructed via BBKNN

(neighbors within batch = 10, batch key = cohort).

For some of the severely diseased patients, SARS-CoV-2 transcripts were still de-
tectable in the cells, thus the patients were further categorized accordingly into severe
virus-positive and severe virus-negative (Fig. 3.30a, b).
The integrated T cells were subjected to Louvain clustering in order to gain a first un-
biased look. Stimulated CD4 or CD8 T cells from peripheral blood clustered in dis-
tinct niches that also contained respiratory T cells from severely diseased patients. Cell
type-dependent fractions within CD8 or CD4 T cells from peripheral blood revealed that
Louvain cluster 11 was enriched not only for reactive clonotypes from the stimulated con-
dition, but also contained the majority of T cells from in the stimulation induced Leiden
cluster 29 as seen in Fig. 3.27a. At the same time, CD8 and CD4 from respiratory sam-
ples that were located in this integration Louvain cluster 11 were mostly from severely
diseased patients across the cohorts (Fig. 3.30c, d). Intriguingly, PB CD8 reactive T cells
clustered together with respiratory CD8 T cells from severely diseased patients, particu-
larly from Chicago and Shenzhen, which in contrast to the Berlin cohort, encompassed a
substantial number of virus-positive patients very early after entering the ICU. This led to
the hypothesis that the phenotypic signatures of the stimulated reactive clonotypes could
reflect active virus replication, while the unperturbed counterpart from the unstimulated
cells mirrors virus cleared respiratory tract environments of severely diseased patients, in
which virus was either still detectable or not detectable anymore. Looking at a specific
gene, CCL4 (Macrophage Inflammatory protein-1β), which encodes a chemoattractant for
a variety of other immune cells,303 was markedly up-regulated in respiratory T cells from
patients with severe disease, even more so in virus-positive patients. This is mirrored by
higher expression in reactive T cells from peripheral blood, with particularly pronounced
expression in the stimulated condition.
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Figure 3.30: Phenotypic convergence of in vitro stimulated T cells from peripheral
blood and T cells from the respiratory tract of severely diseased patients. a Integrated
overview of previously analyzed T cells from PB and TA, and additional bronchoalveolar lavage
fluid (BALF) samples from patients with mild disease, severe disease and healthy donors.
UMAP colour coded by cell type, Louvain cluster, infection state and reactive clonotypes (n
= 30,033 T cells from 28 patients). b Severity of patients/stimulation status of PB samples
highlighted in the 4 different cohorts separately. c Location of IFNG-positive antigen reactive
Leiden cluster 29 (see Fig. 3.27a) in integrated view. After re-clustering of integrated cells,
highest fraction of this Leiden cluster 29 is found in the integrated Louvain cluster 11, which
also contains large portions of reactive CD4/CD8 clonotypes. d Fractions of Louvain cluster 11
(left) or CCL4 expressing cells (right) among CD4/CD8 T cells from either PB or respiratory
samples. For respiratory T cells, data is grouped by individual patients with indicated disease
stages (n = 2 healthy, n = 3 mild, n = 11 severe virus-, n = 10 severe virus+).

These results reinforced the connections between disease stages of individual patients
and phenotypic signatures of respiratory T cells, for which currently and previously ac-
tivated PB T cell subsets provided a fitting framework. As final step in this TCR based
analysis, the properties of antigen-reactive T cells were put into a bigger context by in-
cluding other cell types at the affected site. Due to the extension to particularly immune
cells, the intercellular communication between disease-relevant niches could be explored.
As there were no viral transcripts detectable any longer in the patients from the Munich
cohort, the analysis incorporated a recently published scRNA-seq data set.
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3.4.3 Increased communication of T cells with virus+ macrophages

The study from Grant and colleagues on collected BALF samples from 10 patients with
severe COVID-19 within 48 hours of intubation (Chicago cohort). They reported an
persistent enrichment of T cells and monocytes in the alveolar space, which suggested
that infected alveolar macrophages attract T cells, which in turn produce IFNG to in-
duce inflammatory cytokine release from alveolar macrophages and further promote T
cell activation. This positive feedback loop is proposed to drive the persistent alveolar
inflammation seen in severely affected patients.301

The majority of captured cell types were from the leukocyte compartment, with a
smaller number of epithelial cells present as well (3.31a). Macrophages have been grouped
into tissue-resident alveolar macrophages (TRAM) as well as monocyte-derived alveolar
macrophages (MoAM). Owing to the short time period between intubation and sample
collection, SARS-CoV-2 transcripts could still be detected in several patients, particularly
in macrophages, either after direct infection or after phagocytosis of infected cells. Strik-
ingly, certain subsets were characterized by higher infection fractions and formed separate
clusters (TRAM2, MoAM2) (Fig. 3.31b). This additional grouping enabled the investi-
gation of cross-talk between infected macrophages and T cells that bear the established
antigen-reactive signatures, i.e. belong to the described integration Louvain cluster 11.

The NicheNet algorithm232 was applied, which ranks ligands expressed by sender
cells according to their ability to induce a set of target genes in the receiver population
based on prior knowledge. As a first target list those genes were selected, which were
up-regulated in virus+ TRAM2 with respect to virus- TRAM1. The list included well-
expected cytokines such as CCL2, CCL3, CCL4, CXCL9, CXCL10, CXCL11 ICAM1,
STT1 (Fig. 3.31c). IFNG and TNF were predicted to be the most important ligands of T
cells from the integrated data set. Interestingly, these were most dominantly expressed in
Louvain cluster 11, which also highly expressed the predicted ligands CCL3 and CCL4.
Looking closer into the monocyte derived subset, NicheNet predicted similar T cell ligands
inducing the transcriptomic changes between virus+ and virus- MoAM (immature MoAM1
vs. mature MoAM2/3, respectively). The prediction pattern of the top predicted ligands
also coincided with other Louvain cluster regions which were enriched for severely diseased
patients, particularly 2, 5, 7, 11, 12.
Conversely, to elucidate whether SARS-CoV-2 transcript carrying macrophages would
likewise signal back to T cells with the antigen-reactive signature, the target gene list
was set to the genes distinguishing reactive from unreactive T cells from the stimulated
condition (Fig. 3.31d,e). These target gene sets, including GZMB, IFNG, TNF, CCL3
and CCL4 in stimulated reactive CD4 T cells, led to the prediction of macrophage derived
co-stimulatory ligands such as IL-15, IL-18, CCL4, CCL8 or CXCL9, which have been
described to be up-regulated in macrophages from the respiratory tract during COVID-19
already in the original studies from the Berlin and Shenzhen cohorts.300,302 For the CD8
counterpart, macrophage derived co-stimulatory ligands CCL2 and SPP1 were predicted
to drive CCL3 and CCL4 expression, while IL-15, IL-18, ICAM1, ADAM17, CD80 and
CD86 might drive IFNG, TNF and GZMB expression. Intriguingly, most of these ligands
were preferentially expressed by the very macrophage subtypes in which SARS-CoV-2
transcript was detectable (TRAM2 and MoAM1), indicating specific ligand-receptor cross-
talk between respiratory T cells with antigen-reactive signatures and virus+ macrophages.
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In summary, unbiased prediction of ligands responsible for gene expression changes in
the corresponding target cell types highlighted an increased level of interaction, especially
between SARS-CoV-2 transcript-positive macrophages and T cells belonging to Louvain
clusters that had higher proportion of cells from severely affected patients.
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Figure 3.31: Cell-cell communication between established T cell subsets and selected
cell types in the scRNA-seq reference cohort of COVID-19 patients with NicheNet.
a UMAP plot based on Chicago data set of 77,146 cells from 10 patients with severe COVID-
19 within 48h after intubation, coloured by cell type and number of viral transcripts detected
per cell.301 b Proportions of infected cells from tissue resident alveolar macrophages (TRAM)
and monocyte derived alveolar macrophages (MoAM). For clarity, highly infected cells (5+
viral transcripts) are coloured red. c Potential ligands in T cell subsets from respiratory
tract of patients with severe COVID-19 explaining up-regulated genes observed between virus-

TRAM1 and virus+ TRAM2 (upper), virus- MoAM2/3 and virus+ MoAM1 (lower). The
pearson correlation coefficient is used to rank the ligands’ ability to predict the expression
changes in the target gene set. Graphical summary of key ligands expressed by T cell subsets.
d, e Likewise, top ranked ligands TRAM and MoAM, best predicting the signatures in the
reactive clonotypes for CD4 (d) and CD8 T cells (e) respectively.



Finally, it is has not escaped our notice that the more we
learn about the human genome, the more there is to explore.

The Human Genome Project32

Chapter 4

Discussion and Outlook

This thesis presents the innumerable directions for exploration of scRNA-seq with par-
ticular focus on data analysis and the vast complexity of the lung. After establishing a
custom work flow and outlining relevant analysis tools for the uniform pre-processing of
each data set, general descriptions and visualizations were generated. These overviews
were convenient for guiding the attention to the most striking patterns, while accounting
for the unique properties of each data set during analysis.

By balancing both wet lab techniques and bioinformatic approaches, the validity of the
derived hypotheses could be assessed and allowed for biologically sound conclusions. In
many cases, the plausibility was further tested by systematic comparisons against other
published data sets. This extended the generalizability and mitigated interpretations
driven by non-biological artefacts. It also serves as a case study to demonstrate how
the emerging collaborative efforts in the single-cell field and human biology overall can
be leveraged to enhance scientific progress. The resources predominantly contain healthy
donor tissue, but will soon be covering samples from a variety of disease contexts. By now
the construction of disease atlases has been set into motion, for instance the Idiopathic
Pulmonary Fibrosis Cell Atlas304 and COVID-19 Cell Atlas,305 which are continuously
being adapted as new data arrives within the multi-institutional collaboration.

At the start of this work, stem cells have been the center of attention, how they give
rise to progenitors of the human lung and liver during the first weeks of development.
The used protocol induces step-wise activation of developmental pathways such as Sonic
Hedgehog or Wnt/β-catenin. The high temporal resolution and dynamic expression pat-
terns rendered this data set as a suitable basis to get familiar with longitudinal and
trajectory analysis. A number of these pathways were encountered in later analyses as
well, which was expected as some are essential for proper lung physiology and are consid-
ered to contribute to age-associated chronic lung diseases.269 Especially the impairment of
alveolar stem cell function during tissue regeneration has potential to facilitate pathogen-
esis. Disease development is not only restricted to epithelial cell dysfunction, but occurs
as a result of a complex network of shifted cellular communication, in which other nearby
cells release mediators that prolong the inflammatory reaction and hamper regeneration
in general. In the next pages, the main messages from the separate chapters are reinforced
and put into a broader perspective by the use of recent literature in the field.
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4.1 Reactivation of developmental pathways

The lung is capable of responding to acute damage when spatially restricted stem and
progenitor cells re-enter the cell cycle and differentiate to promote repair. Tissue regen-
eration is a complex process orchestrated by the cross-talk between these cells and their
respective niches. The underlying mechanisms are still far from resolved, especially how
chronic inflammation or repetitive insults affect progressive tissue destruction. It has
been suggested that the pathological milieu in addition to a susceptible environment like
increased age, comorbidities or sustained particle exposure impair stem cell function and
promote dysfunctional regenerative processes after injury.

The progenitor populations evidently use signalling pathways that play important
roles during development of the lung.306 This work underlines the general sentiment in
the field, on how the reactivation of such developmental pathways during regeneration is
altered in certain human lung diseases.
Basal cells for instance are the main stem cells of the large airways, and are known to dif-
ferentiate towards secretory and ciliated cell fate via the involvement of Notch signalling
during airway epithelial development.307 Already in the early lung development trajec-
tory from chapter 3.1 the induction of the Notch pathway was identifiable by the gradual
up-regulation of its transcription factors HES1 and DLK1. The data shown in chapter 3.2
corresponds to this notion, as epithelial cells from lungs of ILD patients displayed higher
expression of Notch receptors (NOTCH2, NOTCH3) compared to healthy controls, while
a number of their ligands were up-regulated by other cell types as well.

Another key pathway contributing to progenitor stem cell function and repair is the
Wnt pathway, which appeared in results throughout this thesis. Again, chapter 3.1 de-
scribed how some of its components, e.g. WNT5A and DKK1, show a gradual increase
during lung speciation as well. Previous gene expression profiling has already shown that
human IPF lungs display higher expression of Wnt signalling players.269 This increase
was also present in the integrated data set, as many of these ligands were among the
most up-regulated genes, not only in the epithelial compartment. Following communica-
tion analyses, many prominent edges featured interactions between receptors of the Wnt
pathway and their respective ligands. Strikingly, many edges between disease-induced
epithelial and stromal population featured these genes. For instance, WNT7A, WNT7B,
WNT9A, WNT10A, SFRP2, DKK1 were predicted to influence a remarkable portion of
the target genes in both directions, and further generated positive feedback loops by heavy
autocrine signalling.
To switch to another chronic disease, the importance of developmental programs is evident
in COPD as well. Cigarette smoke has been shown to reduce canonical Wnt signalling in
human bronchial epithelial cells,308 and components of this pathway, namely CTNNB1,
CSK-3β and TCF4, have been reported to have significantly lower levels in peripheral
lung tissue of COPD patients relative to smokers without chronic lung disease.309 The
NF-κB pathway as a master regulator of inflammation further functions as crucial coor-
dinator of cell differentiation, proliferation, and survival. Findings in the field suggest
that the two signalling pathways cross-regulate each of their activities, and influence the
progression of inflammation. However, both positive and negative cross-regulation has
been observed depending on the cellular or tissue context.310
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Further investigation of the smoke exposed mice described in chapter 3.3 beyond the
single-cell data established a link between the Lymphotoxin-β receptor and Wnt/β-
catenin signalling. Primary AT2 cells from human and mouse cell lines exhibited a
down-regulation of the Wnt target genes Axin2, Nkd1, Lgr5 and Tcf4 following supple-
mentation with LTβR agonists. This phenomenon could be reversed by LTβR inhibition.
To confirm that this is indeed a result of decreased Wnt/β-catenin signalling, a NIK
kinase-specific inhibitor acting on the non-canonical NF-κB pathway was added, again
showing decreased expression of the aforementioned Wnt ligands.172 These results add
further functional context to the observations presented in chapter 3.3, on how alveolar
epithelial cells up-regulate genes associated with canonical NF-κB signalling upon pro-
longed smoke exposure. LTβR signalling decreased such Wnt/β-catenin.
Treatment with LTβR-Ig disrupted LTβR signalling and resulted in down-regulation of
NF-κB mediators, reversing the effects and potentially paving the way for Wnt-induced
regeneration. Ultimately, this suggested that blockade of LTβR signalling represents a
viable therapeutic option that not only prevents iBALT formation but also kick-starts
tissue-regenerative strategies.

As briefly introduced in chapter 3.1, the lung mesenchyme regulates the growth and
branching of the endoderm during early stages of development. With this in mind, the
corresponding differentiation protocol was supplemented by FGF10 and SHH, both tran-
scription factors essential in foregut and lung development. The literature suggests that
the mesothelium might be involved in lung repair by reactivating developmental pro-
grams as well.275 The presented integrative approach in chapter 3.2 supported this role,
as fibroblast growth factors and Wnt target genes have been significantly up-regulated
in mesothelial cells from ILD patients. Moreover, receptor-ligand analysis ranked these
genes frequently as top ligands and implicated a high potential to influence the gene ex-
pression shifts in a variety of other cell types.

The induction of genes from the listed developmental pathways reflects how the lung
attempts regeneration, still the response seems to be defective and aberrant communica-
tions in diseased patients could hinder the tissue from reaching its baseline state. Conse-
quently, it remains an important task to identify new targets that interact with pathways
that are involved in the pathogenesis of chronic lung diseases in order to circumvent im-
paired mechanisms and to catalyze proper regeneration. It is key to delineate cell-specific
communications, as the results presented in this work and many other studies show-case
how various cellular compartments are involved with specific response programs, all in-
teracting in a complex network. The knowledge on these receptor-ligand pairs has been
expanding rapidly in recent years, providing a valuable resource that can be leveraged
and holds promise for therapeutic approaches in the future.
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4.2 Persistence of otherwise transient cell states

One of the main scientific achievements this work has contributed to is the description of
a previously unknown transient alveolar differentiation intermediate and their transcrip-
tomic programs during terminal differentiation towards AT1 fate. The frequency and
level of Krt8 expression of this novel state was highest during the fibrotic phases follow-
ing tissue injury, and both gradually went down en route to regeneration. The transient
state was enriched for pathways essential during lung regeneration, such as MYC, TNF-α
signalling via NF-κB, oxidative phosphorylation,256,257,258 and also exhibited features of
senescence.

Cellular senescence is a process that promotes the elimination of unwanted cells by the
means of tissue remodelling. This can be divided into three steps: First, senescent cells
arrest their own cell proliferation. Second, a secretory phenotype is induced and recruits
immune and mesenchymal cells to clear damaged cells and modify the ECM. Finally,
nearby progenitors are mobilized to repopulate the tissue. These programs are regulated
by the interplay of signalling molecules, some that directly activate cell cycle inhibitors
(p14, p15, p16, p17, p21, and p27), and some indirectly via TP53, which in turn inhibit
cyclin-dependent protein kinases. Senescence plays an essential role during embryonic
development in order to eliminate transient structures. Alternatively, it can be triggered
upon cellular damage or stress and appears to be impaired in aged tissue or pathological
contexts.311 Aging in particular is marked by progressive deterioration of tissue function
over time, resulting in an increased susceptibility to environmental challenges. The irre-
versibly arrested proliferation of aged or damaged cells caused by cellular senescence is
known as one of the hallmarks of aging. Due to the decline in regenerative capacity it is
not surprising that increased age is a prominent risk factor in a variety of diseases.312

Although senescence is primarily a state of cell cycle arrest after extensive prolifera-
tion, it does participate in a variety of pathologies. As seen in chapter 3.2, fibrotic diseases
are part of them. For instance, to limit the fibrotic response, senescence is induced in the
activated fibroblast populations during the regenerative phase. In diseased individuals
however, the cells might fail to induce apoptosis in the otherwise transient populations
and prevent their clearance. On the contrary, senescent cells can rather negatively impact
the surrounding tissue by continuously secreting proinflammatory cytokines. The aber-
rant activity of p53, TGF-β and Wnt pathway genes has been reported in IPF patients,313

and was captured in the presented data as well.
In the bleomycin-injured mouse lungs the Krt8+ ADI cells displayed higher scores for
pathways associated with regeneration. After the inflammatory phase, in which cytokines
for phagocytic immune cells had been released, these cells significantly up-regulated me-
diators such as Cdkn1a, which inhibits CDK-cyclin complexes and results in proliferative
arrest, or Ccn1, another apoptosis related gene.

During the time of analysis other research groups discovered intermediate states in
alveolar regeneration which were highly similar to the described Krt8+ ADI. Kobayashi
et al. (2020)84 titled the cell state pre-alveolar type-1 transitional cell state (PATS). The
authors showed how these cells arise after alveolar injury by lipopolysaccharide (LPS)
treatment of mouse lungs, but could also generate them in ex vivo alveolar organoid
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cultures. Their listed key markers Cldn4, Krt19 and Sfn were highly expressed in the
Krt8+ ADI population as well. Elaborating on the functional interpretation, Kobayashi
and colleagues further validated that PATS are vulnerable to mechanical stretch-induced
DNA damage, which can easily occur during the intensive stretching these cells endure in
differentiation. They furthermore stress the importance of p53, and show via chromatin
immunoprecipitation (ChIP) that this senescence marker can directly bind to numerous
PATS-associated gene loci and directly control their expression.84

Another independent study by Choi et al. (2020)314 found an equal transient alveolar
state, but approached it from a different angle. The authors performed scRNA-seq on
lineage-labelled in vivo mouse AT2 cells and ex vivo AT2 cell-derived organoids to define
a regeneration trajectory. The regeneration-specific cell population was titled damage-
associated transient progenitors (DATP), marked by Ndrg1, Cldn4, and Krt8 expression.
Intriguingly, Choi et al. could confirm that chronic inflammation, mediated by sustained
Il-1β levels, prevented AT1 differentiation and eventually led to an aberrant accumula-
tion of the transient cells. The signature of DATP was enriched in Il-1β-treated organoids
relative to control organoids on day 6, corroborating the effect of Il-1β in a more targeted
fashion. Quantitative PCR on isolated macrophage populations from uninjured mouse
lungs revealed interstitial macrophages as specific source of Il-1β expression, which was
further up-regulated upon bleomycin injury.314

These results highlight the involvement of immune cells, and the authors suggest that Il-1β
skews differentiation of AT2 cells towards the AT1 fate. While this thesis did not delin-
eate the specifics of AT2 and macrophage interaction in greater detail, a sharp increase
in receptor-ligand numbers was indeed seen during early inflammation. The experiments
from Choi et al. confirmed that inflammatory stimuli can direct the cell fate behaviour
of AT2 stem cells during lung injury repair by the means of these example interactions.

The mentioned studies are a valuable validation for the presence and potential func-
tion of the ADI, as the conclusions across independent labs show high agreement and
complement the results presented here. However, this work was able to dive deeper into
transcriptomic shifts underlying the regeneration trajectory and potential cellular commu-
nication, owing to the dense temporal resolution and focus on computational exploration.

Linking to the more relevant human aspect as outlined in chapter 3.2, Haberman et
al. (2020)86 and Adams et al. (2020)261 could describe a novel cell population called
aberrant basaloid cells which were highly specific to human IPF lungs and were not found
in healthy donors. During the integrative analysis their presence has been shown across
multiple data sets and their co-expression of basal epithelial, mesenchymal and senescence
markers has been confirmed during the independent annotation. Again, common senes-
cence genes were induced in alveolar cells from ILD patients, such as the kinase inhibitors
CDKN1A, CDKN2A, encoding for p21 and p16, as well as the Cyclins CCND1, CCND2.
Creating a link to the non-human setting is crucial in order to facilitate study of the origin
of this cell population. Currently it would not be possible to capture their appearance in
human patients, as the presence of these aberrant cells is already established in the end
stage disease lungs that are available for analysis. The novel cross-species comparison at
the end of that chapter show-cased the transcriptomic similarity of the Krt8+ ADI from
injured mouse lungs to the basaloid population.
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Of particular interest was the sustained expression of genes in human ILD lungs, which
were down-regulated in mouse lungs after the fibrotic phase. Prominent examples would
be the ADI markers KRT8, SPRR1A, LCN, and other transiently up-regulated genes
TNC and SOX4. Likewise, the strong intercellular interaction between transient epithe-
lial and stromal cell populations, which is progressively diminished during regeneration
in the mouse model, appears to persist in the human disease condition. This ongoing
signalling could be one of many factors that might explain their persistence.

Nonetheless, cell lines or mouse models introduce highly artificial conditions that do
not always translate to human disease. As a glimpse into how this issue could be cir-
cumvented in the future, precision cut lung slices (PCLS) were used to model human
fibrogenesis in a first pilot study and provided encouraging results.
The slices were treated with a profibrotic cocktail of cytokines to mirror pathological
conditions, or PBS as control. Following standard processing, a first overview for day 1
and 7 is shown in Fig. 4.1. Within this framework, the response to perturbation in all
major tissue resident cells can be studied, while they are still embedded in their natural
niche environment. The drastic induced cell-state shifts corresponded well to the changes
seen in human ILD, most strikingly the induction of the aberrant basaloid / Krt8+ ADI
cell state could be recapitulated exclusively after fibrotic cocktail treatment in this ex
vivo tissue culture model. Motivated by this proof of concept it could be possible to use
scRNA-seq coupled to PCLS as a powerful platform for drug discovery and analysis of
cell plasticity mechanisms directly in human lung tissue.
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Figure 4.1: Outlook: Basaloid cells can be induced in human ex vivo tissue slice
culture. a UMAP of cells from ex vivo tissue culture, either native tissue or after slicing
(PCLS). Colour indicates time point and treatment condition; control (CC) or fibrotic cock-
tail (FC). Zoom into epithelial populations and scheme of proposed differentiation hierarchy
following epithelial injury (left). b Epithelial UMAP overlaid by basaloid (human) and Krt8+

ADI signature score (mouse). c Volcano plot showing preliminary results from differential gene
expression between CC treated versus FC treated alveolar cells, including basaloid population.

Overall, the observations in both the mouse and human context lead to the hypothesis,
that the non-permissive pathological milieu may prevent efficient removal of senescent cells
and instead promote their accumulation, which ultimately contributes to the pathological
manifestations seen in chronic lung diseases. These normally regenerative intermediate
states displayed conspicuously high levels of cellular interaction, further encouraging re-
cruitment, crowding, self-amplification and finally blocking lung regeneration by their
abnormal and irreversible state.
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4.3 Impaired AT1 cell regeneration in COVID-19

Adams et al. (2020)261 defined the aberrant basaloid cells as highly specific for IPF lungs,
as these could not be found in control patients. However, these cells were also present in
some COPD lungs in their data set, albeit in strongly decreased numbers. They might
reflect a common pathology that is shared in ILD and COPD lungs, as both are associated
with increased age, smoking habits, accelerated cellular senescence and progressive loss of
alveolar epithelium.261

The cytokine storm triggered during alveolar damage induces respiratory distress
which may progress to ARDS, a disease whose features are commonly found in post-
mortem histology of lung tissues of deceased COVID-19 patients. As outlined in chapter
3.4 the cross-talk between SARS-CoV-2 infected or bystander T cell and macrophages can
cause a positive feedback loop resulting in sustained alveolar inflammation, eventually
leading to alveolar damage. Specifically, lung parenchymal remodelling, characterized by
fibroblast proliferation, alveolar obliteration, and micro-honeycombing could be observed
in cryobiopsies of COVID-19 patients.315

Even after the virus has been eradicated in patients who have recovered from COVID-19,
the removal of the cause of lung damage does not rewind the damage itself. A fraction of
patients who have recovered from COVID-19 continue to battle longer lasting symptoms,
varying from mild, in terms of fatigue and body aches, to severe forms requiring long term
oxygen therapy and persisting lung fibrosis.316 Still, it is not clear if the cause of these
fibrotic features is the viral infection, the secondary cytokine cascade, or the ventilation.

Another remarkable study by Delorey et al. (2021)317 set out to generate a single-cell
atlas of lung, kidney, liver and heart based on autopsies from individuals with COVID-19,
in which their lung data set spanned 16 donors and 106,792 cells.
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Figure 4.2: Relevance of failed alveolar regeneration in tissue samples from lung
donors with COVID-19. a UMAP of 21,661 epithelial cells from 16 donors coloured by
published annotations. b Distribution of PATS signature scores for 17,655 cells from COVID-19
and 24,000 cells from healthy lung pneumocytes (*** denotes p-value < 2.2 x 10-16, one-sided
Mann–Whitney U test). c UMAP as in (a) coloured by signature score for the PATS/Krt8+

ADI or intrapulmonary basal-like progenitor (IPBLP) cell programs. d Proposed model of
epithelial cell regeneration. In healthy alveoli, AT2 cells self-renew (1) and differentiate into
AT1 cells (2). In COVID-19, AT2 cell self-renewal (1) and AT1 differentiation (2) are inhibited,
resulting in PATS accumulation (3) and recruitment of airway-derived IPBLP cells to alveoli
(4). Figures, legends taken and adapted from Delorey et al. (2021).317
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The motivation for mentioning this publication at this point is that during the annota-
tion of their epithelial compartment, the authors encountered a subset which corresponds
to the previously described Krt8+ ADI171 / PATS84 / DATP.314 Following signature scor-
ing of the epithelial cells, the similarity to PATS cells was confirmed and shown to be
significantly higher in COVID-19 lungs compared to controls (Fig. 4.2).
Consistent with fibrosis in severe COVID-19, Delorey et at. report fibroblast expan-
sion accompanied by loss of alveolar epithelial cells. The presence of Krt8+ ADI-like cells
hints at the invocation of regenerative cascades to re-establish the cells lost to infection.317

While the pathological manifestations of these diseases are quite different, a common
niche of aberrant senescent cells that fails to trigger proper repair mechanisms could be a
shared factor that participates in their onsets. Nonetheless, the existence of these disease-
specific cells has been confirmed in a variety of studies in the last year - now additional
studies are needed to assess the source of these cells and how to potentially manipulate
them in order avoid pathogenesis.

4.4 Multi-omics and spatial data integration

The results of this thesis are strongly based on the analysis of transcriptomic data. Due
to the explosion of single-cell genomics in recent years, scRNA-sequencing has been es-
tablished as the most common technique - for now. As briefly described in the introduc-
tion, additional features can be consulted when trying to characterize cells. Since the
initial report of single-cell transcriptomics in 200952 other single-cell omics technologies
have evolved into central tools for biological research. These methods aim to measure
for instance epigenetic modifications, non-genetic changes to the genome that have an
regulating effect on gene expression, which can be via addition of chemical groups, e.g.
methylation, or by modifications to chromatin, affecting which parts of the DNA are ac-
cessible during transcription.
Proteins on the other end reflect the organism’s phenotype. It is now known that mRNA
is not always translated into protein. Owing to these different control mechanisms at the
transcriptomic and proteomic level, but also due to mRNA half-life and protein localiza-
tion, there is no perfect correlation between mRNA readouts and protein profiles.318 Thus
accessing the proteomic layer provides a more relevant measure of the end product.

Nowadays, the single-cell layer can be harnessed by multiple data modalities besides
transcriptomics. By measuring different types of molecules, such as DNA, RNA, protein,
and chromatin at the highest possible resolution, it is feasible to accumulate more infor-
mation on how the expression of genes is influenced. Although their development has been
considerably lagging behind the scRNA-seq field, their applications are expanding rapidly.
Many groups independently developed technologies for profiling single-cell genomes,319,320

and different types of epigenomic modifications, such as DNA methylation,321,322 histone
modifications,323 chromatin organization and accessibility.324,325

Instead of treating these layers as isolated portraits, researchers are increasingly com-
bining them to achieve a more nuanced picture of cellular processes. Such integrative
approaches of single-cell omics techniques explore the interplay and correlation of the
different building blocks, ultimately enabling the construction of a multi-omics profile for
the same cell.
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Single-cell nucleosome, methylation and transcription sequencing (scNMT) for in-
stance uses a methyltransferase to label open chromatin followed by bisulfite sequencing,
adapted to determine the pattern of methylation, and finished with RNA-seq.326 By com-
bining gene-expression profiles, methylation and chromatin accessibility in the same cells,
study of the interactions between the epigenome and the transcriptome became feasible.
Another prominent combinatorial technique is CITE-seq, which integrates protein and
transcriptome measurements into a single-cell readout by using oligonucleotide-labeled
antibodies.327 Although the number of proteins that can be measured is limited by the
availability of antibodies, this approach is already widely applied due to its compatibility
with existing single-cell sequencing approaches.

Heterogeneity analyses are gradually being impacted by the inclusion of the spatial
component. Cellular interaction can only occur in cells that are in close proximity, thus
the relative locations of cells within tissue is critical to understand their relationship and
find spots of altered activity in disease pathology. However, due to the cell dissociation
the information on location cannot be preserved. An increasing number of methods have
been developed to supplement scRNA-seq data with spatial information. One of them
would be SCRINSHOT, which directly hybridizes probes onto mRNA on fixated tissue
sections, followed by amplification and sequential detection using fluorophore-labelled
oligonucleotides. It relies on the specificity of the generated probes to ensure ligation ac-
tivity to the correct sites and therefore requires prior knowledge on the cells of interest.328

The great advantage however lies in the fact that the hybridization step is based on tran-
scripts rather than proteins, and is thus not restricted by the availability of antibodies.
10X Genomics quickly realized the potential of spatial transcriptomics and established
Visium, a commercial platform to capture gene expression profiles and their local infor-
mation simultaneously. This is facilitated by slides containing barcoded spots, which are
made up of millions of spatially barcoded capture oligos. This technique can be applied
to either fresh frozen tissue, or FFPE tissues. The tissue is permeabilized in order to
release mRNA from the cells for the frozen case, or ligated probe pairs from the cells
for the latter. The released molecules then bind to the oligonucleotides on the capture
area. Spatial barcodes are added via an extension reaction, such that the molecules can
be traced back to their location after pooling them for library construction and sequenc-
ing.329 The popularity and validity of this technique has already been demonstrated by a
growing portfolio of peer-reviewed publications in the last years.

Such studies have proven that multimodal data analysis can achieve a more detailed
characterization of cellular phenotypes than transcriptome measurements alone. Nonethe-
less, these modalities add further complexity to the already high dimensional data. Due to
the recency of these integrative approaches, several challenges remain in defining suitable
data structures, efficient computational methods and comprehensible visualizations.330

More effort will be put into the advancement of a framework for the joint analysis. Still,
the reward of this endeavour will be a bridge between the molecular omics components
within their tissue context, streamlining the results to the physically possible and rele-
vant cellular interactions. This is of great importance to compress and make sense of the
wealth of data. Naturally, such biologically meaningful conclusions will expand our under-
standing of mechanisms in homeostasis, disease and further inform therapeutic methods
to alleviate or even prevent pathological conditions in the distant future.
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Appendix

This segment includes additional data base information and panels that are of interest
but were too lengthy to include in the main text. They are therefore constrained to this
separate space for reference.

• List of the key abbreviations and acronyms used throughout the thesis.

• Name and description of hand-picked genes encountered during intercellular com-
munication analysis in human ILD cohort data.

• Overview of quality control (sample-wise number of transcripts and genes, percent-
age of mitochondrial counts), filtering thresholds and pre-processing parameters (se-
lection of highly variable genes, knn graph construction, batch correction, UMAPs)
of all presented data sets.

• Compartment-wise subset UMAPs and matrixplots of selected cell type marker used
during annotation process for the individual human patient cohorts.
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Abbreviations

scRNA-seq Single-cell RNA-sequencing PCLS Precision-cut lung slices

PCR Polymerase Chain Reaction WHO World Health Organization

(c)DNA (Complementary) Deoxyribonucleic acid COPD Chronic obstructive pulmonary disease

(m)RNA (Messenger) Ribonucleic acid ILD Interstitial lung disease

FACS Fluorescence Activated Cell Sorting IPF Interstitial pulmonary fibrosis

MACS Magnetic Activated Cell Sorting ARDS Acute respiratory distress syndrome

FISH Fluorescence In Situ Hybridization COVID-19 Coronavirus disease 2019

Drop-seq Droplet-sequencing UMI Unique molecular identifier

aCap Aerocytes IM Interstitial macrophages

ADI Alveolar differentiation intermediate LEC Lymphatic endothelial cells

AM Alveolar macrophages Meso Mesothelium

AT1/2 Alveolar epithelial type 1/2 cells NEC Neuroendocrine cells

DC Dendritic cells VEC Vascular endothelial cells

Fibro Fibroblasts nc/cl Mono non-/classical Monocytes

gCap General capillary cells SMC Smooth muscle cells

TRAM Tissue-resident alveolar macrophages MoAM Monocyte-derived alveolar macrophages

iPS Induced pluripotent stem cells ECM Extracellular matrix

FE Foregut endoderm FGF Fibroblast Growth Factor

DE Definite endoderm SHH Sonic Hedgehog Signalling Molecule

DE Early lung progenitors CXCL CXC motif chemokin ligand

Bleo Bleomycin CCL C-C motif chemokine ligand

PBS Phosphate-buffered saline TGF-β Transforming Growth Factor β

iBALT inducible bronchus-associated lymphoid PBMC Peripheral blood mononuclear cells

CS Cigarette smoke TA Tracheal aspirates

FA Filtered air BALF Bronchoalveolar lavage fluid

LTβR Lymphotoxin β-receptor TCR T cell receptor

ROS Reactive oxygen species OTR Orthotopic TCR replacement

PC Principal component DC Diffusion component

t-SNE
T-distributed stochastic neighbour em-
bedding

UMAP
Uniform manifold approximation and
projection

DiffMap Diffusion map dpt Diffusion pseudo time

BBKNN Batch balanced k-nearest neighbours PAGA Partition-based graph abstraction

FDR False discovery rate GSEA Gene set enrichment analysis

logFC Log2 fold change hvgs Highly variable genes
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gene gene name UNIPROT summary for the encoded protein

ACVR1,

2A

Activin A Receptor

type 1, type 2A

Receptor that mediates the functions of activins, which are growth and

differentiation factors which belong to the TGF-β superfamily.

ADAM9,

12, 17

Metallopeptidase

Domain 9, 12, 17

May mediate cell-cell, cell-matrix interactions and regulate the motility of cells

via interactions with integrins.

ANXA1 Annexin A1 Anti-inflammatory, promotes resolution of inflammation and wound healing.

APP Amyloid Beta
Precursor Protein

cell surface receptor that performs physiological functions on the surface of
neurons relevant to neurite growth, neuronal adhesion and axonogenesis.

AREG Amphiregulin member of the epidermal growth factor family. Interacts with the EGF/TGF-α

receptor to promote the growth of normal epithelial cells.

BMP2, 3,

4, 5, 6

Bone Morpho-

genetic Protein 2,

3, 4, 5, 6

Growth factor of the TGF-β superfamily that plays essential roles in many

developmental processes. Initiates the canonical BMP signalling cascade by

associating with the receptors BMPR1A and BMPR2

CADM1 Cell Adhesion

Molecule 1

Mediates homophilic cell-cell adhesion. Interaction with CRTAM promotes NK

cell cytotoxicity and IFN-γ secretion by CD8+ cells.

CALR Calreticulin Resides primarily in the endoplasmic reticulum and is involved in cell adhesion.

CCL2 C-C Motif Chemo-

kine Ligand 2

Involved in immunoregulatory and inflammatory processes. Chemotactic

activity for monocytes and basophils but not for neutrophils or eosinophils.

CCL7 C-C Motif Chemo-

kine Ligand 7

Chemokine which attracts macrophages during inflammation and metastasis. In

vivo substrate of MMP2, an enzyme which degrades components of the ECM.

CCN1 Cellular Comm.

Network Factor 1

Promotes the adhesion of endothelial cells and plays a role in cell proliferation,

angiogenesis, apoptosis, and extracellular matrix formation

CCN2 Cellular Comm.

Network Factor 2

Mitogen that is secreted by vascular endothelial cells, plays a role in chondrocyte

proliferation and differentiation, cell adhesion and is related to PDGF.

CDH1, 2,

3, 4, 7, 11

Cadherin 1, 2, 3, 4,

7, 11

Cadherins are cell adhesion proteins and preferentially interact with themselves.

Involved in regulation of cell-cell adhesions, mobility and epithelial proliferation.

CDKN1A cyclin dependent
kinase inhibitor 1A

Regulator of cell cycle progression at G1, tightly controlled by the tumor
suppressor p53 in response to stress stimuli.

CDKN2B cyclin dependent
kinase inhibitor 2B

Lies adjacent to CDKN2A in a region that is frequently mutated and deleted in
many tumors. Its expression was found to be dramatically induced by TGFβ.

CLDN2 Claudin 2 Claudins are major integral membrane proteins localized exclusively at tight
junctions and regulate tissue-specific physiologic properties of tight junctions.

CLU Clusterin ECM chaperone that can be found in the cell cytosol under stress conditions.
Prevents stress-induced aggregation of blood plasma proteins.

COL1A1,

2

Collagen Type I

Alpha 1, 2, Chain

Type I is a fibril-forming collagen found in most connective tissues and is

abundant in bone, cornea, dermis and tendon.

COL3A1 Collagen Type III

Alpha 1 Chain

Collagen type III occurs in most soft connective tissues along with type I

collagen.

COL4A1 Collagen Type IV

Alpha 1 Chain

Type IV collagen proteins are integral components of basement membranes.

COL5A1,

2, 3

Collagen Type V

Alpha 1, 2, 3 Chain

Type V collagen is a member of group I collagen (fibrillar forming collagen) and

binds to DNA, heparan sulfate, thrombospondin, heparin, and insulin.

COL6A2,

3

Collagen Type VI

Alpha 2, 3 Chain

Type VI collagen are major structural components of microfibrils and act as a

cell-binding protein.

CTHRC1 Collagen Triple
Helix Repeat 1

May play a role in the cellular response to arterial injury through involvement
in vascular remodeling.

COMP Cartilage Oligom.

Matrix Protein

Non-collagenous ECM protein that may play a role in the structural integrity of

cartilage via its interaction with collagens and fibronectin

CXCL1 C-X-C Chemokine

Ligand 1

Plays a role in inflammation and as a chemoattractant for neutrophils. Aberrant

expression is associated with the growth and progression of certain tumors.

CXCL12 C-X-C Chemokine

Ligand 12

Plays a role in many cellular functions, including immune surveillance,

inflammation response, tumor growth and metastasis.

CX3CL1 C-X3-C Chemo-
kine Ligand 1

Ligand for CX3CR1 and integrins. Exerts immune response, inflammation, cell
adhesion and chemotaxis.

DAG1 Dystroglycan 1 Central component of dystrophin-glycoprotein complex that links the ECM and
the cytoskeleton in the skeletal muscle.

DKK1 Dickkopf Wnt
Signalling Pathway

Inhibitor 1

Antagonizes canonical Wnt signalling. Plays an important role in vertebrate
development. by locally inhibiting Wnt regulated processes such as

antero-posterior axial patterning and limb development.
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gene gene name UNIPROT summary for the encoded protein

EDN1, 2 Endothelin 1, 2 Vasoconstrictors whose receptors are targets in the treatment of pulmonary

arterial hypertension. Aberrant expression may promote tumorgenesis.

ENPP2 Ectonucleotide

Pyrophosphatase 2

Stimulates the motility of tumor cells and has angiogenic properties, its

expression is upregulated in several kinds of carcinomas.

DOCK3 Dedicator Of

Cytokinesis 3

Suggested to affect the function of small GTPase involved in the regulation of

actin cytoskeleton or cell adhesion receptors.

F2RL1 F2R like Trypsin

Receptor 1

Generally promoting inflammation, regulates endothelial cell barrier integrity

during neutrophil extravasation

FAP Fibroblast

Activation Protein
Alpha

Involved in the control of fibroblast growth or epithelial-mesenchymal

interactions during development, tissue repair, and epithelial carcinogenesis.

FAS Fas Cell Surface
Death Receptor

Member of the TNF-receptor superfamily. Central role in regulation of
programmed cell death, and has been implicated in the pathogenesis various

diseases of the immune system

FGF1, 2,

7

Fibroblast Growth

Factor 1, 2, 7

FGF family members are involved in embryonic development, cell growth,

morphogenesis, tissue repair, tumor growth and invasion.

FN1 Fibronectin 1 Involved in cell adhesion, migration processes, embryogenesis, wound healing,

blood coagulation and maintenance of cell shape.

HBEGF Heparin Binding

EGF Like GF

Promotes SMC proliferation and may be involved in macrophage-mediated cell

proliferation. Mitogenic for fibroblasts.

HMGB1 High Mobility

Group Box 1

In the ECM compartment involved in regulation of the inflammatory response.

ICAM1 Intercellular Ad-

hesion Molecule 1

Expressed on endothelial cells and cells of the immune system, involved in the

binding of a cell to another cell or to the ECM.

IL24 Interleukin 24 Mostly synthesized by helper T cells, as well as through monocytes,

macrophages, and endothelial cells. Important cytokines of the immune system.

IL32 Interleukin 32 Increased after the activation of T-cells. Induces the production of various
cytokines such as TNF-α , IL8 and signal pathways of NFκB and p38 MAPK.

IL33 Interleukin 33 Involved in maturation of Th2 cells and the activation of mast cells, basophils,
eosinophils and NK cells. Activates NFκB and MAPK signalling pathway.

INHBA,
B

inhibin subunit
beta A, B

Member of the TGF-β superfamily. Inhibins appear to oppose the functions of
activins.

ITGA2, 3,
5, 8, 9

Integrin Subunit
Alpha 2, 3, 5, 8, 9

Alpha subunit of a transmembrane receptor for collagens. Mediates the
adhesion of platelets and other cell types to the ECM.

ITGB1, 4,

5, 6, 8

integrin subunit

beta 1, 4, 5, 6, 8

Membrane receptors involved in cell adhesion and recognition in including

embryogenesis, hemostasis, tissue repair, immune response and metastatis.

JAG1, 2 Jagged Canonical

Notch Ligand 1, 2

Ligands for Notch receptors and involved in cell-fate decisions during

hematopoiesis, enhances FGF-induced angiogenesis.

JAM2 Junctional Ad-

hesion Molecule 2

Localized at the tight junctions of epithelial and endothelial cells. Acts as an

adhesive ligand for interacting with a variety of immune cell types.

KDR Kinase Insert

Domain Receptor

Receptor of VEGF, essential role in the regulation of angiogenesis, vascular

development, vascular permeability, and embryonic hematopoiesis. Promotes

proliferation, survival, migration and differentiation of endothelial cells.

LAMB/C2
Laminin Subunit
beta/gamma 2

Laminins are a family of ECM glycoproteins and the major noncollagenous
constituent of basement membranes. Implicated in cell adhesion, differentiation,

migration, signalling, neurite outgrowth and metastasis.

MDK Midkine Cytokine and GF that mediates inflammatory response, cell proliferation, cell

adhesion, cell growth, cell survival, tissue regeneration and migration.

NAMPT Nicotinamide
Phosphoribosyl

Thought to be involved in metabolism, stress response and aging.

NCAM1 Neural Cell

Adhesion Molecule

Involved in cell-to-cell/-matrix interactions during development/differentiation

and in the expansion of T, B, NK cells.

NOTCH2 Notch Receptor 2, 3 The Notch pathway regulates interactions between adjacent cells. Receptor for

membrane-bound ligands JAG1/2, DLL1 to regulate cell-fate determination.

NUPR1 Nuclear Protein 1 Transcription regulator that converts stress signals into a program that

empowers cells with resistance to the stress induced environment. Participates
in regulation of cell-cycle, apoptosis, autophagy and DNA repair responses.

THBS1, 2 Thrombospondin 1,
2

Adhesive glycoprotein that mediates cell-to-cell/-matrix interactions. Binds to
fibrinogen, fibronectin, laminin, type V collagen and integrins.
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gene gene name UNIPROT summary for the encoded protein

TGFA Transforming

Growth Factor α

Ligands for the EGF receptor, which activates a signalling pathway for cell

proliferation, differentiation and development.

TGFB1, 2 Transforming

Growth Factor β1,
2

Bind TGF-β receptors leading to activation of SMAD family TFs that regulate

gene expression. Regulates cell proliferation, differentiation, and activation of
other GFs including IFN-γ and TNF-α. Frequenctly up-regulated in tumor cells.

TNC Tenascin C ECM protein acting as ligand for several integrins. Stimulates angiogenesis by

elongation, migration and sprouting of endothelial cells in tumors.

OCLN Occludin Membrane protein that is required for cytokine-induced regulation of the tight

junction paracellular permeability barrier.

PAPPA Pappalysin 1 Secreted metalloproteinase cleaving IGFBPs resulting in activation of the IGF

pathway. Plays a role in bone formation, inflammation and wound healing.

PCDH7,

9

Protocadherin 7, 9 Belong to the protocadherin gene family, a subfamily of the cadherin

superfamily.

PDFGB,

C

Platelet Derived

Growth Factor B, C

GF and potent mitogen for mesenchymal cells. Required for normal

proliferation and recruitment of pericytes/vascular SMCs and for normal blood
vessel development. Important in wound healing.

PECAM1 Platelet and Endot.
Cell Adh. Molecule

Found on the surface of platelets, monocytes, neutrophils, some T-cells, and
makes up a large portion of endothelial cell intercellular junctions.

PIK3CB Phosphatidylinosit
[...] Subunit β

Kinase PI3KB is part of the activation pathway in neutrophils which have
bound immune complexes at sites of injury or infection.

PLXNA3,
PLXNB2

Plexin A3 Semaphorin receptors that may be involved in cytoskeletal remodelling and
apoptosis.

POSTN Periostin ECM protein that functions in tissue development and regeneration. Binds to

integrins to support adhesion and migration of epithelial cells.

PRSS1, 2 Serine Protease 1, 2 Its upregulation is a characteristic feature of pancreatitis. Among its related

pathways are Degradation of ECM.

RHOB Ras Homolog

Family Member B

Mediates apoptosis in neoplastically transformed cells after DNA damage and

affects cell adhesion and GF signalling in transformed cells. Plays a negative

role in tumorigenesis.

SDC3 Syndecan 3 May play a role in the organization of cell shape by affecting the actin

cytoskeleton

SER-
PINE1

Serpin Family E
Member 1

As PLAU inhibitor involved in the regulation of cell adhesion and spreading.
Required for stimulation of keratinocyte migration during injury repair.

SFRP1, 2 secreted frizzled
related protein 1, 2

Modulators of Wnt signalling through direct interaction with Wnts. Regulate
cell growth and differentiation in specific cell types, antiproliferative effects on

vascular cells.

SEMA3B,

C

Semaphorin 3B, C Semaphorin function in growth cone guidance during neuronal development and

have been shown to act as a tumor suppressor by inducing apoptosis.

SOX4 SRY-Box TF 4 Involved in the regulation of embryonic development and determination of the

cell fate. May function in the apoptosis pathway leading to cell death as well as

to tumorigenesis.

VCAM1 Vascular Cell Ad-
hesion molecule 1

Expressed by cytokine-activated endothelium, mediates leukocyte-endothelial
cell adhesion and signal transduction.

VEGFA Vascular Endothel-
ial Growth Factor

Major GF active in angiogenesis, vasculogenesis and endothelial cell growth.
Induces endothelial cell proliferation, promotes cell migration, inhibits apoptosis

and induces permeabilization of blood vessels.

VIM Vimentin Responsible for maintaining cell shape and cytoskeletal interactions. Organizer

of other critical proteins involved in cell attachment, migration, and signalling.

VWF Von Willebrand

Factor

Function in the adhesion of platelets to sites of vascular injury and the

transport of various proteins in the blood.

WNT5, 7,

10 9A

Wnt Family

Member 5, 7, 9, 10

Act as ligands to activate the different Wnt pathways. Implicated in stem cell

control, as a proliferative and self-renewal signal, early development and later
during the growth and maintenance of various tissues.

Table 5.1: Selection of genes encoding receptor and ligands of interest based on differential
gene expression and encountered during NicheNet analysis of human ILD patients. Retrieved
and shortened from UniProt.249
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data set: bleo_wholeLung number of hvgs: 8,206 n_pcs: 50 batch correction: none # cells: 54,768n_neighbors: 20

a

b

c

e

f

d
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Figure 5.1: Overview of quality metrics and filter thresholds for data sets on
bleomycin-treated mice whole lung (upper) and EpCam+ enriched cells (lower).
a, d Violin plots to display the distribution of number of transcripts. Coloured dots represent
cells that exceeded upper threshold and were removed. b, e Histograms of count depth, num-
ber of genes per cell and number of genes that are among top 4000 hvgs in given number of
samples, as well as scatter plot on these metrics. Threshold are indicated as vertical lines.
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Figure 5.2: Overview of quality metrics and filter thresholds for data sets on iPS to
lung differentiation (upper) and cigarette smoke exposed mice (lower). a, d Violin
plots to display the distribution of number of transcripts. Coloured dots represent cells that
exceeded upper threshold and were removed. b, e Histograms of count depth, number of
genes per cell and number of genes that are among top 4000 hvgs in given number of samples,
as well as scatter plot on these metrics. Threshold are indicated as vertical lines.
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data set: munich_ild number of hvgs: 8,268 (4) n_pcs: 30 batch correction: bbknn # cells: 66,343neighbors_within_batch: 6
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data set: nashville_ild number of hvgs: 6,783 (8) n_pcs: 30 batch correction: bbknn # cells: 146,348neighbors_within_batch: 20
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Figure 5.3: Overview of quality metrics and filter thresholds for human lung data
sets from Munich (upper) and Nashville cohort (lower). a, d Violin plots to display
the distribution of number of transcripts. Coloured dots represent cells that exceeded upper
threshold and were removed. b, e Histograms of count depth, number of genes per cell and
number of genes that are among top 4000 hvgs in given number of samples, as well as scatter
plot on these metrics. Threshold are indicated as vertical lines.
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data set: chicago_ild number of hvgs: 4,763 (5) n_pcs: 30 batch correction: bbknn # cells: 73,237neighbors_within_batch: 6
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data set: newhaven_ild number of hvgs: 7,306 (10) n_pcs: 40 batch correction: bbknn # cells: 263,092neighbors_within_batch: 10
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Figure 5.4: Overview of quality metrics and filter thresholds for human lung data
sets from Chicago (upper) and Newhaven cohort (lower). a, d Violin plots to display
the distribution of number of transcripts. Coloured dots represent cells that exceeded upper
threshold and were removed. b, e Histograms of count depth, number of genes per cell and
number of genes that are among top 4000 hvgs in given number of samples, as well as scatter
plot on these metrics. Threshold are indicated as vertical lines.
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Figure 5.5: Compartment-wise annotation of cells from healthy donors and ILD
patients of the Munich cohort. a UMAP coloured by cell type (left) and split view separated
by healthy donors (middle) and patients diagnosed with (right). b-f Cell type annotation,
relative composition within compartment and literature-derived marker genes of the epithelium
(b), mononuclear phagocytes (c), lymphocytes and granulocytes (d), mesenchyme (e) and
endothelium (f). Light gray cells from the cell type coloured UMAPs were estimated to be of
low-quality and were excluded from further analysis.
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Figure 5.6: Compartment-wise annotation of cells from healthy donors and ILD pa-
tients of the Chicago cohort. a UMAP coloured by cell type (left) and split view separated
by healthy donors (middle) and patients diagnosed with (right). b-f Cell type annotation, rel-
ative composition within compartment and literature-derived marker genes of the epithelium
(b), mononuclear phagocytes (c), lymphocytes and granulocytes (d), mesenchyme (e) and
endothelium (f). Light gray cells from the cell type coloured UMAPs were estimated to be of
low-quality and were excluded from further analysis.
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Figure 5.7: Compartment-wise annotation of cells from healthy donors and ILD
patients of the Nashville cohort. a UMAP coloured by cell type (left) and split view
separated by healthy donors (middle) and patients diagnosed with (right). b-f Cell type an-
notation, relative composition within compartment and literature-derived marker genes of the
epithelium (b), mononuclear phagocytes (c), lymphocytes and granulocytes (d), mesenchyme
(e) and endothelium (f). Light gray cells from the cell type coloured UMAPs were estimated
to be of low-quality and were excluded from further analysis.
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Figure 5.8: Compartment-wise annotation of cells from healthy donors and ILD
patients of the Newhaven cohort. a Split UMAP separated by healthy donors (left),
patients diagnosed with either COPD (middle) or ILD (right). b-f Cell type annotation,
relative composition within compartment and literature-derived marker genes of the epithelium
(b), mononuclear phagocytes (c), lymphocytes and granulocytes (d), mesenchyme (e) and
endothelium (f). Light gray cells from the cell type coloured UMAPs were estimated to be of
low-quality and were excluded from further analysis.
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