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Zusammenfassung

Zukünftige Messverfahren zur elektromagnetischen Validierung und Verifikation von Antennen
erfordern Nachbearbeitungsalgorithmen, die zuverlässig mit phasenlosen Daten arbeiten. Eine
übliche Aufgabenstellung ist dabei die Bestimmung der Fernfeld (FF)-Strahlungseigenschaften
einer unbekannten Antenne aus Nahfeld (NF)-Messungen, welche traditionell sowohl den Betrag
als auch die Phase der mit einer Sondenantenne abgetasteten Felder voraussetzt. Während bei
Vorhandensein der Phaseninformation lineare Gleichungssysteme gelöst werden müssen, führt das
Fehlen der Phase auf das Problem der Phasenrekonstruktion. Die Rückgewinnung der Phase aus
gemessenen Beträgen stellt ein seit Jahrzehnten aktives Forschungsgebiet dar und bleibt aufgrund
der weitreichenden Anwendungsmöglichkeiten, allerdings auch aufgrund seiner Nichtlinearität,
hochaktuell.

Diese Arbeit befasst sich mit der Phasenrückgewinnung im Rahmen von Antennenmessungen,
wofür gängige Ansätze unzufriedenstellende Ergebnisse liefern. Zunächst werden die Theorie
und grundlegende Routinen, die für elektromagnetische Feldtransformationen mit vollständiger
Phaseninformation erforderlich sind, eingeführt und erläutert. Anschließend wird ein vielseitiges
Rahmenwerk zur Behandlung von Optimierungsproblemen entworfen und eingesetzt, um bestehen-
de konvexe und nichtkonvexe, sowie neu entwickelte Formulierungen für die Phasenrekonstruktion
aus Betragsdaten zu untersuchen.

Dabei zeigt sich, dass sich die Qualität der gewonnenen Phase drastisch verschlechtert, wenn
anstelle eines zufällig verteilten Datenmodells, welches in der Literatur weitverbreitet ist, das einer
realistischen NF-Antennenmessung verwendet wird. Derselbe Trend zeichnet sich bei einer um-
fangreichen Untersuchung von Methoden zur Initialisierung der Phasenrekonstruktion mit Zufalls-
und NF-Daten abÐ zusätzlich ist der Unterschied stärker ausgeprägt, je größer die Dimensionen
der Problemstellung werden. Variationen in der Leistungsfähigkeit diverser Lösungsansätze, z.B.
im Vergleich von konvexen mit nichtkonvexen Algorithmen, sind angesichts dieser dominanten
Abhängigkeit von der Qualität und Eignung der Messdaten nahezu vernachlässigbar. Diesbezüglich
sind die Hauptunterschiede der Methoden in den benötigten Rechenzeiten und Speicherressourcen
zu finden.

Ein wahrer Paradigmenwechsel wird mit der Einführung des Konzeptes von teilkohärenten Beob-
achtungen vollzogen. Die zumindest teilweise Kenntnis von Phasentermen erlaubt die Entwicklung
und Anwendung von linearisierten, und damit zuverlässigen, Phasenrekonstruktionsalgorithmen,
deren Anwendungsbereich keineswegs auf die Antennenmesstechnik beschränkt ist. Der Fall von
teilkohärenten Messungen kann als eine Unterklasse des ursprünglichen Problems der Phasenrekon-
struktion betrachtet werden: Hierbei wird vorausgesetzt, dass ein Teil der Einträge im Messvektor
einen bekannten Phasenbezug aufweist. Effektiv reduziert sich dadurch die Anzahl der noch zu
bestimmenden Phasenterme. Zwei praktisch relevante Möglichkeiten zur Aufzeichnung der nötigen
Phasendifferenzen bei NF-Antennenmessungen werden in dieser Arbeit vorgestellt und besprochen:
breitbandige NF-Messungen und Messungen mit Mehrkanalempfängern. In den Untersuchungen
weisen die linearisierten Formulierungen für teilkohärente Daten große Ähnlichkeiten mit einer
vollkohärenten Transformation auf. Insbesondere wird für Teilkohärenz ein deterministischer
Schwellenwert für die zum Erfolg der Transformation benötigte Anzahl von Messungen hergeleitet.
Dieser steht im starken Kontrast zu den lediglich probabilistischen Aussagen, welche für vollständig
phasenlose Algorithmen existieren. Sobald dieser Schwellenwert überschritten wird, erhält man
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ähnliche Ergebnisse wie bei einer Transformation mit vollständiger Phaseninformation, allerdings
auf Kosten einer erhöhten Rauschempfindlichkeit.
Das Konzept der Phasenrekonstruktion wird anschließend für die Transformation von NF-

Antennendaten unter dem Einfluss eines Störobjektes erweitert, wobei sowohl der Fall vollständiger
als auch unvollständiger Phaseninformation betrachtet wird. Wie sich zeigt, sind die linearisierten
Formulierungen mit teilkohärenten Daten, die über einen mehrkanaligen Empfänger gewonnen
werden, in der Lage, den Einfluss eines Echoobjektes auf ein ähnliches Niveau zu reduzieren, wie
es unter Nutzung vollständiger Phaseninformation möglich ist.
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Abstract

Future electromagnetic antenna validation and verification measurements require post-pro-cessing
algorithms to reliably function with phaseless data. Typical tasks include the determination of
far-field (FF) radiation properties of an unknown antenna under test (AUT) from near-field (NF)
measurements, which have traditionally been carried out with knowledge of the magnitude and
phase of the fields sampled with a probe antenna. While in this context processing of complex-
valued data requires linear systems of equations to be solved, the lack of phase information leads to
the so-called phase retrieval problem. Phase reconstruction has been an active field of research for
decades and remains to be a hot topic, due to its widespread potential applications, however, also
because of its nonlinearity.

This work tackles the task of phase retrieval in the context of antenna measurements, for which
common approaches have been observed to perform poorly. The theory and basic, yet capable,
routines for electromagnetic field transformations based on full phase information are introduced
and explained first. Afterwards, a versatile optimization framework is set up and employed to
compare existing convex and nonconvex, as well as newly designed formulations for the phase
reconstruction from fully incoherent data. Drastic differences in phase retrieval performance
are reported when comparing the results for a random data model, which is typically assumed
in literature, with the results for realistic NF antenna data. A thorough investigation of phase
retrieval initialization methods with random and NF data confirms the discrepancies, which are
found to be more pronounced with increasing problem dimensions. Compared to the dominant
data dependency, variations among solvers, e.g., convex compared to nonconvex algorithms, are
observed to be of moderate degree. Notable differences are rather found in terms of the required
computational complexity and resources.

A paradigm shift is achieved with the introduction of the concept of partially coherent observa-
tions, which allows for the design and application of linearized and reliable phase reconstruction
algorithmsÐnot limited to the application in antenna measurements. This sub-class of phase
retrieval problems requires portions of phase differences to be available in the measurement vectors,
which can for example be obtained by multi-frequency measurements or by measurements with
multi-channel receivers (RXs). The behavior of the linearized formulations for partially coherent
data is seen to be similar to that of fully coherent transformations. In particular, a deterministic
threshold for the required number of measurements exists, which is in contrast to the probabilistic
statements for completely phaseless algorithms. Once this threshold is exceeded, results similar to
that of a coherent transformation are obtainedÐ at the expense of an increased susceptibility to
noise.

The same concepts can be extended to the task of echo object modeling in NF measurement sce-
narios with varying degrees of phase information. As seen in this work, the linearized formulations
with partially coherent data obtained via multi-channel RXs are able to suppress echo contributions
at a level similar to that possible with methods utilizing fully coherent data.
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1. Introduction

This dissertation intends to provide essential knowledge and insights on the topic of phase retrieval
in phaseless near-field (NF) far-field (FF) transformations (NFFFTs). Belonging to the fields of com-
putational electromagnetics and antenna measurement techniques, field transformations represent a
well established topic in high-frequency engineering. It is the existing solid theoretical background
that allows to mainly focus on the phaseless aspects in this field, which are associated with the task
of phase retrieval. As by-products of the investigations on phaseless NFFFTs, we will obtain tools
allowing us to also tackle other nonlinear problems in electromagnetics and possibly beyond. Phase
retrieval itself is not a problem that first occurred in high-frequency engineering, but stems from the
field of optics [Fienup 1982; Gerchberg and Saxton 1972] and imaging [Fogel et al. 2016; Holloway
et al. 2016; Tian and Waller 2015] with its many applications in X-ray crystallography [Harrison
1993; Miao et al. 2008, 2012; Pfeiffer et al. 2006], transmission (electron) microscopy [Coene et al.
1992; Faulkner and Rodenburg 2004; Kou et al. 2010], coherent diffraction imaging [Bacca et al.
2019; Guizar-Sicairos and Fienup 2008] and ptychography [Ramos et al. 2019].

Abstractly speaking, phase retrieval is the problem of recovering an unknown portion of a signal
from its known parts. In case of complex numbers, magnitude and phase can be the known and
unknown portions, respectively. While the task of phase retrieval arises naturally in the context of
phaseless field transformationsÐwhere information about the phase of the measurement signal is
not knownÐ it may be difficult to quickly develop a feeling or intuition for the problem from its
application in antenna measurements. Thus, it makes sense to start with another, maybe artificial,
application of phase retrieval, which directly provides the motivated apprentice with imaginable
quantities and, hopefully, a first insight of what is going on.

1.1 The Concept of Phase Retrieval

Geometric arrangements in two-dimensional space are often used to illustrate complicated problems
in a simple but meaningful way. Luckily, we can construct a simple phase retrieval problem based
on polygonal chains in two-dimensional space. Consider the point cloud in Fig. 1.1(a) which defines
a low-polygonal representation of a dog from the side, also depicted in Fig. 1.1(b). Each vertex is
defined by its 𝑥- and 𝑦-coordinate, which can be interpreted as the real and imaginary parts of
complex numbers. The polygonal picture itself is generated by drawing the connection between
specific vertices, shaping the contour of the dog. The image of the dog can thus uniquely be defined
by stating the absolute coordinates of the verticesÐ a complex number for each vertexÐor by
defining the separation between each vertex to all other vertices in the cloud and to the origin of
the coordinate system. In both ways, the picture is defined without any degrees of freedom (DoFs)
left Ð the absolute locations of the vertices fixes the image in place. For the purpose of illustrating
the task of phase retrieval, we will continue with the second way of defining the polygonal image,
utilizing the separation vectors between the vertices. Since each vertex can be interpreted as a
complex number, the difference between two vertices, i.e., the separation vector, is also a complex-
valued scalar. Now, assume that we only have the magnitude information, i.e., we only know the
distances between certain vertices, but not the orientation or absolute alignment of the vertices
in the two-dimensional space. Again, knowing the complex separations between the vertices, i.e.,
length and orientation of the separation vectors, would allow us to immediately draw the original
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1 Introduction

(a) (b)

(c)

Original

Retrieved

(d)

Fig. 1.1 Illustration of contour reconstruction as a phase retrieval problem. A two-dimensional
point cloud in (a) defines the contour of a dog shown in (b). Knowing only the distances
between pairs of points in the cloud, indicated by blue lines in (c), the task of reconstructing
the locations of the points can be cast as a phase retrieval problem. Knowing the distances
indicated in (c), the contour shown in (d) is retrieved.

image. In addition, knowing the complex separation of one vertex to the origin of the coordinate
system would allow to place it at the very same location as the original arrangement. Dropping the
phase information leaves us with our first phase retrieval problem, namely to reconstruct the image
only knowing the relative distances between vertices to each other. It is also clear that for 𝑛 vertices
there are in total 𝑛 (𝑛 − 1) distances among the vertices as well as 𝑛 distances from the vertices to
the origin of the coordinate system. Knowing all of these 𝑛2 magnitudes guarantees that the image
is uniquely defined. Finding the correct locations from these 𝑛2 magnitudes yet remains a nontrivial
task, as will be seen at a later point. Furthermore, one can see that knowing only the 𝑛 − 1 distances
on the contour of the dog, even in addition to the distance of the first point to the originÐ leading
to a total of 𝑛 measurementsÐ , can not guarantee a unique and correctly reconstructed contour in
general. As there are 𝑛 unknown points, represented by 𝑛 complex numbers, there are in total 2𝑛
unknowns corresponding to the 𝑥- and 𝑦-coordinates or real and imaginary parts. So the number
of measurements𝑚, i.e., the number of distances between vertices, we have to consider, should be
in the range𝑚 ∈ {2𝑛, ..., 𝑛2}Ðhopefully at the lower end. Indeed, the number of measurements
required by a phase retrieval algorithm in order to be successful is one of the core figures of merit
used to compare phase retrieval methods and will be briefly discussed later.

In our particular example with the contour of the dog, knowing the𝑚 = 15𝑛 distances indicated
by thin blue lines in Fig. 1.1(c), the shape of the dog as depicted in Fig. 1.1(d) can be retrieved. Since
the choice of algorithm is likely to have major impact on the results of phase retrieval, a manifold
of approaches are investigated and discussed in this work.

2



1.1 The Concept of Phase Retrieval

(a)

Original

Retrieved

(b) (c)

Fig. 1.2 Three exemplary trivial ambiguities that may occur in phase retrieval, illustrated for the
problem in Fig. 1.1. The reconstruction in (a) exhibits an arbitrary rotation (global phase
shift) that can not be resolved based on the magnitude information. In (b), the retrieved
contour is translated in 2D space. Adding the absolute distance of one point to the origin
of the coordinate system could fix this ambiguity. The complex conjugated solution in
(c) exhibits the same distances between the points as the original contour. Here, complex
conjugation leads to a mirrored image.

It should already be evident that a reconstruction based on magnitude information may at most
agree with the ground truth up to an ambiguous global phase. In case of the contour reconstruction,
the image can only be determined up to an arbitrary rotation around the origin of the coordinate
system. In Fig. 1.1(d), this rotation has already been compensated for. Any solution multiplied with
a scalar phase term exhibits the same magnitude informationÐ this is commonly referred to as one
trivial ambiguity of the phase retrieval problem. For the example of the dog, three possible trivial
ambiguities are depicted in Fig. 1.2, including the already mentioned global phase shift. Dependent
on the problem statement, some of them may be avoided, e.g., by arbitrarily fixing the phase of one
entry in the measurement vector, the global phase is fixed. Since in Fig. 1.1(c) no distance between
any point on the contour and the origin of the coordinate system has been considered, the contour
of the dog can only be retrieved up to an arbitrary translation in 𝑥- and 𝑦-direction. As indicated in
Fig. 1.2(c), phase retrieval algorithms may not be able to differentiate the solution from its complex
conjugate, here leading to a mirrored dog shape.

So how can we make sure that there are no false solutions or other nontrivial ambiguities? This
immediately leads to another essential question of phase retrieval: How can we ensure a unique
solution? As this question is so fundamental, it may be especially unsatisfactory that there is no
universal answer. The few existing statements in this direction are briefly discussed later in this
thesis.

Let us leave aside the illustration of phase retrieval with two-dimensional point clouds and
come back to the major focus of this thesis, namely the application of phase retrieval in the
context of phaseless antenna field transformations. For the moment, it is sufficient to think of a
phaseless field transformation as a two-fold post-processing technique for antenna measurement
data. Dependent on the phaseless transformation approach, the two stages may not always be
separable. Still, a two-part process could proceed as follows. Starting from magnitude-only data, a
phase retrieval technique is applied to restore the corresponding phase, resulting in complex-valued

3



1 Introduction

field information. The latter is then fed to an existing field transformation algorithmÐa research
topic of its ownÐ in order to obtain the desired radiation characteristic of the AUT.

As a consequence, antenna field transformation algorithms assigned with the prefix łphaselessž,
łmagnitude-onlyž, łincoherentž or similar, commonly involve some form of phase retrieval. However,
this seemingly simple separation of phase reconstruction and field transformation should not distract
from a fundamental truth: Phase retrieval from phaseless antenna data is different than that from
other magnitude data, e.g., taken from random distributions. While this statement may sound
obvious and trivial, its consequences are not. In fact, the discrepancies in the data models employed
with phase retrieval in various applications compared to that of NF antenna measurements are
among the main reasons for the eligible existence of this dissertation. This claim will be seen to
gain in sustainability when diving deeper into the thesis.

1.2 Outline

Twomain ingredients are required for the treatment of phaseless antenna field transformations. First,
electromagnetic field theory is necessary for the description and modeling of radiation phenomena,
and second, a good knowledge of nonlinear optimization theory is required for the discussion of
phase retrieval formulations. For the purpose of this thesis, time-harmonic electromagnetic fields
are considered and described by equations in the frequency domain. Transient phenomena could
be treated when working with a superposition of signals at multiple frequencies, which, for the
sake of brevity, is not addressed in this work.

Starting with electromagnetics, Chapter 2 provides a selection of electromagnetic sources for the
time-harmonic modeling of radiating objects as well as an excerpt of electromagnetic theorems.
A particular focus is put on a parallelized implementation of the derived radiation operators for
electric and magnetic current densities of infinitesimal extent. Afterwards, the core concepts of
nonlinear nonconvex optimization in complex-valued variables are introduced in Chapter 3, at
the end of which a versatile optimization framework is constructed. Electromagnetics and the
optimization framework are then combined in Chapter 4, where the fundamentals of antenna
field transformations with full phase information are presented. The results therein provide a
clear picture of what is expected from the phaseless field transformations introduced in Chapter 5,
which first details the task of phase retrieval and its initialization methods. Existing nonconvex
techniques are recapitulated and put in perspective with proposed formulations implemented via
the optimization framework. Furthermore, three existing convex retrieval algorithms are reviewed
and applied to random as well as NF antenna data. The chapter ends with the presentation of an
exact and direct phase retrieval algorithm for which a simplistic implementation is provided.

The rules truly change with the introduction of the concept of partially coherent measurements in
Chapter 6. Partial coherence features a widespread field of applications while allowing to construct
predictable and reliable algorithms. A thorough analysis of proposed linearized formulations for
phase reconstruction with local phase information as well as spectral phase differences is provided,
giving insights and further understanding of the phase retrieval problem. Showcasing further
extensions of the concept of field transformations and phase retrieval, Chapter 7 deals with source-
based obstacle modeling techniques with full and limited phase information, allowing to more
realistically model NF antenna measurement setups. Finally, Chapter 8 summarizes and concludes
this dissertation, not without providing recommendations for future research in this field.

4



1.3 Notation

At various points, the appendix can be consulted for supplementary information and detailed
derivations. The aforementioned optimization framework has also been applied to other nonlinear
field transformation tasks, e.g., showcasing the complementary problem of magnitude retrieval.
For the sake of brevity and conciseness of this work, not all of these transformation concepts, e.g.,
where the probe and the AUT are unknown, are discussed. Furthermore, concluding remarks are
scattered throughout this work, allowing to quickly grasp the core insights at the end of most larger
sections. The rushed reader may find it helpful to skip lengthy parts and resort to these essential
findings.

1.3 Notation

Throughout this thesis, vectors of arbitrary dimension, mainly used in numerical computations,
will be denoted by bold, italic letters, e.g., 𝒛, while matrices are represented by upper-case, bold,
upright letters, e.g., A. Vectors in three-dimensional space, for which the divergence and rotation
are well defined, are written in bold, italic letters underlined by a bar, e.g., the electric field 𝑬 . Dyads
are written in bold, upright letters and are underlined, e.g., I. In general, anything in bold font
represents a multidimensional quantity, while scalars are typeset in non-bold font. For vectors, [𝒃]𝑖
extracts the 𝑖th entry and for matrices [A]𝑚,𝑛 picks the entry in the𝑚th row and 𝑛th column. The
Euler number is written as e, and the imaginary unit as

√
−1 = j.

Particular nonlinear operators, mainly encountered in the context of optimization, are denoted
by upper-case, calligraphic letters, e.g., A. The real and imaginary parts of complex quantities can
element-wise be obtained via the Re{.} and Im{.} operators. Complex conjugation is indicated by
a horizontal line above the respective quantity, e.g., 𝒛. The phase of a complex-valued quantity
in radians is element-wise returned by the function ∠ (𝒛). In all cases, the magnitude operator
|.| applied to any quantity is evaluated element-wise. The same holds true when the exponential
function is applied to vectors, i.e.,

e𝒛 ≡ e[𝒛 ]𝑖 ∀𝑖 ∈ {1, ..., 𝑛} , 𝒛 ∈ C𝑛 × 1. (1.1)

An element-wise multiplication of vectors or matrices, i.e., the Hadamard product, is denoted by
𝒂 ◦ 𝒃 .
The function diag (.), when applied to matrices, extracts the diagonal elements and forms a

column vector, or, when applied to vectors, creates a diagonal matrix. The operation max (.) and
min (.) return the maximum and minimum values from a vector. The functions ⌈𝑥⌉ and ⌊𝑥⌋ return
the ceil and floor of real-valued scalars. Defined to operate on vectors, the function std(.) returns
the standard deviation of a potentially complex-valued vector. The sign (.) function extracts the
sign of scalar arguments, whereas the median of a vector quantity is returned by median (.). The
trace and rank of a matrix A are denoted by Tr(A) and rank(A). The inverse andÐwhenever the
inverse does not exist Ð the Moore-Penrose pseudoinverse of a matrix A is denoted by A−1. The
transpose and complex-conjugate transpose, i.e., Hermitian, of non-scalar quantities are denoted by
𝒛T and 𝒛H, respectively.

5





2. Radiation of Electromagnetic Sources in
Free Space

Phaseless antenna field transformations represent a challenging interdisciplinary task bringing
together fundamental concepts from electromagnetics and procedures from optimization theory. We
make a start by covering the essential equations governing electromagnetic radiation in isotropic,
homogeneous, lossless media, e.g., free space. With the introduction of the uniqueness and equiva-
lence theorem we are then able to treat problems in inhomogeneous space and, effectively, perform
field transformations.
We first discuss two ways of modeling sources of time-harmonic electromagnetic radiation,

the spherical vector wave functions and the concept of current densities. More details will be
provided on the topic of current densities with a focus on infinitesimally small electric and magnetic
current densities, also referred to as Hertzian and Fitzgerald dipoles. For both models, a linear
radiation operator, i.e., a matrix, relating radiated fields and source coefficients will be derived,
where again more details are provided for the Hertzian and Fitzgerald dipoles. Afterwards, two
crucial electromagnetic theoremsÐ the uniqueness theorem and the equivalence theoremÐare
discussed, providing the theoretical reasoning for the principle of the field transformations of later
chapters. Essentially, the theorems tell us how to apply the radiation operators in order to model
and solve the field transformations discussed in the main part of this thesis.

2.1 Spherical Vector Wave Functions and Degrees of Freedom in

Electromagnetic Radiation

This section closely follows the path of thought of [Hansen 2008] in order to determine a basis for
the description of electromagnetic radiation in three-dimensional space. We solely concentrate on
time-harmonic signals with a time dependency of e+j𝜔𝑡 . Transient effects could be modeled via a
linear superposition of multiple frequencies, however, are not in the focus of this work.

On a macroscopic level, all fields and waves within linear, isotropic and continuous media have
experimentally been observed to follow the Maxwell equations [Jin 2015, p. 34]

∇ × 𝑯 = j𝜔𝜀𝑬 + 𝑱 (2.1)

∇ × 𝑬 = −j𝜔𝜇𝑯 −𝑴 (2.2)

∇ · 𝑫 = 𝜌e (2.3)

∇ · 𝑩 = 𝜌m. (2.4)

One of the many statements emerging from the Maxwell equations is that the electric field 𝑬 and the
magnetic field 𝑯 at an angular frequency 𝜔 = 2𝜋 𝑓 are coupled and, at the same time, are generated
by their respective sources, the electric and magnetic current densities 𝑱 and 𝑴 . Whenever the
frequency is nonzero, the electric field gives rise to a magnetic field and vice-versa via (2.1) and (2.2),
allowing for a self-sustained, propagating electromagnetic fieldÐ the concept of radiation. The
remaining two equations, (2.3) and (2.4), assign the electric and magnetic flux 𝑫 and 𝑩 to the charge
densities 𝜌e and 𝜌m. Due to the assumed linearity and isotropy, we may link fields and fluxes via
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2 Radiation of Electromagnetic Sources in Free Space

the material relations 𝑫 = 𝜀𝑬 and 𝑩 = 𝜇𝑯 , where the surrounding material is described by the
scalar permittivity 𝜀 and permeability 𝜇. Note that one commonly sets the right-hand side of (2.4)
to zero, however, the discussion on the existence of magnetic monopoles is still ongoing [Ambrosio
et al. 2002; Preskill 1984; Rajantie 2012].

Let us come back to our main task and derive a mathematical basis for the representation of
electromagnetic fields. Starting from the Maxwell equations, one can show that in the source-free
case, i.e., 𝑱 = 𝑴 = 0 and 𝜌e = 𝜌m = 0, the electric and magnetic fields fulfill the vector curl-curl
equation

∇ ×
(
∇ × 𝑪

)
− 𝑘2𝑪 = 0 (2.5)

with the wavenumber 𝑘 = 𝜔
√
𝜀𝜇 = 2𝜋/𝜆. Skipping the details, one can then verify that the vector

wave functions

𝒇
1𝑚𝑛
(𝑟, 𝜗, 𝜑) = 1

√
2𝜋

1√︁
𝑛 (𝑛 + 1)

(−sign (𝑚))𝑚 e−j𝜔𝜑𝑧 (4)𝑛 (𝑘𝑟 )
[
j sign (𝑚)𝑇1𝒆𝜗 −𝑇2𝒆𝜑

]
(2.6)

𝒇
2𝑚𝑛
(𝑟, 𝜗, 𝜑) = −1√

2𝜋

1√︁
𝑛 (𝑛 + 1)

(−sign (𝑚))𝑚 e−j𝜔𝜑
1

2𝑛 + 1[
(𝑛 (𝑛 + 1))

(
𝑧
(4)
𝑛−1 (𝑘𝑟 ) + 𝑧

(4)
𝑛+1 (𝑘𝑟 )

)
𝑃
|𝑚 |
𝑛 (cos𝜗) 𝒆𝑟

−
(
(𝑛 + 1) 𝑧 (4)𝑛−1 (𝑘𝑟 ) − 𝑛𝑧

(4)
𝑛+1 (𝑘𝑟 )

) (
𝑇2𝒆𝜗 + j sign (𝑚)𝑇1𝒆𝜑

) ]
(2.7)

with

𝑇1 =




0 𝑚 = 0

|𝑚 | sin𝜗𝑃 |𝑚 |𝑛 (cos𝜗)
+ 1
2
cos𝜗

[
𝑡1𝑃
|𝑚 |−1
𝑛 (cos𝜗) + 𝑡2𝑃

|𝑚 |+1
𝑛 (cos𝜗)

]
|𝑚 | > 0

(2.8)

𝑇2 =



𝑡2𝑃

1

𝑛 (cos𝜗) 𝑚 = 0

1
2

[
𝑡2𝑃
|𝑚 |+1
𝑛 (cos𝜗) − 𝑡1𝑃

|𝑚 |−1
𝑛 (cos𝜗)

]
|𝑚 | > 0

(2.9)

and

𝑡1 =
√︁
(𝑛 − |𝑚 | + 1) (𝑛 + |𝑚 |) (2.10)

𝑡2 =
√︁
(𝑛 − |𝑚 |) (𝑛 + |𝑚 | + 1) (2.11)

fulfill (2.5) in infinite homogeneous space for 𝑛 ∈ {0, ...,∞} and𝑚 ∈ {−𝑛, ..., 𝑛} and represent a
basis, also called modes, for electromagnetic field distributions in three-dimensional space [Hansen
2008; Klinkenbusch 2008]. The vectorial functions are evaluated at observation locations defined in
terms of spherical coordinates (𝑟, 𝜗, 𝜑), or in general, by a coordinate-independent vector 𝒓 . For
observation locations at a fixed distance 𝑟 , the basis functions are orthogonal to each other. The unit

vectors in 𝑟 -, 𝜗-, and 𝜑-direction are denoted as 𝒆𝑟 , 𝒆𝜗 and 𝒆𝜑 . Here, 𝑧
(4)
𝑛 is the spherical Hankel
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2.1 Spherical Vector Wave Functions and Degrees of Freedom in Electromagnetic Radiation

function of the second kind, defined via

𝑧
(4)
𝑛 (𝑧) = 𝑗𝑛 (𝑧) − j𝑛𝑛 (𝑧) (2.12)

with the spherical Bessel functions of the first and second kinds, 𝑗𝑛 (𝑧) and 𝑛𝑛 (𝑧), respectively.
These particular wave functions correspond to a propagation direction away from the origin of the
coordinate system, however, the direction can be reversed by flipping the sign of the imaginary part
in (2.12). For the considerations in this work, only outward traveling waves in agreement with (2.12)
are employed. The normalized associated Legendre functions are here defined as [Abramowitz and
Stegun 2013]

𝑃
𝑚

𝑛 (𝑥) = (−1)𝑚
√︄
(𝑛 + 0.5) (𝑛 −𝑚)!
(𝑛 +𝑚)! 𝑃𝑚𝑛 (𝑥) (2.13)

with the unnormalized associated Legendre functions

𝑃𝑚𝑛 (𝑥) = (−1)𝑚
(
1 − 𝑥2

)𝑚
2
d𝑚𝑃𝑛 (𝑥)
d𝑥𝑚

, (2.14)

which are defined via the derivatives of the Legendre polynomials

𝑃𝑛 (𝑥) =
1

2𝑛𝑛!

d𝑛

d𝑥𝑛
(
𝑥2 − 1

)𝑛
. (2.15)

Any electric and magnetic field at a point 𝒓 can then be written as a weighted sum of modes via

𝑬
(
𝒓
)
= 𝑘

√︁
𝑍F0

2∑︁
𝑠=1

𝑁→∞∑︁
𝑛=1

𝑛∑︁
𝑚=−𝑛

𝑄𝑠𝑚𝑛𝒇
𝑠𝑚𝑛

(
𝒓
)

(2.16)

𝑯
(
𝒓
)
=

j𝑘√
𝑍F0

2∑︁
𝑠=1

𝑁→∞∑︁
𝑛=1

𝑛∑︁
𝑚=−𝑛

𝑄𝑠𝑚𝑛𝒇 (3−𝑠 )𝑚𝑛

(
𝒓
)

(2.17)

with the wave impedance of the surrounding material 𝑍𝐹 =

√︃
𝜇

𝜀
. The 𝑄𝑠𝑚𝑛 ∈ C represent the

coefficients of the spherical vector wave expansion. In practical applications, for example when
modeling the fields emerging from a radiating object, the mode order 𝑁 is truncated according to

𝑁0 = ⌈𝑘𝑟0⌉ + 𝑛1, (2.18)

where 𝑟0 is the radius of the minimum sphere enclosing the object. Since 𝑟0 is measured with respect
to the origin of the coordinate system employed with the vector wave functions, a lower order 𝑁0

is required when aligning the radiating object with the center of the expansion. The scalar 𝑛1 is
often chosen as 𝑛1 = 10 to ensure sufficient accuracy, however, especially for small sized objects,
𝑛1 = 3 is experienced to be a more appropriate choice. Note that (2.18) becomes inaccurate as
soon as łsuperdirectivity effectsž occur, e.g., see [Hansen 1981; Hansen and Woodyard 1938; Oseen
1922], and more higher-order modes need to be considered. Furthermore, the spherical vector basis
functions are singular at 𝑟 = 0 with respect to the radial distance 𝑟 to the origin of the expansion. In
fact, moving an observation location close to the equivalent radius 𝑘𝑟0 of the expansion may cause
a strong increase of the evanescent fields, which correspond to highly reactive field components
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2 Radiation of Electromagnetic Sources in Free Space

associated with higher-order modes. The series in (2.16) and (2.17) still converge, though they
may require large values of 𝑁 , which can lead to numerical instabilities and limit the overall
accuracy. Thus, the multipole representation of fields is commonly only referred to be accurate
for observation points sufficiently far away from the corresponding spherical volume. Under this
condition, the general validity of (2.18) implies that radiation represented in terms of a spherical
multipole expansion of order 𝑁0 can be considered to originate from within a spherical volume with
radius 𝑘𝑟0. Sources of non-spherical shape, e.g., cylindrical structures in two dimensions [Zhang
et al. 2007] or spheroidal structures [Li et al. 2004], can potentially be more efficiently represented
by other types of expansions, i.e., requiring less basis functions.
It is common to reduce the triple sums above to a single summation, by introducing [Hansen

2008]

2∑︁
𝑠=1

𝑁∑︁
𝑛=1

𝑛∑︁
𝑚=−𝑛

=

𝐽∑︁
𝑗=1

(2.19)

with 𝐽 = 2𝑁 (𝑁 + 2). For given 𝑠 , 𝑛 and𝑚, one can find 𝑗 = 2 [𝑛 (𝑛 + 1) +𝑚 − 1] + 𝑠 . In reverse,
one can determine 𝑠 , 𝑛 and𝑚 from 𝑗 by [Hansen 2008]

𝑠 =

{
1 𝑗 is odd

2 𝑗 is even
(2.20) 𝑛 =

⌊√︃
𝑗−𝑠
2
+ 1

⌋
(2.21) 𝑚 =

𝑗−𝑠
2
− 𝑛2 − 𝑛 + 1. (2.22)

Since the fields in (2.16) and (2.17) depend linearly on the coefficients 𝑄𝑠𝑚𝑛 , it is straightforward
to derive a matrix-vector representation of the form

𝑬 =

[
𝑬

(
𝒓1

)T
. . . 𝑬

(
𝒓𝑚

)T]T
= A𝑬

SVW

[
𝑄1 . . . 𝑄 𝐽

]T
= A𝑬

SVW 𝒛 (2.23)

𝑯 = A𝑯
SVW 𝒛 (2.24)

when stacking the fields at the𝑚 locations 𝒓1 to 𝒓𝑚 in the vectors 𝑬 and 𝑯 . The involved linear
operators, i.e., matrices, are commonly referred to as forward operators or measurement matrices.
Due to the orthogonality of the spherical vector wave functions, the associated forward operators
commonly exhibit a low condition number. Dependent on the problem at hand, the fields may be
represented in terms of the appropriate components, e.g., by Cartesian 𝑥-, 𝑦- and 𝑧-components or
by spherical 𝑟 -, 𝜗- and 𝜑-components. The matrix-vector form for describing the electromagnetic
radiation of sources will be used throughout this thesis whenever the expansion coefficients are
unknown. Note that the radiation operators still depend on other variables, such as the frequency
or the locations of the observation points. As such they can be interpreted as linear and nonlinear
operators, dependent on the parameter to consider. However, often the expansion coefficients are
of main interest and all other parameters are assumed to be fixed, resulting in a comfortable linear
dependency.
At this point, it is time to stress the meaning and the importance of (2.18). We have heard

that, in line with (2.16) and (2.17), arbitrary electromagnetic field distributions in space can be
represented with an infinite sum of spherical vector wave basis functions. According to (2.18),
which assumes the source of radiation to be confined to a sphere of limited volume and not exceed
a certain directivity, these infinite sums can be truncated and still resemble the original fields with
good accuracy. Consequently, we know that fields caused by finite-sized radiators feature a limited
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2.1 Spherical Vector Wave Functions and Degrees of Freedom in Electromagnetic Radiation

spatial variation that can be described by a bounded number of spherical vector wave functions.
Again, this assumes that effects of superdirectivity are excluded. Due to the orthogonality of the
vector wave functions for fixed radius 𝑟 , this particular number of modes simultaneously equals
the minimum number of unknowns required to completely describe the fields generated by any
radiator fitting inside an imaginary spherical volume with the radius 𝑟01. Once the coefficients
of these modes are fixed, the fields are fully constrained. This is why in general, the minimum
number of basis functions required to accurately describe all possible fields emitted by a radiator of
a certain geometry is referred to as the number of DoFs of this radiator (or its fields). Based on 𝑁0

from (2.18), the number of relevant modes describing sources which occupy a spherical volume is
given by [Hansen 2008]

𝐽DoF = 2𝑁0 (𝑁0 + 2) . (2.25)

Whenever an antenna does not fully occupy the spherical geometry associated with (2.25), its
number of DoFs falls below that predicted (2.25). Its radiation can then be described more efficiently
with a different basis. In particular, complex shaped antennas can be conveniently modeled with
electric and magnetic current densities on a closely confined surface. While current densities
generally represent a redundant basis and may lead to a larger number of coefficients than required
for a modal expansion, they can impose strong limitations on the radiated fields and, consequently,
on the associated DoFs. In particular, a basis that contains information about the geometric shape of
the radiator can provide better phase retrieval results, e.g., faster convergence and higher accuracy,
than less localized basis functions, regardless of the number of coefficients. As a downside, the
redundancy may cause the corresponding radiation operator to become ill-conditioned, however,
one can perform a rank-revealing singular value decomposition (SVD) to obtain a representation
in terms of a basis of reduced size and improved condition number. In contrast, working with
the minimum number of unknowns is often preferable, especially in the case of nonlinear and
nonconvex optimization, in order to keep the computational effort and the number of local stationary
points at a minimum.

In summary, the geometry of an electromagnetic source can more precisely be modeled via
current-based representations, while modal expansions, e.g., spherical or cylindrical, tend to work
with fewer coefficients and typically lead to better conditioned operators.

The process of modeling radiators by spherical vector wave functions or electric and magnetic
current densities will become clearer once the essential electromagnetic theorems have been
discussed.

Concluding RemarksÐSpherical Vector Wave Functions Spherical vector wave functions
are a vectorial and potentially orthogonal basis, which fulfills Maxwell’s equations. Any fields
stemming from a finite spatial volume, see (2.18), can be expressed in terms of an appropriate and
also finite spherical multipole expansion. Most importantly for us, there exists a linear relationship
between the fields and the coefficients of the multipoles, which allows for the simple matrix-vector
notation in (2.23) and (2.24).

1The uniqueness and equivalence principle clarify that the complete fields outside the source region are determined
by the fields on a surface enclosing the radiating object. The orthogonality of the modes on a certain observation
surface, i.e. a sphere, thus proves that the number of spherical vector wave functions is always the minimum required
to describe the complete fields.
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2 Radiation of Electromagnetic Sources in Free Space

2.2 Radiation by Current Densities

Alternatively to a spherical multipole expansion, electromagnetic fields can be represented in terms
of electric and magnetic current densities. As has been mentioned, a multipole expansion can
efficiently represent radiation emerging from within a spherical volume. However, when a radiator
does not fully consume the available spherical volume, e.g., in case of a wire dipole antenna, a more
adequate representation may be achieved in terms of appropriately chosen current densities. The
latter can easily be confined to arbitrary geometries, where the spatial distribution of the currents
inherently imposes limitations on the fields.

In the following, the governing equations for evaluating the electric and magnetic field caused by
electric and magnetic current densities are derived. Ideally, we aim at determining relations for the
fields similar to (2.16) and (2.17) in case of the spherical vector wave functions, where, in the end,
unknown coefficients are multiplied with known basis functions. In particular, the łbasis functionsž
related to electric and magnetic line current densities of vanishing extent will be investigated.
Due to their strong singularity, these point-like current densities are avoided in the computational
treatment of electromagnetic scattering problems based on the method of moments (MoM), and
are commonly replaced by low-order Rao-Wilton-Glisson (RWG) basis functions [Rao et al. 1982].
In NFFFTs, singularity treatments are most of the time not required as source and observation
locations feature sufficient spatial separation, making infinitely small electric and magnetic current
densities a simple and versatile approach.

2.2.1 Electric Field of Magnetic and Electric Current Densities

Equations for the electric field caused by electric and magnetic current densities at observation
locations 𝒓 can be found via the magnetic and electric vector potentials. Brief derivations are
provided in Appendix A.1. The final relations of interest read as

𝑬 𝑱

(
𝒓
)
= − 1

4𝜋

√︂
𝜇

𝜀

˚

𝑱
(
𝒓 ′

)
·
[(
1 + j𝑘𝑅 + 1

j𝑘𝑅

)
I +

(
𝑘

j𝑅
− 3

𝑅2
− 3

j𝑘𝑅3

)
𝑹𝑹

]
e−j𝑘𝑅

𝑅2
d𝑉 ′ (2.26)

𝑬𝑴

(
𝒓
)
= − 1

4𝜋

˚

𝑴
(
𝒓 ′

)
× 𝑹 e

−j𝑘𝑅

𝑅3
(j𝑘𝑅 + 1) d𝑉 ′, (2.27)

where the source location of the current densities is denoted with 𝒓 ′ and 𝑅 =



𝑹


2
is the relative

distance defined via 𝑹 = 𝒓 − 𝒓 ′.
With (2.26) and (2.27), general relations between electric and magnetic current densities and the

thereof radiated electric fields are available. These relations are here written in a form such that the
assumption of point-like current densities may easily be applied. More appropriate representations
exist for other scenarios, for example when singularity treatments are required [Bao et al. 2020;
Eibert and Hansen 1995; Järvenpää et al. 2003; Polimeridis and Mosig 2010; Rao et al. 1979; Rossi
and Cullen 1999; Sievers et al. 2005; Taylor 2003; Tihon and Craeye 2018; Vipiana et al. 2013; Wilton
et al. 1984], i.e., when source and observation regions are identical, overlapping or intersecting.

2.2.2 Electric Field of the Hertzian and Fitzgerald Dipole

Based on (2.26) and (2.27), one can now state equations for the cases of the Hertzian and the
Fitzgerald dipole, which directly lead to discretized versions of the integral equations. While this is
here done in the frequency domain, the concept of line current densities of vanishing extent can
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2.2 Radiation by Current Densities

also be applied in the time domain, leading to insightful equations [Zangwill 2013, pp. 727ś728].
For both types of dipoles, the current densities are assumed to be of the form

𝑱
(
𝒓 ′

)
∝ 𝐼src 𝒑

src
𝛿D

(
𝒓 ′ − 𝒓 src

)
∝ 𝑴

(
𝒓 ′

)
, (2.28)

where the vector 𝒓 src is the location of the dipole, 𝒑
src

is its real-valued orientation vector and the

complex scalar 𝐼src represents its excitation coefficient. For the ease of use, we assume that the
Dirac impulse 𝛿D(𝒓 ′ − 𝒓 src) features the appropriate physical units. The index łsrcž is used to mark
quantities belonging to the radiating sources.

Inserting the infinitely small currents from (2.28) into (2.26) and (2.27), one obtains

𝑬H

(
𝒓
)
= − 1

4𝜋

√︂
𝜇

𝜀
𝐼src 𝒑

src
·
[(
1 + j𝑘𝑅 + 1

j𝑘𝑅

)
I +

(
𝑘

j𝑅
− 3

𝑅2
− 3

j𝑘𝑅3

)
𝑹𝑹

]
e−j𝑘𝑅

𝑅2
(2.29)

𝑬F

(
𝒓
)
= − 1

4𝜋
𝐼src 𝒑

src
× 𝑹 e

−j𝑘𝑅

𝑅3
(j𝑘𝑅 + 1) , (2.30)

where the filtering properties of the Dirac distribution has been employed to get rid of the integrals
and the dependency on the source locations is hidden inside the relative difference 𝑹 = 𝒓 − 𝒓 src.

Looking back at the representation of the electric field in terms of spherical vector wave functions
in (2.16), a similar relation is available in terms of (2.29) and (2.30), however, only for a single
Hertzian and Fitzgerald dipole. As part of the discussion on electromagnetic theorems later in this
chapter, it will be shown how a finite sum of Hertzian and/or Fitzgerald dipoles can be employed to
represent the fields stemming from a radiator of finite size, similar as it can be done with a spherical
multipole expansion.

2.2.3 Dipole-Dipole Interactions of Hertzian and Fitzgerald Dipoles

So far, we have presented equations for the computation of the electric and magnetic field ś physical
quantities of vectorial nature śwhich could be measured if one was able to łreceive with a Hertzian
or Fitzgerald dipolež, respectively. Only these infinitely small current densities are able to extract
single field components at distinct points in space, something that can not be done with physically
realizable antennas. However, as we will soon see, any receiver (RX) and radiator can be modeled
by a finite number of Hertzian and/or Fitzgerald dipoles. As a direct consequence, one is required to
compute the interaction between transmitting and receiving dipoles, where both sides may either
be electric, magnetic or a combination of both.

The interaction between a transmitting Hertzian dipole and a receiving Hertzian dipole, as well
as that between a transmitting Fitzgerald dipole and a receiving Hertzian dipole, can be determined
by testing the fields with the respective dipoles. To be more precise, when testing an arbitrary
field with a Hertzian dipole, the electric field component is projected onto the orientation of the
testing Hertzian dipole. In contrast, when receiving with a Fitzgerald dipole, only the magnetic
field component parallel to the observation dipole is extracted. The resulting equations obtainable
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2 Radiation of Electromagnetic Sources in Free Space

when testing the field radiated by a Hertzian or a Fitzgerald dipole with a Hertzian dipole read as

𝑈H→H
(
𝒓
)
= − 1

4𝜋

√︂
𝜇

𝜀
𝐼obs 𝐼src 𝒑

obs
·
(
𝒑
src

·
[(
1 + j𝑘𝑅 + 1

j𝑘𝑅

)
I +

(
𝑘

j𝑅
− 3

𝑅2
− 3

j𝑘𝑅3

)
𝑹𝑹

]
e−j𝑘𝑅

𝑅2

)
(2.31)

𝑈F→H
(
𝒓
)
= − 1

4𝜋
𝐼obs 𝐼src 𝒑

obs
·
(
𝒑
src
× 𝑹

) e−j𝑘𝑅
𝑅3
(j𝑘𝑅 + 1) , (2.32)

where the subscript łobsž is employed to mark quantities related to the observing dipole. The relative
difference 𝑹 = 𝒓obs − 𝒓 src is defined accordingly in this context. Note that due to duality [Jin 2015],
the magnetic field radiated by the Hertzian and the Fitzgerald dipoles can be found as 𝑯H = −𝑬F and
𝑯 F = 𝑬H, respectively. As a direct consequence, testing with a Fitzgerald dipole can be represented
via𝑈H→F = −𝑈F→H and𝑈F→F = 𝑈H→H.

Concluding RemarksÐRadiation by Current Densities There exists a linear relationship
between the radiated fields and the underlying electric and magnetic current densitiesÐ just like
it exists between fields and multipole coefficients in the case of spherical vector wave functions.
Commonly, distributed volume or surface current densities are employed for the application in
electromagnetic problems, where singularities in the integral equations need to be taken care of.
These singularities are not relevant whenever source and observation locations are sufficiently
separated in space, as it is the case in typical NFFFTs. Therefore, currents of vanishing extent may
be employed, eliminating the need to evaluate the integrals and resulting in simplistic algebraic
relations for the radiated fields.

2.2.4 Dipole-Dipole Forward and Adjoint Radiation Operators

The interaction between two spatially separated dipoles of infinitely small size can be generalized
to an arbitrary number of transmitting and receiving dipoles. Assume that the excitation currents,
locations and orientations of the radiating dipoles are collected in the quantities marked with a star
as

𝑰★ =

[
[𝑰★]1 . . . [𝑰★]𝑛

]T
, 𝒓★ =

[
𝒓★T1 . . . 𝒓★T𝑛

]T
, 𝒑★

=

[
𝒑★T
1

. . . 𝒑★T
𝑛

]T
(2.33)

whereas the currents, locations and orientations of the receiving dipoles are stacked in the primed
variables

𝑰 ′ =
[
[𝑰 ′]1 . . . [𝑰 ′]𝑚

]T
, 𝒓 ′ =

[
𝒓 ′T1 . . . 𝒓 ′T𝑚

]T
, 𝒑′ =

[
𝒑′T
1

. . . 𝒑′T
𝑚

]T
. (2.34)

The resulting stacked vectors are not limited to three dimensions. From here on, they are treated
as quantities for numerical computations instead of physically meaningful vectors. Analogous
to (2.31) and (2.32), we can write the received signals at the 𝑜th observing dipole caused by the 𝑠th
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2.2 Radiation by Current Densities

transmitting dipole as

𝑈H→H,𝑜,𝑠 = −
1

4𝜋

√︂
𝜇

𝜀
[𝑰 ′]𝑜 [𝑰★]𝑠 𝒑′

𝑜
·
(
𝒑★

𝑠

·
[(
1 + j𝑘𝑅𝑜,𝑠 +

1

j𝑘𝑅𝑜,𝑠

)
I +

(
𝑘

j𝑅𝑜,𝑠
− 3

𝑅2
𝑜,𝑠

− 3

j𝑘𝑅3
𝑜,𝑠

)
𝑹𝑜,𝑠𝑹𝑜,𝑠

]
e−j𝑘𝑅𝑜,𝑠

𝑅2
𝑜,𝑠

)
(2.35)

𝑈F→H,𝑜,𝑠 = −
1

4𝜋
[𝑰 ′]𝑜 [𝑰★]𝑠 𝒑′

𝑜
·
(
𝒑★

𝑠
× 𝑹𝑜,𝑠

) e−j𝑘𝑅𝑜,𝑠
𝑅3
𝑜,𝑠

(
j𝑘𝑅𝑜,𝑠 + 1

)
, (2.36)

where

𝑹𝑜,𝑠 = 𝒓 ′𝑜 − 𝒓
★

𝑠 , and 𝑅𝑜,𝑠 =



𝑹𝑜,𝑠





2
. (2.37)

In a more compact matrix-vector notation, we can write

𝑛∑︁
𝑠=1

[
𝑈H→H,1,𝑠 . . . 𝑈H→H,𝑚,𝑠

]T
= 𝒃H→H = AH→H𝑰

★ (2.38)

𝑛∑︁
𝑠=1

[
𝑈F→H,1,𝑠 . . . 𝑈F→H,𝑚,𝑠

]T
= 𝒃F→H = AF→H𝑰

★ (2.39)

with the matrix entries in the 𝑜th row and 𝑠th column

[AH→H]𝑜,𝑠 = −
1

4𝜋

√︂
𝜇

𝜀
[𝑰 ′]𝑜 𝒑′

𝑜
·
(
𝒑★

𝑠

·
[(
1 + j𝑘𝑅𝑜,𝑠 +

1

j𝑘𝑅𝑜,𝑠

)
I +

(
𝑘

j𝑅𝑜,𝑠
− 3

𝑅2
𝑜,𝑠

− 3

j𝑘𝑅3
𝑜,𝑠

)
𝑹𝑜,𝑠𝑹𝑜,𝑠

]
e−j𝑘𝑅𝑜,𝑠

𝑅2
𝑜,𝑠

)
(2.40)

[AF→H]𝑜,𝑠 = −
1

4𝜋
[𝑰 ′]𝑜 𝒑′

𝑜
·
(
𝒑★

𝑠
× 𝑹𝑜,𝑠

) e−j𝑘𝑅𝑜,𝑠
𝑅3
𝑜,𝑠

(
j𝑘𝑅𝑜,𝑠 + 1

)
. (2.41)

Again, due to duality, the operators in (2.40) and (2.41) allow for the computation of the remaining
possible interactions in the form of

AH→F = −AF→H (2.42)

AF→F = AH→H. (2.43)

The evaluation of multiple electric, magnetic or mixed dipole-dipole interactions can thus be
described by a simple matrix-vector product of the form

𝒃 = A𝒛, (2.44)

where the operator A is again referred to as the forward operator.

Note that for modeling real-world problems, receiving fields via a single observation dipole
alone is often not realistic. In most cases, the fields are sampled by a probe antenna which receives
a signal proportional to a weighted sum of spatially distributed field values. The probe can be
represented as consisting of multiple and appropriately weighted dipoles distributed in space. As
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2 Radiation of Electromagnetic Sources in Free Space

we will see soon, any electromagnetic radiator or sink can be represented in terms of suitably
chosen equivalent sources. The presented dipole-dipole formalism is thus sufficient to treat arbitrary
receiving or transmitting antennas.
Now that we have defined the forward operator A, we can have a look at the adjoint operator

AH. Field transformation algorithms employing iterative solution strategies often make use of
function calls to matrix-vector products with the forward operator, but also the adjoint operator
AH. This is of particular importance whenever the overall problem dimensions make the explicit
storage of the forward operator unfeasible. The implementation of adjoint operators may lead to
significant additional effort and, based on experience, is rather counter intuitive when sophisticated
hierarchical techniques have been incorporated in the forward operator.

For the discussed dipole-dipole interactions, the entries of the adjoint operators are given as

[AH→H]H𝑜,𝑠 = −
1

4𝜋

√︂
𝜇

𝜀
[𝑰 ′]𝑜 𝒑′

𝑜
·
(
𝒑★

𝑠

·
[(
1 − j𝑘𝑅𝑜,𝑠 −

1

j𝑘𝑅𝑜,𝑠

)
I −

(
𝑘

j𝑅𝑜,𝑠
+ 3

𝑅2
𝑜,𝑠

− 3

j𝑘𝑅3
𝑜,𝑠

)
𝑹𝑜,𝑠𝑹𝑜,𝑠

]
e+j𝑘𝑅𝑜,𝑠

𝑅2
𝑜,𝑠

)
(2.45)

[AF→H]H𝑜,𝑠 = −
1

4𝜋
[𝑰 ′]𝑜 𝒑′

𝑜
·
(
𝒑★

𝑠
× 𝑹𝑜,𝑠

) e+j𝑘𝑅𝑜,𝑠
𝑅3
𝑜,𝑠

(
−j𝑘𝑅𝑜,𝑠 + 1

)
. (2.46)

Due to the symmetry of the radiation operators with respect to the sources and observation dipoles,
i.e., reciprocity, the adjoint operator for current densities can in practice be implemented via its
forward operator. Simply call the forward operator with sources and observation dipoles swapped,
while setting all coefficients of the sources (which are the new observers) to unity. At the same
time, multiply the currents of the observation dipoles (which are the new sources) with the complex
conjugate of the vector for which the matrix-vector product is to be evaluated. Employ this product
as the excitation vector for the new sources. After calling the forward operator on this reciprocal
problem, finally take the complex conjugate of the result. In this way, only one operator has to
be implemented carefully and with high performance, while the adjoint can directly be computed
with this procedure at negligible additional cost.

2.2.5 Parallelization of Dipole Radiation Operators

Now that we have discussed the necessary equations for basic operators describing electromagnetic
radiation by dipoles of vanishing extent in free space, one can have a look at speeding up the
computation process. This section bares strong similarities with the publications [Paulus and Eibert
2018a,b], which deal with high-performance implementations of the forward and adjoint radiation
operators for Hertzian and Fitzgerald dipoles in free space.

The computation of a matrix-vector product is known to be an embarrassingly parallel problem,
i.e., its computation can be performed by independent workers in parallel, without the need
of significant communication or synchronization among the workers. Problems belonging to
this class are known to be almost ideally parallelizable, with negligible overhead, leading to an
almost linear performance improvement with increasing computational resources. With the end
of Moore’s law [Moore et al. 1975] for general purpose processors [Khan et al. 2018; Theis and
Wong 2017; Williams 2017], hardware developers have been focusing on special-purpose hardware,
e.g., graphics processing units (GPUs), for speeding up particular computation tasks, like machine
learning [Steinkraus et al. 2005] or ray tracing [Gunther et al. 2007; Popov et al. 2007]. At first
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2.2 Radiation by Current Densities

glance this development may seem reactionary, especially considering the technological advances
that humankind has made with general-purpose processors like central processing units (CPUs).
However, special-purpose processors are currently seen as one way of artificially extending the
validity of Moore’s lawÐachieving more computation powerÐ at the expense of the ease of
programmability and applicability. Still, hardware developers have put effort in making their
special-purpose hardware more accessible to general computation, and GPUs have found their
way into scientific computing via frameworks like CUDA [Nvidia Corporation 2020a] or recent
standards of OpenMP [OpenMP Architecture Review Board 2020]. Modern GPUs can perform an
incredible amount of simple floating-point operations per second. Their performance does not stem
from high clock rates, which has been the driving factor for improvements in the performance of
CPUs for many years, instead, they rely on an extremely parallel hardware architecture. Essentially,
GPUs have a large number of simple processing units, which resemble pruned processor cores in a
multi-core CPU. Since the complexity of these units is kept at a minimum, the amount of units on a
single GPU can be large. Consequently, GPUs are currently one of the fastest processing hardware
when it comes to easily parallelizable tasks with simple computational routines requiring rather
low precision, e.g., single- or half-precision arithmetics.

Looking back at the equations for the dipole radiation operators, one can see that the most
complicated functions involved are sine, cosine, square-roots and divisions. Without sacrificing
stability, all of these can be evaluated with reasonable precision, e.g., with 32-bit floating point
arithmetics. In contrast, more care has to be taken when implementing the equations of the spherical
vector wave functions. In total, the interactions between source dipoles and observation dipoles
can be evaluated independently, due to the embarrassingly parallel attribute of the matrix-vector
product and with rather low precision arithmeticsÐ nearly ideal conditions for the parallelization
on massively parallel hardware like GPUs.

Figure 2.1 shows computation times for the interactions from Fitzgerald to Hertzian dipoles versus
the number of interactions. For these results, the number of source dipoles and observation dipoles
was assumed to be equal, 𝑛 =𝑚. The computations were conducted on different hardware setups,
ranging from a quad-core CPU, over virtual CPU clusters hosted in the AmazonWeb Services (AWS)
cloud, to eight high-endGPUs in aworkstation. All computationswere performed in single precision,
with the fast-math option enabled and full optimization by the respective compiler. Experience
has shown that single-precision computations with the fast-math option2 provide four significant
digits of accuracy with respect to double-precision computations. For practical applications, this
is expected to be accurate enough. Whenever needed, double-precision computations can be
performed on GPUs, however, at the expense of drastically increased computational effort Ð at least
on consumer GPUs. For the CPU code, the Intel compiler 19.0 [Intel Corporation 2018] was used,
while the GPU code was compiled with Nvidia CUDA 8.0 [Nvidia Corporation 2017]. The results
for the DGX-1 [Nvidia Corporation 2016a] hardware were obtained on a Linux operating system,
while the rest was run on Windows systems. The operator call is evaluated on-the-fly, meaning that
the forward matrix is not constructed explicitly. Instead, only the geometry information belonging
to the sources and the observers is stored, resulting in a linear memory complexity of O(𝑛). The
computational complexity of the dipole-dipole evaluations remains to be O(𝑛2).

First things to observe in Fig. 2.1 are the superior performance of the GPUs for larger numbers of
interactions. At the same time, the communication overhead (memory transfers, etc.) increases

2The fast-math option attempts to make mathematical computations faster by allowing approximate operations and
breaking strict IEEE compliance.
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Fig. 2.1 Computation time of a single forward operator call versus the number of Fitzgerald to
Hertzian dipole interactions with 𝑛 = 𝑚. The black dashed line indicates the asymptotic
behavior of a computational complexity of O(𝑛2). Computations are run on various CPUs
and GPUs. Setups performing the computations on the CPU have the number of threads
mentioned within the brackets behind the labels. The setups with the Intel Xeon E5-2666, the
Intel Xeon Platinum 8275CL, the Intel Xeon E5-2686 and the AMD EPYC 7R32 were utilized
via the AWS cloud [Amazon Web Services Inc. n.d.]. The Nvidia GTX1080 GPUs [Nvidia
Corporation 2016b] were connected to the mainboard via single PCIe 2.0 lanes. The Nvidia
Tesla V100 SMX2 GPUs are part of a high-performance Nvidia DGX-1 workstation [Nvidia
Corporation 2016a].

with the number of GPUs used, so that the full benefit of the GPUs only comes into play with more
than 1 × 1012 interactions, where four Nvidia GTX10803 [Nvidia Corporation 2016b] are around
3.976 times faster than a single GPU. When comparing sequential and parallel computations on the
CPUs, similar and near-ideal speed increases were observed. At the time of writing, a quick test
revealed that an Nvidia RTX30904 [Nvidia Corporation 2020b], with the same code re-compiled
with CUDA 11.3 [Nvidia Corporation 2021] and exploiting the appropriate compute capabilities, is
about four times as fast as a single GTX1080.

When comparing the hardware in terms of the number of dipole-dipole interactions that can be
computed within 100 s, two Intel Xeon E5630 achieve 8.21 × 109, the Intel i7-2600 9.27 × 109, the
Intel i7-5820K 1.44 × 1010, two Intel Xeon X5690 2.49 × 1010, two Intel Xeon E5-2643 v3 3.02 × 1010,
an AMD Ryzen 9 3950X 5.31 × 1010, a single Nvidia GTX1080 6.73 × 1012, four Nvidia GTX1080
around 2.78× 1013 and eight Nvidia Tesla V100 SMX25 roughly 1.55× 1014 interactions, respectively.
On the AWS cloud, two Intel Xeon E5-2666 v3 can perform 4.00 × 1010, the platform based on the

3Consumer GPU with 2560 CDUA cores at 1657MHz [1797MHz] [boost].
4Consumer GPU with 10 496 CDUA cores at 1395MHz [1860MHz] [boost].
5Professional GPU with 5120 CDUA cores at 1455MHz [1530MHz] [boost].
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Intel Xeon Platinum 8275CL 5.87 × 1010, the Intel Xeon E5-2686 v4 platform 6.49 × 1010 and the
AMD EPYC 7R32 setup 7.54 × 1010 dipole-dipole interactions, respectively. This equals a maximum
speedup of around 2057 comparing the fastest GPU and the fastest CPU setup. This comparison
is not fair by any means, however, indicates that GPU systems may be faster compared to their
common CPU counterparts by several orders of magnitude. Of course, the application must be well
adapted to the GPU hardware architecture, which applies to the case of dipole-dipole interactions.

Lastly, it should be mentioned that also the numbers for a single GPU may be quite impressive.
A single Nvidia GTX1080, which is a consumer graphics cards, is able to compute the interactions
between more than 2 × 106 source dipoles to more than 2 × 106 observation dipoles within 100 s.
Assuming that roughly 1 × 102 of those operator calls may be necessary in a field transformation,
the computation time for problems with millions of unknowns is in the order of a few hours with
a single consumer GPU. It is expected that most problems occurring in industrial applications
can thus be handled within a reasonable time. Since the memory complexity is linear, larger
problems may also be tackled with the same code. As reported in [Paulus and Eibert 2018b], the
peak memory required for a field transformation with 𝑛 = 6 471 756 and𝑚 = 6 487 202 on each
GPU was around 464MB. Thus, limited memory on GPUs is not expected to be a bottleneck. Still,
when tackling problems with billions of unknowns, sophisticated techniques like the multi-level
fast-multipole method (MLFMM) [Chew et al. 2001] may be required, featuring complexities in terms
of memory and computation of O (𝑛 log𝑛). In contrast to the direct evaluation of dipole-dipole
interactions, parallelization of these complicated methods is not straightforward and is a topic of
active research. A well known implementation of radiation operators of various equivalent sources
based on the concept of the MLFMM is available in the framework of the fast irregular antenna field
transformation algorithm (FIAFTA) [Eibert et al. 2010, 2015; Eibert and Schmidt 2009]. In this thesis,
results of the FIAFTA are used as a reference for comparison with the results obtained with the
dipole-radiation operators. Due to its favorable computational complexity, the operators of FIAFTA
allow an elegant treatment of field transformation tasks with more than millions of unknowns.

Concluding RemarksÐDipole-Dipole Interactions The computation of dipole-dipole inter-
actions is a prime example of an 𝑛-body problem that is known to be embarrassingly parallel and
therefore easy to parallelize. Additionally, the equations for radiation by dipole current densities of
vanishing extent do not involve error-prone functions requiring high-precision arithmetic, as is the
case for spherical vector wave functions. Exploiting the vast low-precision, i.e., single-precision,
compute capabilities of modern GPUs makes the treatment of interactions between millions of
dipoles feasible and competitive to fast implementations via hierarchical algorithms.

2.2.6 Spatial Derivative of Dipole-Dipole Interactions

In the course of this dissertation, the spatial derivative of the forward operator belonging to
dipole-dipole interactions will be employed. Having full phase information available, this again
leads to a linear operator in terms of the excitation coefficients of the source dipoles, while a
nonlinear relationship will be obtained without any phase information. More details are provided
in Section 5.4.5. Here, the derivative of dipole-dipole interactions with respect to the locations of
the observation dipoles is determined. For convenience and simplicity of the equations, we limit
our investigations to spatial derivatives in Cartesian coordinates.
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We assume a representation of the 𝑜th observation and the 𝑠th source location as

𝒓 ′𝑜 =

[
[𝒙′]𝑜 [𝒚′]𝑜 [𝒛′]𝑜

]T
, 𝒓★𝑠 =

[
[𝒙★]𝑠 [𝒚★]𝑠 [𝒛★]𝑠

]T
(2.47)

and define the differentiated forward operators

A𝒓 ′
=

𝜕A

𝜕𝒓 ′
=



𝜕A

𝜕
[
[𝒙′]1 . . . [𝒙′]𝑚

]T
𝜕A

𝜕
[
[𝒚′]1 . . . [𝒚′]𝑚

]T
𝜕A

𝜕
[
[𝒛′]1 . . . [𝒛′]𝑚

]T



=



𝜕A

𝜕𝒙′
𝜕A

𝜕𝒚′

𝜕A

𝜕𝒛′


∈ C3𝑚 ×𝑛 = − 𝜕A

𝜕𝒓★
= −A𝒓★ . (2.48)

Starting from (2.40), we find

[
A𝒙′
H→H

]
𝑜,𝑠

=

[
𝜕AH→H

𝜕[𝒙′]𝑜

]
𝑜,𝑠

= − 1

4𝜋

√︂
𝜇

𝜀
[𝑰 ′]𝑜𝒑′

𝑜
·
(
𝒑★

𝑠
·
[(
I

(
j𝑘𝑅𝑜,𝑠 + 1 +

1

j𝑘𝑅𝑜,𝑠

)

−𝑹𝑜,𝑠𝑹𝑜,𝑠

(
j𝑘

𝑅𝑜,𝑠
+ 3

𝑅3
𝑜,𝑠

+ 3

j𝑘𝑅3
𝑜,𝑠

)) (
[𝒙′]𝑜 − [𝒙★]𝑠

)

·−e
−j𝑘𝑅𝑜,𝑠

𝑅4
𝑜,𝑠

(
j𝑘𝑅𝑜,𝑠 + 2

)
+

(
I

(
j𝑘 − 1

j𝑘𝑅2
𝑜,𝑠

) (
[𝒙′]𝑜 − [𝒙★]𝑠

)
𝑅𝑜,𝑠

−
𝜕𝑹𝑜,𝑠𝑹𝑜,𝑠

𝜕[𝒙′]𝑜

(
j𝑘

𝑅𝑜,𝑠
+ 3

𝑅2
𝑜,𝑠

+ 3

j𝑘𝑅3
𝑜,𝑠

)

+𝑹𝑜,𝑠𝑹𝑜,𝑠

(
j𝑘

𝑅2
𝑜,𝑠

+ 6

𝑅3
𝑜,𝑠

+ 9

j𝑘𝑅4
𝑜,𝑠

) (
[𝒙′]𝑜 − [𝒙★]𝑠

)
𝑅𝑜,𝑠

)
e−j𝑘𝑅𝑜,𝑠

𝑅2
𝑜,𝑠

] )
. (2.49)

Differentiation with respect to the [𝒚′]𝑜- or [𝒛′]𝑜-direction can be performed by replacing all
occurrences of [𝒙′]𝑜 accordingly and by utilizing

𝜕𝑹𝑜,𝑠𝑹𝑜,𝑠

𝜕[𝒙′]𝑜
=


2
(
[𝒙′]𝑜 − [𝒙★]𝑠

) (
[𝒚′]𝑜 − [𝒚★]𝑠

) (
[𝒛′]𝑜 − [𝒛★]𝑠

)(
[𝒚′]𝑜 − [𝒚★]𝑠

)
0 0(

[𝒛′]𝑜 − [𝒛★]𝑠
)

0 0


(2.50)

𝜕𝑹𝑜,𝑠𝑹𝑜,𝑠

𝜕[𝒚′]𝑜
=


0

(
[𝒙′]𝑜 − [𝒙★]𝑠

)
0(

[𝒙′]𝑜 − [𝒙★]𝑠
)

2
(
[𝒚′]𝑜 − [𝒚★]𝑠

) (
[𝒛′]𝑜 − [𝒛★]𝑠

)
0

(
[𝒛′]𝑜 − [𝒛★]𝑠

)
0


(2.51)

𝜕𝑹𝑜,𝑠𝑹𝑜,𝑠

𝜕[𝒛′]𝑜
=


0 0

(
[𝒙′]𝑜 − [𝒙★]𝑠

)
0 0

(
[𝒚′]𝑜 − [𝒚★]𝑠

)(
[𝒙′]𝑜 − [𝒙★]𝑠

) (
[𝒚′]𝑜 − [𝒚★]𝑠

)
2
(
[𝒛′]𝑜 − [𝒛★]𝑠

)

, (2.52)
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2.3 Uniqueness Theorem and Equivalence Principle

where the dyads are here represented in an abusive matrix notation. For clarification purposes,
consider


2 0 3

1 0 4

5 0 0


= 2 𝒆𝑥𝒆𝑥 + 3 𝒆𝑥𝒆𝑧 + 𝒆𝑦𝒆𝑥 + 4 𝒆𝑦𝒆𝑧 + 5 𝒆𝑧𝒆𝑥 (2.53)

with the unit vectors 𝒆𝑥/𝑦/𝑧 . Analogously, starting from (2.41), we can obtain

[
A𝒙′
F→H

]
𝑜,𝑠

=

[
𝜕AF→H

𝜕[𝒙′]𝑜

]
𝑜,𝑠

= − 1

4𝜋
[𝑰 ′]𝑜𝒑′

𝑜
·
(
𝒑★

𝑠
×

[
𝒆𝑥

(
j𝑘𝑅𝑜,𝑠 + 1

)

−𝑹𝑜,𝑠

(
[𝒙′]𝑜 − [𝒙★]𝑠

) (
1 +

(
j𝑘𝑅𝑜,𝑠 + 2

) (
j𝑘𝑅𝑜,𝑠 + 1

) ) ] e−j𝑘𝑅𝑜,𝑠
𝑅5
𝑜,𝑠

)
. (2.54)

For the sake of brevity, the adjoint operators are not explicitly stated here.

2.3 Uniqueness Theorem and Equivalence Principle

Throughout this thesis, we consider electromagnetic field transformations as the main application
for our phase retrieval algorithms. In order to motivate the validity and applicability of field
transformations in the first place, we require at least a basic understanding of the underlying
electromagnetic theorems. The intention of this section is not to replace the comprehensive range
of profound books on this topic, but rather to give a brief summary of the essentials and to justify
the formulations and procedures afterwards. For more details, the interested reader is referred to
the excellent literature in this field, e.g., [Harrington 2001; Jin 2015].

We start by introducing the idea of the uniqueness theorem, which helps us to develop intuition
for the equivalence principle. The latter will be the main motivation and justification for field
transformation algorithms discussed in this thesis. Our line of thought is in close agreement with
the procedure in [Jin 2015].

2.3.1 The Uniqueness Theorem

Are electromagnetic sources and fields uniquely related via Maxwell’s equations? What do you need
to know about the fields to determine the corresponding sources? The uniqueness theorem answers
these questions and allows us to draw meaningful conclusions, yielding an intuitive explanation
for the yet to follow equivalence principle.

Consider the general setup in Fig. 2.2. An arbitrarily shaped volume 𝑉 with material parameters
𝜀, 𝜇 and the conductivity 𝜎 , its surface 𝜕𝑉 and some interior volume current densities 𝑱

𝑉
and 𝑴𝑉

is drawn. The unit-normal vector 𝒏 is orthogonal on 𝜕𝑉 and is pointing towards the exterior of 𝑉 .
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𝜀 (𝒓), 𝜇 (𝒓), 𝜎 (𝒓)

𝑱
V
(𝒓) , 𝑴

V
(𝒓)

𝒏 𝜕𝑉 𝑉

Fig. 2.2 Arbitrarily shaped volume 𝑉 with material properties, its surface 𝜕𝑉 and interior electric
and magnetic current densities 𝑱

𝑉
and 𝑴𝑉 . The unit-normal vector 𝒏 points into the

exterior, which may feature unspecified material properties.

For the sake of curiosity, we will now assume that the fields caused by the current densities are
not unique, i.e., we assume that the sources generate two pairs of fields, namely

∇ × 𝑬1 = −j𝜔𝜇𝑯 1 −𝑴𝑉 (2.55)

∇ × 𝑯 1 = j𝜔𝜀𝑬1 + 𝜎𝑬1 + 𝑱𝑉 (2.56)

and

∇ × 𝑬2 = −j𝜔𝜇𝑯 2 −𝑴𝑉 (2.57)

∇ × 𝑯 2 = j𝜔𝜀𝑬2 + 𝜎𝑬2 + 𝑱𝑉 . (2.58)

Subtracting the second set of equations from the first one, the current densities cancel and we
obtain

∇ × 𝑬𝛿 = −j𝜔𝜇𝑯𝛿 (2.59)

∇ × 𝑯𝛿 = j𝜔𝜀𝑬𝛿 + 𝜎𝑬𝛿 , (2.60)

with 𝑬𝛿 = 𝑬1 − 𝑬2 and 𝑯𝛿 = 𝑯 1 − 𝑯 2. In case the field is unique, the difference between the fields
has to vanish everywhere in space.

We continue to investigate the difference in the fields by exploiting that for vectors 𝒂, 𝒃 and 𝒄 , it
holds that 𝒂 · (𝒃 × 𝒄) = 𝒃 · (𝒄 × 𝒂) = 𝒄 · (𝒂 × 𝒃). Applied to the problem at hand, this yields

2∇ ·
(
𝑬𝛿 × 𝑯𝛿

)
= 𝑯𝛿 · ∇ × 𝑬𝛿 − 𝑬𝛿 · ∇ × 𝑯𝛿

= −j𝜔𝜇𝑯𝛿 · 𝑯𝛿 − (𝜎 − j𝜔𝜀) 𝑬𝛿 · 𝑬𝛿

= −j𝜔𝜇
��𝑯𝛿

��2 + (j𝜔𝜀 − 𝜎) ��𝑬𝛿

��2 . (2.61)
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2.3 Uniqueness Theorem and Equivalence Principle

In order to evaluate the differences everywhere in space, we integrate over the complete volume
and apply Gauss’s theorem [Katz 1979; Zangwill 2013]

˚

𝑉

2∇ ·
(
𝑬𝛿 × 𝑯𝛿

)
d𝑉 =

‹

𝜕𝑉

2
(
𝑬𝛿 × 𝑯𝛿

)
· d𝝏𝑽 (2.62)

=

˚

𝑉

[
−j𝜔𝜇

��𝑯𝛿

��2 + (j𝜔𝜀 − 𝜎) ��𝑬𝛿

��2] d𝑉 . (2.63)

Since d𝝏𝑽 = 𝒏d𝜕𝑉 , we conclude that the surface integral in (2.62) vanishes whenever either
𝒏 × 𝑬𝛿 = 0 everywhere on 𝜕𝑉 , 𝒏 × 𝑯𝛿 = 0 everywhere on 𝜕𝑉 or both in connection, such that
everywhere on 𝜕𝑉 either of the two conditions is true.

As a first conclusion, we see that whenever two sets of sources contained in a volume 𝑉 exhibit
the same tangential fields on the surface of the volume 𝜕𝑉 , their fields everywhere in the exterior
space are identical. In reverse, whenever the tangential fields on a surface enclosing the source
of the radiation are known, then the field everywhere in space is known. Especially the latter
interpretation will become helpful when arriving at the equivalence principle. To be more precise,
it is sufficient to either know the tangential electric or tangential magnetic field on the complete
closed surface. Alternatively, a combination of both is possible, as long as tangential information
on the complete surface is given. What remains to be shown is that indeed 𝑬𝛿 and 𝑯𝛿 are zero.
For example inserting that 𝒏 × 𝑬𝛿 = 0 everywhere on 𝜕𝑉 , we arrive at

˚

𝑉

[
−j𝜔𝜇

��𝑯𝛿

��2 + (j𝜔𝜀 − 𝜎) ��𝑬𝛿

��2] d𝑉 = 0. (2.64)

When assuming a complex-valued permittivity and permeability according to 𝜀 = 𝜀′ − j𝜀′′ and
𝜇 = 𝜇′ − j𝜇′′ with 𝜀′′, 𝜇′′ ∈ R+0 , we can split the integrand into its real and imaginary part [Jin 2015]

˚

𝑉

[
𝜔𝜇′′

��𝑯𝛿

��2 + (𝜔𝜀′′ + 𝜎) ��𝑬𝛿

��2] d𝑉 = 0 (2.65)
˚

𝑉

[
−𝜔𝜇′

��𝑯𝛿

��2 + 𝜔𝜀′ ��𝑬𝛿

��2] d𝑉 = 0. (2.66)

From (2.65) we can immediately conclude that the fields are unique as long as 𝜔 ≠ 0 and there are
losses (𝜀′′, 𝜇′′ ≠ 0). According to [Jin 2015], the same conclusion holds true when both loss and
frequency approach zero, leading to a lossless static case.

Concluding RemarksÐUniqueness Theorem Whenever two sources enclosed in a volume 𝑉
generate the same tangential fields on the enclosing surface 𝜕𝑉 , their fields are identical everywhere
outside of 𝑉 . Either the tangential electric, the tangential magnetic or a combination of both fields
needs to be identical on the whole closed surface for this to hold true. This is commonly referred to
as the uniqueness theorem.

2.3.2 The Equivalence Theorem

As we have seen from the uniqueness theorem, the field distribution outside a source region is
uniquely determined by the tangential field components on the surface of the source. Consequently,
measuring the tangential fields of a radiating object on an enclosing surface yields information
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𝜀, 𝜇, 𝜎
𝑱
𝑉
, 𝑴

𝑉

𝜕𝑉
𝑉

𝐴

𝜀0, 𝜇0

𝑬
tan

, 𝑯
tan

𝒏

(a)

𝜀0, 𝜇0
𝑱
𝜕𝑉

, 𝑴
𝜕𝑉

𝜕𝑉
𝑉

𝐴

𝜀0, 𝜇0

𝑬
tan

, 𝑯
tan

𝒏

(b)

Fig. 2.3 Illustration of a common measurement principle of a radiating structure enclosed in the
volume 𝑉 with surface 𝜕𝑉 , embedded in free space. The radiator may feature complicated
material properties and exhibits volume current densities 𝑱

𝑉
(𝒓) and 𝑴𝑉 (𝒓) causing the

tangential fields 𝑬 tan and 𝑯 tan on the closed surface 𝐴. (a) The original problem with a
possibly inhomogeneous material distribution and volumetric current densities. Utilizing
the equivalence theorem, the problem can be recast as indicated in (b), only featuring
equivalent surface current densities on 𝜕𝑉 in homogeneous free space.

completely describing the field everywhere in the exterior, including the FF. The general idea of
such a measurement is sketched in Fig. 2.3(a). The radiating structure may in general consist of
complicated material distributions and feature volumetric current densities causing the radiation of
electromagnetic fields. Based on the measured tangential fields, one would like to compute field
values at arbitrary locations in space. However, tackling this problem in the form seen in Fig. 2.3(a)
leads to a significant problem. Even if we already knew the volume current densities of the radiator,
the calculation of the fields for potentially complex material distributions would require knowledge
of the corresponding Green’s function. On its own, this is a task of severe difficulty since analytic
equations for the Green’s function do only exist for certain canonical geometries and material
distributions [Tai 1994]. Instead of directly working with Fig. 2.3(a), we would like to treat an
equivalent problem of the form seen in Fig. 2.3(b). In particular, this equivalent problem does feature
homogeneous material properties, i.e., vacuum, and the original volumetric current densities have
been replaced by surface current densities on the boundary 𝜕𝑉 of the source region. This would
allow us to utilize the equations derived in Section 2.2 for the radiation in free space. As we will
see in the following, the equivalence theorem enables us to represent the problem in Fig. 2.3(a) as
the simpler problem in Fig. 2.3(b).

Note that there are at least two forms of the equivalence theorem often found in literature, the
surface equivalence theorem and the volume equivalence theorem. All problems discussed in this
thesis can be treated with the surface version of the equivalence theorem. Therefore, the volume
equivalence is not treated further here.

We start by recalling the conditions for the electric and magnetic field at material inhomo-
geneitiesÐ exemplified in Fig. 2.4. The fields in the first and second medium are 𝑬1, 𝑯 1 and 𝑬2,
𝑯 2, respectively, and the unit-normal vector 𝒏 is pointing into the second medium. Whenever the
tangential components of the fields exhibit a jump at the boundary, i.e., whenever the tangential
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𝜀1, 𝜇1, 𝜎1

𝑬
1
, 𝑯

1

𝜀2, 𝜇2, 𝜎2

𝑬
2
, 𝑯

2

𝒏

𝜕𝑉

Fig. 2.4 Boundary 𝜕𝑉 between two media. At the boundary, electric and magnetic surface current
densities account for differences in the tangential components of the fields 𝑬1/2 and 𝑯 1/2.

components of the fields at the boundary are not equal on both sides, surface current densities on
the boundary according to [Jin 2015]

𝑱
𝜕𝑉

= 𝒏 ×
(
𝑯 2 − 𝑯 1

)
(2.67)

𝑴𝜕𝑉 = −𝒏 ×
(
𝑬2 − 𝑬1

)
(2.68)

are nonzero.

Now let us apply the boundary conditions to the problem in Fig. 2.5(a). Consider some radiating
object with volume current densities 𝑱

1
and 𝑴1 within its volume 𝑉 generating the fields 𝑬1 and

𝑯 1 inside𝑉 and in the exterior. As mentioned previously, the presence of material inhomogeneities
does not allow for the direct utilization of the Green’s function of free space. As indicated in
Fig. 2.5(b), when replacing the original sources with the sources 𝑱

2
and 𝑴2 while at the same time

introducing the surface current densities

𝑱 ′
𝜕𝑉

= 𝒏 ×
(
𝑯 1 − 𝑯 2

)
(2.69)

𝑴 ′𝜕𝑉 = −𝒏 ×
(
𝑬1 − 𝑬2

)
, (2.70)

we can conserve the fields in the exterior and replace the fields within 𝑉 by those generated by
the new interior sources. Since we are not imposing any requirements on the new sources 𝑱

2
, 𝑴2

we can as well set them to zero and obtain the case depicted in Fig. 2.5(c). Knowing that interior
fields are zero, we may arbitrarily modify the material inside of 𝑉 , e.g., set it to the material of the
exterior, here, vacuum. As a result, we obtain the model depicted in Fig. 2.5(d) where the complete
space is homogeneous and the radiation outside of 𝑉 is modeled by the equivalent surface current
densities 𝑱

𝜕𝑉
and 𝑴𝜕𝑉 , defined according to (2.69) and (2.70) with 𝑬2 = 𝑯 2 = 0. The problem in

Fig. 2.5(d) is effectively equivalent to the problem in Fig. 2.5(a), according to the equivalence principle.
Throughout this thesis we also refer to this as the Huygens’ principle or the Huygens’ equivalence
principle. As we have just observed, the (surface) equivalence principle allows us to describe the
radiation outside the source region filled with arbitrary material by equivalent surface current
densities placed on the surface of the source volume and radiating in free space. These equivalent
surface current densities can then be replaced by another, suitable representation of the fields, e.g.,
by an expansion into spherical vector wave functions of adequate order. Consequently, problems of
the form depicted in Fig. 2.5(a), where only the fields in the exterior of the source volume are of
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2 Radiation of Electromagnetic Sources in Free Space

interest, can be tackled with the radiation operators for sources in free space. The computational
effort is drastically reducedÐnot only can we rely on simple surface current densities instead of
volume current densities, but also we do not have to determine the specific Green’s function for the
problem at hand.

Looking back at the original problem of a common field transformation task depicted in Fig. 2.3(a),
it is now clear that the (simpler) problem in Fig. 2.3(b) can be solved instead. The tangential fields,
𝑬 tan and 𝑯 tan, are measured outside the original source region and the equivalence principle for the
exterior can be applied, leading to the setup in Fig. 2.3(b). While the derivation of the equivalence
required electric and magnetic surface current densities, in practice an arbitrary choice of currents,
e.g., solely electric or magnetic, or a combination, may be employed as long as the DoFs of the
tangential fields can be reproduced accurately. Dependent on the equivalent representation, the
resulting forward operators will feature varying condition numbers and may or may not be well
suited for a particular problem. See [Kornprobst et al. 2021a] for a detailed investigation on the
choice and impact of equivalent sources on the performance of NFFFTs.

Concluding RemarksÐSurface Equivalence Theorem The radiation caused by sources
within a certain volume𝑉 Ðpotentially featuring an inhomogeneous material distributionÐ can be
reproduced by surface current densities located on the boundary 𝛿𝑉 of this volume and radiating in
homogeneous free space. In the exterior region, the fields of both sources are then identical. This
equivalence is ensured by the surface equivalence theorem.
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Fig. 2.5 Visualization of the surface equivalence theorem. The original problem in (a) with additional
surface current densities and modified interior sources in (b). By setting the freely choosable
interior sources to zero in (c), the interior becomes free of any fields and the material can
be modified to equal the material of the exterior in (d). Thus (d) is equivalent to (a) with
respect to the exterior fields, which are now generated by the equivalent surface current
densities, 𝑱

𝜕𝑉
= 𝒏 × 𝑯 1 and 𝑴𝜕𝑉 = −𝒏 × 𝑬1, evaluated on the boundary 𝜕𝑉 .
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3. Optimization Theory, Wirtinger Calculus

The treatment of electromagnetic inverse problems involving nonlinearity, such as phase retrieval, is
not possible without a decent knowledge of optimization theory. The reader is highly recommended
to check the excellent and extensive literature in this field, e.g., [Boyd and Vandenberghe 2018;
Nocedal and Wright 2006] for obtaining the basics of nonlinear and nonconvex optimization. Here,
only the essential principles needed to understand the algorithms discussed later in this thesis
are introduced in a condensed manner. This mainly involves the local minimization of nonlinear,
nonconvex, real-valued functions and functionals of multivariate, complex-valued quantities. By
splitting complex numbers into real and imaginary parts, the principles of real-valued optimization
could be applied, however, due to its elegance and generality, the Wirtinger calculus [Brandwood
1983; Li and Adalı 2008; van den Bos 1994; Wirtinger 1927] is here employed to directly work with
complex-valued quantities. If desired, the equations derived in terms of the Wirtinger calculus can,
at any time, be transferred to the representation in terms of real and imaginary parts. Furthermore,
it is assumed that the functions involved in the optimization task are sufficiently smooth, so that the
machinery of smooth optimization and differentiation can be applied. However, exceptions such as
the magnitude operation, which is nonsmooth at the origin, may be treated via the generalization
to weak derivatives according to the Clarke subderivative [Borwein et al. 2006; Clarke 1989].

After laying a foundation with the basics of real-valued optimization in Section 3.1, the principle
of Wirtinger derivatives and complex-valued optimization is introduced in Section 3.2. For reasons
of simplicity and compactness, the univariate case is utilized in proofs and the results are afterwards
extended to the multivariate case. With the mathematical tools in our hands, Section 3.3 elaborates
on iterative, local, nonlinear, nonconvex optimization, where the concepts of the descent direction
and step length are introduced. In particular, a variety of conjugate gradient methods as well as a
memory-limited quasi-Newton method for computing the descent direction are discussed. Practical
algorithms and rules for line search are recapitulated before a general optimization framework
is proposed in Section 3.4. This framework supports the minimization and thus implementation
of a manifold of field transformation algorithms which will be explored in the remainder of this
dissertation.

3.1 Taylor’s Theorem and Local Minimization for Real-Valued

Variables

Let us start with the fact that a complex-valued function of real arguments, 𝑡 : R→ C, is continu-
ously real-differentiable in R if

𝑡 ′ (𝑥) = lim
𝛿→0

𝑡 (𝑥 + 𝛿) − 𝑡 (𝑥)
𝛿

(3.1)

exists ∀𝑥 with 𝛿 ∈ R and is independent from the direction of 𝛿 approaching zero.
Now consider an at least twice continuously real-differentiable scalar function of real-valued

arguments 𝑔 : R→ R. According to Taylor’s theorem [Nocedal and Wright 2006],

𝑔 (𝑥 + 𝛿) = 𝑔 (𝑥) + 𝑔′ (𝑥) 𝛿 + 1

2
𝑔′′ (𝑥) 𝛿2 + O

(
𝛿3

)
(3.2)
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provides an approximation of the function value at a location (𝑥 + 𝛿) ∈ R via first- and second-
order derivatives at the location 𝑥 , while higher-order terms in O

(
𝛿3

)
are neglected. We call the

representation in (3.2) the Taylor series of 𝑔 (𝑥) at the point (𝑥 + 𝛿).

Analogously, one can consider twice continuously real-differentiable scalar functions, 𝑝 : R𝑛 × 1 →
R, of multivariate real-valued arguments

𝒙 =

[
[𝒙]1 . . . [𝒙]𝑛

]T ∈ R𝑛 × 1, (3.3)

where the notation R𝑛 × 1 indicates a column vector with 𝑛 rows. Instead of the scalar first- and
second-order derivatives, we define their multivariate equivalent, the gradient and the Hessian
operator [Nocedal and Wright 2006], as

∇𝒙 =
𝜕

𝜕𝒙
=



𝜕

𝜕[𝒙]1
...
𝜕

𝜕[𝒙]𝑛



T

∈ R1 ×𝑛 and ∇2𝒙 =
𝜕

𝜕𝒙

(
𝜕

𝜕𝒙

)T
=



𝜕2

𝜕[𝒙]21
· · · 𝜕2

𝜕[𝒙]1 [𝒙]𝑛
...

. . .
...

𝜕2

𝜕[𝒙]𝑛 [𝒙]1
· · · 𝜕2

𝜕[𝒙]2𝑛


∈ R𝑛 ×𝑛 .

(3.4)

Whenever the variable of differentiation is evident from the context, the respective subscript of the
gradient and Hessian operator is suppressed for brevity. The multivariate equivalent to (3.2) thus
reads as

𝑝 (𝒙 + 𝜹) = 𝑝 (𝒙) + ∇𝑝 (𝒙) 𝜹 + 1

2
𝜹T∇2𝑝 (𝒙) 𝜹 + O

(
𝜹3

)
. (3.5)

The notation O
(
𝜹3

)
includes terms which scale with third or higher order when 𝜹 is modified.

A widespread task is to determine a (local) minimum of a specific cost function. Given the above
multivariate formulation with the cost function 𝑝 , we can show that any local minimizer 𝒙★ requires
that

∇𝑝
(
𝒙★

)
= 0. (3.6)

(first-order necessary optimality condition)

Similar to the idea in [Nocedal andWright 2006], this can be shown by contradiction, when assuming
∇𝑝 (𝒙★) ≠ 0. Then we can arbitrarily pick 𝜹 = −∇𝑝 (𝒙★)T and find

∇𝑝
(
𝒙★

)
𝜹 = −∇𝑝

(
𝒙★

) (
∇𝑝

(
𝒙★

)T)
= −



∇𝑝 (
𝒙★

)

2
2
< 0. (3.7)

Inserting (3.7) in (3.5) and neglecting second- and higher-order terms, we find

𝑝
(
𝒙★ − ∇𝑝

(
𝒙★

)T)
= 𝑝

(
𝒙★

)
−



∇𝑝 (
𝒙★

)

2
2
⇒ 𝑝

(
𝒙★ − ∇𝑝

(
𝒙★

)T)
< 𝑝

(
𝒙★

)
, (3.8)

which contradicts the assumption that 𝒙★ is a local minimizer. By similar considerations, one can
show that the Hessian matrix is positive semidefinite at any local minimizer 𝒙★ of the cost function
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𝑝 , i.e.,

∇2𝑝
(
𝒙★

)
⪰ 0. (3.9)

(second-order necessary optimality condition)

If more precisely, the Hessian is positive definite, i.e.,

∇2𝑝
(
𝒙★

)
≻ 0, (3.10)

(second-order sufficient optimality condition)

then 𝒙★ is guaranteed to be a local minimizer [Nocedal and Wright 2006].

While local minimizers automatically correspond to globally optimal points in the case of convex
cost functions, they can correspond to highly inaccurate solutions for nonconvex optimization
tasks. However, the problem of determining the globally optimal solution of a nonconvex cost
function belongs to the class of non-deterministic polynomial-time hard (NP-hard) problems [Bovet
and Crescenzi 1993]. Thus, it can be assumed that no algorithm exists which can find the globally
optimal solution of a nonconvex optimization problem in the multivariate case of 𝑛 variables
within łpolynomial timež. In other words, when increasing the number of unknowns 𝑛, the relation
between 𝑛 and the required computation time can not be expressed in terms of a polynomial of
arbitrary order in 𝑛. Global optimization techniques including genetic algorithms [Davis 1990],
particle swarm optimization [Clerc 2006; Kennedy and Eberhart 1995; Poli et al. 2007] or simulated
annealing [Davis 1990; Hwang 1988] applied to nonconvex cost functions can only achieve a
globally optimal solution within reasonable time for small problems. Difficulties are also caused by
the so-called curse of dimensionality, which states that the number of local stationary points, i.e.,
points where first-order derivatives are zero, increases exponentially with the problem dimensions.
In practice, a local optimizer applied to a nonconvex problem may thus not only get stuck in local
minima, but may also experience slow convergence in the proximity of any stationary point, e.g., a
saddle point. From a numerical point of view, the convergence rate can drop so drastically that a
saddle point can not be distinguished from a local minimum with finite precision arithmetic. In
order to escape from certain local stationary points, techniques like numerical continuation [Fadili
et al. 2004; Mobahi and Fisher III 2015; Trzasko and Manduca 2009; Xiao and Zhang 2012], also
referred to as majorization-minimization [Qiu et al. 2016; Qiu and Palomar 2017; Sun et al. 2016],
have been developed.

When encountering high-dimensional nonconvex problems, e.g., phase retrieval, a first and
straightforward way is to apply local optimization techniques. Although they can not be guaranteed
to lead to the globally optimal solution, in practice they often provide adequate results at, compared
to an alternative global search, negligible computational costs.

3.2 Wirtinger Derivatives and Complex-Valued Optimization

In the course of optimization problems defined in this work, the concept of multivariate derivatives
with respect to complex-valued variables, e.g., in the form of a properly defined gradient, is required.
Therefore, building on the results obtained for smooth functions of real-valued arguments, the
basics for complex differentiation are introducedÐ again starting with the univariate case and then
generalizing to multivariate definitions.
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3 Optimization Theory, Wirtinger Calculus

Consider a scalar complex number 𝑧 = (𝑥 + j𝑦) ∈ C with the real-valued scalars 𝑥,𝑦 ∈ R. We
define a complex-valued function of complex arguments, 𝑔 : C → C, in terms of its real and
imaginary parts 𝑢 (𝑥,𝑦, ) and 𝑣 (𝑥,𝑦), respectively, as 𝑔(𝑧) = 𝑢 (𝑥,𝑦) + j𝑣 (𝑥,𝑦). For the complex
derivative

𝑔′ (𝑧) = lim
Δ𝑧→0

𝑔 (𝑧 + Δ𝑧) − 𝑔 (𝑧)
Δ𝑧

(3.11)

to be well-defined, it has to be independent of the direction of Δ𝑧 approaching zero. This is the
case whenever the Cauchy-Riemann conditions

𝜕𝑢

𝜕𝑥
=

𝜕𝑣

𝜕𝑦
and

𝜕𝑣

𝜕𝑥
= − 𝜕𝑢

𝜕𝑦
(3.12)

are fulfilled. Equivalently, both functions 𝑢 (𝑥,𝑦) and 𝑣 (𝑥,𝑦) have to satisfy the Laplace equation,
i.e.,

Δ𝑢 =
𝜕2𝑢

𝜕𝑥2
+ 𝜕2𝑢

𝜕𝑦2
= 0 and Δ𝑣 =

𝜕2𝑣

𝜕𝑥2
+ 𝜕2𝑣

𝜕𝑦2
= 0. (3.13)

The function 𝑔 (𝑧) is then said to be holomorphic or complex-analytic and𝑢 and 𝑣 are called harmonic.

As a direct consequence, a real-valued function of complex-valued arguments, 𝑓 : C→ R, can
only be harmonic in case it is constant, since

𝑓 (𝑧) = 𝑢 (𝑥,𝑦) → 𝜕𝑢

𝜕𝑥

!
=

𝜕𝑣

𝜕𝑦
= 0 ⇒ 𝜕𝑢

𝜕𝑥

!
= 0. (3.14)

Thus, 𝑓 (𝑧) = |𝑧 | =
√︁
𝑥2 + 𝑦2 or 𝑓 (𝑧) = |𝑧 |2 = 𝑥2 + 𝑦2 are not complex-differentiable in the classical

sense, so that a gradient can not be defined accordingly, which is, however, necessary to optimize 𝑓
with respect to 𝑧.

An extension to the above theory, allowing to define a gradient for non-holomorphic func-
tions, was first silently employed by Poincare [Poincaré 1899] and investigated in detail by
Wirtinger [Wirtinger 1927], after whom the Wirtinger calculus was named. The same princi-
ples are known under the term of CR-calculus in English literature [Brandwood 1983; Li and Adalı
2008; van den Bos 1994]. We start by observing the simple relationships[

𝑧

𝑧

]
=

[
1 j

1 −j

]
︸   ︷︷   ︸

J

[
𝑥

𝑦

]
and

[
𝑥

𝑦

]
=
1

2

[
1 1

−j j

]
︸      ︷︷      ︸
J−1= 1

2
JH

[
𝑧

𝑧

]
(3.15)

connecting the complex scalar 𝑧 and its complex conjugate 𝑧 to their real and imaginary parts 𝑥
and 𝑦 via the matrix J. It is noteworthy that one can write 𝑔(𝑧) = 𝑔(𝑥,𝑦) = 𝑔(𝑧, 𝑧), i.e., 𝑔 can be
interpreted as a function of the two independent variables 𝑥 and 𝑦 or 𝑧 and 𝑧, respectively. For the
sake of brevity, we here do not explicitly distinguish between 𝑔, 𝑔 and 𝑔, instead, silently accept
that 𝑔 may depend on 𝑧, 𝑥 and 𝑦, and 𝑧 and 𝑧. Next one can determine [Remmert 1991, p. 65]

𝜕𝑥 (𝑧, 𝑧)
𝜕𝑧

=
𝜕𝑥 (𝑧, 𝑧)

𝜕𝑧
=
1

2
and

𝜕𝑦 (𝑧, 𝑧)
𝜕𝑧

=
−j
2
,
𝜕𝑦 (𝑧, 𝑧)

𝜕𝑧
=

j

2
, (3.16)
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where again 𝑧 and 𝑧 were considered as independent variables. Assuming that 𝑓 is real-differentiable
with respect to 𝑥,𝑦, 𝑧 and 𝑧 when treating these quantities as real-valued scalars, we can find

𝜕𝑔 (𝑥 (𝑧, 𝑧) , 𝑦 (𝑧, 𝑧))
𝜕𝑧

=
𝜕𝑔

𝜕𝑥

𝜕𝑥

𝜕𝑧
+ 𝜕𝑔

𝜕𝑦

𝜕𝑦

𝜕𝑧
=
1

2

(
𝜕𝑔

𝜕𝑥
− j 𝜕𝑔

𝜕𝑦

)
(3.17)

𝜕𝑔 (𝑥 (𝑧, 𝑧) , 𝑦 (𝑧, 𝑧))
𝜕𝑧

=
𝜕𝑔

𝜕𝑥

𝜕𝑥

𝜕𝑧
+ 𝜕𝑔

𝜕𝑦

𝜕𝑦

𝜕𝑧
=
1

2

(
𝜕𝑔

𝜕𝑥
+ j 𝜕𝑔

𝜕𝑦

)
, (3.18)

or equivalently

C
1 × 2 ∋



𝜕

𝜕𝑧
𝜕

𝜕𝑧



T

=



𝜕

𝜕𝑥
𝜕

𝜕𝑦



T

1

2
J−1 and



𝜕

𝜕𝑥
𝜕

𝜕𝑦



T

=



𝜕

𝜕𝑧
𝜕

𝜕𝑧



T

J. (3.19)

Compliance with the Cauchy-Riemann equations can now be written in terms of the newly intro-
duced derivatives, namely in the form of 𝜕𝑔

𝜕𝑧
= 0.

Let us return to our main point of interest, namely to determine a Taylor series representation for
functions of complex-valued variables with appropriately defined gradient and Hessian operators.
Therefore, consider an univariate, complex-valued and at least twice continuously real-differentiable
function 𝑓 ★ : C→ R. Interpreting the scalar complex argument 𝑧 = 𝑥 + j𝑦 as a two-dimensional
real-valued vector, one can write 𝑓 ★ as a multivariate function 𝑓 : R2 × 1 → C of two real-valued
arguments and determine its Taylor series analogous to (3.5) in the form of

𝑓 (𝒓 + Δ𝒓) = 𝑓 (𝒓) + ∇𝑓 (𝒓) Δ𝒓 + 1

2
Δ𝒓T∇2 𝑓 (𝒓) Δ𝒓 + O

(
Δ𝒓3

)
(3.20)

with

𝒓 =
[
𝑥 𝑦

]T
, Δ𝒓 =

[
Δ𝑥 Δ𝑦

]T
,

𝜕

𝜕𝒓
=

[
𝜕

𝜕𝑥

𝜕

𝜕𝑦

]
. (3.21)

In passing, we observe that the first-order necessary optimality condition at a local stationary point
𝒓★ requires [Brandwood 1983]

∇𝑓
(
𝒓★

) !
= 0T ⇒

[
𝜕𝑓

(
𝒓★

)
𝜕𝑥

𝜕𝑓
(
𝒓★

)
𝜕𝑦

]
!
=

[
0 0

]
=

[
𝜕𝑓

(
𝒓★

)
𝜕𝑧

𝜕𝑓
(
𝒓★

)
𝜕𝑧

] [
1 j

1 −j

]
(3.22)

⇒
[
𝜕𝑓

(
𝒓★

)
𝜕𝑧

𝜕𝑓
(
𝒓★

)
𝜕𝑧

]
!
=

[
0 0

]
. (3.23)

Note that this slightly abusive notation implies that 𝑓 can again be interpreted as function of 𝑧
and 𝑧 via (3.15), just like 𝑓 ★. This is exactly the core idea behind the Wirtinger calculus: Instead of
working with real and imaginary parts, the complex-valued numbers and their complex conjugate
are considered independent quantities. As will be seen in a moment, this alternative dependency is
especially beneficial when working with real-valued cost functions. What remains to be done now
is to rewrite (3.20) in terms of 𝑧 and 𝑧 instead of 𝑥 and 𝑦.
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With the introduction of the conjugate coordinates 𝒄 with

𝒄 =
[
𝑧 𝑧

]T
, Δ𝒄 =

[
Δ𝑧 Δ𝑧

]T
,

𝜕

𝜕𝒄
=

[ 𝜕
𝜕𝑧

𝜕

𝜕𝑧

]
(3.24)

and utilizing (3.15) and (3.19), we can find

𝜕

𝜕𝒓
Δ𝒓 =

𝜕

𝜕𝒄
JJ−1Δ𝒄 =

𝜕

𝜕𝒄
Δ𝒄 (3.25)

and

1

2
Δ𝒓T

𝜕

𝜕𝒓

(
𝜕

𝜕𝒓

)T
Δ𝒓 =

1

2
Δ𝒓H

𝜕

𝜕𝒓

(
𝜕

𝜕𝒓

)H
Δ𝒓 =

1

2

(
J−1Δ𝒄

)H 𝜕

𝜕𝒓

(
JH

(
𝜕

𝜕𝒄

)H)
J−1Δ𝒄

=
1

2
Δ𝒄HJ−1,H

𝜕

𝜕𝒄

(
JH

(
𝜕

𝜕𝒄

)H)
JJ−1Δ𝒄

=
1

2
Δ𝒄H

𝜕

𝜕𝒄

(
𝜕

𝜕𝒄

)H
Δ𝒄 . (3.26)

In agreement with [Kreutz-Delgado 2009], one can define the corresponding (multivariate) gradient
and Hessian operators as

∇𝒄 =

[ 𝜕

𝜕𝒛

𝜕

𝜕𝒛

]
=

[
𝜕

𝜕[𝒛]1
· · · 𝜕

𝜕[𝒛]𝑛
𝜕

𝜕[𝒛]1
· · · 𝜕

𝜕[𝒛]𝑛

]
∈ C1 × 2𝑛 (3.27)

∇2𝒄 =
𝜕

𝜕𝒄

(
𝜕

𝜕𝒄

)H
=

[
∇
2
𝒛𝒛 ∇

2
𝒛𝒛

∇
2
𝒛𝒛

∇
2
𝒛𝒛

]
∈ C2𝑛 × 2𝑛 (3.28)

=



𝜕

𝜕[𝒛 ]1

(
𝜕

𝜕[𝒛 ]1

)H
· · · 𝜕

𝜕[𝒛 ]𝑛

(
𝜕

𝜕[𝒛 ]1

)H
𝜕

𝜕[𝒛 ]1

(
𝜕

𝜕[𝒛 ]1

)H
· · · 𝜕

𝜕[𝒛 ]𝑛

(
𝜕

𝜕[𝒛 ]1

)H
.
.
.

. . .
.
.
.

.

.

.
. . .

.

.

.

𝜕

𝜕[𝒛 ]1

(
𝜕

𝜕[𝒛 ]𝑛

)H
· · · 𝜕

𝜕[𝒛 ]𝑛

(
𝜕

𝜕[𝒛 ]𝑛

)H
𝜕

𝜕[𝒛 ]1

(
𝜕

𝜕[𝒛 ]𝑛

)H
· · · 𝜕

𝜕[𝒛 ]𝑛

(
𝜕

𝜕[𝒛 ]𝑛

)H

𝜕

𝜕[𝒛 ]1

(
𝜕

𝜕[𝒛 ]1

)H
· · · 𝜕

𝜕[𝒛 ]𝑛

(
𝜕

𝜕[𝒛 ]1

)H
𝜕

𝜕[𝒛 ]1

(
𝜕

𝜕[𝒛 ]1

)H
· · · 𝜕

𝜕[𝒛 ]𝑛

(
𝜕

𝜕[𝒛 ]1

)H
.
.
.

. . .
.
.
.

.

.

.
. . .

.

.

.

𝜕

𝜕[𝒛 ]1

(
𝜕

𝜕[𝒛 ]𝑛

)H
· · · 𝜕

𝜕[𝒛 ]𝑛

(
𝜕

𝜕[𝒛 ]𝑛

)H
𝜕

𝜕[𝒛 ]1

(
𝜕

𝜕[𝒛 ]𝑛

)H
· · · 𝜕

𝜕[𝒛 ]𝑛

(
𝜕

𝜕[𝒛 ]𝑛

)H



. (3.29)

The second-order expansion of a complex-valued function can now be written as

𝑓 (𝒄 + Δ𝒄) = 𝑓 (𝒄) + ∇𝒄 𝑓 (𝒄) Δ𝒄 +
1

2
Δ𝒄H∇2

𝒄 𝑓 (𝒄) Δ𝒄 + O
(
Δ𝒄3

)
, (3.30)

which is nothing more than an alternative representation of (3.20). From the previous investigations,
it should be believable that (3.30) is valid for multivariate considerations, i.e., when 𝑓 ★(𝒛) : C𝑛 × 1 →
C. In the following, we will thus consider the multivariate case. The curios reader may wonder
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about the benefits of (3.30) compared to the representation with purely real variables in (3.20). In
fact, the representation based on the conjugate coordinates requires 2𝑛 complex-valued quantities in
the gradient, while the formulation based on real and imaginary parts only contains 2𝑛 real-valued
variables for the first-order derivative. However, in a moment it will be shown that for real-valued
cost functions only 𝑛 complex-valued terms belonging to either 𝒛 or 𝒛 are necessary. Splitting
of variables and derivatives into two portions is then no longer required, making the Wirtinger
formulation more elegant and compact compared to (3.20) when working with first-order methods.

At this point it makes sense to state rules for the Wirtinger derivatives for the composition
𝑓 (ℎ(𝒛)) of two functions, where 𝒛 ∈ 𝛺𝒛 may be complex- or real-valued vectors and the range
of ℎ and 𝑓 is denoted by 𝛺ℎ and 𝛺 𝑓 . The most general case relevant here is encountered when
𝛺𝒛 = C

𝑛 × 1, 𝛺ℎ = C = 𝛺 𝑓 , for which one can find

𝜕𝑓

𝜕𝒛
=

(
𝜕𝑓

𝜕𝒛

)
(3.31)

𝜕𝑓

𝜕𝒛
=

(
𝜕𝑓

𝜕𝒛

)
(3.32)

𝜕𝑓 (ℎ (𝒛))
𝜕𝒛

=
𝜕𝑓

𝜕ℎ

𝜕ℎ

𝜕𝒛
+ 𝜕𝑓

𝜕ℎ

𝜕ℎ

𝜕𝒛
. (3.33)

Whenever the outermost function returns real-valued scalars, i.e., 𝛺𝒛 = C
𝑛 × 1, 𝛺ℎ = C and

𝛺 𝑓 = R, further simplifications can be observed with

(
𝜕𝑓

𝜕𝒛

)
=

𝜕𝑓

𝜕𝒛
(3.34)

𝜕𝑓 (ℎ (𝒛))
𝜕𝒛

=
𝜕𝑓

𝜕ℎ

𝜕ℎ

𝜕𝒛
+

(
𝜕𝑓

𝜕ℎ

)
𝜕ℎ

𝜕𝒛
. (3.35)

For ℎ and 𝑓 returning real values, i.e., 𝛺𝒛 = C
𝑛 × 1, 𝛺ℎ = R = 𝛺 𝑓 , the derivative

𝜕𝑓 (ℎ (𝒛))
𝜕𝒛

=
𝜕𝑓

𝜕ℎ

𝜕ℎ

𝜕𝒛
(3.36)

holds true1. Lastly, consider the special case when real-valued input vectors are assumed and ℎ
returns complex-valued scalars, i.e., 𝛺𝒛 = R

𝑛 × 1, 𝛺ℎ = C and 𝛺 𝑓 = R, leading to2

𝜕𝑓 (ℎ (𝒛))
𝜕𝒛

= 2Re

{
𝜕𝑓

𝜕ℎ

𝜕ℎ

𝜕𝒛

}
, (3.38)

which will become important at a later point. Table 3.1 summarizes the Wirtinger derivatives for
the considered cases of two composite functions.

1The rule in (3.36) can be shown and illustrated with an example: 𝑓 (ℎ (𝑧)) = 3 (𝑧𝑧). Employing (3.19), we expect
𝜕𝑓
𝜕𝑧 = 3𝑧. With the chain rule (3.33), we find

𝜕𝑓
𝜕ℎ

𝜕ℎ
𝜕𝑧 +

𝜕𝑓

𝜕ℎ

𝜕ℎ
𝜕𝑧 = 3𝑧 + 𝜕𝑓

𝜕ℎ

𝜕ℎ
𝜕𝑧 , which tells us that

𝜕𝑓

𝜕ℎ
has to be zero.

Intuitively, this also makes sense, since consequently the chain rule for the Wirtinger derivatives only has to be
applied whenever the parent function is complex-valued. For example consider 𝑓 (ℎ1 (ℎ2 (𝑧))), with 𝑓 : R → R,
ℎ1 : C→ R, ℎ2 : C→ C and 𝑧 ∈ C. The chain rule then equals

𝜕𝑓 (ℎ1 (ℎ2 (𝑧)))
𝜕𝑧

=
𝜕𝑓

𝜕ℎ1

(
𝜕ℎ1

𝜕ℎ2

𝜕ℎ2

𝜕𝑧
+ 𝜕ℎ1

𝜕ℎ2

𝜕ℎ2

𝜕𝑧

)
. (3.37)

2The rule in (3.38) can be shown by combining (3.35) with (3.32).
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Tab. 3.1 Wirtinger derivatives for 𝑓 (ℎ (𝒛)) : 𝛺𝒛 → 𝛺ℎ → 𝛺 𝑓 .

𝛺𝒛 𝛺ℎ 𝛺 𝑓
𝜕𝑓

𝜕𝒛

𝜕𝑓

𝜕𝒛
𝜕𝑓

𝜕𝒛

C
𝑛 × 1

C C

(
𝜕𝑓

𝜕𝒛

) (
𝜕𝑓

𝜕𝒛

)
𝜕𝑓

𝜕ℎ
𝜕ℎ
𝜕𝒛 +

𝜕𝑓

𝜕ℎ

𝜕ℎ
𝜕𝒛

C
𝑛 × 1

C R
𝜕𝑓

𝜕𝒛

𝜕𝑓

𝜕𝒛
𝜕𝑓

𝜕ℎ
𝜕ℎ
𝜕𝒛 +

(
𝜕𝑓

𝜕ℎ

)
𝜕ℎ
𝜕𝒛

C
𝑛 × 1

R R
𝜕𝑓

𝜕𝒛

𝜕𝑓

𝜕𝒛
𝜕𝑓

𝜕ℎ
𝜕ℎ
𝜕𝒛

R
𝑛 × 1

R C

(
𝜕𝑓

𝜕𝒛

) (
𝜕𝑓

𝜕𝒛

)
2Re

{
𝜕𝑓

𝜕ℎ
𝜕ℎ
𝜕𝒛

}

Regarding the Hessian matrix, we can identify some simplifications. When 𝑓 : C𝑛 × 1 → C, one
finds

∇
2
𝒛𝒛 𝑓 =

𝜕

𝜕𝒛

(
𝜕𝑓

𝜕𝒛

)𝐻
=

(
∇
2
𝒛𝒛 𝑓

)H
(3.39)

∇
2
𝒛𝒛
𝑓 =

𝜕

𝜕𝒛

(
𝜕𝑓

𝜕𝒛

)𝐻
=

(
𝜕

𝜕𝒛

(
𝜕𝑓

𝜕𝒛

)𝐻 )H
=

(
∇
2
𝒛𝒛
𝑓
)H

(3.40)

and in case 𝑓 : C𝑛 × 1 → R, we obtain

∇
2
𝒛𝒛 𝑓 =

𝜕

𝜕𝒛

(
𝜕𝑓

𝜕𝒛

)H
(3.31)
=

𝜕

𝜕𝒛

(
𝜕𝑓

𝜕𝒛

)T
(3.34)
=

𝜕

𝜕𝒛

(
𝜕𝑓

𝜕𝒛

)H
= ∇

2
𝒛𝒛
𝑓 (3.41)

∇
2
𝒛𝒛
𝑓 =

𝜕

𝜕𝒛

(
𝜕𝑓

𝜕𝒛

)H
(3.34)
=

𝜕

𝜕𝒛

(
𝜕𝑓

𝜕𝒛

)H
(3.34)
=

𝜕

𝜕𝒛

(
𝜕𝑓

𝜕𝒛

)H
= ∇

2
𝒛𝒛
𝑓 . (3.42)

Utilizing the rules of the Wirtinger calculus for real-valued functions, we can see

𝜕𝑓 (𝒄)
𝜕𝒄

Δ𝒄 =
𝜕𝑓

𝜕𝒛
Δ𝒛 + 𝜕𝑓

𝜕𝒛
Δ𝒛

(3.34)
=

𝜕𝑓

𝜕𝒛
Δ𝒛 + 𝜕𝑓

𝜕𝒛
Δ𝒛 = 2Re

{
𝜕𝑓

𝜕𝒛
Δ𝒛

}
(3.43)

and

1

2
Δ𝒄H∇2

𝒄 𝑓 (𝒄) Δ𝒄 =
1

2

[
Δ𝒛

Δ𝒛

]H [
∇
2
𝒛𝒛 𝑓 (𝒄) ∇

2
𝒛𝒛
𝑓 (𝒄)

∇
2
𝒛𝒛
𝑓 (𝒄) ∇

2
𝒛𝒛
𝑓 (𝒄)

] [
Δ𝒛

Δ𝒛

]

=
1

2

[
Δ𝒛H∇2

𝒛𝒛 𝑓 (𝒄) Δ𝒛 + Δ𝒛
H
∇
2
𝒛𝒛
𝑓 (𝒄) Δ𝒛

]
+ 1

2

[
Δ𝒛H∇2

𝒛𝒛
𝑓 (𝒄) Δ𝒛 + Δ𝒛H∇2

𝒛𝒛
𝑓 (𝒄) Δ𝒛

]
(3.41),(3.42)

= Re
{
Δ𝒛H∇2

𝒛𝒛 𝑓 (𝒄) Δ𝒛 + Δ𝒛H∇2
𝒛𝒛
𝑓 (𝒄) Δ𝒛

}
, (3.44)
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such that one can write

𝑓 (𝒛 + Δ𝒛) = 𝑓 (𝒛) + 2Re
{
𝜕𝑓

𝜕𝒛
Δ𝒛

}
+ Re

{
Δ𝒛H∇2

𝒛𝒛 𝑓 (𝒄) Δ𝒛 + Δ𝒛H∇2
𝒛𝒛
𝑓 (𝒄) Δ𝒛

}
+ O

(
Δ𝒛3

)
. (3.45)

Consequently, only 𝒛 or 𝒛 is required for first-order methods, making (3.45) similar to (3.20) in
terms of computational effort and memory requirements. When determining analytic derivatives,
only a differentiation with respect to 𝒛 is required to determine the gradient, whereas derivatives
with respect to the real and imaginary parts are needed in (3.20).

Analogous to the real-valued case and as indicated in (3.23), one can show the first-order necessary
optimality condition at a first-order optimal stationary point 𝒛★ to be

(
𝜕𝑓

(
𝒛★

)
𝜕𝒛

)H
= 0. (3.46)

This is again seen by contradiction, via

Δ𝒛 = −
(
𝜕𝑓

(
𝒛★

)
𝜕𝒛

)H
(3.47)

→ 𝑓
(
𝒛★ + Δ𝒛

)
= 𝑓

(
𝒛★

)
− 2





 𝜕𝑓
(
𝒛★

)
𝜕𝒛






2

2

+ O
(
Δ𝒛2

)
(3.48)

⇒ 𝑓
(
𝒛★ + Δ𝒛

)
< 𝑓

(
𝒛★

)
if





 𝜕𝑓
(
𝒛★

)
𝜕𝒛






2

2

≠ 0. (3.49)

In other words, a lower cost function value can be achieved in the direction −( 𝜕𝑓 (𝒛
★)

𝜕𝒛 )H as long as
a nonzero partial derivative in (3.46) exists.

Consequently, the complex gradient is defined as

∇𝒛 =

(
𝜕

𝜕𝒛

)H
=

[
𝜕

𝜕[𝒛]1
· · · 𝜕

𝜕[𝒛]𝑛

]H
∈ C𝑛 × 1. (3.50)

Concluding RemarksÐWirtinger Derivatives The Wirtinger calculus represents one of two
ways to approach optimization theory in complex-valued variables. Instead of splitting complex
quantities into their real and imaginary parts and treating these as new variables, the Wirtinger
formalism allows to directly work with complex and complex conjugate terms and, thus, provides
a consistent mathematical extension to real-valued differentiation. In particular, real-valued cost
functions are seen to be elegantly treatable allowing for a potentially more compact representation
and easier implementation than when working with separate real and imaginary quantities.

3.3 Nonlinear and Nonconvex Optimization

In the previous section, we have derived the necessary equations to pursue optimization of smooth,
non-convex, nonlinear and multivariate cost functions and functionals with respect to complex-
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valued variables. In general, we consider minimization tasks of the form

min
𝒛∈C𝑛 × 1

𝑓 (𝒛) , (3.51)

where a cost function 𝑓 : C𝑛 × 1 → R is minimized with respect to complex-valued variables
𝒛 ∈ C𝑛 × 1. In certain cases, a minimization with respect to real-valued unknowns is considered, for
which the required equations have already been discussed.

Minimization of cost functions will be performed based on first-order derivative information, i.e.,
the gradient, while second- and higher-order derivatives, which are for example required by the
Newton method, are not explicitly considered here. There are three main reasons for this restrictive
approach. First, the effort to determine analytic formulas increases drastically with the order of
differentiation. Second, higher-order derivatives mainly affect the speed of convergence, however,
rarely make up for success or failure of a formulation. Third, for an efficient implementation of
higher-order derivatives, either the computational effort and/or the memory requirements increase
considerably. The presented formulations and framework are supposed to scale well and be suitable
for large problems with millions of unknowns and entries in the measurement vector. As will be
seen later, there exist techniques which at least approximate information about the second-order
derivative based on the gradient of the cost function and, thus, achieve a faster convergence.

Here, we will focus on general first-order minimization techniques that iteratively determine the
solution

𝒛𝑘+1 = 𝒛𝑘 + 𝛼𝑘𝒑𝑘 (3.52)

after 𝑘 iterations as a sum of the solution at the previous iteration and a descent direction 𝒑𝑘 ∈ C𝑛 × 1
weighted with the step length 𝛼𝑘 . Commonly, one restricts the step length to not change the phase
of the descent direction, i.e., 𝛼𝑘 ∈ R+.

3.3.1 Descent Direction

The descent direction at the 𝑘th iteration in (3.52) is required to compute the new solution vector
𝒛𝑘+1 at the (𝑘 + 1)th iteration. In general, 𝒑𝑘 can be chosen arbitrarily as long as the value of the
underlying cost function can be reduced in the direction of 𝒑𝑘 , i.e.,

∃𝛼𝑘 s.t. 𝑓 (𝒛𝑘 + 𝛼𝑘𝒑𝑘 ) < 𝑓 (𝒛𝑘 ) . (3.53)

As shown in Section 3.2, this is, up to first-order, ensured whenever

Re
{
∇𝑓 (𝒛𝑘 )H 𝒑𝑘

}
< 0, (3.54)

or when choosing

𝒑GD
𝑘 = −∇𝑓 (𝒛𝑘 ) , (3.55)

which is commonly known as the steepest descent or gradient descent direction [Cauchy 1847].
Solvers featuring the gradient descent direction are known to suffer from low convergence speeds
and therefore require a larger number of iterations until convergence [Asmundis et al. 2013]. Despite
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Tab. 3.2 Excerpt of conjugate gradient methods and their associated weighting 𝛽𝑘 in (3.56).

Reference Weighting 𝛽𝑘
Fletcher-Reeves
[Fletcher and Reeves 1964]

𝛽FR
𝑘

=
𝒈H
𝑘
𝒈𝑘

𝒈H
𝑘−1𝒈𝑘−1

Polak-Ribière/Polyak
[Polak and Ribiere 1969; Polyak 1969]

𝛽PR
𝑘

=
Re{𝒈H

𝑘
𝜸𝑘}

𝒈H
𝑘−1𝒈𝑘−1

Modified Polak-Ribière
[Gilbert and Nocedal 1992]

𝛽PR+
𝑘

= max
{
𝛽PR
𝑘
, 0

}
Hestenes-Stiefel
[Hestenes and Stiefel 1952]

𝛽HS
𝑘

=
Re{𝒈H

𝑘
𝜸𝑘}

Re{𝜸H
𝑘
𝒑𝑘−1}

Liu and Storey
[Liu and Storey 1991]

𝛽LS
𝑘

=
Re{𝒈H

𝑘
𝜸𝑘}

Re{𝒑H
𝑘−1𝒈𝑘−1}

Based on Dai and Yuan
[Dai and Yuan 1999]

𝛽DY
𝑘

=
∥𝒈𝑘 ∥22

2Re{𝒑H
𝑘−1𝜸𝑘}

Based on Hager and Zhang
[Hager and Zhang 2005] 𝛽HZ

𝑘
=

Re

{(
𝜸𝑘−2𝒑𝑘−1

∥𝜸𝑘 ∥22
Re{𝒑H

𝑘−1𝜸𝑘}
)H

𝒈𝑘

}
Re{𝒑H

𝑘−1𝜸𝑘 }

being slow, the steepest descent method is known to feature a stable convergence behavior [Nagy
and Palmer 2003].
Throughout this thesis, we assume that 𝒑𝑘 truly is a descent direction, i.e., (3.54) is fulfilled.

Nonlinear Conjugate Gradient Method

Improved convergence speed with respect to the steepest descent approach is usually observed
with conjugate gradient methods, which determine the descent direction according to

𝒑CG
𝑘 =

{
−∇𝑓 (𝒛𝑘 ) , if 𝑘 = 0

−∇𝑓 (𝒛𝑘 ) + 𝛽𝑘𝒑𝑘−1, if 𝑘 ≥ 1
. (3.56)

At the first iteration, all conjugate gradient methods utilize the steepest descent direction, while later
iterations employ a weighted sum of the gradient at the current iteration and the descent direction
of the previous iteration. The weighting factor 𝛽𝑘 can be computed in various ways, all of which lead
to different versions of the conjugate gradient method. An overview of nonlinear conjugate gradient
versions and relatively recent developments is available in [Hager and Zhang 2006]. Note that most
of the approaches have been developed for real-valued optimization and need to be adapted to
the complex caseÐ for some variants this is shown in [Sorber et al. 2012]. A brief collection of
conjugate gradient formulations is given in Tab. 3.2, which utilizes the definitions of 𝒈𝑘 = ∇𝑓 (𝒛𝑘 )
and𝜸𝑘 = ∇𝑓 (𝒛𝑘 ) −∇𝑓 (𝒛𝑘−1). The variety of modified nonlinear conjugate gradient methods seems
to be endless, and further alternatives requiring tunable parameters are available [Sun and Liu
2015].
While all versions share the same maximum linear convergence rate, their actual performance

for a particular minimization problem varies. A comparison of these variants of the nonlinear
conjugate gradient method for the application of phase retrieval is given in Fig. 3.1. The details
of the phase retrieval approach are not of interest here, however, it can be observed that certain
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Fig. 3.1 Performance of nonlinear conjugate gradient methods applied to the task of phase retrieval.
Details of the retrieval algorithm are not relevantÐ only an impression of the differences in
performance shall be gained. Depicted is the chance of having converged to an accurate
solution within a certain number of iterations. As references, the results for the L-BFGS
method with 𝐿 = 1 × 102 and the gradient descent method (here GD) are added. All solvers
utilize the same line search algorithm. See Tab. 3.2 for a list of abbreviations used.

versions of the nonlinear conjugate gradient method require less iterations than others. As a point
of interest, the result for the memory-limited Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) method
for 𝐿mem = 1 × 102 is added. Due to the nonconvexity of the problem at hand, non of the methods
compared in Fig. 3.1 achieves a success rate of 100%. Most importantly, all methods achieve a
similar success rate when being allowed to perform a sufficient number of iterations. In terms
of convergence rate, one could conclude that the conjugate gradient versions by Hestenes and
Fletcher [Hestenes and Stiefel 1952], Hager and Zhang [Hager and Zhang 2005], as well as the
L-BFGS method [Andrei 2010; Liu and Nocedal 1989; Nocedal and Wright 2006] are preferable.
However, this limited investigation is not sufficient to draw conclusions of general validity. Besides,
certain conjugate gradient variants have been reported to perform inferior in other applications,
e.g., Fletcher and Reeves [Powell 1976]. More details on the silently added L-BFGS method are
provided in the following.

Memory-Limited Quasi-Newton Method

The convergence rate of local optimization algorithms is fundamentally limited by the order of
the Taylor series, e.g., see (3.30), employed for the computation of the descent direction. While
conjugate gradient formulations rely only on information about the gradient and achieve linear
rates of convergence, Newton’s method [Nocedal and Wright 2006] incorporates the Hessian matrix
and thus can yield quadratic convergence locally. Since the full evaluation of the Hessian can
be computationally expensive, quasi-Newton methods have emerged that operate with efficient
approximations of the second-order derivative information, i.e., the Hessian matrix. In this context,
the L-BFGS method accelerates the convergence speed by utilizing a memory-limited version of the
Hessian matrix for the computation of the descent direction. The Hessian matrix is approximated
via the gradient information of the last 𝐿mem iterations. According to the available memory, larger
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Algorithm 1 Computation of the L-BFGS descent direction 𝒑𝑘 at current iteration 𝑘

[𝒑𝑘 ] = L-BFGS (∇𝑓 (𝒛𝑘 ) , 𝐿mem, stored 𝒔𝑖 and 𝒚𝑖)

Input: gradient at current iteration∇𝑓 (𝒛𝑘 ) and
stored vectors 𝒔𝑖 and 𝒚𝑖 of at most 𝐿mem pre-
vious iterations

Output: L-BFGS descent direction 𝒑𝑘

Abbreviations:

𝒔𝑖 = 𝒛𝑖+1 − 𝒛𝑖
𝒚𝑖 = ∇𝑓 (𝒛𝑖+1) − ∇𝑓 (𝒛𝑖)
𝜌𝑖 =

1

Re{𝒚H
𝑖 𝒔𝑖}

1: 𝒒 = ∇𝑓 (𝒛𝑘 )
2: for 𝑖 = 𝑘 − 1 to 𝑘 − 𝐿mem do

3: 𝛼𝑖 = 𝜌𝑖Re
{
𝒔H𝑖 𝒒

}
4: 𝒒 = 𝒒 − 𝛼𝑖𝒚𝑖
5: end for

6: 𝒑𝑘 =
Re{𝒔H𝑘−1𝒚𝑘−1}
∥𝒚𝑘−1 ∥22

𝒒

7: for 𝑖 = 𝑘 − 𝐿mem to 𝑘 − 1 do

8: 𝛽 = 𝜌𝑖Re
{
𝒚H
𝑖 𝒑𝑘

}
9: 𝒑𝑘 = 𝒑𝑘 + 𝒔𝑖 (𝛼𝑖 − 𝛽)
10: end for

11: 𝒑𝑘 = −𝒑𝑘

12: return 𝒑𝑘

values for 𝐿mem can be chosen to improve the convergence and reduce the overall computation
time. For large problems and restricted memory resources, smaller values can be used, eventually
reducing the overall performance to that of the nonlinear conjugate gradient methods, which only
utilize quantities from one previous iteration. A possible implementation of the L-BFGS method
and more theoretical details are described in [Nocedal and Wright 2006] and are repeated in Alg. 1.
Care has to be taken to correctly manage the stored quantities 𝒔𝑖 and 𝒚𝑖 and avoid redundant
computations when implementing Alg. 1. As seen in Fig. 3.1 and also reported in [Ji and Tie 2016],
the L-BFGS method performs favorably well for the task of phase retrieval and usually outperforms
conjugate gradient solvers. Its adjustable memory footprint makes it a perfect candidate for the
framework of this thesis, as it flexibly allows to treat large problems while trading as much of the
available memory resources as possible for reduced computation times.

Concluding RemarksÐComputation of the Descent Direction The two principal compo-
nents necessary for the iterative solution of optimization problems, as indicated in (3.52), are a step
length and a descent direction. The choice of the optimization method, e.g., conjugate gradient or a
Newton method, determines the computation of the descent direction. Among the investigated
first-order methods, moderate performance differences have been observed for the application in
phase retrieval, where the L-BFGS method mostly stands out because of its flexibility in terms of
memory requirements. Additionally, it employs the first-order derivatives in order to generate an
estimate of second-order information, effectively improving the convergence rate. For the purpose
of the optimization tasks in this work, low-memory footprint, first-order algorithms are consid-
ered as the workhorse for the yet-to-be-defined nonlinear optimization tasks for large problems.
Second-order methods, e.g., Newton methods, may be expected to exhibit a faster convergence rate,
however, at the downside of consuming more memory and/or computation time.

3.3.2 Line Search

Aside the descent direction, (3.52) requires the step length 𝛼𝑘 for the computation of the solution at
the next iteration. As such, 𝛼𝑘 is determined as part of a line search, which itself is a one dimensional
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minimization task of the form

min
𝛼𝑘 ∈R+

𝛷 (𝛼𝑘 ) with 𝛷 (𝛼𝑘 ) = 𝑓 (𝒛𝑘 + 𝛼𝑘𝒑𝑘 ) . (3.57)

Note that we have assumed 𝒑𝑘 to truly be a descent direction, i.e., to fulfill (3.54). Dependent on
the cost function 𝑓 (𝒛), there may or may not exist an analytic solution to (3.57). Furthermore, the
line search optimization itself may be nonlinear and nonconvex, making it unfeasible to exactly
determine the optimal value. Thus, one often wants to find a sufficiently good approximate solution
to (3.57) at the expense of reasonable computational cost.

The quality and performance of a line search strongly impacts the overall behavior of the
underlying iterative algorithm. While a small step length ensures convergence to a local stationary
point, the convergence speed may quickly drop and lead to a large number of iterations. Too large
step sizes sometimes lead to an increase in the cost function value and can cause the iterative
method to become unstable and diverge.

A simple yet inefficient method to ensure convergence at an acceptable rate is called backtracking.
The backtracking approach starts at a predefined maximum step length 𝛼m at which the cost
function is evaluated. In case of a sufficient decrease, which will be defined later, of the function
value is observed, the method terminates. Otherwise, the current step length is reduced and the
cost function is evaluated again. The procedure is repeated until a sufficient decrease has been
achieved or the step size has reached a lower bound. In this way, theoretically the solution to (3.57)
is found, allowing for the largest decrease in the cost function in the given direct 𝒑𝑘 . However, the
procedure may require an unfeasible number of cost function evaluations to terminate.

There are several criteria widely used in the literature to describe conditions that must be satisfied
by the step length to lead to global convergence of iterative solvers for nonlinear and nonconvex
optimization problems. The probably most commonly applied requirements are the so-called Wolfe

or strong Wolfe conditions. Alternatively, one can use the Goldstein conditions [Nocedal and Wright
2006], which are not explicitly discussed here for brevity.

Strong Wolfe Conditions

In case of real-valued variables 𝒛𝑘 , 𝒑𝑘 ∈ R𝑛 × 1, the Wolfe conditions can be expressed as [Nocedal
and Wright 2006]

𝑓 (𝒛𝑘 + 𝛼𝑘𝒑𝑘 ) ≤ 𝑓 (𝒛𝑘 ) + 𝑐1𝛼𝑘∇𝑓 T𝑘 𝒑𝑘 (3.58)

∇𝑓 (𝒛𝑘 + 𝛼𝑘𝒑𝑘 )𝑇 𝒑𝑘 ≥ 𝑐2∇𝑓 T𝑘 𝒑𝑘 (3.59)

with 𝑐1/2 ∈ R+, 0 < 𝑐1 < 𝑐2 < 1. As the condition in (3.59) may be fulfilled by step lengths not close
to a minimizer of 𝛷 (𝛼𝑘 ), one often considers the strong Wolfe conditions, which, in the case of
complex-valued vectors 𝒛𝑘 , 𝒑𝑘 ∈ C𝑛 × 1, read as

𝑓 (𝒛𝑘 + 𝛼𝑘𝒑𝑘 ) ≤ 𝑓 (𝒛𝑘 ) + 𝑐1𝛼𝑘2 Re
{
∇𝑓 H𝑘 𝒑𝑘

}
(3.60)��2 Re {

∇𝑓 (𝒛𝑘 + 𝛼𝑘𝒑𝑘 )H 𝒑𝑘

}�� ≤ 𝑐2
��2 Re {

∇𝑓 H𝑘 𝒑𝑘

}�� . (3.61)

Since (3.60) imposes a requirement on the reduction of the cost functional with respect to the
step length, it is referred to as the sufficient decrease condition and sometimes also called Armijo
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Fig. 3.2 Visualization of the strong Wolfe conditions for a polynomial cost function. The dashed
lines indicate the strong Wolfe conditions for a particular choice of 𝑐1 and 𝑐2.

condition. Analogously, (3.61) limits the value of the derivative for a permissible step length and is
appropriately called the curvature condition.

In accordance with (3.38), we notice that

𝜕𝛷 (𝛼𝑘 )
𝜕𝛼𝑘

=
𝜕𝑓 (𝒛𝑘 + 𝛼𝑘𝒑𝑘 )

𝜕𝛼𝑘
=

𝜕𝑓 (𝒛)
𝜕𝒛

𝜕𝒛

𝜕𝛼𝑘
+ 𝜕𝑓 (𝒛)

𝜕𝒛

𝜕𝒛

𝜕𝛼𝑘
=

𝜕𝑓 (𝒛)
𝜕𝒛

𝜕𝒛

𝜕𝛼𝑘
+ 𝜕𝑓 (𝒛)

𝜕𝒛

𝜕𝒛

𝜕𝛼𝑘

= 2Re

{
𝜕𝑓 (𝒛)
𝜕𝒛

𝜕𝒛

𝜕𝛼𝑘

}
= 2Re

{
∇𝑓 H𝑘 𝒑𝑘

}
, (3.62)

which allows to rewrite the strong Wolfe conditions as

𝛷 (𝛼𝑘 ) ≤ 𝛷 (0) + 𝑐1𝛼𝑘
𝜕𝛷 (0)
𝜕𝛼𝑘

(3.63)���� 𝜕𝛷 (𝛼𝑘 )𝜕𝛼𝑘

���� ≤ 𝑐2

���� 𝜕𝛷 (0)𝜕𝛼𝑘

���� . (3.64)

Note that the derivative-vector product ( 𝜕𝑓 (𝒛 )
𝜕𝒛 )𝒙 for the evaluation of (3.62) is required. Along

with the gradient-vector product ( 𝜕𝑓 (𝒛 )
𝜕𝒛 )H𝒚, this is the second fundamental derivative that will

be needed when tackling general cost functions and functionals. Figure 3.2 illustrates the strong
Wolfe conditions for an exemplary cost function. The sufficient decrease condition is indicated by
the dashed black line and regions of𝛷 (𝛼𝑘 ) fulfilling this condition are marked with a solid black
line. Similarly, the curvature condition imposes restrictions (dashed orange lines) on the magnitude
of the slope of the cost function, displayed by the solid green line. Regions of the cost function
fulfilling the curvature condition are marked in orange. A line search based on the strong Wolfe
conditions is terminated as soon as an 𝛼𝑘 is found within an area marked simultaneously in black
and orange.
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Line Search Based on the Strong Wolfe Conditions

An iterative line search procedure determining an 𝛼𝑘 satisfying (3.63) and (3.64) is described
in [Nocedal and Wright 2006]. For convenience we recapitulate the approach and explain the
procedure in detail.

This particular line search relies on three procedures, the most central of which is given in Alg. 2.
Two subroutines, the łzoomž-function and an interpolation method, here a quadratic interpolation,
are shown in Alg. 3 and Alg. 4. The quadratic interpolation requires the computation of three
quantities,𝛷 (𝛼1),𝛷 (𝛼1) and the derivative𝛷 ′(𝛼1) in order to obtain the minimum of a quadratic
approximation of the cost function within the interval [𝛼1, 𝛼2]. While interpolations of higher order
may yield more accurate surrogates of the true cost function and thus allow for a termination of the
line search procedure within less iterations, the evaluation of the cost function and its derivative at
more sample points is required. For the presented line search algorithm, the quadratic interpolation
in Alg. 4 has been observed to yield accurate results while most of its required quantities have
already been computed as part of Algs. 2 and 3.
The line search procedure in Alg. 2 requires an initial guess 𝛼i, a fixed maximum step length

𝛼m and the two parameters 𝑐1 and 𝑐2 as part of the strong Wolfe conditions. The procedure tests
the current choice for the step length 𝛼𝑖 in terms of the strong Wolfe conditions and calls the
łzoomž-function once an interval [𝛼LO, 𝛼HI] containing a compliant step length is found. In case no
such interval is identified within the first iteration, a new trial point for 𝛼𝑘 is determined based
on the quadratic interpolation in the interval [𝛼𝑖 , 𝛼m] via Alg. 4 and the next iteration is started.
Assuming that there exists a solution to the strong Wolfe conditions within the maximum step
length of 𝛼m, the procedure will eventually call the łzoomž-function. Inside this function, the two
bounds 𝛼LO and 𝛼HI are repeatedly refined via the quadratic interpolation until a promising step
length is found. An example of the line search procedure for the exemplary cost function of Fig. 3.2
is depicted in Fig. 3.3 and described in the caption thereof.

Initial Guess for the Line Search

In order to speed up any practical line search algorithm, a proper initial guess 𝛼i for the step length
at the current iteration 𝑘 is required. Such an initial guess for the computation of 𝛼𝑘 for 𝑘 > 1 can
for example be made via

𝛼i = 𝜆i𝛼𝑘−1
∥𝒑𝑘−1∥2
∥𝒑𝑘 ∥2

with 𝜆i ∈ [0, 1] , (3.65)

where [Birgin 2001] has considered the case 𝜆i = 1, however, [Babaie-Kafaki et al. 2010] reports to
have observed better empirical performance for 𝜆i = 0.75. Alternatively, one can use [Nocedal and
Wright 2006]

𝛼i = 𝛼𝑘−1



Re {
∇𝑓 (𝒙𝑘−1)H 𝒑𝑘−1

}


2

Re {

∇𝑓 (𝒙𝑘 )H 𝒑𝑘

}


2

, (3.66)

which is based on the assumption that the first-order change of the cost function at the new iteration
will be the same as that of the last iteration.

For 𝑘 = 0, meaning the first call to the line search procedure, the above equations can not be
used as no information about previous iterations is available. Thus, either second-order derivative
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Algorithm 2 Line search fulfilling the strong Wolfe conditions, after [Nocedal and Wright 2006]
𝛼𝑘 = LS_Strong_Wolfe (𝛼i, 𝛼m, 𝑐1, 𝑐2, )

Input: initial guess 𝛼i, maximum step length
𝛼m > 0 and parameters 𝑐1, 𝑐2

Output: step length 𝛼𝑘 fulfilling the strong
Wolfe conditions
Abbreviation:

𝛷 ′ (𝛼) = 𝜕𝛷 (𝛼 )
𝜕𝛼

1: 𝛼0 = 0

2: 𝛼1 = 𝛼i
3: 𝑖 = 1

4: while 1 do
5: compute𝛷 (𝛼𝑖)

Insufficient decrease? ⇒ acceptable point

must be between 𝛼𝑖−1 and 𝛼𝑖
6: if 𝛷 (𝛼𝑖) > 𝛷 (0) + 𝑐1𝛼𝑖𝛷 ′ (0) then
7: 𝛼𝑘 = zoom (𝛼𝑖−1, 𝛼𝑖) and break

8: end if

Function increased? ⇒ local minimum

must be between 𝛼𝑖−1 and 𝛼𝑖
9: if 𝛷 (𝛼𝑖) ≥ 𝛷 (𝛼𝑖−1) then
10: 𝛼𝑘 = zoom (𝛼𝑖−1, 𝛼𝑖) and break

11: end if

12: compute𝛷 ′ (𝛼𝑖)
Sufficiently low curvature? (sufficient de-

crease already fulfilled)⇒ 𝛼𝑖 is an accept-

able point

13: if |𝛷 ′ (𝛼𝑖) | ≤ 𝑐2 |𝛷 ′ (0) | then
14: 𝛼𝑘 = 𝛼𝑖 and break

15: end if

Positive curvature?⇒ local minimummust

be between 𝛼𝑖−1 and 𝛼𝑖
16: if 𝛷 ′ (𝛼𝑖) ≥ 0 then

17: 𝛼𝑘 = zoom (𝛼𝑖−1, 𝛼𝑖) and break

18: end if

Pick larger 𝛼𝑖 , e.g., via quadratic or cubic

interpolation

19: 𝛼𝑖+1 = quadinterp (𝛼𝑖 , 𝛼m)
20: 𝑖 = 𝑖 + 1
21: end while

22: return 𝛼𝑘

information is utilized to compute an initial guess as part of the Newton-Raphson method [Nocedal
and Wright 2006], or 𝛼i = 1 is used, which is seen to eventually work for Newton-type solvers.
As a bad initial guess for the first step length should be compensated for by the line search at the
expense of additional computation time, the overall effect on the convergence of the optimization
algorithm is expected to be rather negligible.

Concluding RemarksÐLine Search Iterative optimization techniques, e.g., the nonlinear
conjugate gradient method, require a step length computation, i.e., a line search, in order to
guarantee convergence. Various approaches exist for finding a more or less optimal step length
for a given descent direction. There always is a trade-off between computational effort within the
line search and the quality of the determined step length. In this work, the line search presented
in [Nocedal and Wright 2006] is employed, featuring a quadratic interpolation routine. Being
based on the strong Wolfe conditions, this search algorithm is experienced to determine rather
high-quality step lengths compared to simpler techniques like backtracking.
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Algorithm 3 łzoomž-function, after [Nocedal and Wright 2006]
𝛼𝑘 = zoom (𝛼LO, 𝛼HI)

Input: 𝛼LO and 𝛼HI, bounding an interval which
contains
an 𝛼𝑘 that fulfills the strong Wolfe condi-
tions

Output: step length 𝛼𝑘 fulfilling the strong
Wolfe conditions
Abbreviation:

𝛷 ′ (𝛼) = 𝜕𝛷 (𝛼 )
𝜕𝛼

1: while 1 do
2: 𝛼𝑖 = quadinterp (𝛼LO, 𝛼HI)
3: compute𝛷 (𝛼𝑖)

Insufficient decrease? ⇒ acceptable point

must be between 𝛼LO and 𝛼𝑖
4: if 𝛷 (𝛼𝑖) > 𝛷 (0) + 𝑐1𝛼𝑖𝛷 ′ (0) then

5: 𝛼HI = 𝛼𝑖
Function increased? ⇒ local minimum

must be between 𝛼𝐿𝑂 and 𝛼𝑖

6: else if 𝛷 (𝛼𝑖) ≥ 𝛷 (𝛼LO) then
7: 𝛼HI = 𝛼𝑖
8: else

9: compute𝛷 ′ (𝛼𝑖)
Solution found?

10: if |𝛷 ′ (𝛼𝑖) | ≤ 𝑐2 |𝛷 ′ (0) | then
11: 𝛼𝑘 = 𝛼𝑖 and break

12: end if

łAscendingž slope found (from 𝛼LO to

𝛼HI)?⇒ swap 𝛼LO and 𝛼HI
13: if 𝛷 ′ (𝛼𝑖) (𝛼HI − 𝛼LO) ≥ 0 then

14: 𝛼HI = 𝛼LO
15: end if

16: 𝛼LO = 𝛼𝑖
17: end if

18: end while

19: return 𝛼𝑘

Algorithm 4 Quadratic interpolation function
𝛼 = quadinterp (𝛼1, 𝛼2)
Input: 𝛼1 and 𝛼2
Output: 𝛼 = min

𝛼∈[𝛼1,𝛼2 ]
𝛷q (𝛼) ≈ 𝑎𝛼2 + 𝑏𝛼 + 𝑐

Abbreviation:

𝛷 ′ (𝛼) = 𝜕𝛷 (𝛼 )
𝜕𝛼

1: 𝑎 =
𝛷 (𝛼2 )−𝛷 (𝛼1 )+𝛷′ (𝛼1 ) (𝛼1−𝛼2 )

(𝛼1−𝛼2 )2
2: 𝑏 = 𝛷 ′ (𝛼1) − 2𝛼1𝑎
3: 𝛼 = − 𝑏

2𝑎

Optional:

4:
(
𝑐 = 𝛷 (𝛼2) − 𝛼2𝑏 − 𝛼2

2𝑎
)

5: return 𝛼
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Fig. 3.3 Visualization of the line search procedure fulfilling the strong Wolfe conditions. The cost
function is drawn in blue, the region fulfilling the sufficient decrease condition is marked
with red and parts of low curvature are indicated by green lines. We pick 𝛼i = 0.6 and start
in Alg. 2. The initial guess (right black dot) does not fulfill the łifž-statements in lines 6, 9
and 13. However, the curvature𝛷 ′(𝛼i) is positive, and in line 17 the łzoomž-function, Alg. 3,
is entered. Within łzoomž, a quadratic interpolation, Alg. 4, between 𝛼LO = 0 (left black
dot) and 𝛼HI = 𝛼i (right black dot) is computed (black solid line). From that, 𝛼𝑖 ≈ 0.32 is set
to be at the minimum of the quadratic approximation of the cost function (left cyan dot).
All further łifž-statements within this iteration of the łzoomž-function are not fulfilled,
such that only line 13 is considered and the new 𝛼LO = 𝛼𝑖 is assigned. The next iteration
again starts with a quadratic approximation (cyan solid line) leading to the new 𝛼𝑖 ≈ 0.42

at its minimum (green dot). Again the conditions in lines 4 and 6 are not fulfilled, however,
the current iterate ensures the curvature condition (indicated by the green curve) and the
algorithm terminates in line 11, returning 𝛼𝑘 = 𝛼𝑖 ≈ 0.42. The sufficient decrease condition
was met from the beginning.

3.4 A General Nonlinear Optimization Framework

With all the tools discussed in the previous sections, a general minimization framework for smooth
and differentiable cost functions and functionals of complex- and real-valued variables can be
constructed. The main purpose is to handle unconstrained minimization of the form

min
𝒛∈R𝑛 × 1/C𝑛 × 1

𝑓 (𝒛) with 𝑓 (𝒛) = 𝛼OF ∥A (𝒛) − 𝒅∥2𝑝OF2 . (3.67)

Denoting 𝑐OF = 𝛼OF𝑝OF ∥A(𝒛) − 𝒅∥2𝑝OF−2, the required derivatives for 𝒛 ∈ C𝑛 × 1 can be written as

𝜕𝑓 (𝒛)
𝜕𝒛

= 𝑐OF

[
(A (𝒛) − 𝒅)H 𝜕A (𝒛)

𝜕𝒛
+ (A (𝒛) − 𝒅)T 𝜕A (𝒛)

𝜕𝒛

]
(3.68)
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and

(
𝜕𝑓 (𝒛)
𝜕𝒛

)H
= 𝑐OF


(
𝜕A (𝒛)
𝜕𝒛

)H
(A (𝒛) − 𝒅) +

(
𝜕A (𝒛)
𝜕𝒛

)H
(A (𝒛) − 𝒅)


. (3.69)

In accordance with (3.38), real-valued unknowns 𝒛 ∈ R𝑛 × 1 result in

𝜕𝑓 (𝒛)
𝜕𝒛

= 2 𝑐OFRe

{
(A (𝒛) − 𝒅)H 𝜕A (𝒛)

𝜕𝒛

}
(3.70)

and

(
𝜕𝑓 (𝒛)
𝜕𝒛

)H
= 2 𝑐OFRe

{(
𝜕A (𝒛)
𝜕𝒛

)H
(A (𝒛) − 𝒅)

}
. (3.71)

In either case, the derivatives strongly depend on the particular choice for the involved nonlinear
operator A. The vector 𝒅 represents the measured information, which may be available in various
ways and formats.

Though (3.67) resembles an unconstrained optimization problem, side constraints or further cost
functions can be added to 𝑓 (𝒛) with an appropriate weighting 𝛼OF in the form of soft constraints.
For example, a formulation promoting sparsity in the solution vector can be achieved by adding
an ℓ1-norm term of the solution vector [Jin and Maass 2012; Lee et al. 2007; Park and Hastie 2007;
Schmidt et al. 2007]. The main challenge then remains to identify an appropriate scaling 𝛼OF in
order to obtain adequate results for a wide class of problems.

The equations derived above for the gradient and the Hermitian of the derivative of the cost
function can now be combined with a first-order technique, such as a nonlinear conjugate gradient
or L-BFGS method, along with a line search based on the strong Wolfe conditions. As long as the
user provides the quantities

A (𝒛) , 𝒅, 𝜕A (𝒛)
𝜕𝒛

,
𝜕A (𝒛)
𝜕𝒛

,

(
𝜕A (𝒛)
𝜕𝒛

)H
and

(
𝜕A (𝒛)
𝜕𝒛

)H
, (3.72)

the framework can be employed to minimize almost arbitrary cost functions. Throughout this thesis,
a variety of nonlinear operators A with their corresponding measurements 𝒅 will be considered
for the implementation of electromagnetic field transformations. Pseudo-code for the optimization
framework referring to all necessary equations and algorithms is given in Alg. 5.

When investigating a new formulation, one commonly needs to verify the obtained equations
for the above derivatives. For the line search, we can see from (3.62) that checking the derivatives
contained in (3.68) or (3.70) can directly be done via finite differences, e.g.,

𝜕𝛷 (𝛼)
𝜕𝛼

=
𝜕𝑓 (𝒛 + 𝛼𝒑)

𝜕𝛼
= 2Re

{
𝜕𝑓 (𝒛)
𝜕𝒛

𝒑

}
≈ 𝛷 (𝛼 + 𝛿) −𝛷 (𝛼)

𝛿
(3.73)

with an appropriately chosen 𝛿 ∈ R+. Thus, from (3.73) we can verify the correctness of analytic
derivatives of cost functions in a (possibly complex-valued) direction 𝒑 via finite differences. Note
that for a satisfactory check, we would need to evaluate this equation for a sufficient number of
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3.4 A General Nonlinear Optimization Framework

Algorithm 5 Optimization framework based on the L-BFGS solver and a line search fulfilling the
strong Wolfe conditions
𝒛 = FRAMEWORK (𝒛i, parameters)

Input: initial guess 𝒛i and the parameters

· defining the optimization problem
in (3.72),

· 𝐿mem used in the L-BFGS solver in
Alg. 1,

· 𝑐1 and 𝑐2 for the line search with
strong Wolfe conditions in Alg. 2

· and 𝛼OF and 𝑝OF in (3.67)

Output: local stationary point 𝒛 of (3.67)
1: 𝑘 = 1

2: 𝒛𝑘 = 𝒛i
3: ∇𝑓 (𝒛𝑘 ) ← (3.69) or (3.71)
4: while not converged or below iteration limit

do

5: if 𝑘 > 1 then

6: 𝒑𝑘 ← from Alg. 1

7: 𝛼i ← (3.65) or (3.66)
8: else

9: 𝒑𝑘 = −∇𝑓 (𝒛𝑘 )
10: 𝛼i = 1

11: end if

Based on experience:

12: 𝛼m = 3max ( [𝛼1, ..., 𝛼𝑘 ])
13: 𝛼𝑘 ← from Algs. 2, 3 and 4, requir-

ing (3.68) or (3.70)
14: 𝒛𝑘+1 = 𝒛𝑘 + 𝛼𝑘𝒑𝑘

15: ∇𝑓 (𝒛𝑘+1) ← (3.69) or (3.71)
Compute and manage storage of:

16: 𝒔𝑘 = 𝛼𝑘𝒑𝑘 , 𝒚𝑘 = ∇𝑓 (𝒛𝑘+1) − ∇𝑓 (𝒛𝑘 )
17: 𝑘 = 𝑘 + 1
18: end while

19: return 𝒛 = 𝒛𝑘

directions. The same holds true when validating the gradient, where a similar procedure can be
applied to

2Re

{
𝒑H

(
𝜕𝑓 (𝒛)
𝜕𝒛

)H}
≈

(
𝑓 (𝒛 + 𝛿𝒑) − 𝑓 (𝒛)

𝛿

)H
(3.74)

for various 𝒑. There are other methods for checking the gradient, however, the above simplistic
checks have proven to be flexible to utilize and sufficiently accurate in the development of the
methods in this work. The author highly recommends using (3.73) and (3.74) to anyone interested
in implementing their own cost function.

Concluding RemarksÐNonlinear Optimization Framework In a condensed manner, Alg. 5
puts the optimization theory discussed within Chapter 3 and specific implementations of subroutines
into practice. At its core, smooth, nonlinear cost functions of multivariate quantities are minimized
via the L-BFGS method utilizing a line search procedure based on the strong Wolfe conditions. The
unknowns may be complex- or real-valued and the user has to provide equations for the involved
operator as well as the corresponding derivatives. In the following, the framework will be applied
to a variety of cost functions in the context of phase retrieval.
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4. Near-Field Far-Field Transformation with
Phase Information

The electromagnetic radiation operators and theorems are now combined with optimization theory
concepts to perform a first test with NFFFTs operating on fully coherent data [Bucci et al. 1991;
Eibert et al. 2010, 2015; Eibert and Schmidt 2009; Petre and Sarkar 1992; Schmidt et al. 2008]. The
working principle of NFFFTs with phase information is introduced in Section 4.1 and employs the
electromagnetic theorems and radiation operators discussed in Chapter 2Ð the same theory as
well as operators remain applicable for other field transformations, including those without any or
with incomplete phase information. The corresponding problem statement, i.e., a linear system
of equations, is solved in Section 4.2, where a simplistic implementation of an NFFFT with phase
information based on the introduced optimization framework is provided. A brief comparison with
other iterative solvers for linear systems of equations is given in Section 4.3 with synthetic and
real-world NF antenna data.

4.1 Near-Field Far-Field Transformation Principle

Over the last decades, antenna measurements in the NF region of an AUT have become a popular
alternative to their FF and compact range counterparts [Capoglu et al. 2012; Osipov et al. 2013;
Qureshi et al. 2013]. This trend has strongly been driven by the comparably low costs for NF
measurements that can be performed in smaller and thus cheaper anechoic chambers. The reduction
in space requirements comes with the downside of a mathematical transformation that has to be
performed, often numerically, in order to obtain the FF characteristic of the AUT from the measured
NF samples. A general setup of an NFFFT is depicted in Fig. 4.1(a). The arrangement is in close
agreement with that depicted in Fig. 2.5(d), which was found via the equivalence principle applied
to Fig. 2.5(a). As part of this equivalent problem, the AUT is represented in terms of equivalent
sources, e.g., discretized surface current densities or spherical vector wave functions radiating in
free space. The complete problem domain is filled with a homogeneous material, e.g., in most of
the cases free space, allowing to utilize the known Green’s function of free space and, ultimately,
the corresponding radiation operators. From the uniqueness theorem we know that a radiator
is completely described by the tangential components of its fields evaluated on a closed surface
surrounding the radiator. Indicated in Fig. 4.1(a), these tangential fields are sampled by probe
antennas yielding not single field components, but in general a spatially weighted version of those
fields1. As indicated in the figure, we allow the probe antennas to sample the fields in an arbitrary,
irregular manner, not restricted to regular sampling schemes on canonical surfaces. Thus, the main
task illustrated in Fig. 4.1(a) is to determine the equivalent AUT representation from the measured

1The fact that real-world probe antennas are not able to directly extract specific field components at discrete points
in spaceÐ as is theoretically possible via Hertzian and Fitzgerald dipolesÐmotivates the need of probe correction
techniques [Cornelius and Heberling 2017; Laitinen et al. 2005; Leibfritz and Landstorfer 2006; Paris et al. 1978;
Schmidt et al. 2008; Yaghjian 1986]. Based on the (surface) equivalence principle, the known probe antenna can be
modeled in terms of a surface current density, e.g., multiple Hertzian dipoles, in order to account for the radiation
or reception characteristic of the probe. As such, an accurate probe correction can be implemented on basis of the
dipole-dipole interactions of Chapter 2 at the cost of an increased computational burden. However, more advanced
and potentially efficient probe correction techniques are out of the scope of this work.
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Far field
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Probe
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Fig. 4.1 (a) Illustration of the NFFFT principle. Based on NF measurements 𝒃 on arbitrary and
irregular surfaces, an AUT representation 𝒛 is determined by solving an inverse problem.
The FF of the AUT can then be computed from the resulting solution. (b) A simplified
illustration of a classical spherical NF measurement setup with a shared LO between the
TX and the RX, resulting in measured probe signals with full phase information.

probe signals, which are assumed to be acquired in the radiating NF of the AUT. Once the source
coefficients are known, the fields everywhere in space can be evaluated, including the FF.

Now that we have seen the general principle of NF antenna measurements and transformations in
Fig. 4.1(a), let us have a look at practical realizations of such measurements. Figure 4.1(b) illustrates
a classical spherical measurement setup with the core components of practical relevance, including
the transmitter (TX) and RX hardware, as well as a shared local oscillator (LO) providing a stable
phase reference to both of them. Commonly, NF antenna measurements are performed in the
controlled environment of an anechoic chamber. Such chambers are rooms enclosed by a metallic
shield, the inner walls of which are equipped with electromagnetic absorbers. The enclosing made
of highly conductive material prohibits disturbances from outside of the chamber to affect the fields
in the interior and vice-versa. The absorbers inside the chamber are placed on objects which could
potentially cause reflections and scattering disturbances during the measurement. This typically
includes the conducting walls, the floor and the ceiling, metal parts for mounting the AUT and the
probe, as well as other highly conductive objects belonging to the positioning systems. In this way,
radiators placed inside the chamber effectively experience a free-space environment, while external
disturbances are reduced to a minimum.

Other components indicated in Fig. 4.1(b) are mechanical parts for rotation of either the mounting
structures for the probe antenna or the AUT. Dependent on the desired measurement type, the
tangential fields of the AUT are acquired by the probe on a closed surface around the AUT. By
rotating the AUT around two axes, the probe can effectively be moved around and relative to the
AUT on a spherical surface. By rotating the probe around the𝜓 -axis, a second polarization can be
acquiredwith the same probe antenna. Aside these spherical measurements, other canonical surfaces
are commonly employed, like truncated planes or the lateral surface of cylinders. Measurements at
a single frequency are conducted by using a continuous wave signal at the TX feeding the AUT. At
any relative probe position, a vectorial RX acquires a complex-valued probe signal. Information
on the radiation behavior of the AUT within a broad range of frequencies is usually obtained
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4.2 Optimization Based Transformation with Full Phase Information

by changing the frequency of the continuous wave signal and repeating the measurement. At
the lower end of the operational frequency range, the performance of the chamber is dominated
by the size of the absorbers, with larger absorbers allowing lower frequencies to be measured
accurately. As indicated in Fig. 4.1(b), the transmitting and the receiving hardware commonly
share an LO for the generation of their internal clocks. In this way, there is a stable phase relation
between the transmitted and the received signals. Practical measurement setups may vary in the
way how TX and RX clocks are linked, but the principle remains the same so that TX and RX are
synchronized with each other. Breaking this synchronization results in loss of phase information,
yielding a phaseless NF measurement. Because of the necessity of a synchronization, the electronic
measurement devices, cables and mechanical components limit the highest usable frequency in an
anechoic chamber. As phase stability of cables, measurement devices and mechanical joints are
not relevant for the magnitude of the probe signal, phaseless measurements are often expected to
increase the usable frequency range of measurement setups. Note that all these components may
also suffer from magnitude instabilities which are, however, commonly assumed to have a minor
contribution to the overall error budged of the measurement setup. More information on the error
analysis of antenna NF measurement setups is for example provided in [Newell 1988; Pelland et al.
2013].

4.2 Optimization Based Transformation with Full Phase

Information

Let us leave the real-world measurement setup and come to the task of field transformation. As
we have seen in Chapter 2, the interactions between some radiating sources, e.g., the equivalent
sources of the AUT, and observers, e.g., equivalent sources of the probe antennas, can be described
by linear radiation operators. Thus, the problem of an NFFFT can be written in form of the linear
system of equations

A𝒛 = 𝒃 (4.1)

where the matrix A ∈ C𝑚 ×𝑛 describes the relation between unknown coefficients of the AUT
field representation 𝒛 ∈ C𝑛 × 1 and the measurement vector 𝒃 ∈ C𝑚 × 1. The latter is obtained by
one or more probes during𝑚 acquisitions in the NF of the AUT. The AUT FF can then directly be
computed as the FF of a solution to (4.1). However, a solution to (4.1) does only provide a correct
AUT representation once a sufficient number of measurements has been acquired. In this context,
this does not necessarily require 𝑛 ≤ 𝑚 and in fact 𝑛 > 𝑚 is often encountered in current based
representations of the AUT. Still, the number of measurements has to be larger or equal to the DoFs
of the AUT. In practice, a trade-off between the overall measurement timeÐ and thus cost Ð and the
number of acquisition points is made. In order to speed up the measurement process by reducing
the number of measurements, approaches based on the principles of compressed sensing [Donoho
2006; Foucart and Rauhut 2013] have been investigated for NF antenna measurements in recent
years [Cornelius et al. 2016; Larsson 2016].

While state of the art NFFFT algorithms utilizing fast implementations of the forward operator
A can efficiently solve (4.1) for large problems, e.g., see Section 2.2.5, the requirement of accu-
rately knowing the phase of the measured probe signal imposes a major challenge in NF antenna
measurements. Methods solely operating on the magnitude of the probe signal would allow the
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usage of cheaper phaseless measurement equipment and open up the field for NF measurements in
frequency regions where stable phase acquisition is not possible.
The purpose of this section is to illustrate the solution of field transformations with full phase

information before, in later chapters, incoherent measurement data is tackled.
A solution to (4.1) is commonly computed by applying any solver of quadratic linear systems of

equations to the normal equation

AHA𝒛 = AH𝒃 . (4.2)

Alternatively, one sometimes applies the normal equation of the form

AAH𝒛 = 𝒃 . (4.3)

The normal equations suffer from the squared condition number of the matrix A. However, solvers
like the generalized minimal residual (GMRES) [Saad and Schultz 1986] solver perform very well
even for ill-conditioned linear systems. A detailed discussion on which normal equation to choose
for the application in field transformation algorithms is available in [Kornprobst et al. 2021a].
An alternative to solving the normal equations (4.2) or (4.3), is to reformulate (4.1) as an opti-

mization problem. In accordance with the optimization framework of this thesis, we can try to
solve (3.67) with

A0 (𝒛) = A𝒛 and 𝒅0 = 𝒃, (4.4)

resulting in

𝜕A0 (𝒛)
𝜕𝒛

= A (4.5)

𝜕A0 (𝒛)
𝜕𝒛

= 0 (4.6)

(
𝜕A0 (𝒛)

𝜕𝒛

)H
= AH (4.7)

(
𝜕A0 (𝒛)

𝜕𝒛

)H
= 0. (4.8)

For reasons of simplicity, we may choose 𝑝OF,0 = 1 and 𝛼OF,0 = 1. Due to the convenient resulting
structure of the problem, an exact line search can be performed and the derivative in (3.68) is not
required. The optimal step length can be found by searching for 𝛼opt, for which

𝜕𝑓0
(
𝒙 + 𝛼opt𝒑

)
𝜕𝛼

= 0. (4.9)

We write

𝑓0 (𝒛′ = 𝒛 + 𝛼𝒑) = ∥A𝒛′ − 𝒃 ∥2 = (A𝒛′ − 𝑏)H (A𝒛′ − 𝑏)
= (A𝒛 + 𝛼A𝒑)H (A𝒛 + 𝛼A𝒑) − (A𝒛 + 𝛼A𝒑)H 𝒃 − 𝒃H (A𝒛 + 𝛼A𝒑) + 𝒃H𝒃
= 𝛼2

[
(A𝒑)H (A𝒑)

]
︸            ︷︷            ︸

𝑎

+ 𝛼
[
2Re

{
(A𝒛)H A𝒑 − 𝒃HA𝒑

}]
︸                              ︷︷                              ︸

𝑏

+
[
−2Re

{
(A𝒛)H 𝒃

}
(A𝒛)H (A𝒛) + 𝒃H𝒃

]
(4.10)
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which leads to

𝜕𝑓0 (𝒛 + 𝛼𝒑)
𝜕𝛼

= 2𝑎𝛼 + 𝑏 !
= 0 (4.11)

⇒ 𝛼opt = −
𝑏

2𝑎
, (4.12)

which always corresponds to a local minimum since

𝜕2 𝑓0
(
𝒛 + 𝛼opt𝒑

)
𝜕𝛼2

= 2𝑎 > 0 when A𝒑 ≠ 0. (4.13)

Now the optimization framework in Alg. 5 can be called with the quantities stated in (4.4) and
in (4.5) to (4.8). Instead of the iterative line search, the optimal step length in (4.12) can be utilized.

In order to evaluate the performance of field transformation algorithms in general, a few quantities
of interest have to be defined. Here, we will often consider the scale-invariant, complex NF deviation

𝜖𝑐 (A𝒛, 𝒃) = min
𝑐∈C

∥𝑐A𝒛 − 𝒃 ∥2
∥𝒃 ∥2

and 𝜖𝑐,dB (A𝒛, 𝒃) = 20 log10 (𝜖𝑐 (A𝒛, 𝒃)) . (4.14)

In most cases, only the pattern of A𝒛 is of importance and not its absolute scale. Therefore, we allow
the solution to exhibit an arbitrary complex scaling, which is compensated in (4.14) by the factor 𝑐 .
Especially in the case of phaseless transformations, the solution exhibits an arbitrary global phase
shift, which is also taken care of by the scaling 𝑐 . The optimal factor 𝑐 , for which the minimum is
attained in (4.14), is derived in Appendix A.2.
Aside the directly available NF deviation, we are interested in the resulting FF deviations at

various observation angles. Again, we are not interested in the absolute scaling or the absolute
phase of the fields, instead, only in the field distribution. Thus, we consider the vector-valued,
scale-invariant, complex relative field deviation

𝝐𝑐 (𝑬1, 𝑬0) =
|𝑐𝑬1 − 𝑬0 |
max ( |𝑬0 |)

, with 𝑐 = min
𝑐∈C

∥𝑐𝑬1 − 𝑬0∥2
∥𝑬0∥2

and 𝝐𝑐,dB (𝑬1, 𝑬0) = 20 log10 (𝝐𝑐 (𝑬1, 𝑬0)) (4.15)

defined between two vectors of field data, 𝑬1 and 𝑬0. The magnitude operators as well as the
divisions are performed element-wise. Unless explicitly mentioned differently, this relative error is
used in all plots of FFs whenever a łdeviationž or łerrorž is mentioned.

4.3 Numerical Comparison of Iterative Solvers

A brief comparison of the formulation (4.4) utilizing the optimization framework and common
solvers for linear systems of equations accessible in Matlab [Matlab 2021] is depicted in Fig. 4.2. The
complex NF deviation 𝜖𝑐 is readily available during the solution process inside the framework and
the relative residual of GMRES [Saad and Schultz 1986], the least squares (LSQR) [Paige and Saunders
1982] algorithm and the quasi-minimal residual (QMR) [Freund and Nachtigal 1991] method applied
to the normal system of equations in (4.3) is identical to 𝜖𝑐 . As a result, the performance of all
solvers can directly be compared in terms of the relative NF deviation. In Fig. 4.2(a), the convergence
behavior of the solvers is illustrated. The underlying transformation problem is that of a spherical
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Fig. 4.2 Comparison of formulation (4.4) to standard solvers in Matlab [Matlab 2021]. The linear
system corresponds to an NFFFT of a HF907 horn antenna at 18GHz, with 𝑛 = 2 × 104

unknowns and 𝑚 = 90 300 measurements. The computation was performed in single
precision on GPUs. All solvers start from a zero initial guess. GMRES and QMR were
applied to the normal system of equations in (4.3). (a) Convergence behavior of the solvers.
(b) FF of the HF907, transformed with the FIAFTA utilizing a form of GMRES and with the
dipole code using formulation (4.4).

NF measurement of an HF907 horn antenna [Rohde & Schwarz GmbH & Co. KG n.d.] at 18GHz.
At this frequency, the minimum sphere of the antenna roughly has a diameter of 18𝜆. No probe
correction was applied and the antenna was represented by Hertzian and Fitzgerald dipoles on a
spherical surface. For reasons of better conditioning, the fields radiated by the Fitzgerald dipoles
are weighted with the free-space wave impedance. The details of the NF measurement setup are
not of interest here, as all solvers have to work with the same linear forward operator. In total,
𝑛 = 2 × 104 unknowns and𝑚 = 90 300 measurement samples were utilized. The forward operator
was evaluated on four Nvidia GTX 1080 GPUs [Nvidia Corporation 2016b] in single precision. For
the developed solver based on the L-BFGS method, the number of stored vectors for approximating
second-order derivative information was set to 𝐿mem = 1 × 102. The solver based on A0 does not
converge as quickly as GMRES, however, can compete with the low-memory solvers LSQR and
QMR. As one can easily modify the solver to incorporate further regularization, e.g., sparsity via
ℓ1-regularization, the performance is rated as highly satisfactory.

Looking at the obtained FF, Fig. 4.2(b) depicts the dominant co-polar field component in the
plane with 𝜑 = 0◦. As a reference, the transformation result with the FIAFTA utilizing a GMRES
solver is added. The relative difference between the FFs is seen to be below −47 dBÐwhich is also
true for the complete, three-dimensional radiation characteristic. Given the fact that these are
transformations of noisy real-world measurements, the agreement is felt to be satisfactory.

The convergence behavior and the obtained FF for another example with 𝑛 = 6 471 756 and
𝑚 = 6 487 202 is depicted in Fig. 4.3. Electric and magnetic dipoles on an equilateral triangular
surface with an edge length of 554𝜆 are used to model a triple-reflector in a planar NF measurement
setup at 64GHz. The field samples were acquired at regularly distributed points on a measurement
plane in front of the reflector. The FF obtainable via the NFFFT has a limited valid region of roughly
±60◦ away from the main beam of the reflector. Again, the fields radiated by the Fitzgerald dipoles
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Fig. 4.3 Comparison of formulation (4.4) to standard solvers in Matlab [Matlab 2021]. The linear
system corresponds to an NFFFT of a triple reflector at 64GHz, with𝑛 = 6 471 756 unknowns.
The𝑚 = 6 487 202 measurements were acquired on a regularly sampled plane in front of the
reflector. The computation was performed in single precision on GPUs. All solvers start
from a zero initial guess. GMRES and QMR were applied to the normal system of equations
in (4.3). (a) Convergence behavior of the solvers. (b) FF of the reflector, obtained with a
MoM solver [Eibert 2007] and with the dipole code for NF data using formulation (4.4).

were scaled by the free-space wave impedance. As a reference, the FF directly computed via a MoM
solution [Eibert 2007] was used. The forward operators were evaluated in single precision on four
Nvidia GTX 1080 and the solver settings were identical to these in the previous example with the
HF907 antenna.
From the convergence curves in Fig. 4.3(a), we see a surprisingly similar behavior of all solvers,

potentially indicating a well conditioned forward operator.
In Fig. 4.3(b), the dominant field component in the plane with 𝜑 = 90◦ is depicted. Despite the

single-precision computations, the agreement with the MoM reference within the valid region is
fully satisfactory and the maximum relative error in this plane remains below −64 dB.

The transformation of the triple-reflector was repeated with measurements irregularly distributed
on a plane in front of the reflector, where random variations of at most 1/

√
2 𝜆 of the measurement

locations in normal direction of the plane occurred. The results are depicted in Fig. 4.4. Experience
shows that the irregular distribution of measurement points can worsen the performance of fast
hierarchical algorithms, e.g., with an MLFMM, for the evaluation of the radiation operators. For
the transformation based on dipoles, a similar performance is observed as in the regular case,
with comparable errors in the FF depicted in Fig. 4.4(b). All algorithms except GMRES exhibit an
almost identical behavior, where GMRES returns a negligibly worse result. In total, computation
times for formulation (4.4), GMRES, LSQR and QMR were 41 813 s, 41 997 s, 41 392 s and 82 827 s,
respectively. QMR seems to have performed twice the number of matrix-vector products, since it
assumes a rectangular but not Hermitian matrix, and thus did not take advantage of the fact that
the given normal matrix is Hermitian. In terms of memory consumption, formulation (4.4), GMRES,
LSQR and QMR required roughly 26.3GB, 20.5GB, 3.6GB and 4.5GB, respectively. The memory
consumption was logged via łlogman.exež under Windows 7 [Microsoft Corporation 2021], where
the łprivate bytesž of all Matlab processes were counted. The memory consumption was computed

57



4 Near-Field Far-Field Transformation with Phase Information

0 20 40 60 80 100
-52

-51

-50

-40

-30

-20

-10

0

Iterations

𝝐
𝑐
,d
B

A0

GMRES

LSQR

QMR

(a)

0 20 40 60
−80

−60

−40

−20

0

𝜗 in degree

� �

𝐸
𝜗
/
V
m

−
1
� �

in
d
B

MoM

A0

Difference

(b)

Fig. 4.4 Comparison of formulation (4.4) to standard solvers in Matlab [Matlab 2021]. The linear
system corresponds to an NFFFT of a triple reflector at 64GHz, with𝑛 = 6 471 756 unknowns.
The𝑚 = 6 487 202 measurements were acquired on an irregularly sampled plane (1/

√
2 𝜆

random distortions normal to the plane) in front of the reflector. The computation was
performed in single precision on GPUs. All solvers start from a zero initial guess. GMRES
and QMR were applied to the normal system of equations in (4.3). (a) Convergence behavior
of the solvers. (b) FF of the reflector, obtained with a MoM solver [Eibert 2007] and with
the dipole code for NF data using formulation (4.4).

as the maximum amount of private bytes occupied during the solution process minus the baseline
of memory consumption prior to each solver call. Note that the memory requirement of the L-BFGS
solver of the optimization framework used for formulation (4.4) can basically be adjusted and no
optimization of the framework in terms of memory has been performed. Since 𝐿mem = 1 × 102, the
L-BFGS solver has reached its maximum memory consumption at the 100th iteration, while GMRES
would continuously require more memory with further iterationsÐ until restarted. In addition, the
framework is fully implemented in Matlab, while GMRES, LSQR and QMR are called as C-functions
from Matlab.

Concluding RemarksÐField Transformation with Phase NFFFTs with full phase informa-
tion have evolved to useful and well established tools for antenna engineers. Full probe correction
and arbitrary measurement locations on irregular sampling grids are supported by various transfor-
mation algorithms. Since the problem formulation is linear, efficient methods for the solution of
linear systems are directly applicable and can handle the possible ill-conditioning of the forward
operators. Recently, considerable effort is put into the fast and flexible evaluation of the forward
operator, allowing to solve problems with billions of unknowns. In this respect, it is felt that
the topic of NFFFTs with full phase information has matured to a degree that the problem of a
transformation can generally be said to be solved, while fine details may be further improved on.
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Things get more interesting when the synchronization between TX and RX in Fig. 4.1(b) is removed.
As a consequence, the phase information in the measurement vector becomes unreliable and the
transformation from Chapter 4 can not be applied. There is a large manifold of applications in which
a synchronization is no longer possible or feasible. Reasons include that the AUT is some kind of
active antenna, where the TX hardware is integrated into the antenna geometry and does not feature
an additional interface for a reference signal. Typical examples of this case are measurements of
radiating systems as a whole, e.g., smartphones to which no external device can be connected.
Furthermore, synchronization of TX and RX becomes increasingly difficult at higher frequencies
and is a topic of active research at optical frequencies [Kudielka and Klaus 1999; Sunada et al. 2014;
Weiner et al. 2017; Ye et al. 2003]. Regardless of frequency, scalar measurement equipment, which
provides only power or magnitude information and no phase information, is generally far less
expensive than vectorial devices, which can capture phase and magnitude.
Mathematically, a phaseless NFFFT needs to find the solution to the inverse problem

|A𝒙 | = |𝒃 | , (5.1)

where |.| is taken element-wise. Equation (5.1) is known as the phase retrieval problem, which
has already received a lot of attention over the last decades, e.g., [Bauschke et al. 2002; Elser 2003;
Fienup 1982; Sun et al. 2018]. The antenna community has not been inactive and plenty of effort
was spent on investigations on phaseless NFFFTs in general, e.g., [Álvarez-Narciandi et al. 2021;
Bangun et al. 2019a,b; Breinbjerg and Alvarez 2019; Bucci et al. 1999; Isernia et al. 1996a; Pierri et al.
1999; Pierri and Moretta 2020; Schnattinger et al. 2014; Soldovieri et al. 2005; Wang et al. 2020b]. In
particular, phaseless NFFFTs with reference antennas [Berlt et al. 2020; Castaldi and Pinto 2000;
Laviada and Las-Heras 2013; Laviada Martinez et al. 2014; Sánchez and Castañer 2018; Sánchez
et al. 2020a,b], transformations exploiting multi-frequency data [Knapp et al. 2021; Paulus et al.
2020] or spatial derivatives [Paulus and Eibert 2020] have been performed. Sometimes specialized
probe antennas are employed [Costanzo et al. 2001, 2005; Costanzo and Di Massa 2001, 2008; Paulus
et al. 2017a,c; Sánchez et al. 2020a] or multiple measurement surfaces [Fuchs et al. 2020; Isernia
et al. 1996a; Las-Heras et al. 2020; Moretta and Pierri 2019; Razavi and Rahmat-Samii 2010; Schmidt
and Rahmat-Samii 2009; Varela et al. 2021, 2019; Yaccarino and Rahmat-Samii 1995, 1997, 1999],
which have, however, been reported to be less effective than particular probe antennas [Knapp et al.
2019a,b]. While most approaches rely on nonconvex retrieval algorithms, their convex alternatives
have also been employed for field transformations [Moretta and Pierri 2019; Paulus et al. 2017c].
Other than that, investigations in phaseless scattering [Costanzo and Lopez 2020; Estatico et al.

2020] and diagnostics of printed circuit boards [Wang et al. 2020a] have been conducted.
Before we dive deeper into the task of phase retrieval, let us become aware of the following

line of thought. Because of the more uniform and smaller spatial variations in the magnitude
of radiated fields compared to the distribution of the phase, it is often assumed that phaseless
field transformations are less sensitive to measurement inaccuracies due to the omission of phase
information. In reality, however, the opposite seems more reasonable. The sharp and rapid changes
in the phase of the field impose strong restrictions and imply a large information content. In various
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5 Phaseless Near-Field Far-Field Transformation

investigations it has been observed that probe antennas with rapidly varying radiation patterns
are particularly suited for phaseless measurements, see for example the treatment of special probe
antennas in later sections of this work. One possible explanation could be that highly sensitive
probe antennas allow mapping of the non-measurable phase to strongly varying magnitude signals,
again providing large information content. However, to obtain reliable data with such probes, their
position and radiation characteristic must be precisely known. Essentially, one should keep in mind
that disregarding phase information does not allow for free lunch [Macready and Wolpert 1996;
Wolpert and Macready 1997].

The content of this chapter is organized as follows. First, the topics of uniqueness and sampling
complexity in the scope of phase retrieval are briefly introduced in Sections 5.1 and 5.2, providing
a rudimentary overview of relevant literature and existing approaches. Things get practical in
Section 5.3, where methods for the estimation of an initial guess for phase retrieval are reviewed
and tested. Proper starting points are essential for nonconvex phase retrieval methods and are
often assumed for convergence proofs and guarantees of sampling complexities of reconstruction
algorithms. With decent initialization techniques in our toolbox, Section 5.4 provides a comprehen-
sive collection of nonconvex phase retrieval algorithms, all of which can be easily implemented
via the earlier described optimization framework or in even simpler form. In Section 5.5, existing
convex phase retrieval methods, which are less prone to inaccurate initial guesses, are discussed
and utilized. At their core, most of the convex techniques rely on semidefinite relaxations applied to
formulations derived via bilinear forms. As shown in Section 5.6, an exact and linear representation
of the phase retrieval problems is possible employing these bilinear forms, however, leading to the
worst possible sampling complexity of any phase retrieval algorithm. Nevertheless, a simplistic
implementation of this direct and exact phase retrieval algorithm closes the chapter.

Motivating RemarksÐPhase Retrieval for Antenna Field Transformations With plenty of
research activity focused on the simple-looking nonlinear system of equations in (5.1) for more
than four decades, one might expect that the problem has already been solved. Surprisingly, this is
not the case in the field of computational electromagnetics, although there are certain applications
for which satisfactory solutions exist. One important point to mention is that the difficulty of
phase retrieval depends primarily on the measurement matrix A, which itself commonly models
an underlying physical process. This data dependency will become more clear in the following
chapters and sections.

5.1 Uniqueness of Phase Retrieval

The question of uniqueness regarding the phase retrieval problem is a research topic of its own,
e.g., see [Bendory et al. 2017; Devaney and Chidlaw 1978; Ji et al. 2019; Seldin and Fienup 1990].
Essentially, the task is to determine the smallest number of measurementsÐ assuming a certain
measurement typeÐ for which there exists an injective mapping between the measurement mag-
nitudes and the phases to be reconstructed. Be aware that for certain measurement models no
uniqueness proof exists at all Ð independent from the number of measurementsÐ and that trivial
ambiguities may persist. Lending to the historical roots of the phase retrieval problem, uniqueness
was first considered in the field of optics, where the forward operator most often consists of a
Fourier transformation [Lane et al. 1987]. Thus, there are plenty of results for the case of Fourier
measurements showing that one-dimensional phase retrieval of these measurements suffers from
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ambiguities that can be resolved only if at least one dimension is added [Bates 1982], e.g., for
phase retrieval of two-dimensional signals such as images, uniqueness can be achieved. More
recently, it has been shown that slight modifications of the one-dimensional Fourier phase retrieval
problem also ensure uniqueness [Huang et al. 2016]. Since the question of uniqueness at its core
depends on the particular forward operator, there are very few statements on when the problem
is uniquely posed in the field of antenna measurements. In [Razavi and Rahmat-Samii 2008] it is
claimed that planar NF measurements on a single plane are likely to result in a unique solution,
while measurements on two-planes are extremely likely to result in a unique solution. Regarding
FF measurements, [Inan and Diaz 2011] shows that uniqueness can be achieved by performing
at least two sets of measurements differing by a quadratic phase function. For data consisting
of generic frames, the information theoretic limit of measurements required for uniqueness is
given by𝑚 ≥ 4𝑛 − 4 and𝑚 ≥ 2𝑛 − 1 in the complex and real case, respectively [Balan et al. 2006;
Bandeira et al. 2013; Bodmann and Hammen 2015; Conca et al. 2015]. Note that in [Balan et al.
2006]𝑚 ≥ 4𝑛 − 2 is claimed to be a sufficient bound for the complex-valued case. Generic frames
simply represent a redundant system of vectors in a Hilbert space. In practical applications, these
lower bounds are rarely reached, nonetheless they are often used as a rule of thumb for the required
number of measurements. Thus, it is expected that for the real-valued case,𝑚/𝑛 ≥ 2 yields a łhighž
chance of success for certain algorithms, while𝑚/𝑛 ≥ 4 is frequently regarded to be suitable for
the complex-valued case. Again, these rules of thumb can fail if the measurement data is strongly
different from that of a random process, e.g., if the data exhibits structure, as it is the case with
NF antenna measurements. Uniqueness can also be investigated by looking at the occurrence of
stationary points in nonconvex phase retrieval formulationsÐ once only a single minimum remains,
the problem has become convex and potentially unique. The existence of stationary points has
been investigated thoroughly, e.g., see [Isernia et al. 1996b; Pierri and Moretta 2020; Soldovieri et al.
2005; Sun et al. 2018], and will briefly be touched upon later.

Concluding RemarksÐUnique Phase Retrieval Uniqueness proofs for phase retrieval only
exist for a few data models, where for complex-valued generic frames𝑚 ≥ 4𝑛 − 4 was shown to
ensure a unique solution. This threshold may be taken as a rule of thumb, however, in practice,
more measurements are recommended when working with NF antenna data. Limited by a finite
measurement accuracy, the main task in many real-world applications remains to be the determina-
tion of a sufficiently accurate solution, something that is, to a certain degree, possible even in the
presence of ambiguous solutions.

5.2 Sampling Complexity

The term sampling complexity refers to a commonly used metric for comparing phase retrieval
algorithms. Recent publications on the topic of phase retrieval often state proofs for the correct
convergence of their algorithms. However, in order to prove convergence, mathematicians have
mainly relied on simple data models, for example that of normally distributed forward matrices.
Based on this data model, a condition can be imposed on the ratio of the number of measurements
to unknowns, 𝑚/𝑛, so that the algorithms are able to find the correct solution. In this context,
the sampling complexity describes the required number of measurements in a Bachmann-Landau
notation. Since O (𝑛) measurements (rows) are required for the solution of a linear system of
equations (with full phase), this linear sampling complexity is the ideal lower information theoretic
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5 Phaseless Near-Field Far-Field Transformation

limit of all phase retrieval algorithms. This bound is said to be achieved by some existing convex
and nonconvex algorithms. Still, it should be noted that even if an algorithm is claimed to feature a
linear sampling complexity, this behavior may not be observed for data with different structure,
i.e., if the forward operator is not normally distributed. Also, often an appropriate initialization
technique is assumed, which itself may only be proven to work well with Gaussian data. These are
the main reasons why claims of superior sampling complexities should be taken with a pinch of salt,
and why considerable effort is being spent on trying to generalize the statements valid for Gaussian
data to that of different structures [Gross et al. 2015]. On the other side, and as will be shown in
Section 5.6, a complexity of O(𝑛2) is the worst possible case. All information about the problem is
available within O(𝑛2) measurements. Any algorithm featuring a higher sampling complexity is
guaranteed to be doing something wrong. Furthermore, investigations on the geometric structure of
the phase retrieval problem have revealed that in the case of Gaussian data and for𝑚 ≥ O(𝑛 log3𝑛),
phase retrieval itself behaves with high probability like a convex problem [Sun et al. 2018]. At the
risk of pointing out the obvious, the reader is reminded that any superlinear sampling complexity
will sooner or later lead to excessive measurement effort when tackling problems of increasing size.

When exploiting prior knowledge on the phase retrieval problem at hand, e.g., sparsity on the
solution vector, even lower sampling complexities can be achieved, for example see [Netrapalli
et al. 2015]. Here, we do not further investigate sparsity promoting methods [Baechler et al. 2019;
Jaganathan et al. 2013; Pauwels et al. 2018; Qiu and Palomar 2017; Shechtman et al. 2014; Wang
et al. 2018c] since they can only be applied to phaseless NFFFTs in rare cases.

A summary of the sampling complexities of common phase retrieval algorithms is given in
Tab. 5.1. The list is far from complete and shall only give a brief impression of the proven, or
sometimes claimed, sampling complexities. Keep in mind that the complexities stated here are all
based on normally distributed data. Algorithms with the same sampling complexities in Tab. 5.1
may exhibit a different behavior for real-world data.

Concluding RemarksÐSampling Complexity The sampling complexity is a widely used
metric for comparing phase retrieval algorithms. Utilizing the Bachmann-Landau notation, the
sampling complexity states how many measurement samples, dependent on the number of un-
knowns, are required for a specific algorithm to provably converge to the correct solution. Similar
to the discussion on the uniqueness of phase retrieval, particular data modelsÐ often normally
distributed dataÐ are assumed in most proofs, which drastically reduces the significance of claimed
complexities when encountering different kinds of data. In particular, the practitioner may remain
skeptical about the reliability of these statements when working with phaseless NFFFTs and is well
advised to acquire more measurement samples than predicted by complexity considerations.

5.3 Spectral Initializers for Phase Retrieval

Nonconvex optimization methods heavily rely on a proper starting point. The closer this initial
guess 𝒛i is to the true solution 𝒛tÐ ideally within its basin of attractionÐ , the fewer iterations are
required until convergence and the lower the chance of getting trapped in a local stationary point
during the optimization process. Thus, most publications which present new nonconvex phase
retrieval algorithms require the starting point to be in the proximity of the true solution in order
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Tab. 5.1 Phase retrieval algorithms and claimed sampling complexitiesÐ for complex-valued nor-
mally distributed data.

Algorithm Sampling complexity Behavior
PhaseLift
[Candès et al. 2013]

O(𝑛 log𝑛) / O(𝑛)
[Candès and Li 2014; Candès et al. 2013]

convex

PhaseCut
[Waldspurger et al. 2015]

O(𝑛)1
[Mroueh and Rosasco 2014]

convex

PhaseMax
[Goldstein and Studer 2018]

O(𝑛)2
[Goldstein and Studer 2018]

convex

AltMinPhase
[Netrapalli et al. 2015]

O(𝑛 log3𝑛)
[Netrapalli et al. 2015]

nonconvex

Wirtinger flow
[Candès et al. 2015b]

O(𝑛 log𝑛)
[Candès et al. 2015b]

nonconvex

Truncated Wirt. flow3

[Chen and Candès 2017]
O(𝑛)
[Chen and Candès 2017]

nonconvex

1 ClaimedÐproof is not found in [Mroueh and Rosasco 2014] and [Waldspurger et al.
2015].

2 Assuming a constant angle between the anchor vector and the true solution.
3 Same holds for variants [Luo et al. 2020; Pinilla et al. 2018; Wang et al. 2017, 2018a;
Yuan and Wang 2017; Zhang and Liang 2016; Zhang et al. 2017].

to prove convergence properties of their algorithms. In this context, the closeness between two
solution vectors is commonly described in terms of the cosine similarity, which is briefly introduced.

This section starts by recapitulating the concept of spectral initializers, a popular class of algo-
rithms for the generation of initial guesses for phase retrieval. Due to the large supply of existing
spectral methods, which often feature minor deviations among each other, only the equations
for and discussion of a potentially small selection of techniques is provided here. Most effort is
spent on empirical performance analyses of the methods for random normally distributed data and
NF antenna data. Since phase retrieval is known to perform better for randomly distributed data
than for more realistic data models, similar behavior is expected for initialization techniques. In
fact, the discrepancies in real-world performance have already led to first theoretical analyses of
partial orthogonal matricesÐ in contrast to random normally distributed matricesÐ in the context
of phaseless initialization methods [Dudeja et al. 2020].

Spectral initialization methods all share a common concept. The initial guess is given by the
eigenvector corresponding to the largest eigenvalue of a particular matrix. Variation among the
techniques is mainly limited to the form of the relevant matrix, of which the basic structure is given
by

Y (𝒕) = 1
𝑚
AHdiag (𝒕) A, Y ∈ C𝑛 ×𝑛 (5.2)

and which depends on the vector 𝒕 ∈ R𝑚 × 1.
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5 Phaseless Near-Field Far-Field Transformation

The most prominent method, called the spectral initialization, was introduced in [Candès et al.
2015b] and is based on

𝒕spec = |𝒃 |2 . (5.3)

Soon, various alternatives of this spectral method were proposed, e.g., the optimal spectral

initialization [Luo et al. 2019; Mondelli and Montanari 2019] with

𝒕opt =
|𝒃 |2 − 1

|𝒃 |2 − 1 +
√︁

𝑚
𝑛

. (5.4)

The division in (5.4) is performed element-wise for every entry of the squared-magnitude vector
|𝒃 |2. Note that there is one particular condition for (5.4) to be working as intended by its creators,
namely that mean( |𝒃 |2) = 1. By scaling the measurement vector before applying the initialization
method, this condition can always be fulfilled.

Initially designed for isometric matrices, the null initialization [Chen et al. 2018; Liu et al. 2018]
requires computation of the eigenvector corresponding to the smallest eigenvalue of (5.2), with

[𝒕nu]𝑖 =
{
0 | [𝒃]𝑖 | ≥ 𝑏nu

1 else
, (5.5)

which removes the influence of all measurements with magnitudes above a certain threshold.
According to [Chen et al. 2018], this is equivalent to finding the eigenvector to the largest eigenvalue
for the complementary set, i.e., of the set where all | [𝒃]𝑖 | < 𝑏nu are set to zero. Furthermore, the
method can be applied to non-isometric matrices by performing the QR-decomposition of A and
applying the null initialization on Q, yielding 𝒛′nu and obtaining the initial guess by 𝒛nu = R−1𝒛′nu.
In this thesis, the null initialization is realized by determining the eigenvector corresponding
to the largest eigenvalue of (5.2) with the complementary definition to (5.5). As matrices being
nonisometric by nature are investigated, the QR-decomposition is applied. As done in the original
paper, the threshold 𝑏nu = median ( |𝒃 |) is chosen such that half of the measurements are filtered out.
Algorithm 6 illustrates the procedure based on an implementation via power iterations [Leon 2015;
Mises and Pollaczek-Geiringer 1929]. For reasons of reduced computational effort and complexity,
results without the QR-decomposition will partially be reported, as well as results obtained via the
implementation taken from [Chandra et al. 2019, 2017]. In any case, the particular implementation
at hand will be explicitly mentioned.

A truncated initializer was proposed in [Wang et al. 2018a] via

[𝒕tr]𝑖 =
{
1 | [𝒃]𝑖 | ≥ 𝑏tr

0 else
, (5.6)

where we here choose 𝑏tr such that 1/6 of all available measurements are considered and the rest
is dropped. It can be seen that this formulation corresponds to the claimed dual of (5.5), except
that no isometric matrix is required. Accordingly, one can expect the null initialization, to a certain
degree, to also work with nonisometric matrices and without applying the QR-decomposition.
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Algorithm 6 Null initialization with QR-decomposition
𝒛i = NULL (A, |𝒃 | , 𝑏nu, 𝑘it)

Input: forward operator A, measurements
|𝒃 |, threshold 𝑏nu, iterations 𝑘it

Output: 𝒛i, with |A𝒛i |
!≈ |𝒃 |

1: ∀𝑖 ∈ {1, ...,𝑚}, [𝒕]𝑖 =
{
1 | [𝒃]𝑖 | ≥ 𝑏nu

0 else
2: QR = A

3: V = QHdiag (𝒕)Q
4: PR = RR−1

5: 𝒛i ∼ CN (0, 1)
6: 𝒛i = R𝒛i
7: while 𝑘 ≤ 𝑘it do

8: 𝒛i = V𝒛i
9: 𝒛i = PR𝒛i
10: 𝒛i = 𝒛i/∥𝒛i∥
11: end while

12: 𝒛i = QHdiag ( |𝒃 |) e j∠ (Q𝒛i )
13: return 𝒛i = R−1𝒛i

Lastly, we consider the weighted initialization [Wang et al. 2018b] with

[𝒕w]𝑖 =
{
| [𝒃]𝑖 |𝛾w | [𝒃]𝑖 | ≥ 𝑏w

0 else
, (5.7)

which only considers a subset of the measurements with the largest magnitude and weights them
with the exponent 𝛾w, which we here set, in agreement with the original publication, as 𝛾w = 0.5.
Furthermore, the following results are based on picking only the largest 23% of the measurements.

Numerical Analysis of Spectral Methods

Figure 5.1(a) illustrates the importance of a proper initialization when performing phase retrieval
via a nonconvex algorithm. For a fixed oversampling ratio of𝑚/𝑛 = 4, the number of unknowns
𝑛 was swept and the chance of a successful phase reconstruction was computed. The forward
operator and the solution vector were randomly picked from a complex-valued normal distribution.
In the range of 𝑛 ∈ {2, ..., 1 × 103} and 𝑛 ∈ {1001, ..., 1 × 104}, the reconstruction was performed
5 × 103 and 5 × 102 times, respectively. The number of trials for larger 𝑛 was reduced in order to
keep the overall computation time reasonable. Success was declared once an error in (4.14) of below
−45 dB was achieved. At most 5× 103 iterations of a nonconvex solver (see formulation (5.16) in the
next section) were performed. The curves depicted show the chance of a successful reconstruction
when starting from a randomly drawn initial guess and one based on (5.3). For a fixed sampling
ratio, the spectral method ensures a decent initial guess up to a larger problem dimension than is
the case for a random starting point. Nevertheless, the improvement does not completely remove
the dependency on the problem dimension, so that the success rate drops for 𝑛 close to 1 × 104.
The results in Fig. 5.1(a) can be explained by looking at the quality of the initial guesses. One

indicator for this is the scale-invariant, complex NF deviation associated with the initial guess
𝜖𝑐 (A𝒛i, 𝒃) as given in (4.14). Alternatively, the cosine similarity

𝜒 (𝒙,𝒚) =
Re

{
𝒙H𝒚

}
∥𝒙 ∥ ∥𝒚∥ , (5.8)
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Fig. 5.1 The effect of the initial guess on the task of phase retrieval for a nonconvex algorithm
and a fixed𝑚/𝑛 = 4, for complex-valued normally distributed measurement matrices and
solution vectors. In both plots, 5 × 103 runs were performed up to 𝑛 = 1 × 103 and 5 × 102
repetitions have been performed for 𝑛 > 1 × 103. (a) Success rate when starting from
a random initial guess and one generated via the spectral method in (5.3). Success was
declared once 𝜖𝑐,dB ≤ −45 dB. (b) Mean values (before the logarithm is applied) of the
cosine similarity and the complex NF deviation. The cosine similarity and the complex NF
deviation are computed for the initial guess as 𝜒𝑐 (𝒛i, 𝒛t) and 𝜖𝑐 (A𝒛i, 𝒃).

defined for two complex-valued vectors 𝒙 and 𝒚, can be considered. Arbitrary global phase shifts
are accounted for when considering

𝜒𝑐 (𝒙,𝒚) = max
𝑐∈C
|𝜒 (𝑐𝒙,𝒚) | =

��𝒙H𝒚
��

∥𝒙 ∥ ∥𝒚∥ . (5.9)

The cosine similarity represents the angle spanned by two vectors in the form of ∠(𝒙,𝒚) =

acos(𝜒 (𝒙,𝒚)). Commonly, we assume that the ideal initial guess is collinear to the true solu-
tion, yielding 𝜒 = 1. In our application, 𝜒𝑐 is expected to represent the more honest and easy-to-use
metric and will mainly be applied throughout this work.

Figure 5.1(b) depicts the quality of the initial guess, drawn randomly and generated via (5.3). In
the range of 𝑛 ∈ {2, ..., 1 × 103} and 𝑛 ∈ {1001, ..., 1 × 104}, initial guesses in 5 × 103 and 5 × 102
cases were investigated, respectively. The curves depict the average values of the respective figures
of merit. It is clear that the larger the problem dimension, the less likely do two random vectors
point into a similar direction. Thus, deciding for a random initial guess results in a larger distance
to the correct solution, eventually leading to a worse performance for nonconvex phase retrieval
algorithms. The spectral method in (5.3) achieves a less steep decrease of the cosine similarity as
well as a slower increase of the NF deviation for larger problem sizes.

As will be evident from further investigations, the assumption of randomly distributed measure-
ment matrices often leads to phase retrieval problems that are easier to solve than those encountered
with real-world NF antenna data. It can not be stressed sufficiently that forward operators belonging
to field transformations are unlikely to exhibit the random structure of Gaussian measurement
matrices. While the results in Fig. 5.1 are based on random data, Fig. 5.2(b) depicts the performance
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of initialization methods for data stemming from a synthetic NF measurement setup. The imple-
mentation of the methods was taken from the PhasePack library [Chandra et al. 2019, 2017]. Three
implementation variants were investigated for the null initialization. One is based on the computa-
tion of the smallest eigenvalue without any QR-decomposition, was taken directly from [Chandra
et al. 2019, 2017] and is drawn with a dotted line in the figures. An alternative implementation
is based on Alg. 6 with 𝑘it = 1 × 102 iterations, which computes the largest eigenvalue via power
iterations and employs the QR-decomposition (solid line). Results for the latter implementation
without the QR-decomposition have been added and are drawn with dashed lines. In this setup,
the AUT is represented by a spherical vector wave expansion with 𝑁0 = 15, leading to 𝑛 = 𝐽 = 510

coefficients. For each ratio of𝑚/𝑛, 1× 103 repetitions with randomly drawn 𝒛t have been conducted.
The measurement vectors consist of the magnitude of the tangential field components of the electric
field acquired on a spherical surface with radius 2𝜆. The sampling locations of the electric field are
almost uniformly distributed on the sphere via a Fibonacci mapping [Keinert et al. 2015]. Comparing
results for this rather realistic setup with those obtained for random measurement matrices in
Fig. 5.2(a), notable differences can be observed. While all methods are able to obtain a better initial
guess when adding more random measurements in Fig. 5.2(a), the improvement in Fig. 5.2(b) is
less pronounced and the overall achievable cosine similarity is lower. Leaving aside the various
implementations of the null initialization, one can see that in the case of NF data the variations
among the initializers are less pronounced than in the case of random data. For both data structures,
the optimal spectral method can be said to perform best. Among the null initialization methods, the
one employing the QR-decomposition and computing the largest eigenvalue is the best for random
data, while dropping the decomposition seems to be favorable in case of NF data1. It should be kept
in mind that the results in Fig. 5.2 are merely a snapshot for a single fixed problem dimension of
𝑛 = 510.

How do these methods behave for NF data when the number of unknowns increases? Figure 5.3(b)
gives an impression of what to expect. Spherical vector wave functions were used to generate
NF data on a spherical surface, now with a rather large radius of 14𝜆 to ensure measurements
of the radiating and not of the reactive NF. Again, an almost uniform sampling via a Fibonacci
mapping [Keinert et al. 2015] was utilized to distribute the locations where the tangential electric
field was acquired. For all values of𝑛, 1×102 repetitions for randomly drawn 𝒛t have been performed
and the average of the cosine similarity 𝜒𝑐 (𝒛i, 𝒛t) was evaluated. The oversampling ratio was fixed
at 𝑚/𝑛 = 4. As previously, the implementation of the methods was taken from the PhasePack
library [Chandra et al. 2019, 2017], and the implementations of the null initialization based on
Alg. 6 were added. Comparing the resulting curves with those obtained with the spectral method
in (5.3) for random data in Fig. 5.1(b) and in Fig. 5.3(a), a drastically worse performance is observed.
While in Figs. 5.1(b) and 5.3(a) the spectral method achieves a less steep slope up to 𝑛 ≈ 1 × 103,
the initialization methods applied to NF data exhibit the same downward trend as a random initial
guess in Fig. 5.3(b). Also, there seems to be no clear winner among the initializers for NF data, as

1The results obtained via the implementation from PhasePack (dotted lines), based on computing the smallest eigenvalue
and not applying the QR-decomposition, are not identical to that of the complementary approach (dashed lines).
Based on the theory of the null initialization, the latter two formulations should yield identical results, at least
for isometric matrices. Since both approaches do not employ the QR-decomposition and are based on different
algorithms for the computation of the largest and smallest eigenvalues, identical results are not to be expected
in this context. However, based on extensive empirical studies, the author was not able to reproduce the claimed
correspondence between the smallest eigenvector and the largest eigenvector for the complementary condition
in (5.5), even for isometric matrices and employing identical methods for the computation of the eigenvectors. The
author recommends to utilize one of the other spectral methods in practice.
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Fig. 5.2 Average cosine similarity achieved with various initialization methods [Chandra et al. 2019,
2017]. For the null initialization, the implementation from [Chandra et al. 2019, 2017] via
the smallest eigenvalue (without QR) (dotted) and the implementation based on the largest
eigenvalue according to Alg. 6, with (solid) and without (dashed) QR-decomposition, have
been employed. With 𝑛 = 510, each ratio of𝑚/𝑛 was simulated 1× 103 times with randomly
drawn 𝒛t. (a) Complex-valued normally distributed data. (b) For data from a synthetic
spherical NF measurement setup with a vector spherical wave expansion with 𝑁0 = 15,
resulting in 𝐽 = 510 = 𝑛. The tangential electric field is sampled on a spherical surface with
radius 2𝜆 at locations computed via a Fibonacci mapping [Keinert et al. 2015].

one method superior at fewer unknowns may be outperformed by another approach for larger
𝑛. Only the null initializer taken from PhasePack seems to be rather inappropriate for NF data in
general and should be avoided. For random data, the optimal spectral method is observed to be the
best choice, as seen in Fig. 5.3(a). Note that the null initialization employing the QR-decomposition
was only applied up to 𝑛 = 1 × 103 as the computational burden was too large to compute results
for more unknowns within a feasible amount of time.

As a final test, the initialization methods were applied to NF data of AUTs of medium and large
electrical size. The results are summarized in Tab. 5.2. Besides the spectral methods discussed, initial
guesses were computed by solving the linear system of equations assuming a zero phase of the
measurement vector and the resulting cosine similarity is reported in the last column of the table.
For all datasets, the solution of an NFFFT with full phase information was considered as the true
solution vector 𝒛t. Note that dependent on the equivalent source representation, the solution vector
may not be unique. Thus, the cosine similarity of the radiated fieldsÐnot of the solution vectors
themselvesÐ is used as a figure of merit. Unless otherwise mentioned, the null initialization has
been applied via Alg. 6 with 𝑘it = 1 × 102 power iterations and 𝑏nu = median( |𝒃 |). In most of the
cases, the spectral methods are observed to perform similar, however, the original method in (5.3)
is seen to exhibit the most consistent performance. At the expense of a larger computational effort,
solving the linear system with a zero phase guess outperforms the spectral methods in all except
one of the considered scenarios.
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Tab. 5.2 Cosine similarity log10𝜒𝑐 (A𝒛i,A𝒛t) obtained with initializers applied to NF data.

Dataset (5.3) (5.4) (5.5) (5.6) (5.7) Random A−1 |𝒃 |
HF9071 −0.59 −0.59 −0.794 −0.59 −0.59 −2.40 −0.80
QYAGI12 −0.25 −0.23 −0.72 −0.43 −0.27 −1.29 −0.08
HORNAR3 −1.70 −1.55 −1.58 −1.86 −1.73 −2.07 −0.12
LOGPER5 −1.03 −1.62 −0.98 −0.80 −1.46 −1.63 −0.58

LOGPERLCs5 −0.89 −1.27 −0.98 −1.32 −1.20 −1.45 −0.49
REFL6 −0.52 −5.20 −0.74 −5.41 −6.34 −0.70 −0.47

REFLLCs6 −6.6 × 10−3 −6.5 × 10−3 −1.7 × 10−2 −6.3 × 10−3 −6.3 × 10−3 −5.1 × 10−2 −2.7 × 10−3

1 Spherical NF measurement setup, 𝑛 = 20 × 103,𝑚 = 90.3 × 103, also see description of
Fig. 4.2.

2 Synthetic NF data from a CST simulation [3DS Simulia 2019] of a planar quasi-Yagi
antenna [Kaneda et al. 2002; Qian et al. 1999]. NF samples on sphere of radius
2𝜆 at 10GHz, according to a Fibonacci mapping. Minimum sphere radius of the
AUT ≈ 0.83𝜆. Equivalent sources: Hertzian and Fitzgerald dipoles, 𝑛 = 2 × 103.
Measurements: 𝑚 = 1 × 104. For more information, see Fig. 5.15 and the related
discussion.

3 Planar synthetic NF data from a Feko simulation [Altair Engineering Inc. 2018] of
a 2D horn-antenna array (4 × 4). NF data on two planes was acquired. Equivalent
sources: Hertzian dipoles, 𝑛 = 795. Measurements:𝑚 = 3 × 104. For more details, see
Fig. 5.16 and the description thereof.

4 Determined the largest eigenvector (via the power method) without applying the
QR-decomposition.

5 Simulated NF data of a logarithmic-periodic dipole antenna at 60MHz, with𝑚 = 2790

magnitudes and 𝑛 = 646 spherical vector wave functions. More details can be found
in Fig. 6.6 and the description thereof. For the łLCsž-case, available knowledge of
partial coherence is added in the form of LCs, resulting in𝑚 = 6510.

6 Simulated planar NF data of a reflector antenna fed by a Hertzian dipole at 500MHz,
with𝑚 = 5004 magnitudes and 𝑛 = 1000 unknown Hertzian dipoles. More details can
be found in the caption and the discussion of Fig. 6.5. The phase differences among
sub-sets of the measurements are incorporated for the łLCsž-case via additional rows
in the forward operator, resulting in𝑚 = 15 004.
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Fig. 5.3 Average of the cosine similarity 𝜒𝑐 (𝒛i, 𝒛t) for 𝑚/𝑛 = 4. For each number of unknowns
𝑛 ∈ {2, ..., 1 × 104}, 1 × 102 runs with randomly drawn 𝒛t were performed. (a) Based on
complex-valued normally distributed data. (b) For NF data similar to that used in Fig. 5.2b,
with a measurement radius of 14𝜆. Implementations of the methods are taken from [Chandra
et al. 2019, 2017]. For the null initialization, the implementation from [Chandra et al. 2019,
2017] via the smallest eigenvalue (withoutQR) (dotted) and the implementation based on the
largest eigenvalue according to Alg. 6, with (solid) and without (dashed) QR-decomposition,
have been employed.

Concluding RemarksÐ Initialization Methods In parallel to the development of the vast
amount of existing nonconvex phase retrieval algorithms, a manifold of methods for the generation
of a proper starting solution has been proposed. Often, the convergence guarantees for new retrieval
algorithms are linked to the availability of an initial guess in the proximity of the true solution,
e.g., within its convergence basin. In line with the derivation of conditions for uniqueness and
sampling complexity, the quality of initializers is mainly ensured for random normally distributed
data. Since typical NF antenna data does not fit to the assumption of randomly distributed data,
drastic discrepancies in the performance of the considered spectral initializations has been observed.
For random data, the investigated algorithms are able to provide starting solutions that are in the
proximity of the true solution, almost independent from the problem dimensions. Changing the
data model to that of NF antenna measurements, the same methods return initial guesses that are
only slightly better than starting from random solutions. With increasing problem dimensions,
the quality of the starting solution further deteriorates, rendering the approaches almost useless.
Based on these first impressions, the task of phase retrieval for the application in phaseless field
transformation algorithms is expected to remain a challenging task.

5.4 Nonconvex Phaseless Solvers

The phase retrieval problem in (5.1) can be tackled in various ways and the approaches are commonly
differentiated in terms of convex and nonconvex algorithms. For the latter class in particular, a
variety of formulations exists, e.g., [Cai et al. 2019; Candès et al. 2015b; Chen et al. 2018; Fienup
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1982; Gerchberg and Saxton 1972; Netrapalli et al. 2015; Pinilla et al. 2018; Wang et al. 2017, 2018b;
Zhang and Liang 2016].

For reasons of completeness and due to its remarkable simplicity and widespread use, the
algorithm by Gerchberg and Saxton [Gerchberg and Saxton 1972], which was later generalized
by Fienup [Fienup 1982], is reviewed in the following. Their work can be seen as one of the
earliest methods to reconstruct phase distributions iteratively and which is applicable to phase
reconstruction with arbitrary forward operators A. Afterwards, the optimization framework of
Section 3.4 is employed to derive a manifold of potential phase retrieval algorithms. The methods
are compared for random normally distributed and synthetic NF data and, where applicable, the
influence of parameter values is investigated. It should be mentioned that some of the discussed
algorithms bear similarities with the Wirtinger Flow algorithm [Candès et al. 2015b], which,
although not being the first of its kind, e.g., see [Schnattinger et al. 2014], is one of the most
prominent representatives of nonconvex phase retrieval algorithms based on the Wirtinger calculus
and employing a gradient descent optimization.

5.4.1 The Gerchberg-Saxton Algorithm

In their original paper [Gerchberg and Saxton 1972], Gerchberg and Saxton describe an iterative,
projection-based phase retrieval procedure for the determination of phase distributions from image
and diffraction plane pictures. This problem is highly related to the general problem of phase
retrieval in (5.1), however, features a small difference, namely that not only information about the
magnitudes in the measurement domain, i.e., |𝒃 |, but also about the coefficients |𝒛 | in the source
domain is available. The method can easily be modified to exclude knowledge of |𝒛 |, as shown in
the following. Also caused by the nature of their application, the relevant forward operator in the
original publication was taken to be a Fourier transform. Here, we consider a more general form
with arbitrary matrices.

The Gerchberg-Saxton algorithm is based on repeatedly projecting a phase distribution, either in
the source or the observation domain, to the respective other domain, enforcing the knowledge
of the magnitudes, back-projecting to the original domain and again enforcing the knowledge of
magnitudes in that domain. The unknowns in this process can either be defined in the source or in
the observation domain. In either case, the complementary quantities can be computed at most at
the expense of solving a linear system of equations. For example assuming the phase distribution
of the sources as unknowns, they are first projected to the observation domain. In the observation
domain, the knowledge of the observation magnitudes is enforced and the resulting quantity is
projected back to the source domain where the source magnitudes are enforced. Within the class of
nonconvex phase retrieval algorithms, these projection-based methods represent a solid and popular
choice with a variety of applications [Chen et al. 2018; Elser 2003; Yaccarino and Rahmat-Samii
1997].

Assuming knowledge of |𝒛 | and |𝒃 |, this process can, at the 𝑘th iteration and dependent on the
choice of unknowns, be written as

observation domain: R𝑚 ∋ 𝝋𝒃,𝑘+1 = ∠
(
A diag ( |𝒛 |) e j∠ (A−1diag( |𝒃 | )e

j𝝋𝒃,𝑘 ) ) (5.10)

source domain: R𝑛 ∋ 𝝋𝒛,𝑘+1 = ∠
(
A−1diag ( |𝒃 |) e j∠ (A diag( |𝒛 | )e 𝑗𝝋𝒛,𝑘 ) ) (5.11)
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where the connection between the phase distributions in the respective domains is given by

𝝋𝒛 = ∠
(
A−1diag ( |𝒃 |) ej𝝋𝒃

)
⇔ 𝝋𝒃 = ∠ (A diag ( |𝒛 |) e𝝋𝒛 ) . (5.12)

Be reminded that the exponential function e𝒛 is evaluated element-wise for each entry in a vector 𝒛.
For ease of understanding, it is recommended to read (5.10) and (5.11) from the innermost bracket
in the exponent on the right towards the equality sign. The unknowns are first multiplied to the
known magnitudes and afterwards projected to the opposing domain. The phase is extracted and
again multiplied to the known magnitudes in that domain. Last, the quantities are projected back
to the original domain and the phase is extracted, which can then be inserted in the next iteration.

Applying the same ideas to the case where no knowledge about the magnitudes in the source
domain is given, we find

observation domain: R𝑚 ∋ 𝝋𝒃,𝑘+1 = ∠
(
AA−1diag ( |𝒃 |) e j𝝋𝒃,𝑘

)
(5.13)

source domain: C𝑛 ∋ 𝒛𝑘+1 = A−1diag ( |𝒃 |) e j∠ (A𝒛𝑘 ) (5.14)

and the unknowns are related to each other via

𝒛 = A−1diag ( |𝒃 |) e j𝜑𝒃 ⇔ 𝝋𝒃 = ∠ (A𝒛) . (5.15)

Comparing (5.14) with (5.11), we see that the number of unknowns has practically doubled, as now
there are 𝑛 complex-valued instead of real-valued unknowns. For a typical phase retrieval task, we
can assume that𝑚 > 2𝑛 such that (5.14) features less unknowns than (5.13). For completeness, pos-
sible implementations of (5.10), (5.11), (5.13) and (5.14) are given in Algs. 7, 8, 9 and 10, respectively.

In Fig. 5.4, the performance of the four variants of the Gerchberg-Saxton algorithm for complex-
valued normally distributed data and for NF data of spherical vector wave functions is depicted.
The number of unknowns was set to 𝑛 = 10 and for each value of𝑚/𝑛, 5 × 104 transformations
where conducted. Success was declared once an NF deviation of 𝜖𝑐,dB ≤ −45 dB was obtained for
𝑘max = 5 × 102. For the NF data, the tangential electric field was sampled on a spherical surface
with a radius of 𝜆. The sample locations were almost uniformly distributed on the measurement
sphere according to a Fibonacci mapping [Keinert et al. 2015]. As can be seen for both types of
data, the formulations provided with the additional knowledge of |𝒛 | in the source domain require
less information about the magnitudes in the observation domain to achieve the same success
rate as their counterparts without source-domain knowledge. In total, the pairs of variants are
seen to perform almost identically. More importantly, there is a decisive difference between the
success rate for random data and for the considered NF data. With the latter, more measurement
samples are required to allow the phase retrieval algorithms to provide an accurate solution. This
quality discrepancy between Gaussian data and NF data widens further with increasing problem
dimension, which is not explicitly shown here. In other words, for larger and more relevant
problem dimensions, phase retrieval algorithms may perform well with random Gaussian data
while exhibiting a vanishing success rate for realistic NF data.

Concluding RemarksÐGerchberg-Saxton Algorithm(s) With their pioneer work, Gerchberg
and Saxton [Gerchberg and Saxton 1972] laid the foundation for the class of iterative, projection-
based phase retrieval algorithms. Due to its general applicability and simplicity, their algorithm has
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Algorithm 7 Gerchberg-Saxton in observa-
tion domain with source restrictions
𝒛 = GS4 (𝒛0, |𝒛 | , |𝒃 | ,A, 𝑘max)
Input: initial guess 𝒛0, iterations 𝑘max,

measurements |𝒃 |,
source magnitudes |𝒛 |
and operator A

Output: 𝒛, where |A𝒛 | = |𝒃 |
1: 𝑘 = 1

2: 𝝋𝒃,𝑘 = ∠
(
A diag ( |𝒛 |) e j∠ (𝒛0 )

)
3: while 𝑘 ≤ 𝑘max do

4: 𝒛′ = A−1diag ( |𝒃 |) e j𝝋𝒃,𝑘

5: 𝝋𝒃,𝑘+1 = ∠
(
A diag ( |𝒛 |) e j∠ (𝒛′ )

)
6: end while

7: return 𝒛 = A−1diag ( |𝒃 |) e j𝝋𝒃,𝑘+1

Algorithm 8 Gerchberg-Saxton in source
domain with source restrictions
𝒛 = GS3 (𝒛0, |𝒛 | , |𝒃 | ,A, 𝑘max)
Input: initial guess 𝒛0, iterations 𝑘max,

measurements |𝒃 |,
source magnitudes |𝒛 |
and operator A

Output: 𝒛, where |A𝒛 | = |𝒃 |
1: 𝑘 = 1

2: 𝝋𝒛,𝑘 = ∠
(
A−1diag ( |𝒃 |) ej∠ (A𝒛0 )

)
3: while 𝑘 ≤ 𝑘max do

4: 𝒃′ = A diag ( |𝒛 |) e 𝑗𝝋𝒛,𝑘

5: 𝝋𝒛,𝑘+1 = ∠
(
A−1diag ( |𝒃 |) e j∠ (𝒃′ )

)
6: end while

7: return 𝒛 = diag ( |𝒛 |) 𝝋𝒛,𝑘+1

Algorithm 9 Gerchberg-Saxton in observa-
tion domain
𝒛 = GS2 (𝒛0, |𝒃 | ,A, 𝑘max)
Input: initial guess 𝒛0, iterations 𝑘max,

measurements |𝒃 | and operator A
Output: 𝒛, where

��AA−1𝒃 �� = |𝒃 |
1: 𝑘 = 1

2: 𝝋𝒃,𝑘 = ∠ (A𝒛0)
3: while 𝑘 ≤ 𝑘max do

4: 𝝋𝒃,𝑘+1 = ∠
(
AA−1diag ( |𝒃 |) e j𝝋𝒃,𝑘

)
5: end while

6: return 𝒛 = A−1diag ( |𝒃 |) ej𝝋𝒃,𝑘+1

Algorithm 10 Gerchberg-Saxton in source
domain
𝒛 = GS1 (𝒛0, |𝒃 | ,A, 𝑘max)
Input: initial guess 𝒛0, iterations 𝑘max,

measurements |𝒃 | and operator A
Output: 𝒛, where |A𝒛 | = |𝒃 |
1: 𝑘 = 1

2: 𝒛𝑘 = 𝒛0
3: while 𝑘 ≤ 𝑘max do

4: 𝒛𝑘+1 = A−1diag ( |𝒃 |) e j∠ (A𝒛𝑘 )
5: end while

6: return 𝒛 = 𝒛𝑘+1

been employed as the de facto reference for newly developed phase reconstruction algorithms ever
since. Leaving aside its relatively large computational burden, it still performs rather favorably
when compared with modern reconstruction approaches in terms of the achievable success rate.

5.4.2 Standard Nonconvex Formulation

We now rewrite the phase retrieval problem in a form that can be treated with the optimization
framework in Alg. 5. One can find a solution to (5.1) by determining a minimum to the cost function
in (3.67) with a nonlinear operator according to

A1 =

[
(A𝒛) ◦

(
A𝒛

)]𝑝1
= |A𝒛 |2𝑝1 and 𝒅1 = |𝒃 |2𝑝1 . (5.16)

Note that the utilization of normal equations known from the solution of linear systems may
partially be transferred to the phaseless case as well. A corresponding modification of (5.16) is
discussed in the Appendix A.4. Furthermore, (5.16) does not represent the only way of determining
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Fig. 5.4 Success rate of the four variants of the Gerchberg-Saxton method in Algs. 10 to 7 with
𝑛 = 10 unknowns for complex-valued normally distributed data in (a) and NF data from
spherical vector wave functions in (b). For each ratio of𝑚/𝑛, 5 × 104 repetitions were run.
A transformation was counted as successful, if 𝜖𝑐,dB ≤ −45 dB was achieved. The number of
iterations 𝑘max was set to 5 × 102.

the unknown source coefficients independent from the phase information. In Appendix A.5, a
phase-invariant optimization approach is presented, which yields similar results as (5.16).

The derivatives required for minimizing the corresponding cost function in the optimization
framework can be written as

𝜕A1 (𝒛)
𝜕𝒛

= 𝑝1diag
(
|A𝒛 |2𝑝1−2 ◦ A𝒛

)
A (5.17)(

𝜕A1 (𝒛)
𝜕𝒛

)H
= 𝑝1A

Hdiag
(
|A𝒛 |2𝑝1−2 ◦ A𝒛

)
(5.18)

𝜕A1 (𝒛)
𝜕𝒛

=
𝜕A1 (𝒛)

𝜕𝒛
(5.19)(

𝜕A1 (𝒛)
𝜕𝒛

)H
=

(
𝜕A1 (𝒛)

𝜕𝒛

)H
. (5.20)

While the optimization framework comprises a reliable line search algorithm, an analytical
equation for the optimal step length can be favorable in terms of computation time and convergence
rate. When setting 𝑝OF,1 = 𝛼OF,1 = 𝑝1 = 1, it is possible to derive the optimal step length for A1

analytically. One can state

𝑓1 (𝒛′ = 𝒛 + 𝛼𝒑) =


|A𝒛′ |2 − |𝒃 |2

2

2
= |A𝒛′ |2,H |A𝒛′ |2 − 2 |A𝒛′ |2,H |𝒃 |2 + |𝒃 |2,H |𝒃 |2 (5.21)

leading to

𝑓1 (𝒛′) = 𝛼4
[

|A𝒑 |2

2

2

]
︸       ︷︷       ︸

𝑎1

+𝛼3

[
4Re

{
A𝒛 ◦ A𝒑

}H
|A𝒑 |2

]
︸                           ︷︷                           ︸

𝑏1
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+ 𝛼2

[
4




Re {
A𝒛 ◦ A𝒑

}


2
2
+ 2 |A𝒑 |2,H

(
|A𝒛 |2 − |𝒃 |2

) ]
︸                                                         ︷︷                                                         ︸

𝑐1

+ 𝛼
[
4Re

{
A𝒛 ◦ A𝒑

}H (
|A𝒛 |2 − |𝒃 |2

) ]
︸                                      ︷︷                                      ︸

𝑑1

+
[

|A𝒛 |2 − |𝒃 |2

2

2

]
︸               ︷︷               ︸

𝑒1

. (5.22)

Since (5.22) is a polynomial of forth order, the cost function based on A1 is in general nonconvex.
In order to determine the optimal 𝛼 , one needs to find all minima of this quartic polynomial with
real-valued coefficients. This can be done by searching for zeros of the cubic polynomial

𝜕𝑓1 (𝒛 + 𝛼𝒑)
𝜕𝛼

= 4𝑎1 𝛼
3 + 3𝑏1 𝛼2 + 2𝑐1 𝛼 + 𝑑1

!
= 0. (5.23)

The zeros of cubic polynomials can be found analytically, e.g., see [Press 2003, pp. 179ś180], which is,
for real-valued coefficients, reviewed in Alg. 11. Since we assume that 𝒑 is a true descent direction,
there must be a solution to (5.23) for 𝛼 ≥ 0. However, there may be up to three real-valued zeros, so
that we need to make sure to pick the one belonging to a true local minimum. The latter is ensured
whenever one chooses a positive real-valued zero at which the cost function exhibits a positive
second-order derivative. Assuming that one has found the optimal step length from Alg. 11, this
value can partially be used for 𝑝1 ≠ 1, e.g., as an initial guess 𝛼i of an iterative line search.

As derived in [Isernia et al. 1996b], (5.22) can be simplified under the assumption that |A𝒛 | = |𝒃 |,
i.e., that one starts the line search at the optimum. In this particular case, (5.22) reduces to

𝑓1 (𝒛′)
|A𝒛 |= |𝒃 |

= 𝛼4
[

|A𝒑 |2

2

2

]
︸       ︷︷       ︸

𝑎1

+𝛼3

[
4Re

{
A𝒛 ◦ A𝒑

}H
|A𝒑 |2

]
︸                           ︷︷                           ︸

𝑏1

+𝛼2

[
4




Re {
A𝒛 ◦ A𝒑

}


2
2

]
︸                     ︷︷                     ︸

𝑐′1

(5.24)

= 𝛼2
(
𝛼2𝑎1 + 𝛼𝑏1 + 𝑐′1

)
. (5.25)

The first order derivative with respect to the step length then equals

𝜕𝑓1 (𝒛′ = 𝒛 + 𝛼𝒑)
𝜕𝛼

|A𝒛 |= |𝒃 |
= 𝛼

(
4𝛼2𝑎1 + 3𝛼𝑏1 + 2𝑐′1

)
. (5.26)

Ideally, (5.26) should exhibit a single zero at 𝛼 = 0, so that only the zeros of the second-order
polynomial inside the parentheses need to be considered, for which one obtains

𝛼1/2 =
−3𝑏1 ±

√︃
9𝑏21 − 32𝑎1𝑐′1
8𝑎1

. (5.27)

It has to be kept in mind that it is sufficient to find a condition that ensures no further real-valued
zeros for 𝛼 (except at 𝛼 = 0) exist. This strong limitation comes from the fact that 𝛼 ∈ R was
assumed in the derivation of (5.27). Thus, from (5.27) and as claimed in [Isernia et al. 1996b; Moretta
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and Pierri 2019; Soldovieri et al. 2005], as soon as

𝑏21
𝑎1𝑐
′
1

<

32

9
(5.28)

is fulfilled, no other local stationary points should be encountered and the problem becomes convex.
More insight may be provided by writing (5.28) in the form of a squared cosine similarity as

𝜒2𝑐

(
Re

{
A𝒛 ◦ A𝒑

}
, |A𝒑 |2

)
<

8

9
, (5.29)

for which usually the following observation is made [Isernia et al. 1996b]. Increasing the number of
measurements can only increase the values of 𝑎1 and 𝑐′1, as both are made up of positive contributions
only, while the positive and negative terms in 𝑏1 may eventually cancel and lead to a smaller ratio
in (5.29). Though this statement is true in general, it provides very little practical help on how
to construct measurement setups which automatically fulfill (5.29) and thus lead to a convex
optimization problem.

As a point of interest, researchers have compared nonconvex phase retrieval formulations similar
to that in (5.16) for two values of 𝑝1 ∈ {0.5, 1}, corresponding to an optimization with respect to
|𝒃 | or |𝒃 |2. While there have been well-argued claims that from a theoretical point of view 𝑝1 = 1

should be superior [Leone 1997], also due to its bandlimitedness [Yaccarino and Rahmat-Samii
1995], practical evidence and other publications [Wang et al. 2017, 2018a,c; Zhang and Liang 2016]
claim that 𝑝1 = 0.5 features a superior convergence behavior and has thus been often favored. A
brief comparison between both values can be drawn from the results shown in Fig. 5.5. For a tiny
problem with 𝑛 = 10 unknowns and forward matrices as well as solution vectors drawn from a
complex-valued normal distribution, phase retrieval was performed via the formulation in (5.16)
with 𝑝1 = 1 and 𝑝1 = 0.5. At most 5×103 iterations were allowed and the initial guess was computed
via the spectral method via 40 power iterations. A transformation was called successful in case a
complex deviation according to (4.14) below −45 dB was achieved. For every ratio of𝑚/𝑛, 5 × 103
problems have been solved. Figure 5.5(a) shows the success rate of the transformation for two
cases, one for a complex-valued random normally distributed forward operator and one exhibiting
a random operator with additional structure. In the second case, a scaled identity matrix with 𝑛

rows and 𝑛 columns was added to the upper part of the originally random operator, causing the
first 𝑛 rows to be diagonally dominant. While the formulation with 𝑝1 = 1 achieves a larger success
rate than 𝑝1 = 0.5 for both types of matrices, the average number of iterations 𝑘it,av required for
convergence is also larger, as can be seen in Fig. 5.5(b). Especially, the case of the structured matrix
requires the formulation with 𝑝1 = 1 to perform drastically more iterations than with 𝑝1 = 0.5. In
summary, we see that indeed 𝑝1 = 1 may increase our chance of finding the correct solution to the
phase retrieval problem, however, possibly requiring significantly more iterations for convergence.
Especially for real-world forward operators exhibiting structure due to the underlying physical and
nonrandom process, the formulation 𝑝1 = 0.5 may yield better results within considerably less time.
Still, it seems reasonable to refine a solution obtained with 𝑝1 = 0.5 via a few iterations with 𝑝1 = 1

and possibly obtain a better result.
A more comprehensive impression on the effect of 𝑝1 in (5.16) on the phase retrieval performance

can be obtained from Fig. 5.6. Complex-valued normally distributed data on one side, NF data from

2In Matlab [Matlab 2021], the operators are constructed via A = randn(m,n)+1i*randn(m,n); and
A = randn(m,n)+1i*randn(m,n)+100*rand(1,1)*[eye(n);zeros(m-n,n)];
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Algorithm 11Determine roots of a cubic polynomial 𝑥3+𝑎𝑥2+𝑏𝑥+𝑐 after [Press 2003], 𝑎, 𝑏, 𝑐 ∈ R,
[𝑥1, 𝑥2, 𝑥3] = cubic_roots (𝑎, 𝑏, 𝑐)
Input: 𝑎, 𝑏, 𝑐

Output: roots 𝑥1, 𝑥2, 𝑥3
1: 𝑄 =

𝑎2−3𝑏
9

and 𝑅 =
2𝑎3−9𝑎𝑏+27𝑐

54

2: if 𝑅2
< 𝑄3 then

3: 𝜗 = arccos
(

𝑅√
𝑄3

)
4: 𝑥1 = −2

√
𝑄 cos

(
𝜗
3

)
− 𝑎

3

5: 𝑥2 = −2
√
𝑄 cos

(
𝜗+2𝜋
3

)
− 𝑎

3

6: 𝑥3 = −2
√
𝑄 cos

(
𝜗−2𝜋

3

)
− 𝑎

3

7: else

8: 𝐴 = −sgn (𝑅)
[
|𝑅 | +

√︁
𝑅2 −𝑄3

]1/3
9: 𝐵 =

{
𝑄/𝐴, 𝐴 ≠ 0

0, 𝐴 = 0

10: 𝑥1 = (𝐴 + 𝐵) − 𝑎
3

11: 𝑥2 = − 1
2
(𝐴 + 𝐵) − 𝑎

3
+ j
√
3
2
(𝐴 − 𝐵)

12: 𝑥3 = − 1
2
(𝐴 + 𝐵) − 𝑎

3
− j
√
3
2
(𝐴 − 𝐵)

13: end if

14: return 𝑥1, 𝑥2, 𝑥3

a spherical vector wave distribution on the other side, was used to run the approach in (5.16) for
1× 103 times for each pair of number of unknowns 𝑛 and parameter value 𝑝1. In case of the NF data,
the tangential electric field was acquired on three spherical surfaces of radii 5𝜆, 10𝜆 and 15𝜆, such
that in total an oversampling ratio of𝑚/𝑛 = 8 was obtained. The sample locations where almost
uniformly distributed according to a Fibonacci mapping [Keinert et al. 2015]. For the random data,
𝑚/𝑛 = 4 was utilized. The initial guess was computed via the optimal spectral method in (5.4)
taken from the PhasePack [Chandra et al. 2019, 2017] library. The required number of iterations 𝑘it
for achieving a success rate greater or equal to 90% for the random data and (only) 10% in case of
the NF data is depicted in Figs. 5.6(a) and 5.6(c), respectively. A reconstruction was assumed to be
successful once 𝜖𝑐,dB ≤ −45 dB was achieved. It can be observed that 𝑝1 = 1, i.e., a minimization
in the squared magnitude, does not correspond to the most efficient parameter value in terms
of the number of iterations, neither for complex-valued random data, nor for synthetic NF data.
However, for the latter a value of 𝑝1 = 1 seems to maximize the success rate in most cases. For
both types of data, a steady increase in the required number of iterations with increasing problem
dimension can be observed, though, this effect is by far more pronounced with NF data. While for
Gaussian data a value of 𝑝1 ≈ 0.7 seems to be a suitable choice, smaller values of 𝑝1 seem to be
better for NF data with very few unknowns. Interestingly, both figures feature a region around
𝑝1 ≈ 1.4, where the transformation performance is very sensitive to the value of 𝑝1. This range
of the parameter 𝑝1 should be avoided, as the phase retrieval formulation requires a much larger
number of iterations for convergence. In Figs. 5.6(b) and 5.6(d), the overall achievable success rate
for a maximum number of iterations of log10(𝑘it) = log10(5 × 103) ≈ 3.7 is depicted. Again the
unstable region around 𝑝1 ≈ 1.4 is visible.

Concluding RemarksÐStandard Nonconvex Formulation A variety of existing phase re-
trieval formulations is based on the minimization of nonconvex cost functions, e.g., featuring an
operator like A1. Despite the occurrence of local stationary points, nonconvex optimization-based
methods often perform favorable in real-world applicationsÐ once provided with a proper initial
guess and suitable measurement data. In particular the formulation with A1 features relatively
low computation cost per iteration and, backed with the L-BFGS method and a solid line search,
converges faster than for example a gradient descent approach with fixed step length. Empirical
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Fig. 5.5 Comparison of cost functions. Either minimizing |A𝒛 | − |𝒃 | (𝑝1 = 0.5) or |A𝒛 |2− |𝒃 |2 (𝑝1 = 1).
Here, 𝑛 = 10 and the considered forward matrices are either taken from a complex-valued
normal distribution (łstdž) or feature some structure (łstrž)2. The initial guess is always
computed via 40 power iterations of the spectral method. (a) The success rate. (b) The
average number of iterations performed 𝑘it,av.

results show that a minimization with respect to the squared magnitudes yields a larger success
rate than compared to an optimization of the magnitudes, however, at the expense of a slower
convergence rate. The core issue of this approachÐ and actually of all existing phase retrieval
methodsÐ is the strong performance variation dependent on the type of magnitude data. Realistic
NF antenna data is observed to be far inferior to random normally distributed data, resulting in
lower reconstruction quality with similar amounts of measurements. This issue further worsens
when going to problems of larger size.

5.4.3 Scale-Invariant Formulation

The core idea of the following formulation has already been introduced and applied in [Paulus et al.
2018a; Paulus et al. 2017a]. Here, the approach is presented as part of the optimization framework
and more information about the underlying principle is provided. In particular, a performance
comparison to the standard approach is conducted and results for synthetic spherical NF antenna
measurements are discussed.

Formulation and Derivatives

A modified formulation of (5.16) can be found in the form of

A2 =

[
A𝒛 ◦ A𝒛

]𝑝2
𝑐si (𝒛) = |A𝒛 |2𝑝2 𝑐si (𝒛) with 𝒅2 = |𝒃 |2𝑝2 , (5.30)

with the solution dependent scaling

𝑐si (𝒛) =
𝒅T2 |A𝒛 |

2𝑝2

|A𝒛 |2𝑝2

2
2

∈ R. (5.31)
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Fig. 5.6 Phase retrieval performance of formulation (5.16). In (a) and (b), for complex-valued nor-
mally distributed operators and data with𝑚/𝑛 = 4. For (c) and (d), realistic NF data from a
spherical wave expansion and𝑚/𝑛 = 8 was utilized. The initial guess is generated via the
optimal spectral method defined by (5.4). In (a) and (c), the number of iterations 𝑘it required
to achieve a success rate of greater or equal to 90% and 10%, respectively, dependent on the
number of unknowns 𝑛 and the parameter 𝑝1 in (5.16) is depicted. Success is declared, once
𝜖𝑐,dB ≤ −45 dB is achieved. In (b) and (d), the overall success rate obtained with a maximum
number of iterations of 𝑘it = 5 × 103 is drawn.
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The factor 𝑐si ensures that the difference between A2 and 𝒅2 has zero mean regardless of the
absolute scaling of the solution or measurement vector. In contrast to this, the gradient (see (3.71))
of the standard formulation can easily get dominated by improper scaling of the current solution,
which can slow down the convergence rate. For example, consider a solution that has the correct
magnitude distribution but is too large by a factor of 10, i.e., |A𝒛 |2 = 10 |𝒃 |2. For 𝑝1 = 1, the gradient
of the standard formulation then involves the nonzero term A1 − 𝒅1 = 10 |𝒃 |2. Since 𝑐si (𝒛) = 1/10
in this case (𝑝2 = 1), the gradient for the scale-invariant formulation will contain A2 − 𝒅2 = 0 and,
thus, be zero. Since 𝑐si reduces the impact of scaling and biases, the corresponding cost functional
is more sensitive to the meaningful differences in terms of the distributions of A𝒛 and 𝒃 . At the
same time, the formulation fosters larger step lengths that would otherwise, e.g., in the standard
formulation, lead to an improper absolute scaling of the solution vector.

The required derivatives applied to vectors 𝒚 of appropriate size can be found as

𝜕A2 (𝒛)
𝜕𝒛

𝒚 = 𝑐si (𝒛) 𝑝2diag
(
|A𝒛 |2𝑝2−2 ◦ A𝒛

)
A𝒚

+ 𝑝2 |A𝒛 |2𝑝2

|A𝒛 |2𝑝2

2
2

(
𝒅T2 − 2𝑐si (𝒛) |A𝒛 |2𝑝2,T

)
diag

(
|A𝒛 |2𝑝2−2 ◦ A𝒛

)
A𝒚︸                                                            ︷︷                                                            ︸

∈C1 × 1

(5.32)

𝜕A2 (𝒛)
𝜕𝒛

𝒚 =
𝜕A2 (𝒛)

𝜕𝒛
𝒚 (5.33)

(
𝜕A2 (𝒛)

𝜕𝒛

)H
𝒚 = 𝑝2A

Hdiag
(
|A𝒛 |2𝑝2−2 ◦ A𝒛

) ©­­­«
𝑐si (𝒛)𝒚 +

(
𝒅2 − 2𝑐si (𝒛) |A𝒛 |2𝑝2

)


|A𝒛 |2𝑝2

2

2

|A𝒛 |2𝑝2,T𝒚︸      ︷︷      ︸
∈C1 × 1

ª®®®¬
(5.34)

(
𝜕A2 (𝒛)

𝜕𝒛

)H
𝒚 =

(
𝜕A2 (𝒛)

𝜕𝒛

)H
𝒚. (5.35)

This time due to the complexity of the equations, an analytic derivation of the optimal step length
seems unfeasible and one is well advised to rely on the iterative line search procedure of the
optimization framework. However, due to the similarity of A2 and A1, it is easily seen that again
the resulting cost function is nonconvex.

Scale-Invariance Principle

The motivation for using (5.30) instead of (5.16) can be obtained from Fig. 5.7(a), which shows a
comparison of the line search process of both methods for 𝑝1 = 𝑝2 = 0.5. For this example, the
forward operator A and the solution vector 𝒛 were randomly chosen from a complex Gaussian
distribution. The measurement vector was set according to 𝒃 = A𝒛, i.e., free of noise. The value
of the cost functions 𝑓1 and 𝑓2 in the direction of the gradients ∇𝑓1(𝒛0) and ∇𝑓1(𝒛0) at a point
𝒛0 = (AH𝒃) /



AH𝒃



2
is depicted. There are several things to notice. First, the formulation with (5.30)

can achieve a lower cost function value within this particular search directionÐ and thus more
progress with this iterationÐwhen compared to (5.16). Second, there seems to be a non-negligible
difference between the gradients, since both curves with markers exhibit a considerably different
minimum cost function value. Third and most interestingly, one can observe the dashed line to
almost exhibit a zero slope in the region 𝛼 ≥ 0, including 𝛼 = 0. In the direction of ∇𝑓1(𝒛0), the
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Tab. 5.3 Cosine similarities of gradients of 𝑓1/2 with and without inherent scaling.

𝒛0 with ∥𝒛0∥2 = 1

AH𝒃 random

𝜒𝑐 (𝒛0,∇𝑓1(𝒛0)) 0.71 0.38

𝜒𝑐 (𝒛0,∇𝑓2(𝒛0)) 0.33 0.45

𝜒𝑐 (A𝒛0,A∇𝑓1(𝒛0)) 0.87 0.47

𝜒𝑐 (A𝒛0,A∇𝑓2(𝒛0)) ≈ 0 0.57

cost function 𝑓2 can almost not be minimized further, however, cost function 𝑓1 can be improved in
this direction and there is a drastic difference between 𝑓1(𝒛0) and 𝑓2(𝒛0). This indicates that the
similarity between ∇𝑓1(𝒛0) and 𝒛0 should be large and that 𝒛0 − 𝛼∇𝑓1(𝒛0) ≈ 𝛼 ′𝒛0 approximately
holds true, allowing no further improvement when 𝛼 ′ is already chosen in an optimal manner,
which is automatically done by formulation (5.30). This conjecture seems to be correct when looking
at the optimally-scaled cosine similarity defined in (5.9), and stated in Tab. 5.3 for the quantities
of interest here. When 𝒛0 = (AH𝒃) /



AH𝒃



2
, the gradient of 𝑓2 yields a direction which is less

collinear to the starting point than the gradient of 𝑓1. Applying the forward operator, the difference
is even more severe, where the gradient of 𝑓2 provides a direction which is almost orthogonal to 𝒛0
in terms of the radiated fields.

For the same example, quite different observations are made when picking a randomly distributed
𝒛0. The result can be seen in Fig. 5.7(b). Again, formulation (5.30) allows for a larger decrease in
the cost function than (5.16). However, this time the gradients seem to be rather similar, both
allowing for a decrease of the opposing cost function. This is also visible from the cosine similarities,
expressing a rather similar, if not opposing trend, in Tab. 5.3.
Illustrated from another point of view, a line search for formulation (5.16) is similar to

min
𝛼
∥|A (𝒛 + 𝛼𝒑) | − |𝒃 | ∥2 , (5.36)

which is a one-dimensional optimization problem. In contrast, formulation (5.30) corresponds to
the two-dimensional optimization

min
𝛼1,𝛼2

∥𝛼1 |A (𝒛 + 𝛼2𝒑) | − |𝒃 | ∥2 . (5.37)

Note that the optimization of (5.37) in 𝛼1 is automatically performed as all occurring derivatives al-
ready depend on the scaling factor 𝑐si(𝒛) in (5.31). Eventually, this leads to an increased convergence
rate of the minimization process.

Empirical Comparison with the Standard Formulation

Further similarities and differences between the scale-invariant formulation and the standard
approach are now investigated for phaseless randomly distributed and NF antenna data.

Success Rate and Iteration Count A brief comparison of the formulations (5.16) and (5.30) has
been performed for complex-valued normally distributed data, as well as for NF data of spherical
vector wave functions evaluated on a measurement sphere with a radius of 𝜆. The chance of a
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Fig. 5.7 Comparison of the formulations in (5.16) and (5.30). Depicted are the values of the cost
functions 𝑓1 and 𝑓2 in the direction of the gradients ∇𝑓1 and ∇𝑓2 for varying step lengths 𝛼 .
The example was computed for a complex random Gaussian distributed forward operator
A ∈ C50 × 22. The gradients were normalized, ∥∇𝑓 ∥2 = 1, for ease of plotting. (a) 𝒛0 =

(AH𝒃) /


AH𝒃




2
. (b) For a randomly chosen point 𝒛0.

successful transformation, equivalent to a resulting NF deviation 𝜖𝑐,dB(A𝒛, 𝒃) ≤ −45 dB, for varying
oversampling ratios 𝑚/𝑛 is depicted in Figs. 5.8(a) and 5.8(b). The respective required average
number of iterations 𝑘it,av is provided in Figs. 5.8(c) and 5.8(d). All solvers at most performed 5× 103
iterations. However, termination also occurred once a magnitude NF deviation of 𝜖𝑐,dB( |A𝒛 |, |𝒃 |) ≤
−100 dB was reached, or the relative change in the NF deviation over multiple iterations falls below
a threshold, i.e., stagnation is observed. For both types of data and parameter values of 𝑝1/2, the
number of iterations performed on average with (5.30) is lower than with (5.16). This trend is more
clearly pronounced when 𝑝1/2 = 1, i.e., when the optimization is performed in terms of the squared
magnitudes. While (5.30) does lead to a slightly larger success rate for normally distributed data,
no clear winner emerges for the considered NF data.

Synthetic Antenna Data The performance of A1 and A2 with 𝑝1/2 ∈ {0.5, 1} is now compared
for synthetic NF data of a Vivaldi antenna acquired on two spherical surfaces. The simulation setup
is illustrated in Fig. 5.9(a), where the original AUT is located within the red box and, for the purpose
of an NFFFT, is model by 𝑛 = 4 × 103 equivalent Hertzian dipoles placed on an enclosing sphere
(blue circle). The measurement spheres feature radii of 50𝜆 and 90𝜆 and are approximately centered
around the AUT. With a minimum sphere diameter of ≈ 10𝜆, the FF distance of this AUT is roughly
180𝜆 such that one could expect sufficient field variations among the two measurement spheres and,
thus, a decent phase reconstruction. Distribution of the equivalent sources as well as the sample
locations on the spheres was done according to a Fibonacci mapping [Keinert et al. 2015], yielding
almost uniformly placed quantities. In total𝑚 = 32 × 103 measurements of the tangential electric
field were provided to the transformation algorithms, where half of them were acquired on each
measurement sphere.
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Fig. 5.8 Comparison of phase retrieval formulations based onA1 andA2 in (5.16) and (5.30), respec-
tively. In (a) and (b), the achievable success rate for 𝑛 = 10 is depicted for complex-valued
normally distributed data and NF data stemming from a spherical multipole expansion,
respectively. For each value of𝑚/𝑛, 5 × 104 repetitions were run and the algorithms were
started from an initial guess computed via the optimal spectral method. Success is declared,
once 𝜖𝑐,dB (A𝒛, 𝒃) ≤ −45 dB is achieved. In (c) and (d), the corresponding average number
of iterations until solver termination, denoted by 𝑘it,av, is given. Solver termination either
occurred after the maximum number of 5 × 103 iterations had been reached, or, an NF
deviation of 𝜖𝑐,dB( |A𝒛 |, |𝒃 |) ≤ −100 dB was observed.

Figure 5.9(b) gives an impression of the convergence behavior of the phaseless solvers, as well as
that of the fully coherent transformation. The coherent approach is able to determine a solution
with an NF deviation in terms of the probe magnitudes of below −66 dB after 2 × 102 iterationsÐ a
solution with a complex NF deviation of −63 dB. The lowest magnitude NF deviations of the
phaseless solvers are around −23 dB and −34 dB for the variants with 𝑝1/2 = 0.5 and 𝑝1/2 = 1,
respectively. However, despite the relatively good agreement of the probe signals in terms of their
magnitude and squared magnitude, the corresponding complex NF deviations are still as high as
−0.05 dB, −3.3 dB and −2.6 dB forA0.5

1/2,A
1
1 andA1

2 , respectively. Here, the superscript indicates the
value of 𝑝1/2. Interestingly, while the choice of 𝑝1/2 = 0.5 leads to a faster initial convergence rate,
𝑝1/2 = 1 leads to lower NF deviations at the point of termination due to stagnation. Furthermore,
the scale-invariant version improves the convergence rate in the beginning, while only leading
to a lower magnitude NF deviation for 𝑝2 = 1 compared to the standard formulation. Overall, the
impression is gained that it can be difficult to judge a phaseless transformation result solely based
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5 Phaseless Near-Field Far-Field Transformation

on the achieved magnitude NF deviation 𝜖𝑐,dB( |A𝒛 |, |𝒃 |), however, its complex counterpart is not
available in practice.

For reasons of completeness, Figs. 5.9(c) to 5.9(f) depict the FF radiation characteristic computed
from the determined source coefficients. The magnitude of the dominant electric field component
in the 𝜗 = 90◦ plane containing the main beam of the AUT is drawn. The complex field deviations
are computed after normalization of the curves to their values at the location of the maximum of
the reference. Interestingly, the determined magnitude of the FF seems to agree quite well with
the reference, however, the reconstructed phase distribution seems to be false, resulting in large
complex deviations. As expected from the better agreement of the magnitude and phase in the
NF, the results obtained with 𝑝1/2 = 1 exhibit lower total FF deviations, especially visible in the
main-beam region.

Concluding RemarksÐScale-Invariant Formulation The main idea of the scale-invariant
formulation is to achieve faster convergence by inherently compensating for improper scaling of
the solution vector at all timesÐ allowing for longer step lengths within the line search. In practice,
a slightly reduced number of iterations and an overall performance close to that of the standard
formulation is observed.
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Fig. 5.9 Simulation setup and transformation results for synthetic NF data of a Vivaldi antenna. (a)
NF data on two spherical surfaces is acquired, yielding𝑚 = 32 × 103, half on each sphere
and distributed according to a Fibonacci mapping [Keinert et al. 2015]. The original AUT
is located within the red box, while 𝑛 = 4 × 103 equivalent Hertzian dipoles placed on
an enclosing sphere (blue circle) are employed in the transformation. The FF distance for

an AUT of this size is ≈ 180𝜆. (b) Convergence of the two phaseless solvers A0.5/1
1/2 with

𝑝1/2 = 0.5 or 𝑝1/2 = 1, indicated by the superscript, in comparison to a fully coherent
transformation with A0. (c) to (f) The resulting FF radiation characteristic in the 𝜗 = 90◦

plane, where only the dominant field component is depicted. The complex deviation
computed after normalizing each curve to its respective value at the maximum of the
reference is rather large, even though the pattern magnitudes agree pretty well.
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5.4.4 Projector-Based Formulations

So far, the considered phase retrieval formulations are either based on the minimization of nonlinear
cost functions dependent on source domain quantities, or utilize alternating projections between
observation and source domain, like the Gerchberg-Saxton variants discussed in Section 5.4.1. This
observation immediately raises the question: Can we combine both approaches? The answer is yes,
and the following two formulations showcase how this can be achieved.

Projector ApproachÐReal-Valued Phases

Consider the nonlinear operator

A5 =
(
AA−1 − I

)
diag ( |𝒃 |) e j𝒛 = B5e

jF𝒛 with 𝒅5 = 0, 𝒛 ∈ R𝑚 × 1 (5.38)

containing the projector (AA−1−I). The formulation in (5.38) searches for real-valued phase terms in
𝒛, such that the combination of magnitude and phase |𝒃 | ◦e j𝒛 corresponds to an electromagnetic field
that is physically realizable with the given equivalent sources. By searching for a real-valued term
in the exponent, the problem becomes nonlinear, however, automatically enforces that the resulting
phase terms feature a magnitude of one. The fundamental difference between this formulation and
that of previous sections lies in the utilization of the projector matrix

(
AA−1 − I

)
. This projector

ensures that all determined phase terms, paired with the measurement magnitudes in the diagonal
matrix diag ( |𝒃 |), are in the feasible range of the measurement matrix A. As such, the formulation
in (5.38) potentially enforces more restrictions on the reconstructed phases than inherently done in
the methods of the sections above. This additional filtering property comes at the downside of the
increased computational effort associated with the pseudoinverse A−1.

Here, we state the derivatives for the rather general form of A5 = B5e
jF𝒛 with possibly complex-

valued matrices B5 and F. Note that since we are optimizing for real-valued quantities, the equations
of (3.70) and (3.71) should be used. Still, for the general case of 𝒛 ∈ C𝑚 × 1, the derivatives read as

𝜕A5

𝜕𝒛
= jB5diag

(
e jF𝒛

)
F (5.39)

𝜕A5

𝜕𝒛
= −jB5diag

(
e−jF𝒛

)
F (5.40)

(
𝜕A5

𝜕𝒛

)H
= −jFHdiag

(
e−jF𝒛

)
BH
5 (5.41)

(
𝜕A5

𝜕𝒛

)H
= jFHdiag

(
e jF𝒛

)
BT
5 . (5.42)

Projector ApproachÐSource Coefficients

Consider the formulation

A6 =
(
AA−1 − I

)
diag ( |𝒃 |) e j∠ (A𝒛 ) = B6

A𝒛

|A𝒛 | with 𝒅6 = 0, 𝒛 ∈ C𝑛 × 1, (5.43)

which searches for complex source coefficients, such that the resulting phase distribution physically
correctly matches the measured magnitudes. The formulation is similar to that in (5.38), with
the difference that one does not directly determine phase values but, instead, coefficients for the
equivalent sources. With growing oversampling ratios, the number of unknowns is expected to be
smaller than the number of phase terms. This may be an advantage for electrically larger problems
requiring millions of unknowns and measurement entries.
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Fig. 5.10 Comparison of phase retrieval formulations based on A5 and A6 with that of A2. In (a)
and (b), the achievable success rate for 𝑛 = 10 with complex-valued normally distributed
data and NF data stemming from a spherical multipole expansion, respectively, is depicted.
Starting from an initial guess computed via the optimal spectral method, 5×104 repetitions
are run for each value of𝑚/𝑛. Success is declared, once 𝜖𝑐,dB(A𝒛, 𝒃) ≤ −45 dB is achieved.

The required derivatives equal

𝜕A6

𝜕𝒛
=

1
2
B6 diag

(
1
|A𝒛 |

)
A (5.44)

𝜕A6

𝜕𝒛
= − 1

2
B6 diag

(
A𝒛 ◦ A𝒛
|A𝒛 |3

)
A (5.45)

(
𝜕A6

𝜕𝒛

)H
=

1
2
AHdiag

(
1
|A𝒛 |

)
BH
6 (5.46)

(
𝜕A6

𝜕𝒛

)H
= − 1

2
AHdiag

(
A𝒛 ◦ A𝒛
|A𝒛 |3

)
BT
6 . (5.47)

Numerical Results

A brief comparison of the two projection-based formulations with the scale-invariant approach
from (5.30) has been performed for complex-valued normally distributed and NF data stemming
from a spherical multipole expansions. For the latter, the tangential electric field was evaluated
on a measurement sphere with a radius of 𝜆, where the sample locations were almost uniformly
distributed according to a Fibonacci mapping [Keinert et al. 2015]. The obtainable success rates
for 𝑛 = 10 and when starting from an initial guess computed via the optimal spectral method are
drawn in Fig. 5.10. All solvers at most performed 𝑘max = 5× 103 iterations and success was declared
once 𝜖𝑐,dB(A𝒛, 𝒃) ≤ −45 dB was achieved.

For both data types, the projection-based approaches fall behind the performance of the scale-
invariant formulation operating on the squared magnitudes. While in the case of random data, their
success rate is similar to that of A2 for 𝑝2 = 0.5, they exhibit a slight advantage for the considered
NF data. With the need for the evaluation of the computationally expensive pseudoinverse, this
raised chance of success is paid for with drastically increased runtimes. When comparing A5 and
A6, a rather controversial trend is observed. While A6 is slightly superior for random data, it
falls behind A5 for the particular example of NF data. While the differences are minor for the
small number of unknowns, more decisive differences could be encountered for electrically larger
examples.
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5 Phaseless Near-Field Far-Field Transformation

Concluding RemarksÐProjector Approaches Two projector-based and optimization-driven
phase retrieval formulations were presented. The latter can be considered hybrids of alternating-
projection based methods, e.g., Gerchberg-Saxton, and classical nonconvex-minimization based
approaches, e.g., the standard formulation with A1. Here, they were seen to feature a similar
performance than other solvers, however, requiring considerably more computational resources.
Still for the considered NF data, slight improvements over the scale-invariant solver operating on
the magnitudes were observed.

5.4.5 Exploiting Spatial Derivative Information

The following section is partially in line with the ideas presented in [Paulus and Eibert 2020]. All
aforementioned formulations have used the identical type of phaseless information, in the form of
magnitudes of signals acquired with single, or possibly multiple, probe antennas at varying points
in space. Assuming that one can sample the three-dimensional field distribution with the probe
antenna on a sufficiently fine grid, it seems reasonable that one can make approximate statements
on the spatial derivative of this probe antenna signal, e.g., utilizing finite differences. Since one
has no phase information, this knowledge is limited to the spatial derivative of the magnitude of
the probe signal. Taking a look back at Section 2.2.6, we see that we have already determined the
spatial derivative of the forward operator for the case of dipole-dipole interactions. What remains
to be found is the spatial derivative of the magnitude of the dipole-dipole interactions.

One can write this operator as

A𝒓 ′ (𝒛) = 𝜕 |A𝒛 |
𝜕𝒓 ′

= Re

{(
𝜕A

𝜕𝒓 ′
𝒛

)
◦ e−j𝝋𝒓 ′

}
= Re

{(
A𝒓 ′𝒛

)
◦ e−j𝝋𝒓 ′

}
(5.48)

where

𝝋𝒓 ′
=

[
∠ (A𝒛)T ∠ (A𝒛)T ∠ (A𝒛)T

]T ∈ R3𝑚 × 1. (5.49)

A short derivation of (5.48) is given in Appendix A.3, while A𝒓 ′ is derived in Section 2.2.6.

Even though assumed not to be measurable, one can find the derivative of the phase of the
received signal with respect to the observation location as

𝜕 atan2 (Im {A𝒛} , Re {A𝒛})
𝜕𝒓 ′

=
𝜕∠ (A𝒛)
𝜕𝒓 ′

= 𝑴 ◦ Im
{(
A𝒓 ′𝒛

)
◦ e−j𝝋𝒓 ′

}
, (5.50)

where atan2 returns the two-argument arcus tangent, and with

𝑴 =

[
1
|A𝒛 |

T 1
|A𝒛 |

T 1
|A𝒛 |

T
]T
∈ R3𝑚 × 1. (5.51)

Equation (5.50) shows that the phase of the electromagnetic fields can rapidly vary at locations with
vanishing fields. A detailed derivation of (5.50) is also given in Appendix A.3. For completeness,
one can find

𝜕A𝒛

𝜕𝒓 ′
=

(
𝜕 |A𝒛 |
𝜕𝒓 ′

+ j |A𝒛 | 𝜕∠(A𝒛)
𝜕𝒓 ′

)
◦ e j∠ (A𝒛 ) (5.52)
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relating the derivative of the complex probe signals with the derivative of the magnitude and the
phase.
There are interesting observations to be made. For example, looking at (5.48) one finds that

whenever

𝜕 |A𝒛 |
𝜕𝒓 ′

= 0 ≠ |A𝒛 | and
���A𝒓 ′𝒛

��� ≠ 0,

⇒ ∠

(
A′𝒛 ◦ A𝒛

)
= ±𝜋

2
, (5.53)

i.e., there is an ambiguous but fixed phase relation between the phase of the spatial derivative of the
complex-valued fields and the original fields at the same location. However, the variable sign of±𝜋/2
and the fact that we can not estimate when |A𝒓 ′𝒛 | ≠ 0 makes this knowledge rather impractical.
Still, a possible formulation for enforcing the phase differences between two quantities with linear
dependency on the unknowns while not knowing both magnitudes is derived in Appendix A.6.
Here, the focus is put on how to exploit the spatial derivative information in (5.48) via

A7 = A𝒓 ′ (𝒛) = 𝜕 |A𝒛 |
𝜕𝒓 ′

with 𝒅7 =
𝜕 |𝒃 |
𝜕𝒓 ′

. (5.54)

The required derivatives then read as

𝜕A7

𝜕𝒛
=
1

2
diag

(
e−j𝝋

𝒓 ′
)
A𝒓 ′ + 1

4
diag

(
𝑴 ◦

(
A𝒓 ′𝒛 −

(
A𝒓 ′𝒛

)
◦ e−2j𝝋𝒓 ′

))
A (5.55)(

𝜕A7

𝜕𝒛

)H
=
1

2

(
A𝒓 ′

)H
diag

(
e j𝝋

)
+ 1

4
AHdiag

(
𝑴 ◦

(
A𝒓 ′𝒛 −

(
A𝒓 ′𝒛

)
◦ e2j𝝋𝒓 ′

))
(5.56)

𝜕A7

𝜕𝒛
=

𝜕A7 (𝒛)
𝜕𝒛

(5.57)

(
𝜕A7

𝜕𝒛

)H
=

(
𝜕A7 (𝒛)

𝜕𝒛

)H
. (5.58)

There are several things to notice. First, dependent on the number of spatial directions in which
the derivative is computed, the number of łmeasurements available to the algorithmžwill be one, two
or three times the number of measurements of the previous formulations. Second, (5.54) is the first
phase retrieval problem where the phases are to be reconstructed based on nonlinear measurements

of the source quantity 𝒛. As such, (5.54) belongs to a more general Ð and potentially more difficult Ð
class of phase retrieval problems as required in the case of the linear measurement operator
encountered with common magnitude-only NF measurements. Still any additional information,
even if this requires nonlinear measurements, may be beneficial for the original problem of phaseless
NFFFTs.

Synthetic NF Data for Random Dipoles The following results have also been presented
in [Paulus and Eibert 2020]. Exemplary field data radiated by randomly excited distributions of 30
Hertzian dipoles placed tangentially on a spherical surface with a diameter of 0.7𝜆 was generated.
The frequency was set to 3GHz. Two orthogonal polarizations, the 𝜗- and the 𝜑-component, of
the NF were sampled by eight two-element antenna arrays, each featuring single Hertzian dipoles
as elements, on a sphere with a diameter of 𝜆. In order to achieve an almost uniform sample
distribution, a Fibonacci mapping was employed [Keinert et al. 2015]. The synthetic measurement
setup is depicted in Fig. 5.11(a), where the original Hertzian dipoles are represented by green
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arrows and the 𝑛 = 100 equivalent Hertzian dipoles used as sources in the transformations are
indicated by dark red arrows. The eight probe arrays, four per polarization, are placed at all sample
locations, illustrated by blue circles. As an example, one of the probe arrays is depicted in Fig. 5.11(a),
symbolized by the two red arrows connected via a red lineÐ representing the two Hertzian dipole
elements. All eight probe arrays exhibit the same horizontal separation of 2𝜆 between the two
elements. In theory, the four probe arrays per polarization allow for an analytical computation of
the phase difference between the elements via an interferometric relation [Costanzo et al. 2005;
Costanzo and Di Massa 2008; Knapp et al. 2019b; Paulus et al. 2017a,c]. More details about this
concept of local phase information will be provided in Section 5.6 and in Chapter 6. Here, it is
sufficient to imagine these particular probe arrays to provide more restrictions and knowledge
about the field radiated by the AUT.

In Fig. 5.11(b), the success rate of the phase retrieval formulation exploiting the spatial derivative
of the probe signals and that of the scale-invariant phase retrieval via the operator A2 is drawn.
Results for various choices of the oversampling ratio𝑚/𝑛 are depicted. For each value of𝑚/𝑛, 5×102
random AUT excitations have been treated and a transformation is called successful once a complex
NF deviation according to (4.14) below −40 dB is achieved. This value is close to the reference NF
deviation of −48 dB, which can be achieved with this kind of equivalent AUT representation and
exploiting full phase information. All solvers were started from the same initial guess generated
via 40 power iterations of the spectral method. Afterwards at most 4 × 102 solver iterations were
performed. At first glance, the new formulation is seen to obtain a drastically larger success rate
for lower values of the sampling ratio. However it should be kept in mind that since all three
spatial derivatives have been considered inside the operator A7, the actual available number of
measurements is threefold of that given to A2. So the observable advantage should largely be
caused by the additional measurements. On the other side, only utilizing the spatial derivative
information does yield high success rates in the regime of large oversampling values. While the
best choice for phase retrieval, either A2 or A7, for the particular example at hand may depend on
𝑚/𝑛, combinations of the formulations can also be considered. The solid blue line in Fig. 5.11(b)
refers to first optimizing A2 and using the solution thereof as a starting point for A7. By reversing
this order, the performance depicted by the solid green line can be achieved. In fact, the latter does
only feature a slight disadvantage over solely using A7 for small values of𝑚/𝑛 while performing
well for larger𝑚/𝑛, where it is superior to all other formulations and combinations thereof.

Admittedly, the presented phase retrieval formulation exploiting the spatial derivative of the
magnitudes of probe signals has its flaws. In the presented form, there are severe doubts about its
applicability for real-world NF antenna measurements, where noise contributions will additionally
make it harder to construct the necessary spatial derivatives with adequate accuracy. The magnetic
field, which inherently contains information about combinations of spatial derivatives of the
electric field, is easier to measure. However, it remains to be verified to what extent this mixture of
spatial derivatives provides a similar information gain as single derivatives. Despite this significant
downside, the approach and the results above showcase important aspects of phaseless NFFFTs. First,
phase reconstruction based on nonlinear measurements may seem like an unnecessary complication,
however, may be a key to tailoring optimized approaches explicitly working with phaseless NF
antenna data. Every piece of information, including restrictions caused by the underlying Maxwell
equations, has to be exploited in order to obtain best results. This directly leads to the second
conclusion or guideline to be drawn from the results: Despite the extra nonlinearity or costs, keep
in mind to always employ all potentially available information.
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Fig. 5.11 (a) Synthetic NF generation setup at a frequency of 3GHz. The green arrows indicate
the randomly excited AUT dipoles while dark red arrows refer to the equivalent source
dipoles. The blue circles represent the almost uniformly distributed sampling locations.
The light red arrows illustrate two dipoles of a special probe, centered at an exemplary
sample location (red filled circle). (b) Success rates for phaseless NFFFTs based on the
operator A2 and the proposed operator A7. Note that due to the three spatial derivatives,
A7 effectively utilizes the ratio of 3𝑚/𝑛. Best results can be obtained when combining
both approaches, e.g., startingA2 from the solution ofA7 or the other way round. © IEEE
2020.
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Concluding RemarksÐSpatial Derivative Information While all discussed phase retrieval
formulations represent łgeneneral purposež solvers, the utilization of spatial derivative information
is so far limited to the case of NF antenna data. By imposing restrictions on the spatial derivative of
the magnitude of the probe signals, additional nonlinear measurements of the source coefficients are
made available. The resulting reconstruction problem features a more severe degree of nonlinearity
and, on its own, does not allow for a more accurate phase retrieval. However, it can directly
be combined with general purpose phase retrieval solvers to utilize all available data, effectively
yielding increased success rates. While of arguable practical relevance, the formulation proves a
major point. Always try to exploit as much information available as possibleÐ even if this requires
the treatment of highly nonlinear aspects.

5.4.6 Linearized Phase Retrieval

Another approach to tackle the phase retrieval problem can be found when having a closer look at
the magnitude of the forward operator applied to a solution vector modified by a small perturbation
𝛥𝒛. One can find

|A (𝒛 + 𝛥𝒛) |2 = |A𝒛 |2 + |A𝛥𝒛 |2

+ 2
[
Re

{
diag (A𝒛) A

}
Im

{
diag (A𝒛) A

}]
︸                                                ︷︷                                                ︸

C8∈R𝑚 × 2𝑛

[
Re {𝛥𝒛}
Im {𝛥𝒛}

]
︸      ︷︷      ︸
𝛥𝒛′∈R2𝑛 × 1

. (5.59)

Thus, one can write

|A (𝒛 + 𝛥𝒛) |2 = |A𝒛 |2 + |A𝛥𝒛 |2 + C8𝛥𝒛
′ !
= |𝒃 |2 (5.60)

⇒ |A𝒛 |2 + C8𝛥𝒛
′ !≈ |𝒃 |2 , (5.61)

from which, neglecting the O
(
𝛥𝒛2

)
term, we may state a linear update rule for the real and the

imaginary part of 𝛥𝒛 as

𝛥𝒛′ ≈ C−18
(
|𝒃 |2 − |A𝒛 |2

)
. (5.62)

Equation (5.62) does not necessarily yield an appropriately scaled solution that ensures higher-order
terms O

(
𝛥𝒛2

)
are truly negligible. However, one can combine the descent direction in (5.62) with

the exact line search result in (5.23) belonging to the standard nonconvex formulation with 𝑝1 = 1.
Note that the computational effort of solving (5.62) is relatively large, since a linear system of
equations has to be solved in every iteration. Still, this linearized phase retrieval formulation is very
appealing, since it can easily be implemented without requiring any derivatives or the minimization
framework, which is otherwise required for most approaches throughout this thesis. Employing
the analytic line search based on a cubic polynomial, the algorithm can indeed be compared to the
popular Gerchberg-Saxton algorithm, which features a similar computational effort. A minimalistic
implementation is provided in Alg. 12.
A brief comparison with the scale-invariant phase retrieval formulation based on A2 and the

Gerchberg-Saxton algorithm in the form of Alg. 10 has been performed. Complex-valued randomly
distributed data and synthetic field data generated from spherical vector wave functions evaluated
on the surface of a sphere with radius 𝜆 was considered. For the NF data, the sampling is done
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Algorithm 12 Linearized phase retrieval
𝒛 = LPR8 (𝒛0, |𝒃 | ,A, 𝑘max)

Input: initial guess 𝒛0, iterations 𝑘max,
measurements |𝒃 | and operator A

Output: 𝒛, where |A𝒛 | = |𝒃 |
1: 𝑘 = 1

2: 𝒛𝑘 = 𝒛0
3: while 𝑘 ≤ 𝑘max do

4: C8 = 2
[
Re

{
diag (A𝒛𝑘 ) A

}
Im

{
diag (A𝒛𝑘 ) A

}]
Descent direction 𝒑𝑘 :

5:
[
Re {𝒑𝑘 }T Im {𝒑𝑘 }T

]T
= 𝛥𝒛′

𝑘

= C−18
(
|𝒃 |2 − |A𝒛𝑘 |2

)
Step length 𝛼 via (5.22), (5.23) and Alg. 11:

6: 𝑎1 =


|A𝒑𝑘 |2



2
2

7: 𝑏1 = 4Re
{
A𝒛𝑘 ◦ A𝒑𝑘

}H
|A𝒑𝑘 |2

8: 𝑐1 = 4



Re {

A𝒛𝑘 ◦ A𝒑𝑘

}


2
2

+2 |A𝒑𝑘 |2,H
(
|A𝒛𝑘 |2 − |𝒃 |2

)
9: 𝑑1 = 4Re

{
A𝒛𝑘 ◦ A𝒑𝑘

}H (
|A𝒛𝑘 |2 − |𝒃 |2

)
10: [𝛼1, 𝛼2, 𝛼3] = cubic_roots

(
3𝑏1
4𝑎1

, 𝑐1
2𝑎1

, 𝑑
4𝑎1

)
Pick real-valued 𝛼 :

11: R ∋ 𝛼 ∈ {𝛼1, 𝛼2, 𝛼3}
12: 𝒛𝑘+1 = 𝒛𝑘 + 𝛼𝒑𝑘

13: end while

14: return 𝒛 = 𝒛𝑘+1

according to a Fibonacci mapping [Keinert et al. 2015], resulting in an almost uniform spatial
distribution of the acquisition points. The obtained success rates are drawn in Fig. 5.12 and indicate
that the performance of Alg. 12 is between that of A2 with 𝑝2 = 1 and that of the Gerchberg-
Saxton variant. Especially for the considered NF data, the linearized formulation outperforms the
Gerchberg-Saxton method, while featuring a similar computational effort as well as programming
complexity.

Concluding RemarksÐLinearized Phase Retrieval The combination of the iterative update
rule in (5.62) with the analytic step length computation of (5.23) represents a simple to implement,
yet rather well performing retrieval algorithm. Computational complexity and implementation
effort are similar to that of the Gerchberg-Saxton algorithms, while the observed success rates seem
to be superior.

5.4.7 Cosine-Similarity Maximization

Consider the cost function defined via the nonlinear operator in (5.16). While an analytical equation
for the optimal step length for this approach has been derived in (5.22), one can exploit the same
approach to determine the optimal step length and descent direction when starting from 𝒛 = 0.
Inserting 𝒛 = 0 in (5.22) yields

𝑓1 (𝒛′ = 𝛼𝒑) = 𝛼4


|A𝒑 |2

2

2
− 2𝛼2 |A𝒑 |2,H |𝒃 |2 +



|𝒃 |2

2
2
. (5.63)

A first-order optimality condition for (5.63) in terms of the step length corresponds to

𝜕𝑓1 (𝛼𝒑)
𝜕𝛼

= 4𝛼3


|A𝒑 |2

2

2
− 4𝛼2 |A𝒑 |2,H |𝒃 |2 !

= 0. (5.64)
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Fig. 5.12 Comparison of the linearized phase retrieval formulation based on (5.59), implemented via
Alg. 12, with that of A2 and the Gerchberg-Saxton variant in Alg. 10. In (a) and (b), the
achievable success rate for 𝑛 = 10 with complex-valued normally distributed data and NF
data stemming from a spherical multipole expansion, respectively, is depicted. For each
value of𝑚/𝑛, 5 × 104 repetitions have been run, where the algorithms have been started
from an initial guess computed via the optimal spectral method. Success is declared, once
𝜖𝑐,dB(A𝒛, 𝒃) ≤ −45 dB is achieved.

The solution to this equation is

𝛼2 !
=
|A𝒑 |2,H |𝒃 |2

|A𝒑 |2

2

2

(5.65)

and can be interpreted as the first-order optimal step length when starting from a zero initial guess

into the descent direction 𝒑. The optimal step length of (5.65) can now be inserted into (5.63) in
order to determine the optimal descent direction. Knowing that the minimum value of (5.63) is
zero, one can write

1 −
(
|A𝒑 |2,H |𝒃 |2

|A𝒑 |2

2

2



|𝒃 |2

2
2

)
!
= 0, (5.66)

which is a nonlinear equation in 𝒑, defining the ideal search direction when starting from a zero

initial guess and employing the first-order optimal step length. Interestingly, (5.66) contains the cosine
similarity between the generated magnitudes |A𝒑 | and the measured magnitudes |𝒃 |. It is not
surprising that maximizing the similarity between these quantities leads to a potential solution of
the phase retrieval problem.

Employing the notation of the the provided optimization framework, the minimization problem
in (5.66) can be rewritten as

A9 = −
[
|A𝒛 |𝑝91,T |𝒃 |𝑝91

|A𝒛 |𝑝91



2



|𝒃 |𝑝91


2

]𝑝92
= −

[
𝜒

(
|A𝒛 |𝑝91 , |𝒃 |𝑝91

) ]𝑝92
, 𝒛 ∈ C𝑛 × 1 with 𝑑9 = −1. (5.67)
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The required derivatives can be found as

𝜕A9 (𝒛)
𝜕𝒛

= −𝑝91𝑝92
2

[
𝜒

(
|A𝒛 |𝑝91 , |𝒃 |𝑝91

) ]𝑝92−1
diag

(
|𝒃 |𝑝91,T

|A𝒛 |𝑝91



2



|𝒃 |𝑝91


2

− |A𝒛 |
𝑝91,T |𝒃 |𝑝91 |A𝒛 |𝑝91,T

|A𝒛 |𝑝91

2

2



|𝒃 |𝑝91


2

)

diag
(
|A𝒛 |𝑝91−2 ◦ A𝒛

)
A (5.68)(

𝜕A9 (𝒛)
𝜕𝒛

)H
= −𝑝91𝑝92

2

[
𝜒

(
|A𝒛 |𝑝91 , |𝒃 |𝑝91

) ]𝑝92−1
AHdiag

(
|A𝒛 |𝑝91−2 ◦ A𝒛

)
diag

(
|𝒃 |𝑝91

|A𝒛 |𝑝91



2



|𝒃 |𝑝91


2

− |A𝒛 |
𝑝91,T |𝒃 |𝑝91 |A𝒛 |𝑝91

|A𝒛 |𝑝91

2

2



|𝒃 |𝑝91


2

)
(5.69)

𝜕A9 (𝒛)
𝜕𝒛

=
𝜕A9 (𝒛)

𝜕𝒛
(5.70)

(
𝜕A9 (𝒛)

𝜕𝒛

)H
=

(
𝜕A9 (𝒛)

𝜕𝒛

)H
. (5.71)

A brief comparison of the scale-invariant formulation with the presented cosine-similarity
formulation has been conducted for complex-valued normally distributed data and that stemming
from the fields of a spherical multipole expansion sampled almost uniformly on a sphere with
radius of 𝜆. All solvers started from an initial guess computed via the optimal spectral method
and at most performed 𝑘max = 5 × 103 iterations. Here, 𝑛 = 10 was considered and success was
declared once 𝜖𝑐,dB (A𝒛, 𝒃) ≤ −45 dB was obtained. The results are depicted in Fig. 5.13. For the
cosine-similarity formulation, the parameter 𝑝91 ∈ {1, 2}was chosen to either lead to a minimization
in the magnitudes or the squared magnitudes. The remaining parameter, 𝑝92, was set to unity.

When comparing the minimization in terms of magnitudes or squared magnitudes, both formu-
lations are observed to perform similarly. This seems to confirm the observations made previously,
where approaches working with the squared magnitudes have lead to a larger success rate compared
to their counterparts working with the non-differentiable magnitude signals.

Concluding RemarksÐCosine-Similarity Maximization Motivated in the search for the
optimal step length and descent direction when starting from a zero initial guess, the operator
A9 was found. At its core, the cosine similarity is evaluated, rendering this formulation scale-
invariant with respect to the unknown source coefficientsÐ as it was the case with A2. Overall,
the performance, the computational effort and the implementational complexity are seen to be on a
similar level as that of A2.
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Fig. 5.13 Comparison of phase retrieval formulation based on A9 with that of A2. In all cases,
𝑝92 = 1 was set. In (a) and (b), the achievable success rate for 𝑛 = 10 with complex-valued
normally distributed data and NF data stemming from a spherical multipole expansion,
respectively, is depicted. For each value of𝑚/𝑛, 5 × 104 repetitions have been run, where
the algorithms have been started from an initial guess computed via the optimal spectral
method. Success is declared, once 𝜖𝑐,dB(A𝒛, 𝒃) ≤ −45 dB is achieved.

5.5 Convex Phaseless Solvers

Aside the manifold of nonconvex phase retrieval algorithms, there exists a significantly smaller
number of convex phase retrieval formulations. Among the most widely known algorithms, there
are Phaselift [Candès et al. 2013], PhaseCut [Waldspurger et al. 2015] and PhaseMax [Goldstein and
Studer 2018]. The basic idea of the latter seems to have been developed in parallel also by [Bahmani
and Romberg 2017]. Note that there exist approaches trying to convexify nonconvex optimization
problems, e.g., numerical continuation [Boykov et al. 2001; Fadili et al. 2004; Mobahi and Fisher III
2015; Trzasko and Manduca 2009; Xiao and Zhang 2012] or majorization-minimization [Qiu et al.
2016; Qiu and Palomar 2017; Sun et al. 2016], which, for the sake of brevity, will not be discussed
here.

Despite their favorable convergence properties, convex algorithms have not been widely applied
to phaseless problems in electromagnetics. Commonly, it is emphasized that PhaseLift and PhaseCut
work with unknowns in the łliftedž problem space, requiring a drastic increase in computational
effort and often also memory storage. Still and to name just a few examples, they have been
employed for antenna diagnostics from phaseless FF measurements [Fuchs and Le Coq 2015],
phaseless NFFFTs [Moretta and Pierri 2019; Paulus et al. 2017c] and X-ray crystallography [Candès
et al. 2015a]. It is noteworthy that there exist approaches to work with first-order methods for
the implementation of PhaseLift and PhaseCut [Frank and Wolfe 1956; Jaggi 2013; Odor et al.
2016; Yurtsever et al. 2015], potentially making these convex approaches applicable to large sized
problems. Somehow differently, PhaseMax does not rely on a semidefinite relaxation and thus does
not łliftž the problem dimensions. Instead, PhaseMax can be implemented via a basis pursuit [Boyd
and Vandenberghe 2018; Chen et al. 2001; Foucart and Rauhut 2013], which should result in a more
favorable computational complexity and memory requirements when compared to PhaseLift and
PhaseCut.
So are these convex formulations the solution for phaseless NFFFTs that we are looking for?

Do they allow us to reliably retrieve the phase of NF measurement data acquired via realistic
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and feasible measurement setups? Before presenting results and allowing the reader to find an
answer to this question on his/her own, the theoretical basis of the three convex methods is briefly
summarized.

5.5.1 PhaseLift

Historically, PhaseLift [Candès et al. 2013] was the first convex phase retrieval algorithm to be
reported and which is based on the principles of semidefinite programming. At its core, the phase
retrieval problem is rewritten with bilinear forms [Cooperstein 2016; Milnor and Husemoller 1973;
Shafarevich and Remizov 2013] and a semidefinite relaxation is applied.

We start by writing the phase retrieval task in the form of

|𝒃 |2 = |A𝒛 |2 =
��� [𝒂1 . . . 𝒂𝑚

]T
𝒛
���2 (5.72)

with the rows of the forward operator 𝒂T𝑖 ∈ C1 ×𝑛 . Based on the bilinear form of the unknown
vector, one can find

| [𝒃]𝑖 |2 = 𝒂H𝑖

(
𝒛𝒛H

)
︸︷︷︸
Z∈C𝑛 ×𝑛

𝒂𝑖 , 𝑖 ∈ {1, ...,𝑚} . (5.73)

The fundamental observation in (5.73) is that the magnitude of the measurement is nonlinear in the
unknown vector 𝒛, but is linear in the unknown, Hermitian matrix Z of rank one. So when writing

|𝒃 |2 = APL (Z) =

𝒂H1 Z𝒂1

...

𝒂H𝑚Z𝒂𝑚


, (5.74)

one can state the phase retrieval as the optimization problem

min
Z∈C𝑛 ×𝑛

rank (Z)

s.t. APL (Z) = |𝒃 |2

Z ⪰ 0. (5.75)

Here, Z ⪰ 0 symbolizes that Z is positive semidefinite. By construction, it is known that there
exists a solution to (5.75) with a rank of one. Since rank minimization is known to be an NP-hard
problem, the rank is approximated by a trace-norm relaxation, resulting in the convex phase
retrieval formulation

min
Z∈C𝑛 ×𝑛

Tr (Z)

s.t. APL (Z) = |𝒃 |2

Z ⪰ 0, (5.76)

also called PhaseLift. The solution space is łliftedž as the unknowns now are bilinear forms of the
original vector of unknowns.
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5.5.2 PhaseCut

Closely following the line of thought in [Fuchs and Le Coq 2015] and [Waldspurger et al. 2015], a
semidefinite relaxation can be utilized in order to rewrite (5.1) as a convex semidefinite optimization
problem. This is done by first introducing unknown phases 𝒖 which fulfill

A𝒛 = diag ( |𝒃 |) 𝒖 (5.77)

where

𝒖 ∈ C𝑚 × 1, | [𝒖]𝑖 | = 1. (5.78)

The problem in (5.1) can then be rewritten as

min
𝑧∈C𝑛 × 1

𝒖∈C𝑚 × 1, | [𝒖 ]𝑖 |=1

∥A𝒛 − diag ( |𝒃 |) 𝒖∥2 . (5.79)

Once a 𝒖 has been found, 𝒛 is obtained as the solution of a linear system of equations

𝒛 = A−1diag ( |𝒃 |) 𝒖 . (5.80)

Combining (5.79) and (5.80) yields

min
𝒖∈C𝑚 × 1, | [𝒖 ]𝑖 |=1



AA−1diag ( |𝒃 |) 𝒖 − diag ( |𝒃 |) 𝒖

2 (5.81)

which is an optimization in𝑚 complex-valued unknowns. The idea of semidefinite programming is
to rewrite (5.81) in a way that it leads to a linear dependency on an unknown matrix instead of a
nonlinear dependence on the vector 𝒖. Starting with



AA−1diag ( |𝒃 |) 𝒖 − diag ( |𝒃 |) 𝒖

2 = 𝒖HM𝒖 (5.82)

where

M = diag ( |𝒃 |)
(
I − AA−1

)
diag ( |𝒃 |) (5.83)

is a positive definite Hermitian matrix obtained by using the identity

(
AA−1 − I

)H (
AA−1 − I

)
=

(
I − AA−1

)
, (5.84)

one can construct the Hermitian rank-one matrix

U = 𝒖𝒖H (5.85)
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resulting in 𝒖HM𝒖 = Tr(MU). The minimization of (5.81) can thus be written as

min
U∈C𝑚×𝑚

Tr (MU)

s.t. diag (U) = 1

U ⪰ 0

rank (U) = 1. (5.86)

Since the rank-one matrix constraint is nonconvex [Fuchs and Le Coq 2015], one can obtain a
convex relaxation as

min
U∈C𝑚 ×𝑚

Tr (MU)

s.t. diag (U) = 1

U ⪰ 0 (5.87)

where the solution will only be an approximation. As U is no longer of rank one, the reconstructed
phase vector 𝒖 is chosen as the eigenvector of U corresponding to the eigenvalue with the largest
magnitude. Finally, one obtains an approximation of the unknown equivalent AUT representation
from (5.80).

An imperfect realization of PhaseCut in terms of the optimization framework of this thesis is
presented in Appendix A.7.

5.5.3 PhaseMax

The convex phase retrieval formulation PhaseMax has been proposed in [Goldstein and Studer
2018]. Different to other convex formulations, the problem is not linearized by a łliftingž procedure,
instead, only the magnitude restriction is relaxed. The basic formulation is rather intuitive, when
looking at the cosine similarity, e.g., defined in (5.8). PhaseMax looks for a vector that is as collinear
as possible to a vector assumed to be very close to the true solution, while enforcing a convex
condition on the resulting measurement magnitudes. Given the approximate solution vector 𝒛PM,
also called anchor vector in [Bahmani and Romberg 2017], the phase retrieval is written as the
optimization problem

max
𝒛∈C𝑛 × 1

Re
{
𝒛HPM𝒛

}
s.t. |A𝒛 | ≤ |𝒃 | . (5.88)

According to [Goldstein and Studer 2018], this task can be rewritten as a basis pursuit problem [Boyd
and Vandenberghe 2018; Chen et al. 2001; Foucart and Rauhut 2013]

min
𝒛∈C𝑚 × 1

∥𝒛∥1

s.t. 𝒛PM = AHdiag( |𝒃 |)−1𝒛. (5.89)

A rudimentary implementation of (5.89) via the optimization framework is discussed in Ap-
pendix A.8. One of the main results in [Goldstein and Studer 2018] is that PhaseMax is able
to determine the correct solution with a linear sampling complexity O(𝑛), however, assuming
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that the cosine similarity between the anchor vector and the true solution does not depend on the
problem dimension. This may or may not hold true when picking the anchor vector by means of
the procedures discussed in Section 5.3. As a reminder, refer to Fig. 5.3 for the achievable cosine
similarity depending on the problem dimension for random and NF data.

5.5.4 Numerical Results

After having reviewed the basics of the convex formulations, there performance is to be evaluated
empirically. Similar to the procedure used for the presented nonconvex techniques, random data
is considered first. For the three algorithms there are convergence proofs based on random data
which is why a similar behavior as for the non-convex solvers is expected. For all presented
results, the implementation of PhaseCut is based on the code provided by the authors of PhaseCut
in [Waldspurger et al. 2015], which is based on a procedure provided in [Helmberg et al. 1996]
for an interior-point method. The PhaseLift and PhaseMax solvers are called via the Phasepack
library [Chandra et al. 2019, 2017], which internally calls the FASTA solver [Goldstein et al. 2014]
for the underlying convex problems.

Gaussian Data

The performance of the three convex phase retrieval algorithms PhaseLift, PhaseCut and PhaseMax
for complex-valued normally distributed data is depicted in Fig. 5.14. Results for the scale-invariant,
nonconvex method with A2 were added for reasons of comparability. The problem dimension
is fixed to 𝑛 = 10 and various sampling ratios have been tested. All solvers at most ran 5 × 103
iterations, starting from an initial guess computed via the optimal spectral method in (5.4). For
each value of𝑚/𝑛, 1 × 103 repetitions were conducted. For PhaseMax, the initial guess was used as
the anchor vector. As expected, all solvers are able to perform an accurate phase reconstruction
once the number of measurements is sufficiently large. Based on the implementations at hand,
PhaseCut seems to have the best performance in terms of the required number of measurements,
however, also features the largest computational effort. In contrast, PhaseMax allows for a faster
reconstruction, which is reliable when more than twice the number of measurements needed by
PhaseCut are available. Here, PhaseLift is seen to be some kind of compromise between runtime and
sampling effort. It should be kept in mind that PhaseCut is based on unknowns in the observation
domain, causing the steep increase in computation time with larger𝑚/𝑛. In a similar way, it is
expected that PhaseLift requires more computational effort when 𝑛 is increased. Since𝑚/𝑛 is always
required to be larger than one, the computational effort and memory requirements of PhaseCut are
expected to exceed that of PhaseLift for the same problem.

Near-Field Antenna DataÐQuasi-Yagi Antenna

We continue our performance evaluation with a simple example of a synthetic NF antenna mea-
surement setup. A typical spherical NF measurement is realized in terms of simulations of a planar
quasi-Yagi-Uda antenna [Kaneda et al. 2002; Qian et al. 1999] in the CST Studio Suite [3DS Simulia
2019]. At 10GHz, the AUT fits into a minimum sphere with a radius of approximately 0.83𝜆 and
the tangential electric field is sampled on a spherical surface with a radius of 2𝜆, centered around
the AUT. A CAD model of the simulation setup is depicted in Fig. 5.15(a), where the measurement
surface is depicted in form of a gray sphere enclosing the AUT. For the purpose of illustration,
the sphere is cut open, revealing the AUT inside. In order to equally distribute the measurement

100



5.5 Convex Phaseless Solvers

2 4 6 8
0

20

40

60

80

100

𝑚/𝑛

S
u
cc
es
s
ra
te

in
p
er
ce
n
t

A2, 𝑝2 = 1

PhaseLift

PhaseCut

PhaseMax

(a)

2 4 6 8
10

−3

10
−2

10
−1

𝑚/𝑛

R
u
n
ti
m
e
in

s
e
c
o
n
d
s

(b)

Fig. 5.14 Performance of convex phase retrieval algorithms for complex-valued random Gaussian
distributed data for 𝑛 = 10 and various sampling ratios𝑚/𝑛. (a) The success rate (𝜖𝑐,dB ≤
−45 dB). (b) The average run time of the algorithms.

samples on the spherical surface, a Fibonacci mapping [Keinert et al. 2015] was employed. In
total𝑚 = 1 × 104 measurements and 𝑛 = 2 × 103 unknown electric and magnetic dipoles were
utilized for modeling the problem. Despite the relatively large oversampling of 𝑚/𝑛 = 5, the
measurement setup can be called łnaivež or rather unsuitable for a phaseless transformation. No
additional effort has been made to compensate for the lack of phase information, e.g., by sampling
on multiple surfaces, with special probe antennas or combining broadband data. Except for the
increased number of measurement samples, this simple synthetic example represents a typical NF
measurement setup when full phase information is available. Ideally, we would like to have a phase
retrieval algorithm which can accurately and reliably reconstruct the phase information from that
minimalistic measurement.

The obtainable NF deviation of PhaseLift, PhaseMax and the nonconvex solver in (5.30) for NF
data of the quasi-Yagi antenna is depicted in Fig. 5.15(b). The implementation of PhaseCut based
on the interior-point method is excluded from the investigations as the required computational
resources (time and memory) were considered to be too large. The remaining algorithms were
allowed to perform at most 5 × 103 iterations and were started from an initial guess generated via
the optimal spectral method. Out of the maximum number of 1 × 104 measurements, a varying
number of samples were randomly picked, such that a range of𝑚/𝑛 ∈ [2, 5] could be investigated.
The NF deviation was computed with respect to all𝑚 = 1×104 measurement entries. As a reference,
the NF deviation for a transformation with full phase information was added. It can be seen that
the chosen AUT model can reproduce the NF data generated by CST up to a level of approximately
−59 dB, a value that is mainly limited by the accuracy of the simulation model in CST. Non of the
investigated phase retrieval methods comes close to the result of the transformation with phase
knowledge, even for a decently large oversampling ratio of𝑚/𝑛 = 5. The information contained in
the provided magnitudes simply is insufficient. Solely a slight advantage of the nonconvex solver
compared to the convex ones can be observed.

This leads us to a rather general and preliminary conclusion. The convexity of certain phase
retrieval algorithms can not compensate for the potential lack of information in measurement
data. In fact, convexity is often achieved at the expense of dropping nonconvex restrictions. In the
regime where it is unclear whether or not the measurement data contains a sufficient amount of
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Fig. 5.15 (a) Geometry of a planar quasi-Yagi-Uda antenna [Kaneda et al. 2002; Qian et al. 1999],
including the spherical measurement surface indicated by the gray sphere. For illustration
purposes, part of the measurement sphere is cut away in order to reveal the AUT inside.
The achievable NF deviation of a nonconvex and two convex phase retrieval algorithms in
comparison of a fully coherent transformation is shown in (b).

information, these constraints can potentially allow nonconvex methods to obtain more accurate
results than their convex alternatives.

Towards the application to phaseless field transformations, we can make a significant statement:
Common NF antenna measurement setups provide magnitude data that is inappropriate for the
task of phase retrieval. Solely increasing the sampling density does not solve the problem. Neither
convex, nor nonconvex algorithms can perform an accurate and reliable phase reconstruction from
the data provided by these measurements. Consequently, the main difficulty related to phaseless
NFFFTs is not equivalent to picking the best existing phase retrieval algorithm. Instead, the real
question to be asked is how to obtain phaseless data that allows aÐpossibly anyÐphase retrieval
algorithm to perform well, just as most of them do for random normally distributed data.

Near-Field Antenna DataÐHorn Antenna Array

Continuing with more relevant phaseless data, the 4 × 4 array consisting of horn antennas depicted
in Fig. 5.16(a) is considered. At the operating frequency, only the fundamental waveguide mode is
relevant and employed. All array elements colored in red are excited with a coefficient of one, only
the antenna in blue color and green color have coefficients of 0.5 and −1, respectively. The antenna
array was simulated in Feko and NF data of two orthogonal polarizations on two planes, indicated
by black lines in Fig. 5.16(b), at distances of 2.9𝜆 and 4.9𝜆 was recorded. Within the NFFFT, the
AUT was modeled by 𝑛 = 795 Hertzian dipoles placed on a box closely confined to the antenna
array, where the bottom surface of the box was removed (at the feed region of the horn antennas).
The resulting equivalent model is thus well suited to describe the radiation of the horn array in
direction of the main beam and the sides, while featuring a slightly reduced number of unknowns
compared to using a fully closed Huygens surface. Keeping the number of unknowns at a minimum
is especially important in case of the convex solvers based on lifting, as their computational effort
increases drastically with larger problem dimensions. All solvers were allowed to perform at most
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5 × 103 iterations and were started from an initial guess computed via the optimal spectral method.
The obtained NF deviations are depicted in Fig. 5.16(c), also including a fully coherent solver and
the scale-invariant, nonconvex solver with 𝑝2 = 0.5. Out of the 3 × 104 available probe samples,
a certain portion was randomly picked, resulting in various oversampling values𝑚/𝑛. The NF
deviation was computed with respect to all𝑚 = 3 × 104 samples. Based on the performance of the
solver with full phase information, one can conclude that the equivalent model can approximate the
NF data from Feko up to around −65 dB, a value that is by far not achieved by any of the phaseless
solvers. While the nonconvex solver of (5.30), in agreement with its nonconvexity, sporadically
converges to a stationary point of decent accuracy, the convex solvers perform badly. For PhaseLift,
a trend towards decreasing NF deviations for larger𝑚/𝑛 is visible, which can not be observed for
PhaseMax in case of the considered oversampling values. In total, these results are unsatisfying, as
the only potentially reliable algorithms (the convex ones) are not able to exploit the provided field
variations between the two measurement surfaces and to retrieve the true phase distribution with
sufficient accuracy. The varying performance of the nonconvex solver is caused by stagnation at
local stationary points. The convergence is highly dependent on the initial guess as well as the
different weighting of łinformationž in the measurement data. Both, the starting point and the
weighting of the data may still differ for large ratios of𝑚/𝑛, while the overall restrictions implied
by the acquired fields do not.

As a point of interest, the field distribution caused by the equivalent sources of the horn antenna
array in a plane slightly above the apertures is depicted in Fig. 5.17. The results have been obtained
when utilizing a ratio of𝑚/𝑛 ≈ 12.6 for the transformation with full phase information and for
the nonconvex solver. The corresponding NF deviations are 𝜖𝑐,dB ≈ −62 dB and 𝜖𝑐,dB ≈ −21 dB,
respectively. For the nonconvex solver, this corresponds to one of the better attempts, however, can
not be interpreted as its typical performance. For completeness, the result obtainable with PhaseLift
and𝑚/𝑛 = 20 is shown. In the left and right columns of Fig. 5.17, the magnitude and phase of
the dominant electric field component is drawn. The dashed boxes indicate the locations of the
antenna apertures, where the green and blue rectangles mark the elements with 180◦ phase shift
and with only half the excitation coefficient, respectively. Looking at the phase distribution, the
phase shifted element can clearly be identified from the results of the solver with full phase and the
nonconvex phaseless approach. For both solvers, there are slight variations in the magnitude of the
field near the element with reduced excitation strength. Still, a clear detection of a łfaultyž element
can not be made. With a large NF deviation of approximately −2.5 dB, the result by PhaseLift does
not allow for any kind of antenna diagnostics.

The resulting FF radiation behavior of the three results is shown in Fig. 5.18. Due to the truncated
nature of the measurement setup, only the radiation within a limited angular range can be predicted
by the equivalent sources. Here, only the dominant electric field component in the plane of 𝜑 = 0◦

is drawn and the deviation with respect to the true FF obtained with a simulation in Feko is given.
Overall, the FF discrepancies are proportional to the stated NF deviations, where the transformation
with full phase performs best, followed by the nonconvex formulation. The result for PhaseLift
does not provide meaningful information in the FF.

Concluding RemarksÐConvex Phase Retrieval Opposed to the abundance of nonconvex
phase retrieval approaches, there exist only a few convex alternatives. Inherent to convexity,
they do not suffer from the occurrence of local stationary points and are resistant to improper
initial guesses, which are two severe issues of nonconvex methods and initialization techniques
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5 Phaseless Near-Field Far-Field Transformation

when going to large-sized problems. In all cases, convexity is achieved at the cost of loosening
restrictions and, thus, dropping information about the phases. Sometimes this involves łliftingž the
problem dimensions, which increases the computational effort drastically. Consequently, the convex
techniques can not be expected to exhibit best performance for small numbers of measurements and
may be limited in their utilization for large tasks. However, in the regime where a decent amount
of information is contained in the measured magnitudesÐnot enough to prevent the nonconvex
solvers from getting stuck in local stationary pointsÐ convex techniques may be worth a try, even
if they are just used to generate a more appropriate initial guess for their nonconvex colleagues.
From the numerical examples presented here, no practical advantage of the convex methods on the
nonconvex alternatives was visible for NF antenna data. The two convex techniques PhaseLift and
PhaseMax will be briefly tested for a modified type of field data later on in Chapter 6.
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Fig. 5.16 (a) The geometry of a synthetic horn antenna array. The antenna marked in blue is
excited with only half of value of the excitation coefficients of the red antennas. The
antenna in green exhibits a phase shift of 180◦ with respect to the red antennas. NF
samples are acquired on two planes in front of the aperture, indicated by the black lines in
(b). (c) The obtained NF deviation for various phase retrieval algorithms and dependent
on the oversampling ratio. The measurements have been randomly picked on the two
measurement planes and the NF deviation is computed with respect to all𝑚 = 3×104 probe
signals. For the transformations, 𝑛 = 795 Hertzian dipoles as unknowns were utilized.
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Fig. 5.17 Magnitude (left column) and phase (right column) of the dominant electric field component
radiated by the reconstructed sources. The field is evaluated on a plane slightly above
the aperture of the horn array. Dashed black lines indicate the location of the antenna
apertures. The results in (a) and (b) were obtained via (4.4) assuming full phase information
and𝑚/𝑛 ≈ 12.6, (c) and (d) via the nonconvex phaseless solver (5.30) with𝑚/𝑛 ≈ 12.6 and
(e) and (f) via the convex formulation PhaseLift in (5.76) for𝑚/𝑛 = 20. The NF deviations
with respect to the fields in Feko read as 𝜖𝑐,dB ≈ −62 dB, 𝜖𝑐,dB ≈ −21 dB and 𝜖𝑐,dB ≈ −2.5 dB,
respectively.
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Fig. 5.18 Comparison of the reconstructed FF of the horn antenna array with true radiation charac-
teristic obtained in Feko. Depicted is the dominant electric field component in the plane
with 𝜑 = 0◦. Due to the planar measurement setup, the valid region of the reconstructed
fields is limited. (a) The transformation result when full phase information is available.
(b) Transformation result with the nonconvex formulation in (5.30) with 𝑝2 = 0.5, for
𝑚/𝑛 ≈ 12.6. The result in (c) was computed with PhaseLift for 𝑚/𝑛 = 20. The corre-
sponding NF deviations with respect to Feko read as 𝜖𝑐,dB ≈ −62 dB, 𝜖𝑐,dB ≈ −21 dB and
𝜖𝑐,dB ≈ −2.5 dB, respectively.
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5.6 Exact and Direct Phase Retrieval

Aside the plethora of phase retrieval algorithms relying on optimization, there exists an optimization-
free and exact phase retrieval technique. Most of the theory of this chapter has been reported
in [Knapp et al. 2019b] and, from another point of view and with different notation, has been
discussed in [Balan et al. 2009]. At its core, the phase retrieval problem is rewritten with bilinear
forms, which allow for a linear representation of previously nonlinear terms. The downside of using
bilinear forms is the direct increase in the problem dimensions. The resulting computational effort
is comparable to that observed with certain iterative convex phase retrieval algorithms [Candès
et al. 2013; Waldspurger et al. 2015], which themselves rely on bilinear forms.

We start by introducing the general idea of the direct phase retrieval and afterwards derive an
easy-to-use, trivial-to-implement and insightful formulation.

5.6.1 Reconstruction in Bilinear Forms

Consider the retrieval problem denoted in an element-wise fashion as

| [𝒃]𝑘 |2 = 𝒛H
(
𝒂𝑘𝒂

T
𝑘

)
𝒛, with A =

[
𝒂1 𝒂2 . . . 𝒂𝑚

]T
, for 𝑘 ∈ {1, ...,𝑚} (5.90)

where 𝒂T
𝑘
∈ C1 ×𝑛 is the 𝑘th row in the measurement matrix A. Consequently, we can form linear

combinations (LCs) of the measurements as

𝛼B | [𝒃]𝑘 |2 + 𝛽B | [𝒃]𝑙 |2 = 𝒛H
(
𝛼B𝒂𝑘𝒂

T
𝑘

)
𝒛 + 𝒛H

(
𝛽B𝒂𝑙𝒂

T
𝑙

)
𝒛

= 𝒛H
(
𝛼B𝒂𝑘𝒂

T
𝑘 + 𝛽B𝒂𝑙𝒂

T
𝑙

)
𝒛 (5.91)

for some coefficients 𝛼B and 𝛽B. Forming arbitrary LCs and collecting the coefficients in 𝜸𝑏 , we can
write

𝜸T
𝑏 |𝒃 |

2
= 𝒛H

(
diag

(
𝜸𝑏

) 𝑚∑︁
𝑖=1

𝒂𝑖𝒂
T
𝑖

)
︸                    ︷︷                    ︸

C𝑏 ∈C𝑛 ×𝑛

𝒛. (5.92)

Equation (5.92) lays the foundation for a direct solution of the phase retrieval problem. The idea
is to construct the matrix C𝑏 , i.e., find the coefficients in 𝜸𝑏 , such that we can directly compute
the magnitude of the coefficients 𝒛 and all necessary phase differences between the coefficients.
Alternatively, one can try to find the coefficients such that the phase differences in the measurement
vector can be computed. For the moment, we will follow the first approach and try to reconstruct
the magnitude of the solution 𝒛. We thus need to find the vectors 𝜸𝑘 and 𝜸𝑙 such that

𝜸T
𝑘 |𝒃 |

2
= 𝒛H (C𝑘 ) 𝒛 = | [𝒛]𝑘 |2 = 𝑤1, (5.93)

𝜸T
𝑙 |𝒃 |

2
= 𝒛H (C𝑙 ) 𝒛 = | [𝒛]𝑙 |2 = 𝑤2, (5.94)
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which is obtained for sparse matrices C𝑘/𝑙 with a single scalar one on the main diagonal in the
𝑘/𝑙th row. Analogous, we can design the matrix to generate two LCs of two source coefficients via

𝜸T
𝑢 |𝒃 |2 = 𝒛H (C𝑢) 𝒛 = | [𝒛]𝑘 + [𝒛]𝑙 |2 = 𝑤3 (5.95)

𝜸T
𝑣 |𝒃 |2 = 𝒛H (C𝑣) 𝒛 = | [𝒛]𝑘 + j[𝒛]𝑙 |2 = 𝑤4. (5.96)

Combining𝑤1 to𝑤4 via the well known equation

∆𝜑 = ∠( [𝒛]𝑘 ) − ∠( [𝒛]𝑙 ) = atan

[
𝑤4 −𝑤1 −𝑤2

𝑤3 −𝑤1 −𝑤2

]
(5.97)

yields the phase difference ∆𝜑 between the two source coefficients. By forming a chain of phase
differences, the complete complex-valued source vector can be reconstructed up to a global phase
shift.

With this procedure, we can exactly reconstruct the magnitude and the relative phases of the
solution vector 𝒛. The sampling complexity of this algorithm is O(𝑛2), since in general we need to
construct arbitrary matrices C𝑜 ∈ C𝑛 ×𝑛 from weighted sums of the outer products of the rows of
the forward operator. Only in case these outer products form a complete basis for the space C𝑛 ×𝑛 ,
arbitrary matrices can be formed. In total, in the order of 𝑛 linear systems of equations involving
matrices approximately of the size of C𝑛

2 ×𝑛2
need to be solved. The estimated computational

complexity of this method thus is O(𝑛5). However, the approach is of general validity and could
in theory be applied independent of the underlying physical problem. The main drawback is that
enough information has to be captured by the𝑚 = O(𝑛2) measurements. Otherwise, a construction
of the relevant matrices C𝑜 may not be possible or inaccurate. Note that the computationally
expensive part of the method only needs to be performed once per operator. Whenever the
measurement vector changes, phase retrieval can be performed at the expenses of a single matrix-
vector product with a worst-case complexity of O(𝑛2). This is in strong contrast to phase retrieval
algorithms based on optimization, as these approaches have to be applied with full complexity
every time a new measurement vector 𝒃 is considered.

With the specific procedure explained above, care has to be taken whenever a phase difference
between source coefficients is to be calculated, where one coefficient has zero magnitude. As the
phase difference is then not defined, the algorithm may fail. However, once the magnitudes have
been computed, a chain of phase differences along nonzero coefficients can be chosen and computed.
Further note, as the sampling complexity appears to be O(𝑛2), it is wise to work with the minimum
number of unknowns. In case of field transformation algorithms, a spherical multipole expansion
or equivalent currents based on a SVD are thus recommendable.

Now that we have sketched the general idea of the direct phase retrieval method based on bilinear
forms, let us investigate the formulation further in order to find an easy-to-use implementation.

5.6.2 Implementation of Direct Phase Retrieval

We start by defining our new vector of unknowns

𝒛 =

[
[𝒛]1 [𝒛]2 . . . [𝒛]𝑚

]T ∈ C𝑚 × 1, (5.98)
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which shall be chosen such that

W =

𝑚∑︁
𝑖=1

[𝒛]𝑖
(
𝒂𝑖𝒂

T
𝑖

)
, (5.99)

where W ∈ C𝑛 ×𝑛 is an arbitrary and choosable matrix, in this application featuring a rank of one.
We introduce the column-vector notation of the aforementioned matrices with

W =

[
𝒘1 𝒘2 . . . 𝒘𝑛

]
and

(
𝒂𝑖𝒂

T
𝑖

)
=

[
𝒗𝑖,1 𝒗𝑖,2 . . . 𝒗𝑖,𝑛

]
, (5.100)

where𝒘𝑖 ∈ C𝑛 × 1, 𝒗𝑖,𝑘 ∈ C𝑛 × 1 and, from some simplifications, we can find

𝒗𝑖,𝑘 = [𝑎𝑖]𝑘 𝒂𝑖 . (5.101)

We can now vectorize (5.99) by stacking the vectors in larger column vectors and form a larger
linear system of equations

𝒘̂ =



𝒘1

𝒘2

...

𝒘𝑛

︸︷︷︸
∈C𝑛2 × 1

=





𝒗1,1
𝒗1,2
...

𝒗1,𝑛

︸︷︷︸
𝒒1

𝒒2 . . . 𝒒𝑚

︸                        ︷︷                        ︸
O∈C𝑛2 ×𝑚

𝒛 . (5.102)

As O is not a square matrix, one may resort to solving the normal system of equations

OHO𝒛 = OH𝒘̂ . (5.103)

Next, we try to simplify the equations further. We start by writing the matrix-matrix product in
its explicit form

OHO =


𝒂T1 [𝑎1]1 . . . 𝒂T1 [𝑎1]𝑛

...
. . .

...

𝒂T𝑚 [𝑎𝑚]1 . . . 𝒂T𝑚 [𝑎𝑚]𝑛



𝒂1 [𝑎1]1 . . . 𝒂𝑚 [𝑎𝑚]1

...
. . .

...

𝒂1 [𝑎1]𝑛 . . . 𝒂𝑚 [𝑎𝑚]𝑛


=



(
𝒂T1 𝒂1

) (
𝒂T1 𝒂1

)
. . .

(
𝒂T1 𝒂𝑚

) (
𝒂T1 𝒂𝑚

)
...

. . .
...(

𝒂T𝑚𝒂1
) (
𝒂T𝑚𝒂1

)
. . .

(
𝒂T𝑚𝒂𝑚

) (
𝒂T𝑚𝒂𝑚

)

=

��AAH
��2 ∈ R𝑚 ×𝑚 . (5.104)

Note that the resulting matrix only contains real valued entries. Furthermore, the product

OH𝒘̂ =


𝒂T1 [𝑎1]1 . . . 𝒂T1 [𝑎1]𝑛

...
. . .

...

𝒂T𝑚 [𝑎𝑚]1 . . . 𝒂T𝑚 [𝑎𝑚]𝑛



𝒘1

...

𝒘𝑛


=



(
𝒂T1𝒘̃

H
) (
𝒂T1𝒘̃

H
)

...(
𝒂T𝑚𝒘̃

H
) (
𝒂T𝑚𝒘̃H

)

=

��A𝒘̃H
��2 . (5.105)
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can be written in a simplified way, since W is commonly created as a rank-one matrix according to

W = 𝒘̃H𝒘̃ =

[
𝒘̃H [𝒘̃]1 . . . 𝒘̃H [𝒘̃]𝑛

]
=

[
𝒘1 . . . 𝒘𝑛

]
. (5.106)

Keep in mind that 𝒘̃ ∈ C1 ×𝑛 basically represents a row of the forward operator, to which we want

to find the measured magnitude.

Now, assume one wants to know the magnitudes of a collection of theoretically measurable
signals

𝒃̃ =

[
[𝒃̃]1 . . . [𝒃̃]𝑞

]T
, (5.107)

which can for example be unknown values of the copolar component in the FF of the AUT. The
according measurement rows, e.g., the known rows of a FF radiation operator, are stacked as
columns in the matrix

W̃ =

[
𝒘̃T
1 𝒘̃T

2 . . . 𝒘̃T
𝑞

]
. (5.108)

We can find the desired measurement signals via

���𝒃̃ ���2 =
[(��AAH

��2)−1 ���AW̃���2
]T
|𝒃 |2 . (5.109)

From (5.109) we can see that an exact phase retrieval is possible by solving a linear system of
equations. Deriving (5.109) did not require any simplifications or approximations, thus, it represents
an exact solution. As mentioned earlier, the major downside of the approach is the required worst-
possible sampling complexity of O(𝑛2), as otherwise no solution to the linear system may exist.
At the core of the procedure, the linear system of equations with the matrix |AAH |2 needs to be
inverted. This particular matrix plays an essential role in the solution process. Only when it is of
full rank, which requires𝑚 ≥ 𝑛2, the retrieval process is ensured to be successful. Consequently,
rank( |AAH |2) can be used as a crucial indicator for how much łinformationž is available in form
of the magnitude measurements [Knapp et al. 2019b]. Here, we will utilize this figure in order to
judge the suitability of forward operators and the underlying measurement setups. Even when the
full-rank condition is not fulfilled, one can say that the larger the rank of this matrix, the higher
the chance that an accurate phase reconstruction will be achieved. Opposite, a low rank indicates
an inadequate measurement setup.

A simplistic implementation of the direct phase retrieval is stated in Alg. 13. Pseudo-code in
Matlab [Matlab 2021] notation is given, essentially reconstructing the phase differences between
the measurements with respect to the first entry in the measurement vector. In order for the
algorithm to work, the first entry in the measurement vector has to feature a nonzero magnitude.
Reconstruction of the phase differences is based on the interferometric relation in (5.97) and the
related LCs.

Numerical Results for Direct Phase Retrieval

Figure 5.19(a) illustrates the performance of the direct phase retrieval method for complex-valued
normally distributed data. The threshold for a successful transformation was set to a relatively low
value of 𝜖𝑐,dB ≤ −45 dB, which should be the reason that a nonzero rate of success can be observed
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5 Phaseless Near-Field Far-Field Transformation

Algorithm 13 Exact Phase Retrieval (Matlab Code)

Input: A= A, b= |𝒃 |2
Output: complex measurement vector br= 𝒃ej𝜑0

Number of measurements :
1: m = size(A,1);

Rows to be constructed :
2: W = [A;A(2:end,:)+A(1,:);...

A(2:end,:)+1i*A(1,:)].’;

Solve linear systems (core of phase retrieval) :
3: bt = ...

((abs(A*A’).^2)\(abs(A*conj(W)).^2)).’*b;

Compute phase differences :
4: dp = atan2((bt(2*m:end)-bt(1)-bt(2:m)),...

(bt(m+1:2*m-1)-bt(1)-bt(2:m)));

Construct complex signal :
5: br = sqrt(bt(1:m)).*exp(1i*[0;dp]);

6: return br

for𝑚 ≤ 𝑛2 in some cases. For each ratio of𝑚/𝑛2, 5 × 103 simulations were performed. The direct
transformation in the form of that given in Alg. 13 was used. Note that a guaranteed success is
observed for𝑚 ≥ 𝑛2 since in the case of Gaussian distributed rows in the forward operator, the
information content in the magnitude measurement monotonically increases until the upper limit
of 𝑛2. In other words, every row added in A increases the rank( |AAH |2) by one. This may not be
observed for real-world applications, where additional measurements typically feature a certain
degree of redundancy with existing ones.
The relation between the number of measurements and the rank of the relevant matrix for

various measurement models is depicted in Fig. 5.19(b), where 𝑛 = 20 was employed. As has
been said, the information content (solid lines) for complex-valued normally distributed operators
increases directly proportional with the number of measurements until at𝑚 = 𝑛2 the maximum is
reached. In contrast, models of real-world antenna measurements with electromagnetic radiation
operators and probe antennas exhibit a saturation effect above certain sampling ratios. Here, the
forward operator for NF measurements on a single spherical surface, for two spherical surfaces
and with specialized probe antennas is considered. The specific details of the setups are not of
interest hereÐ it simply shall be seen that a real measurement setup will cause the rows of the
forward operator to exhibit linear dependencies in their corresponding bilinear forms. As a result,
adding more samples of the same measurement setup to an existing dense sampling, e.g., more
measurement with the same probe antenna at the same measurement distance, will not add more
information to the phase retrieval taskÐvisible from the saturation of the rank-curves. In the
same plot in Fig. 5.19(b), the success rate (dashed lines) of a phaseless transformation based on the
occurring forward operators is depicted. The formulation in (5.16) with 𝑝1 = 1 was used for this
purpose. For each ratio of𝑚/𝑛2 and the corresponding forward operator, a true solution vector was
randomly picked from a complex-valued normal distribution and the resulting measurement vector
was computed. Afterwards the phase retrieval problem was solved and declared to be successful
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Fig. 5.19 (a) Success rate of the exact phase retrieval method for complex-valued normally distributed
data. (b) Percentage of the achieved rank and the success rate of formulation (5.16) for
various forward operators. ACND, ASP, A2S and A1S refer to complex-valued normally
distributed data, a spherical NF measurement setup with łspecialž probe antennas on a
single surface, a measurement with common probes on spherical surfaces of two different
radii and on a single surface, respectively. Solid lines represent the rank while dashed lines
refer to the success rate. The number of unknowns was set to 𝑛 = 20. Spherical vector
wave functions have been used for constructing the NF matrices.

once a complex NF deviation below −45 dB was achieved. For each ratio𝑚/𝑛2, 5 × 103 solution
vectors were considered per model. As can be seen from Fig. 5.19(b), there is a correlation between
the success rate of the phase retrieval solver and the information content of the forward operator.
As claimed, a larger rank seems to increase the chance of a successful transformation. Nevertheless,
there is no simple relationship and the correlation should only be seen as a rule of thumb. Also,
adding more measurements is seen to possibly reduce the chance of a successful transformation,
probably because of improper weighting of strong and weak probe signal contributions. Note that
the condition number of the occurring operators are quite similar throughout various ratios of𝑚/𝑛2.
No connection between well- or ill-conditioned matrices and the success rate for phase retrieval is
evident from the presented results.

Concluding RemarksÐExact and Direct Phase Retrieval An exact and direct solution to the
general phase retrieval problem can be computed via the linear formulation in (5.109). The procedure
requires𝑚 ≥ 𝑛2 magnitudes to be available and, thus, features the worst-case sampling complexity
of O(𝑛2). The computational effort related to solving the linear system is correspondingly large,
mainly due to the fact that𝑚 = 𝑛2 ≫ 𝑛 is commonly the case. As a consequence, the presented
approach is limited to applications with few unknowns and where plenty of measurements can
be conducted, providing enough information such that rank( |AAH |2) = 𝑛2 is fulfilled. However,
even if the condition on the rank is not fulfilled, the rank itself can be used as an indicator for the
suitability of measurement setups for the task of phase retrieval. The larger the rank, the better the
chances for common phase retrieval algorithms to successfully reconstruct the phase.
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6. Near-Field Far-Field Transformation with
Partially Coherent Observations

Similar to that the world is neither solely black nor solely white, an NFFFT can be performed
with measurements that are neither fully coherent nor completely phaseless. This general class
between absolute coherence and magnitude-only measurements is here referred to as partially
coherent observations, meaning that certain łpiecesž or łportionsž of the measurement data contain
reliable phase information in addition to the knowledge of magnitudes. For reasons of completeness,
another class of retrieval problemsÐmagnitude retrievalÐ is briefly discussed in Appendix A.9.
Throughout Section 6.1, we will discuss NF antenna measurement setups allowing for the

acquisition of partially coherent probe signals. Two relevant measurement scenariosÐmulti-
frequency andmulti-channel setupsÐ are identified, both of them requiring additional measurement
equipment and the feasibility of the approaches needs to be checked dependent on the specific
application. However, at least the multi-channel technique can be regarded as reasonable and of
practical relevance in a wide range of phaseless measurement scenarios. After having discussed the
measurement setups, Section 6.2 puts the focus on the algorithmic exploitation of partial coherence.
Two distinct approaches are introduced, where both methods feature different downsides and
benefits, which justify their parallel existence and favoring one or another method for a practical
application at hand. More details are provided for the treatment of phase difference information
stemming from multi-frequency data. Finally, the formulations and approaches are extensively
tested in Section 6.3 for realistic NF antenna data.

6.1 Partial Coherence in Antenna Measurements

We have already seen an overview of a typical NF antenna measurement setup in Fig. 4.1(b) and
its underlying model in terms of electromagnetic theory in Fig. 4.1(a). In Fig. 6.1, a closer view
on the synchronization between the TX and the RX is given and the cases of fully coherent
and fully phaseless measurements are repeated. With a direct synchronization between the LO
of the TX and the LO of the RX, as depicted in Fig. 6.1(a), a stable phase relation between the
transmitted and the received signals is ensured, resulting in reliable phase information throughout
the complete measurement, i.e., among different frequencies and measurement locations. This
synchronization needs to be łaccurate at the LO frequencyž, which is usually close to the actual
measurement frequency. By this we mean that independent from the frequency at which the actual
synchronization is implemented, any phase errors in the synchronization will translate one-to-one
to phase errors in the measurement signals. For example, when feeding both LOs with the same
reference clock at 10MHz, a phase error of 0.001◦ in the 10MHz signal will cause a 1◦ phase error
at a potential LO frequency of 10GHz. The LO phase error then directly affects the phase of the
measurement signals, again in this example, with a phase error of around 1◦ at the measured
frequency. Thus, the phase stability of all components in the system has to be on a suitably high
level.
The case of a completely phaseless measurement is illustrated in Fig. 6.1(b), where TX and RX

are not synchronized at all. The received signal phase varies randomly and no coherence between
successive measurements or different spectral components can be ensured.
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One way of obtaining partially coherent measurements is depicted in Fig. 6.1(c). By synchronizing
the TX and RX at the baseband frequencies, it is possible to obtain stable phase information within

the transmitted bandwidth. As a consequence, the phase relation between the spectral components
of the received signal at each measurement location is stable and reliable. However, when moving
either TX or RX, no reliable phase information between spatially separated measurements is
obtained. Due to the synchronization on baseband-level, the simultaneously acquired spectral
portions of the TX signal are received coherently. As a result, phase differences among signal
components at difference frequencies are available. Exploiting this kind of spectral coherence is
not straightforward in NFFFTs, as commonly transformations at distinct frequencies are performed.
Details on how to make use of such kind of multi-frequency information are given at a later point.
More details about baseband synchronization and spectral coherence can be found in [Knapp et al.
2021].
A straightforward way of obtaining partially coherent observations is indicated in Fig. 6.1(d).

Instead of establishing a synchronization of any kind between TX and RX, hardware complexity
on the RX side is added. Note that the same principle holds true when making modifications
on the TX side, which is not discussed here for reasons of brevity. Instead of measuring with
a single RX antenna at two locations sequentially, a second antenna is added, which captures a
signal at the second location in parallel to the first antenna. By down-converting both signals with
the same LO signal, coherence among the resulting two baseband signals is obtained. Obviously,
this principle can be extended to an arbitrary number of receive antennas, only limited by the
availability of suitable hardware and space limitations in practice. Comparing this with the case of
a completely phaseless measurement and assuming that the transmitting part represents the AUT,
no modifications are required on the AUT side. As such, this approach is expected to be of high
practical relevance as it should be applicable in a wide range of problem settings. Note that the
multi-channel measurement principle can also be interpreted in a more general way than illustrated
in the figure. There is no need for the second receive antenna to move together with the original
RX. Antenna measurements with a stationary reference antenna have been proposed as a simple
way of overcoming the problem of phaseless measurements [Castaldi and Pinto 2000; Laviada and
Las-Heras 2013; Laviada Martinez et al. 2014; Sánchez et al. 2020b]. By łcomparingž the measured
signal at the first RX antenna (at the different measurement locations) with that of the stationary
reference antenna, one obtains a stable phase relation among all measurements. This procedure is
commonly known as holography [Gabor 1949] and can be interpreted as a special case of the setup
in Fig. 6.1(d). As we will see soon, reliable phase retrieval is possible with this setup, even when the
reference antenna is not stationary and when no special precautions regarding the arrangement
of the multi-channel RX are taken. It is seen to be sufficient to perform phaseless multi-channel
measurements in the same way as common fully coherent measurements are performed. Similar
sampling densities are required and aside the multi-channel RX, no additional hardware is required.
Next, a mathematical description of partially coherent observations is introduced and two

approaches for exploiting partial coherence in the measurement vector are presented.
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Fig. 6.1 Measurement scenarios for acquiring NF antenna data. (a) Fully-coherent data is acquired
as the TX and RX LOs are synchronized. Breaking up the synchronization in (b) results in
phaseless measurements. Adding a synchronization of the baseband signals in (c) allows
for coherence among the spectral components of the received baseband signal. The multi-
channel RX in (d) returns samples with local coherence without requiring synchronization
between TX and RX.
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6.2 Phase Retrieval with Partially Coherent Observations

Let us assume that data is available, which features distinct partial coherence. In Sections 6.2.1
and 6.2.2, two ways of exploiting that information in an otherwise phaseless field transformation
are presented. Both techniques exhibit advantages and disadvantages, making each method suitable
for a certain problem at hand. At the same time, the treatment of multi-frequency data with known
phase differences requires some special attention, which is provided in Section 6.2.3.

6.2.1 Phase Differences in Form of Linear Combinations

As has been seen previously, it is possible to encode phase information in the form of magnitude
measurements, where the phase can again be reconstructed analytically via (5.97). For a unique
encoding of the information about the phase difference between two complex-valued scalar signals,
the magnitudes of four LCs of the signals are required. In general, one can assume the LCs of the
𝑖th and the 𝑘th signal in the form

𝑦1 = | [𝒙LC]1 [𝒃]𝑖 + [𝒙LC]2 [𝒃]𝑘 |2

𝑦2 = | [𝒙LC]3 [𝒃]𝑖 + [𝒙LC]4 [𝒃]𝑘 |2

𝑦3 = | [𝒙LC]5 [𝒃]𝑖 + [𝒙LC]6 [𝒃]𝑘 |2

𝑦4 = | [𝒙LC]7 [𝒃]𝑖 + [𝒙LC]8 [𝒃]𝑘 |2 (6.1)

for arbitrary complex-valued coefficients 𝒙LC ∈ C8 × 1. From the investigations regarding the exact
phase retrieval algorithm in Section 5.6, we can now pose a requirement on the coefficients, such
that the phases of [𝒃]𝑖 and [𝒃]𝑘 can be retrieved up to an arbitrary phase shift Ð resulting in the
correct phase difference between the signals. From theory, we expect the reconstruction of 𝑛 = 2

unknowns to be possible via the exact phase retrieval method once𝑚 = 4, which is fulfilled by 𝑦1
to 𝑦4. What remains to be checked is the rank condition on the bilinear forms of the measurement
rows, i.e.,

rank
(��ALCA

H
LC

��2) !
= 4, for ALC =



[𝒙LC]1 [𝒙LC]2
[𝒙LC]3 [𝒙LC]4
[𝒙LC]5 [𝒙LC]6
[𝒙LC]7 [𝒙LC]8


. (6.2)

All 𝒙LC defining the LCs in (6.1) and fulfilling (6.2) allow for a reconstruction of the phase dif-
ferences between two complex-valued signals [𝒃]𝑖 and [𝒃]𝑘 via (5.109). Thus, the coefficients
𝒙′LC = [1 0 0 1 1 1 1 j]T required for (5.97) to be applicable are a special case. Due to the ease of
phase retrieval for this case, it is often used representative for encoding phase information in the
magnitudes of LCs.

If we are interested in determining

𝑤 ′1 = | [𝒃]𝑖 |2 , 𝑤 ′3 = | [𝒃]𝑖 + [𝒃]𝑘 |2 ,
𝑤 ′2 = | [𝒃]𝑘 |2 , 𝑤 ′4 = | [𝒃]𝑖 + j[𝒃]𝑘 |2 (6.3)
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in order to apply (5.97) and compute the phase difference between the two complex-valued scalars
[𝒃]𝑖 and [𝒃]𝑘 , we can evaluate



𝑤 ′1
𝑤 ′2
𝑤 ′3
𝑤 ′4


=

[(��ALCA
H
LC

��2)−1 ����ALC

[
1 0 1 1

0 1 1 −j

] ����
2
]T 

𝑦1
𝑦2
𝑦3
𝑦4


(6.4)

for the general LCs in (6.1). As such, (6.4) represents an analytic solution for determining the phase
difference between two scalars once the rank condition in (6.2) is fulfilled.

So far, it has been seen that the knowledge of phase differences between measurement values
can be represented in the form of the magnitudes of LCs of these measurements. Accordingly, we
can exploit the knowledge of partial coherence among parts of the measurements by adding LCs to
the forward operator.

Consider an example, where one has performed three sets of measurements 𝒃1 to 𝒃3 with their
corresponding operators A1 to A3. Let us assume that the first measurement has been conducted
independently from the second and third measurement set, such that no phase relation between
𝒃1 and 𝒃2/3 is known. Further assume that 𝒃2 and 𝒃3 have been acquired by a two-channel RX,
resulting in element-wise coherence between the entries in 𝒃2 and 𝒃3, which both have the same
number of entries. We can then define the standard phase retrieval problem as������


A1

A2

𝐴3


𝒛

������ =
������

𝒃1
𝒃2
𝒃3


������ (6.5)

ignoring the knowledge of phase differences and which can be tackled by the previously presented
approaches. Still based on the assumptions of this example, we may form 𝒃2 + 𝒃3 and 𝒃2 + j𝒃3, for
which we can correctly compute the magnitudes but not the phases.

We can thus exploit the partial coherence between 𝒃2 and 𝒃3 by solving����������



A1

A2

A3

A2 + A3

A2 + jA3


𝒛

����������
=

����������



𝒃1
𝒃2
𝒃3

𝒃2 + 𝒃3
𝒃2 + j𝒃3



����������
. (6.6)

The nonlinear system of equations in (6.6) has the same outer shape as the standard phase retrieval
problem, however, incorporates further knowledge about partially coherent measurements. For (6.6),
the special case of the LCs 𝒙′LC were used, nonetheless, any coefficients fulfilling (6.2) might be
employed.

A few evident and less evident things should be said about (6.6). First, one has arrived at an easy-
to-use formulation, which incorporates the maximum amount of information about the problem,
i.e., considering all information about the magnitudes and partial coherence. The formulation
requires only minor modifications of the original problem, and solvers which can efficiently solve
the original phase retrieval problem can be used to solve (6.6). This formulation thus allows for
a quick test on how the additional phase restrictions affect the phase retrieval result. Yet, while
the formulation can directly be used in existing phase retrieval algorithms, all the downsides of
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existing methods are also inherited, including local stationary points in case of nonconvex solvers.
Further, there are plenty of choices for the coefficients of the LCs, where finding the optimal ones
for a given task remains an open problem. Inappropriate coefficients can result in badly weighted
measurements and, thus, may even worsen the result compared to that obtainable without the LCs.

Concluding RemarksÐPhase Differences via Linear Combinations According to the holo-
graphic relation in (5.97), a single phase difference between two scalars can be encoded into the
magnitudes of four weighted sums of the scalars, which are here called LCs. The concept is of
wide generality and allows to incorporate partial coherence into existing phase retrieval algorithms
without the need of modifying the methodsÐ causing existing issues like local stationary points to
persist.

6.2.2 Linearized Formulation with Phase Differences

Partial coherence is here exploited in order to arrive at a linearized formulation. The fundamentals
of the approach have essentially been reported in [Kornprobst et al. 2021b] and [Paulus et al. 2021b].
Related ideas have lead to a rudimentary approach for fully incoherent data in [Y. Sugimoto et al.
2021; Zhao et al. 2016].

Derivation of a Linearized Phase Retrieval

For simplicity, but without loss of generality, we consider a specific example and derive the general
equations based on that model. Analogous to the example which lead to (6.6), assume that three
measurement vectors have been acquired, 𝒃1 ∈ C𝑚1 × 1, 𝒃2 ∈ C𝑚2 × 1 and 𝒃3 ∈ C𝑚3 × 1. Here, we
claim that 𝒃1 has been acquired completely separately from 𝒃2/3, but the second and third set of
samples have been measured coherently, for example by a two-channel RX. The latter two sets thus
feature the same number of entries,𝑚2 =𝑚3, and there are known phase differences between the
𝑘th entries in 𝒃2 and 𝒃3 for 𝑘 ∈ {1, ...,𝑚2}.

In order to keep things simple, we set𝑚1 = 1 and𝑚2 = 2 =𝑚3, resulting in

𝒃1 = | [𝒃1]1 | e j[𝝋1 ]1, 𝒃2 =

[
| [𝒃2]1 | e j[𝝋2 ]1

| [𝒃2]2 | e j[𝝋2 ]2

]
, 𝒃3 =

[
| [𝒃3]1 | e j[𝝋3 ]1

| [𝒃3]2 | e j[𝝋3 ]2

]
. (6.7)

In line with [Paulus et al. 2021b], we can then write

A𝒛 = 𝒃 =

[
𝒃T1 𝒃T2 𝒃T3

]T

=



| [𝒃1]1 | 0 0

0 | [𝒃2]1 | 0

0 0 | [𝒃2]2 |
0 | [𝒃3]1 | e j( [𝝋3 ]1−[𝝋2 ]1 ) 0

0 0 | [𝒃3]2 | e j( [𝝋3 ]2−[𝝋2 ]2 )




e j[𝝋1 ]1

e j[𝝋2 ]1

e j[𝝋2 ]2



= diag ( |𝒃 |)



1 0 0

0 1 0

0 0 1

0 e j( [𝝋3 ]1−[𝝋2 ]1 ) 0

0 0 e j( [𝝋3 ]2−[𝝋2 ]2 )


𝝍
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= BC𝝍, (6.8)

resulting in the linear formulation

(AP1 − BCP2) 𝒛̃ = 0, 𝒛̃ =

[
𝒛T 𝝍T

]T ∈ C𝑛+𝑞 × 1 (6.9)

with the stacked vector of unknowns 𝒛̃ comprising the unknown AUT coefficients 𝒛 and 𝝍, a vector
containing all remaining unknown phase terms. The matrices P1/2 in (6.9) extract the respective
parts from the stacked vector of unknowns and are defined via identity and zero matrices I and 0,
respectively, as

P1𝒛̃ =

[
I 0

]
𝒛̃ = 𝒛 ∈ C𝑛 × 1 (6.10)

P2𝒛̃ =

[
0 I

]
𝒛̃ = 𝝍 ∈ C𝑞 × 1. (6.11)

The measured magnitudes comprise the diagonal matrix B ∈ R𝑚 ×𝑚 , while the actual information
about known phase differences is inside the sparse matrix C ∈ C𝑚 ×𝑞 . One thing not explicitly
mentioned in (6.9) is the condition |P2𝒛̃ | = 1, which is required to ensure a correct solution. This
condition, however, is nonconvex. In order to avoid potential local stationary points, one can utilize
a relaxed and linear version of that by writing

(AP1 − BCP2) 𝒛̃ = 0 (6.12)

s.t. [𝝍]𝑠 = 1,

which only enforces the magnitude constraint on a single, possibly arbitrarily picked, 𝑠th phase
unknown. The approach in (6.9) is a linear and, thus, convex phase retrieval formulation for the
case of partially coherent observations.

Based on (6.8), one can easily derive an alternative formulation. Essentially, we have replaced the
true and unknown measurement vector 𝒃 in (6.8) by a formulation exploiting some known phase
differences and requiring to solve for the remaining phase terms. Still, as soon as the measurement
vector with absolute phase has been restored, one can determine the source coefficients by solving
a linear system of equations. Effectively, this means one can write

BC𝝍 = 𝒃 = A𝒛 = AA−1𝒃 = AA−1BC𝝍, (6.13)

resulting in

(
I − AA−1

)
BC𝝍 = 0 (6.14)

s.t. |𝝍 | = 1,

or, correspondingly, in the linearized version

(
I − AA−1

)
BC𝝍 = 0 (6.15)

s.t. [𝝍]𝑠 = 1.

Comparing the formulations (6.12) and (6.15), we can see that the latter requires a larger computa-
tional effort per matrix-vector product, though, at the benefit of a reduced number of unknowns.
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6 Near-Field Far-Field Transformation with Partially Coherent Observations

Numerical experiments have shown that (6.15) in general exhibits a favorable convergence behavior
and a slightly superior robustness with respect to noise.

It should be mentioned that a minor modification of the presented formulations can be employed
to allow for a simpler theoretical treatment in some cases. Namely, again utilizing the example
in (6.8), it is possible to write

BC = diag ( |𝒃 |)



1 0 0

0 1 0

0 0 1

0 e j( [𝝋3 ]1−[𝝋2 ]1 ) 0

0 0 e j( [𝝋3 ]2−[𝝋2 ]2 )


= diag (𝒃)



1 0 0

0 1 0

0 0 1

0 1 0

0 0 1


= B′C′, (6.16)

where now B′ ∈ C𝑚 × 1 and C′ ∈ R𝑚 ×𝑞 instead of B ∈ R𝑚 × 1 and C ∈ C𝑚 ×𝑞 are utilized. The only
difference between both formulations is the quantity, in which the information about the phase
differences is stored. In terms of practicability, the notation with B′C′ is experienced to be superior
as the construction of the matrix C′ is trivially simple and only the phase values in 𝒃 , which belong
to the phase differences previously defined in C, are employed. Basically, all phases in the vector 𝒃 ,
except for the phase differences to be utilized, may be arbitrarily set to zero.

Linearized FormulationsÐSolvers There are several ways of solving the homogeneous prob-
lem in (6.15), where two possibilities are discussed here. First, removing one unknown, i.e., one
column of the total matrix (I − AA−1)BC, leads to an inhomogeneous system of equations that can
be tackled with the solvers discussed in Section 4.3. Second, one can artificially add a measurement
and its corresponding row, resulting in a nonzero entry on the right-hand side, which in turn
allows solvers for inhomogeneous system to be applied. Both approaches essentially fix one of
the unknown phase terms and will be explained for the exemplary homogeneous linear system of
equations with a single magnitude constraint

G𝒗 = 0, s.t. [𝒗]𝑘 = 1, 𝑘 ∈ {1, ..., 𝑛} (6.17)

with G ∈ C𝑚 ×𝑛 and 𝒗 ∈ C𝑛 × 1.
The first approach can be implemented by defining

𝒃1 = G𝒗0, e.g., 𝒗0 =
[
0 . . . 0 1 0 . . . 0

]T
, (6.18)

which essentially fixes the 𝑘th entry in 𝒗. Instead of solving G𝒗 = 0, one then solves G1𝒗1 = 𝒃1,
where thematrixG1 ∈ C𝑚 ×𝑛−1 equalsG, except that the𝑘th column has been removed. Accordingly,
𝒗1 ∈ C𝑞−1 × 1 features one entry less.

The second approach requires the addition of one measurement row to the original homogeneous
system, resulting in [

G[
0 . . . 0 1 0 . . . 0

] ] 𝒗 =

[
0 . . . 0 1

]T
= 𝒃2. (6.19)

The new, inhomogeneous linear system of equations G2𝒗 = 𝒃2 with G2 ∈ C𝑚+1 ×𝑛 and 𝒃2 ∈ R𝑚+1 × 1
needs to be solved. Downside of this method is the potentially inappropriate weighting of the
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6.2 Phase Retrieval with Partially Coherent Observations

additional row with respect to the original matrix G. This difficulty is not encountered when
removing a single row as explained before.

Linearized FormulationsÐNecessary Condition An important question is under which
circumstances do the linearized formulations in (6.12) and (6.15) yield a correct solution with
respect to the original nonlinear task. Let us take a closer look at the homogeneous linear system
of equations in (6.15), which is given by

(
I − AA−1

)
︸       ︷︷       ︸
P∈C𝑚 ×𝑚

B︸︷︷︸
∈R𝑚 ×𝑚

C︸︷︷︸
∈C𝑚 ×𝑞

𝝍︸︷︷︸
∈C𝑞 × 1

= 0 (6.20)

with the projection matrix P. A square matrix is a projection matrix if and only if it is an idempotent

matrix [Leon 2015]. Idempotent matrices fulfill the condition

A2
= A. (6.21)

For the matrices involved above, one can see that

(
AA−1

)2
= AA−1 (6.22)

P2 = P (6.23)

are both idempotent matrices, and since these matrices are square matrices, they both are projection
matrices. In the following, we will only utilize the idempotent property.

In order to find a unique solution to (6.20), the null space of the product of matrices on the
left-hand side in (6.20) must have a dimension of one. Equivalently, we can require

rank (PBC) !
= 𝑞 − 1. (6.24)

The rank of a product of matrices is bounded via

rank (PBC) ≤ min (rank (P) , rank (B) , rank (C)) . (6.25)

Utilizing that for idempotent matrices

rank (A) = Tr (A) (6.26)

and that

Tr (A + B) = Tr (A) + Tr (B) (6.27)

is valid in general, we can find

rank (P) (6.26)= Tr (P) = Tr
(
I − AA−1

) (6.27) (6.26)
= 𝑚 − rank

(
AA−1

)
≥ 𝑚 − rank (A) (6.28)

rank (B) =𝑚1 (6.29)

rank (C) = min (𝑚,𝑞) = 𝑞. (6.30)
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6 Near-Field Far-Field Transformation with Partially Coherent Observations

For the rank of C we have used that𝑚 ≥ 𝑞. Furthermore, it was assumed that there are no nonzero
entries in the measurement vector 𝒃 . Yet, it can be shown that the necessary condition derived in
the following holds as long as at least 𝑞 − 1 entries in the measurement vector are nonzero. As we
will see in a moment, measurements with zero magnitude do not obstruct the formulation, instead
they may even lower the following bound.

Putting everything together, we obtain

rank (PBC) ≤ min (𝑚 − rank (A) ,𝑚, 𝑞) = min (𝑚 − rank (A) , 𝑞) . (6.31)

Since (6.31) only features an upper bound for the rank, we obtain the necessary condition

𝑚 − rank (A) ≥ 𝑞 − 1. (6.32)

This requirement holds as long as there are at least 𝑞 − 1 nonzero entries in the measurement vector
𝒃 . If this is not the case, then the less intuitive but potentially lower bound

𝑚 − rank (A) ≥ rank (BC) − 1 (6.33)

holds true. Since the matrix B is a diagonal matrix containing the measurement entries, the right-
hand side of the bound in (6.33) can only be lowered if zero entries in 𝒃 coincide with the structure
of C, such that the total rank of BC is reduced. In particular, whenever all entries in 𝒃 associated
with the same unknown phase in 𝝍 are zero, the rank of BC is reduced. In that case, the number of
measurements required to resolve the remaining phase terms is even lower.
As an example, consider antenna measurement setups with multi-probes, which have been

investigated in [Kornprobst et al. 2021b], where a necessary condition for this particular case was
derived. We assume a multi-probe setup with 𝐶 elements and 𝐶 coherent RX channels, which are
placed at in total𝑀 measurement locations. The total number of recorded measurements then is
𝑚 = 𝐶𝑀 and we further require that rank(A) = 𝑁 , i.e., the number of unknowns is smaller or equal
to the number of measurements. With 𝑞 = 𝑀 , one obtains

𝑚 − rank (A) = 𝐶𝑀 − 𝑁 ≥ 𝑀 − 1
⇒ 𝑀 (𝐶 − 1) ≥ 𝑁 − 1. (6.34)

The result in (6.34) is identical to that stated in (15) of [Kornprobst et al. 2021b].

Linearized FormulationsÐNoise Analysis

The presented linear phase retrieval algorithms at their core require that a particular matrix only
features a null space containing a single non-trivial vector. A łuniquež null space may exist when
the model perfectly matches the measurement data, however, this is not guaranteed in case the
measurement process is affected by noise of any kind. The measurement vector may be distorted by
noise as part of the measurement process, whereas the model underlying the measurement matrix
may be inaccurate due to its discrete nature or inadequacy to describe themeasurement environment.
Consequently, the practical relevance of the presented formulations is highly dependent on the

1Assuming that there are𝑚 nonzero measurement entries. This requirement allows for simplifications, however, does
not impose any limitations on the final result. In fact and as shown, zero measurements can only have a beneficial
effect of reducing the required amount of measurements.
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6.2 Phase Retrieval with Partially Coherent Observations

behavior of the methods when working with imperfect and noise affected measurement data and
models.

In the following, a noise analysis of linear systems of equations [Demmel 1997] based on pertur-
bation theory is employed for the investigation of the formulation in (6.15). Utilizing the notation
of (6.20) and (6.16) with N = PB′C′, one can start with

(N + δN) (𝝍 + δ𝝍) = 0 (6.35)

leading to

δ𝝍 = −N−1δN𝝍 (6.36)

when the second-order term δNδ𝝍 is assumed to be negligible and where N𝝍 = 0 has been inserted.
Here, we assume N−1 to be a pseudoinverse of the matrix N. Consequently one can take an arbitrary
vector norm on both sides and exploit the triangle equation to obtain a first upper bound on the
relative error in the solution vector as

∥δ𝝍∥
∥𝝍∥ ≤



N−1

 ∥δN∥ . (6.37)

It might be confusing that the right-hand side of (6.37) does only feature a perturbation in terms of a
matrix and not a measurement vector. Still, remember that all the partially coherent measurements
are incorporated inside the B′ matrix, which is part of N. The remaining and difficult task is to
rewrite the right-hand side of (6.37) explicitly dependent on a perturbation in the measurement
vector δ𝒃 .

One attempt in this direction can be made by choosing the Frobenius norm, for which one can
find

∥δ𝒃 ∥F
∥𝒃 ∥F

≤ 𝑐F ⇒
∥δB′∥F
∥B′∥F

=
∥diag (δ𝒃)∥F
∥diag (𝒃)∥F

=
∥δ𝒃 ∥F
∥𝒃 ∥F

≤ 𝑐F, (6.38)

meaning that whenever the relative noise in the measurement vector is bounded by some constant
𝑐F, then also the relative perturbation in the B′ matrix is bounded by the same constant. Furthermore,
we know that the matrix C′ ∈ R𝑚 ×𝑞 contains at most 𝑞𝑚 nonzero entries with unit magnitude
resulting in ∥C′∥F ≤

√
𝑞𝑚. One can then state

∥δ𝝍∥F
∥𝝍∥F

≤


(PB′C′)−1

F ∥P∥F √𝑞𝑚 ∥δ𝒃 ∥F , (6.39)

which shows that the relative deviation in the solution vector is limited as long as the perturbation
in the measurement vector as well as the relevant Frobenius norms are finite. Remember that this
estimate is only a first-order bound, requiring the second-order term δNδ𝝍 to be negligible. This
should in general hold true when encountering relatively small perturbations.

The bound in (6.39) is exemplarily applied to a complex-valued normally distributed measurement
matrix and solution vector for various instances of white noise realizations of different signal-to-
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Fig. 6.2 Investigation of the relative error in the solution vector of formulation (6.15) when the
measurement vector is affected with Gaussian distributed noise. Complex-valued normally
distributed measurement matrices and solution vectors with 𝑛 = 10 are employed and a
two-channel RX is assumed. (a) With𝑚 = 18, i.e., 𝑞 = 9. (b)𝑚 = 36, i.e., 𝑞 = 18. The range of
observable errors in the solution vector and the right-hand side of the upper bound in (6.39)
is drawn. Minimum and maximum values are indicated by the dashed lines. For each value
of the SNR, 5 × 104 noise realizations have been considered and the average results are
drawn with solid lines.

noise ratios (SNRs). In this work, we define the SNR as

𝑛SNR =

[
max ( |𝒃 |)
std (𝒏)

]2
and 𝑛SNR,dB = 10 log10 (𝑛SNR) (6.40)

for a complex-valued measurement signal 𝒃 and a complex-valued noise signal 𝒏. The function
std(𝒙) returns the standard deviation of a vector 𝒙 .
For 𝑛 = 10, Fig. 6.2 illustrates the obtained true deviation in the solution vector when solving

with (6.15). In most cases for𝑚 = 18, i.e., 𝑞 = 9 in Fig. 6.2(a) and in all cases for𝑚 = 36, i.e., 𝑞 = 18

in Fig. 6.2(b), the observable error is below that estimated by the first-order bound. For each value
of the SNR, 5 × 104 random noise realizations have been considered. Overall, the estimate provides
a rather loose barrier on the resulting error, however, it clearly indicates the limited effect of small
perturbations in the measurement vector. As such, the presented linear phase retrieval formulations
for partially coherent observations are regarded to be stable with respect to noise influence. Whether
or not this results in a sufficient robustness against noise when it comes to real-world applications
remains to be investigated. Nonetheless, comparing Fig. 6.2(a) and Fig. 6.2(b), it becomes clear that
a larger oversampling may reduce the average and maximum relative errorsÐ identical to the
behavior of a solver with full coherence. A practical recommendation may therefore be to increase
the sampling density and thus the noise robustness at the expense of longer measurement times.

Concluding RemarksÐLinearized Phase Retrieval with Partial Coherence Partial coher-
ence in measurement data can be exploited to derive a linearized representation of the underlying
phase retrieval task. Linearity comes at the cost of dropping magnitude constraints and, thus,
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information about the problemÐexhibiting similarities with the convex algorithms, in particular
with PhaseMax. The solution of the linearized and approximate task remains meaningful under a
given necessary condition, which certifies the presented algorithms a linear sampling complexity.
Independent of the various ways of implementing the formulations, general stability with respect
to noise was shown.

6.2.3 Phase Differences in Frequency Domain

So far, partial coherence in measurements belonging to the same vector of unknown coefficients
has been considered. Things get more complicated when utilizing partially coherent NF antenna
data from the measurement setup indicated in Fig. 6.1(c). In essence, partial coherence is here
only ensured within the bandwidth of the frequency spectrum of the measurement signal, which
potentially reduces the requirements on the quality of the synchronization between TX and RX.
However, as the vector of AUT coefficients changes over frequency, phase differences between
measurement vectors stemming from different vectors of unknowns have to be incorporated. This
prohibits the direct application of the concepts of LCs and the linearized formulations presented in
Sections 6.2.1 and 6.2.2. Nevertheless, two possible formulations for the utilization of this particular
multi-frequency data are presentedÐ the theory of one of them has in detail been discussed
in [Knapp et al. 2021].

The main assumption is that information about phase differences between measurements at
the same spatial location but for different frequencies is available. For 𝑙 frequencies one has 𝑙
measurement vectors 𝒃1 to 𝒃𝑙 , all acquired at the same set of measurement locations and thus
having the same number of entries𝑚. In this case, we can relate equivalent sources and phaseless
measurements at all frequencies separately, i.e.,

[
|𝒃1 |T . . . |𝒃𝑙 |T

]T
=

[
|A1𝒛1 |T . . . |A𝑙𝒛𝑙 |T

]T
(6.41)

while knowing the phase differences between the signals with the 𝑘th and the 𝑙th frequency

𝝋𝑘 − 𝝋𝑙 = ∠(𝒃𝑘 ◦ 𝒃𝑙 ), (6.42)

where all operations are performed element-wise.

Multi-Frequency Formulation for Classical Phase Retrieval Algorithms Leaving aside the
magnitude operations for a moment and knowing the spectral phase differences with respect to
some reference frequency with the index 𝑝 , one may write



𝒃1
...

𝒃𝑝
...

𝒃𝑙


=



A1A
−1
1 diag

(
|𝒃1 |��𝒃𝑝 �� ◦ e j(𝝋1−𝝋𝑝)

)
A𝑝𝒛𝑝

...

A𝑝𝒛𝑝
...

A𝑙A
−1
𝑙
diag

(
|𝒃𝑙 |��𝒃𝑝 �� ◦ e j(𝝋𝑙−𝝋𝑝)

)
A𝑝𝒛𝑝



, (6.43)
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where the division by the magnitudes at the reference frequency is the key step in order to map
signals generated by the forward operator at the reference frequency to any other frequency at
hand. It can be easily verified that the equality in (6.43) holds once a 𝒛𝑝 which fulfills A𝑝𝒛𝑝 = 𝒃𝑝 is
inserted. While the phase differences between the signals at different frequencies are required and
ensure that the resulting phase values are correct, the final projectors A𝑖A

−1
𝑖 are necessary in order

to remove improper contributions of the magnitudes.

Finally, one can stack all relevant quantities in the form

|𝒃̃ | =



|𝒃1 |
...��𝒃𝑝 ��
...��𝒃𝑝 ��


=

�����������������



A1A
−1
1 diag

(
|𝒃1 |��𝒃𝑝 �� ◦ e j(𝝋1−𝝋𝑝)

)
A𝑝

...

A𝑝

...

A𝑙A
−1
𝑙
diag

(
|𝒃𝑙 |
|𝒃𝑙 |
◦ e j(𝝋𝑙−𝝋𝑝)

)
A𝑝



𝒛𝑝

�����������������

=

��Ã𝒙𝑝 �� ∈ R𝑙𝑚 × 1 (6.44)

and obtain a single, concatenated nonlinear system of equations for the task of phase retrieval
containing more measurements while keeping the number of unknowns the same as at the reference
frequency. As the structure of (6.44) equals that of a common phase retrieval task, any existing
phase retrieval algorithm can directly be applied, making (6.44) a versatile way of exploiting
multi-frequency data.

What is the working principle of (6.44)? Essentially, the division with the magnitude at an
arbitrarily chosen reference frequency and multiplication with the relevant phase differences allows
to map the sources at the reference frequency to the signals at another frequency. As part of the
process and, to be precise, caused by the division, physically incorrect signal contributions may arise.
That is why the projectorsA𝑖A

−1
𝑖 are required, which filter out signal portions that are not supported

by the operators and the underlying model. Thus, a physically meaningful solution is ensured at all
frequencies. This filter property works well once a sufficiently large number of measurements𝑚 in
the spatial domain has been acquired. Commonly, higher frequencies correspond to electrically
larger AUTs, which require more spatial samples. When combining frequencies over a broad
bandwidth, the highest frequency component essentially dictates the sampling density to be applied
at all other frequencies. This may cause an increased measurement effort in practice. As another
downside of (6.44), the computational effort increases drastically. For every matrix-vector product
of Ã𝒙 , (𝑙 − 1) linear systems of equations need to be solved. However, as long as the full operator
Ã fits into the memory, it may be computed explicitly and reused on demand, or a fast inversion
algorithm can be employed.

In the limit of a vanishing bandwidth the diversity among the operators and measurements will
decrease, while the vector of phase differences will go to zero. Thus, as expected new information
is only added as long as the measurement setup or the measurement signals exhibit a sufficiently
large frequency variation over the considered bandwidth. As long as this condition is met, the
formulation with Ã features new and uncorrelated rows with respect to the forward operator at
the reference frequency.

Note that one does not have to stop after constructing (6.44). Partial coherence was the key
ingredient for combining signals at different frequencies and allowing to stack the operators and
the measurement vectors. Still, when solving (6.44) with a standard phase retrieval algorithm,
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knowledge of the phase differences is only inherently exploited. It is highly recommended to
furthermore utilize a phase retrieval algorithm, which explicitly enforces knowledge on partial
coherence in the final problem in (6.44). As such, (6.44) can be expanded to incorporate the phase
differences in the form of LCs as additional rows. Alternatively, the linearized phase retrieval
algorithms for the case of partially coherent observations can be applied. Nonetheless note that the
results in [Knapp et al. 2021] have been obtained by the standard phase retrieval formulation (5.30).

Linear Multi-Frequency Formulation Based on the linearized formulations in Section 6.2.2, a
simple linear formulation for NF data at multiple frequencies can be derived. While the approaches
in (6.12) and (6.15) could be applied to (6.44), we here present a more convenient method for the
general case of partial coherence among measurements belonging to different linear systems of
equations.

Essentially, one can consider a generalization of (6.41) consisting of 𝑙 linear operators A𝑖 ∈
C
𝑚𝑖 ×𝑛𝑖 , 𝑖 ∈ {1, ..., 𝑙}, each potentially featuring a variable number of rows and columns. Associated

with the operators, there are the vectors of unknowns 𝒛𝑖 ∈ C𝑛𝑖 × 1 and the measurement vectors
𝒃𝑖 ∈ C𝑚𝑖 × 1. Whenever there exist known phase relations within or among the measurement
vectors 𝒃𝑖 , it may make sense to formulate the corresponding partially coherent systems

(
I − A𝑖A

−1
𝑖

)
︸        ︷︷        ︸

P𝑖

diag (𝒃𝑖) C′𝑖𝝍 = 0, [𝝍]𝑘 = 1, (6.45)

where for the sake of simplicity, the notation from (6.16) is employed. In this notation, the occurring
matrices defining the phase relations C′𝑖 ∈ R𝑚𝑖 ×𝑞 already feature columns according to the overall
number 𝑞 of remaining phase unknowns, which are related to all 𝑙 operators and measurements.
When combining all the 𝑖 ∈ {1, ..., 𝑙} systems, one obtains



P1 0 . . . . . . 0

0
. . . 0 . . .

...
... 0 P𝑖 0

...
... . . . 0

. . . 0

0 . . . . . . 0 P𝑙

︸                         ︷︷                         ︸
PLMF∈C𝑚 ×𝑚

diag

©­­­­­­­«



𝒃1
...

𝒃𝑖
...

𝒃𝑙



ª®®®®®®®¬︸       ︷︷       ︸
B′LMF∈C𝑚 ×𝑚



C′1
...

C′𝑖
...

C′
𝑙

︸︷︷︸
C′LMF∈C𝑚 ×𝑞

𝝍 = 0, [𝝍]𝑘 = 1, (6.46)

when𝑚 =
∑𝑙

𝑖=1𝑚𝑖 . One can derive the necessary condition

𝑙∑︁
𝑖=1

[𝑚𝑖 − rank (A𝑖)] ≥ rank
(
B′LMFC

′
LMF

)
− 1, (6.47)

for (6.46) to return a meaningful solution when measurements of zero magnitude occur. Analogous
to (6.32), the potentially more intuitive relation

𝑙∑︁
𝑖=1

[𝑚𝑖 − rank (A𝑖)] ≥ 𝑞 − 1 (6.48)
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is obtained when at least 𝑞 − 1 nonzero magnitudes are available. While the new and highly general
system in (6.46) seems to be similar to the previous formulations, there are drastic limitations
associated with it when compared to (6.15) and (6.12). The single projector, e.g., in (6.15), is replaced
by a block-diagonal arrangement of projection matrices. Inherent to its structure, the resulting
matrix PLMF can exhibit a null space that may contaminate the null space of the overall matrix
system. Whether or not this is the case highly depends on the structure of the matrix C′LMF at hand.
Whenever a set of measurements 𝒃𝑖 is not related to any of the other sets via at least one phase
difference, it is essentially decoupled from the rest and has to fulfill the condition (6.32) łon its
ownž. Then, this set does not contribute to the solution of the other measurement sets.

Let us now specialize (6.46) for the case of multi-frequency data, where all sets feature the same
number of measurements,𝑚 =𝑚𝑖 ∀𝑖 ∈ {1, ..., 𝑙} and phase differences are known between the 𝑘th
entry of 𝒃1 and 𝒃𝑖 for all 𝑘 ∈ {1, ...,𝑚} and all 𝑖 ∈ {2, ..., 𝑙}. The total number of measurements in
this case is 𝑙𝑚. The resulting partially coherent system is found as

[
[P1diag (𝒃1)]T . . . [P𝑖diag (𝒃𝑖)]T . . . [P𝑙diag (𝒃𝑙 )]T

]T
𝝍 = 0, [𝝍]𝑘 = 1, (6.49)

which is seen to not suffer from an additional null space, as all projectors occurring in the partial-
coherence system are coupled via the element-wise phase differences between the measurements at
multiple frequencies. Assuming rank(A𝑖) = 𝑛𝑖 , the necessary condition of (6.48) can here be found
to read

(𝑙 − 1)𝑚 ≥
(

𝑙∑︁
𝑖=1

𝑛𝑖

)
− 1, (6.50)

or, further assuming 𝑛𝑖 = 𝑛 ∀𝑖 ,

(𝑙 − 1)𝑚
𝑙𝑛 − 1 ≥ 1. (6.51)

Concluding RemarksÐPhase Differences in Frequency Domain With a synchronization
of TX and RX hardware in the baseband frequency range, phase differences within a corresponding
bandwidth can be obtained. This kind of partial coherence is fundamentally different to that of
RXs with multiple coherent channels. While in the latter case the phase information is essentially
stemming from single unknown vector of AUT coefficients, coherence among broadband data is
imposing relations between multiple unknown source vectors. Still, two possible formulations for
the utilization of partial coherence of multi-frequency data have been described, both exploiting
projectors at the expense of increased computational costs. One conserves the original nonlinear
problem formulation and can be solved via existing general purpose phase retrieval algorithmsÐ
again inheriting the same benefits and drawbacks of these techniques. The second method follows
the approximation made by the single-frequency linearized phase retrieval formulations, dropping
most magnitude restrictions in exchange of linearity. Again the approximation is found to return
meaningful results under a necessary condition proving a linear sampling complexity for this
approach.
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6.3 Transformation Results

The presented methods for partially coherent observations are here tested extensively with realistic
NF antenna data. A differentiation is done regarding spatial phase differences measurable with
a setup illustrated in Fig. 6.1(d) and those in frequency domain, which could be acquired with a
synchronization as indicated in Fig. 6.1(c).

6.3.1 Phase Differences in Spatial Domain

Field Data of a Planar ArrayÐLinear Combinations

The knowledge of partial coherence, or in other words the knowledge of phase differences, can
be encoded in the form of magnitudes of LCs. In the same way as this has been done for a
particular example in (6.6), these LCs can be incorporated to form a modified forward operator
and measurement vector for almost arbitrary and incomplete phase information. The resulting
operators and measurement vectors can be fed to all previously discussed convex and nonconvex
phase retrieval algorithms.

In order to evaluate the performance gain by the LCs, NF data on two measurement planes in
front of a horn antenna array was generated. The antenna array including the measurement planes
is illustrated in Figs. 5.16(a) and 5.16(b) and has already been described in the discussion thereof. For
the analysis here, a three-channel RX was assumed, which allows to coherently acquire three NF
samples at a time. This leads to the additional knowledge of two phase differences at each location
on the measurement grid. The three channels were connected to an łLž-shaped, three-element
array of identical probe antennas of identical polarization. The measurement grid including the
three-element probe array and the three RX channels is illustrated in Fig. 6.3(a). The RX channels
are marked by different colors and the locations of the respective NF samples are drawn with circles.
The lines connecting the circles indicate the employed phase differences, each of them realized
via two LCs of the relevant measurement signals. For this particular measurement setup with𝑚
measurements, there are 2/3𝑚 available phase differences, which are incorporated in the form of
4/3𝑚 additional magnitudes of LCs of the measurements. In summary, a phase retrieval algorithm
applied to this particular partially coherent problem has in total 7/3𝑚 magnitude measurements
available, in contrast to the𝑚 measurements of the original and completely phaseless problem. For
all presented results, the horizontal and vertical distance between the elements in the łLž-shaped
probe array was set to 𝜆/2.
For the introduced planar NF measurement setup, transformation results for the nonconvex

formulation in (5.30) with 𝑝2 = 0.5, for PhaseLift and for PhaseMax are discussed. All solvers
are applied to the original phaseless measurement problem and to that where LCs are added,
corresponding to a measurement with partial coherence. Starting from an initial guess computed
via the spectral method, at most 5 × 103 iterations were performed. The achieved NF deviation
is depicted in Fig. 6.3(b). Be aware of the nonlinear 𝑦-axis. Similar to the previously obtained
results in Fig. 5.16(c) for the same measurement setup, both convex algorithms struggle to obtain
accurate results from the measurement data on the two planes. In contrast, the nonconvex solver is
a paramount example of an unpredictable phase retrieval algorithm and returns accurate as well as
highly inaccurate results for various ratios of𝑚/𝑛. When adding the LCs, the performance of the
nonconvex algorithm improves further, nonetheless, it can also be worse, as seen in certain cases of
𝑚/𝑛. Opposite to that, PhaseMax does not seem to be able to exploit the additional information in the
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Fig. 6.3 (a) Illustration of the planar measurement grid employed for sampling the NF of the horn
antenna array depicted in Fig. 5.16. The described łLž-shaped probe arrangement is em-
ployed on both measurement surfaces. The NF samples acquired with the three RX channels
on regular grids are indicated by dots, where the colors refer to the different channels. The
black lines represent the utilized phase differences, which, for the results in (b), have been
exploited in the form of linear combinations (LCs) similar to the example given in (6.6).
Accordingly, the transformation results in (b) are differentiated in terms of whether or
not the LCs have been added (ł+ LCsž). Note that the oversampling ratio𝑚/𝑛 does not
consider the LCs. Consequently, results marked with ł+ LCsž are effectively obtained with
7/3𝑚 rows in the corresponding operator. All solvers were allowed to at most perform
5 × 103 iterations, starting from an initial guess generated via the optimal spectral method.
PhaseLift and PhaseMax are abbreviated as PL and PM.

LCs. Among the considered convex algorithms, solely PhaseLift slightly improves its performance
on average, still, returns unsatisfactory results.

Based on the results, two major statements can safely be made. The performance improvement of
phase retrieval algorithms to be expected when employing information about partial coherence in
the form of LCs does vary significantly dependent on the algorithm at hand. Even though nonconvex
phase retrieval algorithms are in general observed to perform favorably when adding LCs, they
remain unpredictable, unreliable and may fail.

Field Data of a Planar ArrayÐLinearized Formulation

The planar NF antenna measurement setup employed in Fig. 6.3 is considered again. The geometry
of the AUT and the measurement planes can be seen in Figs. 5.16(a) and 5.16(b). For more details
about the AUT, the reader is referred to the related discussion in the previous section.
In contrast to exploiting the knowledge of phase differences in the form of LCs, as was done

for the results in Fig. 6.3(b), the available partial coherence is now utilized by the formulations
in (6.12) and (6.15). Both concepts lead to homogeneous linear systems of equations with a linear
side constraint, which can be reformulated as inhomogeneous linear systems by either adding an
additional row or by removing one column, as already mentioned in the form of (6.19) and (6.18),
respectively. The resulting inhomogeneous systems can either be solved directly, e.g., by a QR-
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decomposition, or iteratively, e.g., by the formulation (4.4) or another solver like GMRES [Saad
and Schultz 1986]. In total, this brings us to eight possible implementations, all of which have
been applied to the NF data of the horn antenna array. The achievable NF deviation of the eight
implementations is depicted in Fig. 6.4(a). Note that the same range of oversampling ratios𝑚/𝑛
has been used as for the results based on LCs in Fig. 6.3(b), making both figures comparable.
Results for the direct solution via a QR-decomposition and via iterative solvers are marked by the
superscripts łdž and łiž, respectively. When a row has been added or a column has been removed,
the superscripts łaž and łrž are added accordingly. As a reference, the result obtainable with a
transformation exploiting full phase information is drawn. The iterative solvers applied to (6.12)
and (6.15) were allowed to at most perform 1900 and 5 × 102 iterations, respectively. In practice
the formulation in (6.12) leads to a highly ill-conditioned system while (6.15) exhibits reasonable
condition numbers. Thus, more iterations are commonly necessary. Ideally, a well regularized
solver should be employed, e.g., the GMRES. All iterative implementations except (6.12)ia rely on
the linear solver of the formulation in (4.4), which previously in this work was seen to perform
very similar compared to GMRES. For (6.12)ia the GMRES was employed. It should be mentioned
that (6.12)ir exhibited the most unstable behavior of all iterative implementations, in a way that
the formulation in its original form did not converge with neither of the linear solvers. Only when
scaling A and BC in (6.12) by the inverse of the respective largest singular values, the condition
number of the combined matrix (AP1 − BCP2) = [A − BC] was reduced by several orders of
magnitude, allowing the solvers to converge within the considered 1900 iterations. Scaling of these
sub-parts of the complete matrix is possible due to the decoupling of the contribution belonging to
the source coefficients and the portion associated with the unknown phase terms via the matrices
P1/2.
Let us first have a look at the overall performance of the linear phase retrieval algorithms for

partially coherent data when varying the available number of measurement signals. As a reminder,
results for existing approaches exploiting the phase differences in terms of LCs are visible in
Fig. 6.3(b). For these approaches, slight improvements with increasing𝑚/𝑛 are visible. This is rather
not the case in Fig. 6.4(a) for the linear formulations. Looking at the results obtained with the direct
QR-decomposition, the achievable NF deviation is at around −35 dB and almost independent of𝑚/𝑛.
There is no difference in terms of which variant is directly being solved, i.e., either adding a row
or removing a column in order to obtain an inhomogeneous linear system. While the nonconvex
solver performed best when exploiting the LCs in Fig. 6.3(b), its performance is of stochastic nature
and in general unreliable, though, there were cases where accurate solutions with an NF deviation
of as low as −50 dB were obtained. In contrast to that, the new formulations here reliably return a
solution of decent accuracy. There is no danger of randomly obtaining a highly inaccurate result,
however, the best accuracy seems to be limited by the numerical noise present in the simulation
data as well as that added due to the discrete nature of the equivalent AUT representation. There
also is a dependency of the noise robustness (numerical as well as measurement noise) on the
geometrical properties of the probe antenna array, e.g., the spatial separation among the array
elements. A more detailed investigation on the noise robustness is provided later.
When looking at the iterative implementations, a minor advantage of the formulation (6.12)

over (6.15) can be identified. However, the difference could potentially be attributed to the different
numbers of iterations performed. Comparing the approaches of adding a row or removing one
column in order to obtain an inhomogeneous linear system, there is no difference to be observed for
the method in (6.15), while for (6.12) removing one column seems to perform better. As mentioned
previously, the specific implementation of (6.12)ir had to be modified by an improved weighting of
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Fig. 6.4 Performance of the linear phase retrieval algorithms for the NF data of the horn antenna
(Fig. 5.16) which was employed for the results of Fig. 6.3. Direct and iterative implementa-
tions of (6.12) and (6.15) are considered and indicated by the superscript łdž and łiž. Further
differentiation is done in terms of how the inhomogeneous system is obtained, either based
on adding a row to, or removing one column from the homogeneous systems, see (6.19)
and (6.18), respectively. The superscripts łaž and łrž are added accordingly. (a) The solver
performance for various oversampling ratios. (b) Solver convergence for𝑚/𝑛 = 3. As a
reference, the result of a transformation with full phase information is drawn.

the portions of the relevant matrix in order to achieve stable convergence, which was not necessary
and has not been done for (6.12)ia. The larger discrepancy between both versions is thus highly
likely to be caused by the additional weighting and does not reveal any substantial advantages or
disadvantages of the add-row and remove-column approaches.

As a last point of interest, the convergence behavior of (6.12)ia and (6.15)ia as well as the reference
solver is drawn in Fig. 6.4(b) for 𝑚/𝑛 = 3. Clearly, the projector-based formulation exhibits a
relatively fast and desirable convergence. Here, both solvers are seen to simultaneously minimize
the deviation in the magnitude-only (𝜖𝑐,dB( |A𝒛 |, |𝒃 |), indicated by ł|.|ž) as well as the complex-valued
measurement vector (𝜖𝑐,dB(A𝒛, 𝒃)). This is another highly beneficial property, which has not always
been observed to hold true for the formulation with source coefficients and unknown phases in (6.12).
It may happen that this approach does exhibit a steep convergence in terms of the magnitude
deviation, but a delayed or flat convergence in terms of the true, complex NF deviation. As a
consequence, when working with the variants of (6.15), a low observable 𝜖𝑐,dB( |A𝒛 |, |𝒃 |) strongly
indicates that an accurate solution has been found. Something that does not hold true when working
with variants of (6.12). For the latter, convergence is in general observed after a larger number
of iterations, stemming from the fact that the underlying linear operator is ill-conditioned. The
convergence behavior of the solver with full phase information is by far preferable, as the solver
achieves an NF deviation of around −30 dB after roughly 15 iterations. For reasons of completeness,
it should be mentioned that the linearized formulations may here be adversely affected by an
artificial null space emerging from the truncated and incomplete measurement setup. Improved
accuracy for these approaches is expected when applying the modification mentioned in the results
section about łSynthetic Data on a Real-World Drone Trajectoryž.
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Field Data of a Reflector Antenna

A synthetic reflector antenna model simulated in Feko was employed to provide NF data on a planar
measurement surface in the main beam direction of a parabolic reflector. Feeding of the model was
done by means of a 𝑧-oriented Hertzian dipole placed approximately 1.67𝜆 in front of the reflector,
which has radius and focal length of ≈ 1.67𝜆. The tangential components, in 𝑦- and 𝑧-direction,
of the radiated electric field were sampled on a square shaped measurement plane with ≈ 50𝜆

side length at a distance of around 16𝜆 from the AUT. In total 𝑛 = 1 × 103 Hertzian dipoles were
employed as an equivalent model of the reflector arrangement as part of the field transformation.
In addition to samples on the measurement plane, which is illustrated in Fig. 6.5(a), four distinct
observation points on the left and right side of the measurement plane were added. These locations,
at which only the 𝑧-component of the electric field was acquired, were intended to represent the
positions of reference antennas employed during the acquisition of each of the four sub-planes. In
total𝑚 = 5004 measurement samples were utilized, including 1250 probe signals per square-shaped
sub-region, which are indicated by different colors in Fig. 6.5(a). The four signals associated with
the reference positions were added, however, assuming that the reference antennas do only provide
a phase connection and no explicit measurement samples, they could have been dropped with
negligible impact on the transformation results. Care was taken, such that the sub-regions on the
measurement planes did not overlap or touch, resulting in four separate regions where the phase
relation between these regions is unknown.

In the following, each reference antenna is assigned to its respective quadrant of the measurement
square, for which it is assumed to provide a stable phase reference. In essence, the described setup
reassembles that of a potentially realistic holographic NF antenna measurement with multiple
reference antennas, or a single moving one. Based on classical holography, it is not directly possible
to reconstruct the global phase, i.e., including the phase relation between the four quadrants in
Fig. 6.5(a), as there is no overlap between the regions of local coherence. As will be shown in a
moment, the previously introduced linear phase retrieval algorithms for partially coherent data allow
to reliably reconstruct the global phase distribution without the need for additional holographic
measurements. In a classical holographic setup, overlaps between the sub-regions of local coherence
would be required to finally obtain full coherence among all samples. Note that in practice it may
be necessary or beneficial to position the reference antenna at more than four locations, e.g., for
reasons of shadowing and limited dynamic range. The measurement effort associated with ensuring
a sufficient overlap between an increasing number of sub-regions is expected to grow rapidlyÐ as
well as the danger of accumulating phase errors due to inaccuracies in the overlaps. Consequently,
methods based on classical holography quickly become impractical as more sub-areas are required.

Since previous tests have shown the feasibility of the linear formulations for partially coherent
observations, focus is here put on the noise robustness of the methods. Therefore, a noise analysis is
performed, where the SNR according to the definition in (6.40) is employed. Based on Fig. 6.5(b), the
performance of various methods for noisy NF data can be estimated. Here, complex-valued normally
distributed noise was added to the synthetic measurement data and the resulting NF deviation was
recorded. For each value of the SNR and for each solver, 20 noise realizations were considered.
The mean, minimum and maximum NF deviations are drawn in Fig. 6.5(b), where the latter two
deviations are indicated by dashed lines. The solver exploiting full phase information is seen to
achieve the most consistent NF deviations throughout the whole range of SNR values. With a similar
performance, the transformation based on the nonconvex formulation and exploiting the phase
differences in the form of LCs exhibits a good noise robustness, even achieving the lowest best-case
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deviation of all solvers. Within the limited number of trials, no convergence to a suboptimal solution
is observed, however, suboptimal solutions may still occur in an unlucky case. For larger SNR
values, the linear phase retrieval algorithms based on partial coherence asymptotically come closer
to the performance of the latter two algorithms and almost no difference between the two variants
is visible. Still, the formulation based on the projector is observed to be slightly more noise-robust
compared to the projector-free variant. For the particular example, the performance of the two
variants varies the most around 𝑛SNR,dB ≈ 10 dB to 30 dB with deviations of up to a few dB. As
mentioned, the linearized formulations may here be adversely affected by an artificial null space
emerging from the truncated measurement setup. This issue is more severe for non-regularized
direct implementations of the solvers than for iterative realizations. As the QR-decomposition
was employed for the transformation with full phase, its performance has also been deteriorated
slightly. Improved accuracy for the linear approaches as well as A0 is expected when applying
the modification mentioned in the results section about łSynthetic Data on a Real-World Drone
Trajectoryž.

Based on the discussed results, at least three statements can be made. First, the investigated
linear phase retrieval algorithms for partially coherent data can directly be applied to holographic
measurement setups. By employing the algorithms in a post-processing step, a wide range of
limitations and restrictions of typical holographic measurements can be mitigated, e.g., allowing
for a moving reference antenna. Second, the algorithms perform robust in the presence of noise,
where their overall behavior for varying SNR values is comparable to that of field transformations
with full phase information. Still, switching from full-phase to partial-phase information increases
the sensitivity of the transformation with respect to measurement noise. Lastly, even nonconvex
phase retrieval algorithmsÐwhen provided with suitable dataÐmay exhibit a convex behavior
and reliably return accurate results. Yet, the investigated example with its holographic background
represents a rather extreme case, where almost full coherence is available. The observation is
simply in line with the fact that the phase retrieval problem becomes convex once sufficient data is
available [Sun et al. 2018].

136



6.3 Transformation Results

𝑦

𝑧

(a)

−10 0 10 20 30 40 50 60
−60

−50

−40

−30

−20

−10

0

10

𝑛SNR,dB

𝜖
𝑐
,d
B
( A

𝒛
,
𝒃
)

A0

A1 + LCs

(6.12)da

(6.15)da

(b)

Fig. 6.5 Illustration of a planar measurement arrangement of a parabolic reflector fed by a Hertzian
dipole in (a) and the achieved NF deviation of various transformation algorithms in (b). The
colored arrows in (a) indicate regions of partial coherence and the acquired polarization.
The measurement plane is split into four quadrants, each of which is assumed to feature full
coherence among all field samples drawn with the same color and unknown phase relations to
differently colored regions. Local coherence is assumed to be provided by the placement of
respective reference antennas, which are indicated by the single, vertically oriented arrows
at the sides of the quadrants. The illustration is not up to scale and does not depict all
measurement locations on the measurement plane. For the results in (b), 20 transformations
with random noise realizations were conducted for each solver and SNR and the mean,
minimum and maximum NF deviations are drawn. The latter two are indicated by dashed
lines.

Logarithmic-Periodic AntennaÐSingle Frequency

A logarithmic-periodic dipole antenna was simulated in Feko and NF data on the lateral surface of
a cylinder was acquired and fed to the phase retrieval algorithms. The model of the dipole antenna
was constructed according to the Altair Feko 2019.1 Example Guide [Altair Engineering Inc. 2019]
and the simulations where performed within the frequency range of 35MHz to 60MHz. A top-down
view of the measurement setup is depicted in Fig. 6.6(a), where the measurement cylinder with
a radius of 30m shifted in −𝑥-direction by 8m is indicated by the solid red circle and the AUT
dipoles are illustrated by black lines. The minimum sphere of the AUT is depicted by the dashed
blue circle with a radius of roughly 7m and its center shifted to 𝑥 = −6.2m. The smallest rod of
the logarithmic-periodic antenna is centered in the origin of the coordinate system. The height of
the measurement cylinder was set to 100m, enabling a reconstruction of the AUT FF in almost the
complete elevation plane.

For a first investigation at 60MHz, a bent łLž-shaped probe antenna array was utilized for the
acquisition of the tangential electric field on the lateral surface of the measurement cylinder. Partial
coherence was assumed to be available among the elements of the probe array. Note that two
orthogonal polarizations have been recorded in order to fully characterize the AUT, where no phase
differences between the polarizations were exploited. The assignment of the probe array elements
to the corresponding RX channels is illustrated in Fig. 6.6(b). All dots of the same color are assumed
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to be acquired sequentially by one of the probe elements connected to its corresponding RX channel,
resulting in local coherence between three measurement signals at each measurement location.
The known phase differences are indicated by black lines, which connect the elements of the probe
array. For the vertical separation of the probe elements a value of 2.5m and for the horizontal
separation, an angle of 5◦ was chosenÐ corresponding to a spacing of roughly 2.6m. Results for the
linear phase retrieval algorithms for data with partial coherence are depicted in Fig. 6.6(c), for which
the AUT was modeled by 𝑛 = 646 spherical vector wave functions. As a reference, the achievable
NF deviation with a transformation utilizing full phase information was added. Also, a nonconvex
phase retrieval algorithm exploiting the local coherence in the form of LCs has been applied to the
NF data, where its initial guess was computed via the optimal spectral method and at most 2 × 103
iterations were allowed for the solver to converge. Despite the relatively low oversampling ratio
𝑚/𝑛, the linear solvers are able to accurately determine the AUT coefficients, while the nonconvex
solver does only sometimes return a solution with an NF deviation of around −20 dB. In fact,
the behavior of the linear phase retrieval algorithms is observed to be very similar to that of the
transformation with full phase information. For the latter, a low error can be achieved for𝑚/𝑛 ≥ 1,
i.e., once the system is no longer underdetermined. For the linear phase retrieval algorithms for
partially coherent data to obtain similar levels of NF deviation, the condition in (6.32) needs to be
fulfilled. For a 𝐶-channel RX, i.e., a RX with 𝐶 coherent channels, this bound can be rewritten as

𝑚

𝑛
≥ 𝐶 (𝑛 − 1)

𝑛 (𝐶 − 1)
𝐶=3,𝑛=646≈ 1.498, (6.52)

which exactly corresponds to the point of sudden drop in the NF deviation in Fig. 6.6(c). Similar to
the transformation with full phase information, adding more measurements than required by the
bound further reduces the NF deviation. While this trend continues for the full-phase solver over the
complete range of𝑚/𝑛, the performance of the partial-coherence solvers stagnates for𝑚/𝑛 > 2.5 at
an NF deviation of around −80 dB. Evidently, the phase retrieval algorithms for partially coherent
observations are in general more sensitive to noise than their full-phase counterparts. Since the NF
data is not contaminated by any kind of measurement noise, the accuracy limitation could be caused
by numerical noise, e.g., the discrete nature of the AUT model, round-off effects when storing and
reading data from text files as well as computations with limited numerical precision. Due to the
missing field samples on the top and bottom of the measurement cylinder, the forward operator
may furthermore contain an artificial null space, which can adversely affect the linearized solvers.
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Fig. 6.6 (a) Illustration of the measurement setup of the logarithmic-periodic antenna. For the
single-frequency case, local phase differences among the łLž-shape probe array depicted
in (b) are assumed to be known. (c) The phase retrieval results for four transformation
algorithms when fed with a varying amount of NF samples.

Synthetic Data on a Real-World Drone Trajectory

A dual-polarized broadband Vivaldi antenna with a low back-lobe level has been proposed and
investigated in [Azhar and Eibert 2021]. The design is intended to exhibit a decent mechanical
stability while featuring a low weight due to an optimized all-aluminum construction. A digitally
rendered image of the aluminum tapered-slot antenna (ALUTSA) is given in Fig. 6.7(a). The radiator
is fed by two coaxial lines located on the front sides of two neighboring fins.

ALUTSAÐNear-Field Data Generation Based on a MoM simulation of the ALUTSA at 6GHz
in Feko, an equivalent Hertzian dipole representation on a box surface was determined and utilized
to generate realistic NF data for measurement locations on a real-world drone trajectory. The
employed multicopter and positioning system is described in [Mauermayer et al. 2019] whereas
the truncated cylindrical flight path is indicated in Fig. 6.7(b). In particular, Fig. 6.7(b) depicts the
dominant field component radiated by the equivalent ALUTSA dipoles on the box drawn in red.

For the given AUT, measurement locations and probe orientations, a multi-channel probe model
is applied for data generation. As part of the field transformation algorithms, equivalent sources in
the form of 𝑛 = 3 × 103 Hertzian dipoles on the surface of the blue sphere, as transparently drawn
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Fig. 6.7 Geometry of the ALUTSA in (a) and a synthetic NF antenna measurement setup combining
the ALUTSA as an AUT with a real-world drone trajectory for the definition of the mea-
surement locations and probe orientations in (b). The ALUTSA currents for NF generation
are located on the red box, whereas for the field transformations equivalent surface current
densities on an enclosing sphere, indicated in blue, are assumed. The green areas mark
regions which have not been sampled and which may require special treatment within the
phaseless transformation process.

in Fig. 6.7(b), are assumed. The areas drawn in green are not sampled by the probe at any time, so
the reconstructed fields at these locations can have arbitrary values. When not taking care of this
additional DoF, certain transformations algorithms are observed to be affected adversely.
The original ALUTSA sources on the red box in Fig. 6.7(b) and the measurement locations on

the real-world drone trajectory are now utilized for the NF data generation with two different
probe antenna arrays. The two-dimensional planar probe arrangements are illustrated in Figs. 6.8(a)
and 6.8(b). Both arrays consist of four Hertzian dipoles, which are rotated and translated, effectively
acquiring two field polarizations indicated by the red for horizontal and the green color for vertical
polarization. The olive-colored elements in Fig. 6.8(a) receive an equally weighted sum of both field
components. For the two probe arrays, the horizontal as well as the vertical separation between the
elements was set to ≈ 𝜆.

ALUTSAÐVarying the Number of Measurements The resulting two sets of NF data have
been processed assuming full coherenceÐ as a referenceÐ and only partial coherence among the
four elements of each probe array. When varying the available number of measurements𝑚, the
NF deviations reported in Figs. 6.8(c) and 6.8(d) are obtained. Besides the reference, three different
phase retrieval formulations have been applied. The scale-invariant, nonconvex solver has been
utilized with 𝑝2 = 0.5 and 𝑝2 = 1, indicated by A0.5

2 and A1
2 , respectively, as well as the linearized

formulations with an added row and a direct solver, denoted by (6.12)da and (6.15)da. For the
nonlinear formulation, at most 5 × 103 iterations were performed and the knowledge of phase
differences was incorporated in terms of LCs. As indicated by the green areas in Fig. 6.7(b), the
measurement surface is not closed for the considered example, allowing for the rise of nonradiating
sources, i.e., an artificial null space in the forward operator, when performing the field transformation
without a proper regularization. Dependent on the severity of this effect, numerical issues may
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6.3 Transformation Results

result and deteriorate the accuracy of the transformation. One way of suppressing these undesired
source contributions is to enforce zero field values outside the measurement surface. Therefore,
an additional number of 2 × 103 measurements belonging to sample locations on the green areas
featuring a magnitude of zero have been considered in the transformations marked with ł+0sž.
Note that compared to the following results, similar improvements have been achieved by solving
the linearized formulations with a sufficiently regularized solver, e.g., GMRES. Alternatively, only
solving for source distributions that can be observed within the measurement region, e.g., in
terms of a change of basis via a truncated SVD, is expected to eliminate the effect of the truncated
measurement region.

In Figs. 6.8(c) and 6.8(d), the following observations can be made. The nonconvex and nonlinear
formulation can not reliably provide decent results for the investigated range of𝑚/𝑛. Only the
minimization in terms of the squared magnitudes, i.e., 𝑝1 = 1, returns decent results in rare cases.
No significant improvement is caused by adding the zero measurements with the nonlinear solver.
In contrast, both linearized formulations exhibit a significant accuracy boost when suppressing
nonradiating source contributions. This is mainly caused by the utilization of a direct solver and, as
mentioned, could also be accomplished via a regularized iterative solver or by a proper choice of
basis functions. In total, the linearized formulations are seen to outperform the nonlinear approach
in terms of accuracy and reliability for the considered amount of NF data.
For reasons of completeness, the corresponding FF deviations within the valid region of 𝜗 ∈
[55◦, 130◦] with 𝜑 ∈ [90◦, 270◦] are depicted in Figs. 6.8(e) and 6.8(f). The overall trend continues,
however, a slight processing gain for all transformations can be observed. Here, AFF and 𝒃FF refer to
the FF radiation operator and the true reference FF determined by the original ALUTSA sources.

The results in Fig. 6.8 may be compared to those obtainable with an unsuitable choice for a probe
antenna array depicted in Fig. 6.9(a). Phase difference information among each polarization is only
available in one (vertical) direction, whereas for the probes in Figs. 6.8(a) and 6.8(b) variation in both
directions is revealed. As a result, the NF and FF deviations in Figs. 6.9(c) and 6.9(d), respectively, are
considerably increased for all solversworkingwith partially coherent data. Still, slight improvements
for the linearized solvers are observable when adding the synthetic measurements of zero magnitude.
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Fig. 6.8 Two probe arrangements, in (a) and (b), employed in combination with the virtual mea-
surement setup of Fig. 6.7(b). Each two-dimensional probe array consists of four Hertzian
dipoles, which sample the tangential electric field within the plane of the probe. Green
colored elements extract the vertical polarization, red elements the horizontal polarization
and the olive-green ones an equally weighted sum of both polarizations. The horizontal as
well as vertical spacing between the elements is ≈ 𝜆. Noise according to 𝑛SNR,dB = 60 dB

was added to the NF data. The NF deviation achieved for various solvers when applied to
the two probe arrangements of (a) and (b) is given in (c) and (d), respectively. The average
relative FF deviation within the angular region of 𝜗 ∈ [55◦, 130◦] with 𝜑 ∈ [90◦, 270◦] is
depicted in (e) and (f).
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Fig. 6.9 (a) Improper choice of a probe antenna array employed in combination with the virtual
measurement setup of Fig. 6.7(b). The two-dimensional probe array consists of four Hertzian
dipoles sampling the tangential electric field within the plane of the probe. Green colored
elements extract the vertical polarization, red elements the horizontal polarization. The
horizontal and vertical spacing between the elements is ≈ 𝜆. (b) Achievable NF deviation for
varying SNR values when𝑚/𝑛 ≈ 3. For each SNR value 20 repetitions with random noise
realizations were conducted. The NF deviation achieved for various solvers is given in (c),
where noise according to 𝑛SNR,dB = 60 dB was added to the NF data. The average relative FF
deviation within the angular region of 𝜗 ∈ [55◦, 130◦], 𝜑 ∈ [90◦, 270◦] is depicted in (d).
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6 Near-Field Far-Field Transformation with Partially Coherent Observations

ALUTSAÐVarying the SNR For a fixed oversampling ratio of𝑚/𝑛 ≈ 3, the SNR was swept
from 𝑛SNR,dB = 10 dB to 90 dB and for each SNR value 20 repetitions with random noise realizations
were performed. Figure 6.10 summarizes the results obtained with representative solversÐ the
performance of the linearized formulations has already been observed to be almost identical as
part of Fig. 6.8 and only the best performing nonlinear formulation employing LCs was considered.
The shaded regions indicate the variation of the results over the 20 runs, where the minimum,
maximum and average NF deviation in decibels is drawn. The minimal achievable NF deviation
can be deduced from the result of the reference solver based on A0 with full phase information,
which stagnates below 𝜖𝑐,dB(A𝒛, 𝒃) ≈ −50 dB. With the employed probe antennas, any variation of
the noise, even for the low-SNR regime, does not lead to any significant variations of the results
obtained with the reference formulation. In contrast, the nonlinear formulation exhibits strong
variations throughout most SNR regions. Only in rare cases, it can reconstruct the phase distribution
more accurately than the linearized formulation employing the zero-measurements. Without these
additional measurements, the linearized formulation is more susceptible to noise and shows more
variation throughout all SNR values. However, in the high-SNR regime the artificial suppression
of the forward operator null space is seen to limit the maximum accuracy. Shrinking the null-
measurement region for larger values of the SNR would loosen the restrictions on the fields and help
to avoid this stagnation of the NF deviation. Indicated by the results of the linearized formulation
without the zero-measurements, similar levels of accuracy as with complete phase information can
be achieved with the linearized formulations in the limit of high SNR values.

As expected, worse results are obtained and depicted in Fig. 6.9(b) when employing the unsuitable
probe arrangement of Fig. 6.9(a). Essentially, the information encoded in the LCs, which could
smooth out the nonconvexity and reduce the number of local stationary points, is obscured by
the noise. The noise robustness is only slightly improved by adding the zero measurements and
overall far larger SNR values are required for the linearized formulation to be able to determine an
accurate solution. Still, the nonlinear solver based onA2 performs worse and was not able to find a
mediocre quality solution even once.

Concluding RemarksÐResults with Phase Differences in Spatial Domain Either in the
form of LCs or via linearized formulations, spatial phase differences have been observed to signifi-
cantly improve the accuracy and success rate of phase retrieval algorithms. While incorporating
LCs in existing general purpose reconstruction methods is straightforward, all positive as well as
negative attributes of these algorithms persist Ð including the potentially unpredictable behavior
of nonconvex methods. Existing formulations incorporating LCs steadily become more reliable and
accurate in the regime of abundant numbers of measurements and phase differences. In contrast,
far less measurementsÐ deterministically predictable via (6.32)Ð are required by the linearized
algorithms for spatial phase differences in order to work accurately and reliably. As such, the
linearized methods behave similar to a fully coherent transformation, however, with an increased
sensitivity for measurement inaccuracies and noise.
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Fig. 6.10 Achievable NF deviation for varying SNR values. For each SNR value 20 repetitions with
random noise realizations and with𝑚/𝑛 ≈ 3 were conducted. The results in (a) and (b) are
based on the probe antenna array of Figs. 6.8(a) and 6.8(b).

6.3.2 Phase Differences in Frequency Domain

Logarithmic-Periodic AntennaÐBroadband Data

Broadband NF data of the already introduced logarithmic-periodic antenna depicted in Fig. 6.6(a) is
employed for the task of phase retrieval from phase differences among probe signals at the same
spatial location, but with varying frequency. NF measurements on a single cylindrical surface are
considered, where the measurement cylinder features a radius of 20m and is centered at 𝑥 = −8m.
The height of the cylinder was set to 70m and its lateral surface is discretized by 31 points in
vertical and by 81 points in angular direction, resulting in a total of𝑚 = 5022 measurement signals
comprising two polarizations. For the frequency range of interest from 35MHz to 60MHz, a varying
number of coefficients of spherical multipole expansions ranging from 𝑛 = 336 to 𝑛 = 576 were
chosen such that each frequency could separately (with full phase information) be solved up to an
accuracy of 𝜖𝑐,dB ≈ −100 dB. In total six frequency samples, in steps of 5MHz, are considered and
were transformed with the presented partially coherent formulations. As a parallel proof of concept,
the same algorithms were also tested with random generated data, i.e., complex-valued normally
distributed forward operators and source coefficients. White Gaussian noise was added to the
corresponding measurement vectors such that a similar 𝜖𝑐,dB ≈ −100 dB could be achieved (with full
phase) for each of the six underlying linear systems. As a figure of merit for the performance of the
considered algorithms, the maximum observable NF deviation of all of the frequencies was evaluated.
The results for the simulated NF data and for fully-random data are stated in the first two rows of
Tab. 6.1. The fully incoherent solver withA2 was applied to each frequency separately, as well as to
the combined formulation in (6.44), without and with explicitly employing LCs similar to the way
presented in (6.6). The linearized multi-frequency formulation (6.49) and, for reasons of comparison,
the fully coherent solver applied to (6.43) were also included. For solvers working with A0 and A2,
5 × 102 and 5 × 103 iterations were allowed, respectively. The initial guess for all nonlinear solvers
was computed via the optimal spectral method. The linearized multi-frequency formulation was
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6 Near-Field Far-Field Transformation with Partially Coherent Observations

Tab. 6.1 Application of multi-frequency phase retrieval formulations to synthetic NF, random and
mixed data. Spherical multipoles are employed as equivalent sources.

A𝑖 𝒛𝑖
max

𝑖∈{1, ..., 6}
𝜖𝑐,dB (A𝑖𝒛𝑖 , 𝒃𝑖)

A2 → |𝒃𝑖 | A2 → (6.44) A2 → (6.44)+LCs (6.49) A0 →(6.43)

NF1 NF 0 dB −0.4 dB −0.1 dB −8.3 dB −102 dB
rand2 rand −77.8 dB −95.2 dB −92.6 dB −104 dB −112 dB
rand NF −91.3 dB −96.6 dB −93.6 dB −107 dB −111 dB
NF rand 0 dB −0.4 dB −0.1 dB −102 dB −110 dB
1 łNFž: Forward operator and measurement vectors according to the multi-frequency
NF measurement setup.

2 łrandž: Complex-valued normally distributed operators and solution vectors.

directly solved with Matlab’s [Matlab 2021] QR-decomposition where the homogeneous system
was transformed to a linear one by adding one row2.

Based on Tab. 6.1, one can make multiple observations. Fully incoherent single-frequency NF
antenna measurements on single surfaces do not provide sufficient information for a successful
transformation with phase retrieval algorithmsÐ again random data does work. Improvements
can potentially be made when exploiting phase differences in multi-frequency measurements, and
that is where again major differences dependent on the data models occur. This is visible when
comparing the first and second row in Tab. 6.1, where all phaseless formulations, especially those
utilizing multi-frequency information, show drastic improvements for random data compared to NF
data. When it comes to comparing the incoherent/partially incoherent formulations for randomly
drawn operators and source coefficients, only the multi-frequency approaches come close to the
results of a fully coherent transformation. In addition, the linearized formulation is able to obtain
slightly more accurate results than the nonlinear formulations.
The first two rows in Tab. 6.1 reveal severe doubts for the feasibility of the multi-frequency

formulations applied to real-world NF antenna data. By alternately replacing either the operators
or the true source coefficients of the random setup with that from the NF model, the results
in the third and forth row of Tab. 6.1 can be obtained. In both cases, the measurement vectors
were computed with the forward operator and source coefficients at hand and adding the same
amount of noise to the measurement vectors as done previously in the case of random data. By
looking at the performance of the linearized formulation, one can conclude that the multi-frequency
formulations require a decent amount of łindependencež of either the underlying radiating sources
or the operators at the different frequencies. At least for the linearized formulation, there does
not seem to be an issue with the slightly more ill-conditioned operators and potential similarity of
those within the considered bandwidth. For the example of the logarithmic-periodic antenna, all
nonlinear methods fail whenever NF-related forward operators are involved.
As a point of interest, the NF-related computations have been repeated with Hertzian dipoles

placed tangentially on an AUT-enclosing box as equivalent sources. Slight improvements for the
nonlinear formulations at the expense of strongly deteriorated accuracy of the linearized formulation
is observed and reported in Tab. 6.2. The more stringent source localization of current-based AUT
representations may be beneficial for general-purpose phase retrieval algorithms. The decreased

2See Fig. 6.4 and the description thereof for more details on how to solve the linearized formulations.
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Tab. 6.2 Application of multi-frequency phase retrieval formulations to synthetic NF, random and
mixed data. Hertzian dipoles as equivalent sources.

A𝑖 𝒛𝑖
max

𝑖∈{1, ..., 6}
𝜖𝑐,dB (A𝑖𝒛𝑖 , 𝒃𝑖)

A2 → |𝒃𝑖 | A2 → (6.44) A2 → (6.44)+LCs (6.49) A0 →(6.43)

NF1 NF −5.6 dB −14.1 dB −7.3 dB −3.7 dB −103 dB
rand2 rand −77.8 dB −95.2 dB −92.6 dB −104 dB −112 dB
rand NF −5.6 dB −14.1 dB −7.3 dB −3.7 dB −103 dB
NF rand −5.6 dB −15.6 dB −8.3 dB −7.5 dB −101 dB
1 łNFž: Forward operator and measurement vectors according to the multi-frequency
NF measurement setup, however, with equivalent Hertzian dipoles on an AUT-
enclosing box.

2 łrandž: Complex-valued normally distributed operators and solution vectors.

performance of the linearized formulation is likely to be caused by the highly ill-conditioned
forward operators often encountered with such kind of more redundant equivalent sources.

Near-Field Data of a Triple-Horn Arrangement

Broadband simulation data of an irregular three-element horn antenna arrangement was simulated
in Feko. An illustration of the simulation model is given in Fig. 6.11(a). With strongly varying
excitation coefficients of the antennas, the radiated NF was expected to feature more pronounced
differences over frequency than in the previous example based on the logarithmic-periodic dipole
array. The relevant tangential electric field components were acquired on two spherical surfaces
with radii of 7m and 9m, indicated by the gray spherical shells in Fig. 6.11(a). The antennas were
simulated at four discrete frequencies ranging from 150MHz to 300MHz in steps of 50MHz. At
each frequency𝑚𝑖 = 4 × 103 ∀𝑖 ∈ {1, ..., 4} measurement signals were randomly picked out of all
available field values, resulting in 𝑚 = 16 × 103 known magnitudes in total. At each sampling
location, the phase difference between probe signals (for each polarization separately) of different
frequencies was assumed to be known. Inside the phaseless transformation algorithms, the horn
antennas were then modeled by vector spherical wave functions with 𝑛1 = 720, 𝑛2 = 966, 𝑛3 = 1248

and 𝑛4 = 1456 at the frequencies 𝑓1 = 150MHz, 𝑓2 = 200MHz, 𝑓3 = 250MHz and 𝑓4 = 300MHz,
respectively. Table 6.3 summarizes the obtainable maximum NF deviation among all frequencies
for various algorithms. More details on the comparison with random data models can be found
in the description of Tab. 6.1 in the previous section. All nonlinear methods were started from an
initial guess computed via the optimal spectral method.

With more variation over frequency, the considered NF data allows for the linearized formulation
to yield a solution with better accuracy than when trying to solve each frequency separately. Again,
the same setup, i.e., with the same number of unknowns and measurements, fully based on randomly
distributed solution vectors and forward operators also allows all nonlinear approaches to find
a precise solution. The third and forth row in Tab. 6.3 are examples of how the nonconvexity of
the nonlinear solvers may affect the transformation results. The nonconvex formulation based on
explicitly enforcing the phase differences with LCs is able to yield accurate results whenever either
the operators or the source coefficients are randomly drawn. In contrast and probably due to bad
luck, the remaining nonlinear solvers provide far worse results for the model in the fourth row.
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6 Near-Field Far-Field Transformation with Partially Coherent Observations

Tab. 6.3 Application of multi-frequency phase retrieval formulations to synthetic NF data of an
irregular horn array. Spherical multipoles are employed as equivalent sources.

A𝑖 𝒛𝑖
max

𝑖∈{1, ..., 6}
𝜖𝑐,dB (A𝑖𝒛𝑖 , 𝒃𝑖)

A2 → |𝒃𝑖 | A2 → (6.44) A2 → (6.44)+LCs (6.49) A0 →(6.43)

NF1 NF −2.7 dB −1.3 dB −2.1 dB −17.9 dB −62.0 dB
rand2 rand −60.1 dB −63.5 dB −63.4 dB −60.9 dB −63.7 dB
rand NF −53.4 dB −63.2 dB −63.0 dB −58.8 dB −63.7 dB
NF rand −1.8 dB −14.2 dB −61.0 dB −56.5 dB −62.1 dB
1 łNFž: Forward operator and measurement vectors according to the multi-frequency
NF measurement setup.

2 łrandž: Complex-valued normally distributed operators and solution vectors.

For reasons of completeness, the obtainable FF radiation characteristic after a phaseless trans-
formation is shown in Fig. 6.11(b). The dominant electric field component in the 𝜑 = 0◦ plane,
containing the main beam, at a frequency of 150MHz is drawn. In line with the numbers mentioned
in Tab. 6.3, a single-frequency phaseless approach yields inaccurate FF results. Some degree of
accuracy can be observed when applying the linearized MF formulation. Both results are compared
to the FF resulting from a fully coherent NFFFT.

Concluding RemarksÐResults with Phase Differences in Frequency Domain While the
concepts of how to exploit partial coherence in the spectral domain, i.e., phase differences in
broadband signals, have been made clear, the insufficient diversity of realistic multi-frequency NF
antenna data impedes their practical application. A stronger variation of either the forward operators
or the equivalent source coefficients was seen to have a beneficial effect on the performance of
all nonlinear and nonconvex but also the linearized formulations. Consequently, there may be
potential use cases for antennas and measurement arrangements exhibiting a more pronounced
frequency dependency. In all other cases, e.g., for narrowband AUTs, the utilization of spatial phase
differences via multi-channel measurements is recommended.
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Fig. 6.11 (a) Illustration of the synthetic NF measurement setup consisting of three horn antennas
with strongly varying excitation coefficients. NF samples are acquired on two closed
spherical surfaces indicated by the gray shells. For the purpose of clearness, some part
of the measurement spheres is removed. (b) The obtainable FF radiation characteristic of
the dominant field component when performing the phaseless NFFFT for each frequency
separately or with the linearized MF approach. The deviation curves are computed with
respect to the result obtainable with full phase information. Only the field in the plane
with 𝜑 = 0◦ for a frequency of 150MHz is depicted.
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7. Near-Field Far-Field Transformation with
Obstacle Modeling

Real-world NF antenna measurements can not be conducted under idealized free-space conditions
and are affected by various environmental influences, e.g., radiation from outside or material
inhomogeneities within the measurement volume. In fact, great effort is spent on emulating
a homogeneous disturbance-free environment in anechoic chambers of finite size, filled with
additional hardware for positioning and moving the AUT as well as measurement probes. Despite
the utilization of expensive wideband absorbers covering the walls and most of the auxiliary
measurement components, experience shows that there may remain significant echo sources in the
vicinity of the AUT. Strict requirements in terms of reliability, mechanical stiffness and loading
capacity often require the mounting structures for the AUT to be made of metal or other electrically
dense materials, which may give rise to significant echo contributions [Quijano et al. 2011]. When
performing an NFFFT, the resulting FF is altered by the presence of these echoes in the NF data.
Dependent on the relative distance between the AUT and the obstacles, the dominant coupling
mechanism and, thus, the most appropriate echo suppression technique varies. Closely spaced
objects will likely cause coupling in the reactive NF of the AUT, while objects further away will
lead to the scattering of the AUT radiation.

In the following, source localization approaches for the compensation of echo sources in NF
antenna measurements are presented. To a certain extent, the discussion follows the line of thought
in [Paulus et al. 2019]. A possible extension of this work can be found in [Kornprobst et al. 2019].
After a brief overview on existing echo suppression techniques in Section 7.1, the concept of source
localization is introduced in Section 7.2. In particular, three approaches based on source localization
are discussed and applied to simulation data with full coherence in Section 7.3 and partial coherence
in Section 7.4.

7.1 Overview of Echo Suppression Techniques

The possibility of echo suppression emerges from the assumption that signals stemming from the
AUT and from the disturbing objects can be differentiated. Since radiators of finite size can only
excite fields of limited DoFs, electromagnetic fields emerging from sufficiently spatially separated
sources can theoretically be distinguished. Consequently, field transformation algorithms based
on equivalent sources can exploit a-priori information about the AUT, for example in the form of
inherent spatial filtering that comes from the localized model of the AUT, or by utilizing given
properties of the modal spectrum of the AUT radiation [Cappellin and Pivnenko 2014; Eibert
et al. 2015; Foged et al. 2013; Gregson et al. 2012; Hess 2010; Jorgensen et al. 2012; Kozan et al.
2014; Quijano et al. 2011; Quijano and Vecchi 2010]. Still, the performance obtainable with these
techniques may not be sufficient for applications requiring high accuracy. Typically, techniques like
time gating [Mauermayer and Eibert 2016, 2017], virtual beamforming [Knapp and Eibert 2018],
scattering source localization [Araque Quijano et al. 2010; Quijano et al. 2011; Yinusa and Eibert
2013; Yinusa et al. 2012a; Yinusa et al. 2012b], low-pass filtering [Kozan et al. 2014; Mauermayer
et al. 2013], modified Green’s functions [Mauermayer and Eibert 2018], and scatterer modeling via
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the uniform theory of diffraction (UTD) [Mauermayer and Eibert 2015] are thus applied in addition,
when the AUT and the scattering object exhibit a sufficient spatial separation.

However, for closely spaced objects the measurement bandwidth required by time gating tech-
niques in order to obtain a sufficient spatial resolution for separating the AUT and the scatterer
may be unfeasible. Similarly, virtual beamforming requires an increasing number of measurements
when the distance between AUT and scattering object decreases. In order to be able to create a
decently steep transition between the nonzero fields at the AUT location and the (ideally zero)
low field values at the scatterer geometry, virtual probe combinations with larger directivity are
required. Effectively, this may render the approach useless for closely spaced obstacles in practice.
Lastly, the conditions for ray-based techniques like the UTD are not fulfilled for this case. Thus,
having considered most of the existing techniques for echo suppression, only source localization
with its low-pass filter property seems to be applicable to remove, or at least reduce, the effect of
obstacles close to the AUT. With more information about the measurement environment, echo
objects can also be included in the form of a forward problem inside the original inverse source
formulation. This has been done for dielectric bodies in [Mitharwal and Andriulli 2015; Omi et al.
2019].

In the following, two source localization methods removing the influence of perfectly electrically
conducting (PEC) obstacles in the vicinity of the AUT as part of NF antenna measurements are
presented. Both approaches can be interpreted as simple modifications to inverse-source based
NFFFTs and are applicable to a variety of transformation algorithms.

7.2 Echo Suppression via Source Localization

Consider the two NF antenna measurement setups indicated in Fig. 7.1. In the reference case shown
in Fig. 7.1(a), the AUT is assumed to be in free space, whereas in the second case in Fig. 7.1(b) a
PEC obstacle is located nearby. In the latter case, the total fields collected by probe antennas at
the measurement locations, indicated by the dashed contour, can be interpreted to consist of two
portions, the signal directly coming from the geometry or location of the AUT and a disturbing
portion stemming from the spatial region of the echo object. Note that there are further ways of
classifying the contributions to the total received signal. However, in this way it is emphasized
that the effect of the echo can be partially compensated by filtering out fields not being emitted
by equivalent sources modeling the AUTÐwhich is the task that we want to solve. Not only are
the received NF signals distorted by the obstacle, but also the resulting equivalent sources and
associated FF. Only when removing the echo influence, we are able to gain information about the
free-space radiation characteristic of the AUT. It is important to notice that potential distortions of
the equivalent sources of the AUT caused by the presence of the echo objects, often referred to as
mutual coupling, can not be filtered out in this way. Once the current distribution on the AUT is
altered, it can not be reversed or reconstructed in its original form with the methods discussed in
this work.

An echo removal can now be tackled in various ways, where three possible attempts are illustrated
in Fig. 7.2. The simplest approach, visible in Fig 7.2(a), is to ignore the PEC obstacle and only model
the AUT in terms of equivalent sources. As the spatially restricted AUT representation can not
fully account for the echo contributions to the probe signal, a relatively large NF deviation in (4.14)
may be expected. This inherent low-pass filtering characteristic of source-based NFFFTs may be
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AUT

NF

𝜀0, 𝜇0

(a)

PEC

(b)

Fig. 7.1 NF antenna measurement setup without (a) and with (b) a PEC obstacle in the proximity
of the AUT. The tangential AUT fields are sampled on an enclosing measurement surface
indicated by the dashed contour.

sufficient for weak echo contributions, however, can be improved by modeling the echo objects as
indicated in Figs. 7.2(b) and 7.2(c).

7.2.1 Source Localization of the Scatterer

In the second case, as shown in Fig. 7.2(b), equivalent sources are replacing the AUT and the echo
object. Thus, in the last step of the NFFFT when the FF is computed from the equivalent sources,
only the sources representing the original AUT are considered, potentially removing a large portion
of the echo contribution. Effectively, the additional unknowns employed for the obstacle can be
interpreted as belonging to a larger, extended AUT. With increasing AUT size, a larger number of
NF samples is required in order to determine the unknown coefficients correctly [Hansen 2008]. In
practice, this echo suppression method directly translates into longer measurement times. To a
large degree, this methodology is identical to that discussed in [Araque Quijano et al. 2010; Quijano
et al. 2011; Yinusa et al. 2012a; Yinusa et al. 2012b].

7.2.2 Scatterer Localization via Boundary Integral Equation

While the previous approach introduces certain knowledge on the echo objects in terms of their
locations, it does not include the actual material properties. The supplementary measurement effort
due to the larger number of equivalent sources can be avoided by taking into account the material
properties in the form of a boundary condition (BC) on the obstacle surfaces. Here for reasons of
simplicity, we will only consider PEC objects with the condition

𝒏 × 𝑬 = 0 , (7.1)

such that the tangential electric field has to vanish on the surface of PEC objects. Here, 𝒏 is the
normal vector pointing to the exterior of the respective object. Despite solving the inverse problem
including the BC for the sources of the AUT and the obstacles, the desired FF is computed from the
equivalent sources of the AUT only.
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(a) (b) (c)

Fig. 7.2 Three equivalent models for the obstructed setup in Fig. 7.1(b). In (a), only equivalent
sources for the AUT are employed, while in (b) the PEC obstacle is considered in terms of
its own sources. In (c), the PEC BC on the surface of the obstacle is incorporated.

7.3 Source LocalizationÐFull Phase Information

The three echo suppression methods based on source localization, as collected in Fig. 7.2, have been
applied to simulation data obtained with the commercial simulation software Altair Feko [Altair
Engineering Inc. 2018]. The two considered measurement scenarios are illustrated in Fig. 7.3,
consisting of a horn antenna and a PEC sphere or PEC ellipsoid. For both cases, the reference
FF was computed by simulating the horn antenna in free space with no obstacle present. For
the transformation of the NF data contaminated by the echoes from the PEC objects, a dipole
code accelerated by computations on GPUs was employed [Paulus and Eibert 2018a,b]. Hertzian
dipoles [Schmidt et al. 2011] were used as equivalent sources and the PEC BC was incorporated
by means of the method of auxiliary sources (MAS) [Anastassiu et al. 2002; Eisler and Leviatan
1989; Hassan and Kishk 2018; Heretakis et al. 2005; Kaklamani and Anastassiu 2002; Kouroublakis
et al. 2021; Leviatan 1990; Moharram and Kishk 2015a,b; Petoev et al. 2015; Zaridze et al. 1998].
Similar to the method of the dipole moment (DM) [Mittra et al. 2011; Panayappan and Mittra
2015], MAS represents an alternative to the classical MoM [Harrington and Harrington 1996]
used to solve electromagnetic problems. Though often falsely claimed, MAS does not feature a
lower computational complexity than MoM, however, as its core benefit it does not require the
treatment of singularities in the underlying integral equations. Identical to the DM approach,
MAS avoids singularities by offsetting test and basis functions. The radiation operators utilized in
NFFFTs, which are commonly applied to problems where sources and observation locations are
spatially separated, can thus directly be applied to construct the relevant impedance matrix. As a
downside, MAS is often observed to exhibit a limited accuracy, not comparable to a full MoM with
singularity treatment, especially if the objects to be modeled have sharp corners or edges. Still, for
the PEC sphere and PEC ellipsoid in Fig. 7.3, MAS has shown to be a suitable and easy-to-implement
alternative to MoM for incorporating the BC in (7.1).

All occurring linear systems of equations related to the dipole-NFFFT have been solved via the
fully coherent solver based on A0, such that a relative NF deviation of 𝜖𝑐,dB = −45 dB is achieved,
or, at most 5 × 102 iterations have been performed. The dipole representation of the horn antenna
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𝑧

𝑦𝑥

(a)

𝑧

𝑦
𝑥

(b)

Fig. 7.3 (a) A PEC sphere with a diameter of 2𝜆 in front of the horn aperture, which is at 𝑥 = 0.9𝜆.
The center of the sphere is located at [3, 0, 2]𝜆. (b) A PEC ellipsoid is placed at a distance
of about 7.5𝜆 in front of the horn. © IEEE 2019.

in free space was observed to achieve a maximum relative FF error of around −55 dB compared to
the FF in Feko.

The two scattering scenarios illustrated in Fig. 7.3 are considered. In Fig. 7.3(a), a PEC sphere
obstacle is placed in front of the horn antenna. The sphere has a diameter of 2𝜆 and is located 3𝜆

and 2𝜆 apart the horn aperture in 𝑥-and 𝑧-direction, respectively. With an approximately closest
distance of 𝜆, the sphere is expected to be in the reactive NF of the AUT. The second example
depicted in Fig. 7.3(b) features a PEC ellipsoid. The minimal distance between the horn aperture
and the obstacle is around 6.6𝜆, whereas the length and width of the ellipsoid are 6𝜆 and 1.2𝜆.

In a first step, the influence of mutual coupling between the echo objects and the antenna is
estimated. Due to the presence of the obstacle, the current distribution on the AUT is modified,
causing errors in the computed FF when only evaluating the equivalent sources for the horn antenna
as part of the NFFFT later on. Thus, two simulations in Feko are performed for each scenario.
Firstly, the FF of the horn antenna in free space is calculated and secondly, the current distribution
on the horn is determined under the influence of the PEC object. In Fig. 7.4(a), the dominant FF
component in the plane with 𝜑 = 0◦ through the main beam of the horn antenna is depicted. In
addition, the echo-perturbed simulation model is used to determine the FF only caused by the
currents on the horn antenna and the results are added with the label łAUTž. The ideal reference
FF in free space is label with łFree spacež and the fully-perturbed FF, including the effect of the
obstacle, here a sphere, is denoted as łAUT+Ož. As can be seen, the presence of the PEC sphere
does alter the FF characteristic in this plane up to a relative level of −10 dB, whereas the mutual
coupling modifies the currents on the horn antenna, such that a FF error of −26 dB is observed. It is
this difference between the totally distorted FF with −10 dB deviation and that solely affected by
mutual coupling up to −26 dB, which one wants to exploit with the source-localization based echo
suppression methods. It should be kept in mind that the presented methods can not overcome the
limitations related to mutual coupling, as there is no simple way of recovering the original current
distribution on the horn antenna. Figure 7.4(b) showcases the mutual coupling analysis for the case
of the ellipsoidal scattering object. Here, the FF in the plane with 𝜗 = 90◦ cutting through the main
beam is depicted. As the separation between the AUT and the ellipsoidal obstacle is considerably
larger than in the example of the sphere, a lower distortion of up to −15 dB and a mutual coupling
of below −39 dB is observable.
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Fig. 7.4 In (a) and (b), the mutual coupling effect of the PEC sphere and ellipsoid on the FF pattern
of the horn antenna is illustrated. Here, łAUT+Ož refers to the fields caused by the AUT
sources as well as the currents on the PEC object. For the PEC sphere, the plane 𝜑 = 0◦

is considered while for the ellipsoid the 𝜗 = 90◦ plane is drawn. The field deviations are
evaluated with respect to the free-space curves decorated with stars. (a) © IEEE 2019.

In the second step, the three discussed approaches are applied in order to remove the FF distortions
up to the contribution of mutual coupling. As such, the mutual-coupling affected curves labeled
with łAUTž in Figs. 7.4(a) and 7.4(b) are now considered the references and are denoted as łAUT
onlyž in Figs. 7.5(a) and 7.5(b). For the sphere and the ellipsoid, ignoring the presence of the scatterer
and solely modeling the AUT, one can obtain the curves labeled with łIgnorež. Adding equivalent
sources for the sphere but not including the BC, results in the curves denoted with łNo BCž. Finally,
including the BC yields the best results named with łBCž. Only the model including the PEC BC is
able to achieve a reasonable error level of below −50 dB for the case of the PEC sphere in Fig. 7.5(a).
The other methods yield FF errors on the order of −10 dB and −15 dB, respectively. It should be kept
in mind that the NF sampling density in this particular example was set according to the minimum
sphere of the AUT. Increasing the number of measurement samples, i.e., allowing to resolve all
modes present in the fields, lets both methods, which model the obstacle with and without BC,
perform on the same level. For the case of the ellipsoid, the results in Fig. 7.5(b) show that both
methods, with and without considering the BC, drastically improve the FF accuracy when compared
to ignoring the scatterer. To be more precise, the observable maximum FF errors are −47 dB, −60 dB
and −16 dB when not using the BC, using the BC and ignoring the obstacle, respectively.

Focusing on the approach enforcing the BC, a core question arises. How accurately does one
need to know the position and shape of the PEC scatterer such that modeling the BC improves the
transformation quality? In Fig. 7.6, the influence of positioning inaccuracies in terms of the PEC
sphere is illustrated. Typically, the location of scatterers is required to be known up to 𝜆/25 when
only the direct path (scatterer to RX) is considered. Multiple paths and reflections may even worsen
this requirement, such that the location of the relevant surfaces may need to be known up to 𝜆/50
or 𝜆/100. As in this particular example mutual coupling already accounts for FF errors around
−26 dB, a less stringent positioning accuracy is necessary. In the 𝑦-direction, shifts of around ±0.1𝜆
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Fig. 7.5 In (a) and (b), the FF transformation results for the synthetic NF measurements including the
PEC sphere and PEC ellipsoid are shown. For the PEC sphere, the plane 𝜑 = 0◦ is considered
while for the ellipsoid the 𝜗 = 90◦ plane is drawn. The field deviations are evaluated with
respect to the AUT-only curves decorated with stars. (a) and (b) © IEEE 2019.
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Fig. 7.6 A solution deterioration analysis assuming a wrong scatterer position inside the NFFFT
with included PEC BC according to (7.1). The maximum FF deviation is shown. © IEEE
2019.

are not expected to cause errors exceeding those of the mutual coupling effect. On the other side,
the distance to the AUT in 𝑥-direction is observed to be more sensitive to positioning mistakes.

In Fig. 7.7, the NF of the horn antenna in free space can be compared to the field distribution when
solving for the equivalent sources of the AUT and the currents on the PEC ellipsoid. Extracting and
evaluating only the AUT currents from the latter, the field distribution in Fig. 7.7(c) can be obtained.
The result comes visually close to that of the free-space reference in Fig. 7.7(a).

Concluding RemarksÐFully Coherent Source Localization Obstacles in the close prox-
imity of the AUT affect the collected NF data and, thus, the transformed FF via two disturbance
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Fig. 7.7 Magnitude of the electric NF in the 𝑧 = 0m plane. (a) Caused by the free-space solution. (b)
The solution including the PEC ellipsoid. (c) The extracted AUT currents. © IEEE 2019.
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mechanisms. First, fields radiated by the AUT are scattered at the object, yielding a modified field
distribution at the probe locations. Second, the presence of the obstacle modifies the currents on
the AUT itself, which then exhibits a different radiation behavior. Source localization methods are
able to partially compensate for the first mechanism, however, they can not remove the effect of
the latter disturbanceÐ also called mutual coupling. In particular, modeling the scatterer in terms
of additional equivalent sources is seen to remove the scattering contribution of obstacles to a large
degree. Less NF measurement samples are required in case the material properties of the obstacle
are considered additionally, e.g., in the form of BCs.

7.4 Source LocalizationÐPartially Coherent Data

So far, the capabilities of the three source-localization based echo suppression methods illustrated
in Fig. 7.2 have been applied to fully coherent data. However, the same principles are expected
to hold true for phaseless or partially coherent measurement data. In the following, a simulation
setup similar to that depicted in Fig. 7.3(a) is considered. Both the horn antenna and the PEC sphere
feature a slightly different geometry, where the diameter of the sphere was kept at 2𝜆. The surface
of the sphere is located roughly 2.3𝜆 away from the aperture of the horn, in the main beam direction.
The model was again simulated in Feko [Altair Engineering Inc. 2018] and the currents on the horn
antenna were evaluated, as well as NF data on a spherical surface with a radius of 10𝜆 was computed.
In order to also provide NF data with partial coherence, a three-element probe antenna array with
an łLž-shaped arrangement was employed. The inter-array element separation in both directions
of the array was set to 0.5𝜆 and the elements were modeled as Hertzian dipoles. The received
signals for two polarizations were obtained by rotating the łLž-probe by 90◦. The 1500 sample
locations on the spherical surface were determined according to a Fibonacci mapping [Keinert
et al. 2015], effectively resulting in an almost uniform distribution on the measurement sphere.
In total, 3 × 2 × 1500 = 6 × 103 measurement entries related to NF data have been utilized. The
AUT was represented by 8 × 102 Hertzian dipoles and the PEC sphere was modeled with 3 × 103
Hertzian dipoles as sources and 3200 BC field values were tested, corresponding to two tangential
field components at 1600 locations.

In a first step, the effect of the mutual coupling between the PEC sphere and the horn antenna
was estimated by comparing the FF of the horn antenna in free space and that obtained from the
simulation in the presence of the obstacle. Based on the latter simulation, only the surface currents
on the AUT geometry were used to compute the łAUT onlyž FF pattern depicted in Fig. 7.8. The
free-space pattern were computed from the NF data exported from Feko, evaluated first with full
phase information (łCoherentž) and secondly assuming the partial coherence between the probe
array elements (łPart. coh.ž). As expected, and due to the sufficient number of measurement samples
utilized, both transformations return an almost identical result with a maximum FF deviation of
around −23.5 dB with respect to the FF affected by the mutual coupling. For the transformation
with partial coherence the formulation in (6.15) was employed.

In the next step, the FF distorted by the mutual coupling was taken as a reference for the
results obtained with the three source-localization methods. All three methods were applied to
the fully coherent and the partially coherent simulation data. The results are collected in Fig. 7.9,
where for the curves in Fig. 7.9(a) full phase information was utilized and for Fig. 7.9(b) only the
partial coherence between the probe array elements was exploited. Independent of the phase
information, the transformation results obtained when not actively modeling but instead łignoringž
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Fig. 7.8 Radiation characteristic of a horn antenna distorted by an obstructing PEC sphere in the
vicinity of the horn aperture. For the FF computation, only the AUT currents have been
evaluated. For comparison, the FFs obtained via a fully coherent and a partially coherent
NFFFT, via (6.15), from NF data of the horn antenna in free space are depicted. Only the
dominant field component of the AUT in the 𝜑 = 0◦ plane is drawn.

the PEC scatterer are distorted to a very large degree. In this case, the inherent low-pass filtering
of the equivalent sources of the AUT is insufficient to separate the fields caused by the AUT and
the obstacle. Improved performance for this approach is expected when utilizing a simplified
representation of the AUT featuring less unknowns, i.e., less DoFs, and thus stronger filtering
properties. More accurate results can be obtained by modeling the scattering object, either with or
without enforcing the BC on the surface of the PEC obstacle. While the results in Fig. 7.9(a) with
fully coherent data are relatively similar in both cases, stronger discrepancies are visible for partial
phase knowledge and the results thereof in Fig. 7.9(b). The explanation of this effect is based on two
facts. First, for the same number of measurements, partial coherence provides less information than
full coherence. Second, adding more measurements, e.g., in the form of a BC, improves the noise
robustness of field transformation algorithmsÐknown as processing gain. For the fully coherent
results in Fig. 7.9(a), sufficient information was provided with and without BC, such that the results
are mainly bound by the accuracy limitations of the equivalent AUT representation. The same
limit is only reached with the additional BC measurements in Fig. 7.9(b). As a consequence, the
partially coherent results without BC could be improved by providing more measurement data,
leading to a more pronounced processing gain and noise robustness. In other words, the results
with and without BC for fully coherent data as well as the results for partial coherence with the
BC are bound by the equivalent model. Without the BC, the results for partially coherent data are
noise bound. Nevertheless, the NFFFT for partially coherent data in the form of (6.15) is well suited
for the application in echo suppression techniques via source localization.

Concluding RemarksÐPartially Coherent Source Localization The concept of source and
scatterer localization for echo suppression in field transformation remains applicable for phaseless
and partially coherent data. In particular, a promising agreement of the performance of source
localization methods with fully and partially coherent data was observed. In practice, care should
be taken to ensure a sufficient amount of measurement samples, especially when not incorporating
knowledge about the material properties of the scatterer, e.g., in the form of BCs. It should also
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Fig. 7.9 Radiation characteristics obtained from NFFFTs employing the three source-localization
based echo suppression methods illustrated in Fig. 7.3. As the effect of mutual coupling can
not be removed in any case, the FF obtained from only the true AUT currents (distorted by
the PEC object) is taken as a reference. Results for an NFFFT with full phase information
in (a). In (b), only the partial coherence among the three elements of an łLž-shaped probe
antenna array is assumed and processed via (6.15).

be kept in mind that the partially coherent approaches require a linear amount of additional
measurements in order to achieve the same level of accuracy as the fully coherent solvers.
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8. Summary and Conclusion

Electromagnetic field transformations working with a variable amount of phase information have
been investigated. The problem statement requires knowledge in the regimes of electromagnetics
and optimization theory. First, the theoretical foundations for electromagnetic transformations
with complete phase information in the form of the uniqueness and the equivalence principle have
been reviewed. Simple yet powerful and highly-parallelized radiation operators were provided for
the description of the electromagnetic fields. Second, the rudimentary principles of nonconvex, non-
linear, unconstrained and multivariate optimization of complex-valued quantities via the Wirtinger
calculus have been discussed. A flexible optimization framework intended for the treatment of a
variety of electromagnetic problems was presented.

In a first step, the tools and procedures from the fields of electromagnetics and optimization theory
have been utilized to perform phase retrieval from fully incoherent data. Routines for the generation
of initial guesses, nonconvex and convex algorithms have been observed to perform far inferior
when provided with realistic near-field (NF) antenna data instead of complex-valued normally
distributed data, which is mainly utilized as a baseline for comparisons in literature. At this point,
phase retrieval for random normally distributed data can be considered as solved once a sufficient
number of measurement samples is available. In essence, measurements belonging to a random
data model have only a minimum degree of redundancy, so each additional measurement adds
information to the problem. In contrast, phase retrieval remains challenging in most applications
of practical relevance, where successive measurements show redundancy due to the underlying
physical process. The issue can not be evaded by simply employing an increased number of
measured magnitudes, instead, the arrangement of the measurement setups need to be modified in
order to provide more restrictions on the phases and, thus, increase the chance of a successful phase
retrieval. Aside the data dependency, various phase retrieval formulations for fully incoherent data
have been seen to perform similarly. In practice, the required computational resources are expected
to be the main reason for favoring one or another method. It should be stressed that the strong
data dependency was also encountered with convex algorithms, which in this work have not been
observed to perform better than their nonconvex counterparts when treating NF data.

Aside numerous iterative algorithms, a direct phase retrieval formulationÐ of striking simplicity ś
has been discussed. The main drawbacks are its quadratic sampling complexity, i.e., requiring the
largest number of magnitude measurements among all existing methods, and its large computational
complexity, which is comparable to that of most convex methods. Once a sufficient number of
suitable measurements are available, this approach returns the unknown phase distribution at the
expense of solving multiple linear systems of equations. However, as the main accomplishment of
this method, it can be utilized to roughly judge the suitability of a forward operator or, equivalently,
a measurement setup for the task of phase retrieval. Overall, unsatisfactory results have been
reported for any of the investigated phase retrieval methods or approaches, when working with
conventional phaseless NF antenna data.

This shortcoming of typical electromagnetic field data was the starting point for phase retrieval
from partially coherent measurements. As has beenmotivated, realistic antenna measurement setups
often allow the acquisition of incomplete knowledge of phase differences, either in the frequency
or spatial domain. These potentially tiny portions of phase information can have drastic impact on
the performance of phase retrieval algorithms, enabling for the first time reliable and predictable
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8 Summary and Conclusion

field transformations based on magnitude-only information. Phase differences were shown to be
utilizable with existing nonlinear retrieval algorithms via interferometric equivalences, i.e., in the
form of magnitudes of linear combinations (LCs), as well as exploitable in linearized formulations.
Especially the latter outperform existing approaches based on LCs in terms of the required number
of measurementsÐ predictable via a deterministic necessary conditionÐ , and more importantly, in
terms of reliability. Only in the regime of a large number of available phase differences with low
signal-to-noise ratio (SNR) should the existing techniques with LCs be preferred over the linearized
methods. This may be subject to changes in the near future as more knowledge and improvements
are gained for the linearized formulations.
Promising results have been obtained when applying the concept of partial coherence to echo

suppression techniques for NF antenna measurements based on source localization. Except for
disturbances in the current distribution of the antenna under test (AUT) due to mutual coupling,
the presented methods were able to significantly suppress echo contributions of a closely located
object made of perfectly electrically conducting (PEC) material Ðwith full or partial coherence.
In particular, knowledge of the scatterer material was exploited to reduce the required number of
measurements, which were expectedly larger with incomplete phase information than with full
coherence.
In the context of NF antenna measurements, phase retrieval remains a difficult task. For well

suited models, e.g., random normally distributed forward operators, a phase reconstruction is
already feasible with existing techniques, which then behave quite similarly. As such, the various
general purpose phase retrieval approaches published in the past decades have provided negligi-
ble improvements for treating real-world phaseless problems. More benefits are to be expected
from highly specialized formulations, customized to the problems at hand and, most importantly,
which are able to incorporate as much knowledge on the problem statement as possible. Phase
retrieval is all about finding a formulation which represents the best compromise of mathematical
elegance (simplicity) and favorable properties (linearity, convexity, ...), while still enforcing as
many restrictions on the problem as possible (all magnitudes, phase differences, bandlimitedness,
...). Since real-world problems vary in terms of available knowledge and side constraints, the
optimal formulation changes from application to application and there is no ideal approach that fits
perfectly for all problems. A first step in the direction of specialization has here been taken with the
concept of partially coherent measurements. With a slightly reduced generality, i.e., requiring the
knowledge of a certain portion of phases, the phase retrieval problem was seen to become solvable
via linearized formulations with reasonable computational effort and a linear sampling complexity,
i.e., requiring a similar number of measurements as a fully coherent approach. The concept is
well applicable to a variety of NF antenna measurements and may prove feasible in other fields of
research. It is expected that the maturity of the presented linearized algorithms will improve over
the coming years, providing better noise robustness and improved handling of artificial null spaces
in the operators.
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A. Appendix

A.1 Electric Field of Current Densities in Free Space

The two equations (2.26) and (2.27) stating the electric field radiated by electric and magnetic
current densities in free space are briefly derived here.

Magnetic Current Density

We start from the two fundamental equations

𝑬
(
𝒓
)
= −1

𝜀
∇ × 𝑭 (A.1)

𝑭
(
𝒓
)
=

𝜀

4𝜋

˚

e−j𝑘𝑅

𝑅
𝑴

(
𝒓 ′

)
d𝑉 ′ (A.2)

relating the electric vector potential with the electric field, where 𝑅 =



𝑹


2
and 𝑹 = 𝒓 − 𝒓 ′. The

vectors 𝒓 and 𝒓 ′ describe the observation and source location. With the spatial derivative with
respect to the observation location

∇ =∧
𝜕

𝜕𝒓
and

𝜕𝑅

𝜕𝒓
=
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) 1
2
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one can write
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which equals the formula stated in (2.27). For (A.5) we used the identity
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for a scalar field 𝑥
(
𝒓
)
and a vector field 𝑨

(
𝒓 ′

)
, which simplifies to
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when 𝑨(𝒓 ′) is not dependent on the spatial coordinate 𝒓 relevant for taking the derivative. Further-
more,

∇e
−j𝑘𝑅

𝑅
= −e

−j𝑘𝑅

𝑅3
(1 + j𝑘𝑅) 𝑹 (A.9)

has been utilized.
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Electric Current Density

The analogous case of radiation caused by electric current densities can be derived when starting
with the relations

𝑬
(
𝒓
)
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1

j𝜔𝜇𝜀
∇ × ∇ ×𝑨
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𝒓
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(A.10)
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involving the magnetic vector potential. The electric field is here evaluated at source-free locations,
i.e., where 𝑱

(
𝒓
)
= 0. Again utilizing the steps in (A.8) and (A.9), one can find
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Continuing with
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one finds
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With

∇
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we then write
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Next, one obtains
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and thus finally
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which is identical to (2.26).

A.2 Mean-Squared DeviationÐOptimal Scaling

Consider the task of determining the optimal complex-valued scaling factor 𝑐 ∈ C such that the
mean-squared error between to complex-valued vectors 𝒗1/2 ∈ C𝑛 × 1 is minimal. The problem can
be written as

arg min
𝑐∈C

∥𝑐𝒗1 − 𝒗2∥2
∥𝒗2∥2

≡ arg min
𝑐∈C
∥𝑐𝒗1 − 𝒗2∥22 . (A.22)

We can find the solution by rewriting the squared norm as

∥𝑐𝒗1 − 𝒗2∥22 = (𝑐𝒗1 − 𝒗2)H (𝑐𝒗1 − 𝒗2) (A.23)

= 𝑐𝑐𝒗H1 𝒗1 − 𝑐𝒗H1 𝒗2 − 𝑐𝒗H2 𝒗1 + 𝒗H2 𝒗2. (A.24)

The consideration of a complex-valued scaling factor makes this task slightly more complicated.
However, it can be treated by replacing the complex-valued optimal scaling by separated variables
for its magnitude and phase, written as 𝑐 = 𝑐1𝑐2, where 𝑐1 ∈ R and |𝑐2 | = 1, 𝑐2 ∈ C. One can then
continue to write
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}
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In search for a stationary point, setting the first-order derivative with respect to the magnitude of
the scaling factor to zero yields

0
!
= 2𝑐1𝒗

H
1 𝒗1 − 2Re

{
𝑐2𝒗

H
2 𝒗1

}
, (A.27)

leading to

𝑐1 =
Re

{
𝑐2𝒗

H
2 𝒗1

}
𝒗H1 𝒗1

. (A.28)

A quick check of the second-order derivative reveals that (A.28) belongs to a minimum. Looking
back at (A.26) it is also clear that Re{𝑐2𝒗H2 𝒗1} has to be the most positive value possible in order
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minimize the mean-squared difference further, for which the maximum

max
𝑐2∈C, |𝑐2 |=1

Re{𝑐2𝒗H2 𝒗1} = max
𝑐2∈C, |𝑐2 |=1

��𝒗H2 𝒗1�� cos (
∠ (𝑐2) + ∠

(
𝒗H2 𝒗1

) )
(A.29)

is achieved when

𝑐2 = e−j∠(𝒗H2 𝒗1) . (A.30)

Multiplying (A.28) with 𝑐2 while inserting (A.30), one obtains

𝑐 =
𝒗H1 𝒗2

𝒗H1 𝒗1
(A.31)

to be the solution to and thus the optimal scaling for the problem in (A.22).

A.3 Derivation of the Spatial Derivative of Magnitude Signals

The spatial derivative of the magnitude of probe signals in (5.48) is derived. Without loss of
generality, we state the derivation for the spatial derivative in 𝑥 ′-direction which yields
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The complete three-directional derivative is again obtained by stacking the derivatives in 𝑥 ′-, 𝑦′-
and 𝑧′-direction, as given in (5.48) with the stacked vector 𝝋𝒓 ′ in (5.49).

In a slightly different manner we can derive (5.50), the spatial derivative of the real-valued phase
of the received probe signal. Again, we here present the derivative in 𝑥 ′-direction and the other
directions follow by variable substitution. We find that
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which corresponds to (5.50) with the additional variable 𝑴 defined in (5.51).

A.4 Normal Error System in Phase Retrieval

When looking at (4.3), one can see that formulation (5.16) can be modified as

A3 =

[(
AAH𝒛

)
◦

(
AAH𝒛

)]𝑝3
=

��AAH𝒛
��2𝑝3 with 𝒅3 = |𝒃 |2𝑝3 . (A.34)

This corresponds to employing the normal error system of equations, as thoroughly investigated
in [Kornprobst et al. 2021a] for NFFFTs with full phase information, in the context of phase retrieval.
Effectively, this requires to insert AAH𝒛 instead of A𝒛 into the optimization framework. Note that
the normal residual system of equations can not be applied, as the computation of the corresponding
right-hand side would require the knowledge of the complex-valued measurement vector, including
its phase. Analogous, one can make the same modification to (5.30).
The derivatives of formulation (5.16) consequently apply when using A← AAH and are thus

omitted.
It is obvious that the formulations (5.16) and (A.34) deviate in the shape of the forward operator,

where for the second case the additional constraint of the adjoint operator AH is enforced on the
unknowns. In case only function handles to the forward and the adjoint operator are available, the
second formulation requires four matrix-vector multiplications per iteration of the solver, whereas
the first formulation only requires two. The main difference between the formulations is that (A.34)
shifts the space of unknowns into the domain of the measurement signal. As we usually have𝑚 > 𝑛

or even𝑚 ≫ 𝑛, this may be a disadvantageÐ in contrast to the possibly beneficial effect of the
additional filtering with AH.
In order to compare the formulations, the success rates for both algorithms have been evalu-

ated for complex-valued normally distributed matrices. A successful transformation is said to be
achieved once a complex error in (4.14) below −45 dB is obtained. In Fig. A.1 a comparison of the
formulations (5.16) and (A.34) can be seen. Again, the parameter 𝑝1/3 ∈ {0.5, 1} was set to result in
a minimization of the magnitude or the squared magnitude, respectively. The results indicate that
there is no benefit in applying the adjoint operator in the form of (A.34). Independent of 𝑝1/3, the
success rate and the average number of iterations required until convergence are inferior when
using (A.34) compared to (5.16).

A.5 Phase-Invariant Source Reconstruction

Consider the formulation

A4 = A𝒛 − |𝒃 | ej∠ (A𝒛 ) with 𝒅4 = 0 (A.35)

which maps complex-valued source coefficients 𝒛 to a complex-valued difference of vectors. Es-
sentially, the formulation searches for source coefficients, while automatically adjusting the phase
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Fig. A.1 Comparison of formulations (5.16) and (A.34) for complex-valued normally distributed data.
All solvers were limited to 𝑘max = 5 × 102 iterations. For every ratio𝑚/𝑛, where 𝑛 = 10,
5 × 103 runs were performed and the initial guess is computed via 40 power iterations of
a spectral initialization. (a) Success rate, where success is declared once 𝜖𝑐,dB ≤ −45 dB is
achieved. (b) Average number of iterations 𝑘av, it performed.

of the measurement vector to fit to the current solution. Thus, no restrictions on the phases are
enforced. Due to the occurrence of the phase term ∠ (A𝒛), the formulation exhibits łmore non-
linearityž than for example the formulation in (5.16). While the working principle is resemblant
to that of the standard formulations, the nonlinear operator A4 returns complex-valued vectors
instead of real-valued ones, e.g., as in the case of A1.

The required derivatives yield

𝜕A4

𝜕𝒛
= diag

(
1 − 1

2

|𝒃 |
|A𝒛 |

)
A (A.36)
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)H
=
1

2
AHdiag

(
|𝒃 | e2j∠ (A𝒛 )
|A𝒛 |

)
. (A.39)

Due to the similarity with the standard approach in (5.16), the success rates reported for random
and for NF data in Fig. A.2 are of no surprise. Despite the larger computational burden, the
performance of (A.35) can not be distinguished from that of (5.16) for 𝑝1 = 0.5.

A.6 Enforcement of Phase Differences with Partial Knowledge of

Magnitudes

In Section 5.4.5, the casemay arise where partial information is available on two linearmeasurements
of the same unknown quantity. To bemore precise, consider the casewith the known linear operators
A1/2 ∈ C𝑚 ×𝑛 and the unknowns in 𝒛 ∈ C𝑛 × 1, for which |A1𝒛 | = |𝒃1 | and ∠(A1𝒛 ◦A2𝒛) are available
and |A2𝒛 | = |𝒃2 | and ∠(A1/2𝒛) are unknown. As in particular |A2𝒛 | is not given, the phase retrieval
algorithms in Chapter 6 for partially coherent data can not be applied.
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Fig. A.2 Success rate of the phase retrieval formulations (5.16) and (A.35) for complex-valued
normally distributed data, in (a), and NF data on a synthetic measurement sphere, generated
by spherical vector wave functions, in (b). All solvers were limited to 𝑘max = 5 × 103

iterations. For each ratio𝑚/𝑛, where 𝑛 = 10, 50 × 103 runs were performed and the initial
guess is computed via the optimal spectral method. Success is declared once 𝜖𝑐,dB ≤ −45 dB
is achieved.

We can enforce the knowledge of the phase differences as part of the optimization framework via

A11 =
A2𝒛 ◦ A1𝒛

|A2𝒛 | ◦ 𝒈11 (𝒛)
with 𝒅11 = e j∠(A2𝒛◦A1𝒛), (A.40)

where 𝒈11(𝒛) ∈ R𝑚 × 1 represents the magnitude of the measurement with A1. In particular, 𝒈11 can
either be set to |A1𝒛 |, dependent on 𝒛, or independent of 𝒛, as |𝒃1 |.

The required derivatives are found as

𝜕A11 (𝒛)
𝜕𝒛

=

diag
(
A1𝒛 ◦ |A2𝒛 | ◦ 𝒈11 (𝒛)

)
A2

( |A2𝒛 | ◦ 𝒈11 (𝒛))2

−
diag

(
A2𝒛 ◦ A1𝒛

) [
diag

(
𝒈11 (𝒛) ◦ e−j∠ (A2𝒛 )

)
A2 + diag ( |A2𝒛 |)

𝜕𝒈11 (𝒛)
𝜕𝒛

]

2 ( |A2𝒛 | ◦ 𝒈11 (𝒛))2
(A.41)

(
𝜕A11 (𝒛)

𝜕𝒛

)H
= AH

2

diag (A1𝒛 ◦ |A2𝒛 | ◦ 𝒈11 (𝒛))
( |A2𝒛 | ◦ 𝒈11 (𝒛))2

− AH
2

diag
(
A1𝒛 ◦ A2𝒛 ◦ 𝒈11 (𝒛) ◦ ej∠ (A2𝒛 )

)
2 ( |A2𝒛 | ◦ 𝒈11 (𝒛))2

+

(
𝜕𝒈11 (𝒛)

𝜕𝒛

)H
diag

(
A1𝒛 ◦ A2𝒛 ◦ |A2𝒛 |

)
2 ( |A2𝒛 | ◦ 𝒈11 (𝒛))2

(A.42)

𝜕A11 (𝒛)
𝜕𝒛

=

diag
(
A2𝒛 ◦ |A2𝒛 | ◦ 𝒈11 (𝒛)

)
A1

( |A2𝒛 | ◦ 𝒈11 (𝒛))2
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−
diag

(
A1𝒛 ◦ A2𝒛

) [
diag

(
𝒈11 (𝒛) ◦ e−j∠ (A2𝒛 )

)
A2 + diag ( |A2𝒛 |)

𝜕𝒈11 (𝒛)
𝜕𝒛

]

2 ( |A2𝒛 | ◦ 𝒈11 (𝒛))2
(A.43)

(
𝜕A11 (𝒛)

𝜕𝒛

)H
= AH

1

diag (A2𝒛 ◦ |A2𝒛 | ◦ 𝒈11 (𝒛))
( |A2𝒛 | ◦ 𝒈11 (𝒛))2

− AH
2

diag
(
A2𝒛 ◦ A1𝒛 ◦ 𝒈11 (𝒛) ◦ e−j∠ (A2𝒛 )

)
2 ( |A2𝒛 | ◦ 𝒈11 (𝒛))2

+

(
𝜕𝒈11 (𝒛)

𝜕𝒛

)H
diag

(
A2𝒛 ◦ A1𝒛 ◦ |A2𝒛 |

)
2 ( |A2𝒛 | ◦ 𝒈11 (𝒛))2

. (A.44)

Note that if 𝒈11 (𝒛) = |A1𝒛 |, we have

𝜕𝒈11 (𝒛)
𝜕𝒛

=
1

2
diag

(
e−j∠ (A1𝒛 )

)
A1 (A.45)

(
𝜕𝒈11 (𝒛)

𝜕𝒛

)H
=
1

2
AH
1 diag

(
ej∠ (A1𝒛 )

)
, (A.46)

or when 𝒈11 (𝒛) = |𝒃1 |,

𝜕𝒈11 (𝒛)
𝜕𝒛

= 0 (A.47)

(
𝜕𝒈11 (𝒛)

𝜕𝒛

)H
= 0. (A.48)

A simple verification of the approach has been conducted with complex-valued normally dis-
tributed data, where 𝒈11(𝒛) = |𝒃1 | and 𝑛 = 10. Three approaches have been compared. First, solely
applying the formulation in (A.40), which effectively only utilizes the phase difference information.
Second, the phase retrieval formulation in (5.30) applied only to |A1𝒛 | = |𝒃1 |, and, third, a combi-
nation of both, where both cost functions are minimized in parallel with equal weighting. In all
three cases, the initial guess is computed via the optimal spectral method applied to |A1𝒛 | = |𝒃1 |.
All solvers were allowed to at most perform 5 × 102 iterations. A transformation was said to be
successful, once 𝜖𝑐,dB(A1𝒛, 𝒃1) ≤ −45 dB was obtained. The results are depicted in Fig. A.3, where
the success rate versus the oversampling ratio𝑚/𝑛 is depicted.
The formulation with A11 can be interpreted as a particular case of the magnitude retrieval

problem briefly discussed in Appendix A.9, only featuring knowledge of phase differences and no
absolute phases. As such, and as indeed can be seen in Fig. A.3, it should perform somehow worse
than the magnitude retrieval in Fig. A.6 for the same number of unknowns. Keep in mind that
A11 in Fig. A.3 actually exploits twice the number of measurements as available for the solvers in
Fig. A.6, since a second linear measurement operator is considered. Thus, it seems reasonable that
nonzero success rates can be observed starting at𝑚/𝑛 ≈ 1, while𝑚/𝑛 ≈ 2 are required in Fig. A.6.
Still, the overall number of measurements required for A11 to reach reasonable success rates is
quite large compared to case of magnitude retrieval from absolute phase knowledge. Finally, a
combination ofA11 with the classical phase retrieval formulation viaA2 is seen to feature a decent
improvement compared to a separate minimization of the cost functions. As is seen throughout this
dissertation, adding information to the original phase retrieval problem is mainly seen to improve
the obtainable results Ð the opposite is rarely observed.
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Fig. A.3 Success rate of phase retrieval algorithms for partially coherent observations with limited
knowledge of magnitudes. Here for 𝑛 = 10 and complex-valued normally distributed data.
For each ratio of𝑚/𝑛, 1× 103 trials were performed. The formulation withA2 only utilizes
|A1𝒛 |, while A11 only exploits ∠(A2𝒛 ◦ A1𝒛). Consequently, the combination of both cost
functions makes use of magnitudes and phase differences, simultaneously.

A.7 PhaseCut via the Optimization Framework

Consider the convex formulation of the phase retrieval problem called PhaseCut [Waldspurger et al.
2015]

min
U∈C𝑚 ×𝑚

Tr (MU)

s.t. diag (U) = 1

U ⪰ 0, (A.49)

where

M = diag ( |𝒃 |)
(
I − AA−1

)
diag ( |𝒃 |) (A.50)

is a positive definite Hermitian matrix.

We can implement this minimization in form of our framework, with

APC =

[
Tr

(
MXHX

)
diag

(
XHX

) ] , X ∈ C𝑚 ×𝑚 with 𝒅PC =

[
0

1

]
︸︷︷︸
∈R𝑚+1 × 1

, (A.51)

where the positive semidefiniteness of the unknown U = XHX is enforced by solving for a upper
triangular matrix X.

The required derivatives can be found as

∈C1+𝑚 × (𝑚 ×𝑚)︷      ︸︸      ︷
𝜕APC (X)

𝜕X

∈C(𝑚 ×𝑚)︷︸︸︷
(Y) =

∈C𝑚+1 × 1︷           ︸︸           ︷[
Tr

(
MXHY

)
diag

(
XHY

) ] 𝜕APC (X)
𝜕X

(Y) =
[
Tr

(
MHXHY

)
diag

(
XHY

) ]
(A.52)

173



A Appendix

(
𝜕APC (X)

𝜕X

)H
︸           ︷︷           ︸
∈C(𝑚 ×𝑚) × 1+𝑚

(𝒚)︸︷︷︸
∈R𝑚+1 × 1

= XMH [𝒚]1︸     ︷︷     ︸
∈C(𝑚 ×𝑚) ×1

+Xdiag ( [𝒚]2:𝑚)︸            ︷︷            ︸
∈C(𝑚 ×𝑚) ×1

(A.53)

and (
𝜕APC (X)

𝜕X

)H
(𝒚) = XM[𝒚]1 + Xdiag ( [𝒚]2:𝑚) . (A.54)

Dimensions in brackets are here treated as a single dimension, i.e., for U1 ∈ C𝑞 × (𝑚 ×𝑚 ) and
U2 ∈ C(𝑚 ×𝑚 ) × 1, the product U1U2 = U3 leads to U3 ∈ C𝑞 × 1. The rather abusive notation [𝒚]𝑘 :𝑙
extracts the elements with the indices 𝑘 to 𝑙 from the vector𝒚. Furthermore, the framework operates
on vector unknowns and not on matrices, thus, the entries of the upper triangular matrix X are
represented as vector entries 𝒙 ∈ C𝑚 (𝑚+1)/2 × 1.
A comparison of the implementation by [Waldspurger et al. 2015] based on the interior-point

method [Helmberg et al. 1996] and the formulation in (A.51) can be drawn from the results in Fig. A.4.
Complex-valued normally distributed data for 𝑛 = 10 was used to determine the success rate of
both implementations dependent on the oversampling ratio𝑚/𝑛 in Fig. A.4(a). Both algorithms
were allowed to at most perform 5 × 102 iterations. The initial guess was computed via the optimal
spectral method. Success was declared once 𝜖𝑐,dB ≤ −45 dBwas obtained. Both implementations are
observed to perform differently, where the formulation based on (A.51) requires fewer measurement
samples for the same success rate. In contrast to that, Fig. A.4(b) draws a rather negative picture
of the presented formulation. For a single transformation example, the solvers were started from
1× 102 randomly picked initial guesses and the cosine similarity between the transformation results
of all 𝑖 ∈ {1, ..., 1 × 102} runs was compared to that of the first run, 𝑖 = 1. On the 𝑥-axis, the cosine
similarity of the initial guess with respect to the true solution is drawn, where larger values close
to unity indicate a superior initial guess and smaller values represent larger distances to the correct
solution. It can be seen that the implementation by [Waldspurger et al. 2015] does always converge
to the same solution within at most 1 × 102 iterations, whereas the proposed implementation, even
for a very large number of iterations of 5 × 103, converges to different solutions. Consequently, the
presented formulation does not exhibit the positive convex property that would have been expected
by the PhaseCut approach. This is likely to be attributed to the direct enforcement of the positive
semidefiniteness as well as the entries on the diagonal of U with a magnitude of one.
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Fig. A.4 Performance metrics of the PhaseCut implementation via the optimization framework
in comparison to the reference by [Waldspurger et al. 2015] based on the interior-point
method in [Helmberg et al. 1996]. Complex-valued normally distributed data with 𝑛 = 10

was employed. (a) The success rate. (b) The cosine similarity between the first returned
solution 𝒛1 and all other solutions 𝒛𝑖 for𝑚/𝑛 = 3 and 𝑖 ∈ {1, ..., 1 × 102}. On the 𝑥-axis,
the cosine similarity of the initial guess with respect to the true solution is drawn. At
most 5 × 103 and 1 × 102 iterations were allowed for the optimization framework and the
interior-point method, respectively.

A.8 PhaseMax via the Optimization Framework

The basis pursuit formulation of PhaseMax in (5.89) consists of an ℓ1-minimization as well as a
linear side constraint. Both contributions can be modeled via the optimization framework, where
the linear constraint, i.e., the linear system of equations 𝒛PM = AHdiag( |𝒃 |)−1𝒛, is treated via an
appropriate operator A0 and the derivatives thereof. The operator for an ℓ2𝑝PM-norm can be found
as

APM =

[
1T (𝒛 ◦ 𝒛)𝑝PM

]𝑞PM
, 𝒛 ∈ C𝑚 × 1 with 𝑑PM = 0 (A.55)

and 𝑞PM = 1 /(2𝑝PM). The corresponding derivatives are given by

𝜕APM

𝜕𝒛
= 𝑐PM1

Tdiag
(
𝒛 ◦ (𝒛 ◦ 𝒛)𝑝PM−1

)
(A.56)

(
𝜕APM

𝜕𝒛

)H
= 𝑐PMdiag

(
𝒛 ◦ (𝒛 ◦ 𝒛)𝑝PM−1

)
1 (A.57)

𝜕APM

𝜕𝒛
=

𝜕APM

𝜕𝒛
(A.58)

(
𝜕APM

𝜕𝒛

)H
=

(
𝜕APM

𝜕𝒛

)H
(A.59)

with 𝑐PM = 𝑝PM𝑞PM(1T(𝒛 ◦ 𝒛)𝑝PM)𝑞PM−1 ∈ R. For an ℓ1-norm, 𝑝PM = 0.5 has to be set.
The performance of the PhaseMax implementation via the optimization framework compared to

that of the PhasePack library [Chandra et al. 2019, 2017] is illustrated in Fig. A.5. The PhasePack
implementation employs the FASTA [Goldstein et al. 2014] for solving the corresponding basis
pursuit problem. The success rate for complex-valued normally distributed data with 𝑛 = 10

unknowns and a variable number of measurements is shown in Fig. A.5(a). Both algorithms were
allowed to at most perform 5 × 102 iterations and the initial guess was computed via the optimal
spectral method, which was also utilized as the anchor vector. The cost functions were minimized in
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Fig. A.5 Performance metrics of the PhaseMax implementation via the optimization framework
in comparison to that in the PhasePack library [Chandra et al. 2019, 2017] based on the
FASTA [Goldstein et al. 2014]. Complex-valued normally distributed data with 𝑛 = 10 was
employed. (a) The success rate. (b) The cosine similarity between the first returned solution
𝒛1 and all other solutions 𝒛𝑖 for𝑚/𝑛 = 5 and 𝑖 ∈ {1, ..., 1 × 102}. On the 𝑥-axis, the cosine
similarity of the initial guess with respect to the true solution is drawn.

parallel and the weightings were set as 𝛼OF,0 = 3 × 103 for A0 and 𝛼OF,PM = 1 for APM. Empirically,
these particular weightings were observed to yield rather satisfactory results for 𝑛 = 10 and the
given data. In practice, adaptive weightings are recommendable, such that good results can be
obtained for arbitrary values of 𝑛. Figure A.5(a) reveals that the implementation via the optimization
framework is functioning, however, it is far inferior to that of PhasePack. As a second test, a single
transformation example of normally distributed data with 𝑛 = 10 and𝑚/𝑛 = 5 was considered.
The framework solver was started from 1 × 102 randomly picked initial guesses and the cosine
similarity between the transformation results of all 𝑖 ∈ {1, ..., 1 × 102} runs was compared to that of
the first run, i.e., 𝑖 = 1. On the 𝑥-axis of Fig. A.5(b), the cosine similarity of the initial guess with
respect to the true solution is drawn, where larger values close to unity indicate a superior initial
guess and smaller values represent larger distances to the correct solution. Convex algorithms
are expected to always return an identical solution, independent of the quality and location of
the starting point. This statement holds true as long as the allowed number of iterations (here
𝑘max = 1 × 103) is sufficiently large and the solver is able to converge. In case any nonconvexity
is encountered, different starting points may lead to varying solutions at local stationary points.
Consequently, the similarity drawn on the 𝑦-axis in Fig. A.5(b) should be identical to unity for a
convex algorithm and may vary with nonconvexity. For this particular investigation, the anchor
vector was set to the true solution and only the initial guess was varied. Results for the PhasePack
library where not included as it was not possible to set anchor vector and initial guess independent
from each other. The reported similarity values in Fig. A.5(b) indicate moderate deviations among
the solutions, which might have been caused by inaccuracies in the line search process. The current
implementation can not said to be truly convex, however, it has the potential for convexity once
more effort is spent on numerical aspects, e.g., the line search. Furthermore, drastic improvements
in the achievable success rate of the implementation are expected from a proper adaptive weighting
of the cost functions.

176



A.9 Magnitudeless Near-Field Far-Field Transformation

A.9 Magnitudeless Near-Field Far-Field Transformation

For reasons of completeness and hoping to obtain more insights, we here discuss the complementary
case to phaseless transformations, the phase-only transformation. While there is an obvious relation
to the task of phase retrieval, magnitude retrieval has received less attention so far [Mc Donald
2004; Olfat and Soltanian-Zadeh 2001]. Still, one may have to determine a complex-valued source
vector 𝒛, such that

∠ (A𝒛) = ∠ (𝒃) , (A.60)

where the ∠(.) operator element-wise extracts the phase from a complex-valued vector, e.g., in
the form of complex numbers with unit magnitude. We know that a complex signal is completely
described by its magnitude and phase. From the results for the phaseless formulations, we may have
gotten the intuition that the information content of the phase and the magnitude parts of a signal
are not equal, instead, the magnitude seems to carry less restrictions than the phase. Thus, one can
expect the problem of magnitude retrieval to be somehow easier to solve than the task of phase
retrieval. In the following, a simple optimization-based attempt is made to solve the magnitude
retrieval problem.
In terms of the proposed framework, one can formulate the problem via

A12 =
A𝒛

|A𝒛 | = e j∠ (A𝒛 ) with 𝒅12 = e j∠ (𝒃 ) . (A.61)

The required derivatives can be found as

𝜕A12 (𝒛)
𝜕𝒛

=
1
2
diag

(
1

|A𝒛 |

)
A (A.62)

(
𝜕A12 (𝒛)

𝜕𝒛

)H
=

1
2
AHdiag

(
1

|A𝒛 |

)
(A.63)

𝜕A12 (𝒛)
𝜕𝒛

= − 1
2
diag

(
e−2j∠ (A𝒛 )

|A𝒛 |

)
A (A.64)

(
𝜕A12 (𝒛)

𝜕𝒛

)H
= − 1

2
AHdiag

(
e2j∠ (A𝒛 )

|A𝒛 |

)
. (A.65)

Now, let us draw a quick comparison between phase and magnitude retrieval. In Fig. A.6 the chance
for a successful retrieval for both methods is depicted. The forward operator and the true solution
vector were both drawn from a complex-valued normal distribution. Phase retrieval was performed
via the formulation in (5.30). At each ratio of𝑚/𝑛, 5× 102 random instances of the forward operator
and the solution vector were considered and a retrieval was counted as successful, once a complex
error according to (4.14) below −70 dB was achieved. At each instance, the same random initial
guess was provided to the retrieval algorithms. The simulation was performed for rather small sized
problems with 𝑛 = 10, 𝑛 = 20, 𝑛 = 30 and 𝑛 = 40. The overall trend shows that magnitude retrieval
requires less measurements in order to achieve a reasonable chance of success, indicating that more
information is contained in the phase of a signal than in its magnitude. Due to the nonconvexity of
both formulations, a success rate of 100% is rarely observed.
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Fig. A.6 Comparison of phase retrieval (dashed lines) and magnitude retrieval (solid lines) for
complex-valued normal distribution data. Phase and magnitude retrieval are performed via
the formulations in (5.30) and (A.61).
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Important Variables and Symbols
Symbol Unit Description

Physical quantities

𝑬 Vm−1 electric field

𝑯 Am−1 magnetic field

𝑫 Asm−2 electric flux density

𝑩 Vsm−2 magnetic flux density

𝑱 Am−1 / Am−2 electric surface/volume current density

𝑴 Vm−1 / Vm−2 magnetic surface/volume current density

𝑭 Asm−1 electric vector potential

𝑨 Vsm−1 magnetic vector potential

𝑬H Vm−1 electric field radiated by a Hertzian dipole, see (2.29)

𝑬F Vm−1 electric field radiated by a Fitzgerald dipole, see (2.30)

𝑯H Am−1 magnetic field radiated by a Hertzian dipole

𝑯 F Am−1 magnetic field radiated by a Fitzgerald dipole

𝒏 m unit normal vector pointing to the exterior

𝒓 m observation location

𝒓 ′ m source location

𝑹 m relative separation between source and observation point

𝑓 s−1 frequency

𝑘 m−1 wavenumber

𝑄𝑠𝑚𝑛

√
VA coefficients of a spherical vector wave expansion

𝑟0 m minimum-sphere radius in (2.18)

𝑅 m distance between source and observation location

𝑍F0 Ω free-space wave impedance

𝜀 AsV−1m−1 permittivity

𝜀0 AsV−1m−1 vacuum permittivity

𝜇 VsA−1m−1 permeability

𝜇0 VsA−1m−1 vacuum permeability

𝜌e Asm−3 electric charge density

𝜌m Vsm−3 magnetic charge density

𝜎 Ωm electric conductivity

𝜔 s−1 angular frequency
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Symbol Description

Matrix and vector operations

A, 𝒛 complex conjugate of a matrix or vector

AT, 𝒛T transpose of a matrix or vector

AH, 𝒛H Hermitian/conjugate transpose of a matrix or vector

A−1 inverse/pseudo-inverse of a matrix

∇ del operator

∇× rotation

∇· divergence

Δ Laplace operator

∇𝒙 , ∇2𝒙 gradient and Hessian operator with respect to the real-valued vector 𝒙 , see (3.4)

∇𝒄 , ∇2𝒄 gradient and Hessian operator defined in terms of the conjugate coordinates 𝒄 ,
see (3.27) and (3.28)

∇𝒛 gradient with respect to the complex-valued vector 𝒛, valid for real-valued cost
functions, see (3.50)

Matrices

A linear forward operator, also called measurement matrix

AH/F→H/F dipole-dipole interaction matrices between Hertzian and Fitzgerald dipoles,
see (2.40), (2.41), (2.43) and (2.42)

A𝒓 ′ spatially-differentiated forward operator, see (2.48)

A𝒙′
H/F→H/F in 𝑥 ′-direction spatially-differentiated interaction matrices for Hertzian and

Fitzgerald dipoles, see (2.49) and (2.54)

B diagonal matrix of measured magnitudes, see (6.8)

B′ diagonal matrix of the complex-valued measurement vector, see (6.16)

B′LMF diagonal matrix of complex-valued measurement signals for the multi-frequency
case, see (6.46)

C matrix of known phase differences, see (6.8)

C′ matrix mapping the remaining phase unknowns to entries in the measurement
vector, see (6.16)

C′LMF matrix mapping the remaining phase unknowns to entries in the measurement
vector in the multi-frequency case, see (6.46)

C8 matrix allowing for a linear phase retrieval update rule in (5.62), leading to the
linearized Alg. 12

J transformation matrix from real and imaginary parts to conjugate coordinates,
see (3.15), (3.19) and (3.24)

M positive definite Hermitian matrix, see (5.83)

O system matrix for direct phase retrieval, see (5.102)

P idempotent projection matrix, see (6.20)
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Symbol Description

P1 matrix picking the source coefficients from the combined vector of unknowns,
see (6.9)

P2 matrix picking the remaining phase unknowns from the combined vector of
unknowns, see (6.9)

PLMF projection matrix for the multi-frequency case, see (6.46)

Q, R orthogonal and upper triangular matrices, belonging to a QR-decomposition

U bilinear form of unknown phase terms, see (5.85)

W target bilinear matrix for direct phase retrieval, see (5.99) and (5.106)

W̃ collection of desired measurement rows, see (5.108)

X matrix of unknowns, part of a PhaseCut implementation based on the presented
optimization framework, see (A.51)

Y square matrix employed in spectral initialization methods, see (5.2)

Z bilinear form of unknown source coefficients, see (5.73)

Vectors

𝒃 complex-valued measurement vector

𝒃̃ measurements belonging to the matrix W̃, see (5.107) and (5.109)

𝒅 vector of known information, part of cost functions, e.g., see (3.67)

𝑰★, 𝒓★, 𝒑★ collection of source dipole coefficients, orientations and locations, see (2.33)

𝑰 ′, 𝒓 ′, 𝒑′ collection of observation dipole coefficients, orientations and locations, see (2.34)

𝑴 vector of stacked reciprocal probe signal magnitudes, see (5.50) and (5.51)

𝒑 descent direction, e.g., see (3.52) and (3.55)

𝒔𝑖 , 𝒚𝑖 quantities stored as part of the L-BFGS method, see Alg. 1

𝒕 vector defining the matrix Y dependent on the specific initialization method,
see (5.3) to (5.7)

𝒖 complex-valued vector of unknown phase terms as defined in (5.77)

𝒗𝑖, 𝑗 𝑗th column of the bilinear form of the 𝑖th column of A, see (5.101)

𝒘𝑖 columns ofW, see (5.106)

𝒘̂ vectorized bilinear form of W, see (5.102)

𝒒𝑖 columns of O, see (5.102)

𝒛 vector of unknowns

𝒛̃ combined vector of unknowns consisting of the source coefficients and the re-
maining unknown phase terms, see (6.9)

𝒛i/t initial/true solution vector

𝒛PM anchor vector required by PhaseMax, see (5.88)

𝝐𝑐 , 𝝐𝑐,dB scale-invariant normalized vector of deviations, see (4.15)

𝝋𝒛 phase vector in the source domain, e.g., see (5.11)

𝝋𝒃 phase vector in the observation domain, e.g., see (5.10)

𝝍 vector of remaining unknown phase terms, see (6.8)

181



Symbol Description

Scalars

𝑐1/2 parameters of the (strong) Wolfe conditions, see (3.58) and (3.59)

𝑐si factor adjusting the scaling in A2, see (5.31)

𝐶 number of coherent channels of a multi-channel receiver

𝐽 number of spherical vector wave functions associated with a certain multipole
order, see (2.25)

𝑘it number of iterations performed

𝑘max maximum number of iterations allowed

𝑙 number of frequencies considered with multi-frequency data

𝐿mem number of previous iterations considered in the L-BFGS method

𝑚 number of observation entries

𝑛 number of source coefficients

𝑛SNR, 𝑛SNR,dB SNR in linear and logarithmic scale, see (6.40)

𝑁0 multipole order according to (2.18)

𝑝1/2/3 exponent parameters of A1/2/3

𝑝PM, 𝑞PM parameters required for a PhaseMax implementation based on the presented
optimization framework, see (A.55)

𝑝91, 𝑝92 exponent parameters as part of (5.67)

𝑞 number of unknown phase terms in the presence of partial coherence

𝛼 step length, e.g., see (3.52)

𝛼i/m initial/maximum step length

𝛼OF, 𝑝OF weighting and exponent of cost functions, e.g., see (3.67)

𝛼opt optimal step length in the context of A0, see (4.12)

𝛽 conjugate gradient weighting, see Tab. 3.2

𝜖𝑐 , 𝜖𝑐,dB scale-invariant relative NF deviation in linear and logarithmic scale, see (4.14)

𝛷 (𝛼) one-dimensional representation of a cost function along a descent direction
dependent on the step length, e.g., see (3.57)

𝜒 , 𝜒𝑐 cosine similarity and scale-invariant cosine similarity, see (5.8) and (5.9)

Cost function operators

A nonlinear operator essentially defining a cost function, e.g., see (3.67)

A0 operator related to solving the fully coherent problem, see (4.4)

A1 nonlinear operator related to a standard phase retrieval approach, see (5.16)

A2 scale-invariant nonlinear operator for phase retrieval, see (5.30)

A3 operator defining a cost function in terms of the normal error system of equations,
see (A.34)

A4 operator defining a phase-invariant cost function, see (A.35)

A5 projector-based phase retrieval operator employing real-valued unknowns,
see (5.38)
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Symbol Description

A6 projector-based phase retrieval operator employing complex-valued unknowns,
see (5.43)

A7 nonlinear operator containing the spatial derivative of the magnitude of probe
signals, see (5.48)

A9 nonlinear operator implementing a cosine-similarity maximization, see (5.67)

APL nonlinear forward operator of PhaseLift, see (5.74)

APC operator of a PhaseCut implementation based on the presented optimization
framework, see (A.51)

APM operator of a PhaseMax implementation based on the presented optimization
framework, see (A.55)

A11 operator defining a cost function for phase retrieval from incomplete magnitude
and phase measurements, see (A.40)

A12 operator required for a magnitude retrieval algorithm implemented via the pre-
sented optimization framework, see (A.61)
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Abbreviations
AUT antenna under test

AWS Amazon Web Services

CPU central processing unit

DM dipole moment

DoF degree of freedom

FF far field

FIAFTA fast irregular antenna field transformation algorithm

GMRES generalized minimal residual

GPU graphics processing unit

L-BFGS memory-limited Broyden-Fletcher-Goldfarb-Shanno

LC linear combination

LO local oscillator

LSQR least squares

MLFMM multi-level fast-multipole method

MoM method of moments

NF near field

NFFFT near-field far-field transformation

NP-hard non-deterministic polynomial-time hard

PEC perfect electric conductor or perfectly electrically conducting

QMR quasi-minimal residual

RX receiver

SVD singular value decomposition

TX transmitter

UTD uniform theory of diffraction
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