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Channel Polarization: A Method for Constructing
Capacity-Achieving Codes for Symmetric
Binary-Input Memoryless Channels

Erdal Arikan, Senior Member, IEEE

Abstract—A method is proposed, called channel polarization, A. Preliminaries
to construct code sequences that achieve the symmetric capacity . . . .
I(W) of any given binary-input discrete memoryless channel We write W : &' — Y to denote a gene.rl.c B'DMC_ ‘_’V}th
(B-DMC) W. The symmetric capacity is the highest rate achiev- 1inputalphabet X', output alphabet Y, and transition probabilities
able subject to using the input letters of the channel with equal W (y|z), z € X, y € Y. The input alphabet X" will always be
probability. Channel polarization refers to the fact that it is pos- {0, 1}, the output alphabet and the transition probabilities may

@ They are capacity-achieving on binary memoryless symmetric (BMS) channels with low
encoding/decoding complexity [Ari09].
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@ They are capacity-achieving on binary memoryless symmetric (BMS) channels with low
encoding/decoding complexity [Ari09].

@ But successive cancellation (SC) decoding performs poorly for small blocks.
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Successive List Cancellation Decoding

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 61, NO. 5, MAY 2015 2213

List Decoding of Polar Codes

Ido Tal, Member, IEEE and Alexander Vardy, Fellow, IEEE

Abstract— We describe a successive-cancellation list decoder
for polar codes, which is a generalization of the classic successive- Legend:
cancellation decoder of Arikan. In the proposed list decoder, Q107 . —em Sitccesssive cancellation
L decoding paths are considered concurrently at each decoding E u —a— List decoding (L =2)
stage, where L is an integer parameter. At the end of the decoding 502k a a
process, the most likely among the L paths is selected as the E —e~ List decoding (L =8)
single codeword at the decoder output. Simulations show that s — Listdecoding (L. =16)
the resulting performance is very close to that of maximum- §"”3’ - List decoding (L =52)
likelihood decoding, even for moderate values of L. Alternatively, ML decoding bound
if a genie is allowed to pick the transmitted codeword from the 104 E
list, the results are comparable with the performance of current . . .
state-of-the-art LDPC codes. We show that such a genie can be 10 15 20 25 30
easily impl ted using simple CRC precoding. The specific Signal-to-noise ratio [dB]

list-decoding algorithm that achieves this performance doubles
the number of decoding paths for each information bit, and Fig. 1. List-decoding performance for a polar code of length n = 2048
then uses a pruning procedure to discard all but the L most and rate R = 0.5 on the BPSK-modulated Gaussian channel. The code was
likely paths. However, straightforward implementation of this constructed using the methods of [15], with optimization for Ej,/No = 2dB.
- .n . ~w 2 e e e . - . . .on

@ SC list (SCL) decoding with CRC and large list-size performs very well and matches
maximume-likelihood (ML) [TV15].
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Abstract— We describe a successive-cancellation list decoder
for polar codes, which is a generalization of the classic successive-
cancellation decoder of Arikan. In the proposed list decoder,
L decoding paths are considered concurrently at each decoding
stage, where L is an integer parameter. At the end of the decoding
process, the most likely among the L paths is selected as the
single codeword at the decoder output. Simulations show that
the resulting performance is very close to that of maximum-
likelihood decoding, even for moderate values of L. Alternatively,
if a genie is allowed to pick the transmitted codeword from the
list, the results are comparable with the performance of current
state-of-the-art LDPC codes. We show that such a genie can be
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then uses a pruning procedure to discard all but the L most
likely paths. However, sg)raightforward implementation of this
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Fig. 1. List-decoding performance for a polar code of length n = 2048
and rate R = 0.5 on the BPSK-modulated Gaussian channel. The code was
constructed using the methods of [15], with optimization for Ep/Ny = 2dB.

@ It can also be used to decode other codes (e.g., Reed—Muller codes).

M. C. Coskun

Advances




Polar Codes with Dynamic Frozen

Bits

254 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS. VOL. 34, NO. 2, FEBRUARY 2016

Polar Subcodes

Peter Trifonov, Member, IEEE, and Vera Miloslavskaya, Member, IEEE

Abstract—An extension of polar codes is proposed, which allows
some of the frozen symbols, called dynamic frozen symbols, to
be data-dependent. A construction of polar codes with dynamic
frozen symbols, being subcodes of extended BCH codes, is pro-
posed. The proposed codes have higher minimum distance than
classical polar codes, but still can be efficiently decoded using the
successive cancellation algorithm and its extensions. The codes
with Arikan, extended BCH and Reed-Solomon kernel are con-
sidered. The proposed codes are shown to outperform LDPC and
turbo codes, as well as polar codes with CRC.

RM codes, and are therefore likely to provide better finite
length performance. However, there are still no efficient MAP
decoding algorithms for these codes.

It was suggested in [17] to construct subcodes of RM codes.
which can be efficiently decoded by a recursive list decoding
algorithm. In this paper we generalize this approach, and pro-
pose a code construction “in between™ polar codes and EBCH
codes. The proposed codes can be efficiently decoded using the

technionee develaned in the arera of nalar coding bt nrovide

@ Later, polar codes were extended with the concept of dynamic frozen bits, which enabled
state-of-art designs.
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RM codes, and are therefore likely to provide better finite
length performance. However, there are still no efficient MAP
decoding algorithms for these codes.

It was suggested in [17] to construct subcodes of RM codes.
which can be efficiently decoded by a recursive list decoding
algorithm. In this paper we generalize this approach, and pro-
pose a code construction “in between™ polar codes and EBCH
codes. The proposed codes can be efficiently decoded using the

technionee develaned in the arera of nalar coding bt nrovide

@ Later, polar codes were extended with the concept of dynamic frozen bits, which enabled
state-of-art designs.

@ ltis also shown that any code can be decoded using SCL decoding, but some require very large
complexity for a good performance.
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Most of the curves can be obtained on pretty-good-codes.org. For the rest, send an e-mail.
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Outline

@ Overview of Polar Codes

e Recent Advances in Polar Codes

@ Binary Erasure Channel

@ Conclusions
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Outline UM

@ Overview of Polar Codes
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Among all, there are channels for which it is easy to communicate optimally:
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Among all, there are channels for which it is easy to communicate optimally:

@ Noiseless channels: The output Y determines the input X (i.e., H(X|Y) = 0).
@ Useless channels: The output Y is independent from the input X (i.e., H(X|Y) =~ 1).

Channel polarization is a technique to convert any BMS channel to a mixture of easy channels,
asymptotically in the block length.

@ The technique is lossless in terms of mutual information (required to achieve the capacity).

@ The technique is of low complexity (there exists an encoder-decoder pair, realizing the technique
with O(N log N) complexity, where N is the block length).
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Example: Binary Erasure Channel UM

Given two independent copies of a BEC(e) W : {0,1} — {0,1,7}, i.e.,

y X wp 1—¢
Sl ? owpoe Uy EF Xi— WY
we set U Xz W —Y>
Xi=U & U X12:U12G2
Xo = Us
i

@ The input U; is erased w.p. (2¢ — €2).
@ Given Uj, the input U, is erased w.p. €.
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Example: Binary Erasure Channel UM

Given two independent copies of a BEC(¢) W : {0,1} — {0,1,7}, i.e.,

Y — X wp. 1—¢
a ? W.p. € U1 €F X1 W*Y1
we set U Xo W —Yo
Xi=U; & U X12 — U12G2
Xo = U
o (12)

@ The input U; is erased w.p. (2¢ — €2), i.e., H(U;|Y?) = 2¢ — 2.
@ Given U, the input U, is erased w.p. €2, i.e., H(Uz| Y2U,) = 2.
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Example: Binary Erasure Channel UM

Given two independent copies of a BEC(¢) W : {0,1} — {0,1,7}, i.e.,

7 wp. € Us GE Xi— W Y]
we set U Xo W—Yo
Xi=U; & U X12 — U12G2
Xo = U
o (12)

@ The input U; is erased w.p. (2¢ — €2), i.e., H(U;|Y?) = 2¢ — 2.
@ Given U, the input U, is erased w.p. €2, i.e., H(Uz| Y2U,) = 2.

Hence, we have

2¢ — 2 > H(X4|Yy) = ¢ > ¢ with equality if and only if e € {0, 1}
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A Basic Transform: General BMS Channels

Given two independent copies of a BMS channel W : {0,1} — ),

S

S




A Basic Transform: General BMS Channels UM

Given two independent copies of a BMS channel W : {0,1} — ), set

Xi=U @ U
Xg — U2 U1 ﬂ} X1 w *Y1
Us X5 WY
X? = UGy
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A Basic Transform: General BMS Channels UM

Given two independent copies of a BMS channel W : {0,1} — ), set

Xi=U @ U
. . ' X. —Y.
Let H(W) £ H(X|Y;). As (X, Y1) is independent from (Xz, Y2), we write Uz = Wi—re
H(Xi|Y1) + H(Xz| Y2) = 2H(W) X = UiGe
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A Basic Transform: General BMS Channels UM

Given two independent copies of a BMS channel W : {0,1} — ), set

X1 — U1 D U2
Xo = U Ui ﬂ} X W —Y;
o . ' X Y.
Let H(W) = H(X;|Y1). As (X, Y;) is independent from (X2, Y2), we write Ue < id 2
H(X1| Y1) + H(Xz| Y2) = 2H(W) = H(UF| YF) X2 = U2Gy
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A Basic Transform: General BMS Channels UM

Given two independent copies of a BMS channel W : {0,1} — ), set

X1 — U1 D U2
Xo = U Ui ﬂ} X W —Y;
o . ' X Y.
Let H(W) = H(X;|Y1). As (X, Y;) is independent from (X2, Y2), we write Us < W 2
H(X1| Y1) + H(Xz| Y2) = 2H(W) = H(UF| YF) X2 = U2Gy
= H(U1|Y}) + H(Le| Y] Ur) G a(10
2 1 1
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A Basic Transform: General BMS Channels UM

Given two independent copies of a BMS channel W : {0,1} — ), set

X1 = U1 . U2
Xo = U Uy ﬁ% X1 W —Y;
Let H(W) £ H(Xi1|Y1). As (Xi, Yi) is independent from (Xz, Y2), we write Uz — W Y2
2 2
H(Xi Y1) + H(Xel Y2) = 2H(W) = H(Uf| Y7) X2 = U3Gs
= H(U1|Y}) + H(Le| Y] Ur) G a(10
? 1 1

Now consider the second term at the RHS:

H(Uo| Y1 YaUs) < H(Us| Yz)
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A Basic Transform: General BMS Channels UM

Given two independent copies of a BMS channel W : {0,1} — ), set

X1 = U1 . U2
Xo = U Uy ﬁ% X1 W —Y;
Let H(W) £ H(Xi1|Y1). As (Xi, Yi) is independent from (Xz, Y2), we write Uz — W Y2
2 2
H(Xi Y1) + H(Xel Y2) = 2H(W) = H(Uf| Y7) X2 = U3Gs
= H(U1|Y}) + H(Le| Y] Ur) G a(10
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H(Uo| Y1 YaUs) < H(Us| Yz)
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A Basic Transform: General BMS Channels UM

Given two independent copies of a BMS channel W : {0,1} — ), set

X1 = U1 . U2
Xo = U Uy ﬁ% X1 W —Y;
Let H(W) £ H(Xi1|Y1). As (Xi, Yi) is independent from (Xz, Y2), we write Uz — W Y2
2 2
H(Xi Y1) + H(Xel Y2) = 2H(W) = H(Uf| Y7) X2 = U3Gs
= H(U1|Y}) + H(Le| Y] Ur) G a(10
? 1 1

Now consider the second term at the RHS:

H(Us| Y1 YaUy) < H(Us| Ya) = H(Xa|Y2) = H(W)

Combining these, we conclude H(Ux|Y2U;) < H(W) < H(U;| Y?).
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A Basic Transform: General BMS Channels UM

Given two independent copies of a BMS channel W : {0,1} — ), set

X1=U @ U
Xo = U Uy ﬁ% X1 W —Y;
Let H(W) £ H(Xi|Y:). As (Xy, Y1) is independent from (X, Y2), we write U > WYz
2 __ 2
H(Xi Y1) + H(Xel Y2) = 2H(W) = H(Uf| Y7) X2 = U3Gs
= H(U1|Y}) + H(Le| Y] Ur) G a(10
? 1 1

Now consider the second term at the RHS:
H(Us|Y: YaUs) < H(Us|Yz2) = H(Xz| Ya) = H(W)
Combining these, we conclude H(Ux|Y2U;) < H(W) < H(U;|Y?). Indeed, the polarization is
strict [Ar09], i.e., if H(W) ¢ {0, 1}, then
H(Us| YZUy) < H(W) < H(Us|Y?)
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Polarized Synthetic Channels

Given two independent copies of W : {0, 1} — ) with a capacity of C(W),
we obtain two synthetic channels:

@ A downgraded channel W2(1) : {0,1} — Y2 having input U and output
y2 with c(WSV) < c(w)

@ An upgraded channel W% : {0,1} — 32 x {0, 1} having input U, and
output (Y2, U;) with C(W?)) > (W)

Ui

U

T

S

S




Polarized Synthetic Channels T|_|T|

Given two independent copies of W : {0, 1} — ) with a capacity of C(W),
we obtain two synthetic channels:

@ A downgraded channel W2(1) : {0, 1} — Y? having input U; and output U, iB WY,
i (1)
YZ with C(W, ) < C(W) U Wy,

@ An upgraded channel Wéz) :{0,1} — »? x {0, 1} having input U, and
output (Y2, U;) with C(W?)) > (W)

This suggests that a successive decoding can be employed to achieve C(W) [Ari09]:
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Polarized Synthetic Channels T|_|T|

Given two independent copies of W : {0, 1} — ) with a capacity of C(W),
we obtain two synthetic channels:

@ A downgraded channel W2(1) : {0, 1} — Y? having input U; and output U, iB WY,
i (1)
YZ with C(W, ) < C(W) U Wy,

@ An upgraded channel Wéz) :{0,1} — »? x {0, 1} having input U, and
output (Y2, U;) with C(W?)) > (W)

This suggests that a successive decoding can be employed to achieve C(W) [Ari09]:

@ Transmit at a rate C( Wé”), where the decoder takes Y12 as input and outputs 01.
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Polarized Synthetic Channels

Given two independent copies of W : {0, 1} — ) with a capacity of C(W),
we obtain two synthetic channels:

@ A downgraded channel W2(1) : {0,1} — Y2 having input U and output U,
y2 with c(WSV) < c(w)

S
<

U-
@ An upgraded channel Wéz) :{0,1} — »? x {0, 1} having input U, and °

output (Y2, U;) with C(W?)) > (W)

This suggests that a successive decoding can be employed to achieve C(W) [Ari09]:

@ Transmit at a rate C( Wé”), where the decoder takes Y12 as input and outputs 01.

@ Then, transmit at a rate C(WA?)), where the decoder uses (Y2, U;) to output Us.
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Genie-Aided vs. Real Successive Decoder

@ The channel WZ(” has the input U; and output Y2 .
@ The channel W2(2) has the input U, and output ( Y2, U;)!
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Genie-Aided vs. Real Successive Decoder

@ The channel W2(1) has the input Uy and output Y12 v U, D W —Y;
@ The channel W,? has the input U, and output (Y2, Us)! U WY,

)

It is possible to obtain U; by first decoding W2(1 . What is the effect of using U, instead of U, on the

block error events?
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@ The channel W2(1) has the input Uy and output Y12 v U, D W —Y;
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Genie-Aided vs. Real Successive Decoder

@ The channel W2(1) has the input U; and output Y2 . U, D W —Y;
@ The channel W2(2) has the input U, and output ( Y2, U;)! ? Wl—Ys

)

It is possible to obtain U; by first decoding W2(1 . What is the effect of using U, instead of U, on the

block error events?

Genie-aided successive decoding: Real successive decoding:

Uy = f(Y7) Oy = f;(Y7)



Genie-Aided vs. Real Successive Decoder

@ The channel W2(1) has the input U; and output Y2 U, D W i—Yi
@ The channel W,? has the input U, and output (Y2, Us)! Uy Wl—Ys

)

It is possible to obtain U; by first decoding W2(1 . What is the effect of using U, instead of U, on the

block error events?

Genie-aided successive decoding: Real successive decoding:

Uy = A(Y7) Oy = f;(Y?)
Uz = b(Y:U) Us = f(Y2U,)



Genie-Aided vs. Real Successive Decoder UM

@ The channel W2(1) has the input U; and output Y2 . U, D W —Y;

@ The channel W,? has the input U, and output (Y2, Us)! U, WY,

2

{0F # U7y = {1 # Uf)

)

It is possible to obtain U; by first decoding W2(1 . What is the effect of using U, instead of U, on the

block error events?

Genie-aided successive decoding: Real successive decoding:
Uy = f(Y7) Oy = f;(Y7)
Uz = b(Y:U) Us = f(Y2U,)

The real decoder makes an error IF AND ONLY IF the genie-aided decoder makes an error!
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Polar Transform '|'|_|T|

We can apply the basic transform recursively to the independent copies of (W), (W2(1), Wz(z)),
(Wf), Wf), Wf’), Wf)), etc., as many times as needed.
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Polar Transform UM
We can apply the basic transform recursively to the independent copies of (W), (W2(1), Wz(z)),
(Wf), Wf), Wf’), Wf)), etc., as many times as needed.

Definition
The Kronecker product of two matrices X and Y is

X171Y X1,2Y
X®Yé X2,1Y X2,2Y

Then, a Kronecker power of a matrix is written as X®7 = X®(-1) @ X, X®0 £ 1.

November 5, 2020 13/50
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Polar Transform '|'|_|T|

We can apply the basic transform recursively to the independent copies of (W), (W2(1), Wz(z)),
(Wf), Wf), Wf’), Wf)), etc., as many times as needed.

Definition

The Kronecker product of two matrices X and Y is

X171Y X1,2Y
X®Yé X2,1Y X2,2Y

Then, a Kronecker power of a matrix is written as X®7 = X®(-1) @ X, X®0 £ 1.

Example

0

1] . Then, we write

: : : 1
Recall the matrix representing the basic transform G, = [ ’

G§2:G2®G2=

—_ 4
- O O O

00
10
0 1
1 1
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Polar Transform (N=8)

M. C. Coskun

Ui
U
Us
Us

Us
U7
Us

8A®log,8 8
UG, = X

D D P—wk v
J S Wl Y2

N a @ Y,
B @ Y4

D NP @» Ys
B @ Ye

D ‘Wl v,

WF Ys

Polar Codes: Basics and Recent Advances
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Polar Transform (N=32) TLTI

32ARlog, 32 /32
UG, = X;

Ui ? W Y1
Uz . {WH Yo
Us ? WH Y3
Us . W Vs
Us ﬂf {WH Ys
Us W Ye
U ﬂf W Y7
Us {WH Ys
Uy ? {WH Ys
U10 @ Y10
Un P W Yn
U12 @ Y12
U13 ? M Y13
Usa {Wh- Yi4
U15 ? @F Y15
Uss ¢ {WH Yie
U17 P M Y17
U13 \r @ Y18
U1g ? @ Y19
U20 * @ Y20
U21 \ﬂf @ Y21
U22 @F Y22
U23 ? @ Y23
Uzs {WH Yos
Uzs ? {Wh Yos
Uzs @ Y26
Uar ? (W Yor
Uas (W Yo
Uzg ? M Y29
U30 @ YBO
U31 ? @F Y31

¢ W Ys

o

M. C. Coskun asics and Recent Advances
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Channel Polarization UM

For any fixed 6 > 0, the fraction of the mediocre channels vanishes as N — oo, i.e., we have

lim %I\{ie{1,...,N}:5<H(W,£f))<1—5}\ = 0.

N—oo
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Channel Polarization UM

For any fixed 6 > 0, the fraction of the mediocre channels vanishes as N — oo, i.e., we have

lim %I\{ie{1,...,N}:5<H(W,£f))<1—5}\ = 0.

N—oo

Since the transform is information-lossless, we can write

lim l|{ie{1,...,N}:H(W,Sf))gé}] = C(W)

N—oco N
.1 i
Nlinoom{:e{u...,N}:H(WA(,))21—5}\ —1-C(W)
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Channel Polarization UM

For any fixed 6 > 0, the fraction of the mediocre channels vanishes as N — oo, i.e., we have

lim %I\{ie{1,...,N}:5<H(W,£f))<1—5}\ = 0.

N—oo

Since the transform is information-lossless, we can write

lim l|{ie{1,...,N}:H(W,Sf))gé}] = C(W)

N—oco N
.1 i
Nlinoom{:e{u...,N}:H(WA(,))21—5}\ —1-C(W)

A capacity-achieving scheme:
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(=)

Channel Polarization UM

For any fixed 6 > 0, the fraction of the mediocre channels vanishes as N — oo, i.e., we have
o1 . _ (i)
A;L)mooﬁ\{/e{t...,N}.6<H(WN)< 1-46}| =0.
Since the transform is information-lossless, we can write

A}i_}moo%HiE (1, N} HW)) <6} | = c(w)

lim 1N|{ie{1,...,N}:H(WA(,"))21—5}\ —1-C(W)

N—oo

A capacity-achieving scheme:

@ Transmit uniformly distributed information bits over the good synthesized channels
(k = N-C(W)).
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Channel Polarization UM

For any fixed 6 > 0, the fraction of the mediocre channels vanishes as N — oo, i.e., we have
o1 . _ (i)
A;L)mooﬁ\{/e{t...,N}.6<H(WN)< 1-46}| =0.
Since the transform is information-lossless, we can write

A}i_}moo%HiE (1, N} HW)) <6} | = c(w)

lim 1N|{ie{1,...,N}:H(WA(,"))21—5}\ —1-C(W)

N—o0
A capacity-achieving scheme:
@ Transmit uniformly distributed information bits over the good synthesized channels
(k = N-C(W)).
@ Set the inputs of the bad synthesized channels to the constant values known to the decoder.
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Channel Polarization UM

For any fixed 6 > 0, the fraction of the mediocre channels vanishes as N — oo, i.e., we have

lim %I\{ie{1,...,N}:6<H(W,£f))<1—5}\ = 0.

N—oo

Since the transform is information-lossless, we can write

A}i_}moo%HiE (1, N} HW)) <6} | = c(w)

lim 1N|{ie{1,...,N}:H(WA(,"))21—5}\ —1-C(W)

N—oo

A capacity-achieving scheme:

@ Transmit uniformly distributed information bits over the good synthesized channels

(k = N-C(W)).
@ Set the inputs of the bad synthesized channels to the constant values known to the decoder.
@ Decode the bits from U; to Uy successively.
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Channel Polarization UM

For any fixed 6 > 0, the fraction of the mediocre channels vanishes as N — oo, i.e., we have

lim %I\{ie{1,...,N}:6<H(W,£f))<1—5}\ = 0.

N—oo

Since the transform is information-lossless, we can write

A}i_}moo%HiE (1, N} HW)) <6} | = c(w)

lim 1N|{ie{1,...,N}:H(WA(,"))21—5}\ —1-C(W)

N—oo

A capacity-achieving scheme:

@ Transmit uniformly distributed information bits over the good synthesized channels

(k = N-C(W)).
@ Set the inputs of the bad synthesized channels to the constant values known to the decoder.
@ Decode the bits from U; to Uy successively.

@ Pg<) a0
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Channel Polarization UM

For any fixed 6 > 0, the fraction of the mediocre channels vanishes as N — oo, i.e., we have

lim %I\{ie{1,...,N}:6<H(W,£f))<1—5}\ = 0.

N—oo

Since the transform is information-lossless, we can write

A}i_}moo%HiE (1, N} HW)) <6} | = c(w)

lim 1N|{ie{1,...,N}:H(WA(,"))21—5}\ —1-C(W)

N—oo

A capacity-achieving scheme:

@ Transmit uniformly distributed information bits over the good synthesized channels

(k = N-C(W)).
@ Set the inputs of the bad synthesized channels to the constant values known to the decoder.
@ Decode the bits from U; to Uy successively.

0 Ps< S, ,0=N-C(W)s
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Channel Polarization UM

For any fixed 6 > 0, the fraction of the mediocre channels vanishes as N — oo, i.e., we have

lim %I\{ie{1,...,N}:6<H(W,£f))<1—5}\ = 0.

N—oo

Since the transform is information-lossless, we can write

A}i_}moo%HiE (1, N} HW)) <6} | = c(w)

lim 1N|{ie{1,...,N}:H(WA(,"))21—5}\ —1-C(W)

N—oo

A capacity-achieving scheme:

@ Transmit uniformly distributed information bits over the good synthesized channels
(k = N-C(W)).
@ Set the inputs of the bad synthesized channels to the constant values known to the decoder.
@ Decode the bits from U; to Uy successively.
@ Pp< >, 40=N-C(W)-9
@ Indeed, polarization holds for 6 = O(Z—W) [ATO9] (i.e., faster than 1/N).
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Channel Polarization UM

For any fixed 6 > 0, the fraction of the mediocre channels vanishes as N — oo, i.e., we have

lim %I\{ie{1,...,N}:6<H(W,£f))<1—5}\ = 0.

N—oo

Since the transform is information-lossless, we can write

A}i_}moo%HiE (1, N} HW)) <6} | = c(w)

lim 1N|{ie{1,...,N}:H(WA(,"))21—5}\ —1-C(W)

N—oo

A capacity-achieving scheme:

@ Transmit uniformly distributed information bits over the good synthesized channels
(k = N-C(W)).
@ Set the inputs of the bad synthesized channels to the constant values known to the decoder.
@ Decode the bits from U; to Uy successively.
@ Pg<> a0 =N-C(W)-§<N-C(W)- 2-VN resulting in Pg — 0.
@ Indeed, polarization holds for § = O(Z—W) [ATO9] (i.e., faster than 1/N).
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Channel Polarization - Numerical (N = 23 BEC(0.5)) T|_|T|
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Channel Polarization - Numerical (N = 27 BEC(0.5)) T|_|T|
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Channel Polarization - Numerical (N = 2'°, BEC(0.5)) UM

Erasure Probability
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Channel Polarization - Numerical (Sorted, N = 23, BEC(0.5)) UM
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Channel Polarization - Numerical (Sorted, N = 27, BEC(0.5)) UM
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Channel Polarization - Numerical (Sorted, N = 2'°, BEC(0.5)) UM
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Channel Polarization - Numerical (Sorted, N = 2'%, BEC(0.5)) UM
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Code Design

We want to design an (N, k) code, where N = 2" with n > 1.
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Code Design

We want to design an (N, k) code, where N = 2" with n > 1.
Equivalently, find a set .A € [N] of size k (information set).

@ Polar rule: For a target channel parameter, find the most

reliable k positions for SC decoding.
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Code Design

We want to design an (N, k) code, where N = 2" with n > 1.
Equivalently, find a set .A € [N] of size k (information set).

@ Polar rule: For a target channel parameter, find the most
reliable k positions for SC decoding.

©@ Reed-Muller (RM) rule: Find the indices of the k positions
with the largest Hamming weight in G5”".
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We want to design an (N, k) code, where N = 2" with n > 1.
Equivalently, find a set .A € [N] of size k (information set).

@ Polar rule: For a target channel parameter, find the most
reliable k positions for SC decoding.

©@ Reed-Muller (RM) rule: Find the indices of the k positions
with the largest Hamming weight in G3". Note that there is
not an RM code for every k.
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Code Design

We want to design an (N, k) code, where N = 2" with n > 1.
Equivalently, find a set A € [N] of size k (information set). Us

@ Polar rule: For a target channel parameter, find the most %

reliable k positions for SC decoding. Us

U,

©@ Reed-Muller (RM) rule: Find the indices of the k positions U
with the largest Hamming weight in G3". Note that there is )

not an RM code for every k. U

U7

The polar rule minimizes a tight upper bound on the error Us

probability under SC decoding while the RM rule maximizes the
minimum Hamming distance.
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A Historical Remark UM

@ Observation: Reed-Muller (RM) codes
perform poorly under low-complexity SC
decoding.
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@ Observation: Reed-Muller (RM) codes
perform poorly under low-complexity SC
decoding.

@ Codes having Plotkin structure were
optimized for SC decoding [Sto02].
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der Technischen Universitat Darmstadt

zur Erlangung des Grades

Doktor-Ingenieur genchmigte
Dissertation
von

Dipl.-Ing. Norbert Stolte
GroB-Umstadt

M. C. Coskun

TUTI

@ Observation: Reed-Muller (RM) codes
perform poorly under low-complexity SC
decoding.

@ Codes having Plotkin structure were
optimized for SC decoding [Sto02].

@ They were shown to outperform RM codes
under SC decoding.
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Generator Matrix UM

After defining a set A, the generator matrix of the code is obtained by removing the rows in
F2{1,...,N}\ A (frozen set) from G5":

M. C. Coskun Polar Codes: Basics and Recent Advances November 5, 2020 20/50



Generator Matrix UM

After defining a set A, the generator matrix of the code is obtained by removing the rows in
F2{1,...,N}\ A (frozen set) from G5":

@ (8,4) polar code: A = {4,6,7,8} and F = {1,2,3,5}

10000000
11000000
10100000

Ges_ (11110000

? 10001000
11001100
10101010
11111111
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Generator Matrix UM

After defining a set A, the generator matrix of the code is obtained by removing the rows in
F2{1,...,N}\ A (frozen set) from G5":

@ (8,4) polar code: A = {4,6,7,8} and F = {1,2,3,5}

100000O00O 11110000

11000000 G_11001100

10100000 10101010
G®3:11110000 11111111
2 10001000

11001100

10101010

1111111 1]

M. C. Coskun Polar Codes: Basics and Recent Advances November 5, 2020 20/50



Generator Matrix UM

After defining a set A, the generator matrix of the code is obtained by removing the rows in
F2{1,...,N}\ A (frozen set) from G5":

@ (8,4) polar code: A = {4,6,7,8} and F = {1,2,3,5}

100000O00O 11110000

11000000 G—11001100

10100000 10101010
G?3:11110000 11111111

10001000 X# = V}G for random information bits V3

11001100

10101010

1111111 1]
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Encoding

Let V¥ denote the random information bits to be encoded:
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Encoding

Let V¥ denote the random information bits to be encoded:

@ For a given set A, map V¥ onto Uy.
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Encoding T|.|T|

Let V¥ denote the random information bits to be encoded:

@ For agiven set A, map V/ onto Uy. U=0 —0—HA )
U2 =0 5 &
@ Set the remaining elements of U to 0 (frozen bits), i.e., Us = D 8
Ur = 0"k, Uy = Vi &
Us=0 —P S
Us = V2 >
U7 — V3 N
Us = Vs
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Encoding T|.|T|

Let V¥ denote the random information bits to be encoded:

@ For a given set A, map V{‘ onto Uy. Ui = P g X, Wl
U=0 H S> X WF Y2
. . . . 2
@ Set the remaining elements of U to 0 (frozen bits), i.e., Us = D AW Vs
Ur = On—k A 3
=0k, b= i [ v
: Us=0 —P q Wl .
@ Apply polar transform of length—N, i.e., XV = UNG3". ° Y rallingt
Us =V B Xs WF Ye
b=V —P X WF Y7
Usg=Vy Xs WF Ys
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Encoding T|.|T|

Let V¥ denote the random information bits to be encoded:

@ For a given set A, map V¥ onto Uy. U=0 —0—A DX W
U.=0 J & X ‘Wl v

@ Set the remaining elements of U to 0 (frozen bits), i.e., Us=0 —D e Wk vs
Ur = 0"k, Us = V4 B Wl Ve

@ Apply polar transform of length—N, i.e., XV = UNG3". =0 —p—HA rallinkt
Us = Ve b X Wh Ye

@ This can be done with a complexity of O(N log N) instead of U= Vs —P a ‘Wl v
O(N?). Us = Vi Wl Ye
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SC Decoding: BEC Example 1

uy=0 —@P P ¢ BEC(0.5) -0
Up = g N BEC(0.5) |- 7
us=0 —P S BEC(0.5) |- ?
us = info g BEC(0.5) - ?
s =0 —D an BEC(0.5) -0
ug = info d BEC(0.5) - ?
u; = info —@ BEC(0.5) -0
ug = info BEC(0.5) |- 0
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SC Decoding: BEC Example 1

iy = 0 (frozen) 0y = 7—H (T — BEC(0.5) -0
? = J—— BEC(0.5) |- ?
D a BEC(0.5) |- ?
? o BEC(0.5) |- ?
D D BEC(0.5) |- 0
? q BEC(0.5) |- ?
D BEC(0.5) |- 0
? BEC(0.5) —0
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SC Decoding: BEC Example 1

i =0—P S — BEC(0.5) -0

Uo = 0 (frozen) i, =7 o o5 BEC(0.5) -7
77— T BEC(0.5) -7

? - BEC(0.5) -7

77— D BEC(0.5) -0

? a BEC(0.5) -7

77— BEC(0.5) -0

? BEC(0.5) -0
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SC Decoding: BEC Example 1

i =0—P S — BEC(0.5) -0

U, =0 & H BEC(0.5) |- ?

iy = 0 (frozen) U3 = 7—P & BEC(0.5) -7
? E BEC(0.5) |- ?

—D S¥ BEC(0.5) -0

? q BEC(0.5) |- ?

7—P BEC(0.5) |- 0

? BEC(0.5) -0
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SC Decoding: BEC Example 1

iy =0—P S — BEC(0.5) -0
b = - B— BEC(0.5) |- 7
U5 = 0—D & BEC(0.5) -7
by = - BEC(0.5) - 7
ey D BEC(0.5) -0
? g BEC(0.5) |- ?
7—D BEC(0.5) -0
7 BEC(0.5) -0
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SC Decoding: BEC Example 1

o =0—P S — BEC(0.5) -0

=0 4 H BEC(0.5) |- ?

iy = 0—P H BEC(0.5) 7

g, =0 S BEC(0.5) 7

s = 0 (frozen) s =? —EP 45 BEC(0.5) 0
? a BEC(0.5) |- ?

D BEC(0.5) |- 0

? BEC(0.5) -0
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SC Decoding: BEC Example 1

oy =0—P S b—BEC(0.5) -0
i, = F d— BEC(0.5) - ?
U3 = 0—P < BEC(0.5) |- ?
iy =0 F BEC(0.5) |- ?
Us = 0—P S BEC(0.5) -0
U = F BEC(0.5) |- ?

—®D BEC(0.5) -0

? BEC(0.5) -0
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SC Decoding: BEC Example 1

oy =0—P S b— BEC(0.5) -0
U, =0 F d3—— BEC(0.5) |- ?
U3 = 0—P < BEC(0.5) |- ?
0y =0 A BEC(0.5) |- ?
s = 0—P D BEC(0.5) -0
U = @ BEC(0.5) |- ?
Uy = 0— BEC(0.5) - 0

? BEC(0.5) -0
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SC Decoding: BEC Example 1

oy =0—P S b— BEC(0.5) -0
U, =0 F d3—— BEC(0.5) |- ?
U3 = 0—P < BEC(0.5) |- ?
0y =0 A BEC(0.5) |- ?
s = 0—P D BEC(0.5) -0
U = @ BEC(0.5) |- ?
Uy = 0—P BEC(0.5) - 0
Ug = BEC(0.5) -0
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SC Decoding: BEC Example 1

oy =0—P S b— BEC(0.5) -0
U, =0 F d— BEC(0.5) |- ?
U3 = 0—P 4 BEC(0.5) |- ?
0y =0 A BEC(0.5) |- ?
s = 0—P S BEC(0.5) -0
U = A BEC(0.5) |- ?
Uy = 0—P BEC(0.5) - 0
g =0 BEC(0.5) -0
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Successive Cancellation List Decoding UM

Key idea: Each time a decision is needed on {;, both options, i.e., &; = 0 and ; = 1, are stored. This
doubles the number of partial input sequences (paths) at each decoding stage.
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Successive Cancellation List Decoding UM

Key idea: Each time a decision is needed on {;, both options, i.e., &; = 0 and ; = 1, are stored. This
doubles the number of partial input sequences (paths) at each decoding stage.

%\ L =4

@ When the number of paths exceeds a predefined list size L, discard the least likely paths.
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Successive Cancellation List Decoding UM

Key idea: Each time a decision is needed on {;, both options, i.e., &; = 0 and ; = 1, are stored. This
doubles the number of partial input sequences (paths) at each decoding stage.

@ When the number of paths exceeds a predefined list size L, discard the least likely paths.
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Successive Cancellation List Decoding

doubles the number of partial input sequences (paths) at each decoding stage.

@ When the number of paths exceeds a predefined list size L, discard the least likely paths.

o After N-th stage, estimate &y chosen as 07’ = arg max,ve, P(uf|y1).
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Successive Cancellation List Decoding

doubles the number of partial input sequences (paths) at each decoding stage.

@ When the number of paths exceeds a predefined list size L, discard the least likely paths.

o After N-th stage, estimate &y chosen as 07’ = arg max,ve, P(uf|y1).

@ The decoder has been applied to RM codes previously (see, e.g., [Sto02, DS06]).
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N =128, k = 64 TLTI

100 : @ Gets close to ML for relatively
| small L ®
101 @ Not competitive for short
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N =128, k = 64 TLTI

100 : @ Gets close to ML for relatively
: small L ©

@ Not competitive for short
blocks ®

10-2} @ When error happens, the

transmitted codeword, very
often, is still a member of the
final list.
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N =128, k = 64 TLTI

100 e @ Gets close to ML for relatively
| small L ©®
101 @ Not competitive for short
blocks ®
= 1072} @ When error happens, the
= transmitted codeword, very
ol often, is still a member of the
final list.
~e- SCD
=« SCLD, L = 4
.| |===SCLD, L =16 i
w0 oSy o @ We need a to find a way to
— ML lower bound pick the correct word.
=== Random Coding Union
= Metaconverse
10701 1.‘2 1.‘4 1.‘6 1,‘8 2 212 2‘.4 2‘.6 2‘.8 3 3‘.2 3.‘4 3.‘6 3.‘8 4

Ey/Ny, dB
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N =128, k = 64 TLTI

100 e @ Gets close to ML for relatively
: small L ©

@ Not competitive for short
blocks ®

10-2} @ When error happens, the

transmitted codeword, very
often, is still a member of the
final list.

BLER

1073 L

- SCD
= SCLD, L =4

= SCLD, L =16

= SCLD, L =32

— ML lower bound

=== Random Coding Union
— Metaconverse

= = = =
H s s 0

@ We need a to find a way to
pick the correct word.

107}

10701 1.‘2 1.‘4 1.‘6 1,‘8 é 212 2‘.4 2‘.6 2‘.8 é 3‘.2 3.‘4 3.‘6 3.‘8 4 ° Easy to fix by Concatenatlng

Ey/Ny, dB an outer CRC code. ®
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Polar Codes with Outer Code T|_|T|

Concatenate an (N, k + ¢) inner polar code, with an outer CRC-/ code to improve distance
spectrum, where at the transmitter:
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Polar Codes with Outer Code T|_|T|

Concatenate an (N, k + ¢) inner polar code, with an outer CRC-/ code to improve distance
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Polar Codes with Outer Code T|_|T|

Concatenate an (N, k + ¢) inner polar code, with an outer CRC-/ code to improve distance
spectrum, where at the transmitter:

@ The first k positions in A of the inner polar code is used to encode the information bits.
@ Other ¢ positions in A to encode the CRC bits generated by k information bits.

@ Any systematic (k + ¢, k) code would work!

At the receiver:

@ SCL decoding (inner code), followed by syndrome check with outer code: pick the most probably
codeword on the list fulfilling the CRC.

November 5, 2020 26 /50
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Dynamic Frozen Bits T|_|T|

@ The value of a frozen bit can also be set to a linear U =0 —B q D
combination of previous information bits (rather than a fixed U =0 5 D
0 or 1 value) [TM16] Us = D q
Us = V4 S
Us = Uy N Va
Us = Vo B
U= Vs —P
Us = V4
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Dynamic Frozen Bits T|_|T|

@ The value of a frozen bit can also be set to a linear U=0 —Pp S D
combination of previous information bits (rather than a fixed U =0 5 D
0 or 1 value) [TM16] Us = D q
. . . Uy =V H
@ A frozen bit whose value depends on past inputs is called e T
i — I 4l
dynamic. o= s
Us = Vo B
U=V D
Us = Vs
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Dynamic Frozen Bits T|_|T|

@ The value of a frozen bit can also be set to a linear U=0 —@ g D
combination of previous information bits (rather than a fixed U =0 8 a
0 or 1 value) [TM16] Uy — 5 q

@ A frozen bit whose value depends on past inputs is called V= o ¢
dynamic. b=

Us = Vo B

@ SC/SCL decoding easily modified for polar codes with U= Vs —P

dynamic frozen bits. Us = Vi
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Dynamic Frozen Bits

@ The value of a frozen bit can also be set to a linear

combination of previous information bits (rather than a fixed
0 or 1 value) [TM16]

@ A frozen bit whose value depends on past inputs is called
dynamic.

@ SC/SCL decoding easily modified for polar codes with
dynamic frozen bits.

@ Any binary linear block code can be represented as a polar
code with dynamic frozen bits!

M. C. Coskun Polar Codes: Basics and Recent Advances

U =0
U, =0
Us =

Us = Vi
Us = U,
U =Wo
U=V
U =W

J

N

N

Ve
AN
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Outline UM

e Recent Advances in Polar Codes

@ Binary Erasure Channel
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Motivating Question UM

@ What list size is sufficient to approach ML decoding performance for a given polar code and
channel?
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Motivating Question UM

@ What list size is sufficient to approach ML decoding performance for a given polar code and
channel?

e To avoid losing true codeword, its rank must not be larger than list size.
e The expected log-rank of correct codeword is upper bounded by an entropy.

@ For the BEC,

e This entropy equals the dimension of an affine subspace.

Based on joint works with Henry D. Pfister [CP20, CP21]

M. C. Coskun

Polar Codes: Basics and Recent Advances

November 5, 2020



An Information-Theoretic Perspective (1) T|_|T|

Basic Idea: After m steps, consider the conditional entropy H(U{"| Y}Y).
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An Information-Theoretic Perspective (1) T|_|T|

Basic Idea: After m steps, consider the conditional entropy H(U{"| Y}Y).

The chain rule of entropy implies:

Note: this ignores frozen bits and will be modified soon!
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An Information-Theoretic Perspective (2) UM

@ For the first m input bits, the information/frozen sets are denoted as

A™ 2 AN [m] and F™ & Fn[m]
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@ Key Idea: information entropy given frozen bits and difference sequence
Dm = H(Uym|Y{, Urm) and Ay = Dy — D
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@ Key Idea: information entropy given frozen bits and difference sequence
Dm = H(Uym|Y{, Urm) and Ay = Dy — D
@ Experiment: assume U} is uniform and Rx learns frozen bits causally.
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An Information-Theoretic Perspective (2) UM

@ For the first m input bits, the information/frozen sets are denoted as
A™ 2 AN [m] and F™ & Fn[m]
@ Key Idea: information entropy given frozen bits and difference sequence
Dm = H(Uym|Y{, Urm) and Ay = Dy — D
@ Experiment: assume U} is uniform and Rx learns frozen bits causally.

o If U, is an information bit, then o If U, is a frozen bit, then
Am = H(Un, YNUPT) 0> Ap > H(Un YN, Ul 1) —1

S THWIYYL U = Y (1= HWUIYY L UrY) <D< Y H(UIYY, UTT)
ie Am) ie F(m) ie Am
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Bounding the List Size UM

Theorem
Upon observing yN when ul is sent, we define the set (for o € (0,1])

Se" (u, V) £ L0 P (Ugm|yy, Upm) > o (Ugwm |y7, Urm) }. Then,

E |log, |S{™]] < D+ logz 1 = H(Usn| Y{", Usim) + log 1

November 5, 2020
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Bounding the List Size UM

Theorem
Upon observing y1N when u?’ is sent, we define the set (for o € (0, 1])

S‘g‘m) (uqn7y1l\l) = {an P (EIA(’")|y1Na E’]—‘(m)) > aolP (UA(m)UﬁN, U}‘(m))}. Then,

B {Iogg |3(gm)|} < Dpn +logs & = H(U 4| Yy, Uzrm) + logy <

Proof.
(m)) —
log, [S,™| = log, %m: ]l{JP(aA(m)Iy{V,af(m))z\ozIP’(uA(m lyy, u}‘(m))J}

4

<log,1/ (aP(uA(m)|y1N, Urm))

Valid for all u¥ and yI; thus, we take expectation over all u" and y¥ ]

q
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Bounding the List Size UM

Theorem
Upon observing yN when ul is sent, we define the set (for o € (0,1])

Se" (u, V) £ L0 P (Ugm|yy, Upm) > o (Ugwm |y7, Urm) }. Then,

E |log, |S{™]] < D+ logz 1 = H(Usn| Y{", Usim) + log 1

@ For an SCL decoder with max list size L, during the m-th decoding step,
e the decoder needs L, > |S1(m)] for the true u{" to stay on the list

e Choosing o < 1 (say 0.94) captures near misses and matches entropy better.

November 5, 2020
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@ Our approach currently has two weaknesses:
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A Few Remarks T|_|T|

@ Our approach currently has two weaknesses:

e Entropy mainly characterizes typical events but we care about rare events.

o The sequence D, is averaged over YV, i.e., D, = Do Py H (Ugm | Y] = ¥, Ur).

But the actual decoder sees a realization dm(y;') £ H (Um|Y?' = y1¥, Urim)

@ Significance for code design:

e A first-order code design criterion can be seen as log, L, > dp.

e Based on this, a small code improvement will be introduced.
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Dynamic Reed-Muller Codes

@ d-RM code ensemble [CNP20]:

e Let A be the information indices of an RM code.
e u; is an information bit if j € A.

o Ui =) i a0 Aju;if i € F where Aj iid ~ Bernoulli(0.5)
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e u; is an information bit if j € A.
o Ui =) i Aju;if i € F where Aj iid ~ Bernoulli(0.5)

@ Closely related to polarization-adjusted convolutional (PAC) codes [Ari19].
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Dynamic Reed-Muller Codes T|_|T|

@ d-RM code ensemble [CNP20]:

e Let A be the information indices of an RM code.
e u; is an information bit if j € A.
o Ui =) i a0 Aju;if i € F where Aj iid ~ Bernoulli(0.5)
@ Closely related to polarization-adjusted convolutional (PAC) codes [Ari19].

@ PAC and (random instances of) d-RM code perform very similar under SCL decoding with the
same list sizes.
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(128, 64) d-RM Code over the AWGN Channel

H (U_A(m) |}/1]\(7 U}‘(m))
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Ep/No = 0.5 dB

........

------

| |

LT
m

20 40 60 80 100

Bit index m

Polar Codes: Basics and Recent Advances

120

November 5, 2020

37 /50




(128, 64) d-RM Code over the AWGN Channel

H (U_A(m) |}/1]\(7 U]—'(m))

D,, =

M. C. Coskun

Ep/No = 0.5 dB

e DTTL
"+ Bllogy [S[] for o ~ 0.94

P S A
%9 e u o
F o v Wty
LR ous
:.s ) s YPPOTTN
- xé
H T
.,,-'. s
...... i
i
20 40 60 80 100 120

Bit index m

Polar Codes: Basics and Recent Advances

November 5, 2020

37 /50




(128, 64) d-RM Code over the AWGN Channel UM
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(128, 64) Proposed vs d-RM Code over the AWGN Channel UM
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(128, 64) Codes over the AWGN Channel UM
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Recent Related Works TLTI

@ Among many others, there are some recent works to be checked:
e Works by E. Viterbo and his group: [RV19, RBV20]

e A paper by A. Vardy and his group: [YFV20]

e A paper by S. ten Brink and his group: [GEE™20]
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Outline

@ Overview of Polar Codes

e Recent Advances in Polar Codes

@ Binary Erasure Channel

@ Conclusions

M. C. Coskun
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Successive Cancellation Inactivation Decoding UM

@ The SC inactivation decoder has the same message passing schedule as the SC decoder.

M. C. Coskun Polar Codes: Basics and Recent Advances November 5, 2020 41 /50



Successive Cancellation Inactivation Decoding UM

@ The SC inactivation decoder has the same message passing schedule as the SC decoder.

@ Whenever an information bit is decoded as erased, it is replaced by indeterminate variable (i.e.,
inactivated).

M. C. Coskun Polar Codes: Basics and Recent Advances November 5, 2020 41 /50



Successive Cancellation Inactivation Decoding UM

@ The SC inactivation decoder has the same message passing schedule as the SC decoder.

@ Whenever an information bit is decoded as erased, it is replaced by indeterminate variable (i.e.,
inactivated).

@ |t continues decoding using SC decoding for the BEC, where the message values are allowed to
be functions of all inactivated variables.

M. C. Coskun Polar Codes: Basics and Recent Advances November 5, 2020 41 /50



Successive Cancellation Inactivation Decoding UM

@ The SC inactivation decoder has the same message passing schedule as the SC decoder.

@ Whenever an information bit is decoded as erased, it is replaced by indeterminate variable (i.e.,
inactivated).

@ |t continues decoding using SC decoding for the BEC, where the message values are allowed to
be functions of all inactivated variables.

@ Previously inactivated bits may be resolved using linear equations derived from decoding frozen
bits.
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Example: SC Inactivation Decoding UM

Uy = ﬁ; D 4 BEC(0.5) -7
up =0 . 4 > BEC(0.5) 7
uz =0 ? T BEC(0.5) - ?
us = info ‘ 4 BEC(0.5) -7
Us = Uy — D BEC(0.5) —0
ug = info q BEC(0.5) -0
u; = info — BEC(0.5) 0
ug = info BEC(0.5) 0
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Example: SC Inactivation Decoding UM

iy = 0 (frozen) 04 = ?—ﬂ} (T — BEC(0.5) —?
> a 3— BEC(0.5) - ?
? ? a BEC(0.5) - ?
?7 ay BEC(0.5) |- ?
? @ﬁ a BEC(0.5) -0
? g BEC(0.5) |- 0
? EF BEC(0.5) |- 0
7 — BEC(0.5) —0
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Example: SC Inactivation Decoding UM

di =0 i = 0— S, tP— BEC(0.5) -7

U, = 0 (frozen) 0, =7— oy 4 BEC(0.5) |- ?
? QF 0 BEC(0.5) -7

? 0 BEC(0.5) 7

? @ﬁ a BEC(0.5) -0

? a BEC(0.5) -0

? QF BEC(0.5) -0

7 — BEC(0.5) -0
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Example: SC Inactivation Decoding UM

o = 0—P——D——P—1BEC(0.5) |- 2
th = O, =0 4 & BEC(0.5) —?

is = 0 (frozen) U3 =7—F 9 BEC(0.5) - ?
? 0 BEC(0.5) -7

? @ﬁ a BEC(0.5) -0

? a BEC(0.5) —0

? QF BEC(0.5) —0

? — BEC(0.5) —0
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Example: SC Inactivation Decoding UM

o = 0—p——P—— DI BEC(0.5) |- 7
=0 4 & BEC(0.5) |- ?

d; =0 U3 = 0—P &£ BEC(0.5) |- ?
{y, =7 0 BEC(0.5) -7

? QF P BEC(0.5) - 0

? a BEC(0.5) -0

? QF BEC(0.5) -0

7 — BEC(0.5) -0
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Example: SC Inactivation Decoding UM

& = 0—P——P——P—|BEC(05) | 7
o =0 - B—BEC(0.5) |- 7

05=0  @3=0—P - BEC(0.5) |- 7
by = x - BEC(0.5) |- 7

? QF D BEC(0.5)|- 0

7 ¢ BEC(0.5)|-0

7 EF BEC(0.5)|-0

7 BEC(0.5)|-0

M. C. Coskun Polar Codes: Basics and Recent Advances November 5, 2020 42 /50



Example: SC Inactivation Decoding UM

i = 0—P——@——P—|BEC(0.5) |- 7

b, =0 H H BEC(0.5) - ?

iy = 0—P H BEC(0.5) —7?

=1 u=x a BEC(0.5) |- 7

s = b4 (frozen) U5 = 0—P oF BEC(0.5) -0
? a BEC(0.5) |- 0

? EF BEC(0.5) |- 0

7 — BEC(0.5) -0
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Example: SC Inactivation Decoding UM

= 0—P SY, (P— BEC(0.5) |- 7

=0 S (§—BEC(0.5) -7

U5 = 0—D - BEC(0.5) |- ?

Uy =0 S BEC(0.5) -7

=0  05=0—P D BEC(0.5) |- 0
g = 0 a BEC(0.5) |- 0

? EF BEC(0.5) |- 0

7 BEC(0.5) |- 0
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Example: SC Inactivation Decoding UM

& = 0—P——D——P—{ BEC(0.5) |- 7
fp =0 J———{BEC(0.5) |- 7

U5 = 0—D H BEC(0.5) |- ?

Uy =0 S BEC(0.5) -7

U5 = 0—EP D BEC(0.5) |- 0

ds =0 =0 a BEC(0.5) -0
U; = 0—Ep BEC(0.5) —0

? BEC(0.5) —0
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Example: SC Inactivation Decoding UM

oy =0—P S (p— BEC(0.5) |- ?
=0 @ d3—— BEC(0.5) |- ?
U3 = 0—P 4 BEC(0.5) |- ?
iy =0 F BEC(0.5) |- ?
Us = 0—P S BEC(0.5) -0
g =0 - BEC(0.5) -0
=0 =0 BEC(0.5) -0
g = 0 BEC(0.5) -0
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Example: SC Inactivation Decoding UM

0 = 0—P——P——H— BEC(0.5) |- 7
=0 F H—— BEC(0.5) |- ?
U3 = 0—P 4 BEC(0.5) |- ?
by =0 - BEC(0.5) |- 7
Us = 0—P S BEC(0.5) -0
0 =0 a BEC(0.5) - 0
i = 0—&F BEC(0.5) 0
ds =0 g =0 BEC(0.5) 0
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(512,256) Codes over the BEC 1

100

1071
102 8

1072

BLER

1074

- |-=RM
1079} [+d-RM

| |--- Berlekamp’s Random Coding Bound
— Singleton Bound

7 Il Il Il Il Il Il Il Il Il Il Il “ Il
0.5 049 048 047 046 045 0.44 043 042 041 04 0.39 0.38 0.37
Erasure Probability e
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The Subspace Dimension UM

@ For afixed y!¥, the subspace dimension is
dn(yf) = H (Uam | Y7 = ¥1', Urm)
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The Subspace Dimension
@ For a fixed y, the subspace dimension is

Am(y7)

= H (Uam| Y1 = 17",

Urm)

@ Let D, = dnn(Y]N) denote corresponding random value at step m.

M. C. Coskun

Average Subspace Dimension D,,
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Evolution of the Subspace Dimension

@ If U, is an information bit, then
e If decoder outputs an erasure, then
dmn(y1') = dm1(y1') + 1
e Else, it outputs affine function and
dn(y1') = dn-1(y7")
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Evolution of the Subspace Dimension UM

@ If U, is an information bit, then e If Uy is a frozen bit, then
e If decoder outputs an erasure, then o If decoder outputs an erasure, then
dn(y1') = dm-1(y4") + 1 dn(y4') = dm-1()7")
e Else, it outputs affine function and e Else, it outputs affine function:

dm(y)) = dm-1(y})
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Evolution of the Subspace Dimension UM

@ If U, is an information bit, then e If Uy is a frozen bit, then
e If decoder outputs an erasure, then o If decoder outputs an erasure, then
An(y) = dn_1(y) + 1 dn(y]) = dm-1(y1)
e Else, it outputs affine function and e Else, it outputs affine function:
dm(y{\’) = dp_ (y1N) i) If consolidation: dn(y) = dm—1(y}) — 1

i) Else, no consolidation: dm(yl¥) = dm_1(y)
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Evolution of the Subspace Dimension UM

@ If U, is an information bit, then e If Uy is a frozen bit, then
e If decoder outputs an erasure, then o If decoder outputs an erasure, then
An(y) = dn_1(y) + 1 dn(y]) = dm-1(y1)
e Else, it outputs affine function and e Else, it outputs affine function:
dm(y{\’) = dp_ (y1N) i) If consolidation: dn(y) = dm—1(y}) — 1

i) Else, no consolidation: dm(yl¥) = dm_1(y)

Averaged over all yI¥, the erasure probabilities are obtained via density evolution.
Must approximate consolidation probabilities.
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The Markov Chain Approximation UM

@ The random sequence Dy, ..., Dy can be approximated by an inhomogeneous Markov chain
with transition probabilities P,.(,;”) ~ P(Dp=j| Dn_1 = i) where

( (m)

{r ftmeA, j=i+1
(m) 1—€$vm) tmeA j=i
P =9 e 4 <1 —es\/m)> 2Pt ifmeF, j=i
(1 —eS\,’")> (1—2Pn1) ifmeF, j=i—1
\
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The Markov Chain Approximation UM

@ The random sequence Dy, ..., Dy can be approximated by an inhomogeneous Markov chain
with transition probabilities P,.(,;”) ~ P(Dp=j| Dn_1 = i) where

( (m)

{r ftmeA, j=i+1
(m) 1—€$vm) tmeA j=i
P =9 e 4 <1 —es\/m)> 2Pt ifmeF, j=i
(1 —eS\,’")> (1—201) fmeF, j=i-1
\

(m)

@ ¢, is the DE erasure probability of m-th effective channel
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The Markov Chain Approximation UM

@ The random sequence Dy, ..., Dy can be approximated by an inhomogeneous Markov chain
with transition probabilities P,.(,;”) ~ P(Dp=j| Dn_1 = i) where

( (m)

{r iftmeA, j=i+1
(m) 1—€$vm) tmeA j=i
P =9 e 4 <1 —es\/m)> 2Pt ifmeF, j=i
(1) (1 -20) itmeF, j=i-1
\

(m)

@ ¢, is the DE erasure probability of m-th effective channel

@ 27D is probability a random D-variable equation has all zero coefficients
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(512,256) d-RM Code UM

A fixed-weight BEC with exactly round(512 x 0.48) = 246 erasures
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(512,256) d-RM Code UM

A fixed-weight BEC with exactly round(512 x 0.48) = 246 erasures
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(512,256) d-RM Code UM

A fixed-weight BEC with exactly round(512 x 0.48) = 246 erasures
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Concentration of the Subspace Dimension UM

The subspace dimension D, for a particular random realization YN concentrates around the mean
D, for sufficiently large block lengths [CP21], i.e., for any 3 > 0, we have

P{lyo - D |>ﬁ}<2ex (—6—2N) (1)
N o m > P > .
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Concentration of the Subspace Dimension UM

Theorem

The subspace dimension Dy, for a particular random realization YN concentrates around the mean
D, for sufficiently large block lengths [CP21], i.e., for any 3 > 0, we have

P{l\D -D |>ﬁ}<2ex (—6—2N) (1)
N o™ m > P 5 .

Proof.
Key observation: at any decoding stage, the subspace dimension satisfies Lipschitz—1 condition:

For all i € [N] and all values y;' and y;, we have

[dn(y¥) — dm(yi ™", 5, yN ) < 1.

Then, use Azuma-Hoeffding inequality by forming a Doob’s Martingale. []
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Concentration of the Subspace Dimension UM

Theorem

The subspace dimension D, for a particular random realization YN concentrates around the mean
D, for sufficiently large block lengths [CP21], i.e., for any 3 > 0, we have

P{lyo - D |>ﬁ}<2ex (—5—2N) (1)
N/ Em =P\ T2 )

@ We use the theorem above to give bounds on the average complexity of ML decoding of a given
code implemented via SCI decoding.

@ Extension to general BMS channels is possible (the case of continuous output channels should
be tackled with more care).
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Outline UM

e Conclusions
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Summary UM

@ Recent advances (dynamic frozen bits + SCL) in polar codes allow performance near random
coding union bound for (128, 64) with moderate complexity.
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SCL decoding with list size 32.

@ An efficient ML decoding of polar (and RM codes) are introduced and d-RM codes were shown
to perform very close to BRCB even for small lengths (e.g., 512 bits)
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Summary UM

@ Recent advances (dynamic frozen bits + SCL) in polar codes allow performance near random
coding union bound for (128, 64) with moderate complexity.

@ “What list size is sufficient to approach maximum-likelihood (ML) decoding performance under
an SCL decoder?”

e Information theory provides some useful measures.

@ The analysis leads to an improved code design (in comparison with the PAC code [Ari19]) under
SCL decoding with list size 32.

@ An efficient ML decoding of polar (and RM codes) are introduced and d-RM codes were shown
to perform very close to BRCB even for small lengths (e.g., 512 bits)

@ The concentration of the random subspace dimension makes the average analysis meaningful;
hence, we can upper bound the average complexity of SC inactivation decoding.

@ Outlook and Future Work
e Apply this technique to design longer codes with good SCL performance
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