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1 Introduction

This thesis addresses new challenges in omni-channel (OC) retailing, a
business model that describes the integration of e-commerce and bricks-
and-mortar stores. Novel OC concepts emerge that particularly impact
assortment planning and store operations. In this dissertation, these areas
of research are addressed as assortments are optimized across channels (i.e.,
bricks-and-mortar stores and webshops), demand effects are analytically
examined, and challenges, solution approaches, and imperative research
fields for store operations are laid out.

In this first chapter the notion and importance of OC retailing and the un-
derlying OC delivery concepts (Section 1.1) are outlined. Next, it presents
substantial planning questions that are impacted by OC retailing (Sec-
tion 1.2). It first introduces the assortment planning problem and then
describes challenges, decision support systems, and research opportunities
for store operations.

The remainder is organized as follows. Chapter 2 details the scope, main
contributions, authors, and status of publication of the three articles that
compose the main body of the dissertation. Chapter 3 to Chapter 5 each
contain one of the three articles. Lastly, Chapter 6 summarizes the findings
and outlines areas of future research.
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Introduction Jonas Hense

1.1 Omni-channel retail

Definition and relevance The concept of OC is revolutionizing the retail
landscape and corporate planning. Many traditional retailers with bricks-
and-mortar store concepts invest heavily in online sales channel while online
pure players start building their offline presence through physical stores (e.g.,
Wollenburg et al. (2018b); Caro et al. (2020)). Hence, single-channel (SC)
and multi-channel (MC) retailers that used to operate a single or multiple
isolated sales channel are now establishing OC presences (Rooderkerk and
Kök, 2019). OC has been defined as the full integration of a retailer’s
channels, operations, information, and assortments to provide a seamless
shopping experience for customers (Brynjolfsson et al., 2009; Verhoef et al.,
2015). Figure 1.1 illustrates the different retailing concepts. From both a
customer and a retailer perspective, processes and channels are converging,
making OC a fundamental part of retailing. Customers these days expect
effortless switching between channels and the vast majority of shoppers have
already used various channels in their shopping journey (e.g., Sopadjieva
et al. (2017); iVend Retail (2019)). Sopadjieva et al. (2017) further underline
the relevance of this concept for retailers as they find out that OC shoppers
are more loyal, have bigger shopping baskets, have more repeat shopping
trips, and are more likely to endorse OC retailers.

Figure 1.1: Illustration of single-channel, multi-channel, and omni-channel retailing

2



Introduction Jonas Hense

OC delivery concepts Integrated operations and connected assortments
and inventories across channels enable new OC delivery concepts such as
buy online, pick-up in store (BOPS, also called click & collect), ship from
store (SFS), digital assortment extensions (DAE), or showrooms (Gallino
and Moreno, 2014; Hübner et al., 2016b; Bell et al., 2018a). BOPS describes
the process, where customers can view the availability of in-store products,
buy the products online, and subsequently pick them up in the stores. Using
SFS, retailers fulfill online orders through store inventory instead of stock
from the distribution center (DC). DAE is used to offer store customers
access to the online assortment (e.g., additional products or varying colors)
through digital point of sales like tablets. BOPS, SFS, and DAE are
depicted in Figure 1.2. Lastly, showrooms represent a special case of stores
without inventory. Products are only showcased but can be purchased in
the store with home delivery or pick-up in store. As an example for OC
delivery concepts, the German supermarket chain REWE offers BOPS and
SFS through an online cookbook. Ingredients can be ordered right on the
website for home delivery or pick-up in store. Outdoor retailer Timberland
applies an experimental design for DAE using touch walls and tablets in its
stores. The touch walls are used to display online-only inventory and allows
the customer to create shopping lists via a user profile. Tablets show further
information on products that are equipped with near-field communication
(NFC) technology as well as personalized product recommendations. In
both cases, the retailer is adding value for the customer through convenience
and time savings while collecting valuable information.

1.2 Important planning problems in

omni-channel retailing

In order to satisfy customers and exploit the potential of OC retailing,
integrated and coordinated channels are required that give birth to novel
planning issues (e.g. Verhoef et al. (2015); Hübner et al. (2016b)). Cus-

3
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Figure 1.2: Illustration of omni-channel delivery concepts

tomers are not bound to one channel within their customer journey anymore
and raise the bar for seamless OC shopping experiences and integrated
assortments across channels (Verhoef et al., 2015).

1.2.1 Omni-channel assortment planning

It becomes increasingly crucial to offer the right products, in the right
quantity, in the right channel, and at the right time to the end-consumers.
This requires the integration of relevant customer behavior within and
across channels. For example, customer demand for certain products can
be increased by a favorable, prominent positioning of those products in
store shelves (e.g., Chandon et al. (2009)) or web pages (e.g., Atalay
et al. (2012)). Also, if the product of choice is unavailable, customers may
chose to substitute for another product within the same channel or across
channels (Kök et al., 2015; Dzyabura and Jagabathula, 2018). Chapter 3 and

4
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Chapter 4 primarily cover this field of research called assortment planning
and the following research questions:

i) How can we find the optimal assortment and inventories across chan-
nels to meet customer demand?

ii) What is the potential of OC delivery concepts?
iii) What are relevant demand effects in OC assortment planning?
iv) What is the risk of ignoring relevant OC customer behavior when

planning OC assortments?

To answers the questions, a model for OC assortment optimization is
developed and solved through a specialized heuristic, which aims to find
the most profitable assortment, inventory, and positioning of products on
store shelves and web pages. The solutions are evaluated and practical
insights on the potential, risks, solutions structures, and demand effects are
derived.

Mathematical optimization To take such business decisions in an effi-
cient manner, analytical approaches from the field of Operations Research
(OR) are utilized. Besides assortment planning, applications can include
deciding on the most appropriate locations for new retail stores, assigning
Uber drivers to customers, or bidding on space on Google Ads. Such deci-
sions are dictated by an objective (e.g., maximizing profit for new stores)
and underlying constraints (e.g., location-dependent costs and revenues).
The real-world decisions are therefore reduced to its most essential char-
acteristics and subsequently translated into a mathematical model, which
depicts the objective and constraints (Domschke et al., 2015).

An OR-concept that is particularly applicable to assortment and inventory
management is the newsvendor model. In its original form it describes a
newsboy selling newspapers over a day. The newsboy has one chance at
the beginning of the day to buy newspapers while facing uncertain demand.
Unsold newspapers will be worthless at the end of the day (i.e., overstock)

5
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and unmet demand is punished (i.e., stock out). Hence, he needs to decide
how many newspapers to buy to meet demand x and optimize profit π.
To formulate a mathematical model and apply a solution algorithm, the
independent per unit variables revenue R, purchase cost C, salvage cost
V , and shortage cost S are introduced. Salvage cost can be interpreted as
inventory holding or disposal costs, but can also serve as a residual value.
Decision variable Q defines the order quantity. As only either situations of
overstock or stock out can occur, the profit per period is calculated through
Objective Function (1.1). If the newsboy does not sell all newspapers, the
revenue is defined through realized demand x multiplied with selling price
R. Costs are incurred through left-over newspapers (Q − x) multiplied
with their salvage cost V and order quantity Q multiplied with purchasing
cost C. If the newsboy does not satisfy all the demand, the revenue is
given through the multiplication of selling price R with quantity Q while
purchasing costs C for each unit as well as penalty costs S for each unit of
unsatisfied demand have to be deducted.

π =

Rx− V · (Q− x)− CQ if x ≤ Q

(R− C) ·Q− S(x−Q) if x ≥ Q
(1.1)

In situations where demand is unknown (stochastic) and a high number
of possible order quantities exist, it can be assumed that demand x is a
continuous random variable with mean µ and standard derivation σ. This
facilitates the usage of the probability distribution of the demand f(x) to
calculate expected profit E(π) through Equation (1.2). The five parts of
(1.2) resemble Equation (1.1) as they represent the unit costs for each order
item (part 1), the expected revenue for overstock (part 2) and stock out
(part 4), the expected salvage costs (part 3), and the expected shortage
costs (part 5). The simplified problem at hand is constrained through
integer solution values for order quantity Q as the newsboy can only buy
integer number of newspapers.

6
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E(π) = −C ·Q+R
∫ Q

0
xf(x)dx− V

∫ Q

0
(Q− x)f(x)dx

+R
∫ ∞
Q

Qf(x)dx− S
∫ ∞
Q

(x−Q)f(x)dx
(1.2)

For simplified models as the one given, closed form solutions are able to
find order quantity Q (i.e., the optimal solution) that leads to the maximal
profit (i.e., maximum objective value). Yet, the newsvendor problem can be
extended in various directions. For example, different objectives, varying
prices, knowledge about the underlying demand, multiple products, or
multiple periods can be considered. Such extensive problems can be solved
efficiently by commercial solvers such as CPLEX or Gurobi. For a more
detailed overview see Choi (2012). In Chapter 3 and Chapter 4 we focus
in particular on multiple products, multiple locations with constrained
space, and complex demand structures including substitution between
products. While this increases the validity of the model and helps to model
abstractions closer to the real world, the problem at hand becomes more
complex and creates particularly high computational efforts. Therefore
alternative approaches like integer programming techniques or intelligent
search heuristics are developed and applied.

Heuristics Such heuristic procedures usually contain rules and steps that
simplify the decision-making process and reduce the range of possible solu-
tions. Hence, heuristics often provide a good but not necessarily optimal,
solution to the problem at faster run times. Knowledge about the problem
and characteristics of the mathematical model are leveraged for the devel-
opment of the heuristic. Often, possible solutions are generated and tested.
For instance, instead of calculating the objective value for all possible
integers of Q, a heuristic could calculate the objective value for Q = 10
and Q = 11. Depending on which solution provides the higher objective
value, the heuristic continues to calculate the objective value for smaller
or larger order quantities of newspapers until the objective value starts

7
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to drop. In case of a linear solution structure this heuristic could provide
the optimal solution, in other cases it may only compute the best-known
but not optimal solution. For each of our contributions in Chapter 3 and
Chapter 4 we develop and apply a specialized heuristic that solves problems
which cannot be solved in a reasonable time through commercial solvers.

1.2.2 Omni-channel store operations

Store operations also become more relevant as the store itself lies at the
heart of new OC delivery concepts. Originally being primarily a customer
shopping area, stores can now additionally serve as a fulfillment center, a
pick-up station, an experience center, or a point of order acceptance (e.g.,
Erik Brynjolfsson et al. (2013); Gallino et al. (2017); Gallino and Moreno
(2019); Janjevic et al. (2020)). In particular the trend towards fulfillment
centers was fueled by the COVID19 pandemic when stores were closed
down. To comply with its new tasks and responsibilities, agile, integrated,
and efficient store operations are needed. For example, fulfilling orders
from stores requires deciding on the subset of all stores that are generally
enabled for store fulfillment as well as deciding on the particular store that
fulfills a certain online order. Similarly, questions on demand forecasting,
assortment, inventories, and replenishment require to be approached and
solved through advanced models and OR concepts. We therefore set out to
answer the following research questions:

i) What are store-related planning issues in OC operations?
ii) Which of these planning issues are already sufficiently supported by

decision support systems?
iii) Which planning issues constitute further research opportunities?

In Chapter 5 we cover this topic as we use a triangulation approach to
derive operational issues in OC store operations and provide an up-to-date

8
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analyses of current literature with OR applications and decision support
systems.

Triangulation approach To approach such a nascent topic, it is rea-
sonable to apply a multi-method approach (e.g., Boyer and Swink (2008);
DeHoratius and Rabinovich (2011)). The advantages of a variety of research
methods can be utilized and help to view the problem at hand from differ-
ent perspectives. At the same time, the scarcity of existing contributions
covering the topic can be compensated.

First and foremost, a conceptual framework is developed and drawn upon.
It constitutes the theoretical basis for the analysis of such an arising research
field (Webster and Watson, 2002). The overview is focused on relevant
OC delivery concepts (i.e., BOPS, SFS, and DAE) and thereby defines the
scope of the following steps. Following the recommendation of Edmondson
and Mcmanus (2007) for nascent topics, semi-structured expert interviews
are conducted to identify the most relevant issues in store operations and
complement the theoretical foundation with practical insights. Since we
give voice to experts who share knowledge they have acquired from positions
within relevant firms (Flynn et al., 1990; Creswell, 2009; Trautrims et al.,
2012), external validity is ensured as well as practical relevance. To complete
the approach, a systematic literature review is carried out that analyzes
the latest and most relevant contributions from the OR domain. Joining
these sources within a cross-method triangulation approach enables us to
structurally identify and discuss relevant issues.

9
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2 Contributions

This chapter introduces the three articles (Chapter 3 to Chapter 5) that
compose the main body of the doctoral thesis. For each of the articles, it
gives an overview on the topics, research questions, and contributions and
guides the reader to areas of particular interest. Table 2.1 lists the title,
authors and respective contribution of each author and states the current
status of publication.

Table 2.1: Status of publications (as of March 2022)
Title Authors and contribution Status
1 Assortment optimization in omni-

channel retailing
Hense, Jonas (66%);
Hübner, Alexander(33%)

Accepted for publication in
European Journal of Operational
Research on 29.09.2021

2 An analytical assessment of demand
effects in omni-channel assortment
planning

Hense, Jonas (50%);
Hübner, Alexander (25%);
Schäfer, Fabian (25%)

Major review from Omega - The
International Journal of Management
Science on 06.02.2022

3 The revival of retail stores via
omnichannel operations: A literature
review and research framework

Hense, Jonas (33%);
Hübner, Alexander (33%);
Dethlefs, Christian (33%)

Accepted for publication in
European Journal of Operational
Research on 14.12.2021

Remark The versions of Chapter 3 to Chapter 5 may differ slightly from
the versions that were published or submitted to the European Journal of
Operational Research and Omega - The International Journal of Manage-
ment Science. This is due to journal-specific guidelines such as formatting
or spelling as well as changes that may be undertaken in the course of the
peer review process. Yet, relevance and contributions remain unchanged.
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2.1 Contribution 1: Assortment optimization

in omni-channel retailing

Methodology Based on OR methodology, this article identifies the OC
assortment optimization problem. The problem is described qualitatively
and formulated as a mathematical model, which depicts the most crucial
aspects of the real-world problem. Given that the problem is NP-hard it
cannot be solved with commercial solvers. Instead, we develop a problem-
specific solution approach, which respects the underlying peculiarities,
variables, parameters, objective function, and constraints. Following a
detailed description of this approach, various randomly generated test
instances are solved. Parameters are called from numerical studies to
guarantee practicability. The solution approach is then compared to existing
approaches to show the advancement in run time and solution quality.
Following that, managerial insights are derived, such as the quantified
potential of OC substitution behavior or the relevance and interplay of
demand effects in an OC context. The article concludes with a summary of
the key findings, practical implications, and future areas of research.

Contribution We first provide an overview on current SC, MC, and
OC assortment planning literature. As already noted by Dzyabura and
Jagabathula (2018), one of the main publications in this field, a lack of OC
models exist. The prevailing contributions by Dzyabura and Jagabathula
(2018) and Geunes and Su (2020) are characterized by an absence of crucial
OC aspects, most importantly the mutual consideration of in-channel and
cross-channel substitution behavior. We therefore develop the integrated
OC model for assortment, space, and inventory optimization, which sets
itself apart from existing literature in the following ways:

The main contribution is the acknowledgement and consideration of cus-
tomer substitutions across channels. Both situations, where BOPS substi-
tutions occur as a result of temporary (e.g., sell-offs) or permanent product

12



Contributions Jonas Hense

unavailability (e.g., product not listed) are considered. Beyond that, we
consider stochastic and space-elastic demand and optimize assortments and
inventories for each channel as depicted in Figure 2.1. The extension to
substitution effects and the consideration of the assortment and inventory
decision in each channel is crucial given the interdependence between the
channels. For example, delisting a product in one channel may lead to
substitutions and a change in demand in another channel.

Figure 2.1: Contribution 1: Summary of demand effects

We also constrain the space in each channel, which makes the problem a NP-
hard multi-knapsack problem. A specialized heuristic is therefore applied,
which iteratively solves the model, adds substitution demand ex-post, and
updates the solutions until there is no more change in solutions. Our
numerical tests show that in the general case in-channel substitution creates
higher profit advantages than cross-channel substitution. Yet, considering
cross-channel substitution in assortment planning offers additional profits,
in particular for products with high affinity.

2.2 Contribution 2: An analytical assessment

of demand effects in omni-channel

assortment planning

Methodology This article partially resembles the proven approach de-
scribed in Section 2.1. The OC assortment optimization problem is extended
to account for relevant demand effects in the store and in the webshop.
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Again, the problem is described qualitatively, formulated as a mathematical
model, and solved through a specialized heuristic. The approach is tested,
compared, and used to derive managerial insights on the relevance and
interplay of demand effects for OC retailers. Lastly, key insights, practical
guidelines, and future research topics conclude the article.

Contribution Having analyzed the OC assortment planning problem with
a focus on cross-channel substitution demand, we noticed a wide range of
demand effects in stores, webshops, and across channels that potentially
influence the profit of an OC retailer. Despite that, no existing empirical or
optimization literature provides quantitative insights on the relevance and
impact of the range of demand effects when determining OC assortments.
An empirical measurement would incur high costs, given the large number of
demand effects, the dependencies between between products and channels,
and the mutual reinforcement and compensation of demand effects.

Our major contribution to both the consumer and OR community is there-
fore an OC model that optimizes the assortment, space and position, and
inventory for each channel, and allows an analytical assessment of all rele-
vant demand effects. These include stochastic, space-elastic, shelf-segment,
position, in-channel, and cross-channel demand (see Figure 2.2). We there-
fore differentiate ourselves from existing literature through the analytical
approach and the wide range of integrated demand effects.

Figure 2.2: Contribution 2: Summary of demand effects

We build upon the iterative solution approach from the previous article
and solve the problem through a tailored, further advanced heuristic. The
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analytical assessment of the demand effects shows that space-elastic, po-
sition, and shelf-segment demand are particularly important to consider
and can cause profit losses of up to 15.5% when being ignored. Ignoring
in-channel store substitution can lead to profit losses of up to 1.5% while
in-channel webshop, cross-channel store, and cross-channel webshop substi-
tution only have a low impact on the profit. In general, we see that the
profit impact of the demand effects is primarily driven by the demand rates
itself, the channel package sizes, and the channel size. Our research builds
the foundation for further OC assortment models and helps to delineate
the scope of future empirical studies on demand effects in OC retailing.

2.3 Contribution 3: The revival of retail stores

via omnichannel operations: A literature

review and research framework

Methodology This article follows a different methodological approach
than the previous two contributions. We identify the increasing relevance
of OC store operations and the lack of operational decision models as a
research gap. A triangulation approach therefore utilizes multiple research
methods to carve out and analyze the most relevant planning problems in
this area. The methodologies include a conceptual overview on OC delivery
concepts, expert interviews, and a comprehensive literature analysis. Next,
a planning framework is derived with relevant planning problems. For each
problem we provide a detailed description, depict the underlying challenges
in practice, discuss the current coverage of the literature, and lay out areas
of future research. The last section summarizes the contributions and
overarching avenues of future research.

Contribution We first and foremost contribute to existing literature by
acknowledging the central role of the store in novel OC delivery concepts
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and the resulting operational challenges in the store (see Figure 2.3). This
insight is derived from interviews with industry experts. However, the
importance is not mirrored by a holistic coverage in literature, in particular
in the form of a state-of-the art literature review. Consequently, we use
the triangulation approach to focus on the revival of bricks-and-mortar
stores through OC operations and analyze OC-related planning issues in
the store. As a result, we provide practitioners and researchers with the
most important store-related planning issues in OC operations, existing
decision support systems for such issues, and fruitful research opportunities
for each planning issue.

Figure 2.3: Contribution 3: Central role of the store

This helps retailers in their endeavour to introduce and improve OC delivery
concepts and tackle challenges in store operations by leveraging quantita-
tive decision support systems from literature. Researchers benefit from a
practically relevant planning framework and the layout of promising future
directions of research. In a nutshell, we see that some planning issues
(i.e. network design, assignment of customer orders, and assortment and
inventory planning) are fairly well covered by literature while others (i.e.
demand forecasting and inventory replenishment) have received significantly
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less coverage and offer great research possibilities in this nascent field of
OR.
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DOCTORAL THESIS
Omni-channel Assortment Planning and Store Operations

3 Assortment optimization in
omni-channel retailing

Nowadays the majority of retail customers use multiple channels. We
investigate the assortment, space and inventory problem for an omni-
channel retailer operating with interconnected bricks-and-mortar stores
and an online shop. For this problem it becomes essential to consider
customers’ demand interactions across channels. Current literature mainly
focuses on single-channel assortments and ignores cross-channel substitution.
We contribute the first integrated omni-channel model that determines
assortments for the online and bricks-and-mortar channel with stochastic,
space-elastic and out-of-assortment and out-of-stock demand both for in-
channel substitution and cross-channel substitution. A specialized heuristic
is developed that is based on an iterative solution of a binary problem and
demand updates. Our approach achieves near-optimal results for small
instances and higher objective values as an alternative heuristic for larger
instances. With the full integration of channels, omni-channel retailers
can realize a profit increase that mainly depends on the magnitude of
substitution rates. We further show numerically that in-channel substitution
has a stronger impact on profits than cross-channel substitution when costs
are equal across channels.
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3.1 Introduction

Retail customers are increasingly utilizing multiple sales channels. Out of
46,000 shoppers surveyed, 73% used multiple channels during their decision
process (Sopadjieva et al., 2017). iVend Retail (2019) report that 81% of
consumers had already purchased products online, subsequently picking
them up in the bricks-and-mortar store. This represents an increase of
30% from 2018 to 2019. Verhoef et al. (2015), Hübner et al. (2016b) and
Rooderkerk and Kök (2019) show that many bricks-and-mortar retailers and
pure online players are moving from single-channel (SC) via multi-channel
(MC) to omni-channel (OC). While SC retailers operate one sales channel,
MC retailers use various isolated channels to sell products, such as an online
shop and a non-connected bricks-and-mortar store (Beck and Rygl, 2015).
In OC, operations are integrated across channels, information is exchanged
and assortments are coordinated such that neither the retailer nor the
customer distinguishes between the channels anymore. To complement OC
assortments, retailers must decide which product to list in which channel.
This can only be done by appropriately integrating customer demand
transitions between channels and products. For instance, if a product is
sold out in the online shop it can be substituted either by another product
in the online shop or by the same product from the bricks-and-mortar
store. Demand transitions across channels can be enabled for example by
buy-online pick-up in store (BOPS) functionalities (also called click and
collect) and availability displays in the webshop that redirect customers to
the store where the item is stocked in the event of unavailable webshop items
(Gallino and Moreno, 2014; Wollenburg et al., 2018a). Thereby, inventories
become available to serve customers across channels which resembles virtual
inventory pooling.

OC is a very recent phenomenon and new research area that requires
advancements in coordinated assortment planning (Melacini et al., 2018;
Rooderkerk and Kök, 2019; Hübner et al., 2021). Dzyabura and Jagabathula
(2018) conclude that state-of-the art literature solely considers SC or MC
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retailers. SC literature for stores or webshops naturally only addresses a
single channel and disregards cross-channel substitution (see e.g., Kök et al.
(2015)). The most relevant MC models are limited in their practicability
for OC by assuming predefined online assortments and only optimizing
the bricks-and-mortar store assortment (e.g., Dzyabura and Jagabathula
(2018); Lo (2019)). Furthermore, severe limitations are imposed and relevant
customer behavior such as substitutions between channels has so far been
disregarded (e.g., Wollenburg et al. (2018a); Bianchi-Aguiar et al. (2021)).
Hence, the impact of cross-channel substitutions and assortment integration
on retail profit and assortment structures has not yet been investigated
numerically (Wollenburg et al., 2018a). This paper addresses this research
gap and makes the following contributions: It develops the tactical OC
assortment, shelf space and inventory problem, where assortments are
defined across channels with the objective of maximizing total profit of
the retailer and with respect to limited capacities in stores and online
warehouses. We account for stochastic, space-elastic and out-of-assortment
and out-of-stock demand both for customer substitutions within a channel
and substitutions between channels. An OC retailer needs to take the
following three decisions: the choice of the products to be listed for each
channel, the allocation of space to each listed product and the selection
of the stock level. As it is an extension and generalization of the NP-
hard multi-knapsack assortment problem, this paper develops a specialized
heuristic for the problem. The application to a broad set of test data then
provides managerial insights into the impact of coordinating assortments
across channels compared to planning for individual channels.

The remainder is organized as follows. Section 3.2 details the setting
and outlines related literature. Section 3.3 develops the model and the
solution algorithm applied. Section 3.4 completes numerical tests to assess
the performance of our approach and derives managerial insights. Lastly,
Section 3.5 summarizes the paper and outlines potential areas for future
research.
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3.2 Planning problem and related literature

Composing assortments across channels is a novel phenomenon. We define
the general setting in Section 3.2.1 to gain a common understanding of the
related context. This builds the foundation for defining the OC assortment
problem in Section 3.2.2. In Section 3.2.3 we review related literature and
derive the area for open research.

3.2.1 General setting and category planning

Retailers organize their total assortment within categories. Usually a cate-
gory contains 60-80 items on average. Products are assigned to categories
based on similarities. In most cases, each category is managed separately
to overcome the complexity arising from thousands of different products of
the retailer. Total available space in stores and warehouses is limited and
divided into space for each category. Hence, retailers are required to make
a number of decisions related to the tactical management of retail space.
For each channel these include category planning, i.e. which categories to
offer in which size and depth, and assortment planning, i.e. which products
to offer per category, how to allocate each product to the available category
space and how to define inventories (see also related frameworks in Hübner
et al. (2013); Kök et al. (2015) or Bianchi-Aguiar et al. (2021)). We describe
the category decisions hereafter while the subsequent assortment, space
and inventory decisions are specified in 3.2.2.

The overarching category planning includes the selection of categories and
the definition of each category’s role and space (see e.g. Irion et al. (2011);
Flamand et al. (2018); Ostermeier et al. (2021)). At this planning stage the
perception of the category plays an important role in order to incorporate
customers’ purchase decision (see e.g., Broniarczyk et al. (1998)). On one
side broadening a category generally helps customers to find the desired
product, satisfies variety-seeking customers (Broniarczyk and Hoyer, 2008)
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and leads to higher consumption benefits (Gijsbrechts et al., 2008). Borle
et al. (2005) come to the conclusion that assortment reductions negatively
influence online customers’ shopping frequency and purchase quantity.
Likewise, increasing the number of subcategories provides greater ease of
navigation and enhanced customer attitudes towards the webshop. On
the other side, beyond a tipping point too many subcategories lead to a
more negative attitude (Chang, 2011). In line with that, empirical evidence
underlines that categories have become so excessive that reducing variety
within a category may increase sales (Iyengar and Lepper, 2000; Dhar et al.,
2001; Sloot and Verhoef, 2008). Boatwright and Nunes (2001) found that
significant item reductions resulted in a sales increase of 11% across 42
categories examined. Customers may also be faced with higher cognitive
loads, trade-off decisions, lower choice accuracy, potentially higher post-
purchase regret and therefore expose a greater chance to defer a purchase
(Broniarczyk and Hoyer, 2008). Consumer psychology studies identified
a wide range of moderating effects related to this ambiguity in customer
characteristics (e.g. Chernev (2003); Broniarczyk (2008); Mogilner et al.
(2008); Briesch et al. (2009)) and item and category characteristics (e.g.
de Clerck et al. (2001); Gourville and Soman (2005); Kalyanam et al.
(2007)).

Further elements of OC category planning are showrooming and webrooming.
They describes a research behavior where customers collect information
in a store or webshop and subsequently purchase the product in another
channel or at another retailer. At this stage of the customer decision process,
customers collect information in one particular channel. Customers may
choose to search a retailer and its channel because of certain expectations
regarding the category and the retailers’ expertise in this area. In OC it
is therefore important to identify the channel complementarity of entire
categories and analyze amongst others if the categories can benefit from
show- or webrooming. Furthermore, show- and webrooming are primarily
used to collect information for a later purchase at any other channel/ retailer.
At this stage, a particular preference for a product is not yet defined. We
assume in our context, that it becomes necessary to incorporate show- and
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webrooming effects when optimizing the role and size of categories. However,
other settings and assortment decisions may require the incorporation of
web- and showrooming effects in tactical assortment planning (see e.g.,
Dzyabura and Jagabathula (2018)). In settings, where customers modify
evaluations, it can be beneficial to include products in one channel that
primarily serves for information collection, followed by purchases in another
channel (e.g., instore evaluation and online purchase). In the next step,
after defining the category role and size, retailers are required to define the
set of products included in each category.

3.2.2 Omni-channel setting and assortment planning

Assortment planning considers the question of which and how many different
products to offer within a given category (Fisher, 2009). The main feature of
assortment planning is the integration of consumer’s willingness to accept a
substitute when the desired product is unavailable. At this point, customers
already collected information within or across channels and developed a
preference for a certain product (e.g., Smith and Agrawal (2000); Hübner
and Kuhn (2012); Kök et al. (2015)). If the product is permanently or
temporarily unavailable they may settle for a substitute within the channel
or across channels. Hence, substitutions become especially relevant when not
all conceivable products of a category should or could be listed. It may be
beneficial for the retailer to go without some (less profitable) products and
thus forcing consumers to switch to substitutes that are more profitable.

The ultimate objective of assortment planning is to maximize the retailers’
profit that stems from realized customer demand, which in turn depends on
the assortment configuration and availability and accessibility of individual
products to the customer. Retailers attempt to offer the assortments and
quantities that match customer demand as deviations in either direction are
penalized. Offering an item quantity that exceeds demand creates leftover
items. Such items entail disposal costs for perishable items, or inventory
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holding costs for non-perishable items. An item quantity that falls short of
demand results in unsatisfied demand. If customers cannot purchase the
desired product or a substitute, sales will be lost and customers will be
left unsatisfied. Beyond that, unit costs for the purchase of items have to
be considered. Retailers need to take three decisions on a tactical level to
maximize profits:

• Assortment composition selects the products to list within a category
and a channel.

• Space allocation assigns space to each listed product in each channel.
• Inventory planning determines the stock levels for each product in each

channel.

The three decisions are interdependent within and across channels if space
capacity is limited. For example, a broader assortment in one channel with
more products requires lower inventory levels per product, which increases
the risk of out-of-stocks. On the other hand, not carrying some products in
the assortment of a channel may end up in demand substitutions of high-
affinity products to the other channels or lost demand from switching to
competitors. This is a tactical decision as assortments are defined for a mid-
term period and before the sales season, e.g., due to supplier negotiations
or sourcing contracts with longer lead times. Subsequently, the retailer
then has further operational tasks to solve that are related to in-store shelf
replenishment, short-term sales incentives (e.g., discounts at the end of a
sales period) or personalized assortments in the online shop.

In the following, we specify the setting for the OC context. There are
differences between store-, webshop- and OC-retailing in terms of customer
reactions and planning issues. Therefore, we will detail the respective
decision problems and related demand effects separately for (1) stores and
(2) webshops. This builds the foundation for discussing the (3) OC setting.
Going forward we will use the term “store” as the equivalent for a bricks-
and-mortar sales location and “webshop” as the pendant for the digital
sales channel.
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(1) Store-related planning issues and demand effects Commonly,
retailers select the items of a category (assortment planning) and allocate
them to shelves (space and inventory planning). Shelf space is limited in the
store and imposes a trade-off between listing broader assortments with less
shelf space and shelf inventory per item, and smaller assortments with more
space and higher inventory per item. This impacts the availability of each
item and consequently the demand for all items. When a desired product
is unavailable, customers may decide to replace the desired product with
an alternative product within the store. This is called substitution demand.
Unavailability of items can be the result of two scenarios: an item is either
permanently delisted and therefore out-of-assortment (OOA), or an item is
temporarily sold out and therefore out-of-stock (OOS). Empirical studies
indicate substitution rates of 45% to 84% of the initial demand, where the
magnitude depends on attributes of the product, situation and customer
(e.g., Gruen et al. (2002); Campo et al. (2004); Aastrup and Kotzab (2009);
Tan and Karabati (2013)).

Store inventories are defined by the number of facings and the quantity
behind one facing. Facings are the foremost unit of an item on the retail
shelf. Increasing the number of facings assigned to a specific item in
the store leads to higher item visibility and generates additional item
demand called space-elastic demand (e.g., Hansen and Heinsbroek (1979),
Irion et al. (2012)). Space-elastic demand has been analyzed in multiple
studies. Shopper surveys and field experiments conclude that a significant
relationship exists between the number of facings and the demand realized.
The degree of significance depends on the item type. Brown and Tucker
(1961) recognized increasing space effects from the group of unresponsive,
inelastic products over general products for everyday purchases to products
for impulse purchases. Cox (1964) tests the impact of variations in facings
on sales of staples and impulse-purchased items. Frank and Massy (1970)
use an experiment to test the influence of facings on sales of grocery
products. Curhan (1972) proved that fast-moving products have a higher
facing-dependent demand effect than slow-moving items. Drèze et al.
(1994) identify the impact on sales through reorganizing shelf configurations.
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Chandon et al. (2009) show that the variation of facings is the most
significant in-store factor, even stronger than positioning and pricing. Eisend
(2014) found by means of a meta-analysis that demand increases by an
average of 17% for every facing duplication. In the course of this study,
Eisend (2014) also calculates an average cross-space elasticity of -1.6%,
which measures the responsiveness in the demand for one item when the
space allocated for another item changes. However, Schaal and Hübner
(2018) show that low empirical cross-space elasticities either have no or
only very little impact on optimal shelf arrangements.

Finally, retailers need to define the vertical and horizontal position of an
item within the shelf that determines the position-dependent demand. As
various studies have found, the position of a product affects the likelihood of
it being perceived and purchased. In general, studies show a higher impact
of products located on the top- and middle-shelf positions. For example,
Underhill (2000) identifies a “reliable zone” roughly ranging from eye to knee
level. Products positioned within this zone are likely to be seen; products
outside this zone are not. Chandon et al. (2009) found that products
positioned on the top-shelf level are more likely to be noticed and chosen
than products on the bottom-shelf level. Drèze et al. (1994) found that the
vertical position has a much stronger impact than the horizontal position.
van Nierop et al. (2008) analyze the interactions between shelf layout and
marketing effectiveness and its impact on optimizing positioning. They
show, amongst others, that the position of a product within the shelf and
the shelf within the aisle impact demand. Valenzuela and Raghubir (2009a),
Valenzuela and Raghubir (2009b), Valenzuela et al. (2013), Valenzuela and
Raghubir (2015) and Rodway et al. (2012) analyze the center effect. They
show that consumers have vertical and horizontal price schemes, translate
this into quality perceptions and believe that items in the middle of an
array represent the best price/quality trade-off.

To summarize, there are rich consumer studies that identify the impact of
substitutions and the effect of space allocation on demand. Space-elastic
demand has been unambiguously identified across more than 1,200 studies
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(see Eisend (2014)). Demand effects are also attributed to horizontal and
vertical positioning effects. The magnitude may be lower (e.g. Chandon
et al. (2009)) and mainly imposes demand increases for items positioned in
the center of a shelf (e.g. studies of Valenzuela and Raghubir).

(2) Webshop-related planning issues and demand effects Webshop
planners have to decide for the tactical and mid-term planning horizon
which products to list in the online shop (assortment problem), which space
to allocate to items in the webshop (similar to the space problem in stores),
and how much inventory to assign to the selected products (inventory
problem). Due to the warehouse space constraints, increasing the size of the
webshop assortment translates into reducing the inventory of other products
or even delisting another product. Determining the assortment, space of
products and inventory levels influences substitutions and demand via
positioning and salience. The substitution demand effects in the online shop
are identical to those described for the bricks-and-mortar store. Products
can be OOA or OOS and customers may attempt to replace the unavailable
product with another product from the webshop (see e.g., Jing and Lewis
(2011)). Positioning demand emerges through the horizontal and vertical
location of products on the online display. For example, Atalay et al.
(2012) note that centrally positioned brands positively impact customers’
attention, whereas Djamasbi et al. (2010) found that items in the top left
corner also receive increased attention. Salience demand describes the
relative salience of products within an assortment. Products can be visually
highlighted by graphically varying the background brightness or color (e.g.,
Pieters et al. (2010)), or increasing the size of the product displayed. Greater
salience results in higher attention, longer fixation of a product and stronger
preferences for the same. Usually retailers optimize the salience and product
positions on a personalized, operational and short-term horizon to learn
from customer behavior (see e.g., Cheung and Simchi-Levi (2017); Bernstein
et al. (2019)) in an exploration-exploitation approach or to sell overstocks
(see e.g., Golrezaei et al. (2014); Bernstein et al. (2015)).
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(3) OC-related planning issues and demand effects OC retailers con-
nect their stores with the webshop. All of the above decisions, demand
effects and constraints within the channels therefore also hold true for MC
and OC retailers. A major difference however is that OC retailers want
to coordinate assortments, space and inventory across channels to capture
demand effects between the channels. These demand effects describe a
demand shift between channels and are termed cross-channel substitution.
OC retailers can thereby serve customers with virtually pooled inventories
across channels who were left unsatisfied in an SC or MC operation. Just
like in-channel substitution, cross-channel substitution is the result of OOA
or OOS situations. However, in this case customers replace the unavailable
product that is desired by switching to another channel. There, the identical
product as well as different products can be purchased as a substitute. The
delivery mode for substituted items can be in the form of home deliveries
from the online warehouse when substituted from store to webshop. It can
also be in the form of BOPS or home deliveries from the store when substi-
tuted from webshop to stores. In the latter case of shipments from store,
the customer may not even be aware about the shipment location. While
substitution within stores has received a significant amount of attention in
literature, situations of substitution within webshops or cross-channel sub-
stitutions have only recently gained attraction. Gallino and Moreno (2014)
and Wollenburg et al. (2018a) show that channel transitions are facilitated
by fulfillment options such as BOPS that provide the online shopper with
real-time information about inventory availability in the store. Corsten
and Gruen (2019) found that 88% of online demand can be substituted, of
which 10% switch to a bricks-and-mortar store, 56% opt for a substitute
within the webshop, and 22% switch to another webshop. Thus, 66% of the
demand potentially stays with the retailer and increases the demand for
substitute items. Finally, at this stage customers already have a preferred
product (after the collection of information in or across channels). This
implies that information seeking and preference formation are independent
of the assortment. We follow here a general assumption in well-known
exogenous demand (ED) models (see e.g., Smith and Agrawal (2000); Kök
and Fisher (2007)). If the preferred product is not available they may settle
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for a substitute within the channel or across channels. There is no update
of the evaluations. That also means that retailers do not face any demand
changes after the information collection behavior via show- and webrooming
has been carried out.

To summarize, the goal of this paper is to model and analyze the tactical OC
assortment planning problem. When selecting assortments for the mid-term
planning horizon, OC retailers need to assign space of store shelves and
the webshop to selected items. This goes along with defining inventory
levels in the channels and also impacts various demand sources (1) within
the store, (2) within the webshop and (3) across channels. (1) Within the
store, the most important demand effects are substitutions of unavailable
items, space-elastic demand and to some extent positioning. There is a
negligible impact of cross-space elasticity. (2) Within the webshops, current
empirical research highlights substitution effects and has not yet empirically
substantiated the effect of product salience or positioning on customer
demand in an online shop. (3) It has been shown that on top of the demand
effects within a channel, cross-channel substitution becomes important. To
focus on the decision-relevant demand sources in the mid-term context,
we do not directly incorporate overarching category effects (e.g., from
webrooming) and short-term demand impulses (e.g., from personalized
assortment rotation, positioning or salience). The latter is usually applied
on the subordinate operational planning stage, e.g., personalization based
on cookies.

3.2.3 Related literature

This section reviews related literature based on the setting defined. We
apply a similar approach as above by first highlighting related contributions
on assortment planning in stores and webshops, followed by a discussion on
contributions with multiple channels.
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(1) Store-related literature Store assortment planning has gained a great
amount of attention in the literature. The works in this area mostly focus
on considering some sort of substitution for retailers selling their products
through a single store. We refer to recent reviews by Kök et al. (2015)
or Shin et al. (2015), and focus within our review on fundamental papers
and contributions that are most related to our setting. Smith and Agrawal
(2000) develop a demand model for assortment optimization accounting
for dynamic OOA substitution while ignoring OOS substitution. Inventory
levels are also optimized and shelf constraints respected when optimizing
profit with a newsvendor formulation. A specialized heuristic is used
to solve the model. Rajaram and Tang (2001) formulate a model that
considers OOS substitution and is based on a newsvendor setting. The
model optimizes inventories and is solved through a service-rate heuristic.
Kök and Fisher (2007) present a model that takes into account OOA. The
newsvendor model is solved through an iterative heuristic. Honhon et al.
(2010) present a model that focuses on OOS substitution for customer
segments based on the sequence of customer preferences. An algorithm
based on dynamic programming approaches solves the model. Hübner
et al. (2016b) factor OOA and OOS substitution into their model and
develop a specialized heuristic to solve large instances. Interestingly, even
though assortment planning and space planning are known to be mutually
dependent, they are often treated separately in literature (Hübner and
Kuhn, 2012; Bianchi-Aguiar et al., 2021). Usually the shelf-space models
assume a given assortment and assign facings to space-elastic products under
deterministic demand and space constraints (e.g., Hansen and Heinsbroek
(1979), Corstjens and Doyle (1981), Bianchi-Aguiar et al. (2015), Geismar
et al. (2015), Flamand et al. (2018)). A smaller number of contributions
take an integrated assortment and space planning approach. The first
stochastic and integrated shelf-space and assortment model by Hübner and
Schaal (2017a) includes both OOA and OOS substitution demand and is
also based on a newsvendor setting. Another stochastic model by Hübner
et al. (2020) optimizes two-dimensional shelves while considering space
elasticity and substitution effects.
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(2) Webshop-related literature Assortment planning for online chan-
nels has gained growing attention in research. The main focus of these
contributions is to maximize revenue for dynamically arriving customers
and choosing the best assortment of products or online advertising for
individual shoppers or customer segments. The majority of contributions
deal with dynamic assortment planning and demand learning. Common to
all these contributions is the operational problem, where the retailer per-
sonalizes the customers’ assortment based on available profile information.
Some papers apply online optimization techniques and use multinomial
logit (MNL) formulations to model unknown customer demand. Such
approaches can only be applied to assortments that can be changed fric-
tionlessly. Rusmevichientong et al. (2010) formulate an online policy with
unknown MNL purchase probabilities. Sauré and Zeevi (2013) dynamically
optimize the assortment for arriving customers. Abeliuk et al. (2016) study
the problem of finding an optimal assortment and positioning of products
subject to capacity constraints and develop an approach for a small set of
products. In a related approach, Agrawal et al. (2016) dynamically optimize
the assortment selection, assuming unknown demand parameters using an
MNL model. A specific assortment of products is shown to the online shop
visitors until they discontinue any further purchasing activity. Cheung
and Simchi-Levi (2017) also incorporate uncertainty in their underlying
MNL model. They dynamically optimize the assortment, consider resource
constraints, and develop an efficient online policy. Bernstein et al. (2019)
and Kallus and Udell (2020) study the problem of dynamic assortment
customization for customer segments and how these segments can be deter-
mined. In another new stream, sales opportunities are investigated when a
retailer needs to deal with limited inventory and substitutable products. In
such settings, customers arrive sequentially and the retailer decides which
subset of products to offer to each customer that arrives, depending on
the customer’s preferences, inventory levels, and the remaining time in the
season. Examples are Bernstein et al. (2015) and Golrezaei et al. (2014).
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(3) Literature related to multiple channels With the increasing inte-
gration of various sales channels, new contributions emerge that consider
retailers with multiple channels. Bhatnagar and Syam (2014) formulate
an integer program to allocate items across an MC retailer’s stores and
a webshop. The model is based on a given demand and not subject to
space restrictions. The model does not consider substitution and imposes a
strong space limitation on the store by listing only one item. In a further
contribution, Dzyabura and Jagabathula (2018) depict a retailer with a
given set of products in the online channel. The retailer decides on the
subset of products to offer in the store, without specifying inventories, to
maximize net returns on sales. Research-offline, purchase-online behavior
(showrooming) as well as endogenous product returns are integrated by
means of an MNL-model. Demand is modeled using a utility-based model,
where the customer’s physical evaluation of the store assortment may change
the customer’s product utilities of the store and online assortment and
result in purchasing a different item to the one originally preferred. The
impact of the store assortment on online demand is thereby factored in. Lo
(2019) follows Dzyabura and Jagabathula (2018) in selecting a subset of
the online shop for the bricks-and-mortar store to maximize aggregated
expected revenues. Under the usage of an MNL model, customer preferences
are updated based on a feature tree. However, in both contributions the
assortment composition is limited to the store, as the webshop assortment
is assumed to be exogenously given. Geunes and Su (2020) is the first
model where a retailer selects products and stocking levels for a store
and the online channel. Cost differences for different fulfillment options
are considered. Demand is modeled as MNL and considers cross-channel
substitutions, but not in-channel substitutions and space-elasticity.

Summary of related literature Table 3.1 summarizes related assortment
optimization approaches for stores, webshops and across channels.

The major share of existing contributions related to our problem focuses
on stores. These store-related contributions usually apply a newsvendor

33



Assortment optimization in omni-channel retailing Jonas Hense

Table 3.1: Related literature
Decision1a Demand model Opt.3 Space Data4 No of.

Stoch. in-channel cross-channel constr. items5a

Related contribution OOA OOS OOA OOS Info2

Store-focused models
Smith and Agrawal (2000) A - I X X S X SD 5
Rajaram and Tang (2001) A - I X X S SD 7
Kök and Fisher (2007) A - I X X S X ED/SD 29
Honhon et al. (2010) A - I X X X D SD 8
Hübner and Schaal (2017a) A - S - I X X X S X ED/SD 2000
Hübner et al. (2020) A - S - I X X X S X ED/SD 100

Webshop-focused models
Rusmevichientong et al. (2010) A X X D ED 200
Sauré and Zeevi (2013) A - S X X D SD 10
Abeliuk et al. (2016) A - S X X S X SD 2
Agrawal et al. (2016) A X X D SD —5b

Cheung and Simchi-Levi (2017) A X X D SD 25
Bernstein et al. (2019) A X X D ED 19
Kallus and Udell (2020) A X X D SD 400

MC and OC models
Bhatnagar and Syam (2014) A - I S SD 100
Dzyabura and Jagabathula (2018) A1b X X X X S ED 96
Lo (2019) A1b X X X S SD 32
Geunes and Su (2020) A - I X X X S X SD 20

This paper A - S - I X X X X X S X SD 100

1a Included decisions: Assortment (A), space (S), inventory (I); 1b OC model only optimizing store assortment
2 Customers’ research and information collection behavior: Showrooming (examining products in the store) and webrooming (examining
products in the webshop)

3 Optimization: Static (S) or dynamic with sequentially arriving customers (D)
4 Data applied: Simulated data (SD) or empirical data (ED)
5a Problem size: Maximum number of items considered; 5b No numerical study

model in combination with exogenous demand models to specify customer
choice and factor in limited space. There are recent models that are built
on the mutual dependency of assortment and space planning, but do not yet
factor in cross-channel substitutions. However, these can serve as starting
point for an OC model. In contrast to the amount of store literature,
contributions related to specific assortment planning in webshops are only
now beginning to emerge. The focus is on online optimization, demand
learning and dynamically arriving customers. Such assortment problems
are commonly applied to settings where new products can be introduced
and removed from assortments in a frictionless manner. Webshop models
such as described above follow the objective of gathering information on
consumer choice through an exploration-exploitation approach. This setting
is hard to transfer to a tactical planning problem where inventories across
the channels need to be defined for a mid-term horizon and cannot be
exchanged frictionlessly. Furthermore, these papers are limited by not
considering space considerations or integrating different demand effects.
Just like store papers, literature for webshop assortments also does not
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take into account an additional sales channel. To generalize, SC models
are limited to one channel and therefore not designed to address switching
behavior between channels following an OOS or OOA situation. This
issue however is investigated by the small body of literature on assortment
planning with multiple channels. As indicated in Table 3.1 none of the
models provided so far considers cross-channel demand and in-channel
demand jointly, disregarding relevant and related substitution behavior.

This overview accentuates OC assortment optimization as a potential
area of valuable research given the absence of an integrated OC model
for assortment, space and inventory optimization with stochastic demand
and comprehensive substitution effects. This accords with the findings of
Melacini et al. (2018) and Rooderkerk and Kök (2019) that already pointed
out the shortage of assortment planning with a common objective across
channels and the possibility for customers to move seamlessly between
channels.

3.3 Model and solution approach

This section develops the formal representation of the problem at hand to
maximize the profit of an OC retailer by determining the assortment, space
and inventory across channels. We first formalize the decision problem
with the objective and constraints in Section 3.3.1. The demand model
follows in Section 3.3.2. A solution approach for the NP-hard and nonlinear
multi-knapsack problem is presented in Section 3.3.3.

3.3.1 Decision problem and general model

Table 3.2 summarizes the notation.
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Table 3.2: Model notation
Indices and sets
C Set of channels a retailer operates with C = {1, 2, . . . , c, d, . . . , |C|}
Kc Set of facings a retailer can select for item i in channel c
I (I+, I−) Set of (listed, delisted) items with I = {1, 2, . . . , i, j, . . . , |I|}
Ic (I+

c , I−
c ) Set of (listed, delisted) items i within a channel c

Parameters
αic Minimum demand of item i in channel c
βic Space-elasticity of item i in channel c
γOOA

jcic

(γOOS
jcic

)
Share of demand of item j in channel c which gets substituted by item i in channel c in
case item j is out-of-assortment (out-of-stock) in channel c, with j 6= i, i, j ∈ I

δOOA
idic

(δOOS
idic

)
Share of demand of item i in channel d which gets substituted by item i in channel c in
case item i is out-of-assortment (out-of-stock) in channel d, with d 6= c, c, d ∈ C

ηOOA
jdic

(ηOOS
jdic

)
Share of demand of item j in channel d which gets substituted by item i in channel c
in case item j is out-of-assortment (out-of-stock) in channel d, with j 6= i, i, j ∈ I and
d 6= c, c, d ∈ C

bic Width of one facing of item i in channel c
gic Inventory per facing of item i in channel c
kmax

ic (kmin
ic ) Maximum (minimum) number of facings of item i in channel c

Sc Available shelf (storage) space in channel c
ric Revenues for one unit of item i in channel c
uic Unit costs for one unit of item i in channel c
sic Shortage costs for one unit of item i in channel c
vic Salvage value for one unit of item i in channel c
Variables
kic Number of facings assigned to item i in channel c, integer
xic Total inventory of item i in channel c, integer (auxiliary variable)

OC retailers must assign a given set of items i, i ∈ I to a shelf in each
channel c, c ∈ C (i.e., shelves in stores and shelves in warehouses for
fulfillment of online orders), where the shelf space for each channel Sc is
known. The total set of items I is available for all channels c with c, d ∈ C,
i.e., Ic, Id, . . . , IC ⊆ I, whereas Ic represents the subset of items in a channel
c. Because items of the set Ic of a channel c can be delisted, a differentiation
between the set of listed items I+

c and the set of delisted items I−c in each
channel c is introduced, with I+

c , I
−
c ⊆ Ic, I+

c ∪ I−c = Ic and I+
c ∩ I−c = ∅.

The set union across all channels represents the set of listed items with
I+
c ∪ I+

d ∪ . . .∪ I+
C = I+ and delisted items with I−c ∪ I−d ∪ . . .∪ I−C = I−.

To streamline the notation, we use the term “facing” for the store shelves
and the online warehouse shelves. It expresses the unit that customers and
pickers respectively face when observing the shelf. In both channels the
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number of facings are used to compute the inventory. In the store channel,
the number of facings also has an impact on demand (i.e., space-elastic
demand, see Section 3.3.2). In the webshop, the number of facings visible to
the customer can either be zero or one unit (i.e., without any space-elastic
demand) and the number of facings for the inventory calculation can be
any integer value as this represents the facings in the warehouse. To obtain
a compact and general model across channels, we use the uniform term
“facings” to calculate the demand and inventory in both channels. The
retailer defines the number of integer facings k for each item i in each
channel c. Here the retailer can select from a set of integer facings Kic for
each item and each channel. The specification of this set for each item and
channel allows the incorporation of item- and channel-specific ranges on
the number of facings. Channel-specific storage requirements (represented
by the space occupied per facing unit bic) and inventory quantity per facing
(represented by gic) are considered. Hence, the OC retailer optimizes the
profit by deciding (1) which products i, i ∈ Ic to list in each channel c and
(2) how many facings to allocate to each listed item i, i ∈ I+

c within each
channel c, c ∈ C. To express these decisions, the number of facings kic for
each item i, i ∈ I and channel c, c ∈ C is employed as a decision variable.
Consequently, the number of facings expresses the assortment selection,
with kic = 0 representing the case for delisting and kic ≥ 1 the case for
listing. Furthermore, (3) the number of facings determines the inventory xic
with xic = kic · gic. The number of units that are stocked behind one facing
are denoted by the parameter inventory per facing gic, which is determined
by the shelf depth in each channel and the item size.

The profit πic for each item i in each channel c is calculated using Equation
(3.1). It depends on the number of facings kic and inventory xic of the
item i in channel c and, because of demand substitutions across items and
channels, also on the number of facings and inventory of all other items
j ∈ I in all channels d ∈ C. The profit equation consists of five parts. Part
one represents the unit costs uic for each item i in each channel c. Unit
costs uic incorporate any kind of purchasing and replenishment costs per
channel and item. The random variable for the demand is denoted with yic.
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At the end of a sales period, a mismatch between demand yic and inventory
may lead to overstock (yic < xic) or unmet demand (yic > xic). Part two
and four calculate the expected revenue for each kic (and the resulting
quantity xic) given sales price ric. In part two, for all cases with yic < xic,
the multiplication of yic with sales price ric yields the revenues. In part
four, for the reverse cases with yic > xic, only the available stock can be
sold and thus xic is multiplied with the sales price ric. Part three of the
profit function accounts for the expected salvage cost due to items that are
left in stock at the end of the period. Leftover stock of item i in channel
c is cleared at salvage value vic, thereby representing a residual value. As
vic < uic, the retailer suffers a loss in profit. The salvage value can also be
interpreted as inventory holding costs in the case of non-perishable items
(Kök and Fisher, 2007; Hübner et al., 2016b). Part five denotes shortage
sic that are imposed to include a penalty cost for unsatisfied customers.

πic(k̄, x̄) = −uic · xic + ric

∫ xic

0
yicf

∗
icdy + vic

∫ xic

0
(xic − yic)f ∗icdy

+ric
∫ +∞

xic
xicf

∗
icdy − sic

∫ +∞

xic
(yic − xic)f ∗icdy

(3.1)

This generic form of the profit πic corresponds to the profit calculation
in newsvendor problems and can therefore also be found in many other
assortment-related decision models (cf. e.g., Smith and Agrawal (2000);
Honhon et al. (2010)). The difference always stems from the demand that is
taken into account, which is represented through the density function f ∗ic. In
Equation (3.1) this function accounts for the relevant total demand, which
must be quantified in accordance with the assumed customer behavior. We
detail the demand function below in Section 3.3.2.

The retailer maximizes total profit Π, which is the sum of item profits per
channel πic of each item i, i ∈ I in channel c, c ∈ C. The objective function
can be described as Π(k̄, x̄) = ∑

i∈I
∑
c∈C πic(k̄, x̄). This is subject to the

limited shelf space in each channel Sc, i.e.
∑
i∈Ic bic · kic ≤ Sc, for all c ∈ C,
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with bic denoting the shelf space occupied by one unit in each channel.
The shelf space Sc is the one-dimensional shelf length in each channel,
e.g., measured in meters (cf. Kök and Fisher (2007); Irion et al. (2012);
Düsterhöft et al. (2020)). The reason for this is twofold: first, the stock
per unit (gic) is fixed and given by the item dimensions and shelf depth.
Second, because customers frontally observe store shelves, two different
items can only be placed side-by-side, not behind one another. The same
holds true for storage in the warehouse. In practice, it is common for
retailers to limit the set of facings Kic. In the bricks-and-mortar store this
is driven by sales initiatives and marketing contracts regulating the share of
facings. In the webshop it is the result of space constraints in warehouses
and the online display. As such, we can limit the number of facings with
kminic ≤ kic ≤ kmaxic , for all i ∈ I and c ∈ C.

3.3.2 Demand model

The most popular approaches for integrating demand substitution in assort-
ment planning are multinomial logit models (MNL) and exogenous demand
(ED) models. In this paper, we focus on ED models since MNL models
usually neglect limited shelf capacities and ED models are mostly used when
inventory levels become relevant. ED models directly specify the demand
for each product by depicting consumers that choose from a set of items. If
the preferred item is not available, an individual consumer might accept
another item as a substitute according to a defined substitution probability.
It allows to incorporate exogenous demand factors that are empirically
motivated. A further advantage of ED models is the ability to differentiate
between the initial choice (i.e. the base demand) and substitution. Each
element of the ED model is directly and independently specified. The
distribution of each demand element for each product is therefore assumed
to be independent. That means, for example, the base demand of product
i (specified with αi) is independent from the base demand of product j,
with i 6= j. This allows the usage of the convolution concept that also
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supports to obtain more tractable integer programs. We focus our analysis
on the switching between channels and do not further differentiate demand
flows by delivery mode. We model the most popular concept related to
the delivery modes, namely BOPS (see e.g., Gallino and Moreno (2014) or
Wollenburg et al. (2018a)), where webshop customers are getting access
to the store inventory. The webshop is able to access its own inventory
but also the store inventory. This enables the webshop to show customers
alternatives from the store when OOA or OOS situations occur. The core
of our investigation is the planning of assortments across channels. To focus
on assortment effects, to streamline the analyzes and obtain a tractable
model, we do not integrate further channel-specific demand effects like
positioning and salience at the webpage. Furthermore, we assume that
research behavior of customers through e.g., web- and showroom has been
already taken place. Changing preferences through web- and showrooming
of certain products are not considered.

The total expected demand D̂ic of an item i in channel c consists of seven
elements (cf. Equation (3.2)). The first element is the space-elastic demand
DSP
ic . The subsequent three elements are the OOA demand sources. We

need to differentiate between substitutions within the same item or across
different items and within or across the channel. This gives three potential
combinations for substitution flows: different items within the same chan-
nel (denoted OOA(1)), identical items across different channels (denoted
OOA(2)), and different items across different channels (denoted OOA(3)).
The remaining three elements denote the OOS demand, which contains
substitutions across different items within the same channel (DOOS(1)

ic ), iden-
tical items across different channels (DOOS(2)

ic ) and different items across
different channels (DOOS(3)

ic ). We elaborate on the components below.

D̂ic = DSP
ic +DOOA(1)

ic +DOOA(2)

ic +DOOA(3)

ic +DOOS(1)

ic +DOOS(2)

ic +DOOS(3)

ic

(3.2)
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(I) Space-elastic demand Space-elastic demandDSP
ic of item i in channel

c describes the effect of an increased demand triggered by an increasing
number of facings kic of item i in channel c (e.g., Hansen and Heinsbroek
(1979), Corstjens and Doyle (1981)). The base for the space-elastic demand
constitutes the minimum demand αic, which represents the retailer’s forecast
for an item that is independent of the facing and assortment configurations,
i.e. when an item is not listed and has zero facings. Minimum demand
therefore exists regardless of the facing decision for item i in channel c (e.g.,
Irion et al. (2012); Hübner and Schaal (2017b)). Increasing the number of
facings kic increases the visibility of an item and thereby its demand (cf.
e.g., Eisend (2014)). In accordance with prior research (cf. e.g., Hansen
and Heinsbroek (1979)), the facing-dependent demand rate is a polynomial
function of the number of facings and space-elasticity βic (with 0 ≤ βic ≤ 1).
The minimum demand αic is multiplied by the number of facings kic to
the power of βic. Thus, if no space-elasticity effect exists and βic = 0, this
translates into DSP

ic = αic. The same holds true if the number of facings is
at maximum one as is usually the case for webshops. Hence, space-elastic
demand DSP

ic is calculated by Equation (3.3) and the corresponding density
is denoted by f ∗

DSPic
.

DSP
ic = αic · kβicic ∀ c ∈ C, i ∈ I (3.3)

(II) Out-of-assortment demand OOA demand describes the demand
transfer of unsatisfied demand for delisted items to a listed item. This
occurs if another item j is delisted (j ∈ I−) and customers substitute this
item j with item i, i ∈ I+. We assume that if item j is delisted, customers
will substitute a certain share of the minimum demand αj of item j with
item i, while some customers will still want to buy item j, even if it is
not available. The maximum quantity that can be substituted cannot be
higher than the minimum demand αj as first, the minimum demand exists
regardless of the assortment, space and inventory decision for item i, and
second, because we follow the usual assumption that substitution takes place
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over one round only (cf. e.g., Smith and Agrawal (2000); Kök and Fisher
(2007); Hübner and Schaal (2017a)). This implies that if a substitute is
also not available, demand is lost. It has been shown that this assumption
is not too restrictive (cf. Smith and Agrawal (2000)). In the event of
multiple channels, the OOA demand needs to be differentiated between
(II.1) different items within the same channel, (II.2) identical items across
different channels and (II.3) different items across different channels.

(II.1) The OOA demand for different items within a channel DOOA(1)
ic for a

listed item i, i ∈ I+
c in channel c emerges when a customer demands an OOA

item j in channel c (j 6= i, j ∈ I−c ) and chooses to purchase an alternative
item i in the same channel c. The substitution rate γOOAjcic expresses the
share to be substituted in this case. Equation (3.4) summarizes the OOA
demand within a channel and the corresponding density function is denoted
by f ∗

DOOA
(1)

ic

.

DOOA(1)

ic =
∑

j∈I−c /{i}

αjc · γOOAjcic ∀{c, i} : c ∈ C, i ∈ I (3.4)

(II.2) The OOA demand for identical items across channels DOOA(2)
ic mate-

rializes when a customer intends to buy an item i in channel d, d ∈ C while
the item is not listed in channel d with i ∈ I−d , d ∈ C. Given the unavail-
ability, the customer may opt (for reasons of affinity) to switch channels
in order to purchase the identical item i in another channel c. The rate
δOOAidic

quantifies the share that is substituted. Equation (3.5) summarizes
this OOA demand substitution, and the corresponding density function is
denoted by f ∗

DOOA
(2)

ic

.

DOOA(2)

ic =
∑

d∈C/{c}|i∈I−
d

αid · δOOAidic
∀ c ∈ C, i ∈ I (3.5)
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(II.3) The OOA demand for different items across channels DOOA(3)
ic ma-

terializes when a customer intends to buy an item j in channel d, d ∈ C
while the item is neither listed in channel d (j ∈ I−d , d ∈ C) nor in channel
c (j ∈ I−c , c ∈ C) and therefore opts to switch to a different item i, i 6= j in
a different channel c, c 6= d. The rate ηOOAjdic

quantifies the share that is sub-
stituted. Equation (3.6) summarizes the OOA demand substitution for this
relation and the corresponding density function is denoted by f ∗

DOOA
(3)

ic

.

DOOA(3)

ic =
∑

d∈C/{c}|j∈I−
d
/{i}

αjd · ηOOAjdic
∀ c ∈ C, i ∈ I (3.6)

(III) Out-of-stock demand OOS substitution demand represents unsat-
isfied demand due to insufficient stock of listed items. In this case, the
demand Dj of an item j exceeds the available inventory xj. Dj is assumed
to be equal to space-elastic demand DSP

j as the item is listed and the
shelf and webshop representation is still visible to the customer (e.g., via
price tags). One round of substitution is assumed as for the OOA. As
for the OOA demand, OOS demand needs to be differentiated between
(III.1) different items within the same channel, (III.2) identical items across
different channels and (III.3) different items across different channels.

(III.1) OOS demand for different items within a channel DOOS(1)
ic for an item

i in channel c (i ∈ I+
c ) occurs when a customer’s demand for listed item j

(j 6= i, j ∈ I+
c ) exceeds the available quantity xjc of item j in channel c. The

customer may then decide to substitute the shortage quantity with item i

within the same channel c with the rate γOOSjcic . Equation (3.7) calculates
this demand type and the corresponding density function is denoted by
f ∗
DOOS

(1)
ic

.

43



Assortment optimization in omni-channel retailing Jonas Hense

DOOS(1)

ic =
∑

j∈I+
c /{i}

[(DSP
jc − xjc)|DSP

jc > xjc] · γOOSjcic ∀ c ∈ C, i ∈ I

(3.7)

(III.2) The OOS demand for identical items across channels DOOS(2)
ic for a

listed item i of channel c (i ∈ I+
c ) appears when demand for a listed item

i in channel d (c 6= d, i ∈ I+
d ) exceeds the item’s inventory xid. Thus, the

unsatisfied demand in channel d may be substituted by switching to channel
c and purchasing the identical item i. This share is quantified with the
rate δOOSidic

. Equation (3.8) summarizes this and the corresponding density
function is denoted by f ∗

DOOS
(2)

ic

.

DOOS(2)

ic =
∑

d∈C/{c}|i∈I+
d

[(DSP
id − xid)|DSP

id > xid] · δOOSidic
∀ c ∈ C, i ∈ I

(3.8)

(III.3) The OOS demand for different items across channels DOOS(3)
ic mate-

rializes when a customer intends to buy an item j, j ∈ I in channel d, d ∈ C
but the item is sold out both in channel d (j ∈ I+

d , d ∈ C) and in channel
c (j ∈ I+

c , c ∈ C). The customer then opts to switch to a different item
i, i 6= j in a different channel c, c 6= d. The rate ηOOSjdic

quantifies the share
that is substituted. Equation (3.9) summarizes this and the corresponding
density function is denoted by f ∗

DOOS
(3)

ic

.

DOOS(3)

ic =
∑

d∈C/{c}|j∈I+
d
/{i}

[(DSP
jd −xjd)|DSP

jd > xjd] · ηOOSjdic
∀ c ∈ C, i ∈ I

(3.9)
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Calculating the convolution The algorithm uses the convolution con-
cept to generate the distribution of the product’s demand, including sub-
stitution effects. Since the demand distributions of the products i and j
are independent for i 6= j, the convolution – represented by the operator
~ – of the related demand distribution functions results in the distribu-
tion of the sum of the demands of products i and j (Hübner and Schaal,
2017a). Furthermore only non-negative demand is allowed, so all following
distributions are restricted to R+

0 . Assuming the distributions are stan-
dardized to the feasible interval, the convolution of the additional demand
distributions accounting for OOA and OOS for the item sets I−c and I+

c ,
respectively, are given as denoted below. As noted above, the convolution
requires independent demand distributions. With the ED model and the
given demand components, each element can be specified independently
and exogenously. Convolutions are not possible when the independence of
the distribution is not given. This is the case for complementary effects
across products or across channels. Such cases require coupling techniques
and other approximation techniques (see e.g., Netessine and Zhang (2005)
who included cross-selling effects).

In our setting, the corresponding density function for DOOA(1)
ic is calculated

by Equation (3.10). It convolutes the (minimum) demand distribution
functions of all OOA items and therefore accounts for the fact that the
OOA substitution demand for item i (i ∈ I+

c ) in channel c depends on all
OOA items j ∈ I−c of the channel c. Since the substitution parameters
γ, δ and η only represent a factor, they will be omitted in the formulas
to simplify the notation. Equation (3.11) computes the respective density
function for DOOA(2)

ic . In this case the demand for a listed item i (i ∈ I+
c ) in

channel c depends on the convolution ~ of the demand distribution of all
delisted, identical items i in all other channels d (i ∈ I−d , i ∈ I+

c ). Equation
(3.12) computes the respective density function for different items across
channels DOOA(3)

ic .

~j ∈ I−
c
f ∗αjc =

∫
· · ·

∫
R+,n

0 ,j∈I−c
f ∗αjcdτ . . . dυ (3.10)
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~i ∈ I−
d
f ∗αid =

∫
· · ·

∫
R+,n

0 ,i∈I−
d

f ∗αiddτ . . . dυ (3.11)

~j ∈ I−
d
f ∗αjd =

∫
· · ·

∫
R+,n

0 ,j∈I−
d

f ∗αjddτ . . . dυ (3.12)

Equation (3.13) depicts the density function for OOS demand for item
i in channel c. As above, we use the convolution function to account
for the fact that OOS demand for an item i depends on the expected
shortage of all temporarily unavailable items in channel c other than item i.
Similarly, Equation (3.14) is used to compute the density function for the
OOS demand of identical items across channels. Equation (3.15) computes
the density for different items across channels.

~j ∈ I+
c
f ∗DSPjc

=
∫
· · ·

∫ ∞
xjc,j∈I+

c

f ∗DSPjc
dτ . . . dυ (3.13)

~i ∈ I+
d
f ∗DSP

id
=
∫
· · ·

∫ ∞
xid,i∈I+

d

f ∗DSP
id
dτ . . . dυ (3.14)

~j ∈ I+
d
f ∗DSP

jd
=
∫
· · ·

∫ ∞
xjd,j∈I+

d

f ∗DSP
jd
dτ . . . dυ (3.15)

To calculate the total demand for item i, Equation (3.16) convolutes the
demand density functions of DSP

ic , DOOA(1)
ic , DOOA(2)

ic , DOOA(3)
ic , DOOS(1)

ic ,
DOOS(2)
ic and DOOS(3)

ic .
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f ∗ic = f ∗DSPic
·
Ä
~jc ∈ I−, j 6= if

∗
αjc
γOOAjcic

ä
|γOOAjcic

6=0 ·
Ä
~id ∈ I−, i = if

∗
αid
δOOAidic

ä
|δOOAidic

6=0

·
(
~jd ∈ I−, j 6= if

∗
αjd
ηOOAjdic

)
|ηOOAjdic

6=0 ·
Å
~jc ∈ I+, j 6= if

∗
DSPjc

γOOSjcic

ã
|γOOSjcic

6=0

·
(
~id ∈ I+, i = if

∗
DSP
id
δOOSidic

)
|δOOSidic

6=0 ·
Å
~jd ∈ I+, j 6= if

∗
DSP
jd
ηOOSjdic

ã
|ηOOSjdic

6=0

(3.16)

Complexity of the problem Each item i in each channel c can be as-
signed a value (πic) and a weight (kic · bic) that needs to be assigned to
multiple knapsacks with limited space (Sc) in each channel. A knapsack
problem assuming a linear objective function and linear constraints is al-
ready known to be NP-hard (Kellerer et al., 2010). Our model is a NP-hard
multi-knapsack problem with a non-linear and non-separable (quadratic)
objective function. Despite the efficient solution of knapsack problems using
MIP solvers, the items’ mutual dependencies due to the substitution of
demand make this problem combinatorial hard. An increasing number of
items and available space aggravates this complexity. According to Equation
(3.17), there are 2,025 possibilities to fully allocate the assortment in an
OC setup with C=2, Ic=3 and Sc=8 for all c ∈ C. An instance with C=2,
Ic=10 and Sc=30 for all c ∈ C already results in 4.4908023 · 1016 possible
solutions.

P (Ic, Sc, C) =
(
Ic + Sc − 1

Sc

)C
=
Ç(Ic + Sc − 1)!
Sc!(Ic − 1)!

åC
(3.17)

Each of the solution possibilities implies a varying substitution demand
given the mutual dependencies between the items. Thus, to obtain the
optimal solution, the demand calculation for each possible solution has
to be included in the pre-calculation. With current computing power,
however, it is neither reasonable nor feasible to make such a large number
of pre-calculations. A Binary Integer Program (BIP) embedded in an
iterative heuristic is therefore developed in the following. The BIP ensures
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all constraints, but neglects the demand substitution. Substitutions are
added ex-post. This degenerates the original quadratic problem into a
bounded 0/1 multi-choice multi-knapsack problem given a set of item-facing
combinations (xic ∈ {0, 1}). Each combination is associated with size bic,
facing-dependent profit πic, i ∈ N and knapsacks with capacity Sc. The
algorithm will be described in the next section.

3.3.3 Solution approach

This section develops a specialized heuristic. It is denoted as Joint Omni-
Channel Inventory and Assortment Optimization (JOCIAO). The basic
idea is to iteratively solve a BIP model (which is a reformulation of the
MIP introduced above) and update the demand distributions until there is
no more change in solutions. We first provide an overview and general idea
of JOCIAO before detailing the computation process.

Overview We take advantage of the fact that retailers limit the number
of facings and that the facings need to be integer. The number of facings for
each item i in channel c is accordingly restricted through kic = [kminic , kmaxic ].
By limiting kic, the profit πick for each item i, each channel c and each facing
k can be determined with the help of Equation (3.1). This is subsequently
used as an input for the Objective Function (3.18), which computes the
overall profit Π. The binary variable zick thereby states whether an item
i in channel c receives k facings (zick = 1) or not (zick = 0). The variable
zick can be split up into the auxiliary variables kic and xic as the number
of facings can be computed with kic = k · zick and the inventory with
xic = gic · kic. The quantity in each channel c is restricted by a physical
space limit Sc. The space consumption issues from the number of facings kc
in channel c and the space bic occupied by one facing of item i in channel
c (cf. Equation (3.19)). Equation (3.20) states that each item i in each
channel c receives exactly one facing, and Equation (3.21) defines zick as a
binary variable.
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max Π(z̄) =
∑
i∈I

∑
c∈C

∑
k∈K

πick · zick (3.18)

subject to∑
i∈I

∑
k∈K

kc · bic · zick ≤ Sc ∀c ∈ C (3.19)
∑
k∈K

zick = 1 ∀c ∈ C, i ∈ I (3.20)

zick ∈ {0; 1} ∀c ∈ C, i ∈ I, k ∈ K (3.21)

However, this BIP is nonlinear as the item profit and demand depend on
the number of facings of the item itself and, given the substitutions, on
other items, too. We develop a two-stage solution heuristic to overcome
the non-linearity. In the initialization (Stage 1), the item profit πick for
all possible i ∈ I, c ∈ C and k ∈ K is precalculated taking into account
space-elastic demand excluding substitution demand. This is fed into the
BIP to maximize overall profit for an initial solution. This initial solution
of the BIP makes it possible to calculate the substitution demand and
update the total demand given the assortment and number of facings (k)
as well as inventory (x) of all items obtained from the BIP. In the iteration
phase (Stage 2), the BIP is solved again as demand changes. Following
that, substitution demand and total demand are again updated based on
the new solution. This process is repeated until a stop criterion is met (e.g.,
no more change in facings from one solution to the next). We are applying
a related approach of Hübner and Schaal (2017a), which has been proven
to deliver efficient results for SC assortment optimization.

Iterative Heuristic After providing the overview above, we will detail
the implementation and computation process of the two-stage solution
approach in the following.
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Stage 1 – Initialization The first stage (see Figure 3.1) helps to overcome
the non-linearity by pre-calculating demand and profit for a given set of
integer facings. In Step 1.1, the iteration index ` is set to zero. In Step 1.2,
Equation (3.1) is used to compute the profit π`ick of iteration ` for every item
i in channel c and every k in the range from kic = [kminic , kmaxic ]. Substitution
effects are excluded at this stage and the demand density function only
includes space-elastic demand (f ∗,`ic = f ∗,`

DSPic
) as denoted in Equation (3.3).

As this contains only invariants, this demand density function can be
calculated for any given facing without invoking the decisions of other items.
In Step 1.3, π`ick serves as input to solve the BIP model and obtain zick. This
determines k`ic and x`ic in the sets I and C considered. Given this assortment,
number of facings and inventory levels, the initial demand density function
f ∗,`ic is updated in Step 1.4 using Equation (3.16). Thus, an initial solution
up to Step 1.3 excludes substitution demand while the demand density
functions f ∗ic obtained from Step 1.4 onwards include substitution demand.

Stage 2 – Iterations In the optimization stage, the initial solution is
optimized by taking into account substitution effects. Step 2.1 constitutes a
loop and will be explained in the course of Step 2.6. In Step 2.2, the iteration
index is updated from ` to `+ 1. Step 2.3.1 sets the demand distribution
being used in the current iteration (f ∗,`ic ) equal to the one obtained in the
previous iteration, which includes OOA and OOS substitution demand for
all iterations ` ≥ 1. In the next step (Step 2.3.2), π`ick is pre-calculated
and updated for every item, channel and facing. In Step 2.4 we use the
updated item profits π`ick to solve the BIP with substitution effects, which
provides us with the corresponding z`ick. Step 2.5 updates the demand
density function f ∗,`ic for each item by means of the convolution of the
relevant demand density functions, taking into account k`ic and x`ic for all
items and channels. Step 2.6 mandates the algorithm to restart at Step
2.1 until z`ick of two subsequent iterations remains unchanged, which also
implies no more change in profit (cf. Equation (3.22))

ε = z`ick − z`−1
ick = 0 ∀ i ∈ I, c ∈ C, k ∈ K (3.22)
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As described, substitution demand can only be calculated for a given
assortment, facing and inventory decision for each item in each channel.
The heuristic addresses this issue by updating the assortments, facings
and inventories in iteration ` with the solution of the previous iteration
` − 1, i.e., a one-iteration lag with respect to the demand. This implies
potentially non-optimal overall results even though the heuristic itself solves
the problem optimally for every single iteration. This potential concern
will be analyzed in the numerical analysis.

3.4 Numerical analysis and managerial

insights

3.4.1 Overview of tests and data

The following section analyzes the computational performance of our ap-
proach and develops managerial insights into substitutions with OC assort-
ments. Table 3.3 summarizes the tests.

Each data set is composed of 50 randomly generated instances. This means
all results presented show the average of the corresponding 50 solutions.
Unless stated otherwise, we apply identically populated parameters across
channels to avoid mixing different effects. This is particularly relevant as
we deal with different demand sources, revenues, costs and channel setups.
When including too many factors at the same time one obtains mixed
results and cannot derive causal insights. In order to simulate close-to-
reality conditions, ranges have been defined for all parameters in use. The
revenue and cost parameters are defined as ric ∈ [20, 50], uic ∈ [15, 30],
vic ∈ [4, 20] and sic ∈ [1, 5]. In addition to that, the values for each item
in each channel have to comply with the inequality ric ≥ cic ≥ vic ≥ sic.
Compared to all other revenues and costs, shortage costs are only steering
costs to factor in unsatisfied customers. If not specified further, we assume
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Table 3.3: Overview of numerical experiments
Section Rationale Analysis Main crite-

ria
# instances

3.4.2 Efficiency of algorithm Comparison with
full enumeration
and greedy heuristic;
Large instances

Objective val-
ues, run time

760

3.4.3 Relative impact of substi-
tutions within and across
channels

Varying substitu-
tion rates within
and across channels;
Varying costs across
channels

Objective val-
ues

550

3.4.4 Impact of cross-channel
substitutions for identi-
cal products

Varying substitution
rates across channels

Objective
values, as-
sortment size,
facings

250

3.4.5 Impact of connecting as-
sortments across chan-
nels (OC vs. MC assort-
ments)

Effect of cross-channel
substitution; Value of
information in OC re-
tailing

Objective val-
ues

2,000

shortage costs of sic = 0 without loss of generality to streamline the
analysis. This setting represents customers who encounter unavailable
items but do not cause dissatisfaction costs as a convenient substitution is
offered. A normal demand distribution is assumed with µic ∈ [7, 25] and
the coefficient of variation CVic ∈ [1%, 50%]. This is based on the premise
that a continuous demand distribution closely resembles a discrete demand
distribution (Hübner et al., 2016b). To avoid the appearance of negative
demand, we compute the demand dispersion using CVic. We assume
conformity of OOA and OOS substitutions (cf. e.g., Campo et al. (2004))
with γOOAjcic = γOOSjcic and δOOAidic

= δOOSidic
. The case of substitution demand

for different items across channels is not considered as this is assumed
to pose a small magnitude, hence DOOA(3)

ic = DOOS(3)
ic = 0. We define an

aggregated in-channel substitution rate for OOA with ΓOOAic = ∑
j∈I γ

OOA
jcic

and aggregated cross-channel substitution rate with ∆OOA
ic = ∑

d∈C δ
OOA
idic

.
The total OOA substitution rate of an item i in channel c is denoted as
θOOAic = ΓOOAic + ∆OOA

ic . It is analogously defined for OOS with ΓOOSic , ∆OOS
ic
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and θOOSic . Both aggregated rates θOOAic and θOOSic need to be below 100%.
We assume that γOOAjcic = ΓOOAic

I−1 and δOOAidic
= ∆OOA

ic

C−1 . We exclusively consider
the OC case of BOPS to once again streamline the analysis and not to
mix too many effects. Substitution from the store channel d to the online
channel c is therefore δOOAidic

= δOOSidic
= 0. This makes θOOAic = ΓOOAic for the

store channel as ∆OOA
ic = 0. Space-elasticity βic ∈ [0%, 35%], for the store

channels and βic = 0 for all online channels is in line with Eisend (2014).
To foreclose any noise in the results, all items are assigned a width bic = 1,
a quantity per facing gic ∈ [3, 6] for stores and a quantity per package unit
gic = 10 for online channels. Available space Sc is limited. It fulfills ∼80%
of the sum of the basic store demand of all items and ∼90% of the sum of
the basic online demand of all items, and thus does not completely satisfy
the basic demand αic for all items i in the channel c.

A machine running on Windows 10 64-bit with an Intel Core i7-7600U CPU
2.80GHZ and 16 GB of installed memory was used for numerical tests. The
model and algorithm are implemented in Python 3.6 using PyCharm and
solved with Gurobi Optimizer.

3.4.2 Efficiency of the algorithm

In this section we execute a range of numerical tests to assess the heuristic’s
performance. First, we provide the performance results of our algorithm
in comparison to an exact approach. Thereafter we test the run time for
large instances, for which optimal solutions cannot be computed anymore.
A comparison with an alternative heuristic approach follows in the final
tests of this section.

Comparison with full enumeration A set of small instances was solved
with JOCIAO and a full enumeration to obtain exact results as a benchmark.
The test was carried out for small problem sizes. Table 3.4 indicates the
exponentially growing run time with increasing instance size of the exact
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solution approach. Compared to the exact approach our solution approach
provides significantly better run times while delivering near optimal re-
sults. On average, the model accomplishes a solution quality of 99.42% to
99.98%.

Table 3.4: Comparison of JOCIAO to full enumeration: run time and solution quality
Number of items Ic per channel 2 2 3 3 4
Space Sc in store, online warehouse 4, 2 6, 3 6, 3 8, 4 12, 6
Number of instances 30 30 30 10 10
Avg. run time JOCIAO [seconds] 2.2 2.4 5.3 7.4 10.3
Avg. run time full enumeration [seconds] 260.5 443.7 3844.0 14,305.2 > 18,000
Avg. solution quality1 99.42% 99.49% 99.89% 99.98% n/a
1 Total profit obtained by JOCIAO / Total profit obtained by full enumeration

Run time tests with large instances Retailers usually run assortment
optimization for categories with 50 to 100 items. Assortment, space and
inventory selection is commonly carried out periodically in the course of a
cyclical assortment review (e.g., for fashion retailers with seasonal items or
for food retailers with an annual review of permanent assortments). In order
to allow for the computation of different scenarios, a reasonable processing
time even for large assortments is required. To test this prerequisite, we
generated a set of large instances and solved it with our model. Table 3.5
illustrates the results that exhibit reasonable solution times for the tactical
problem.

Table 3.5: Application of JOCIAO to large instances: run time

Number of items Ic per channel 20 40 60 80 100
Space Sc in store, online warehouse 60, 30 120, 60 180, 90 240, 120 300, 150
Avg. run time [minutes] 4.3 13.1 40.3 74.0 117.1

Comparison with a greedy heuristic This section performs the com-
parison of JOCIAO with a greedy heuristic. The greedy heuristic strikes
through its short run time while providing solid results for assortment and
knapsack problems. The item profit is calculated for each potential facing
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value in the store and in the online warehouse. Equation (3.3) is called to
base the profit on space-elastic demand Dsp

ic . All items Ic for each channel
are then ranked according to their item profit taking into consideration the
space requirements bic and gic and allocated to space Sc in decreasing order.
Once space Sc is used up, the decision and auxiliary variables kic and xic
are obtained to compute DOOA(1)

ic , DOOS(1)
ic , DOOA(2)

ic and DOOS(2)
ic using For-

mulas (3.4), (3.5), (3.7) and (3.8). Lastly, the resulting profit is calculated
ex-post with Equation (3.1). The greedy heuristic has the disadvantage
of not directly incorporating the substitution effects. As such we first use
randomly generated substitution rates, and thereafter substitution rates
within certain ranges.

Table 3.6: Comparison of JOCIAO with greedy heuristic: run time and profit change

Items Ic per channel 5 10 20 30 20 20 20 20 20

Subst.rate1ΓOOA
ic , ΓOOS

ic rand. rand. rand. rand. rand. rand. rand. rand. rand.
Subst.rate2∆OOA

ic , ∆OOS
ic rand. rand. rand. rand. 0% 10% 20% 30% 40%

Space S in store, online 15, 7 30, 15 60, 30 90, 45 60, 30 60, 30 60, 30 60, 30 60, 30

Avg. run time [sec.] 16.0 56.5 259.9 581.9 179.5 201.4 181.3 310.1 445.1
Avg. profit change3 1.8% 1.1% 0.8% 0.9% 0.6% 0.6% 0.7% 0.9% 1.0%
1 In-channel
2 Cross-channel from webshop d to store c
3 (Total profit obtained by JOCIAO / Total profit obtained by greedy heuristic) - 1

Table 3.6 summarizes the results for different assortment sizes and substi-
tution rates. Generally, JOCIAO provides a clear profit advantage at the
cost of longer run times. It yields an average profit advantage of up to 1.8%
over the greedy heuristic. The profit advantage decreases with increasing
assortment sizes as additional iterations and thereby alterations of kic have,
in relative terms, a lower impact on profit for large instances. Further-
more, the profit advantage increases with higher cross-channel substitution
rates.
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3.4.3 Managerial insights on the effect of in-channel vs.
cross-channel substitution

In our first analysis to obtain managerial insights into substitution effects
and their impact on OC assortments and total retail profitability, we
investigate different substitution patterns within and across channels with a
data set with Ic = 20. We apply a benchmark with an aggregated in-channel
substitution rate of 20% for all items within the online channel, 20% within
the store, and additionally an aggregated cross-channel substitution rate of
20%. A total of 60% of the demand for a certain product may be substituted
as a result. As a comparison, we created five further data sets without any
in-channel substitution ΓOOAic = ΓOOSic = 0%, but aggregated cross-channel
substitutions of ∆OOA

ic = ∆OOS
ic in the range of 40% to 80%. Only in the

case of 60% do we have the identical total substitution rate θic + θid (within
and across channels), whereas the other data sets go along with lower or
higher substitution potential.

Table 3.7: Impact of in-channel and cross-channel substitution rates, with identical
costs across channels: profit change

Γic Γid ∆ic Sum Avg. profit
webshop store webshop to store change1

Benchmark 20% 20% 20% 60%
Data set 1 0% 0% 40% 40% -3.4%
Data set 2 0% 0% 50% 50% -3.3%
Data set 3 0% 0% 60% 60% -3.1%
Data set 4 0% 0% 70% 70% -2.9%
Data set 5 0% 0% 80% 80% -2.7%
1 (Total profit of data set / Total profit of benchmark) - 1

Table 3.7 shows that the benchmark clearly results in higher profits. It
can thus be concluded that in-channel substitution is more beneficial than
equally high webshop-to-store substitution. In fact, not even a higher
aggregated substitution rate of 70% or 80% leads to a profit advantage. The
main driver is additional in-store demand that fuels the profit advantage.
Substitutions to items with higher profits are listed within the channel,
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instead of the identical items that are listed in the other channel, but with
the same profitability as the unavailable item.

Next, we analyze the impact of cross-channel substitutions in combination
with cost differences across channels. This serves to understand the cost
differences required between channels to obtain break-even. Unit costs
in the store, as the demand-receiving channel, were therefore gradually
reduced while all other parameters remain constant. The above-described
benchmark and data set 3 are applied to obtain identical substitution levels
in both cases.

Table 3.8: Sensitivity analysis of varying store unit costs for data set 3: profit change

Decrease in store unit cost uic
1

-10% -8% -6% -4% -2% 0%
Avg. profit change2 3.3% 2.0% 0.7% -0.5% -1.8% -3.1%
Note: Based on 50 randomly generated instances for Ic = 20; no shortage costs
1 Decrease in store unit costs for data set 3 compared to store unit costs for benchmark
2 (Data set 3 profit / Benchmark profit) - 1

Table 3.8 summarizes the impact on total profit. As already stated above,
with identical unit costs across channels and no in-channel substitution, we
obtain a 3.1% lower profit on average than with in-channel substitution.
However, the profit disadvantage turns into a profit advantage once a unit
cost decrease of around 4-6% can be realized in the store . This is the
break-even point, where lower unit costs counterbalance the unfavorable
substitutions across channels instead of within channels. Given that a cost
reduction of 4-6 % is a challenging objective for low-margin retailers, we can
therefore summarize that it is clearly worth supporting and incentivizing
in-channel substitution.

To sum up, substitution across channels gives the retailer more opportunities
to offer the desired products, but as the analysis shows, substitution within
a channel is more beneficial for retailers when profits for each item are
identical across channels. Missing substitutions within a channel cannot be
compensated by substitutions across channels unless there are significant
cost differences across channels. Thus, when optimizing assortments, a
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primary focus has to be given to in-channel substitution for profitable items.
This does not just present higher profit potential: it is also easier and less
costly to execute, using aids such as technology-enabled mechanisms.

3.4.4 Managerial insights on the effect of substituting
identical products across channels

Customers exhibit a notably high affinity for certain items or brands in
industries such as fashion or electronics, which poses a great opportunity
for OC compared to SC or MC retailers. In order to obtain the item
they want, customers are very willing to switch channels, especially if the
transition is convenient, and do not consider other items an alternative.
This special case is examined by setting the cross-channel substitution
rate with ∆OOA

ic = ∆OOS
ic to up to 80% for all items. To allow for such a

high product affinity, in-channel substitution rate across different items is
ΓOOAic = ΓOOSic = 0%. As we want to assess the potential of substitution
across channels, we apply no cross-channel substitution as the reference
case (∆OOA

ic = ∆OOS
ic = 0%). The reference setting resembles an MC retailer

that operates two separate channels, but without any links between them.
This benchmark analysis indicates the overall potential for integrating
the channels and allowing easy cross-product substitutions when moving
from MC to OC for categories with high product affinity. As we focus on
substitutions from online to store, only the solution structures within the
store are affected and reported in the following.

Table 3.9 shows that for OC assortments with high-affinity items and equal
costs across channels, the average profit advantage can reach up to 1.42%
compared to an MC setup. By motivating customers to switch across
channels for high-affinity items, profits increase in all cases. The increase
in total profits is solely driven by an increase in store profits as the store
receives additional cross-channel substitutions from unsatisfied demand of
the webshop. Less profitable items are thereafter delisted or decreased in
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Table 3.9: Impact of omni-channel substitution on high-affinity products: profit change
and assortment structure

Cross-channel subst. rate ∆OOA
ic , ∆OOS

ic

20% 40% 60% 80%
Avg. profit change1 Total 0.33% 0.66% 1.03% 1.42%
Avg. change of assortment size2 Store -1.6% -2.3% -2.8% -4.2%
Avg. no of items with facing changes3 Store 6.0% 10.6% 15.9% 19.9%
Note: Based on 50 randomly generated instances for Ic = 20; no shortage costs
1 (Total profit with substitutions / Total profit without substitutions) - 1
2 (No of. items ic in OC assortment / No of. items ic in MC assortment) - 1
3 Share of items in OC setting with different facing number than in MC setting

stock while more profitable items with additional cross-channel substitution
demand are listed or increased in stock. This redistribution of store space
is also mirrored by decreasing assortment size and increasing facing changes
when substitution rates grow.

3.4.5 Managerial insights on the effect of omni-channel
vs. multi-channel retailing

Impact of omni-channel substitution In the following analysis we fur-
ther investigate the effects of OC and MC assortments in a more general
setting by comparing an OC retailer with an MC retailer. To compute the
profit impact, the assortment optimization for the MC retailer is performed
without cross-channel substitution (∆OOA

ic = ∆OOS
ic = 0). Table 3.10 shows

the results of the analysis and demonstrates that without shortage costs,
cross-channel substitution leads to a profit increase of up to 1.06% on
average. Of the 800 instances tested in Table 3.10, over 98.6% of the items
achieved a profit advantage from applying cross-channel effects compared
to the MC setup. As expected, higher substitution rates lead to growing
profit advantages over MC retailing. Quadrupling the cross-channel sub-
stitution rate leads to at least a quadruplication of the profit advantage.
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Therefore, achieving an increase of cross-channel substitution rates, for
example through sales incentives or supportive technology, depicts a great
opportunity for retailers to mark up their total profit. This is despite the
higher impact of in-channel substitutions (see Section 3.4.3).

Table 3.10: Impact of omni-channel substitution with sic = 0: profit impact of OC
over MC

Cross-channel subst. rate ∆OOA
ic , ∆OOS

ic Growth factor
Ic 10% 20% 30% 40% from 10% to 40%

Avg. profit change1

5 0.25% 0.50% 0.80% 1.06% 4.3
10 0.19% 0.40% 0.61% 0.82% 4.3
20 0.17% 0.35% 0.55% 0.74% 4.4
30 0.18% 0.38% 0.58% 0.78% 4.4

Max. profit change1

5 1.05% 2.21% 3.22% 4.06% na
10 0.46% 1.46% 1.94% 2.39% na
20 0.38% 0.76% 1.12% 1.42% na
30 0.35% 0.78% 1.16% 1.60% na

1 (OC profit / MC profit) - 1

In Table 3.11 we detail the solution structure of one representative data set
from Table 3.10 with N = 20 and ∆OOA

ic = ∆OOS
ic = 20%. For this data set,

55.5% of the profit is contributed by the store and 44.5% by the webshop.
All of the products listed in the store are also listed in the webshop as the
OC retailer focuses on the most profitable items, which are identical across
channels. The store receives more demand given the space elastic demand
and cross-channel substitutions from the webshop to the store. Additional
demand can be leveraged by the store by delisting less profitable items
and vacating space for the (already listed) more profitable items. These
effects in combination with slightly more total space in warehouses result
in 48% larger assortments in the webshop than the store. This constitutes
a realistic setting as retailers tend to list more items online, particularly
items with low demand (i.e. the long tail).

Table 3.11: Representative solution in detail, N=20

Profit Assortment size Space-el. demand Substitutions
% of total no. products % of total % of total % of total

Store 55.5% 12.5 62.6% 51.5% 5.0%
Webshop 44.5% 18.5 92.5% 41.8% 1.4%
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Impact of position-dependent demand We further analyse the impact
of OC and MC assortments via an extension of the demand model with
position-dependent demand in the store. We assume that the positioning
of items on shelf segments has an impact on demand (see also Hwang
et al. (2005); Hübner and Schaal (2017b); Bianchi-Aguiar et al. (2021)).
Total space is equally split up into a number of shelf segments t, t ∈ T ,
which are thereby also space constrained. The shelf segments can be
differentiated vertically (e.g., eye-level vs. knee-level) and horizontally (e.g.,
beginning vs. center of aisle). The variables zickt and kict are extended
with the shelf segments t to also include the assignment of facings to shelf
segments. Different customer visibility for each segment may result in a
further demand effect that is modeled with the parameter λct. It denotes
the attractiveness of each shelf segment t ∈ T in each channel c ∈ C. In the
general case, an item can be assigned to multiple shelf segments t at the
same time. We therefore calculate an average attractiveness parameter λickt
with λickt = [∑t∈T kict · λct]/kic which depends on the facings distribution
across the segments. The parameter λickt can be obtained in precalculations.
Consequently, we incorporate the position-dependent demand in the total
demand calculation of Equation (3.2). This requires to replace space-
dependent demand DSP

ic with the space- and position-dependent demand
DSP,Pos
ickt that is calculated by:

DSP,Pos
ickt = αic · λickt · kβicic ∀ c ∈ C, i ∈ I k ∈ K, t ∈ T (3.23)

By means of the replacement, DSP,Pos
ickt is also integrated into the calculation

of OOS demand and into the algorithm. In the initialization in Stage 1,
Step 1.2 needs to be extended for all shelf segments t ∈ T to calculate the
profit π`ickt with f

∗,`
ickt = f ∗,`

DSP,Pos
ickt

. This is then applied to the BIP to obtain
z`ickt and an initial solution. The updated demand is applied in Step 2.3,
where demand f ∗,`ickt and profit π`ickt are again calculated additionally for
all shelf segments t ∈ T . In Step 2.4 we obtain z`ickt and consequently the
facings for all shelf segments to update f ∗,`ickt in Step 2.5. This is iterated
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until the stop criteria in Step 2.6 is met. We extended the stop criteria to
also hold true for all shelf levels t, t ∈ T .

We want to identify the impact of position-dependent demand on OC
assortment planning. For this purpose we focus on a representative data
set with N = 10 and the same parameter settings as in Table 3.10. This
is extended by dividing the total space into three segments (T = 3). We
streamline the analysis and apply position-dependent demand only in the
store and not to the webshop. That means λct is zero for the webshop
and for the store λct = {1.0, 1.2, 1.4} for t = {1, 2, 3}. We differentiate
the segments into vertical levels where the top level is characterized by
higher visibility (e.g., eye-level position) and thereby higher demand for
this segment (see e.g., Drèze et al. (1994)).

Table 3.12 shows that in a setting with position-dependent demand the
profit advantage of OC over MC is 0.43% for a cross-channel substitution
rate of 40%. This is approx. 50% lower than the profit advantage of
OC over MC without position-dependent demand (0.82%, see Table 3.10).
The difference can be attributed to the higher demand in the retail store
through the added position-dependent demand, which reduces the relative
profit advantage of OC over MC. Assortment size changes have a similar
magnitude as without position-dependent demand. Overall, it can be
constituted that the position-dependent demand has an impact on the
profitability, but when assessing OC vs. MC assessments it is relatively
small.

Table 3.12: Impact of omni-channel substitution in a demand model with position-
dependent demand

Cross-channel subst. rate
∆OOA

ic , ∆OOS
ic

20% 40%
Avg. profit change1 Total 0.21% 0.43%

Store 0.36% 0.73%
Webshop 0.00% 0.00%

Note: Based on 50 randomly generated instances for Ic = 10; no shortage costs
1 (Total profit with substitutions / Total profit without substitutions) - 1
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Impact of shortage costs A further analysis showcases the impact of
the shortage costs that act as steering costs and additionally penalize non-
available items. Hence we now assume sic > 0. Table 3.13 highlights that
cross-channel substitution leads to a profit increase of up to 1.84%, but
only up to 0.23% on average. The relatively small magnitude is attributed
to shortage costs as we assumed that on average only 80 to 90% of total
basic demand can be provided with the limited shelf and warehouse space.
Assortments therefore tend to have too little space for too much demand.
Since demand is added via cross-channel substitution to stores, a higher
share of customer demand is unfulfilled and total shortage costs rise. In
test cases where the sum of the basic demand exceeds the total space by
25%, the magnitude may even become negative. Only items with relatively
high margins are able to leverage their favorable demand-to-space ratios,
exploit the additional demand and avoid customer dissatisfaction.

Table 3.13: Impact of omni-channel substitution with sic > 0: profit impact of OC
over MC

Cross-channel subst. rate ∆OOA
ic , ∆OOS

ic

Ic 10% 20% 30% 40%

Min. profit change1
10 -0.29% -0.53% -0.76% -1.01%
20 -0.19% -0.33% -0.48% -0.63%
30 -0.20% -0.40% -0.54% -0.68%

Avg. profit change1
10 0.05% 0.10% 0.15% 0.22%
20 0.04% 0.07% 0.12% 0.20%
30 0.05% 0.10% 0.16% 0.23%

Max. profit change1
10 0.75% 1.03% 1.37% 1.84%
20 0.24% 0.45% 0.62% 0.88%
30 0.30% 0.53% 0.77% 1.16%

1 (OC profit / MC profit) - 1

Value of information Finally, we assess the effect of ignoring cross-
channel substitution when taking the assortment decision, which can also
be interpreted as value of information. This situation may arise when online
customers face OOA or OOS and transition to the store, even though the
MC retailer does not offer OC services, does not advertise the store in the
online channel or is simply not aware of such customer behavior. We look at
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an MC retailer that optimizes assortments assuming (∆OOA
ic = ∆OOS

ic = 0%)
while in reality costumers transition from online to retail and substitute
items with (∆OOA

ic , ∆OOS
ic > 0%). The MC solution structure obtained

without substitutions is then applied with the actual substitution rates
ex-post and compared to the solution with direct integration of substitution
effects as in the OC model. We denote this scenario as “Ignoring”. The
benchmark is the scenario as described in this paper that directly integrates
cross-channel substitution. This is denoted as “Integrating". Table 3.14
reports the profit increase for the two different scenarios with different
substitution rates. The profit increases of up to 1.42% when channel
switching is directly integrated the channels (in “Integrating”), whereas the
profit with an ex-post evaluation of substitution effects results in an average
profit increase of up to 1.12%. The results reveal that retailers suffer up to
0.30% on average and up to 0.81% profit loss (for ∆OOA

ic = ∆OOS
ic = 80%)

if they disregard OC substitution in assortment planning. It is therefore
recommended that retailers consider OC substitution in their assortment
composition to yield additional profits.

Table 3.14: Impact of disregarding omni-channel substitution: profit change
Cross-channel subst. rate ∆OOA

ic , ∆OOS
ic

20% 40% 60% 80%

Profit change1 “Integrating” Scenario 0.33% 0.66% 1.03% 1.42%
“Ignoring” Scenario 0.31% 0.59% 0.85% 1.12%

Value of information2 Avg. 0.02% 0.08% 0.17% 0.30%
Max. 0.09% 0.31% 0.59% 0.81%

1 (Retailer profit / MC profit) - 1
2 Difference between both scenarios

3.5 Conclusion and future research

In order to account for cross-channel shopping behavior, we described and
defined the novel problem of integrated assortment, space and inventory
planning in OC retailing. The major difference vs. existing contributions is
the acknowledgment and integration of cross-channel substitution behavior
in the case of OOA or OOS. We developed the corresponding model to
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maximize the retailer’s total profit taking into account stochastic demand
and substitutable products. The model incorporates space-elastic demand,
OOA and OOS substitution demand within a channel as well as OOA and
OOS substitution demand across channels. The NP-hard multiple-knapsack
problem exhibits increasing run times with the number of items and space
constraints. A BIP was therefore developed and employed in the specialized
heuristic JOCIAO to efficiently solve the novel problem. In the numerical
results and managerial insights we particularly show (counter intuitively)
that in-channel substitution matters. This gives retailers the opportunity to
transfer demand to more profitable items. Retailers make further gains with
cross-channel substitution in cases with high product affinity. A further
highlight is the finding that the increase of cross-channel substitution rates
increases profits at a similar rate. Being able to limit or control customer
dissatisfaction, OC retailing may generate more beneficial profit advantages.
Increasing the substitution rate and a seamless transition from online to
retail should be a major objective for OC retailers to boost profits. Beyond
that, considering cross-channel substitution in the assortment optimization
offers extra profits.

Given the novelty of OC assortment planning there is a wide range of
future research opportunities. The current model could be extended by
including further variables. The first opportunity is to include elements
of category planning and expand the scope towards defining category
roles and sizes. This includes taking account of complementary effects
across categories and channels, such as show- and webrooming effects.
Equivalent to space-elasticity in the bricks-and-mortar store, one could
include the effects of positioning or highlighting products on a webpage.
Depending on the position or the highlight, visibility is improved and
therefore demand increases. Likewise, it may be insightful to investigate the
effect of assortment sizes and customers’ variety perceptions. The extension
of the demand model with various effects goes along with the research
question on which demand effect matters. A modeling and optimization
approach can serve here as input to specify empirical research efforts as well.
Another demand effect is cross-selling when customers pick-up a product in
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the store and decide to buy another product on top of that. Given the OC
customers’ superior value (Song et al., 2020), this is often a rationale for
implementing BOPS and could be included in the model. As Rooderkerk
and Kök (2019) state, retailers also support customers in their customer
journey from offline to online, for example by providing terminals or tablets
to access the webshop while shopping in the bricks-and-mortar store, laying
the groundwork for another extension of the current model. Within our
model, webshop customers have access via BOPS to alternatives in the store.
Our model can be extended by adding another dimension to the substitution
matrix (by product, by channel and by delivery mode) and by differentiating
the unit costs by delivery mode to incorporate the differences between BOPS
and ship-from-store. While we investigate the assortment planning problem
from a tactical perspective without reorder options from suppliers, we also
deem an operational or multi-period model valuable research. This requires
incorporating reorder options from suppliers, customer fulfillment with
backlogging or customer returns. Furthermore, current assumptions of the
model provide opportunities for relaxation. For example, future models
could assume several rounds of substitution in the event that products
are unavailable, potentially with decreasing substitution rates. In addition
to that it would be worth focusing on the economics behind different
channels by adjusting unit costs and investigating the potential of steering
customers into certain channels. Interesting insights could also be generated
by examining the relevant demand effects empirically. While OC demand
forecasting has already received some attention, (e.g., Cao et al. (2016)),
it would be interesting to compare this with empirical results. Given
the diverse nature of OC retailing in terms of categories (e.g., fashion,
electronics, groceries), store formats (e.g., hypermarkets or convenience
stores) and business models (e.g., showrooming or webrooming), it is also
worth determining the differing impact OC has on certain combinations.
This would also make it possible to derive the most beneficial conditions for
specific OC business models, such as categories or store formats, as well as
substitution rates and/or assortment structures. This paper and the model
and insights derived can serve as starting point for such future research.
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Figure 3.1: Pseudo code of JOCIAO

Stage 1 – Initialization: Solve BIP without substitution effects
Input: Set of channels C, set of items in channel Ic and set of possible facings
Kic

Step 1.1 Set ` = 0
Step 1.2 For all channels c ∈ C:

For all items i ∈ Ic:
For all facings k ∈ Kic:

Calculate π`ick with f∗,`ic = f∗,`
DSPic

End for
End for

End for
Step 1.3 Solve BIP using Equation (3.18) to (3.21) to obtain z`ick and conse-
quently all k`ic and x`ic and Π`

Step 1.4 For all channels c ∈ C:
For all items i ∈ Ic:

Deploy k`ic and x`ic in Equation (3.16) to update f∗,`ic
End for

End for
Return: z`ikl, f

∗,`
ic and Π`

Stage 2 – Iterations: Solve BIP with substitution effects
Input: Set of channels C, set of items in channel Ic, set of possible facings Kic

and z`ikl, f
∗,`
ic and Π`

Step 2.1 Repeat
Step 2.2 Set ` = ` + 1
Step 2.3 For all channels c ∈ C:
Step 2.3.1 For all items i ∈ Ic:

Set f∗,`ic = f∗,`−1
ic

Step 2.3.2 For all facings k ∈ Kic:
Calculate π`ick with f∗,`ic

End for
End for

End for
Step 2.4 Solve BIP using Equation (3.18) to (3.21) to obtain z`ick and conse-
quently all k`ic and x`ic and Π`

Step 2.5 For all channels c ∈ C:
For items i ∈ Ic:

Deploy k`ic and x`ic in Equation (3.16) to update f∗,`ic
End for

End for
Step 2.6 Until Stop Criteria is met and Equation (3.22) holds true, otherwise
continue with Step 2.1
Return: z`ikl and Π`
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DOCTORAL THESIS
Omni-channel Assortment Planning and Store Operations

4 An analytical assessment of
demand effects in
omni-channel assortment
planning

The advent of omni-channel (OC) retailing makes assortments seamlessly
available across channels and affects customer behavior. Whereas the de-
mand effects within channels are well known, the effects across channels
are less clear. A vast variety of assortment-related demand effects in bricks-
and-mortar stores, webshops, and across channels has a potential impact
on retailers’ profitability. The multitude makes it costly to measure each
effect empirically, which is further aggravated by interdependencies between
products, channels and effects, and the resulting numerical complexity.
Despite most retailers adopting OC assortments, the relevance and inter-
play of these demand effects is neither fully clear from an empirical nor
an optimization perspective. It becomes necessary to better understand
how assortment-related decisions impact customer behavior and optimal
assortments.

We approach this research gap by identifying and integrating demand effects
in a novel model for OC assortment optimization. Our results show that
in-channel effects matter more than cross-channel transitions. This also
holds true when demand effects exceed the empirically measured values in a
single-channel context. Generalizing, the impact depends on demand rates,
channel package sizes, and channel size. These findings are relevant for the
OR community, empirical researchers, and retailers and help streamlining
further research in two ways. First, further advances of OC assortment
models with cross-channel effects should be based on our findings. Second,
given that the empirical tests for these effects are very voluminous and
costly, our findings serve as “guardrails” to define the scope of such empirical
investigations.
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4.1 Introduction

The growth of e-commerce and the introduction of online channels has
been the largest change in retail over recent decades. Seamless shopping
options across digital and bricks-and-mortar channels are enabled along with
enhanced operations and additional customer interfaces to allow frictionless
OC retailing (Beck and Rygl, 2015; Hübner et al., 2016b; Rooderkerk and
Kök, 2019). Examples are buy-online pick-up in store (BOPS), where
customers can pick-up pre-ordered products in stores, or digital assortment
extensions (DAE), where customers can access online assortments in stores
via digital point of sales such as terminals or tablets (e.g., Hübner et al.
(2021)). These options make assortments seamlessly available for customers
across channels (e.g., Gallino and Moreno (2014); Ishfaq et al. (2016)),
which calls for the incorporation of manifold customer behavior. Customer
demand at the point of sale is influenced by the visibility of product on
the stores shelves (e.g., Chandon et al. (2009)) and on the webpage of the
online shop (e.g., Atalay et al. (2012)). Furthermore, if preferred products
are unavailable, customers may settle for a substitute (Kök et al., 2015).
With OC assortments, this is not just possible within the channel, but
also across channels (Dzyabura and Jagabathula, 2018). For example, if a
preferred product is not available at the store, the customer may opt to
purchase a different product from the store or the identical product from
the online channel.

Insights into demand effects within a store are rich (e.g., Drèze et al. (1994),
Eisend (2014)), whereas influencing factors in the webshop receive less cov-
erage (e.g., Djamasbi et al. (2010)), and cross-channel substitution is barely
covered (e.g., Corsten and Gruen (2019)). The empirical studies usually
focus on a single demand effect within one channel as data collection is
costly, extensive and time consuming. The impact of all demand effects such
as the quantity and position of products within store shelves, the position
of products on the webpage, substitutions within a channel and transitions
across channels would need to be estimated simultaneously. Furthermore, as
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some effects reinforce each other (e.g., high quantity in a good position) and
some compensate for suboptimal decisions (e.g., substitutions), it becomes
necessary to understand how these effects interact and impact optimal
assortment compositions. From an optimization perspective, first contribu-
tions have appeared that cover OC assortment planning (e.g., Dzyabura
and Jagabathula (2018), Hense and Hübner (2021)). However, these either
do not cover the entire width of demand effects or lack a comprehensive
analytical assessment of the various demand sources. This is mainly caused
by the complexity of the decision problem. It is a quadratic, nonlinear, and
NP-hard problem due to the reciprocal demand dependence of products
(Hübner et al., 2016a).

Despite most retailers adopting OC services, the relevance and interplay
of various demand effects is neither fully clear from an empirical point nor
an optimization perspective. It becomes necessary to better understand
how assortment-related decisions impact customer behavior and assortment
optimization. Figure 4.1 visualizes the intersection of the problem. As the
empirical research of multiple demand effects across channels is scarce, it
is important to develop insights into which demand effects matter when
determining assortments. Given that such consumer studies will need to
be very extensive, it is necessary to limit the scope of future studies by
understanding which demand sources under which circumstances have a
high impact on optimal assortments. For these demand effects, consumer
studies need to be designed that generate precise estimations. However, this
also means that Operations Research (OR) needs to connect the demand
effects within a decision model and develop tractable models and efficient
solution approaches. We therefore contribute to both consumer research
and OR by developing an optimization approach for OC assortments with
relevant demand effects. The model enables analytical demand assessment
and is crucial for substantiating the relevance of each demand effect, and
determining whether and when it becomes necessary to integrate these into
OC assortment planning.
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Figure 4.1: Research scope and link between consumer studies and Operations Research

The remainder is as follows. We first introduce the decision problem and
identify its related demand effects (Section 4.2) and review associated
literature (Section 4.3) before then developing a comprehensive demand
and decision model and solution approach (Section 4.4). The heart of the
paper consists of numerical analysis. We develop managerial insights by
means of computational studies (Section 4.5). Lastly, we synthesize and
highlight potential areas for future research (Section 4.6).

4.2 Decision problem and related demand

effects

Figure 4.2 gives an overview of the three decisions an OC retailer has
to undertake for a set of products. First, the items to be listed have to
be defined for both the store and the webshop. The decision problem
is called assortment composition. Second, in the store, the number of
customer-facing units for each listed item need to be determined and placed
on vertical and horizontal segments of a shelf. This is called space and
position allocation. The number of customer-facing units also defines the
available quantity, which constitutes the third planning issue inventory
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management. Correspondingly, in the webshop, for listed items retailers
need to decide the position on the webpage as well as the inventory in the
online warehouse. As space is limited, the three decisions are interdependent
within and across channels. For instance, the listing of additional products
in the store requires lower inventory levels of other listed products, which
increases the risk of out-of-stocks and may result in and may result in
customers searching for substitutions in the webshop. In the following we
will detail the decision problems and demand effects. These differ between
channels and we will analyze these separately for (1) stores, (2) webshops,
and, synthesized, for the (3) OC setting. Going forward we will use the
term “store” as the equivalent for a bricks-and-mortar sales location and
“webshop” as the pendant for a digital sales channel.

Figure 4.2: Illustration of the assortment-related decision problems of an OC retailer

(1) Store-related planning issues and demand effects Typically, re-
tailers decide which items of a category to list (assortment composition)
and assign them to shelf segments in the store (space, position, and inven-
tory planning). Total shelf space is limited, leading to a trade-off between
wider assortments with more products that each occupy less shelf space
and inventory, and smaller assortments with more space and inventory per
item. The underlying decisions then interact with three demand effects:
space-elastic, shelf-segment, and substitution demand.
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The inventories of an item are denoted by the number of facings (i.e.,
the foremost unit of an item on the retail shelf) assigned to an item
and the number of units behind each facing. The more facings an item
receives, the higher the item’s visibility on the shelf. For example, the
blue bottle in Figure 4.2 currently has 3 facings. Increasing it to 4 facings
would increase its visibility. This effect is known as space-elastic demand.
Shopper surveys and field experiments find a positive correlation between
the number of facings and the demand. For example, the influence of facings
on demand has been tested for impulse-purchased items and staples (Brown
and Tucker, 1961; Cox, 1964), grocery products (Frank and Massy, 1970),
and fast-moving products (Curhan, 1972). Chandon et al. (2009) show that
out of several in-store demand factors such as pricing or positioning, the
variation of facings is the most influential one. Eisend (2014) carry out a
meta-analysis covering over 1,200 consumer studies showing an average rise
in demand of 17% every time the number of allocated facings is doubled.
In the course of this study, it is also shown that the demand for one items
changes by -1.6% when the space assigned to another item is varied. This
effect called cross-space elasticity is investigated by Schaal and Hübner
(2018), who state that they have found no significant impact of this effect
on shelf optimization exists.

The likelihood of an item being perceived and purchased also changes
depending on the vertical and horizontal position of an item on the shelf.
For example, moving the blue bottle from top level to the mid-level may
increase the visibility as it comes to the eye-level. This is called shelf-
segment demand, which has been confirmed in various studies. For example,
Underhill (2000) defines a “reliable zone”, roughly ranging from eye to
knee level, where products are much more likely to be seen. Adding to
that, Chandon et al. (2009) notices the same effect for items placed on the
top-shelf level. Drèze et al. (1994) also analyses position demand concerning
horizontal positioning and states that horizontal positions have a much
weaker impact than vertical positions. van Nierop et al. (2008) analyze
that, amongst others, the number of facings and the item positioning on
shelf levels impact demand. Valenzuela and Raghubir (2009a), Rodway
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et al. (2012), and Valenzuela and Raghubir (2015) analyze the center effect.
They show that consumers perceive items in the middle of an array as the
best price/quality trade-off.

Finally, the demand for an item is impacted by the availability. The
so-called substitution demand takes place when a desired product in the
store is unavailable (in Figure 4.2 all the products with cross through
them) and the customer substitutes the desired product for an alternative
product within the store. Unavailability of items can be caused by out-
of-assortment (OOA) or out-of-stock (OOS) situations. An item is OOA
when it is permanently delisted, while OOS describes a temporary sellout.
According to empirical studies, 45% to 84% of the initial demand can be
substituted, where the magnitude depends on product-, situation-, and
customer-attributes (e.g., Campo et al. (2004); Aastrup and Kotzab (2009);
Tan and Karabati (2013)).

(2) Webshop-related planning issues and demand effects Retailers
also need to decide which products to list for the webshop (assortment
composition), where to position them on the webpage (space and position
allocation), and how much inventory to assign to the selected products in
the warehouses (inventory planning). Given that warehouse space is also
constrained, the webshop faces the same trade-off as the store: an increase
in the size of the webshop assortment requires a reduction of the inventory
or even delisting of other products. Determining the assortment, space,
and position of products and inventory levels has an interrelation with the
following two demand effects: position and substitution demand.

A webpage can be described by an array of rows and columns, where the
horizontal and vertical location of products leads to increased customer
fixation and demand (e.g., Faraday (2000)). Position demand usually
increases for items positioned in the center or the top-left corner of a page.
For example, Atalay et al. (2012) note that centrally positioned brands
positively impact customers’ attention. Still (2017) states that spatial
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location predicts user fixation. Djamasbi et al. (2010) found that items
in the top left corner are also often attended to. Position effects are also
omnipresent in similar areas such as search engines, where top-ranked results
receive more clicks than lower-ranked results (Craswell et al., 2008). A
further variant of the position demand is the salience of an item compared
to the remaining assortment. This effect may come in the form of visual
highlights by graphically varying the background brightness or color, or
increasing the size of the product displayed (e.g., Faraday (2000); Grier
et al. (2007)). Greater salience results in higher attention, longer fixation
on a product, and stronger preferences for the same. Substitution demand
in the webshop is identical to this demand effect in the bricks-and-mortar
store. Products can be OOA or OOS and customers may substitute the
unavailable product with an available product from the webshop (see e.g.,
Jing and Lewis (2011)). Substitution within the webshop has little empirical
coverage in the literature.

(3) OC-related planning issues and demand effects All of the above
decisions, demand effects, and constraints within the channels also apply
to OC retail. Additionally, OC retailers need to take into account cross-
channel substitution demand. When customers face products that are OOA
or OOS, instead of staying within the channel, they replace the desired,
unavailable product with an identical or different product in another channel.
Substitutions can take place from the store to the webshop and vice versa.
Compared to substitution within stores, cross-channel substitution has only
recently gained attraction in literature. Gallino and Moreno (2014) and
Wollenburg et al. (2018a) show that channel transitions are facilitated by
fulfillment options such as BOPS that provide the online shopper with
real-time information about inventory availability in the store. Corsten and
Gruen (2019) investigate customer behavior when faced with unavailable
items in the online channel. 88% of online demand can be substituted, of
which 10% switch to a bricks-and-mortar store, 56% opt for a substitute
within the webshop, and 22% switch to another webshop.
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Figure 4.3: Summary of omni-channel demand effects

As summarized in Figure 4.3, we note a bandwidth of demand effects and
their potential interplay in an OC context. While some demand effects
are already difficult to assess empirically in isolation, the measurement of
such interplay and customer behavior is particularly challenging. Relevant
demand effects that require consideration (1) in the store are space-elastic,
shelf-segment, and substitution demand. There is a negligible impact of
cross-space elasticity and horizontal positioning. (2) Position and substitu-
tion effects in the webshop have been substantiated by current research but
still lack further empirical assessment. (3) In an OC context, it has been
shown that cross-channel substitution is an important area to study.

4.3 Related literature and contribution

This section analyzes pertinent assortment planning literature. We first
introduce fundamental SC literature, and secondly we review relevant OC
contributions. Store-related contributions primarily focus on various forms
of in-channel substitution demand. Smith and Agrawal (2000) and Kök and
Fisher (2007) optimize a retailer’s profit through a newsvendor formulation
that takes into account OOA substitution but ignores OOS substitution.
Honhon et al. (2010) additionally considers OOS substitutions for customer
segments based on sequential customer preferences. Hübner and Schaal
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(2017a) are the first to add space-elasticity to substitution demand in their
formulation. This is extended by Hübner et al. (2020) to two-dimensional
shelves. Operational assortment optimization for online channels mainly
utilizes dynamic approaches and demand learning to personalize assortments
based on available customer data for customers who arrive sequentially.
This short-term problem requires assortments that can be changed fre-
quently and without friction. Rusmevichientong et al. (2010) formulate an
online policy with unknown purchase probabilities. Abeliuk et al. (2016)
generalize Rusmevichientong et al. (2010) as they study the problem of
finding an optimal assortment and positioning of products subject to capac-
ity constraints. Chen et al. (2016) carry out a space optimization, where
inventory and the placement of products is optimized. Kallus and Udell
(2020) study dynamically personalizing assortments for customer segments
and how to define such segments. However, the scope of these papers is
different from our setting. These papers deal with a given assortment and
decide about the placement of products for customers or segments.

As store and webshop models are restricted to a single channel we henceforth
review models with omni-channels. The first contribution stems from
Dzyabura and Jagabathula (2018). They depict a retailer with a webshop
and a store. Sales are maximized by deciding on the subset of products to
offer in the store. In this scenario only the store assortment is optimized,
without optimizing inventories. Demand is modeled using a utility-based
model, where the customer’s physical evaluation of the store assortment may
change the customer’s product utilities of the store and online assortment
and result in purchasing a different item than the one originally preferred. In-
channel and DAE OOA substitution are factored in but no OOS substitution.
Geunes and Su (2020) develop the first model where a retailer optimizes
assortments and inventory for a store with limited shelf space and a webshop
with limited distribution center capacity. The utility-based model includes
store, online, and hybrid online customer segments. Webshop-to-store OOS
substitution is modeled through hybrid online customers that choose to
substitute OOS webshop products for identical products via drop-shipment
or ship-from-store (SFS). Regardless, the authors do not consider in-channel
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substitution or cross-channel substitution for different products. Most
recently, Hense and Hübner (2021) investigated the assortment, space, and
inventory problem for an OC retailer that offers BOPS through a webshop
to store substitution. The model includes OOA and OOS substitutions for
different products in the same channel or a different product in the other
channel. Space-elastic demand for the store and limited space for both
channels is also considered. However, relevant effects within the channels,
such as shelf-segment and position demand, and demand flows from the store
to webshop via DAE substitution are not taken into account. Furthermore,
the solution approach requires considerably higher computation times the
more demand effects are incorporated.

Summary of related literature and contribution Table 4.1 summarizes
related literature.

Table 4.1: Related literature
Decision1a Demand model Space No of

In-channel Omni-channel2 Other constr. items
Related contribution A I S Space Shelf. Pos. OOA OOS OOA OOS Stoch. Arrival3

Store
Smith and Agrawal (2000) X X X X S X 5
Kök and Fisher (2007) X X X X S X 29
Honhon et al. (2010) X X X X X D 8
Hübner and Schaal (2017b) X X X X X S X 200
Hübner et al. (2020) X X X X X X X S X 100
Webshop
Rusmevichientong et al. (2010) (X)1b X X D 200
Abeliuk et al. (2016) (X)1b X X X X S X 2
Chen et al. (2016) X X X S 12
Kallus and Udell (2020) (X)1b X X D 400
Omni-channel
Dzyabura et al. [2018] (X)1c X DAE X S 96
Geunes and Su (2020) X X SFS SFS X S X 20
Hense and Hübner (2021) X X X X X X BOPS BOPS X S X 100

This paper X X X X X X X X BOPS, BOPS, X S X 100
DAE DAE

1a Decisions included: Assortment (A), space (S), inventory (I); 1b Personalizing assortment display to customers with given total assortment; 1c

OC model only optimizing store assortment
2 Cross-channel substitution demand: ship-from-store (SFS), buy-online pick-up in store (BOPS), or digital assortment extensions (DAE)
3 Optimization: Static (S) or dynamic with sequentially arriving customers (D)

The store-focused literature often uses exogenous demand models, con-
strained space, and some sort of in-channel substitution. Recent models
also integrate space-elasticity but ignore certain demand factors such as
shelf-segment or position demand. Webshop-focused literature usually
utilizes demand learning for dynamically arriving customers. Given the
setting, such models are not applicable to tactical assortment planning
where inventories across the channels need to be defined for a mid-term hori-
zon and cannot be altered frictionlessly. Above that, no space constraints,
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single-channel demand effects, or additional sales channels are considered.
Finally, both store- and webshop-models are limited to one channel and
do not cover cross-channel substitutions. This problem is examined by
the small body of OC-related assortment literature. As indicated in Table
4.1, none of the models provided so far considers the whole spectrum of
SC demand effects as well as in- and cross-channel substitution. Most
strikingly, analytical perspectives on the integrated demand effects are
either fully absent (e.g., Dzyabura and Jagabathula (2018); Geunes and Su
(2020)) or focus on BOPS (e.g., Hense and Hübner (2021)). The overview
shows the need for the development of a model for assortment optimization
across channels taking into consideration the relevant demand effects in
each channel. Resulting insights will extend existing models and respond to
the findings of Wollenburg et al. (2018a), Rooderkerk and Kök (2019) and
Hense and Hübner (2021), who have already pointed out the shortage of
analytical insights on assortment planning with a common objective across
channels and the possibility for customers to move seamlessly between
channels.

4.4 Model and solution approach

In this section we first develop a profit function and binary-integer program
(BIP) that maximizes the profit of an OC retailer (Section 4.4.1). This
involves determining the optimal assortment, facing, position, and inventory
level for all items across all channels. The second stage is to derive the
demand for each item across all channels (Section 4.4.2). Finally, an
advanced specialized heuristic is developed to solve real-world applications
(Section 4.4.3).
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4.4.1 Decision problem and optimization model

Table 4.2 summarizes the notation.

Table 4.2: Model notation
Indices and sets
C Set of channels a retailer operates with C = {1, 2, . . . , c, d, . . . , |C|}
Kic Set of facings k a retailer can select for item i in channel c
I (I+, I−) Set of (listed, delisted) items with I = {1, 2, . . . , i, j, . . . , |I|}
Ic (I+

c , I−
c ) Set of (listed, delisted) items i within a channel c

Tc Set of shelf-segments t in channel c
Mc Set of webpage rows m in channel c
Nc Set of webpage columns n in channel c
Parameters
αic Base demand of item i in channel c
βic Space-elasticity of item i in channel c
λct Attractiveness factor of shelf-segment t in channel c
ψimn Position-elasticity of item i on webpage position in row m and column n
γOOA

jcic

(γOOS
jcic

)
Share of demand of item j in channel c that gets substituted by item i in channel c in
case item j is out-of-assortment (out-of-stock) in channel c, with j 6= i, i, j ∈ I

δOOA
idic

(δOOS
idic

)
Share of demand of item i in channel d that gets substituted by item i in channel c in
case item i is out-of-assortment (out-of-stock) in channel d, with d 6= c, c, d ∈ C

ηOOA
jdic

(ηOOS
jdic

)
Share of demand of item j in channel d that gets substituted by item i in channel c in
case item j is out-of-assortment (out-of-stock) in channel d, with j 6= i, i, j ∈ I and
d 6= c, c, d ∈ C

bic Width of one facing of item i in channel c
gic Inventory per facing of item i in channel c
kmax

ic (kmin
ic ) Maximum (minimum) number of facings of item i in channel c

Sc(Sct) Available shelf (storage) (in shelf-segment t) in channel c
ric Revenues for one unit of item i in channel c
uic Unit costs for one unit of item i in channel c
sic Shortage costs for one unit of item i in channel c
vic Salvage value for one unit of item i in channel c
Variables
kic(kict) Number of facings assigned to item i (in shelf-segment t) in channel c, integer
picmn Binary variable indicating whether item i in channel c was placed in position mn
xick Total inventory of item i in channel c for facing k, integer (auxiliary variable)

The OC retailer assigns items from a given set of items i, i ∈ I to one or
more channels c, c ∈ C. The total set of items I can be sold in all channels
c with c, d ∈ C, i.e., Ic, Id, . . . , IC ⊆ I. The subset of items in channel c is
given by Ic. Given that items in this subset can either be listed or delisted,
we differentiate between the set of listed items I+

c and the set of delisted
items I−c in each channel c, with I+

c , I
−
c ⊆ Ic, I+

c ∪ I−c = Ic and I+
c ∩ I−c = ∅.
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The set union across all channels represents the set of listed items with
I+
c ∪ I+

d ∪ . . . ∪ I+
C = I+ and delisted items with I−c ∪ I−d ∪ . . . ∪ I−C = I−.

Channels can be configured both as store or webshop. From a customer
perspective, items in stores are assigned to shelf-segments t ∈ T (i.e., edge
vs. center of the aisle and eye-level vs. knee-level), and in webshops they
are assigned to specific positions (i.e., top vs. bottom and left vs. right). In
stores, shelf space is dedicated to each shelf-segment Sct, while in webshops
it refers to the entire warehouse capacity Sc. The shelf space Sc(Sct) can be
considered as a one-dimensional shelf length in each channel, e.g., measured
in meters (cf. Kök and Fisher (2007); Irion et al. (2012); Düsterhöft et al.
(2020)). This one-dimensionality is dictated by the fixed stock per unit
(gic) (i.e., denoted by the item dimensions and shelf depth in the channel)
and the circumstance that two different items can only be placed side by
side, not behind one another when customers and pickers frontally observe
the store or warehouse shelf. To provide a general and lean model across
channels, the uniform term “facing” is used both for the store shelves
and the online warehouse shelves. It represents the unit that customers
face when observing the store shelf or pickers when facing the warehouse
shelf. Facings can be placed across shelf-segments in the store. Facing-
dependent store inventory xick is then defined using the integer number
of facings across all shelf-segments multiplied with the stock per facing
(xick = k ·gic). In the webshop customers do not face different shelf-segments.
The webshop therefore does not consist of any shelf-segment Tc = ∅. Instead,
the customers observe items on the webshop’s homepage. Items are placed
on an array that is defined by rows m,m ∈M and columns n, n ∈ N . An
item’s position on this array is uniquely defined by binary position variable
picmn. Items are either not listed or are placed on one position on the
webpage. As no such thing exists in the store, the binary variable picmn
is not applied to the store channel (i.e., picmn = 0 and N,M ∈ ∅). While
space on the homepage is sufficient to list all items, warehouse space for
online fulfillment is constrained. Warehouse inventory is then calculated
via multiplication of the integer number of facings k with the stock per
facing gic in the warehouse (xick = k · gic).
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To optimize profits the OC retailer needs (1) to decide which products
i, i ∈ Ic in each channel c to list (I+

c ) and to delist (I−c ), (2) on which
shelf-segment (store) t or which position (webshop) picmn to place item
i, i ∈ I+

c and how many facings k to allocate to listed item i, i ∈ I+
c in each

channel c, c ∈ C. (3) The amount of inventory xick is defined based on the
number of facings. These decisions are depicted via decision variables kic
(kict), and picmn. kic defines the number of facings for each item i, i ∈ I
and channel c, c ∈ C. In the case of the store channel, the total number of
facings is calculated using kic = ∑

t∈T kict. In general it is valid that kic = 0
represents the case for delisting and kic ≥ 1 the case for listing. In practice,
it is common for retailers to limit the set of facings Kic. In the store this is
driven by sales initiatives and marketing contracts regulating the share of
facings. In the webshop it is the result of space constraints in warehouses.
Hence, the retailer selects kic from a set of integer facings Kic = [kminic , kmaxic ]
where kic ≥ kminic and kic ≤ kmaxic . Introducing item- and channel-specific
ranges for the number of facings enables the consideration of channel-specific
storage requirements (represented by the space occupied per facing unit
bic) or the fixed stock of units behind each facing (represented by inventory
per facing gic). Binary variable picmn complies with the listing decision for
the webshop denoted by kic. Any item i can only be allocated to a single
position mn on the webpage. Thus picmn = 1 if product i is displayed at
position mn and picmn = 0 if otherwise.

Objective function Equation (4.1) is used to compute the profit πick
for each item i in each channel c and number of facings k. The profit
depends on the inventory xick, the demand realized and the associated
revenues and costs. The profit equation consists of five parts and follows
the profit calculation for newsvendor-like problems (for application in
assortment-related decision models see e.g., Smith and Agrawal (2000);
Honhon et al. (2010)). Part one represents the unit costs uic. Unit costs uic
include any type of costs involved per channel and item, such as purchasing,
replenishment and fulfillment costs. To account for the possibility that
demand does not match inventory at the end of a sales period (i.e., overstock
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or shortage) we introduce the demand variable yick. Overstock occurs when
yick < xick, while yick > xick describes the shortage case. Parts two and
three represent overstock situations. Part two calculates the expected
revenue for inventory quantity xick by multiplying yick by sales price ric.
Part three of the profit function accounts for the expected salvage cost
due to items that are left in stock at the end of the period. Leftover stock
of item i in channel c is cleared at salvage value vic, thereby representing
a residual value. As vic < uic, the retailer suffers a loss in profits. The
salvage value can also be interpreted as inventory holding costs in the case
of non-perishable items (Kök and Fisher, 2007; Hübner et al., 2016b). Parts
four and five cover shortage situations. Part four calculates the expected
revenue for each inventory quantity xick. However, the retailer can only
sell the available stock in this case. xick is therefore multiplied by the sales
price ric. Finally, part five introduces shortage costs sic that impose a
penalty cost on the retailer for unsatisfied demand. Please note that the
demand is determined by the assortment and facing selection and position
on the store shelf and webpage. This is specified by the density function
f ∗ick that is developed in Section 4.4.2. The sum of all single item profits
πick constitutes the overall profit Π of the retailer.

πick(xick |xick=k·gic) = −uic · xick + ric

∫ xick

0
yickf

∗
ickdy

+vic
∫ xick

0
(xick − yick)f ∗ickdy

+ric
∫ +∞

xick

xickf
∗
ickdy

−sic
∫ +∞

xick

(yick − xick)f ∗ickdy

(4.1)

Decision model In the following we embed Equation (4.1) into a BIP
and introduce a single binary variable zick, where zick expresses the listing
decision for item i in channel c with the quantity of facings k, i.e., whether
it receives k facings (zick = 1) or not (zick = 0). The objective function
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(Equation (4.2)) applies Equation (4.1) to calculate the item profit πick and
sum it up for all selected facings (zick = 1). Equation (4.3) (Equation (4.4))
ensures that the limited available shelf-space in the store (webshop) is not
exceeded. In webshops, items must be assigned to positions. Equation
(4.5) makes sure that items i that are listed (i.e., zick=1) are also allocated
to a position (i.e., picmn = 1). In the even that an item with 0 facings is
selected zic0 = 1, Equation (4.6) prevents a position assignment. Since in
stores items can be assigned to different shelf-segments t, Equation (4.7) is
required to sum up the facings across the different segments zickt. Equation
(4.8) expresses that each item i in each channel c receives exactly one facing
value. Equation (4.9) defines the binary variables applied.

max Π(x̄) =
∑
i∈I

∑
c∈C

∑
k∈Kic

πick · zick (4.2)

subject to
∑
i∈I

kmaxic∑
k=1

k · bic · zickt ≤ Sct ∀c ∈ C |Tc 6=∅, t ∈ T (4.3)
∑
i∈I

∑
k∈Kic

k · bic · zick ≤ Sc ∀c ∈ C |Mc 6=∅, t ∈ T (4.4)
∑
m∈M

∑
n∈N

picmn =
∑
k∈Kic

zick ∀c ∈ C |Mc 6=∅, i ∈ I (4.5)
∑
m∈M

∑
n∈N

picmn = 0 · zic0 ∀c ∈ C |Mc 6=∅, i ∈ I (4.6)

kmaxic∑
l=1

∑
t∈Tc

l · ziclt = k · zick ∀c ∈ C |Tc 6=∅, i ∈ I, k ∈ Kic, t ∈ Tc (4.7)
∑
k∈Kic

zick = 1 ∀c ∈ C, i ∈ I (4.8)

zick, zickt, picmn ∈ {0; 1} ∀c ∈ C, i ∈ I, k ∈ K, m ∈M, n ∈ N
(4.9)

Based on Equation (4.1), the BIP also takes into consideration density
function f ∗ick, and thereby accounts for the total demand of item i in
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channel c with facing k. f ∗ick quantifies assumed customer behavior and
takes into consideration all the demand peculiarities of the underlying
problem.

4.4.2 Demand model

We apply an ED model that directly specifies consumer behavior and
demand. ED models are appropriate for our research question as they
model each effect separately, but also aggregate the single demand sources
in a total demand function. This allows analysis of the various effects on
assortment compositions and arrangements of products within the channels.
The ED model represents customers that choose their favored variant from
a set of items. In the event that an item is unavailable, the customer
substitutes their second favorite item with a defined probability. Demand
distributions are assumed to be independent as all elements of the ED models
are set independently. The base demand of product i and product j, with
i 6= j are independent of each other, for instance. We can use convolutions
to aggregate demand. Our demand model focuses on substitution behavior
across channels. To enable demand substitutions across channels, we
consider BOPS and DAE. In BOPS, the webshop provides online customers
with access to the webshop as well as store inventory when substitution (i.e.,
OOA or OOS) situations occur. Demand is transferred from the webshop to
the store. DAE on the other hand provides store customers with access to
store and webshop inventory when substitution situations occur. Demand
transfers from the store to the webshop are facilitated.

The total expected demand D̂ick is composed of three elements (Equation
(4.10)). The first element DSP,SH,PO

ick combines space-elastic DSP
ick , shelf-

segmentDSH
ick , and position demandDPO

ic . OOA (OOS) substitution demand
is stated as the second (third) element DOOA(1,2,3)

ic (DOOS(1,2,3)
ick )). It encom-

passes substitutions across different items within the same channel DOOA(1)
ic
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(DOOS(1)
ic ), identical items across different channels DOOS(2)

ic (DOOS(2)
ic ), and

different items across different channels DOOA(3)
ic (DOOS(3)

ick ).

D̂ick = DSP,SH,PO
ick +DOOA(1,2,3)

ic +DOOS(1,2,3)

ic (4.10)

Regardless of the three components of the total expected demand D̂ick, each
item i in channel c has a base demand αic that corresponds to demand for
the item when k = 0. This specifies the forecast demand for an item and is
independent of the decision for item i in channel c and the total assortment
composition. All demand effects are summarized in Table 4.3.

Table 4.3: Overview of demand effects
Demand effect Channel1 Description Parameter(s)
αic S, W Base demand regardless of assortment, segment and position αic

DSP
ick S Space-elastic demand from an increased number of facings βic

DSH
ick S Shelf-segment demand from placing facings on certain store

shelf-segments
λct

DP O
ic W Position demand from placing items on certain webpage posi-

tions
ψimn

DOOA(1)

ic , DOOS(1)

ic S, W OOA/OOS substitution demand for different items within chan-
nel

γOOA
jcic

, γOOS
jcic

DOOA(2)

ic , DOOS(2)

ic S, W OOA/OOS substitution demand for identical items across chan-
nels

δOOA
idic

, δOOS
idic

DOOA(3)

ic , DOOS(3)

ic S, W OOA/OOS substitution demand for different items across chan-
nels

ηOOA
jdic

, ηOOS
jdic

(1) Application in channel: Store (S), Webshop (W)

(I) Space-elastic demand Space-elastic demandDSP
ick describes the effect

that the visibility of and therefore customer demand for an item increases
when the number of assigned facings k of item i in channel c is increased (e.g.,
Hansen and Heinsbroek (1979), Corstjens and Doyle (1981), Eisend (2014)).
We define space-elastic demand (4.11) through a polynomial function (cf.
Hansen and Heinsbroek (1979)). Base demand αic is multiplied by the
number of facings k and raised to the power of βic (with 0 ≤ βic ≤ 1).
Hence, when βic = 0 (i.e., an item has no space-elasticity), DSP

ick = αic.
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DSP
ick =

∑
t∈T

αic · kβic (4.11)

(II) Shelf-segment demand Shelf-segment demand DSH
ick (Equation

(4.12)) of item i in channel c stems from a varying attractiveness of vertical
and horizontal shelf-segments given differing visibility (cf. e.g., Drèze et al.
(1994); Hwang et al. (2005)). The demand effect is modeled with the attrac-
tiveness parameter λct that is assigned to each shelf-segment t ∈ T in each
channel c ∈ C. It describes the magnitude with which demand increases if
the item is positioned on shelf-segment t, where higher values of λct corre-
spond to higher visibility. Commonly, an item can be assigned to multiple
shelf-segments t at the same time. To account for this case, we calculate an
average attractiveness parameter λick with λick = [∑k

l=1
∑
t∈T l ·λct]/[k · zick]

which depends on the assigned facings across all segments.

DSH
ick = αic · λick (4.12)

(III) Position demand Position demand DPO
ic (Equation (4.13)) for item

i in the webshop describes an elastic value that depends on the position of
an item on a webpage. Faraday (2000) and Djamasbi et al. (2010) found
that the closer an item is placed to the top left corner on a webpage, the
higher the visibility to the customer. The position effect ψimn for every
item i in every position, defined by rows M and columns N , is stated in an
array. Following previous research (cf. e.g., Chen et al. (2016)), the position
demand rate is also a polynomial function. It multiplies the base demand
αic by binary position variable picmn to the power of ψimn. An item i in the
webshop channel is either delisted (i.e., ∑m∈M

∑
n∈N picmn = 0) or listed and

therefore placed on one position on the array (i.e., ∑m∈M
∑
n∈N picmn = 1).

For the store, M,N = ∅ because no positioning in this sense exists.
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DPO
ic =

∑
m∈M

∑
n∈N

(αic · picmn)ψimn (4.13)

We are able to condense DSP
ick , DSH

ick and DPO
ic into a single demand compo-

nent DSP,SH,PO
ick (Equation (4.14)). The corresponding density function is

denoted by f ∗
DSP,SH,PO
ick

.

DSP,SH,PO
ick = (

∑
m∈M

∑
n∈N

αic · picmn)ψimn · kβic · λick (4.14)

(IV) Out-of-assortment substitution demand OOA substitution de-
mand occurs when a customer demands a delisted item (j ∈ I−) and
instead substitutes a listed item (i, i ∈ I+). We assume that if item j is
delisted, customers will substitute a certain share of the base demand αjc
of item j with item i. Some customers will maintain their wish to purchase
item j, even if it is not available. Base demand αjc constitutes the maximum
quantity that can be substituted. This is due to the independence of the
base demand from any decision for item i and the usual assumption that
substitution takes place over only one round (cf. e.g., Kök and Fisher
(2007); Hübner and Schaal (2017a)). This implies that if a consumer’s
substitute is also unavailable, demand is lost. It has been shown that this
assumption is not too restrictive (cf. Smith and Agrawal (2000)). In the
event of multiple channels, the OOA demand needs to be differentiated
between (IV.1) different items within the same channel, (IV.2) identical
items across different channels and (IV.3) different items across different
channels.

(IV.1) The OOA demand for different items within a channel DOOA(1)
ic

(Equation (4.15)) for a listed item i, i ∈ I+
c in channel c takes place when

a customer intends to buy a delisted item j in channel c (j 6= i, j ∈ I−c )
and substitutes it with an alternative item i in the same channel c. The
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substitution rate γOOAjcic quantifies the share that is substituted. The density
function is denoted by f ∗

DOOA
(1)

ic

.

DOOA(1)

ic =
∑

j∈I−c /{i}

αjc · γOOAjcic (4.15)

(IV.2) The OOA demand for identical items across channels DOOA(2)
ic (Equa-

tion (4.16)) occurs when a customer demands an OOA item i in channel
d, d ∈ C with c 6= d, i ∈ I−d . The related density function is defined by
f ∗
DOOA

(2)
ic

. Given the OOA situation, the customer may decide (for reasons
of affinity) to switch channels to buy the identical item i in another channel
c. The share to be substituted is denoted by δOOAidic

.

DOOA(2)

ic =
∑

d∈C/{c}|i∈I−
d

αid · δOOAidic
(4.16)

(IV.3) The OOA demand for different items across channels DOOA(3)
ic (Equa-

tion (4.17)) results from customers with an intention to purchase item j

in channel d, d ∈ C even though the item is delisted in both channels d
(j ∈ I−d , d ∈ C) and c (j ∈ I−c , c ∈ C). The corresponding density function
is denoted by f ∗

DOOA
(3)

ic

. Customers subsequently decide to purchase the
alternative item i, i 6= j in a different channel c, c 6= d.

DOOA(3)

ic =
∑

d∈C/{c}|j∈I−
d
/{i}

αjd · ηOOAjdic
(4.17)

(V) Out-of-stock substitution demand OOS substitution demand
emerges in the event of unsatisfied demand for a listed item j in channel c
due to temporary unavailability due to stock-outs, i.e., demand DSP,SH,PO

jck

is greater than the available inventory xjck. The underlying assumption is
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that listed items and their representation on the shelf and in the webshop
is firstly still visible to the customer when OOS occurs (e.g., via price tags
or product pages), and secondly because customers who purchased the
product when it was available were still under the influence of these demand
effects. As for OOA demand, we assume one round of substitution and
draw a distinction between different/identical items within the same/across
channels as for OOA.

(V.1) OOS demand for different items within a channel DOOS(1)
ic (Equation

(4.18)) for an item i in channel c (i ∈ I+
c ) emerges when a customer intends

to buy listed item j (j 6= i, j ∈ I+
c ), while the available quantity xjck of

item j in channel c is insufficient to fulfill the demand. Customers therefore
potentially decide to purchase item i within the same channel c at the rate
of γOOSjcic . The corresponding density function equals f ∗

DOOS
(1)

ic

.

DOOS(1)

ic =
∑

j∈I+
c /{i}

[(DSP,SH,PO
jck − xjck)|DSP,SH,PO

jck > xjck] · γOOSjcic

(4.18)

(V.2) The OOS demand for identical items across channels DOOS(2)
ic (Equa-

tion (4.19)) for a listed item i in channel c (i ∈ I+
c ) appears when the

available stock xid for the identical listed item i in channel d (c 6= d, i ∈ I+
d )

is insufficient to satisfy the demand. Customers may then substitute by
switching to channel c and buying the identical item i there. The substitu-
tion rate is specified via δOOSidic

and the density function by f ∗
DOOS

(2)
ic

.

DOOS(2)

ic =
∑

d∈C/{c}|i∈I+
d

[(DSP,SH,PO
idk − xidk)|DSP,SH,PO

idk > xidk] · δOOSidic

(4.19)
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(V.3) The OOS demand for different items across channels DOOS(3)
ic (Equa-

tion (4.20)) comes into play when item j, j ∈ I is temporarily unavailable
in both channels d (j ∈ I+

d , d ∈ C) and c (j ∈ I+
c , c ∈ C). Customers sub-

stitute it by item i, i 6= j in a different channel c, c 6= d. The substitution
share is quantified by rate ηOOSjdic

and the density function by f ∗
DOOS

(3)
ic

.

DOOS(3)

ic =
∑

d∈C/{c}|j∈I+
d
/{i}

[(DSP,SH,PO
jdk − xjdk)|DSP,SH,PO

jdk > xjdk] · ηOOSjdic

(4.20)

Calculating the convolution Given the peculiarities and the demand
components of our ED model, we can specify each element independently
and exogenously. Consequently, demand distributions of the products i and
j are also independent for i 6= j. That opens up the possibility of calling on
the convolution concept to generate the distribution of the items’s demand
along with all three demand elements. The convolution – represented by the
operator ~ – of the related demand distribution functions can be used to
compute the distribution of the sum of the demands for items i and j. We
limit the subsequent distributions to R+

0 in order to exclude negative demand.
Following the assumption that distributions are standardized to the feasible
interval, we convolute the additional demand distributions accounting for
OOA and OOS for the item sets I−c and I+

c . The density function for
DOOA(1)
ic (Equation (4.21)) computes the convolution of the (base) demand

distributions of all OOA items. This takes into account the dependence of
the OOA substitution demand for listed item i (i ∈ I+

c ) on the convolution
~ of all delisted (OOA) items j ∈ I−c in channel c. Correspondingly, the
density function for DOOA(2)

ic (Equation (4.22)) considers the dependence on
the demand distribution of all delisted, identical items i in all other channels
d (c 6= d, i ∈ I−d ) and the density function for DOOA(3)

ic (Equation (4.23))
incorporates the dependence on all different delisted items j in all other
channels d. Since the substitution probabilities γ, δ and η only represent a
factor, they will be omitted in the equations to simplify the notation.
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~j ∈ I−
c
f ∗αjc =

∫
· · ·

∫
R+,n

0 ,j∈I−c
f ∗αjcdτ . . . dυ (4.21)

~i ∈ I−
d
f ∗αid =

∫
· · ·

∫
R+,n

0 ,i∈I−
d

f ∗αiddτ . . . dυ (4.22)

~j ∈ I−
d
f ∗αjd =

∫
· · ·

∫
R+,n

0 ,j∈I−
d

f ∗αjddτ . . . dυ (4.23)

As for OOA demand, we use the convolution concept to calculate OOS
demand. Equation (4.24) computes the density function and provides for the
fact that OOS demand for item i in channel c is dependent on the expected
shortage of all other OOS items j in channel c. Resembling that, Equation
(4.25) and Equation (4.26) calculate density functions that account for the
OOS demand for identical items across channels and different items across
channels, respectively.

~j ∈ I+
c
f ∗
DSP,SH,PO
jck

=
∫
· · ·

∫ ∞
xjck,j∈I+

c

f ∗
DSP,SH,PO
jck

dτ . . . dυ (4.24)

~i ∈ I+
d
f ∗
DSP,SH,PO
idk

=
∫
· · ·

∫ ∞
xidk,i∈I+

d

f ∗
DSP,SH,PO
idk

dτ . . . dυ (4.25)

~j ∈ I+
d
f ∗
DSP,SH,PO
jdk

=
∫
· · ·

∫ ∞
xjdk,j∈I+

d

f ∗
DSP,SH,PO
jdk

dτ . . . dυ (4.26)

To calculate the total demand for item i, Equation (4.27) convolutes the de-
mand density functions of DSP,SH,PO

ick , DOOA(1)
ic , DOOA(2)

ic , DOOA(3)
ic , DOOS(1)

ic ,
DOOS(2)
ic and DOOS(3)

ic .
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f ∗ick = f ∗
DSP,SH,PO
ick

·
Ä
~jc ∈ I−, j 6= if

∗
αjc
γOOAjcic

ä
|γOOAjcic

6=0

·
Ä
~id ∈ I−, i = if

∗
αid
δOOAidic

ä
|δOOAidic

6=0

·
(
~jd ∈ I−, j 6= if

∗
αjd
ηOOAjdic

)
|ηOOAjdic

6=0

·
Å
~jc ∈ I+, j 6= if

∗
DSP,SH,PO
jck

γOOSjcic

ã
|γOOSjcic

6=0

·
Å
~id ∈ I+, i = if

∗
DSP,SH,PO
idk

δOOSidic

ã
|δOOSidic

6=0

·
Å
~jd ∈ I+, j 6= if

∗
DSP,SH,PO
jdk

ηOOSjdic

ã
|ηOOSjdic

6=0

(4.27)

According to Kellerer et al. (2010) a knapsack problem with a linear objective
function and linear constraints is already known to be NP-hard. As our
model represents anNP-hard problem with multiple knapsacks, a non-linear
and non-separable (quadratic) objective function, and mutual dependencies
between the items we embed the BIP (Section 4.4.1) in an iterative heuristic
(Section 4.4.3). While the BIP respects all constraints, demand substitutions
are only added ex-post.

4.4.3 Solution approach

This section develops the specialized heuristic for the optimization of Omni-
Channel Assortment, Space, Position and Inventory (OC-ASPI). It is an
advance on the iterative heuristic for the Joint Omni-Channel Inventory and
Assortment Optimization (JOCIAO) of Hense and Hübner (2021). We apply
the same algorithmic principles as JOCIAO. It constitutes an appropriate
starting point for the underlying problem as it considers some of the demand
components described and achieves near-optimal solutions. However, shelf-
segment, position, and DAE cross-channel demand are not part of JOCIAO.
By integrating these demand effects into our decision problem, the solution
possibilities and numerical complexity increase dramatically. This calls for
a refinement, which we achieve by effectively guiding the iteration process.
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In the following, we first give an overview and general idea of the heuristic
and thereafter detail the computation process.

Overview The BIP formulated in Section 4.4.1 is non-linear as the item
demand and subsequently the profit depend on the number of facings on
shelf-segments, the position of the item itself and, given the substitutions, on
other items. We circumvent the non-linearity through a two-stage solution
heuristic. In the initialization (Stage 1), we pre-calculate item profit πick
and thereby extend JOCIAO (which only considers space-elastic demand)
by shelf-segment and position demand. Any form of substitution demand
is thereby excluded. The pre-calculated profits are provided to the BIP
to maximize overall profit for the initial solution. Based on the initial
solution of the BIP we compute the substitution demand and update the
total demand given the assortment and number of facings (k) as well as
position (picmn) and inventory (xick) of all items obtained (zick) from the
BIP. As demand input has now changed, the BIP is solved again in the
iteration phase (Stage 2). Yet this time the unique proposition of OC-ASPI
comes into play as we preempt potentially inefficient solutions. The item
profit πick is not calculated for all possible k ∈ Kic as in JOCIAO. Instead
k ∈ Kic is limited to deviate from the previous iteration’s solution k`−1 to
a certain extent e in each channel c.

To analyze the magnitude by which the facings of a single item i change from
one iteration `−1 to the next iteration `, we solved 50 instances of different
assortment sizes up to N = 30. For the store, we found that the facings of an
item change with a magnitude of > 2 in only about 1% of the cases. In the
webshop, facing changes are even smaller and only happen with a magnitude
of 1 (cf. Table 4.4). We therefore set the extent for each facing iteration to
ec = {2, 1} for c = {0, 1}, with ∑k∈Kic k · zl−1

ick − e ≤ k ≤ ∑k∈Kic k · zl−1
ick + e.

Our contribution is to exclude a major proportion of inefficient solutions
that would have been most likely outside the next iteration solution, thereby
reducing the number of calculations and eventually runtimes. The new
solution within ec is drawn upon to update substitution demand and total
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demand. This process is repeated until a stop criterion is met (e.g., no
more change in profit from one iteration to the next).

Table 4.4: Magnitude of facing changes from one iteration `− 1 to the next iteration `,
average of 50 instances

Channel Items 0 1 2 >2

Store
10 90.3% 8.0% 0.8% 0.8%
20 91.7% 6.8% 0.4% 1.2%
30 92.4% 6.2% 0.4% 0.9%

Webshop
10 96.2% 3.8% 0.0% 0.0%
20 94.8% 5.2% 0.0% 0.0%
30 95.1% 4.9% 0.0% 0.0%

Iterative Heuristic Building upon the overview, we further specify the
implementation and computation process of the two-stage solution approach
along the pseudo code displayed in Figure 4.4.

Stage 1 – Initialization The non-linearity is bypassed in Stage 1. It
pre-calculates both demand and profit for a given set of integer facings
and the webpage-position. In Step 1.1, we set the iteration index ` to
zero. In Step 1.2, the profit π`ick of iteration ` is calculated for every
item i in every shelf-segment t in channel c, every k in the range from∑
k∈K kic = [kminic , kmaxic ] and every position allocation picmn (Equation (4.1)).

The demand density function at this point includes space-elastic, shelf-
segment, and position demand (f ∗,`ick = f ∗,`

DSP,SH,PO
ick

), as denoted in Equation
(4.14). Because substitutions are still excluded, the demand density function
only includes invariants and allows the computation for any given facing and
any given position without relying on the decisions of other items. In Step
1.3, π`ick solves the BIP model and issues z`ick, z`ickt and p`icmn. In Step 1.4 the
initial demand density function f ∗,`ick is updated based on this assortment,
number of facings per shelf-segment, positions and inventory levels (cf.
Equation (4.27)). This updated version therefore accounts for substitution
demand while the initial solution (up to Step 1.3) omits substitution.
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Stage 2 – Iterations Stage 2 accounts for substitution demand and
thereby optimizes the initial solution from Stage 1. In Step 2.1, a loop is
implemented, which will be introduced in Step 2.6. In Step 2.2 we register
the current iteration by updating ` to `+ 1. In Step 2.3.1 we include OOA
and OOS substitution in the demand distributions of all following iterations
` ≥ 1 by setting (f ∗,`ick) equal to the demand distribution from the previous
iteration. In Step 2.3.2, π`ick is pre-calculated and updated for every item,
channel, shelf-segment, row and column. Facings are constrained with∑
k∈Kic k · z`−1

ick − e ≤
∑
k∈Kic k · z`−1

ick + e. In Step 2.4., we are able to solve
the BIP with substitution effects based on the updated item profits π`ick and
obtain z`ick, z`ickt and p`icmn. In Step 2.5 the demand density function f ∗,`ick
is updated for each item. The convolution of the relevant demand density
functions and z`ict, z`ickt and p`icmn are put to use to perform this. In Step
2.6, a repetition of the algorithm from Step 2.1 is demanded until the Π` of
two subsequent iterations remains unchanged (cf. Equation (4.28)).

ε = Π` − Π`−1 = 0 (4.28)

As described, to circumvent the non-linearity we are constrained to calculate
the substitution based on a given zickt and picmn for each item in each
channel. This necessity is satisfied as the update of the assortments, facings,
positions and inventories in iteration ` is carried out by solving the previous
iteration ` − 1. While the solution is always based on a one-iteration
lagged demand, which potentially leads to non-optimal results, the problem
is solved optimally for every single iteration. We address this potential
concern in the numerical analysis.
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4.5 Numerical results and managerial insights

This section gives an overview of the test setting (Section 4.5.1), analyzes
the computational performance of the heuristics (Section 4.5.2) and provides
insights on the relevance of demand effects (Section 4.5.3).

4.5.1 Overview of the test setting and applied data

We want to provide generally valid insights into demand effects with
different randomly generated data sets in line with empirical stud-
ies from literature. As no empirical OC studies are available, we
refer to insights from SC studies. All data sets are available at
https://github.com/JonasHen90/OCAssortments, with each data set con-
sisting of 30 instances. To derive causal insights and avoid mixing effects,
parameters are populated identically across channels if not specified fur-
ther. To simulate close-to-reality conditions, the values of all parameters
are confined by a defined range. Available space ∑t∈T Sct is limited and
serves ∼80% of the aggregated base demand of all store items and ∼90%
of the aggregated base demand of all webshop items. The revenue and cost
parameters are set as ric ∈ [20, 50], uic ∈ [15, 30] and vic ∈ [4, 20], with
ric ≥ cic ≥ vic ≥ sic ∀i, c. Shortage costs primarily represent the dissat-
isfaction of customers who cannot satisfy their demand. In our setting,
convenient substitutions are provided within the channels as well as via
BOPS and DAE. We therefore set sic = 0 without loss of generality. We
assume that demand is normally distributed with µic ∈ [7, 25] and the coef-
ficient of variation CVic ∈ [1%, 50%]. Campo et al. (2004) find conforming
OOA and OOS substitution rates. We follow accordingly with γOOAjcic = γOOSjcic

and δOOAidic
= δOOSidic

. Substitutions for different items across channels are
disregarded (i.e., DOOA(3)

ic = DOOS(3)
ic = 0). We denote the aggregated OOA

substitution rates for in-channel substitution (ΓOOAic = ∑
j∈I γ

OOA
jcic ) and

cross-channel substitution (∆OOA
ic = ∑

d∈C δ
OOA
idic

), which add up to the total
OOA substitution rate of item i in channel c, i.e., θOOAic = ΓOOAic + ∆OOA

ic .
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OOS substitution rates are defined in the same manner using ΓOOSic , ∆OOS
ic

and θOOSic . The aggregated OOA and OOS rates θOOAic and θOOSic cannot
exceed 100%. We assume that γOOAjcic = ΓOOAic

I−1 and δOOAidic
= ∆OOA

ic

C−1 . We define
space-elasticity βic ∈ [0%, 35%] for the store and βic = 0 for the webshop
(Eisend, 2014). The attractiveness factor λct is differentiated for each ver-
tical shelf-segment t with the top level attracting the highest additional
demand (see e.g., Drèze et al. (1994)). For the store, we define three vertical
segments (T = 3) with limited space Sct. Following Drèze et al. (1994)
we set λct = {1.0, 1.2, 1.4} for t = {1, 2, 3}. Meanwhile, as there is no
shelf-segment demand in the webshop we assume one shelf-segment (T =
1) and shelf-segment attractiveness λct = 1.0 for the webshop. Accordingly,
for the store M = N = 1 and ψimn = 1.0 as no webpage positioning is
carried out for the store. The webshop page, represented by |M | x |N |,
is always assumed to be sufficient for placing all listed items. However,
space is limited for the webshop in the warehouse, resulting in the situation
that some webshop positions are discarded if products cannot be listed
due to warehouse space constraints. According to Djamasbi et al. (2010)
and Faraday (2000), position elasticity ψimn depends on item i and the
location mn on the webpage and is higher for positions on the top left of
the page. We therefore assume ψimn ∈ [0%, 16%] for the webshop (cf. Chen
et al. (2016)). To prevent any noise in the results, all items are assigned a
width bic = 1, a quantity per facing gic ∈ [3, 6] for stores, and a quantity
per package unit gic = 10 for online channels.

A machine running on Windows 10 64-bit with an Intel Core i7-8665U CPU
1.90GHZ and 16 GB of installed memory was used for the numerical tests.
The model and algorithm are implemented in Python 3.6 and solved with
Gurobi Optimizer 8.0.

99



Demand effects in omni-channel assortment planning Jonas Hense

4.5.2 Computational efficiency of the OC-ASPI
algorithm

Runtime tests Our decision problem at hand typically arises in the course
of a periodical assortment planning cycle (e.g., for fashion retailers with
seasonal items or food retailers with stable assortments). A reasonable
computation time for the tactical problem is required to allow the retailers
to calculate and assess different scenarios, even for large assortments. Cate-
gories often include as many as 60 to 80 items. Our model solved a set of
large instances with up to 100 items to assess the runtimes. That means
we have a total of 200 items across the channels. Table 4.5 illustrates the
results, demonstrating reasonable solution times for the tactical problem.

Table 4.5: OC-ASPI vs. benchmark: run time and profit change, average of 30 instances
Number of items Ic per channel 10 20 30 40 60 80 100
Space Sc in store, online warehouse 30, 15 60, 30 90, 45 120, 60 180, 90 240, 120 300, 150
Avg. run time OC-ASPI [minutes] 1.52 6.97 17.35 40.0 101.1 219.1 -2
Avg. run time saving vs. benchmark 87.1% 86.7% 87.2% -3 -3 -3 -3
Avg. profit change1 -0.04% -0.09% -0.12% -3 -3 -3 -3
Median profit change 0.00% -0.02% -0.06% -3 -3 -3 -3
1 (Total profit obtained by OC-ASPI / Total profit obtained by benchmark of Hense and Hübner (2021)) - 1
2 Could not be solved due to memory limitations
3 No solution obtained with benchmark within 300 minutes

Comparison with benchmark We chose to compare OC-ASPI with an
alternative heuristic. The heuristic provided by Hense and Hübner (2021) is
the only available approach that solves OC assortments for store and online
channels, but without shelf-segment- and position demand. As such, the
benchmark heuristic solves a special case. Our contribution results from the
extension of demand effects, a modified stop criterion, and a streamlined
iteration procedure. While the benchmark calculates in each iteration ` the
demand and profit for all possible facings k for each item i in each channel
c, OC-ASPI only iterates across all facings k, with ∑k∈Kic k · zl−1

ick ± 2 for
the store and ∑k∈Kic k · zl−1

ick ±1 for the webshop. We assessed the run times
for different assortment sizes in Table 4.5. OC-ASPI provides enormous
run time savings of around 87% at the cost of marginal profit losses of less
than 0.12%, both driven by the limitation of iterations.
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4.5.3 Managerial insights into related demand effects

We analytically assess the magnitude of each demand effect on profit and
assortments and develop propositions based on the insights obtained. This
allows us to identify decisive demand effects. We assess the consequences
of ignoring one of the demand effects when optimizing OC assortments in
order to understand the relevance of each demand source. This describes
the situation where consumers exhibit the demand effect examined but the
retailer assumes its irrelevance. We term this “value of information” as it
describes the possession of information about the existence and magnitude
of a particular demand effect and consequently the value of composing
assortments accordingly. “Value of information” is the difference between
the following two scenarios:

• “Ignoring” describes a retailer who disregards the particular demand
effect (e.g. βic = 0%), while in reality the demand effect is taking place
(e.g., βic = 35%). The solution is then evaluated ex-post for varying
degrees of the demand effect (e.g., βic = 5%, 15%, 25%, 35%).

• “Integrating” is the scenario as described in this paper with full informa-
tion about demand effects and direct integration into the optimization
approach.

The analyses are structured as follows. First, we assess each demand effect
in relation to profit (cf. Table 4.6 and propositions (1) to (4)). Next,
the composition of assortments is analyzed in detail (cf. Table 4.7 and
propositions (5) to (7)). Third, we assess the impact of channel sizes and
cross-channel substitution on profits (cf. Table 4.8 and proposition (8)).

(1)-(4) Impact of demand effects on profit We use the “Integrating”
scenario and ”value of information” as measurements to analyze the impact
of increasing demand rates on profit.
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(1) Demand effects within the channel are stronger than across
channels. The magnitude of each effect depends of course on the ex-
pected customer behavior. The values we apply are informed by related
(single-channel) empirical studies. Table 4.6 highlights the importance
of integrating space-elastic demand in OC assortment planning, followed
by position demand, shelf-segment demand, in-channel substitution, and
cross-channel substitution. The results demonstrate a potential profit loss
of up to 15.5% on average (for βic = 35%) if space-elastic demand in the
store is ignored in OC assortment planning, a profit loss of up to 4.9%
(for ψimn = 16%) when ignoring position-elasticity in the webshop, and
a profit loss of up to 4.7% on average (for λct = 35%) by not integrating
shelf-segment demand. In-channel substitution marks a significantly smaller
profit loss of up to 1.5%. Ignoring cross-channel substitution causes retailers
to potentially forego profit losses of up to 0.4% on average. The order is
largely driven by the rate of the demand effect and the size of the demand
it applies to. Space elasticity causes higher profit losses when being ignored
as the demand rate is particularly high (i.e., for “strong” = 35%), and
applies to the full base demand. The demand rate for position elasticity is
lower (i.e., for “strong” = 16%), and decreases the more a product is placed
in a less visible position. Similar to that, the demand rate for shelf-segment
attractiveness (e.g., for “strong” = 35%) only applies to the most visible
shelf-segment and is reduced for lower shelf-segments. Lastly, even though
both in-channel and cross-channel substitution have a high demand rate
(i.e., for “strong” = 40%), this only applies to OOS and OOA demand, and
is constrained to substitutions within or across channels. This highlights
the need for retailers to put a clear focus on integrating in-channel effects
over cross-channel effects when defining OC assortments.

(2) Flexibility in stocking quantities determines substitution po-
tential within the channel. Ignoring in-channel store substitution causes
greater profit losses than ignoring in-channel webshop substitution. De-
spite identical margins, base demand, and substitution rates, the profit
loss from ignoring customer substitution within the store (up to 1.5%) is
higher compared to disregarding substitution within the webshop (up to
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0.2%). This stems from the case that larger package sizes are stored for the
webshop (quantity per package unit gic = 10), which allows less flexibility
in changing the assortment and requires more additional demand to make
the change worthwhile, compared to the store (with quantity per package of
gic ∈ [3, 6]). This means inventories in the webshop are less flexible in terms
of quantity adjustments and react less sensitively to additional demand.
Also, the store creates more substitution demand given the smaller share
of fulfilled base demand, which consequently creates more opportunities
to change assortments. Looking at the “Integrating” scenario, we verify a
differing trend. Higher demand rates for in-channel webshop substitution
lead to higher profit advantages of up to 3.2% over a 0% scenario. Retailers
should therefore prioritize integrating in-channel store substitution (with
units that usually have smaller stocks) over in-channel webshop substitution
(with units that usually have larger stocks).

(3) Digital Assortment Extension has a higher profit potential
than buy-online pick-up in store. Ignoring cross-channel substitution
to the webshop (i.e., DAE) results in higher profit losses than ignoring it
towards the store (i.e., BOPS). This is mainly driven by more unfulfilled
demand in the store and therefore higher substitution demand for the web-
shop. The additional demand primarily helps to sell units of inventory that
would have otherwise be unsold. When integrating these demand effects, it
is more important for retailers to concentrate on cross-channel substitutions
from stores to webshops. This results in higher profit advantages when
demand effects increase.

(4) In-channel store substitution is the most important substitu-
tion option out of all substitution possibilities. Ignoring in-channel
store substitution can lead to profit losses of up to 1.5% and is far more
severe than disregarding any other substitution possibility. First of all,
the store generates more substitution demand than the webshop given
the smaller share of fulfilled base demand and more demand effects. In
addition to that, the store is more flexible in changing assortments given
the smaller stocking quantities. Lastly, in-channel substitutions spread
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the additional demand to more items while cross-channel substitution only
allows substitutions of identical items. Therefore, in-channel substitution
potentially adds demand to more profitable items than the one originally
demanded, which makes an assortment change worthwhile.

Table 4.6: Impact of disregarding demand effects: profit change
Demand effect Analysis, Demand impact3

profit change Weak Med.-Weak Med.-Strong Strong

Space-elasticity βic

Integrating1 2.58% 7.71% 13.07% 18.21%

Value of information2 1.07% 5.03% 10.2% 15.48%

Shelf-segment attractiveness λct

Integrating1 2.32% 4.22% 5.9% 7.42%

Value of information2 1.14% 2.31% 3.52% 4.74%

Position elasticity ψimn

Integrating1 2.81% 5.59% 8.38% 11.37%

Value of information2 1.14% 2.32% 3.49% 4.87%

In-channel store sub. γOOA
jcic

, γOOS
jcic

“Integrating”1 0.83% 1.47% 2.15% 2.84%

Value of information2 0.25% 0.52% 0.97% 1.53%

In-channel webshop sub. γOOA
jcic

, γOOS
jcic

Integrating1 0.79% 1.59% 2.39% 3.2%

Value of information2 0% 0.04% 0.11% 0.22%

Cross-channel store sub.4 δOOA
idic

, δOOS
idic

Integrating1 0.46% 0.84% 1.16% 1.52%

Value of information2 0% 0.05% 0.14% 0.36%

Cross-channel webshop sub.5 δOOA
idic

, δOOS
idic

Integrating1 0.16% 0.23% 0.32% 0.41%

Value of information2 0.1% 0.12% 0.16% 0.19%

1 (Retailer profit / Retailer profit with demand effect = 0%) - 1
2 Profit loss as difference between Integrating scenario and Ignoring scenario
3 For βic = 5%, 15%, 25%, 35%, λct = 5%, 15%, 25%, 35%, ψimn = 4%, 8%, 12%, 16%, γOOA

jcic
, γOOS

jcic
=

10%, 20%, 30%, 40%, δOOA
idic

, δOOS
idic

= 10%, 20%, 30%, 40%
4 DAE; 5 BOPS

(5) - (7) Impact of demand effects on assortment composition Af-
ter the analysis of the demand effects on total profit, we will analyze the
impact on the solution structure. In Table 4.7 we introduce additional mea-
surements to assess the assortment composition. Identical solution measures
the share of identical solutions between the “Integrating” and “Ignoring”
scenario in terms of listed and delisted products as well as the number of
facings (and therefore inventory) assigned. Product overlap reports the
share of identical solutions with respect to products only (i.e., in both
listed or delisted scenarios). Average facing change describes the average
number of facings by which an item differs between the scenarios. Channel
congruence assesses the alignment of the store and webshop assortment
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for each of the two scenarios. Positive numbers indicate that assortments
between the channels become more aligned when integrating the demand
effect.

(5) Assortments diverge from optimal configurations the more
inaccurate demand is considered. As expected, the optimal solutions
increasingly diverge from the assortments that ignore a demand effect with
increasing demand rates. The stronger the demand effect, the more products
and facings are changed in the “Integrating” scenario. The change often
happens primarily in one of the two channels, as the demand effects also
mainly focus on one channel. This leads to additional demand in one channel
and enables the channel to focus on the more profitable items. For example,
cross-channel store substitution causes additional demand in the webshop.
This, in turn, makes a change of the webshop assortment reasonable and
leads to a share of non-identical webshop assortments in comparison with the
inaccurate “Ignoring” scenario (for δOOAidic

= δOOSidic
= 40%). In this context,

the change in the share of identical solutions is also strongly connected to
the change in profit, i.e., the higher the change in profits, the stronger the
assortments diverge. To sum up, this implies that the greater the demand
effect, the higher the chances that OC retailers will miss out on listing the
right quantities of their profit-maximizing products.

(6) Getting the facings and inventories right is a more pressing
issue compared to getting the products right. When erroneously
ignoring demand effects, more facings are chosen suboptimally than are
assortment configurations. Differences between the “Integrating” and “Ig-
noring” assortments are often driven by varying facings rather than product
selection. In many cases the assortment configuration only differs slightly,
but facings and inventories drive the difference. When varying space elastic-
ity, for instance, this results in no identical solution at all, but 71% of the
store products and 97% of the webshop products still overlap for βic = 35%.
The change is then driven by a change in the number of facings, which can
be as small as 0.1 facings for the webshop. For the strong magnitude of the
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demand effects, an overlap of 71% of the store assortment also constitutes
the smallest overlap across all channels and demand effects.

(7) Increasing store-related demand effects decrease the similarity
of assortments across channels, while increasing webshop-related
demand effects have the opposite effect. Demand effects that mainly
impact optimal solutions within the store (i.e., space elasticity, shelf-segment
attractiveness, in-channel store substitution, and cross-channel webshop
substitution) lead to compositions where the store and webshop assortment
increasingly diverge when integrating the demand effect. The underlying
reason is the number of listed products per channel. In the store, fewer
products are listed than in the webshop. With increasing demand effects
the store focuses even more on the most profitable items, cuts down the
assortment size, and therefore distances itself further from the larger web-
shop assortment. The channel congruence for shelf-segment attractiveness
λct = 35% decreases by -9%, for example. If an “Ignoring” store assortment
had 15 listed products, this would indicate that an average of 1.35 fewer
products (as 9% · 15 = 1.35) are now listed in the “Integrating” store
assortment given that the webshop assortment remains unchanged. The op-
posite is true for demand effects focused on webshop demand (i.e., position
elasticity, in-channel webshop substitution, and cross-channel store substi-
tution). Webshop assortments approximate the store assortment. More
products are listed in the webshop, but with increasing demand effects the
webshop focuses on the most profitable items, cuts down assortment sizes,
and therefore increasingly assimilates the store assortment.
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Table 4.7: Impact of disregarding demand effects: Assortment composition
Demand effect Analysis Channel Demand impact5

Weak Med.-Weak Med.-Strong Strong

Space-elasticity βic

Identical solutions1 Store 0% 0% 0% 0%
Webshop 57% 30% 7% 0%

Product overlap2 Store 96% 86% 77% 71%
Webshop 100% 99% 98% 97%

Avg. facing change3 Store 0.4 1.0 1.6 2.2
Webshop 0 0.1 0.1 0.1

Channel congruence4 Total -4% -15% -25% -32%

Shelf-segment attractiveness λct

Identical solutions1 Store 3% 0% 0% 0%
Webshop 70% 53% 53% 43%

Product overlap2 Store 97% 96% 94% 92%
Webshop 99% 99% 99% 99%

Avg. facing change3 Store 0.2 0.4 0.6 0.8
Webshop 0 0 0 0

Channel congruence4 Total -2% -4% -6% -9%

Position elasticity ψimn

Identical solutions1 Store 70% 50% 47% 43%
Webshop 10% 0% 0% 0%

Product overlap2 Store 100% 99% 99% 99%
Webshop 98% 95% 92% 90%

Avg. facing change3 Store 0 0.1 0.1 0.1
Webshop 0.1 0.2 0.3 0.4

Channel congruence4 Total 4% 8% 12% 16%

In-channel store sub. γOOA
jcic

, γOOS
jcic

Identical solutions1 Store 13% 0% 0% 0%
Webshop 97% 97% 77% 70%

Product overlap2 Store 99% 97% 96% 94%
Webshop 100% 100% 100% 100%

Avg. facing change3 Store 0.1 0.2 0.4 0.5
Webshop 0 0 0 0

Channel congruence4 Total -2% -4% -6% -8%

In-channel webshop sub. γOOA
jcic

, γOOS
jcic

Identical solutions1 Store 93% 90% 87% 83%
Webshop 53% 37% 23% 17%

Product overlap2 Store 100% 100% 100% 100%
Webshop 99% 98% 98% 97%

Avg. facing change3 Store 0 0 0 0
Webshop 0 0 0.1 0.1

Channel congruence4 Total 1% 1% 2% 3%

Cross-channel store sub.6 δOOA
idic

, δOOS
idic

Identical solutions1 Store 80% 70% 73% 53%
Webshop 47% 13% 10% 0%

Product overlap2 Store 100% 99% 99% 99%
Webshop 99% 98% 98% 97%

Avg. facing change3 Store 0 0 0 0.1
Webshop 0 0.1 0.1 0.2

Channel congruence4 Total 0% 0% 0% 0%

Cross-channel webshop sub.7 δOOA
idic

, δOOS
idic

Identical solutions1 Store 63% 40% 27% 20%
Webshop 100% 100% 93% 93%

Product overlap2 Store 100% 100% 99% 99%
Webshop 100% 100% 100% 100%

Avg. facing change3 Store 0 0.1 0.1 0.1
Webshop 0 0 0 0

Channel congruence4 Total 0% -1% -1% -2%

1 Share of identical items and inventory between “Integrating” and “Ignoring” scenario
2 Share of identical items between “Integrating” and “Ignoring” scenario
3 Average magnitude by which the facings of an item differ between “Integrating” and “Ignoring” scenario
4 Difference in assortment similarity across channels, i.e., positive numbers indicate that assortments become more identical across
channels for the “Integrating” vs “Ignoring” scenario, and vice versa

5 For βic = 5%, 15%, 25%, 35%, λct = 5%, 15%, 25%, 35%, ψimn = 4%, 8%, 12%, 16%, γOOA
jcic

, γOOS
jcic

= 10%, 20%, 30%, 40%, δOOA
idic

,

δOOS
idic

= 10%, 20%, 30%, 40%
6 DAE; 7 BOPS

(8) Impact of channel sizes To understand the impact that cross-
channel substitutions can have when retailers operate with differently
sized stores or warehouses, we carried out a sensitivity analysis across the
magnitude of demand effects and differing channel sizes. For cross-channel
store substitution we assumed a store size with shelves for 90 facings, which
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fulfills ∼80% of the total base store demand. Next, we assumed stores at
50% (45 facings) and 25% of the initial size (23 facings). The warehouse
size remains unchanged. Similar to that, a warehouse with a shelf space
of 45 facings was assumed for cross-channel webshop substitution. This
satisfies ∼90% of the total base webshop demand. Subsequently, we cut
the warehouse to 50% (23 units) and 25% (11 units) of the initial space
while leaving the store shelf at 90 facings.

(8) The impact of cross-channel substitutions depends on channel
size. The smaller a channel, the less inventory can be stored and the more
substitutions occur to the other channel. In the case of the stores, this
means that a smaller store and stronger cross-channel substitution from
the stores to the webshop lead to increasing profit losses when wrongly
ignoring this effect. The underlying cause is the additional, unfulfilled
demand in the store. Customers consequently switch more intensively to
substitute products from the webshop, which results in changing demand
and the rearrangement of assortments in the webshop. If the demand effect
is ignored, the additional demand cannot be leveraged by changing the
assortment, which explains the increasing “value of information”, which
goes up to 1.46%. When integrating this demand effect, decreasing store
sizes and increasing demand effects can also make a great difference and
generate up to 11.07% more profit. The same holds true for webshops:
it is just that channels change. Additional demand in the webshop that
is unfulfilled causes higher substitutions to the store, and can be used to
optimize the assortment in the store.
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Table 4.8: Impact of disregarding cross-channel substitution: profit change
Channel size Analysis Demand impact3

Weak Med.-Weak Med.-Strong Strong

Cross-channel substitution to webshop

90, 45
“Integrating” Scenario, profit change1 0.46% 0.84% 1.16% 1.52%

Value of information, profit loss2 0% 0.05% 0.14% 0.36%

45, 45
“Integrating” Scenario, profit change1 1.68% 3.11% 4.51% 5.64%

Value of information, profit loss2 0.07% 0.15% 0.49% 0.89%

23, 45
“Integrating” Scenario, profit change1 3.25% 6.14% 8.81% 11.07%

Value of information, profit loss2 0.09% 0.35% 0.88% 1.46%

Cross-channel substitution to store

90, 45
“Integrating” Scenario, profit change1 0.16% 0.23% 0.32% 0.41%

Value of information, profit loss2 0.10% 0.12% 0.16% 0.19%

90, 23
“Integrating” Scenario, profit change1 0.26% 0.5% 0.79% 1.10%

Value of information, profit loss2 0.08% 0.18% 0.34% 0.52%

90, 11
“Integrating” Scenario, profit change1 0.65% 1.25% 1.81% 2.39%

Value of information, profit loss2 0.19% 0.51% 0.89% 1.31%

1 (Retailer profit / Retailer profit with δOOA
idic

, δOOS
idic

= 0%) - 1
2 Difference between “Integrating” Scenario and “Ignoring” Scenario
3 For δOOA

idic
, δOOS

idic
= 10%, 20%, 30%, 40%

4.5.4 Summary of insights and implications for
retailers and researchers

Summary of managerial insights We analyzed the impact of different
demand effects on profits and solution structures. To do so, a comparison
between the “Integrating” and the “Ignoring” scenarios revealed several
general insights. We note that demand effects within the channels are
greater in terms of profit impact than across channels. One driving factor is
the storage quantity and handling unit, which is commonly larger in online
warehouses than in stores. This makes the webshop less flexible in terms of
quantity adjustments, and it reacts less sensitively to additional demand in
that channel. Solutions also increasingly change with increasing demand
rates. The main driver in this context is not the assortment configuration,
as they even resemble each other for highly differing demand rates, but
the changes in facings. Beyond this, demand effects that are focused
on increasing demand in the store, cause the similarity of assortments
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across channels to decrease, while increasing webshop-related demand
effects have the opposite effect. Lastly, we identified that profits caused by
increasing cross-channel substitutions are highly dependent on the size of
the channel.

Guidelines for retailers Retailers benefit from our insights as they help
to prioritize the integration of various demand effects in retailers’ OC assort-
ment planning. The integration of space-elasticity, shelf-segment demand,
position demand, and in-channel store substitution are especially highly
recommended. While in-channel and cross-channel webshop substitution is
less impactful. We have also outlined the underlying reasons and highlighted
dependence on the magnitude of demand rates, channel package sizes, and
channel size. In combination, these factors define the profit impact for
retailers and options for steering the assortment compositions and determine
whether it is worth integrating certain demand effects. Leveraging this
knowledge and monitoring the factors helps to optimize profits.

Discussion in light of the literature Our findings have implications
for empirical research, given the complexity of measuring various demand
effects, especially for cross-channel substitution. Only few empirical studies
have analyzed this phenomenon so far. Corsten and Gruen (2019) found
that 66% of the demand potentially remains with the retailer and increases
the demand for substitute items. Using these insights, we assumed cross-
channel substitutions in the magnitude of the empirically measured values
and found that these effects have a minor impact on profits and solution
structures. This shows that the significant effort required for empirical
measurement needs to be carefully evaluated.

Our findings also further reveal insights for modeling. A very limited number
of optimization models account for cross-channel effects. Most of the models
are constrained in their applicability to instances of practice-relevant size,
runtime or solution quality due to the combinatorial complexity arising
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from adding channels. Our findings show that cross-channel substitutions
have an effect, but at a moderate scale. This means that complex solution
approaches suffer from either runtime inefficiency or low solution quality
problems and need to be carefully considered. Research should particularly
focus on optimization models that account for in-channel effects.

4.6 Conclusion and future research

In this paper we detail the demand effects related to OC assortment planning
and the complexity involved in their empirical assessment. To allow for
a numerical assessment, we developed a BIP model for OC retailers to
optimize the assortment, space and position, and inventory decision for
each channel. We incorporated stochastic, space-elastic, shelf-segment,
position, OOA and OOS in-channel, and cross-channel demand taking into
account space constraints. In comparison with existing contributions, we
provide a model that is the first to integrate such a range of decisions
and demand effects simultaneously. Given the NP-hard multiple-knapsack
problem, we formulated the specialized heuristic OC-ASPI. We are able to
apply the program to large-scale, practical problem instances. Our primary
contribution is the analytical assessment of all demand effects. We found
evidence that it is of utmost importance to include space-elastic, shelf-
segment and position demand in OC assortment planning. Ignoring these
effects in assortment planning despite their existence can lead to dramatic
profit losses of up to 15.5% on average. The consideration of OOA and OOS
in-channel store substitution is a little less important. Yet this demand
effect can still cause significant profit losses of up to 1.5% when ignored.
The remaining three substitution effects, i.e., OOA and OOS in-channel
webshop, cross-channel store, and cross-channel webshop demand generally
have only a small impact on profits. However, this greatly depends on
channel size.
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Our practical contribution and the underlying model and heuristic can
build the basis for future research. As our analytical assessment is mainly
built upon existing empirical insights for SC retailers, we deem an empirical
confirmation of assumed cross-channel substitution rates meaningful. Along
these lines, price policies for services (e.g., BOPS) and products across
channels are further potentially crucial drivers of demand that could be
worth investigating as well. Another driver of demand is cross-selling
when customers pick-up a product in the store and decide to buy another
product on top of that. In addition to that, it is worth focusing on the
economics behind different channels and fulfillment models like BOPS or
DAE, incorporating adequate costs and thereby examining opportunities
for active customer steering within and across channels. Moreover, the
problem could be related to operational planning to salvage overstocks.
In this context, a tactical perspective could also include reorder options
from suppliers, customer fulfillment with backlogging or customer returns.
Lastly, we examined a general case, but special cases such as showrooms,
special product categories or characteristics (such as impulse purchases or
products with high affinity) may cause the results to vary and therefore
justify further investigations.

112



Demand effects in omni-channel assortment planning Jonas Hense

Figure 4.4: Pseudo code of the specialized heuristic

Stage 1 – Initialization: Solve BIP without substitution effects
Input: Set of channels C, set of shelf-segments in channel Tc, set of items in channel Ic,
set of possible facings Kic, set of rows M and set of columns N
Step 1.1 Set ` = 0
Step 1.2 For all channels c ∈ C:

For all items i ∈ Ic:
For all facings k ∈ Kic:

For all shelf-segments t ∈ Tc:
For all positions p ∈M ·N :

Calculate π`
ick with f∗,`

ick = f∗,`

DSP,SH,P O
ick

End for
End for

End for
End for

End for
Step 1.3 Solve BIP using Equation (4.2) to (4.9) to obtain z`

ick, z`
ickt, p`

icmn and Π`

Step 1.4 For all channels c ∈ C:
For all items i ∈ Ic:

Deploy z`
ick, z`

ickt and p`
icmn in Equation (4.27) to update f∗,`

ick

End for
End for

Return: z`
ick, z`

ickt, p`
icmn, f

∗,`
ick and Π`

Stage 2 – Iterations: Solve BIP with substitution effects
Input: Set of channels C, set of shelf-segments in channel Tc, set of items in channel Ic,
set of possible facings Kic, set of rows M , set of columns N and z`

ick, z`
ickt, p`

icmn, f
∗,`
ick

and Π`

Step 2.1 Repeat
Step 2.2 Set ` = ` + 1
Step 2.3 For all channels c ∈ C:
Step 2.3.1 For all items i ∈ Ic:

Set f∗,`
ick = f∗,`−1

ick

Step 2.3.2 For all facings k,∈ Kic with k`−1
ic − e ≤ k ≤ k`−1

ic + e:
For all shelf-segments t ∈ Tc:

For all positions p ∈M ×N :
Calculate π`

ick with f∗,`
ick

End for
End for

End for
End for

End for
Step 2.4 Solve BIP using Equation (4.2) to (4.9) to obtain z`

ick and all z`
ickt, p`

icmn

and Π`

Step 2.5 For all channels c ∈ C:
For items i ∈ Ic:

Deploy z`
ick and all z`

ickt and p`
icmn in Equation (4.27) to update

f∗,`
ick

End for
End for

Step 2.6 Until Stop Criteria is met and Equation (4.28) holds true, otherwise continue
with Step 2.1
Return: z`

ick, z`
ickt, p`

icmn and Π`
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DOCTORAL THESIS
Omni-channel Assortment Planning and Store Operations

5 The revival of retail stores via
omnichannel operations: A
literature review and research
framework

The increasing importance of integrated fulfillment concepts revitalizes
bricks-and-mortar stores and puts them at the center of retail operations.
So-called omnichannel (OC) concepts leverage stores to offer seamless and
enhanced operations for offline and online shoppers. Stores are used to
fulfill online orders, offer shorter lead times to customers, and extend the
assortment across channels. The role of the store and the underlying store
operations are thus impacted by profound changes. This transformation has
not yet been assessed comprehensively from a practical or an Operations
Research (OR) lens.

This paper identifies cross-cutting store-related planning issues and develops
a planning framework for OC operations. We apply industry interviews and
a systematic literature analysis to derive five planning issues. Research gaps
are revealed by matching the pertinent OR literature with managerial needs.
The planning issues network design of fulfillment locations, assignment of
customer orders, and assortment and inventory planning have been discussed
in several store-related OC publications. Demand forecasting and inventory
replenishment and returns have received less coverage, and offer significant
research opportunities.
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5.1 Introduction

Retailing is experiencing a continuous growth of online sales at the expense
of bricks-and-mortar stores sales. Customers no longer differentiate between
channels, but increasingly expect an integrated offering and seamless channel
switching (Agatz et al., 2008; Verhoef et al., 2015). Bricks-and-mortar
retailers are reacting to these developments by expanding their online
services while trying to leverage their store network (see e.g., Gallino and
Moreno (2014); Hübner et al. (2016b); Ishfaq et al. (2016); Wollenburg
et al. (2018b); Caro et al. (2020); Shao (2021)). In the past, the online
shop mainly supplemented stores. Now, stores not only supplement online
sales but are also becoming a central piece of the customer journey across
seamlessly integrated channels. This has hugely affected the role of the
store. Additional services have been offered, such as delivering products
from the stores to the customer’s home, enabling the collection of pre-picked
shopping carts in stores, or accessing extended assortments via different
channels (e.g., Digital Commerce 360 (2018)). The COVID-19 pandemic
has accelerated the expansion of such offerings and reinforced the store’s role
change from being purely a sales area to also acting as a logistics fulfillment
hub (see e.g., Caro et al. (2020)). The integration of stores and digital
channels is called omnichannel (OC). The store now serves as the epicenter
for OC retail operations, functioning as an additional warehouse for online
orders besides the traditional purpose as a customer shopping area (see e.g.,
Brynjolfsson et al. (2013); Bell et al. (2014); Gallino et al. (2017); Gallino
and Moreno (2019); Janjevic et al. (2020)). Bell et al. (2018b) describe
this development as: “Offline is dead and dying, yet it is also alive and
thriving”.

The revitalization of stores requires efficient operations planning now more
than ever. It needs agile, connected, and responsive retail operations. As
stores may now be used as alternative picking locations, retailers have to
decide which stores to include in their fulfillment network and from which
specific location to pick each online order. In addition, assortments and
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inventory levels for each point of sales need to be determined, and how they
are to be shared across locations. This requires quantifying, modeling and
solving the trade-off between costs and operational advantages. Picking
costs in stores are usually higher than in warehouses, for example (see e.g.,
Boysen et al. (2021); Difrancesco et al. (2021)). However, the access to
inventories across stores generates inventory pooling effects that result in
lower overstocks at the same time as higher service levels (Alptekinoğlu
and Tang, 2005). Effectively mastering the renaissance of the store in OC
fulfillment requires the development and application of advanced models
and OR methods.

The number of publications dealing with such planning models has grown
significantly and amounts to over 40 papers. Most of them have been
published after 2016 and the European Journal of Operational Research
has been the major outlet for these papers. The growing importance of OC
operations is also reflected in an increasing number of related literature
reviews. Agatz et al. (2008) review literature on operational challenges
in single and multichannel fulfillment. Operational issues and relevant
literature is structured along purchasing, warehousing, delivery, and sales.
Montreuil (2016) conceptualize the warehouse and transportation network
based on Physical Internet concepts for OC fulfillment. Galipoglu et al.
(2018) identify the research front through a content analysis and a citation
and co-citation analysis. Kembro et al. (2018) carry out a literature review
related to OC warehousing. Melacini et al. (2018) investigate the move
towards OC and map emerging issues along distribution network design,
inventory and capacity management, and delivery planning and execution.
Bijmolt et al. (2021) discuss demand- and supply-side challenges in OC
assortment and inventory, distribution and delivery, and returns. Another
review is provided by Mou et al. (2018), but they focus on operations
within bricks-and-mortar stores only. Cai and Lo (2020) and Raza and
Govindaluri (2021) conducted a systematic literature review on omnichannel
management. Both descriptive analysis identified in particular supply chain
and distribution topics as future research areas. Caro et al. (2020) identified
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the distribution approach through e-commerce and omnichannel as one of
the future research topics.

The overview shows that current reviews lack topicality (e.g., Swaminathan
and Tayur (2003); Agatz et al. (2008)), an OR perspective on the store (e.g.,
Kembro et al. (2018); Caro et al. (2020); Cai and Lo (2020); Bijmolt et al.
(2021)), or an analysis of latest developments in practice (e.g., Galipoglu
et al. (2018); Melacini et al. (2018); Cai and Lo (2020); Raza and Govindaluri
(2021)). This is aggravated by cross-cutting OC operations topics, which are
not fully discussed and evaluated by the literature reviews. Examples include
an integrated assortment for buy online pick-up in store purchases (see e.g.,
Rooderkerk and Kök (2019); Hense and Hübner (2021)), the fulfillment of
online orders through stores (see e.g., Ishfaq and Bajwa (2019); Arslan et al.
(2020); Bayram and Cesaret (2021)), or the consideration of a single virtual
stock for all fulfillment locations (see e.g., Aflaki and Swinney (2021)).

A comprehensive, up-to-date review on operational issues and the central
role of the store in OC operations constitutes a research gap. Hence, this
review particularly targets contributions concerned with OR applications,
quantitative model-based analyses, and decision support systems for stores
within OC operations. Obtaining a state-of-the art overview requires
blending knowledge from retail practices and academia. Industry insights
are core for this research area as retailers have been forerunners in quickly
responding to fundamentally changing market requirements, such as the
growth of online businesses. Resulting retail practices materialized in store
innovations and heavily drove the implementation of OC operations.

To fill these gaps we investigate the revival of the store through OC retailing
and more specifically the store-related planning issues in OC operations.
This can be traced back to three questions displayed in Figure 5.1. First,
we structurally identify the most relevant store-related planning issues
derived from interviews with industry experts (RQ1). Second, we match
this overview with an analysis of existing literature and evaluate whether
and to what extent these planning issues are covered in pertinent analytical
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and modeling literature (RQ2). We use the combination of RQ1 and
RQ2 to ensure a structured literature analysis that responds to retailers’
challenges and reveals answers in the literature. Third, the combination of
both questions makes it possible to state which planning issues are not yet
sufficiently covered and offer further research potential (RQ3).

Figure 5.1: Overview of research questions

As this is a new and under-explored research area, we apply multiple
research methods to shed light from different angles. Section 5.2 details the
research approach taken. In Section 5.3, we utilize the different research
methodologies to systematically identify and analyze planning issues, discuss
related literature, and outline further research opportunities. Section 5.4
concludes the paper.

5.2 Research Methodology

We aspire to generate a holistic understanding for the nascent topic of
integrating stores into omnichannel operations. We particularly aim to
understand the planning aspects involved in the OC setting, while we
need to cope with the scarcity of existing contributions as the topic has
evolved only recently. Multi-method approaches are an imperative in such
cases (see Boyer and Swink (2008); DeHoratius and Rabinovich (2011) for
examples). We first develop a conceptual overview that is appropriate to
build a theoretical foundation for emerging research topics (Webster and
Watson, 2002). In doing so, we define the scope and create an overview
of relevant OC concepts. We then enrich the concepts with insights from
practice by conducting semi-structured expert interviews. We additionally
perform a systematic literature review to incorporate the latest research.
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Figure 5.2 summarizes our methodological approach, which places the
triangulation of multiple sources in the center. The sources are detailed in
the following.

Triangulation 

approach

Omnichannel 

concepts

Expert 

interviews

Structured 

literature analysis

Figure 5.2: Applied research methodology using a triangulation approach

Omnichannel concepts OC operations imply fully integrated channels
where consumers can shop without noticing the different channels operating
in the background (e.g., which picking location was used). It extends
the multichannel (MC) concept, which characterized retailers with various
isolated sales channels, such as an online shop (henceforth referred to as
“webshop”) and a bricks-and-mortar store (henceforth referred to as “store”)
(Brynjolfsson et al., 2009; Bell et al., 2014; Verhoef et al., 2015; Beck and
Rygl, 2015; Hübner et al., 2016b). The predecessor of MC is termed single
channel (SC) and describes retailers that operate a single sales channel. This
concept is becoming less relevant (e.g., Hübner et al. (2016b); Rooderkerk
and Kök (2019)). The novelties of OC operations surface at the store and its
interactions with different fulfillment concepts. These can be differentiated
by the point of receipt of goods (at store vs. at home) and the point where
the customer orders and pays (at store vs. at home). Please note that
“at home” symbolizes here any location to order online outside the store
(e.g., home, during travel or at office) and to receipt goods outside the
store (e.g., home, parcel locker or pickup station). Figure 5.3 summarizes
these options. The resulting OC-enabled fulfillment concepts (henceforth
referred to as “OC concepts”) are ship-from-store (SFS), buy online pick-up
in store (BOPS), and digital assortment extension (DAE). As “ordering at
store” and “receiving at store” when taken together constitutes conventional
in-store shopping and not an OC concept, we will not further study this
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aspect. Figure 5.4 further illustrates the product flows for the three OC
concepts, which are at the center of our research on operations. Although
we focus on the role of the store we have added a distribution center (DC)
to complement the product flows and our definition of the concepts.

HomeStore

Store

Home

Ordering

Receiving

Digital Assortment 

Extension

Ship-From-Store

Shopping in Store

Buy Online Pick-up in 

Store

Figure 5.3: Relation between ordering
and receiving

Buy Online 
Pick-up in 

Store

Digital 
Assortment 
Extension

DC

Store

Ship-From-
Store

Movements

Payment

Customer

Products

Figure 5.4: Product flows in OC retail-
ing

Buy Online Pick-up in Store (BOPS, also called click and collect)
enables demand transfer from the webshop to the store. Customers can
order online to pick up products in the store, possibly while observing store
inventory (see e.g., Hübner et al. (2016a); Bayram and Cesaret (2021)).
Products originate from a DC and are shipped to the store for pick-up
either prior to a specific order (i.e., use of store inventory) or after the order
is placed (i.e., specific online inventory). This practice helps to shorten lead
times or to substitute unavailable webshop items by redirecting customers
to the store where the item is available. A variation depicts reserve online,
pick-up and pay in store (ROPS), where items are reserved online but
payment is only carried out in the store upon pick-up. BOPS is particularly
adequate for low-value products (e.g. discounter products) to avoid that
shipping costs outweigh the merchandise value and discourage purchases.
Also, products with high return rates (e.g. fashion wear) are suitable as the
pick-up poses the opportunity to try and potentially replace the ordered
product immediately so that return costs can be saved.

Ship-from-store (SFS) describes the process of accessing store inventory
for online orders and using stores as an alternative fulfillment location to
DCs (see e.g., Hübner et al. (2016a); Difrancesco et al. (2021)). Orders are
picked in the store and shipped directly to the customer. Benefits arise
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from shorter transportation distances to customers compared to remote
DCs and from inventory pooling across different locations. In this concept,
products originate from a DC and are shipped to stores prior to the cus-
tomer order as regular DC-to-store deliveries. Industries with high customer
expectations regarding delivery time (e.g., consumer goods) and areas that
are characterized by heavy mark-downs (e.g., seasonal fashion products
or technology-heavy electronics articles) greatly benefit from this OC con-
cept. It helps satisfying customers and selling off otherwise marked-down
inventory.

A Digital assortment extension (DAE) provides an “endless aisle” to
the store via demand transfer from the store to the webshop. Alternative
terms are digital shelf extension or virtual shelf expansion. Digital devices
in the store enable access to the online assortment and expand the store’s
offering. In an extreme variant of DAE, the store has no sales inventory and
only serves as a showroom with digital order options (see e.g., Dzyabura
and Jagabathula (2018); Gao and Su (2017a); Park et al. (2020)). The role
of the DC in this concept differs from the previous two. Here, products
are typically shipped to customers directly from a DC after an order is
placed in the store via DAE. The concept is relevant for retailers with large
assortments and small stores, large products (e.g. furniture or bikes), and
products with a wide range of designs or sizes (e.g. fashion). DAE helps
in such cases to offer customers the full assortment through a digital shelf
extension while using shelf space for the most adequate products.

Enabling BOPS, SFS, and DAE revolutionizes the role of the store, the
underlying retail operations, and the interface to the customers. It requires
the integration and coordination of operations, resources, and information
systems and entails novel structures and planning systems. This creates the
need to identify and analyze the planning problems that are affected the most
by the transition towards OC concepts. In particular, enhanced approaches
across channels are required for the demand forecast, the selection of
fulfillment locations of online orders and the assortment and inventory
definition. We aim to distill the essentials of the new role of the store in
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OC operations. We therefore analyze OC retail settings with integrated
channels. This leads us to focus on tactical and operational planning
problems, which excludes strategic aspects like moving from SC or MC to
OC. Furthermore, we focus on the impact of operations and stores. We
therefore do not mix our analysis with special cases of the OC concept
that do not involve store operations. One example is drop-shipping, where
the retailer redirects the order to a third party, which directly ships the
products to the customer. Finally, we focus on the distribution of physical
products in B2C retail. Altogether, this builds the basis for our analysis
and is also applied to the data collection from practice and research, which
is detailed in the following.

Interviews with experts from industry Input of industry experts helps
to ensure external validity, enhances the practical relevance, especially for
emerging topics, and uncovers new facets of the research topic (Eisenhardt,
1989). From June to August 2020, we interviewed managers of OC retailers
and retail and supply chain consultants to gain a holistic perspective on
the topic. All participants currently work or worked for European head-
quartered, multi-national retailers in fashion, DIY, electronics, furniture,
books, home-ware, or food. The retailers’ diversity allowed us to view their
challenges from various angles. We set out to target retailers with an online
channel and proprietary bricks-and-mortar stores that offer company-wide
OC fulfillment concepts. Beyond that, the OC retailers need complete
control and responsibility for their distribution processes. Interview part-
ners at the companies were either self-selected by the company or directly
approached by us. The interviewees possess fundamental knowledge of OC
operations. All interview partners and details of the interviewing approach
are summarized in the Appendix.

Structured literature analysis We deployed a systematic literature re-
view consisting of five steps to identify the most relevant articles published
up to March 2021. First, we carried out a keyword-based search on Scopus
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and EBSCO. The search was limited to articles that were published after
1999 in peer-reviewed, international journals in the areas of operations
research, logistics, marketing-operations, and general management studies.
For further details we refer to Literature search approach in the Appendix.
Second, all 132 articles obtained were read in their entirety by at least two
authors, re-assessed, and subsequently either included on or excluded from
our research paper. 33 articles classified as relevant and were mapped to
the planning issues derived from the interviews. Third, the bibliography of
selected articles was scanned to identify further relevant contributions. 16
additional articles were found that the authors read in their entirety, out
of which three were categorized as relevant. Fourth, Google Scholar was
utilized to screen literature that cited articles that had been selected in the
previous two steps. Here, 46 papers were reviewed in full and three were
eventually added to our paper. Steps three and four implied the review of
additional articles but also revealed further matching publications. Articles
identified in steps three and four underwent the same thorough process
described in step two. Fifth, a manual search of the leading OR journals was
carried out to verify our approach via a small, highly relevant sample. This
last step identified and added eight additional publications. Altogether, we
read 211 articles in their entirety and identified a total of 47 articles that
were to be mapped to the categories.

Comprehensive analysis with a triangulation approach We use the
different methodologies to systematically identify and analyze the relevant
planning problems. At regular meetings, all team members discussed the
codes, categories, and findings from interviews to set aside subjective im-
pressions from single researchers and come to an objective interpretation of
interviewee perceptions. This ensures repeatability of our findings (Lincoln
and Guba, 1985). The meetings also served to review and map relevant
literature. The empirical findings in Section 5.3 are structured along five
elements (demand forecasts, network design of fulfillment locations, as-
signment of customer orders, assortment and inventory management, and
inventory replenishment and returns) that emerged from our conceptual
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overview, expert interviews and literature analysis. Each element depicts
one planning issue. The elements are structured along planning horizons
and their relation to each other.

To specify the planning issues in the following sections, we first define
and outline the problems through our findings from the interviews and
literature and subsequently relate these to the various OC concepts. The
specification of each issue is enriched by current challenges and systems
applied in practice. Literature is then related to each issue. Literature,
interviews, and the OC concepts are jointly and iteratively applied, e.g.,
findings from literature are leveraged to sharpen the scope of the planning
issues identified from interviews. Applying such a holistic view is intended
to develop new insights for academics and to guide practitioners.

5.3 Store-related planning issues in

omnichannel operations

This section develops the planning framework for store-related issues in
OC operations. We will first provide an overview of the planning tasks and
their interdependencies in Section 5.3.1. Afterwards we will analyze each
task separately in Sections 5.3.2 to 5.3.4.

5.3.1 Overview of the planning framework

OC merges operations across channels. This brings forth planning questions
on how to match supply and demand across channels and puts the store at
the center of those operations. In particular, it requires answers as to what
and how much to offer and where to process an order across integrated
channels. However, integral planning implies more complex approaches with
multi-dimensional interdependencies. Efficient planning of the entire OC
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operations is neither possible in the form of a monolithic system that plans
all tasks simultaneously nor by simply performing the various planning steps
successively. Varying decision owners, time horizons, planning frequencies,
and levels of aggregation necessitate a decomposition of the entire planning
problem (see also Schneeweiss (2003)). The compromise is hierarchical
planning that balances practicability, the integration of interdependencies,
and the breakdown of the overall problem into partial planning modules. It
enables coordination among the planning issues (Miller, 2001; Schneeweiss,
2003; Stadtler and Kilger, 2008). Using our multi-method approach allowed
us to derive such a planning framework that aligns the novel OC planning
issues (see Figure 5.5).

Mid-term 
(tactical)

Short-term 
(operational)

Network design of 
fulfillment locations

Section 3.3.1

Assignment of 
customer orders

Section 3.3.2

Assortment and 
inventory management

Section 3.4.1

Inventory  replenishment 
and returns

Section 3.4.1

Decoupling 
point

Decision horizon

Mid-term demand forecasts
Section 3.2

Planning questions Information flow

Figure 5.5: Overview of store-related planning questions in OC operations

Dimensions of the planning framework The planning problems can be
differentiated into two dimensions. The first dimension is the planning and
decision horizon, which differentiates planning problems with a mid-term
tactical scope and those with a short-term operational scope. The mid-term
planning problems usually have a horizon of multiple months and are based
on forecasts, whereas the short-term issues require handling on a daily level
and are based on actual customer orders. This also defines the decoupling
point that divides planning tasks into forecast-driven and order-driven
(Hübner et al., 2013). Retailers have to anticipate consumer demand down
the supply chain until the customer interaction. The decoupling point in
retailing is located at the store shelf and webshop respectively, at the very
end of the supply chain when an actual customer order is placed. The second
dimension can be differentiated along the planning questions from planning

126



Omnichannel operations: literature review and research framework Jonas Hense

of demand through fulfillment locations to assortments and inventories.
This is in line with Fisher and Raman (2010), who noted that retailers have
three tactics at their disposal for matching supply with demand: accurate
forecasting, supply flexibility and inventory stockpiling.

Planning questions, interdependencies and information flow At
the mid-term level and with the availability of demand forecasts, OC
retailers are required to decide which locations in their network to make
available for fulfillment (network design of fulfillment locations). This
entails the set up of picking and shipping locations of online orders as well
as in-store OC offerings. Besides that, assortment and inventory man-
agement needs to be carried out for each channel and location. This results
in defining which products to list in which channel and in which quantity.
Planning of locations, assortments and inventories are interdependent and
need to be aligned. For example, selecting assortments for SFS or DAE
depends on the availability of singular locations in the network and the
available assortments in these locations. On the operational level and with
the availability of actual customer orders, retailers need to take care of the
assignment of customer orders to fulfillment locations. These locations
are responsible for picking, packing and delivering the orders. Inventory
replenishment and returns complements this decision by defining how
much and when to replenish across channels. Both operational planning
issues are also interdependent as order assignment depends on the available
inventory of a location.

The decisions are also characterized by a hierarchical dependency: forecasts
are input to network, assortment and inventory selections. But networks,
assortments and inventories also impact forecasts, for example, if substi-
tutions between products or locations are integrated into the forecasts.
Furthermore, order assignment depends on the locations previously selected.
The same hierarchical dependency exists for inventory-related questions.
For example, inventory needs to be replenished up to levels that have been
determined in the mid-term module. The target levels depend in turn
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on the feasible replenishment frequency. The OC retailer which operates
an own set of stores and DCs is the owner of the planning and decision
process. Within the retailer, different business units may be responsible
for the planning process. All planning purposes require an involvement of
marketing, sales and operations related departments.

Structure of following analysis In the following we will analyze each
planning decision separately to focus on the core contents. We first delineate
the requirements for demand forecasting across channels in Section 5.3.2,
as forecasts are required inputs to the mid-term planning problems. This
is followed by the topics related to fulfillment locations in Section 5.3.3
and assortment and inventory topics in Section 5.3.4. Each section firstly
describes each planning problem and its scope (paragraph: scope of the
planning problem), and how the planning problem impacts OC retailers in
practice (paragraph: challenges in practice). This answers RQ1. Second,
our literature review unveils relevant publications and details the decision
problem that is investigated in the respective contribution (RQ2; paragraph:
current state of literature). We focus on the decision models and structures
of the novel problems to accomplish our ultimate objective of creating
a planning architecture. Lastly, our outlook for future research brings
together the gaps identified in the literature view and the combined view
of literature and industry. This serves to develop areas of future research
(RQ3; paragraph: future areas of research).

5.3.2 Mid-term demand forecasts

Scope of the planning problem The customers’ role and its’ direct
impact on retail operations is growing through OC retailing. In contrast to
that, traditional logistics to supply bricks-and-mortar stores usually end at
the store without direct customer contact. Hence, a more comprehensive
understanding of consumer behavior is required to understand the demand
effect of cross-channel switching. Such an understanding translates into the
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required generation of mid-term demand forecasts for OC retailers for each
channel, each store and each DC, and for each product to define fulfillment
locations, assortment sizes, and inventory levels.

Challenges in practice OC retailers are confronted with issues related
to accurate demand forecasts that can be clustered into three areas. First, a
sufficient historical OC database and OC experiences are often unavailable
due to very recent OC service enhancements and significant developments
of OC shopping. Many interviewees state that processes, hardware, and
software to collect and store necessary data into a single, aggregated system
and to make this data available are not implemented. Even if available,
only limited sales figures are directly retrievable. One interviewee (VAR01)
described a case of an electronics retailer where “cash register systems are
not connected real-time to the retailer’s merchandise management system.
Also, cross-channel returns are not updated in the same system and not in
real-time.” Hence, sales figures are updated with a time lag and do not feed
correctly into forecasts. Returns might not be considered at all. Second,
demand models across channels are required to capture additional customer
attributes. A sales manager from a fashion retailer (FAS01) confirmed
that new OC customer segments emerge and existing segments change
their purchasing behavior. It becomes more challenging to understand
customer needs and how customers use channels to make a purchasing
decision, such as, if one channel is used for the information search and
another for product purchases. A manager from a fashion retailer (FAS02)
emphasized that the SC models do not consider these different OC-induced
customer segments and their individual demand patterns. As an example,
BOPS customers, who are mobile, prefer to see the products at pick-up
or like to add additional products on-site. Forecasts must consider these
customer groups and their respective, varying preferences, and shopping cart
compositions. Furthermore, existing SC or MC models used by retailers do
not sufficiently capture OC demand flows across channels, e.g., substitutions
from store to online. The positive impact of webshop promotions on online
demand, for instance, may have a negative impact on store demand. To
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increase OC forecasting accuracy, one needs to identify relevant drivers of
demand. Such drivers may include external factors such as weather, season,
or the activities of a competitor and internal factors such as advertisements
across or within a channel. Third, DAE demand is greatly influenced by in-
store inventory as customers often use DAE orders to buy temporarily sold
out, out-of-stock (OOS) items. However, in-store inventory information is
often not reliable or available in real-time, making predictions more difficult.
This may result in censored demand observations since sales are limited by
the available supply information.

None of the companies interviewed currently applies advanced predictive
models for a channel integrated OC demand forecast regardless of the OC
concept used. Instead, rather rudimentary methods are used (e.g., that do
not consider cannibalization or reinforcing effects via OC). For example,
when considering SFS, two interviewees (VAR02, DIY01) described that
they consider only the top x% of products and calculate the expected offline
demand using a general flat adjustment factor. Three interviewees (DIY01,
FAS01, VAR05) reported attempts to break down total forecasts to certain
regions and ZIP codes but lack the required data to connect all OC-sales.

Current state of the literature A limited number of contributions cur-
rently addresses demand forecasting in an OC context. Table 5.1 summarizes
the related literature.

Table 5.1: Related literature on demand forecasting in OC retailing
OC concepts Problem size2

Related contribution BOPS SFS DAE Method1 Per Prod Stores DCs Data4

Cao et al. (2016) X AM S 1 1 1 SD
Lee (2017) X ARM, AA S 10 -3 5 SD
Pereira and Frazzon (2020) X X Cl, NN S 10 16 4 ED
Klibi et al. (2021) X X GT, AR S 24.029 1 1 ED
1 Formulation of the underlying problem: Analytical model (AM), Association rule mining (ARM), Apriori algorithm (AA), Clustering (Cl),
Neural network (NN), Graph theory (GT), Arimax regression model (AR)

2 Problem size: Multiple (M) or single (S) periods (Per), No. of product variants (Prod), No. of stores, No. of DCs
3 Instead of no. of stores, 500 transactions per DC cluster are considered
4 Data applied: Simulated data (SD), Empirical data (ED)

Cao et al. (2016) develop an analytical model to analyze the introduction
of BOPS and the resulting allocation of customer demand across a store
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channel, an online channel, and the new BOPS channel. Demand for one
product is allocated across channels based on the utilities of heterogeneous
customers. Different price scenarios are considered, where the BOPS
product can or cannot be purchased in the retail store. In most scenarios,
a fraction of the existing store and webshop customers shift to the BOPS
channel. Lee (2017) takes a more granular forecasting approach by modeling
demand points (e.g., stores with BOPS) aggregated in a cluster. However,
in their numerical experiment demand points are simplified into the total
number of transactions. Demand patterns among purchased items are
derived using association rule mining and an apriori algorithm. Resulting
forecasts are expressed through if-then rules. Pereira and Frazzon (2020)
consider BOPS and SFS. They also take a step-wise approach to OC
forecasting on a store-level. Just as in Lee (2017), consumption patterns
are clustered based on sales data. In contrast, demand forecasts are created
for every single time series. A neural network as part of a machine learning
approach is used to improve forecasting accuracy. Pereira and Frazzon (2020)
then test the solution with a simulation-based optimization to optimize
financial and material flows in an OC supply chain. Lastly, Klibi et al. (2021)
analyse a similar setting of an OC retailer with BOPS and SFS. Also, a
two-step approach to OC demand forecasting is applied. The authors firstly
use graph theory to create a network of relationships between products
based on customer shopping baskets and specific historic time horizons. The
network is then used with an ARIMAX model, which provides a demand
forecast for each product in each channel.

Future areas of research Future research can contribute in four areas,
namely coverage of OC concepts, data issues, OC-specific attributes, and
methodological extensions. First of all, while some first research on forecast-
ing BOPS demand exists, there is little research covering SFS and DAE.
Forecasts for SFS need to predict location- and time-specific demand for
stores and the webshop to enable retailers to plan their store assortments
and inventories. DAE depends on factors such as DAE-devices in stores,
accessibility, and store staff to support customers in changing their shop-
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ping channel. Most important however is the consideration of customer
volumes in the store and their propensity to change channels when offered
the possibility to shop online.

Second, precise information about demand and inventory is vital for chan-
nel interactions but not available due to infrastructural and setup issues.
Methods for estimating demand and inventory with missing data and time
lags are therefore required. This particularly involves approaches to replace
missing data points (e.g., current inventory, current forecast in the store)
with forecasts.

Third, there is room for methodological extensions. Existing OC forecasting
models lack the completeness of internal and external variables within and
across channels. These include variables representing general demand pat-
terns, such as seasonality or weekdays, uncontrollable, external factors, such
as the weather, socio-economic conditions, or competitor activities, and un-
known factors such as roadworks in front of a store or web-page breakdowns.
It would also be worth investigating further attributes such as in-store
displays, display restrictions, store and product attributes, or assortment
depth and diversity. Particular attention must be paid to factors that help
to estimate the interactions between channels: cross-channel promotions,
the type, number, and position of DAE devices in stores, or the level of
store staff involvement, for instance. In general, it is also worth taking
into account effects like sales cannibalization, halo effects, and inter- and
intra-category effects. Also, given the magnitude of cross-channel returns,
these should be estimated for calculating available inventory. Customer
segment- and channel-specific demand factors will improve forecasting ac-
curacy. Another crucial dimension to consider is censored demand, and
accounting for out-of-stock (OOS) items that have or have not been bal-
anced by cross-channel substitutions. Finally, another opportunity for
enhancing OC forecasting models is the combination of different methods.
While the above models have a quantitative nature, one could integrate
qualitative forecasting to compensate for missing data points in the new
OC services. Alongside this, models could include a blend of quantitative
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methods, such as time series, linear regressions, or causal modeling, to select
the method most appropriate for a certain situation. As already shown
by Pereira and Frazzon (2020), such models could be further enhanced via
machine learning algorithms to refine forecasts. Machine learning models
deem particularly useful to assess above mentioned internally generated and
externally available data and derive potentially underlying demand patterns.
Given their capability of handling enormous amount of data, the more data
is fed, the more patterns can be uncovered, the more granular forecasts turn
(e.g., aggregation on item-, consumer-, single-location, or hour-level) and
the more adaptable models become to changes like seasonality or market
trends. Next to that, one should investigate whether available store or
e-commerce demand forecasting models can be transferred and enriched
to an OC setting with demand flows across channels. The forecasts serve
as input to the mid-term location and assortment planning. These will be
delineated in the subsequent sections.

5.3.3 Fulfillment locations

The fulfillment location selection takes place on two planning horizons. As
such, we first outline the tactical network decision and complement it with
the operational order assignment problem.

Network design of fulfillment locations

Scope of the planning problem At this planning stage, an OC retailer
defines the subset of possible fulfillment locations among the entire network
of stores and DCs. In other words, the retailer needs to define which of
the depots (e.g., central DC, regional DC, stores) to set up for picking
and shipping of online orders or in-store OC offerings. This is relevant
for SFS, where retailers select stores for home delivery, but also applies to
BOPS when locations other than the pick-up location supply the orders

133



Omnichannel operations: literature review and research framework Jonas Hense

(see Figure 5.4). For example, a fashion retailer (FAS03) explained that
BOPS orders are often shipped from DCs to stores together with regular
store replenishment. This is common practice for low-cost retailers, that
can afford asking customers to wait for several days to pick up the order,
to reduce logistics costs. For the DAE, it means selecting which depots are
included in the offerings. Available storing, picking and processing capacities
as well as assortments and inventories are prerequisites for including a depot
in the set of potential fulfillment locations. Ultimately, expected inventory
holding and picking costs at the fulfillment location and transportation costs
to stores and to the customers determine the selection of depots. In contrast
to the assignment of a specific order to one location (see Section 5.3.3), this
is based on expected demand and goes along with setting up information
systems between inventory locations as well as processes.

Challenges in practice OC retailers pointed out challenges with select-
ing the appropriate fulfillment locations that can be clustered around three
topics: development paths, operational efficiency, and heterogeneous depots.
First, several interviewees (VAR01, DIY01, FAS03, FAS04) explained how
retailers started their OC fulfillment in stores with an SFS concept as it
was easy, fast, and cost-efficient to implement compared to opening new
facilities. The enduring business problem here is to define the optimal
volume processed in stores. Processing in stores has benefits compared to
DCs if stores are in customer proximity. One interviewee (VAR01) predicts
that SFS will be a critical retail element of the future as integrated delivery
through city locations can satisfy short-term delivery (e.g., as same-day
delivery). Second, the share of online sales processed via stores has opera-
tional and economic limitations despite the benefits due to lower delivery
times (FAS01). For example, picking, and packing orders needs space that
often does not exist (DIY01). One interviewee (VAR02) commented on the
furniture sector: “We have seen store managers who did not want to assign
store space for services of SFS and BOPS channels and refused to assign
packing spaces in their stores”. Some experts (VAR01, VAR05, DIY03)
discuss the correlation of structural factors such as typical customer order
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sizes and location decisions. For retailers with small order sizes, SFS can
be beneficial. For those experiencing large order sizes, the use of stores is
less cost-efficient than processing in DCs. Some retailers indicated that not
more than 10% of total store sales could be allocated to SFS and BOPS as
it would otherwise disturb store and customer processes too much. Finally,
the location selection becomes more relevant but also more complex when
retailers hold a number of heterogeneous depots, e.g., DCs and stores with
different assortments and fulfillment costs. The picking efficiency is different
across stores (as different walking distances occur) and between stores and
DCs (due to different automation levels). A further related organizational
issue mentioned is the legal separation of stores and DCs (in franchise
systems or at retailers with later added online offerings, for instance). In
these cases, a fully integrated concept may become impossible, particularly
if independent store managers refuse SFS (VAR02). In fact, inventories in
one location may belong to different entities, for example because a store
accepts returns of online inventory. In this case, certain shares of store
inventory cannot directly be used for fulfillment of online orders. In this
case only parts of the inventory (e.g., sourced from DCs) or services (e.g.,
only SFS, no returns) may be offered. Such organizational boundaries and
limited availability of products and services restrict the network.

In the course of recent introductions of OC concepts, most retailers decided
on fulfillment locations based on speed and ease of implementation and only
partially based on induced costs. Because many retailers have introduced
OC fulfillment in recent years, most of them are still in an improvement
phase. For example, in some cases stores were mostly used for online order
fulfillment due to low set-up efforts. In other cases, retailers tried to leverage
existing systems (e.g., transportation between DC and store) to supply
BOPS -orders. These considerations, however, are unsustainable solutions
as actual fulfillment costs are not fully taken into account.

Current state of the literature Table 5.2 summarizes papers that deal
with the mid-term network design decision. The problems are typically
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formulated as an inventory problem where retailers define the stocking
volume in possible fulfillment locations and assign them a share of the
online demand. Through this inventory definition and demand assignment,
the papers derive the most beneficial depots out of a set of all potential
fulfillment locations (picking and delivery from stores or DCs, or drop-
shipping).

Table 5.2: Related literature on OC network design of fulfillment locations
OC concepts OR characteristics Costs7 Problem size8

Related contribution BOPS SFS DAE Mod1 SolA2 OF3 DecV4 Cons5 Dem6 Inv Pi Tra Per Prod Location Data
Bendoly (2004) X Sim Sim I O BL sto, st (X) (X) M 1 St SD
Alptekinoǧlu/Tang [2005] X MIP Dec C LA D, C sto, st (X) I M 1 St SD
Bendoly et al. (2007) X MIP Enum C O, LA BL sto, st (X) (X) I, O M 1 St/DC SD
Hovelaque et al. (2007) X Sim Sim P O - sto, st (X) (X) 1 1 St/DC/Dr SD
Chen et al. (2011) X DP AM R O, LA - sto, st (X) O 1 1 St/Dr SD
Mahar et al. (2012) X Sim Sim C LA - sto, st (X) 1 1 St/Dr SD, ED
Mahar et al. (2014) X MIP Opt C LA D, CR sto, st (X) I M 1 St/DC SD, ED
Ma et al. (2017) X AM AM P O - sto, st (X) (X) 1 1 St/Dr SD
Mahar and Wright (2017) X NLO Opt C LA Dis sto, st X (X) I M 1 St/DC SD, ED
Ishfaq and Raja (2018) X MIP Opt C LA D, I det, st (X) (X) I, O M M St/DC/Dr SD, ED
Ishfaq and Bajwa (2019) X NLO Dec P LA D, I det, st (X) (X) I, O M M St/DC/Dr SD, ED
Arslan et al. (2020) X SDP Opt P LA C, I, LN sto, st (X) X I, O M 1 St/DC SD, ED
Bayram/Cesaret [2021] X SDP Heu P LA I sto, st X O M 1 St/DC SD
Prabhuram et al. (2020) X MCDM MCDM V - - - (X) 1 1 St/DC SD
1 Formulation of the underlying problem: Simulation (Sim), Mixed-integer program (MIP), Dynamic program (DP), Analytical model (AM), Non-linear optimization (NLO), Stochastic dynamic program (SDP), Multi-criteria decision

making (MCDM)
2 Solution approach: Simulation (Sim), Decomposition scheme (Dec), Enumeration (Enum), Analytical modeling (AM), Optimal (Opt), Heuristic (Heu), Multi-criteria decision making (MCDM)
3 Objective function: Inventory (I), Costs (C), Profit (P), Revenue (R), Value (V)
4 Decision variables: Order-up-to-level (O), Location assignment (LA) or no decision variables specified (-)
5 Constraints: Backorder level (BL), Demand satisfaction (D), Capacity (C), Customer returns (CR), Distance (Dis), Inventory (I), Location number (LN) or no constraints specified (-)
6 Demand model: Demand model: Stochastic (sto), Deterministic (det), Seasonal (sea), Stationary (st) or no demand model specified (-)
7 Inventory costs (Inv) either fully including inventory holding costs, shortage/backorder costs and salvage value X, or only partially (X), Picking costs (Pi) as depot-specific costs for fulfillment either fully including actual picking, packing,

and handling costs X, or only partially or in abstract terms (X), Transportation costs (Tra) as inbound costs to DCs and stores (I) or outbound costs to customers (O)
8 Problem size: Multiple (M) or single (S) periods (Per), single (1) or multiple (M) no. of products (Prod), No. of location variants (Stores (St), DCs (DC) and drop-shipping (Dr)), simulated (SD) or empirical data (ED) applied

Bendoly (2004) is the first contribution that constitutes a related OC
network problem. It applies multiple stores and a webshop where the entire
store and online demand is fulfilled by the stores. The retailer defines the
fulfillment shares across stores for SFS. The paper develops a combined
simulation and optimization model where the store customers are served
first and the online customer second. Products that are not available for
online sales in one store can be substituted by a neighboring store and
shipped to the customer instead. This imposes additional shipment costs,
but may reduce total inventory. To solve this trade-off, stores reserve a
fraction of their inventory for online sales. Steering the substitution process
across stores in this way allows inventory pooling effects to be obtained.
The model optimizes for lowest inventory costs and determines order-up-to-
levels for the locations in the network. Inventory holding costs are in focus
without considering backorder and salvage costs. Fulfillment costs are only
considered as an aggregated cost factor for penalizing substitution. Bendoly
et al. (2007) further specify the related costs and additionally model an
online DC as a potential location. They formulate an optimization approach
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to minimize total costs while maintaining a service level with an order-
up-to level policy and backorder option. For this, the authors solve the
MIP and determine the impact of a decision variable (fraction of online
orders served by online depot) at a fixed value on total costs. Doing this,
they determine how much of the online demand should be fulfilled with
the inventory of the stores and at which costs. There are two competing
pooling effects with pooling online demand in the central online DC and
pooling store demand with online demand in the stores. Costs considered
include the fixed costs of setting up operations at the online DC and the
stores, the inventory holding cost in the entire system, as well as the
variable shipping and handling costs of supplying the online demand to DC,
stores (inbound), and to customers (outbound). Transportation costs are
modeled without order bundling (inbound) or routing (outbound) effects.
All cost elements are simplified with linear costs. In the related paper of
Alptekinoğlu and Tang (2005) the retailer can also fulfill online orders from
stores and DCs. The authors propose a decomposition scheme that first
transforms the multi-depot problem into several single-depot problems with
ordering and allocation decisions. In the second step, demand is assigned
through a convex nonlinear program. They minimize the total expected
costs subject to depot capacities and according to stochastic demand. The
total costs comprise linear transportation, inventory and backorder costs.
Transportation costs cover inbound processes from supplier to DCs as well
as to fulfillment locations but without consideration of bundling effects and
order consolidation. A case application also models the customer-dependent
shipment costs from fulfillment locations to customer zones. Hovelaque
et al. (2007) add drop-shipping as another fulfillment option besides store
and DC fulfillment, and compare this within a simulation. They apply a
Newsvendor formulation to determine the optimal stocking level for each
fulfillment type. Similarly, Ma et al. (2017) formulate a Newsvendor model
to define the optimal mix of the fulfillment of store and SFS orders with
a store and a drop-shipping inventory. They further include return rates.
Sales prices, purchasing costs, salvage and shortage costs are considered in
both papers to display overall retailer profits. Chen et al. (2011) develop
a model with two stores. These stores need to fulfill in-store demand and
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can decide whether to accept an incoming online order or decline it. This
way, they act in the form of a drop-shipper serving online customers from
their inventory. In contrast to previous contributions, dynamic fulfillment is
applied such that the second store can only fulfill orders when the first store
refuses. They determine inventories for both stores and develop admission
policies that help to decide when to accept or decline an online order for
each location. The authors do not consider inventory costs for the dynamic
programming model. Instead, they include location-depending costs such
as handling, packing, and shipping costs for orders to compare expected
revenues between the store fulfillment options. Shipping costs are modeled
as direct per-customer costs without routing effects.

Mahar et al. (2012) extend the problem to offer stores for BOPS in a
dynamic fashion. Each time an online customer reaches checkout, the
model uses information on current inventory levels and expected demands
to specify which of the stores should be presented as available pick-up
locations. The policy attempts to discard stores with low inventory levels.
The authors formulate a decision problem to minimize the total costs
of inventory holding and backorder as well as lost sales and redirecting
customers (so called customer goodwill costs). The latter two express
additional refill costs of stores and penalty costs when customers may not
select the preferred channel and switch to competitors or change to direct-
to-customer shipments with additional fees. Direct-to-customer shipments
are assumed as an alternative option for online orders directly from the
supplier (which does not impact the BOPS decision). In an extension,
Mahar et al. (2014) determine how many and which stores to be set up to
handle BOPS and in-store return. They thereby extend the cost function
with fixed setup costs per period and transportation costs between the DC,
stores and customers, which are modeled as direct distance costs. Fixed
setup and inventory holding costs favor central fulfillment from the DC,
whereas transportation and goodwill costs favor providing pick-up/return
at all stores to essentially pass “free shipping” costs to the customer and
avoid any lost sales. While the decision problem of their first paper was
solved as a simulation, this contribution formulates a MIP that is solved to
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optimality. In another extension, Mahar and Wright (2017) develop a NLO
model to assess costs and customer value for BOPS and in-store returns.
More specifically, their model determines the set of stores that should
handle pick-ups and returns within their entire store network. Their model
optimizes total costs including fixed operating, inventory, lost-sale, and
shipping costs as well as initial setup costs and variable costs for providing
both pick-up and return services. Costs for BOPS are compared against
delivering online orders directly from the DC.

Ishfaq and Raja (2018) develop a framework with a retailer that can fulfill
deterministic, multi-periodic online demand from an integrated DC for
online customers and stores, a dedicated DC for online orders only, and
a vendor for direct vendor-shipments. They formulate and solve a MIP
with the objective to minimize total costs. They include location-specific
operational costs due to different labor wages, facilities, and operations,
inventory costs that vary across echelons, and transportation costs to the
inventory locations and from them to customer markets. The model selects
the best order fulfillment location for a number of orders in a customer
market. This means orders are still unknown and modeled on an aggregate
level. Outbound transportation costs are direct-shipment costs to markets
and not customer-specific or based on routes. In a related extension,
Ishfaq and Bajwa (2019) optimize the webshop prices and include a price-
dependent demand function. Their non-linear optimization model aims to
maximize profits subject to customer demand and limited available product
supply. Arslan et al. (2020) consider SFS in a two-stage stochastic model
to compare online order fulfillment from DCs, urban fulfillment platforms,
and stores. The authors consider stochastic in-store and online demand
as well as available store capacities for their model. Profits are maximized
while being limited by available locations, product supply, and fulfillment
and transportation capacity. Decisions in the model are twofold: in a
first stage, it determines which of the three fulfillment locations are to be
used on a tactical level. For the decision, the paper considers a number of
cost elements ranging from inventory holding and replenishment costs and
fulfillment costs per location through to customer-specific transportation
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costs. In the second stage (which is an operational decision as described in
Section 5.3.3), it assigns actual orders to locations. The model assumes that
online orders arrive with physical store customers in parallel. In contrast
to other authors, Arslan et al. (2020) model a profit function and also
incorporate revenues generated from in-store sales. They then develop an
integrated view on both offline and online operations and find that SFS
can increase profitability, mainly due to more online orders being satisfied.
Bayram and Cesaret (2021) formulate a Markov decision process and apply
a hybrid heuristic solution approach as integrative cross-channel fulfillment
policy. The authors evaluate whether SFS is a preferable alternative to
DC shipping. They compare different policies for dynamic order fulfillment
based on stochastic demand predictions. Outbound transportation costs
are included as well as location-dependent costs for picking, handling, and
packaging online orders in stores. A multi-criteria problem is formulated by
Prabhuram et al. (2020). They compare different network configurations
that distinguish the use of DCs (either separate for online and store or
combined), stores (either for store only or combined), or the combination of
all options. A multi-criteria objective includes service factors for response
time, product variety, availability, order visibility and returnability as well
as location-specific costs.

Future areas of research Current literature on network design has
originated from inventory allocation problems and developed since then to
more comprehensive cost functions, demand models and decision criteria.
However, matching challenges from practice with literature highlights some
research gaps. These would range from providing models and solutions
for the expanding services, using inventory pooling across stores, more
deeply grounding the relevant costs empirically, extending models to include
dynamic and stochastic demand effects, through to developing managerial
insights and assessing the impact of new technologies related to store
operations.
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The first topic is related to OC concepts. Table 5.2 shows that SFS
concepts are mainly considered. BOPS has particularly gained traction
in recent years (see e.g., Gallino and Moreno (2014), and further research
has elaborated how BOPS can be integrated in fulfillment locations. The
question arises as to whether orders for customer pick-up in stores should
directly be picked in the store (with potentially higher picking costs and
lower availability), in DCs, or in other stores for delivery to the pick-up
store. Furthermore, retailers will benefit from BOPS when this can be
used for cross-selling opportunities in the store. This entails the research
questions on how cross-selling can be materialized. A further opportunity
in this context are processes and decision rules when redirecting customers
to SFS or DAE is an option. It could be evaluated whether extended
assortments that are not present in customer-facing shelves could be stored
in the backroom (i.e., can be picked immediately for customer take-away)
and how this impacts operations and sales. Also, correlations of order size
and location availability can be assessed further to determine, if certain
location types are specifically suitable for certain orders.

A second area of research opportunities deals with related costs. Although
recent literature considers a broader set of costs (e.g., Ishfaq and Bajwa
(2019)), a cost-holistic comparison of different fulfillment locations is still
limited. As shown in Table 5.2, many contributions are limited to few cost
elements while not even the basic costs such as inventory, picking, and
transportation costs are location- and context-specific. In particular, the
transportation costs to customers are only approximated (in most cases
with one-way tours or as route length estimates (RLE) (see e.g., Janjevic
et al. (2020)), and the actual routing costs are not taken into account.
This is a strong simplification on behalf of numerical complexity, but does
not represent the real costs of transportation. Most of the contributions
are based on synthetic data. An application with empirically grounded
decision-relevant costs will provide more managerial insights. The focus is
on economic values. Another view is the impact on sustainability factors
(e.g., carbon footprint of location types or the reduction of overstocks) and
service factors (e.g., lead time, availability).
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The third area is related to modeling approaches. In many cases inde-
pendent demand models are applied that do not factor in cross-channel
demand when strictly prioritizing online (e.g., Bendoly (2004); Chen et al.
(2011)) or offline (e.g., Hovelaque et al. (2007)) demand, for example. This
allows the development of first managerial insights, but these are limited
to the assumptions mentioned. Table 5.2 indicates that early contribu-
tions are based on MIP models. However, the location selection problem
may be a dynamic problem with opening and closures (e.g., because of
seasonal demand) and therefore requires to extend the cost functions by
opening/closing costs or in-season replenishment costs. Furthermore, the
demand is subject to variations which then need to be built into stochastic
demand models. Extending the more comprehensive cost formulations (e.g.,
by Ishfaq and Raja (2018) and Ishfaq and Bajwa (2019)) by the dynamic and
stochastic components and incorporating further variables (e.g., dynamic
adjustments) requires advanced solution approaches. This also includes
innovative approaches to take into account actual transportation costs.

Further extensions can be identified that factor in the findings from the
expert interviews. Managerial insights are required to define the optimal
ratios between store and DC fulfillment and to define the most economically
rational level of store fulfillment. Here it will be important to identify
the drivers of the relative shares, e.g., rural vs. urban deliveries, and low-
vs. high-traffic stores. Thresholds may be used to provide retailers with
practical rules of thumb. As the topic seems one of great concern for retailers
(VAR02), one could question whether simplistic assumptions sufficiently
solve the problem of identifying efficient shares between fulfillment locations.
Retailers could identify the maximum percentage of online orders that should
be handled by stores by modeling all decision-relevant costs.

Finally, there are further research opportunities with the use of new tech-
nologies. Efficiency gains via automation might come into play when process
automation leads to lower fulfillment costs in certain locations. At the same
time, models can be extended by new shipping modes such as robots, drones,
using parcel lockers for order pick up, or crowd concepts. One should also
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look into innovative fulfillment concepts to acknowledge concerns store
managers have with the increasing use of regular store space for online
fulfillment. One recently developed concept is the micro-fulfillment center.
This features small-space fulfillment centers that can be placed within other
buildings. This raises the general question of what space allocation in multi-
used locations is desired. In stores, this would be how much space should be
assigned to online order fulfillment (e.g., additional picking/packing areas,
storage space), and how employees should be assigned to store operations
or online order tasks – concerns mentioned by several experts (e.g., VAR02,
DIY01).

Assignment of customer orders to fulfillment locations

Scope of the planning problem Whereas the network problem deter-
mines the set of available fulfillment locations, the related and subsequent
operational problem is the actual assignment of online orders to the loca-
tions selected mid-term. At this stage, OC retailers specifically consider
the currently available inventories and picking capacities at each location
as well as lead times and requested time windows. This may further reduce
the set of locations. The assignment of orders aims to minimize the total
costs consisting of inventory (i.e., costs for inventory holding and over- and
underage), picking (i.e., processing an order at fulfillment location), and
transportation costs (i.e., from inventory location to customers). Each of
these elements are location-specific. While this decision problem seems
obvious for SFS, it is also relevant for BOPS and DAE in cases where
orders are supplied from other locations than the order location (i.e., the
structure outlined in Figure 5.4 is extended to multiple store locations).

Challenges in practice The challenges related to order assignment build
upon the efficiency, heterogeneity, and capacity issues for the selection
of locations discussed above. Further questions on the operational level
arise from the necessity to include inventories available in real-time at

143



Omnichannel operations: literature review and research framework Jonas Hense

each location. In a fully integrated SFS concept, customers can select
all products offered in stores at the online checkout. As a consequence,
it needs to be based on real-time product availability in each location.
However, real-time availability about store inventory is not only an issue of
IT systems but mainly restricted by the time lag between in-store customers
putting items into the basket and check out (VAR01). Moreover, inventory
shortages may result in conflicts between in-store pickers and customers.
Fighting for products that would be used for online customers gives a
negative signal to the store customers (FAS02). In a store with order
picking and customer presence, employees who perform picking usually
cannot consult customers or replenish shelves during this time. Hence,
either additional staff are required or tasks need to be reassigned among
existing staff. This requires procedures to integrate in-store picking with
little customer disturbance. Using inventories in stores for the fulfillment
of online orders decreases the inventory available for in-store revenues and
may require more store space if inventories are increased, but may decrease
fulfillment costs and lead time for online orders. Higher inventory levels
may also compensate for inventory record inaccuracy (FAS03). Offering
BOPS leads to situations where retailers have to prioritize orders, e.g., if
an in-store customer wants to purchase an item that is already reserved for
a BOPS order (DIY02). Further, unclaimed BOPS orders take-up valuable
space in the store (FAS05). Moreover, the in-store customer would buy
certainly the product, whereas there is also a risk that the customer who
reserved the product online may not show up and buy it. OC retailers
therefore require order acceptance rules and avoid accepting all orders on a
first-come-first-served principle. Such support systems and above mentioned
order assignment processes that are updated regularly are required to ensure
efficient OC operations (VAR02). Sourcing from distributed locations can
yield economic advantages if idle capacities and overstocks in stores are
utilized. However, assortment availability or stockouts can lead to split
orders or locations dropping out for one order. As one DIY retailer (DIY01)
explained, order splitting requires additional processes and operations
regarding downstream order consolidation before delivery or substitutions
between products. To mitigate these challenges, retailers think about
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steering customers into other channels (e.g., SFS instead of BOPS) in
the event of stock-outs, giving retailers flexibility in accessing different
inventories.

Current state of the literature Table 5.3 summarizes the related litera-
ture, which is so far only based on SFS.

Table 5.3: Related literature on the assignment of customer orders in OC retailing
OC concepts OR characteristics Costs7 Problem size10

Related contribution BOPS SFS DAE Mod1 SolA2 OF3 DecV4 Cons5 Dem6 Inv Pi Tra Route8 Inv9 Prod Store Data
Aksen/Altinkemer [2008] X MIP LR C OA D,VC det,st X R nc 1 M SD
Mahar et al. (2009) X MIP Sim C O,OA S sto,st X (X) DD S 1 M SD
Mahar and Wright (2009) X MIP Sim C OA S sto,st X (X) DD S 1 M SD,ED
Xiao et al. (2009) X DP (NV) AM R/P O,OA - sto,st (X) (X) DD S 1 2 SD
Bretthauer et al. (2010) X MIP Opt C O,OA C sto,st X X (X) DD S 1 M SD
Andrews et al. (2019) X MCDM Dec V OA D,I sto,st (X) DD S M M ED
Ni et al. (2019) X DP Heu C OA,DT LC,I,TL sto,st (X) DD S 1 M SD,ED
Arslan et al. (2020) X SDP Opt P OA C,I,LN sto,st X X (X) DD S M M SD,ED
Dethlefs et al. (2021) X MIP CFRS C OA,DT,R LC,MO,TL,VC det,st X X R S M M SD,ED
Difrancesco et al. (2021) X MIP Sim C CW,P,T C,DT,SL sto,st (X) X R S M 1 SD,ED
1 Formulation of the underlying problem: Mixed-integer program (MIP), Dynamic program (DP), Multi-criteria-decision making (MCDM), Stochastic dynamic program (SDP), Newsvendor (NV)
2 Solution approach: Lagrangian relaxation (LR), Simulation (Sim), Analytical modeling (AM), Optimal (Opt), Decomposition scheme (Dec), Heuristic (Heu), Cluster-first-route-second heuristic (CFRS)
3 Objective function: Costs (C), Revenue (R), Profit (P), Value (V)
4 Decision variables: Order assignment (OA), Order-up-to-level (O), Delivery type (DT), Delivery Cut-off Window (CW), Pickers and Packers (P), Timing (T), Routing (R)
5 Constraints: Capacity (C), Delivery time (DT), Demand satisfaction (D), Inventory (I), Location capacity (LC), Location number (LN), Minimum orders per location (MO), Service level (SL), Tour length (TL), Vehicle capacity (VC) or
no constraints specified (-)

6 Demand model: Demand model: Stochastic (sto), Deterministic (det), Seasonal (sea), Stationary (st) or no demand model specified (-)
7 Specific costs considered: Over- and underage costs (Inv); Picking costs (Pi) calculated as fulfillment costs including picking, packing, and handling orders per product and location X, or approximated per customer or modeled in abstract
terms (X); Transportation costs (Tra) to customers calculated based on vehicle routing and tours X, or approximated with distance-based measures (no tour building) (X)

8 Route: Solution of the order shipment with actual vehicle routing (R), or route length estimates approach (RLE), or direct distance estimates (DD)
9 Inventory: dedicated to one channel (D), or shared across channels (S), or no inventory considered (nc)
10 Problem size: single (1) or multiple (M) no. of products, two (2) or multiple (M) no. of stores, simulated (SD) or empirical data (ED) applied

Aksen and Altinkemer (2008) develop an order assignment problem as a
combination of location-allocation and multi-depot vehicle routing problems.
They formulate a MIP and use the Lagrangian relaxation method to generate
solutions with minimum costs. Online orders are exclusively fulfilled from
a set of stores. Besides fixed location costs, their single-period model
with known demand considers transportation costs from DCs to stores
and from stores to customers. Compared to many subsequent publications
on this topic, it also determines the vehicle routes connecting all stores
and customers with each other. Hereby, vehicle capacities are considered
as model constraints. Bretthauer et al. (2010) are the first to apply a
two-echelon fulfillment system with a DC and multiple stores. Incoming
goods are received at the DC, which serves as a break bulk facility. Goods
are then shipped to the stores in equal quantities. After that, each store
incurs independent store and online demand. The online demand originates
from the surrounding region. They apply a static order assignment policy
so that each online customer is served from the closest store. For this, the
authors apply a branch-and-bound algorithm and associated tight bounds
to solve an MIP that aims to minimize total cost. This is further relaxed
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by Mahar et al. (2009) with a dynamic assignment policy of online orders
that accounts for current inventory positions at the stores. This enforces
the assignment of online customers not only to the next store, but also
to the store with higher availability. In both papers, at the end of the
period, inventory holding, backorder, fixed operational, and transportation
costs are assessed. Bretthauer et al. (2010) also consider handling costs
per product and customer in each location. In a further extension, Mahar
and Wright (2009) introduce an assignment policy where the online orders
are accumulated over time and allocations are made after a time interval.
This further reduces costs. However, common across these models is that
they are limited to one product and the transportation costs to customers
are only modeled with direct shipments. They thus use distance metrics
even when customers are served together within a tour. Both papers by
Mahar et al. (2009) and Mahar and Wright (2009) use a simulation to
generate cost-minimizing results for their decision problems. Xiao et al.
(2009) consider with a DP a retailer that assigns inventory to two stores
before the sales season and dynamically assigns any online order that
arrives at the stores or a drop-shipper. For this, the authors combine a
newsvendor problem with an admission model. To reduce transportation
costs (modeled as direct distance costs), the online orders are allocated
to the next store. Drop-shipment is only applied as a backup for stores
with insufficient availability. Andrews et al. (2019) is the first contribution
with multiple products. They apply an online optimization approach and
solve a multi-criteria decision problem with an algorithm based on a primal-
dual schema. Their model assigns orders to stores and a DC based on
available inventory, transportation costs, lead time and picking capabilities.
Transportation costs are also based on direct distances, but additional costs
for split orders are integrated. Differences in picking costs across locations
are not considered but sufficient inventory in the DC is assumed to supply
all orders. Ni et al. (2019) extend the assignment problem to multiple
periods and with transportation aspects. They assign orders to stores
over multiple periods to minimize transportation and penalty costs for late
deliveries. Unfulfilled and newly incoming orders are consolidated until the
end of each time period and then assigned to specific stores and specific
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delivery modes. These delivery modes include crowdshipping and truck
delivery. They approximate transportation costs to customers by modeling
the shipping costs to a delivery zone. Difrancesco et al. (2021) evaluate
in-store fulfillment processes (including picking and packing) for a retailer
with one store and both in-store and online sales. Through a simulation,
the authors analyze the impact of employee numbers and timing decisions
on order fulfillment costs. Costs include in-store picking and packing as
well as outbound transportation costs based on transportation time per
order. As only one store is considered, the assignment problem should be
seen as internal decision with regards to picking time and picker/packer
allocation. Dethlefs et al. (2021) develop and apply a cluster-first-route-
second algorithm that assigns orders to a heterogeneous set of picking
locations. They are the first to consider location- and product-specific
picking costs, vehicle routing costs, and to also assign orders to tours. They
show that integrated fulfillment from both stores and DCs can be beneficial,
especially under time restrictions when orders must be fulfilled rapidly.

There are further related contributions like Abdulkader et al. (2018), Paul
et al. (2019), or Bayliss et al. (2020) that apply joint delivery to stores
and online customers. However, their focus is on solving the VRP in OC
settings by using consolidation benefits, e.g., in vehicle capacity. Orders
are either pre-assigned or are shipped from DCs, independently from the
store network. These contributions are a valuable source to enhance order
assignment problems with VRPs.

Future areas of research There are opportunities for further research in
extending the assignment problem to BOPS and DAE concepts, enhancing
models with further decision-relevant costs and criteria and last but not
least, investigating lead-time aspects. The first area is related to the OC
concepts. Table 5.3 shows that BOPS and DAE have not been studied
for order assignment. However, these could also leverage the advantages
of location assignment. While customers choose a specific store for order
pick-up (in BOPS), the picking process can be handled in other locations

147



Omnichannel operations: literature review and research framework Jonas Hense

with the aim of minimizing costs or using spare capacities and stocks, e.g.,
in particular at the end of sales season. Similarly, DAE has not been
discussed, but may become relevant if online customers have digital access
to inventories across stores.

The second topic area is related to the fulfillment costs considered and other
factors. A holistic assignment decision consists of two cost categories: depot-
specific processing costs (incl. inventory, picking) and transportation costs
(incl. last-mile delivery to customers). The assignment decision depends on
inventory positions, picking systems at a depot, as well as transportation
means and options for routing. Table 5.3 reveals that in most applications
so far only direct distance-based costs have been modeled. The building of
customer tours needs to be extended either to RLE or full VRP solutions to
obtain an efficient representation of the actual transportation costs. This
also includes an extension to split orders or the consolidation of orders
across fulfillment locations. The effect of alternative transportation modes
(e.g., with cargo bikes, autonomous robots) and alternative pick-up locations
may be included (e.g., parcel lockers or solo pick-up stations).

One needs to further analyze the impact of order assignment on customers
in stores based on current practical challenges and the primary concern of
many store managers. How does a certain level of customer presence in
stores impact assignment decisions? For example, stores should be avoided
during peak times. Assignment decisions may therefore be impacted not just
by the available inventory in addition to costs but also by store customer
presence and picking capacity. Sustainability issues may have additional
impact, e.g., the desire to avoid overstock. Emission costs may also be
integrated into holistic cost evaluations in the future. Finally, an increasing
demand for shorter delivery times (i.e., same hour, same day) and the use
of tight time windows raise questions regarding how these factors impact
assignment decisions. Can each customer on a tour be reached from each
picking location within the desired time window?
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5.3.4 Assortment and inventory

Assortment and inventory planning is concerned with the selection of
products and stocking levels across channels, DCs and stores (see Section
5.3.4). This is a tactical decision that needs to be accomplished with the
operational inventory replenishment (see Section 5.3.4).

Assortment and inventory planning

Scope of planning problem To optimize retailers’ profit, assortment
planners must decide, out of all potentially available products, which set of
products to list in which channel and inventory location (DCs and stores),
which products to make available for BOPS, SFS, and DAE, and in which
quantities. As shown in Figure 5.4, assortment and inventory planning builds
upon the DC and store as fulfillment locations. The assortment is defined on
a mid-term level as it is usually related to periodical supplier negotiations
(e.g., in grocery) and seasonal cycles (e.g., in fashion), and imposes changes
on store shelf arrangement as well as webshop configurations. Assortment
composition and inventory target levels must be defined jointly as these
decisions are interdependent when space in the store or the online DC
is limited. For example, adding one product requires the reduction of
inventory of another listed product or the delisting of another product to
provide space. A meaningful allocation of products and inventories to the
webshop and stores can be achieved to serve customers across channels
by disentangling and quantifying demand transitions between channels
and products. In OC retailing, not only in-channel substitutions but also
demand transitions between the webshop and stores and vice versa are
very common (Rooderkerk and Kök, 2019). Next to OC-specific demand,
OC assortment and inventory planning must consider product margins,
distribution and replenishment costs as well as inventory holding costs for
each inventory location. To quantify the demand fulfillment, it becomes
additionally necessary to consider over- or underage costs.
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Challenges in practice Enabled through OC information systems, cus-
tomers use multiple channels along their purchasing journey and frequently
change channels to gather pre-purchase product information (i.e., research-
online, purchase-offline behavior, and vice versa), change preferences, and
substitute products (VAR01). This requires demand models that integrate
such cross-channel customer effects as well as inventory location and product-
specific economics. Assessing these effects and costs of varying assortments
across stores and the webshop on customer demand is a challenge.

A new aspect is the product and channel complementarity. For instance,
being able to offer a broader assortment in one category might convey the
impression of elevated competencies in this category and lead to additional
sales. On the same line, offering a complementary channel to existing
channels provides both a source of supplementary information and additional
substitution possibilities for customers. Transferable substitution demand,
walk-rates, and cannibalization become even more crucial as a result, but
also harder to estimate. As an example, one manager from a DIY retailer
(DIY01) referred to the difficulty of assessing the potential of “preventing
customers from buying online and steering them into the store to utilize up-
or cross-selling opportunities”. Moreover, OC assortment planning requires
the incorporation of different revenue and cost structures of products and
fulfillment locations via the introduction of OC concepts. For example,
purchases following cross-channel research or products that are sold using
SFS make it more difficult to account for the actual fulfillment cost of
items.

Despite using some kind of software-based decision support, planning ap-
proaches currently applied in practice usually take channel-isolated views
and do not account for OC channel demand interactions and cost implica-
tions. Two fashion managers who we interviewed, (FAS01, FAS02) explained
that retailers often do not take a differentiated item- and data-based decision
but mainly aim to list the entire assortment in the online channel to make
the webshop a virtual shelf extension. Exceptions are original bricks-and-
mortar retailers with small online volumes that also exclude slow-moving
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products from their online DC. Another fashion manager (FAS03) stated
that a minimum required margin is the only deciding factor when defining
online assortments. In the stores, retailers usually list a reduced assortment,
often physically constrained by the store’s shelf space. Other retailers
only list products in the store that are characterized by comparatively low
values and high shipping costs (FAS06, DIY02). This is however often
done without profound insights into channel buying and switching behavior
and reduces the potential of revenue-driving OC concepts. The decision
on what and how much to offer via BOPS, SFS, and DAE is often either
somewhat disregarded or not based on channel-specific cost, revenue and
demand implications. A DIY manager (DIY02) revealed that competitors
simply listed every possible item for BOPS, whereas they used a more
advanced approach for SFS and decided between DC shipment and SFS
via a set of performance indicators such as the number of products in the
store, delivery method, or inventory turnover. One OC expert summarized
that “there is no winning philosophy and much depends on industry and
company characteristics” (VAR04).

Current research The OC assortment and inventory planning literature
is summarized in Table 5.4. Notably, all these papers were published after
2016. Related research can be divided into contributions that only consider
inventory decisions, only assortment decisions, or both jointly. We start our
review with inventory models in the OC context, and subsequently expand
this to assortment models and integrated models.

The first stream of related papers deals with defining inventory target levels
across channels. Gao and Su (2017b) developed the first analytical model
that defines inventory levels for a single product in an OC setting. The
inventory in the store channel is optimized with closed form expressions
taking into account stochastic demand where customers can substitute
from the store channel to the online channel via a DAE in the event of
stockouts. In an extension, inventory in the dedicated online DC is defined
endogenously, i.e., by the model. The authors analyze the profit impact
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Table 5.4: Related literature on OC assortment and inventory planning
OC concepts Modelling approach Decision6 Substitution7 Problem size9

Related contribution BOPS SFS DAE Model1 SolA2 OF3 Specifics4 Dem5 I-
st

I-
ws

A-
st

A-
ws

in ws-
st

st-
ws

Per ProdSto Data10

Gao and Su (2017b) X AM(NV) CFS P CS,SEQ sto, st X X S 1 1 1 SD
Shi et al. (2018) X AM(NV) CFS P CS sto, sea X 2 1 1 SD
Zhang et al. (2018) X AM(NV) CFS P CR sto, st X X 1 1 1 SD
Lu et al. (2020) X AM(NV) CFS P C,SL,CR sto, st X 1 1 1 SD
Saha et al. [2020] X SDP Opt C CS,SEQ sto, st X 1 1 1 SD

Gu and Tayi (2017) X AM CFS P CS sto, st X A 2 2 1 SD
Dzyabura et al. [2018] X NLP GH NS C sto, st X A8 A8 1 96 1 ED
Li et al. (2020) X AM CFS P CS sto, st X A 1 2 1 SD
Park et al. (2020) X MIP Opt U C sto, st X A 1 3 17 ED
Mandal et al. (2021) X AM CFS P sto, st X 1 1 1 SD

Gao and Su (2017a) X AM(NV) CFS P sto, st X X S 1 1 1 SD
Geunes and Su (2020) X SP SH P C,SL,CS sto, sea X X X X S 1 20 1 SD
Hense/Hübner [2021] X BIP(NV) SH P C sto, st X X X X A/S A/S 1 100 1 SD

1 Formulation of the underlying problem: Analytical model (AM), Stochastic dynamic program (SDP), Binary integer program (BIP), Mixed-integer
program (MIP), Non-linear program(NLP), Stochastic program (SP), Markov model (MM), Newsvendor (NV)

2 Solution approach: Closed form solutions (CFS), Optimal (Opt), Greedy heuristic (GH), Specialized heuristic (SH)
3 Objective function: Profit (P), Costs (C), Sales net returns (NS), Utility of showcase (U)
4 Specifics: Capacity constraints (C), Service level constraints (SL), >1 Customer segment (CS), Sequential customer arrival (SEQ), Cross-selling
(CR)

5 Demand model: Stochastic (sto), Deterministic (det), Seasonal (sea), Stationary (st)
6 Decision taken: Inventory (I), Assortment (A), Store (st), Webshop (ws)
7 Substitutions considered: Within channel (in), webshop to store (ws-st), store to webshop (st-ws); options include out-of-stock (S) and out-of-
assortment (A)

8 Substitution also possible if utilities of available products change
9 Problem size: Periods (Per), No. of product variants (Prod), No. of stores (Store)
10 Data applied: Simulated data (SD), Empirical data (ED)

of DAE using physical showrooms in the store. This enables customers
with product value uncertainty and availability risk to realize their product
valuation even when the product is OOS in the store. The model only
considers the store channel as a whole and does not define inventory levels
for each store separately. The demand model only specifies a transition
from the store to the webshop, but not vice versa or to other products
in the same channel. In a related setting with product value uncertainty,
Shi et al. (2018) optimize with a closed form expression the seasonal store
inventory level and price for a single product when BOPS is possible. The
retailer optimizes a pre-order discount and uses pre-order information to
define the inventory in the store channel. In a pre-sales period, informed
customers can order discounted products online for pick-up in store. In
the sales period, those customers pick up their orders, realize their product
valuation, and potentially return their resalable BOPS order direct to the
store. Online inventory is exogenous and unlimited. Substitution between
channels is not considered at all. In a similar application, Zhang et al.
(2018) study with an analytical model an online retailer with BOPS that
optimizes one single retail price as well as one aggregated inventory across
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channels for a single product. Online customers can decide between home
delivery and a potential fee-based return, or choose BOPS, visit the store
at a particular traveling cost, evaluate the product, and either directly
cancel the order or purchase the product. Lu et al. (2020) analyze with an
analytical model an OC retailer with growing BOPS and dropping in-store
demand for one product. The retailer generates additional cross-selling
revenue via BOPS sales while being required to fulfill a minimum share
of in-store demand. The optimal inventory target levels are explored for
the store under scenarios where inventory for BOPS and in-store demand
is shared and jointly ordered. While the previous inventory contributions
formulate MIPs, Saha and Bhattacharya (2020) add to the existing single-
item inventory models through a Markov decision process. They consider
a retailer with BOPS. Store inventory is optimized taking into account
independent store and BOPS demand while the online DC has unlimited
capacity. Whereas store demand is fulfilled immediately, BOPS orders are
reserved until pick-up, taking up inventory space and delaying replenishment
requests. No substitution within or between channels is considered.

The models above provide some first approaches to derive analytically
inventory target levels in operations across channels. The OC concepts
applied are limited to one product and disregard assortment compositions.
A main limitation for the application to practice is the consideration of
channels without specifying the inventory for concrete stores. Furthermore,
the models are not comprehensive in terms of substitutions between and
within sales locations as well as considering actual fulfillment costs.

The second related stream comprises assortment planning. Gu and Tayi
(2017) use an analytical model to analyze research-offline, purchase-online
behavior for a retailer with a webshop and a store with a connected DAE.
The retailer decides on products, what price to sell them at, and whether
to sell the products via both channels or only the webshop. In the store,
customers receive information about the available product(s) and thereby
fully resolve their product uncertainty on available products or reduce their
uncertainty about unavailable products. Subsequent online purchases are
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enabled via DAE for products not available in the store. Customers can
return products after evaluating the product received. Inventory levels are
not defined, substitution rates are not considered, and costs are limited
to handling returned products. Dzyabura and Jagabathula (2018) also
formulate a NLP and propose a greedy heuristic to solve the problem. They
consider showrooming as a special case of DAE where the store assortment
is optimized without optimizing inventories. Out of a given set of products
in the online channel, the retailer decides on the subset of products to offer
in the store. Net returns on sales are maximized by the retailer, thereby
ignoring any costs. Demand is modeled using a utility-based model. The
customer’s physical evaluation of the store assortment may change the
customer’s product utilities of the store and online assortment and result in
purchasing a different item to the one originally preferred. The impact of
the store assortment on online demand is factored into these considerations.
Li et al. (2020) also analyze with closed-form expressions an online retailer
with DAE in the form of a physical showroom. Two scenarios are considered
in which either both or only one of two products is listed in the showroom.
Within each scenario, prices and the level of information provided in the
showroom are defined. The authors resemble Gu and Tayi (2017) in their
substitution approach when customers visit the showroom to reduce their
evaluation uncertainty. Again, customers can return their products and
the inventory decision is disregarded. Park et al. (2020) develop a MIP
to optimize a store’s showroom assortment of a retailer with DAE. Space
and budget constraints are considered. The showcased products can be
varied along various feature categories, where each feature is assigned a
customer utility. In a special case of automobile retailing, this contribution
does not consider inventory and thus no OOS substitution. Just as Li et al.
(2020), Mandal et al. (2021) utilize an analytical model to study the setting
of an online retailer with one product that varies along standardization
and product value. The authors consider a scenario with a showroom
and another scenario with a store that accepts online returns. Similar to
the previous assortment papers, no inventory is considered and customers
have unknown product valuations, which can be resolved by visiting the
showroom or the store. Yet no OOA or OOS substitution is considered.
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The third stream blends inventory and assortment decisions. Gao and
Su (2017a) provide the first combined model with BOPS. Through an
analytical approach, they depict an OC retailer that provides store inventory
availability to online customers and reduces customers’ hassle cost of store
shopping. They may also exclude BOPS products in the webshop that
are below a specific inventory level (i.e., select assortment for BOPS). The
demand model considers OOS situations, where customers switch from
the store to the webshop, cross-selling opportunities, and exogenous online
demand. Geunes and Su (2020) develop a stochastic program which is solved
through a specialized heuristics. They apply SFS and model inventory and
assortment optimization with OOS situations in the online DC. This is the
first contribution with more detailed fulfillment costs. The retailer selects
the assortment and inventory target levels for a store with limited shelf
space and for the online channel with limited DC capacity. Different costs
are considered for each fulfillment option. Demand is modeled with store,
online, and hybrid online customer segments. When online products become
OOS, hybrid online customers can choose to substitute for the identical
product via drop-shipment or SFS. Drop-shipping is carried out at the full
price through an external supplier with unlimited inventory. SFS uses the
inventory of the retailer’s own stores and charges the customer a discounted
price as products are only shipped at the end of the sales season. Regardless,
customers can neither substitute different products within the same channel
nor unavailable products in the store. Hense and Hübner (2021) formulate
a binary integer program and propose a specialized heuristics to solve
larger instances. They investigate the assortment, space, and inventory
problem for an OC retailer that offers BOPS. Customers can substitute
OOA and OOS products for different products in the same channel or
another product in the other channel. The authors also include space-elastic
demand for the store and limited space for both channels. Interdependence
between the assortment size, space assignment, and demand implications
are investigated.
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Future areas of research Current literature provides structural insights
into assortment compositions and inventory levels across channels. However,
many models lack the integration of comprehensive demand models with
substitutions across and within channels, incomplete fulfillment costs and
overly simplistic assumptions such as pre-defined online assortments and
inventories. Table 5.4 also reveals that many models are restricted to one or
two channels (without considering multiple stores), and one or two products.
To advance the OC operations literature, research opportunities lie in a
more thorough consideration of demand effects across channels, stores as
showrooms, cost and revenue parameters, safety stocks, and more solution
approaches applicable for practice.

First of all, relevant customer search behavior across channels, as well
as substitution, complementary, and cross-selling effects, must be taken
into account when configuring OC assortments. At the same time, only
Dzyabura and Jagabathula (2018) and Hense and Hübner (2021) consider
in-channel substitution demand and substitution demand into two direc-
tions within one model. To reflect actual OC demand, it is beneficial to
complement the models mentioned and account for all relevant OC research,
i.e., substitutions within a channel (see e.g. Hense and Hübner (2021)),
substitutions from the webshop to the store (see e.g. Geunes and Su (2020))
and substitutions from the store to the webshop (see e.g. Dzyabura and
Jagabathula (2018)). Alongside that, product and channel complementarity
as well as cross- and upselling opportunities are worth integrating. It is also
crucial to respect relevant single- and multichannel demand effects such
as space-elasticity and cross-space elasticity in the bricks-and-mortar store
(see e.g., Hansen and Heinsbroek (1979), Chandon et al. (2009), Eisend
(2014), or Schaal and Hübner (2018)), or positioning- and salience-effects
on a web page (see e.g., Djamasbi et al. (2010), Pieters et al. (2010), or
Atalay et al. (2012)). The broad range of demand effects that potentially
influence OC assortments calls for empirical investigation and modeling of
the relevance and magnitude of the demand effects mentioned.
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Secondly, assortment and inventory related research is necessary for show-
rooms. Showrooms depict a specific case as the stores display products
but only sell them through DAE. Stores are only required to have one
unit in stock as a result. Fulfillment is carried out at scale via the DC.
Despite benefiting from inventory pooling, assortment decisions gain even
greater importance in this context. To define the showroom assortment it
is particularly valuable to empirically and analytically understand which
products need to be explained or experienced by customers and which
characteristics help convince in-store customers to carry out their purchase
via DAE.

Thirdly, OC retailers must look beyond pure unit costs and revenues and
take total profitability and feasibility into account. OC retailers need to
identify all decision-relevant costs, including unit and purchasing costs but
also fulfillment costs, safety stock cost, salvage values, shortage costs, and
hidden OC costs. This concerns products bought through cross-channel
research, BOPS, SFS, or DAE, causing information provision or fulfillment
costs across different channels. Feasibility, on the other hand, mainly
describes whether it is operationally possible to offer OC concepts for certain
products. For example, a paint bucket might provide highly beneficial OC
margins, yet it is impossible to guarantee undamaged SFS for the product.
Other dimensions to consider in this context are the weight and size of
products. A further factor that has not yet been considered in inventory
management in OC is the determination of safety stocks for each sales
and inventory location. As one inventory location can back up others and
provide substitutions across channels, this also constitutes a novel problem
caused by OC operations. Finally, we have seen that in practice, many
assortment and inventory models fall short of accounting in a practical
manner where OC demand effects are concerned. Given the magnitude
such effects can have on profits, retailers require related decision support
that is not only easily applicable but also delivers efficient solutions without
extensive OC data that is potentially unavailable. In these cases, algorithms
to estimate demand probabilities are required to obtain inputs for more
detailed demand models (see also Section 5.3.2).
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Inventory replenishment and returns

Scope of planning problem Inventory replenishment and returns is
the subsequent planning step after the mid-term assortment and target
inventory level definition. It deals with when and how much to refill and how
to integrate returned inventory. Retailers need to define the replenishment
frequency (when) and quantity (how much) for each inventory location
(stores and DCs) after actual customer orders have been fulfilled to meet the
specified inventory target levels. Retailers usually apply a periodic review
policy with a constant order cycle and variable order size (Holzapfel et al.,
2016). The retailers need to check available inventory positions against
expected demand (within and across channels) and take into account service
levels, lead times, target inventory levels, and inventory that is currently
available in order to define the order-up-to-level. The available inventory in
the store is then a composition of physical inventory plus scheduled receipts
from DCs or suppliers, plus expected receipts from customer returns, minus
expected store sales, reservations, backlog and orders from the webshop
and the safety stock. The available store inventory is particularly relevant
for OC concepts as this is displayed in the webshop and serves as a basis
on which customers can decide whether to go to the store or use BOPS
(see Figure 5.4 and Hübner et al. (2016b)).

Challenges in practice OC retailers face difficulties achieving real-time
inventory accuracy, managing cross-channel product returns, and orches-
trating OC replenishment rules that integrate dependent decision systems.
First, obtaining real-time inventory transparency and accuracy, i.e., “which
SKU is available in which moment in which location” constitutes the most
critical challenge in this context (VAR03). One manager (VAR04) also
emphasized the importance of an integrated, real-time inventory and point-
of-sale (POS) data management system. This not only enables synchronized
OC availability information but also prevents inventory record inaccuracy
(IRI). IRI has severe consequences for BOPS or SFS, such as overselling
stock, using unnecessarily high safety stock, or achieving unsatisfactory
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service levels and fill rates (VAR02). Accordingly, customer satisfaction as
well as logistics costs for inventory holding or replenishment are negatively
affected. The causes of this problem are manifold. A large number of OC
channels and different fulfillment concepts complicate the management and
recording of accurate data. Manual errors such as late checkouts of SFS
products further impair the IRI (VAR02). Moreover, a lack of integrated
POS inventory control systems across different channels and along different
stages of the retail supply chain, as well as low data update frequencies,
prevent real-time inventory visibility. A further complication is the op-
tion to return online orders in the store. This burdens store operations
through potentially flawed processes, for example through the assignment
of cross-channel returns to wrong locations, and increases store invento-
ries. The anticipation and management of such returns are difficult, yet
necessary (FAS06). Rules also need to incorporate cross-channel returns
as these quantities can potentially complement or even replace restockings
(e.g., FAS06, VAR05). Processes are required that decide how and where
incoming returns are fed back into the store inventory (VAR05). Finally,
managers are urged to optimize inventory control to avoid unnecessary
stockouts and rush orders, or overstocks, respectively (e.g., FAS01, VAR05).
The definition of reorder periods and quantities requires that the retailers
consider a vast array of input factors. OC demand forecasting, assortment
and inventory planning, replenishment costs, and inventory accuracy serve
as inputs, which are often incomplete or faulty. Such deficiencies require
higher cycle inventories or safety stocks (Gallino et al., 2017). Thus, as
summarized by a fashion retailer (FAS03), replenishment can only offset
preceding flaws at the expense of unnecessary higher costs.

Today, only few OC retailers operate fully integrated, real-time inventory
control systems. Most retailers use basic tools like spreadsheet-based,
channel- or location-isolated control systems, or integrated control systems
that update inventories only once a day, usually overnight. Barely any
retailer records accurate inventories (DIY02) due to processes that are
prone to manual errors, such as having to check out BOPS goods through
the cash desk. One fashion manager (FAS03) even pointed out that this
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impacts OC retailers to the point where they no longer trust their in-store
inventory and instead ship BOPS orders from a DC to the store for pick-up.
Furthermore, cross-channel returns receive a comparatively lower degree
of attention. Many consider this a downstream topic that is not worth
considering when setting optimal order-up-to levels (VAR05).

Current research Starting from 2017, the planning issue in OC replen-
ishment is addressed by a small body of multi- and single-period inventory
literature. Table 5.5 summarizes related literature.

Table 5.5: Related literature on OC inventory replenishment and returns
OC concepts OC Modeling approach Costs7 Problem size8

Related contribution BOPS SFS DAE return Mod1 SolA2 OF3 DecV4 Specs5 Demand6 Ov/Sh Inv Pi Per Prod Sto DCs Data9

Xu et al. (2017) X MIP DP C q CS det,sea,cr X X M 1 1 1 ED
Xu and Cao (2019) X SDP Sim P q SL sto,st X X M 1 1 1 SD
Govindarajan et al. (2020) X SDP SH C q sto,st X X X M 1 150 10 SD
Li (2020) X AM DP P q TS sto,st X X M 1 2 1 SD
Muir et al. (2019) X Sim TA T, IA q, r det, sea M 1 45 1 ED
Radhi and Zhang (2019) X AM CFS P q sto,st X S 1 1 1 SD
He et al. (2020) X AM CFS P q, p sto,st S 1 1 1 SD
1 Formulation of the underlying problem: Mixed-integer program (MIP), Stochastic dynamic problem (SDP), Simulation (Sim), Analytical model (AM)
2 Solution approach: Dynamic programming (DP), Simulation (Sim), Specialized heuristic (SH), Thinning algorithm (TA), Closed form solution (CFS)
3 Objective function: Costs (C), Profit (P), Timeliness (T), Inventory availability (IA)
4 Decision variable: Quantity (Q), Reorder point (R), Price (P)
5 Specifics: >1 Customer segment (CS), Service level (SL), Transshipments between stores (TS)
6 Demand model: Stochastic (sto), Deterministic (det), Seasonal (sea), Stationary (st), Cross-channel demand, where channels demand depend on each other (cr)
7 Specific costs on top of unit costs: Overage and shortage/backlogging costs (Ov/Sh), Inventory holding costs (Inv), Picking costs (Pi)
8 Problem size: Multiple (M) or single (S) periods (Per), No. of product variants (Prod), No. of stores, No. of DCs
9 Data applied: Simulated data (SD), Empirical data (ED)

Xu et al. (2017) propose a multi-period inventory replenishment policy for a
single product as a non-capacitated lot-sizing problem with known demand.
They derive structural properties to apply them within dynamic program
for solving the model. An OC retailer satisfies periodic online, BOPS,
and store demand via one centralized inventory. With the objective of
minimizing total operational costs, the OC retailer uses advanced demand
information to define how much to replenish in each review period. The OC
retailer can delay online orders at the cost of a penalty. Demand transitions
across channels are modeled via online customers choosing between home
delivery and BOPS. No location-specific order-up-to levels are defined. Xu
and Cao (2019) formulate a Markov decision process to depict an OC
retailer’s particular case with BOPS. The retailer has to satisfy multi-
periodic and stochastic demand for a single product from the store and
BOPS of a franchisor. A periodic inventory review is applied that optimizes
the order-up-to level for one store and the fraction of store inventory to
reserve for BOPS orders. Once the inventory is reserved, it can only be
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reassigned as leftovers at the end of a period. Revenues are considered, as
well as backlogging, shortage, inventory holding, and purchasing costs. The
demand model is limited to the store and no OC interaction across channels
is considered. Govindarajan et al. (2020) extend the problem to multiple
inventory locations (i.e., multiple stores and DCs), but again only for a single
product. Optimal order-up-to levels are defined within a stochastic dynamic
problem for each location and each review period. While store demand
is fulfilled as it arrives, incoming online orders are fulfilled by shipping
from DCs or SFS, depending on a threshold fulfillment policy. The model
accounts for shortage, overage, inventory holding, and distance-dependent
unit costs (i.e., picking, packing, labeling, and shipping), but disregards
demand interactions between the channels or stores. A specialized heuristic
for integrated inventory planning and fulfillment is applied. Li (2020)
add to the existing literature on multi-period, multi-store and single-item
inventory replenishment. Their contribution stems from the consideration of
transshipments between stores, which fulfill both online and offline demand
from their region. For each period, the retailer needs to decide for each store
how much to replenish from other stores and from the DC. This results in
the total quantity ordered from the supplier and shipped to the DC. The
model takes into account purchasing, shortage, overage, inventory holding
and shipping costs from the DC to the stores and between the stores. Yet,
neither picking costs nor cross-channel demand substitutions are considered.
A dynamic program solves the problem optimally.

The effect of returns on inventories is picked up for single products in an
additional stream. By the means of a simulation and a thinning algorithm,
Muir et al. (2019) take resalable OC returns into account when deciding
on order quantity and reorder point of a retailer’s stores and online DC.
However, OC distribution concepts are disregarded. Online orders are
exclusively fulfilled by the DC but can be returned in the stores. Online
and in-store customer demand is periodic and deterministic while returns
are stochastic. Inventory policies for all locations are derived to optimize
inventory availability and lead times via a discrete-event simulation. In
contrast to the multi-period contributions described so far, Radhi and
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Zhang (2019) and He et al. (2020) focus on single-period inventory control,
taking OC returns into account. Radhi and Zhang (2019) study analytically
a retailer with resalable cross-channel returns for online orders. The authors
consider overage, shortage, and shipping costs as well as refurbishment costs
for the resalable returns. He et al. (2020) uses a game theoretic approach
to investigate a similar setting, where returned products can be resold at a
discount.

Future areas of research The papers analyzed above help to determine
replenishment quantities in varying OC settings. However, all of the
models suffer from constrained OC concepts, costs, and demand as well as
problem sizes. Practically relevant future research can be obtained from
models that represent real-life settings, the consideration of OC returns, the
incorporation of inventory accuracy, and advances in short-term revenue
management. First, it is necessary to extend the scope in terms of products
and inventory locations and OC concepts. Common across the related
papers is that they optimize the refill quantity for a single product only
without considering demand interactions across channels (e.g., for OOS
substitutions), across products, and for the various OC concepts of BOPS,
SFS, and DAE. The different OC concepts are only partially covered. The
contributions are limited to either channels or only a limited number of
stores. This means the refill quantities are not specified for all possible
inventory locations and fulfillment from other locations in OOS situations
is not yet considered. Second, the existing literature does not sufficiently
close the gap between OC returns and inventory control. Most evidently,
models considering the reintegration of returns to the stores or returns via
shipment to the online DC while also looking at OC concepts are lacking.
Also, the actual replenishment and return costs (e.g., picking, packing,
labeling and transportation costs between DCs and stores) are so far only
partially factored in by Govindarajan et al. (2020). Third, a problem that
did not seem to receive any attention in the current OC literature is the
management of IRI, despite being the most critical issue in OC inventory
control according to practitioners (see also Hauser et al. (2020)). The
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available research of IRI for stores should be extended to OC operations.
On the one hand, factors that mitigate IRI in OC can be researched, such
as efficient control-mechanism-like rules for efficient inventory auditing.
Retailers will also benefit from understanding factors that exacerbate IRI in
OC operations, such as slow or non-integrated inventory systems. Another
factor is that OC replenishment models are necessary that account for
unavoidable IRI, e.g., by incorporating probabilistic inventory levels. Lastly,
another opportunity is the alignment of replenishment models with revenue
management. A synchronization of replenishment and customer steering
would address excess and shortage stock.

5.4 Conclusion

Summary and contribution Digitization and OC retailing result in con-
siderable challenges for the management and optimization of retail op-
erations. Retail practice itself has transformed during the last decade
from offline only or online only to seamlessly integrated channels. This
tremendous progress has been largely driven by retail itself to react quickly
to the growing and cross-cutting online market. The dynamic environ-
ment has uncovered new topics that have been predominantly discussed in
practitioner-oriented or empirical journals to describe and identify the new
phenomena. The continued absence of quantitative insights, their practical
need, and the growing availability of data motivates an increasing number
of scientists to intensify OR-based research on OC operations. This review
provides an overview and structure for this nascent and growing research
field of operational research in OC retailing.

The OC concepts BOPS, SFS, and DAE make the store the epicenter of
OC operations. This makes it necessary to investigate emerging challenges
and planning questions imposed on store operations. We focus on the
discovery of tactical and operational, store-related planning issues, the
discussion of such in the light of existing academic literature, and the
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derivation of future directions of research. This review is distinct from
current (empirical) literature reviews as we apply an OC lens, center on
the role of the store, identify practically relevant planning issues by means
of interviews, and investigate applications of quantitative decision support.
The underlying challenges of these planning issues are recognized and
faced by the large share of interviewees. This allows us to contribute to
literature by delineating a modeling framework for OC operations with
a store focus and five specific planning issues. We relate and analyze
quantitative literature for each planning issue and derive future areas
of research by merging insights from retail practice and state-of-the art
literature. We found stark contrasts in the literature coverage of the
planning issues under investigation. There is a growing body of literature
around network design, assignment of customer orders, and assortment
and inventory planning. We have noticed a peculiar focus on BOPS and
DAE for assortment and inventory planning and SFS for network design
and assignment of customer orders. In stark contrast to that, demand
forecasting and inventory replenishment are significantly under-explored.

Overarching avenues of future research In addition to the future
research for each planning issue, our analysis revealed some prominent topics
that are present across all planning issues. Advanced modeling and solution
approaches have the potential to enhance decision making and provide
new insights into novel OC problems. First of all, we noticed a common
shortcoming of OC-specific variables and parameters in demand modeling.
In particular, there is limited integration of novel cross-channel customer
interactions and their implications for demand modeling in each channel.
One can also drill down into revenue upsides and specific attribute-based
consumer utilities. This also calls for further multidisciplinary approaches
to integrate insights and techniques from marketing, consumer psychology,
and revenue management. Predictive and prescriptive analytics (based on
big data or machine learning techniques, for example) could be applied.
Many models centre on a stationary demand. This should be further relaxed,
as retail sales are usually stochastic, seasonal, and non-stationary. This
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requires approaches of stochastic dynamic programming. Furthermore,
the majority of current approaches for planning fulfillment locations and
assortments are based on optimization approaches. When considering
dynamic and non-stationary problems (e.g., with growth of online demand)
it will be beneficial to combine the optimization approaches with simulations
and develop simulation-optimization tools.

Secondly, more comprehensive modeling of decision-relevant costs across
products and inventory locations is required. Another topic that extends
through all planning issues is the insufficient consideration of real-time,
accurate, and transparent data systems. More research on how to collect,
aggregate, analyze, and share data and potentially compensate for data
flaws will be of use in all planning issues. Aspirations relating to service
levels or delivery times in an OC setting should be also included in the
models.

Thirdly, the literature review has shown that early OC literature mainly
focused on developing analytical models to derive structural properties
and insights into OC operations. These approaches cannot be transferred
easily to ongoing planning purposes in practice. This calls for advanced
models that can be solved numerically. Moreover, there is not yet a
comparison or benchmark study available that tests the effectiveness of
various solution approaches for each problem. Further investigating heuristic
solution approaches, both in terms of solution quality and run-time as well
as more generalized models, would be a beneficial area of research. Efficient
solution approaches for the related general OR problems from single channels
could be a valid starting point. Available models and OR approaches from
SC and MC planning problems should be assessed with respect to their
ability to transfer them to OC operations. Further enhanced models may
bear the potential to provide meaningful solutions for store-related OC
operations issues. Most computational experiments have used instances
with a very limited number of products and stores. Hence, it is crucial to
gather a set of benchmark instances that can be used to compare solution
approaches covering realistic features and sizes.
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Fourthly, our analysis has revealed the relevance and impact of uncertainties
for the different planning issues. Most retailers confirmed that they need
to deal with uncertain demand. Accounting for that, scientific contribu-
tions model stochastic demand. While customer demand represents one
uncertainty factor, the supply side entails additional uncertainties that have
not been discussed. The reliability of suppliers and lead time determine
the inventory availability at the point of sale. Recent events such as the
COVID-19 pandemic or the Suez Canal obstruction have shown how fragile
inbound logistics can be and how much this can impact inventory planning
for retailers. A further analysis can entail questions on multi-stakeholder
perspectives. This paper details the planning framework for an OC retailer
with own stores. However, there are varying business models with suppliers
that operate the online channels and compete with a retailer that only
operates a store.

Last but no least, while we have outlined connections between the planning
issues identified, we have not assessed the dependencies in detail. A model
that quantitatively assesses the horizontal and vertical interdependencies
of planning steps is still necessary. Here, one can investigate for example
how designing the network of fulfillment locations can alter assortment
availability. Similarly, defining assortments across channels can be analyzed
by considering options for replenishment practices and returns in the
channels. Moreover, there is most certainly a wide array of further
dependencies with planning aspects outside our scope. Hence, we encourage
embedding the store-related planning issues within a greater framework
that also covers topics such as purchasing and warehousing or areas related
to marketing operations such as product or delivery pricing and promotions.
Setting prices for both products and delivery services heavily impacts
demand, which feeds subsequent decisions. Moreover, pricing also entails
the question how to handle returns in an OC setting. Questions regarding
pricing should therefore be addressed in further research in the context of
store operations. Future generalizations could also build upon and extend
our results to differentiate between food and non-food applications.
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Our insights from practice, the literature review, and the framework de-
veloped build the foundation for this ongoing research and will foster
the creation of further advanced models and solution approaches for OC
operations and store management.
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Appendix

Interviewing approach

Table 5.6: Overview of interview partners

ID Role Sector Annual sales in e No. of stores
VAR01 Industry Expert Electronics, fashion, food n/a n/a
VAR02 Industry Expert DIY, furniture, electronics n/a n/a
DIY01 Head of Supply Chain Processes DIY 1bn-inf 300-inf
FAS01 Senior Director Sales Fashion 1bn-inf 300-inf
FAS02 Global Lead Digital Solutions Fashion 300m-1bn 0-100
VAR03 Industry Expert DIY, fashion, furniture, food n/a n/a
FAS03 Director Strategy & PMO Fashion 300m-1bn 300-inf
FAS04 Senior Store Manager Fashion 1bn-inf 300-inf
FAS05 Head Corporate Development Fashion 1bn-inf 0-100
OPT01 Manager Business Development Optical 0-300m 0-100
VAR04 Industry Expert Fashion, homeware n/a n/a
FAS06 Director Marketing Fashion 300m-1bn 0-100
FAS07 Managing Director Fashion 0-300m 0-100
VAR05 Industry Expert Electronics, fashion, food n/a n/a
DIY02 Director Multi-/Omnichannel DIY 1bn-inf 100-300
DIY03 Chief Operations Officer DIY 1bn-inf 100-300
VAR06 Director Multi-/Omnichannel Books, electronics, homeware 1bn-inf 300-inf

A semi-structured interview approach with open-ended questions was ap-
plied to retrieve relevant information and gain sufficient flexibility, which
is appropriate when exploring a relatively little-known area of research
(Edmondson and Mcmanus, 2007; Creswell, 2009). The questions aimed
to understand which store-related decisions have to be taken by a retail
manager in an OC context. We also probed for underlying challenges and
issues that prompted the necessity for management attention. Questions
were guided along the main customer-facing activities of the OC supply
chain (Melacini et al., 2018; Bijmolt et al., 2021). Two interviewers con-
ducted the interviews to ensure objectivity. The interviews lasted 45min on
average. After the interviews, both interviewers immediately wrote down,
compared, and transcribed their field notes. These notes were subsequently
coded with the help of the qualitative data analysis software MAXQDA 11.
Utilizing the software, we structured and categorized the interview insights
into planning tasks. A natural information saturation was concluded after
the marginal value of interviews 16 and 17 was found to be close to zero,
only confirming existing insights, and coding did not change anymore. The
number of interviews conducted (17) is in line with recommendations to
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ensure academic rigor and generalizability (see Eisenhardt (1989), Ellram
(1996) or Guest et al. (2006) for examples) The interviews were analyzed
in two layers. First, an objective content analysis was conducted focusing
on the identification of the planning decisions and underlying challenges.
In a second layer, we concentrated on how the planning tasks relate to
each other and how they can be integrated into a comprehensive planning
framework.

Literature search approach

Table 5.7: Overview of keywords used in EBSCO and SCOPUS search
Area 1: OR Area 2:
Omni- and Multi-Channel Two Single-Channels
omnichannel click & reserve online
omni-channel click-and-reserve e-com*
multichannel bricks-and-clicks ecom*
multi-channel bricks and clicks AND
multistore online-to-offline offline
multi-store online to offline store
crosschannel O2O stationary
cross-channel offline-to-online
pickup instore offline to online
pick-up in-store ship-from-store
pick-up-in-store ship from store
BOPS SFS
click and collect transport-from-

store
click & collect transport from

store
click-and-collect send-from-store
click and reserve send from store
Any keyword in Area 1 or a combination of the keywords in Area 2 in abstract,
title or keywords qualified for a hit. Altogether, we screened 1732 papers from
EBSCO and Scopus. Additional manual searches covered the following journals:
Management Science, Production and Operations Management, Journal of
Operations Management, Manufacturing and Service Operations Management,
European Journal of Operational Research.

Search queries consisted of all MC and OC variations or variations of two
single channels, such as e-commerce and stores (see Table 5.7). We also
included plural forms, delimiters, prefixes, and suffices in our search strings.
Acknowledging the importance of distinct borders for the literature under
review and following our scope outlined above, we excluded literature from
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areas such as pure marketing or general service management. Pure SC
contributions such as online or offline retailing are also out of scope due
to the distinct differences between SC and OC retailing (e.g., Agatz et al.
(2008); Brynjolfsson et al. (2013); Bell et al. (2014)). MC retailing, on the
other hand, is included in this first search, given the possibility of authors
falsely describing OC concepts as MC fulfillment. Moreover, articles have
to address a store-related operations problem.

The resulting 1,732 publications underwent an initial screening based on
title, abstract, and keywords. All authors analyzed every article concerning
whether the article addresses any of the planning issues in OC. In the rare
event that only one of the authors classified an examined publication as
relevant, it is nevertheless included in the further process to avoid any false
negatives. Out of 1,732 articles, 132 articles qualified for step two.
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6 Conclusion and outlook

This doctoral thesis deals with OC retailing. It equally supports practi-
tioners and researchers in planning and optimizing assortments and store
operations. Chapter 3 to Chapter 5 each state the respective key findings,
methodological advancements, and areas of further research. This section
is therefore used to aggregate the findings and research opportunities.

Conclusion

Chapter 3 to Chapter 5 define and formulate the novel problem of OC
assortment planning, provide efficient solution approaches for different
variations of the problem, quantitatively assess demand effects with a
particular focus on OOA and OOS cross-channel shopping behavior, derive
the most crucial challenges for OC store operations, list and analyse existing
solution approaches in literature, and propose research opportunities in this
field of operations research.

Omni-channel assortment planning Chapter 3 and Chapter 4 contain
a detailed description of the problem of integratively optimizing assortments,
space and position, and inventory across channels. A wide array of demand
effects is accounted for: stochastic, space-elastic, shelf-segment, position,
OOA and OOS in-channel substitution, and OOA and OOS cross-channel
substitution demand under the consideration of space constraints in the
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store and the online warehouse. The objective is always the maximization
of the retailer’s profit. Through the development of a BIP and a specialized
heuristic, the interdependence of the assortment composition, space and
position allocation, and inventory management is respected, the decisions
are taken in an integrative way, and the NP-hard multiple-knapsack problem
can be solved heuristically.

An application to various problem instances shows that the impact of
demand effects on profits strongly depends on channel sizes, demand rates,
and channel package sizes. Across all problem settings we see that omni-
channel shopping behavior matters and that the consideration in assortment
planning can generate valuable profits in traditionally low-margin retail
businesses. In the general case, taking cross-channel substitution into
account leads to profit gains of 1.5%, but in special case (e.g., reduced space
in the store, or products with a particularly high affinity) it can create
profit gains of up to 11.1%. Elevating substitution rates, for example by
facilitating pick-ups in stores or providing easy access to in-store devices
that exhibit online assortments, helps to grow profits through cross-channel
substitution at a similar rate. On the other hand, ignoring cross-channel
OOA and OOS substitution can lead to profit losses of up to 0.4%. Yet,
other analyzed demand effects cause a significantly larger impact on profits
when being ignored. In particular, space-elastic, position, and shelf-segment
demand are crucial when defining assortments across channels. Ignoring
these demand effects leads to profit losses of up to 15.5%, 4.9%, and 4.7% on
average respectively, while in-channel OOA and OOS substitution demand
potentially causes profit losses of up to 1.5% on average.

The combination of assortment decisions and demand effects has not been
assessed by previous literature. Researchers thus benefit from this work as it
provides a proven approach to OC assortment planning and can be leveraged
when further developing approaches for this and neighbouring problems.
It also defines a prioritized list of demand effects that are imperative for
OC assortment planning and can be assessed through a numerical lens.
Practitioners will capitalize on an enhanced understanding of customer

172



Conclusion and outlook Jonas Hense

behavior, the acknowledgement of OOA and OOS cross-channel substitution
behavior, and insights on how to improve their assortments, space and
position, and inventories across channels to boost profits.

Omni-channel store operations Chapter 5 accommodates the latest
trends in OC retailing and digitization, which enable OC delivery concepts
(i.e. BOPS, SFS, and DAE) that greatly influence the way store operations
need to be set-up and organized. Through a triangulation approach the
underlying article uncovers demand forecasting, network design, assignment
of customer orders, assortment and inventory planning, and inventory
replenishment as crucial planning problems in this area.

In demand forecasting, a prevalent challenge for many retailers constitutes
the lack of historical data but also the aggregation of processes, hardware,
and software to make data accessible through a single, aggregated system.
This planning problem is relatively under-researched with few contributions
and would benefit from extensions to applicable OC concepts, workarounds
for data issues, and alternative methodologies. When designing the network
of fulfillment location retailers often deal with questions around which
volume to assign to OC stores and how to guarantee efficient operations
(e.g., picking and packing). A large share of articles approaches this topic,
with a particular focus on SFS. Future research should include other OC
delivery concepts, also taking into account relevant costs and dynamic and
stochastic demand effects. The assignment of customer orders to fulfillment
locations is, in practice, hampered by inefficient operations, questions on
when to use stores to utilize idle capacities and inventories, and the lack
of location-specific, real-time inventories. A range of articles covers this
topic from a SFS view but extending it to BOPS and DAE concepts and,
very importantly, including lead-time aspects represent valuable research
opportunities. Assortment and inventory optimization is challenged through
novel cross-channel customer behavior and location and product-specific at-
tributes like costs. A peculiar focus of existing literature lies on BOPS and
DAE but contributions often ignore multi-product OC environments, safety
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stocks, showrooms, and relevant OC demand effects. Lastly, inventory re-
plenishment in practice is characterized by issues regarding the achievement
of real-time inventory accuracy and the management of OC returns. Exist-
ing literature is rather scarce and particularly does not cover OC returns
in combination with inventory replenishment as well as workarounds to
compensate for the lack of inventory accuracy.

Through the applied approach we uncover a wide range of practically
relevant challenges and solution approaches in OC store operations. While
it provides a detailed and well defined research agenda for researchers
interested in this area, practitioners are supported in their practical need
of quantitative decision models for OC store operations.

Future areas of research

Omni-channel assortment planning As OC assortment planning is
constantly influenced by upcoming trends in customer behavior and latest
advancements in customer technology and digitization, numerous oppor-
tunities for future research are identified. The developed models could
be extended to neighboring, preceding, or succeeding decisions such as
category planning (i.e. deciding on the size and depth of categories), pricing
(i.e. deciding on the retail price), or inventory replenishment (i.e. deciding
when and how much to replenish). In the latter case, a multi-period model
deems highly suitable. Such a model should also integrate the decisive
issue of inventory accuracy, for example by considering safety stocks, to
avoid customer dissatisfaction when being unavailable to fulfill BOPS or
SFS orders. Moreover, additional demand effects can further enhance the
existing models. First and foremost, cross-selling could be included as it
often poses a major motivation for retailers to construct assortments in
a certain way. Showrooming and webrooming behavior of customers may
also be incorporated. These effects help develop a more profound under-
standing of customer decisions and purchasing journeys in practice and
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potentially increase the validity of assortment planning but also category
planning. Next to that, the models could consider the impact of assortment
variety on customer demand or several rounds of substitution, which is a
particularly representative customer behavior for alike items. Besides that,
existing models should be leveraged to compare the different OC delivery
concepts (i.e., SFS, BOPS, DAE, click and reserve). Cost structures and
specifics would require adaptions of the respective model, such as 100%
substitution rates for SFS, higher picking costs for BOPS, or the integration
of no-show rates for click and reserve. Furthermore, the characteristics of
novel store formats such as dark stores (e.g., from uprising fast-delivery
grocery retailers like Gorillas or Instacart) could be included just as trends
in personalization or localization of assortments. An enabler for the latter
is the collection and utilization of data. Being able to include advanced
analytics, artificial intelligence, and automation in retailers’ planning pro-
cesses offers more than just a commercial optimization. It gives insights into
emerging trends, which can be broken down into locations, store formats,
and customer segments. Lastly, omni-channel assortment planning also
offers methodological research opportunities. Given the continuous increase
in computational power, large instances of our heuristics may soon be solved
by exact methods. This progress allows a comparison of existing heuristics
to exact methods but also the chance to tune existing heuristics and reduce
computation times.

Omni-channel store operations Single research opportunities for every
planning problem in OC store operations are already outlined in Chapter 6.
Above that, further areas for future research are identified across all planning
issues. In general, we notice a shortcoming of OC-specific variables and
parameters such as cross-channel substitutions or research behavior. In this
context, existing models would benefit from bringing together alternative
modeling approaches such as simulations but also insights from varying
disciplines such as marketing or consumer psychology. The integration of
specific costs for the OC delivery concepts also applies to the large share of
planning issues. On top of that, existing models need to be improved in
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relation to their general applicability, run-time performance, and optimality
gaps. This will also allow the calculation of larger problem sizes such as
a higher number of channels, stores, or products. Existing models can
build the starting point for such enhancements but need to be assessed and
advanced carefully. Moreover, we believe that the dependencies between
each of the planning problems can yield valuable insights. Above all, it will
help in the conceptualization, formulation, and modeling of an integrative
system covering all relevant areas in store operations. Such a system could
cover the exchange, aggregation, and common utilization of product and
information flows.
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