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". . . a real scientific mystery is worth pursuing
to the ends of the Earth for its own sake,

independently of any obvious practical importance
or intellectual glamour."

— Philip W. Anderson [4]



A B S T R A C T

We investigate the multifaceted dynamics of the oscillatory electro-
dissolution of silicon in a fluoride-containing electrolyte under anodic
potentials using spatially resolved in situ ellipsometric imaging.

The system is approached from two sides: on the one hand we study
physicochemical properties of the system, specifically the dissolution
valency and the role of the hole dynamics for pattern formation, and
on the other hand we investigate the observed phenomena from a
nonlinear dynamics perspective.

We show that a self-organised adaptive coupling emerges from the
interplay of the hole dynamics and an external resistor. This constitutes
an example where an adaptive coupling was observed in a nonliving
system. Our experimental data shows that this coupling can lead to
the transition from a uniform state to multifrequency clusters, i.e.
clusters with different frequencies.

Furthermore, we provide experimental evidence that the system
possesses inherent birhythmicity and thus at least two distinct feed-
back loops. We demonstrate several types of interaction between the
coexisting limit cycles and find that an asymmetry in their sensitivities
can lead to both intrinsic entrainment of the limit cycles in phase space
and unidirectional coupling between two identical electrodes initial-
ized on the different limit cycles. Due to the unidirectional coupling
the electrodes adopt states of different complexity rendering them
an experimental example of a smallest chimera state in a minimal
network configuration.
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1
I N T R O D U C T I O N

The world is full of complex and nonlinear phenomena [45, 111, 136,
137]. Many of these arise in complicated and involved systems that are
inherently hard to experiment on. Thankfully, a great number of this
kind of phenomena can be captured in simpler tabletop experiments
and mathematical models. The reason this works is that the underlying
dynamical principle can be the same in the original, more involved
system as in the tabletop experiment.

Take for example the simultaneous flashing of fireflies on the river-
banks of Borneo [21], the tidal locking of moons to planets [97], the
peculiar behaviour of how occasionally people can end up walking
in step when crossing a bridge [138] or how we sometimes, all of
a sudden, start to applaud in unison. All these behaviours can in a
sense be captured by an experiment consisting of metronomes on a
freely moving board [13, 104] or theoretically in the Kuramoto model
of coupled oscillators [64, 135]. The underlying principle here being
synchrony.

Another general principle is found in the dynamics of populations.
It is inherently hard to experiment on a population in the wild but a
simple experiments in a lab with for example bacteria or yeast in a
Petri dish [59] can tell us surprisingly much about the original system.
Even the perhaps simplest difference equation, the logistic equation,
can further our understanding of how populations change with time
[82, 83]. Here, we are relying on the generality of standard bifurcations
such as the period doubling bifurcation or the Hopf bifurcation to
name but a few.

Another example of the essence of complex dynamics being mod-
elled by a simple tabletop experiment is when the sometimes erratic
behaviour of the weather or of turbulent fluids is captured by a so-
called Malkus–Lorenz waterwheel [77]. This construction is inspired
by the simplified theoretical model of atmospheric convection rolls
known as the Lorenz model [76] and gives rise to chaotic dynamics
that lives on the Lorenz attractor with its characteristic butterfly shape.
Here, the underlying principle is deterministic chaos and the related
bifurcation sequences leading to it.

In this thesis we will continue in the tradition of tabletop experi-
ments with robust and reproducible dynamics and their use in our

1



1.1 chimeras 2

pursuit to broaden our understanding of complex universal phenom-
ena through the study of specific, simpler systems.

We should of course be wary when reducing the world to simple
equations and experiments and be aware that there is a limit to the
extent to which they describe the original phenomena—the map is not
the territory. However, nor is the territory the map for then it would be
a rather useless map. A useful map, or in our case tabletop experiment,
would be an experiment that is practical in its implementation and
can result in universal dynamics that can be observed outside of the
laboratory as well. Such an experiment has the twofold benefit that
it enables us not only to understand general phenomena but also to
anchor theoretical models in the real and complex world around us.

One such experiment that meets our requirements is the one men-
tioned in the title of this thesis: the electrodissolution of silicon in a
fluoride containing electrolyte under anodic potentials. This system
is known to exhibit a multitude of dynamical phenomena. It can, for
example, oscillate uniformly in a self-sustained state, both periodically
and chaotically, and can even exhibit different types of spatial patterns
such as subclustering, turbulence, and so-called chimeras. We will em-
bark on an explorative study of this system and extend this library of
dynamical phenomena. We will present self-organised multifrequency
patterns that arise due to what we identify to be a nonlinear, nonlocal
coupling, and also show that the system has bistable oscillatory states.
In relation to the bistability we discuss, among other things, both
intrinsic entrainment, and minimal chimera states. We will interpret
our findings and discuss them in the context of the pre-existing res-
ults which mainly revolved around coexistence patterns, the most
prominent of which being the chimera state.

In the following sections we will give a short overview of some of
the main phenomena that we will discuss in the rest of the thesis.

1.1 chimeras

The chimera state, a state emerging from identical oscillators splitting
into two domains, a coherent one and a desynchronised one [1], is
typically said to have been reported for the first time in 2002 [65]. It
received its name in 2004 [1] and just as its namesake, the mythical
fire breathing Greek monster, its main feature is the coexistence of
incongruous parts. This curious coexistence of chaos and order is in a
sense the link connecting the two apparent opposites [100].

As with a lot of fundamental research, chimera states initially re-
ceived most of its attention due to this fascinating and intriguing
double nature. Early findings regarding chimeras were mainly theor-
etical [14, 99, 103, 126], but subsequently chimeras were also linked
to real world phenomena. Most notably they have been discussed in
connection with ventricular fibrillation related to sudden cardiac arrest
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[103], neural activity in the brain [145], specifically regarding epileptic
seizure [117], and in the context of electrical grids [92]. A theoretical
study of interacting social agents have even linked chimeras to the
behaviour of social systems [39].

There are also a few laboratory experiments that have been shown
to exhibit chimera states but these remain rare. The first of these
were experiments involving a version of the Belousov-Zhabotinsky
reaction where the oscillators were photosensitive [96, 131, 144] and
experiments with optical oscillators [44]. Chimeras were also found in
a system of coupled metronomes [79, 155], in optoelectronic networks
[46], and there are experiments with networked oscillatory chemical
processes on metal electrodes that exhibit chimeras as well [150, 151].
However, so far the only truly self-organised chimera in an experiment
was found during the above mentioned silicon electrodissolution
[124, 125, 130]. Truly self-organised is here taken to mean that the
system arranges itself spontaneously without any externally controlled
feedback. Nothing is imposed onto the system to induce a splitting
but instead, for a range of given uniform external parameters, the
chimera state emerges from the intrinsic dynamics.

1.2 bistability

As mentioned above, the electrodissolution of silicon proceeds in an
oscillatory fashion for certain parameters. This, more fundamental
phenomenon, has been known since the late 1950s [148]. More re-
cently, indications have been found that point to the fact that there
is not only one possible type of oscillatory behaviour. Schönleber et
al. presented three main types: sinusoidal low amplitude oscillations,
chaotic oscillations, and relaxational high amplitude oscillations, and
identified two main feedback loops [128]. Later, before the work on
this thesis, we reported in Ref. [147] that the chaotic oscillations can be
further distinguished into chaotic oscillations emerging from so-called
low amplitude oscillations via a quasiperiodic scenario and chaotic
oscillations emerging from another type of oscillations, referred to
as high amplitude oscillations, via a period doubling scenario. These
findings further supported the existence of two different feedback
loops and indicate that there exists a bistability in the system.

Generally speaking, bistability is both an interesting and a common
phenomenon in dynamical systems [112]. The most common type of
bistability is the coexistence of two stable stationary states. However,
its meaning is more general and includes the coexistence of any two
attractors in phase space, such as of a stationary state and a limit cycle,
of two limit cycles, and so on. Even bichaoticity, as found in Ref. [147],
the coexistence of two chaotic attractors, can occur.

The discovery of birhythmicity in physical systems dates back to at
least 1976, when it was reported to exist in a model of a continuous
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stirred tank reactor with consecutive exothermic reactions [29]. To
our knowledge, the first experimental finding of birhythmicity, then
called generalised multistability by the authors, was reported in 1982

in a Q-switched gas laser [6]. Later that year, Decroly and Goldbeter
introduced the term birhythmicity in their theoretical study of a se-
quence of enzymatic reactions in a system with two positive feedback
loops in series [31]. This was one of the first attempts to characterise
birhythmicity in more detail. Their approach was later used in an
experimental study in which two chemical oscillators with a common
intermediate were combined and the resulting system was found to
exhibit birhythmicity [2, 3]. Other examples of experimental chemical
systems exhibiting birhythmicity include electronic oscillators [17], the
Belousov–Zhabotinsky reaction in a stirred flow reactor [66, 80, 118],
acetaldehyde oxidation in a continuously stirred tank reactor [40] and
the gas-phase H2+O2 reaction in a continuously stirred tank reactor
[12, 51]. Furthermore, birhythmicity proved to be important in diverse
biological contexts, most notably neural activities, where examples
for experimental evidences can be found e.g. in Ref. [48, 50, 67], or
circadian oscillators, where an experimental demonstration is reported
in Ref. [109]. More recently, an experimental electrochemical example
of birhythmicity has been found in the oscillatory electrodissolution
of Cu when using a delay feedback [94].

Compared to the relatively small number of experimental studies,
the number of theoretical investigations on birhythmicity is much
larger (see e.g. references in Ref. [112]). Besides models of ordinary
differential equations describing specific systems, also generic proper-
ties of spatially extended birhythmic systems or coupled birhythmic
oscillators have been studied with normal form type equations. These
include wave phenomena in spatially extended reaction-diffusion mod-
els and ensembles of coupled birhythmic (phase) oscillators [8, 11, 18,
114, 133, 134, 156, 157]. The latter were also found to promote the
occurrence of chimera states, an interesting prediction which awaits
experimental validation.

In Chapter 5 we will present evidence of a direct bistability between
the two oscillation types found in the Si-system. What then sets the Si-
system apart from the above mentioned experiments is that the initial
conditions can be easily controlled, both in time and space, allowing
us to set each location—or coupled electrode—in the chosen oscillation
type. This property will help us to not only show explicit birhythmicity
but also allow us to investigate the qualitative differences between
the two oscillation types and exploit the different sensitivity towards
specific perturbations in order to find chimera states in a minimal
system consisting of only two electrodes.



1.3 coupling 5

1.3 coupling

With that said, there is not yet a mechanistic model explaining the
silicon electrodissolution. Especially the oscillatory behaviour and
why it arises has been the subject of intense research (see Ref. [160]
for an overview until 2003). Attempts have been made to answer these
questions by focusing on the more fundamental behaviour of the
system, trying to understand how the current voltage characteristics
comes about [22, 24, 25, 27]. But even here there are still open questions,
e.g. how does the characteristic Negative Differential Resistance (NDR)
emerge? Alas, we do not have a satisfactory explanation as for why the
system oscillates, not to mention an explanation for the spatiotemporal
patterns such as the chimera state.

However, a mathematical model inspired by the findings during
the electrodissolution of silicon was developed in order to capture
chimeras in a spatially extended oscillatory media. The model is a
modification of the Complex Ginzburg-Landau Equation (CGLE) [62,
63]:

∂tW = W + (1 + ic1)∇2W − (1 + ic2) |W|2W . (1.1)

Here, W (r, t) is a complex valued oscillator describing the dynamical
state at each point r at the time t, and c1 and c2 are real-valued
parameters. The CGLE is a general description of all reaction-diffusion
systems in the vicinity of a Hopf bifurcation. It thus provides the
appropriate normal form since the oscillations in the Si-system have
been shown to arise from just such a bifurcation [88, 129]. The main
motivation for modifying the CGLE was to reproduce the fact that for
the early findings of patterns in the Si-system the spatially average
signal oscillated nearly harmonically. This was not only the case for
the two-phase clusters that were found first [87] but also for the
chimera states [124, 125, 130]. Generally, the CGLE does not produce
dynamics where the homogeneous mode is preserved. Hence, in order
to reproduce the experimental findings a global coupling was added
to the diffusion in the CGLE and the so-called Modified Complex
Ginzburg-Landau Equation (MCGLE) [125] was proposed:

∂tW =W + (1 + ic1)∇2W − (1 + ic2) |W|2W

− (1 + iν) ⟨W⟩ + (1 + ic2) ⟨|W|2W⟩ .
(1.2)

Again, W (r, t) is a complex valued oscillator describing the dynam-
ical state at each point r at the time t. c1, c2, and ν are real-valued
parameters and ⟨. . .⟩ denotes the spatial average. This specific global
coupling results in conserved harmonic oscillations of the uniform
mode, or equivalently, of the spatial average. This can be seen when
taking the spatial average of Eq. (1.2) which results in the spatial
average of the MCGLE simply being given by ∂t⟨W⟩ = −iν⟨W⟩ which
has the solution ⟨W⟩ = ηe−iνt for some amplitude η, i.e. a harmonic
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oscillation. The global coupling terms are composed of a linear part
and a nonlinear part and theoretical studies have even show that the
nonlinear part is decisive for the formation of this type of chimera in
ensembles of discrete individual oscillators, i.e. ensembles of Stuart-
Landau oscillators [125]. The addition of the nonlinear global coupling
term revealed a new route to chimera states where the synchronous
oscillation is unstable.

Having recognised this, the next challenge was to identify the phys-
ical processes in the experiment related to the different coupling terms
in the MCGLE. First considerations in this direction have suggested that
the linear and nonlinear parts of the global coupling actually have two
physically independent origins: oscillations were thought to only occur
when an ohmic resistor was placed in series to the Si electrode [26].
Such an external resistor acts as a global linear coupling by linking
the potential drop across the electrode φel, to the total current I. Any
change in the local current changes the total current which in turn
changes the potential drop across the resistor and thus the potential
drop across the electrode:

Uapp = φel + Rext I (1.3)

where Uapp is the applied voltage and Rext is the resistance of the
external resistor in series with the electrode. The linear global coupling
was thus identified as emerging from the external resistor.

The nonlinear global coupling term in Eq.(1.2) has been linked to
the behaviour under reduced illumination. The oxidation of silicon
requires at least one valence band hole and hence n-doped silicon
has to be illuminated for the oxidation to take place [84]. If the illu-
mination intensity is high enough, there will always be a sufficient
amount of holes available and the behaviour will be identical to the
one of p-doped silicon in the dark [105]. However, if the illumina-
tion intensity is lowered and the generation rate of holes decreases,
the number of available holes also decrease and starts to determine
the reaction rate. The lower illumination leads to a limited current
during part of the oscillation, yielding a plateau in the current. This
limitation of the current is nonlinear and has global characteristics
since it acts on the total current. Thus, it has been connected to the
nonlinear global coupling in the MCGLE. It was shown that oscillations
could be stabilised under these conditions even without the presence
of an external resistor [125]. It is also at these lower illuminations
and with no, or a small external resistance that patterns are observed,
inter alia, the chimera states [88, 124, 125, 130]. This finding matches
the prediction that the nonlinear global coupling in the MCGLE can
be decisive for the formation of chimeras and thus corroborates the
fact that this is the searched for nonlinear global coupling. However,
it should be noted that although there are similarities between the
coupling introduced in the experiment and the one in the MCGLE, it is
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still unclear under which experimental conditions it is a good approx-
imation. In particular, the assumption that the nonlinear coupling is
truly global seems to be questionable in some parameter ranges. Is the
nature of the nonlinear coupling in the experiment truly global or does
the diffusion dynamics of the holes leading to a nonlocal coupling
also play a role in the formation of the patterns?

1.4 outline

We start this thesis by tackling questions specific to the Si-system in
order to establish a solid background for the following chapters where
the dynamics is investigated in more detail.

In particular, we start by looking at the physicochemical properties
of the system without an external coupling.

First, we confirm that the characteristic part of the voltage scans
that show a NDR is a steady state and not an effect of the finite scan
rate. Knowing that the system is stable at these parameters helped
us to develop the model presented in Ref. [120]. This model aims to
explain, among other features, the NDR behaviour and is based on
the idea that the etch rate depends on the degree of oxidation. As a
consequence of this assumption, the model predicts that the valency
increases with increasing potential along the NDR-branch. We are here
able to confirm experimentally that the degree of oxidation, or the
dissolution valency, does indeed increase.

Second, at slightly higher potentials, we find that there is a potential
window in which the most fundamental behaviour of the system is to
oscillate, even if there is no external coupling. Having established that
these oscillations are stable then allows us to investigate how lowering
the illumination changes the spatial dynamics without having to cut
off the current or introduce an external resistor.

Upon this groundwork, we investigate the dynamics in the later
chapters.

The chapters are structured as follows:

We first take a closer look at the experimental set-up in Chapter 2,
focusing on the three main parts of the set-up, i.e. the electrochemical
set-up, the ellipsometric imaging system, and the illumination set-
up. In addition an overview of the data analysis tools that we most
commonly use is given and the measurement protocol for determining
the etch depth is presented.

In Chapter 3 we investigate system specific properties of the Si-
system and thus contribute to the understanding of the underlying
physicochemical mechanism of the electrodissolution of silicon. We
first present measurements regarding the steady state and the dissol-



1.4 outline 8

ution valency before presenting the stable self-sustained oscillations.
Then, we present and discuss data showing the effects that reducing
the illumination intensity has on these oscillations.

In Chapter 4 we study the emergence of self-organised multifre-
quency clusters due to what we show to be an adaptive coupling, and
how these states are related to chimeras.

In Chapter 5 we present experimental evidence that the electrodissol-
ution of silicon exhibits birhythmicity. Both the interaction between
the oscillation types in phase space, giving rise to an intrinsic entrain-
ment, and the interaction in real space, yielding a smallest chimera,
are discussed in detail.

Lastly, Chapter 6 contains a summary of the main findings and
concluding remarks.



2
T H E E X P E R I M E N TA L S Y S T E M A N D S E T- U P

The main experiment in this thesis is the electrochemical dissolution of
silicon in a fluoride containing electrolyte under constant anodic poten-
tials. This is a type of corrosion experiment where we simultaneously
create oxide electrochemically and etch it chemically.

In this chapter we will take a closer look at the general experimental
set-up used to investigate this process. We will start with the elec-
trochemical set-up and then look closer at the ellipsometric imaging
set-up used to monitor lateral uniformity of the electrode/electrolyte
interface in-situ. Next, we discuss the data evaluation, specifically the
spatially resolved ellipsometric data, before describing the laser illu-
mination needed for generating holes needed for experiments using
n-doped silicon. Specific details regarding measurement protocols can
be found in connection to the respective results in later chapters.

The experimental design and the custom build instrumentation
was inherited from Iljana Miethe who designed and set up the first
version of the experiment during her PhD thesis [86] (also described in
Ref. [88]). Later Konrad Schönleber adjusted it slightly during his PhD
thesis [127], see also Ref. [128, 130]. During the cause of the work for
this thesis several optical parts have been replaced and/or upgraded,
notably the set-up is now located on an optical table for enhanced
reproducibility of the illumination and a Spatial Light Modulator (SLM)
has been added allowing us to control the spatial intensity distribution
of the laser light on the electrode. These main modifications were made
in collaboration with Anton Tosolini. He and Yukiteru Murakami are
the unsung heroes behind getting the SLM up and running. The new
sample holder with two separate electrodes was designed together
with Juliane Wiehl and built by Thomas Gänsheimer. The data ac-
quisition software was inherited from Andreas Heinrich who wrote it
during his Master’s thesis [47].

2.1 electrochemical system

As mentioned above the electrodissolution of silicon in fluoride con-
taining electrolyte under anodic potentials consists of two main pro-
cesses: electrochemical oxidation of silicon and chemical etching of

9
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silicon oxide. The oxidation can proceed either through a divalent,
Eq. (2.1), or a tetravalent, Eq. (2.2), oxidation process [84, 148, 149]:

Si + 2H2O + κVBh+ → Si(OH)2 + 2H+ + (2 − κVB)e−

Si(OH)2 → SiO2 + H2,
(2.1)

Si + 2H2O + κVBh+ → SiO2 + 4H+ + (4 − κVB)e− (2.2)

Here κVB denotes the number of charge carriers that come from the
valence band of the silicon. Note that the first step in reaction (2.1) is
electrochemical and the second step is purely chemical.

The chemical etching of the silicon oxide electrolyte can proceed
through the following three reactions [22]:

SiO2 + 6HF → SiF2−
6 + 2H2O + 2H+ , (2.3)

SiO2 + 3HF−
2 + H+ → SiF2−

6 + 2H2O , (2.4)

SiO2 + 2HF + 2HF−
2 → SiF2−

6 + 2H2O. (2.5)

The total etch rate of the electrolyte depends on the fluoride concen-
tration as well as the type of fluoride species at hand [52]. The type
of species, in turn, depends on the pH value [132]and if we use the
model presented in Ref. [22] we find that in our electrolyte reaction
(2.3) is dominating while reaction (2.4) and (2.5) only come into play
for higher pH values.

2.2 electrochemical set-up

We investigated the interaction between the oxidation and the etch-
ing in a standard electrochemical three-electrode set-up with the sil-
icon sample as the Working Electrode (WE). We used either n-doped
(1-10 Ωcm) or p-doped (5-25 Ωcm) single crystalline (111) silicon.
Before the experiments, the silicon sample was equipped with an
ohmic back contact. To do this we first cleaned the sample by se-
quentially immersing it in acetone, isopropanol, and ultrapure water
(18.2 MΩcm) for 5 min each in an ultrasonic bath, blowing it dry with
with argon in-between the steps. Next, we dropped a buffered 1 : 6
HF(40 %) : NH4F(40 %) solution on the back of the electrode until the
surface becomes H-terminated. The H-termination can be seen by the
fact that the surface becomes hydrophobic and the HF-solution forms a
droplet. Second, we thermally evaporated approx. 200 nm aluminium
onto the back of the electrode. It was then annealed in a low pressure
annealing oven (5·10

−5 bar) at 250
◦ C for 15 min in the case of n-doped

samples and at 400
◦ C for 30 min in the case of p-doped samples. The

back contact ensures that the potential distribution in the bulk of the
electrode is spatially uniform. For p-doped silicon this is accomplished
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by the aluminium diffusing into the silicon. This results in a gradually
increasing doping level towards the contact and hence a barrier free
connection between the metal and the semiconductor. For n-doped
silicon on the other hand the barrier is already comparably small and
the annealing mainly serves the purpose of increasing the area of the
interface.

Once the electrode had been equipped with a back contact the front
side of the electrode was treated with an oxygen plasma in order to rid
it of any organic contamination and to realise a defined, initial surface
oxide. Next, the sample was mounted on a custom-made sample
holder made out of polytetrafluorethylen (PTFE). The sample was
mounted using a conductive silver paste and sealed using red silicone
rubber (Scrintex 901, Ralicks GmbH); 10 - 20 mm2 of the Si sample
were left exposed, forming the active area of the WE. The exposed
electrode area was determined using an optical microscope with a
precision of approx. 0.1 mm2. The active area was cleaned by wiping
the electrode with acetone-drenched precision wipes and sequentially
immersing it in acetone, ethanol, methanol, and ultrapure water (18.2
MΩcm) for 10 min each.

The mounted electrode was then placed in the centre of the cell with
the Hg|Hg2SO4 reference electrode placed behind it. For the counter
electrode, we bent a Pt wire (99.99 % Chempur) into a circular shape
and placed it symmetrically in front of the WE.

In order to control the voltage between working and reference elec-
trode, we used a FHI-2740 potentiostat (electronics laboratory of the
Fritz-Haber-Institut, Berlin, Germany) or a Biologic SP-200, depending
on the experimental requirements. Generally, the FHI potentiostat
was used when the potential had to be changed manually during the
experiment and the SP-200 whenever we performed slow potential
scans. In addition to the applied potential the illumination intensity
and an adjustable ohmic resistance placed in series with the WE were
used as control parameters. For measurements with two electrodes,
cf. Chapter 5.4, a new sample holder was constructed with two elec-
trically separated wires. This allowed us to connect the two electrodes
separately to the two respective wires and then short-circuit the wires
at the external resistance.

The aqueous electrolyte used throughout this thesis contained
0.06 M NH4F and 142 mM H2SO4, yielding a pH of 1 in accordance
with the dissociation constants found in Ref. [22]. We have calculated
the amount of H2SO4 necessary to attain a pH of 1 and a fluoride
concentration of 0.06 M instead of measuring it since most pH-meters
are made of glass and are hence damaged by our fluoride containing
solution.

The electrolyte was purged with argon for 30 min before the exper-
iment and an argon overpressure was kept throughout all measure-
ments via a gas inlet above the electrolyte. The electrolyte was stirred
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using a magnetic stirrer at 1200 RPM throughout all measurements
and had a total volume of 500 ml.

All glassware was cleaned in HNO3 and subsequently in a 1 M
aqueous KOH solution and stored in ultrapure water. Platinum and
PTFE parts were cleaned in Piranha solution. All organic cleaning
solvents were AnalaR NORMAPUR grade (VWR Chemicals). All
electrolyte components were Suprapur grade (Merck).

2.3 ellipsometric imaging

Figure 2.1: Sketch of the three electrode electrochemical cell showing the
position of the WE, the reference electrode (RE), and the counter
electrode (CE) as well the electrical control and the external resist-
ance Rext. Also shown are the ellipsometric imaging set-up and
the laser illumination set-up for uniformly illuminated electrodes.
The spatially resolved ellipsometric imaging allows us to monitor
the electrode surface in situ. The light from the LED (blue) is first
elliptically polarised and then reflected off the WE, resulting in
a change in polarisation, depending on the optical path length
through the oxide. Relative changes in polarisation are then con-
verted into an intensity signal which is recorded by the CCD
camera. The intensity of the laser-light used for illumination of
the WE can be controlled with the polariser.

We used the ellipsometric imaging set-up sketched in Fig. 2.1 to
monitor the lateral uniformity and relative change of the optical path
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through the oxide layer in situ. The non-polarised light coming from
the LED (Linos, HiLED, 470 nm) becomes elliptically polarised once
it passes through the Glan-Thompson prism and the zero-order λ/4

plate. The beam is then reflected off the WE at an angle close to the
Brewster angle of water and Si α = 70◦ for optimal contrast [86].
Depending on the length of the optical path at the electrochemical
interface, the ratio between the s- and the p-polarised components of
the light changes. The polarisation is then converted into an intensity
signal by letting the light pass through a second Glan-Thompson filter.
The intensity was measured using a CCD camera (JAI CV-A50) and
digitized using a frame grabber card (PCI-1405, National Instruments).

The CCD camera has a frame rate of ≈30 fps. The spatially averaged
signal ξ was calculated from single frames and was sampled at 10 Hz.
The spatially resolved images were averaged over 30 frames and saved
every second. The CCD gives a linear response to the intensity of the
incoming illumination, up to a saturation threshold; we present the
ellipsometric intensity as a percentage of this threshold. The oscillation
amplitude of the ellipsometric intensity signal is generally small com-
pared to its absolute value and thus shows an approximately linear
dependence on the optical path length through the oxide layer during
the oscillations.

2.3.1 Image Correction

In general, the light intensity from the LED varies slightly across the
electrode. This leads to a variation of the raw ellipsometric intensity
ξ (x, t)raw depending on the position x on the electrode. To adjust for
this variation, a background correction was applied by subtracting the
temporal average of the raw data ξ (x, t)raw individually at every point.
In addition to this background variation of the intensity, the contrast
positively correlates with the absolute value of the LED illumination
intensity. Hence, a point on the sample that is illuminated with a high
background intensity will have a higher contrast. To counter this, we
correct each individual pixel by dividing its value by its temporal
average. This correction factor is then normalised by multiplying by
the spatial average of the temporal average of the entire image stack in
order to keep the unit comparable to the spatially averaged signal ξ.

In total, the correction suppresses the signal from pixels with high
temporal average and enhances the signal from pixels with low tem-
poral average. The complete background correction is summarised in
Eq. (2.6):

ξ (x, t) =
(

ξ (x, t)raw − ξ (x, t)raw

) ⟨ξ (x, t)raw⟩
ξ (x, t)raw

, (2.6)
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with ξ (x, t) being the corrected local time series and ⟨ξ (x, t)raw⟩
the spatial average of the temporal average of the raw data. Note that
this correction is only valid as long as the temporal average of the raw
data does not change significantly. In the cases where it does change,
for example when measuring a transition from one state to another
we instead applied the following correction to the recorded images for
the spatially resolved figures:

ξ (x, t) = ξ (x, t)raw
⟨ξ (x, t)ref⟩
ξ (x, t)ref

, (2.7)

with ξ (x, t) being the corrected local time series, ξ (x, t)raw the uncor-
rected image, ξ (x, t)ref the temporal average of the local time series
of 10 consecutive reference images taken at an instance when the
electrode is spatially homogeneous, and ⟨ξ (x, t)ref⟩ the spatial average
of the temporal average of said reference images.

2.3.2 Data Analysis

In order to characterise the dynamics of our system in more detail,
we define the amplitude A (x, t) and phase ϕ (x, t) of the ellipsometric
intensity signal ξ (x, t) at each pixel by calculating the analytic signal
ζ (x, t) via the Hilbert transform H

(
ξ (x, t)

)
[36, 111]:

ζ (x, t) = ξ (x, t) + iH
(
ξ (x, t)

)
= A (x, t) eiϕ(x,t). (2.8)

The analytic signal is constructed by taking the original signal at
each point as the real part and the Hilbert transform of the original
signal as the imaginary part. We take the Hilbert transform of the
ellipsometric intensity signal as:

H(ξ(x, t)) =
1
π

p.v.
∫ +∞

−∞

ξ(x, τ)

t − τ
dτ , (2.9)

where p.v means that we take the Cauchy principal value of the
integral. The Hilbert transform is equivalent to constructing a new
dimension in phase space by adding a phase lag of π/2 to each spectral
component. Note that the temporal average of ξ(x, t) has typically
already been subtracted in Eq. (2.6), ensuring that the analytic signal
will revolve around the origin. This means that we get an intuitive
definition of the amplitude of the oscillation as the deviation from
the mean and that one oscillation will correspond to one revolution
around the origin.

As an example a local time series of ξ is plotted together with the
amplitude A in Fig. 2.2(a). As can be seen, the amplitude envelopes
the original time series and has an additional modulation with the
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Figure 2.2: Exemplary local dynamics (same as in Fig. 4.2(a)). (a) Local time
series of the ellipsometric intensity ξ (blue) and of the amplitude
of the analytic signal A (red). (b) Analytic signal in the complex
plane (blue) together with the unit circle (dashed).

same frequency as the original time series. The modulation stems from
the slight relaxational character of the original signal, i.e., it stems
from the oscillation not being a perfect circle centred at the origin. Or
in other words, the original local time series does not spend the same
amount of time at each phase and hence the amplitude becomes time
dependent. The slight offset of the oscillation from the origin can be
seen in Fig. 2.2 (b) where the same local time series is plotted against
its Hilbert transform together with the unit circle.

When needed we reduced the noise by smoothing the data in the
temporal direction by using a Savitzky-Golay filter with a 2nd degree
polynomial and a 15 point window. In addition, the data was binned
into 5x5 pixels bins when needed to further suppress noise. The data
analysis described here was done using libraries and functions from
MATLAB [81].

2.4 illumination

During the electrooxidation of Si, Si mainly interacts with the electro-
lyte through valence-band processes. Hence, n-type Si samples have
to be illuminated to allow for anodic oxidation. For this purpose we
use two different optical configurations, both with a linearly polarised
He-Ne laser (HNL150L-EC, Thorlabs) as the light source.

The first configuration was used for measurement series where the
electrode was spatially uniformly illuminated and relied on the fact
that the laser was linearly polarised. This allowed us to adjust the
illumination intensity with a polarisation filter (GTH5M-A, Thorlabs)
mounted on a motorised rotation mount (KPRM1E/M, Thorlabs) and
placed directly after the laser. The resulting illumination intensity is
then given by Malus’s law. After the polariser, the beam was widened
using a beam expander and then passed through an iris diaphragm.
The beam widening and the diaphragm allowed for the illumination of
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the entire sample with the central, more uniform part of the beam. A
sketch of this illumination set-up configuration can be seen in Fig. 2.1.

However, for some measurements (e.g. in Chapter 5) we needed
more control over the spatial distribution of the illumination intensity
at the electrode surface. For this a second optical configuration was
used, this time combining the laser with a SLM (X10468-06, LOCOS-
SLM, Hamamatsu), permitting us to generate an arbitrary intensity
image at the sample surface. In this way, we could both ensure an
even more uniform illumination intensity and for the case with mul-
tiple electrodes, control the illumination intensity of each electrode
separately, allowing for different initialization protocols. For this il-
lumination configuration, which can be seen in Fig. 2.3, the SLM is
placed after the polarisation filter and the laser light is reflected off it
onto the sample.

Figure 2.3: Sketch of the illumination configuration using the SLM. In this
configuration the spatial distribution of the illumination intensity
at the WE can be controlled.

The SLM makes use of the anisotropic electrical and optical proper-
ties of liquid crystals allowing for pure phase manipulation of light.
By individually addressing each pixel via an active-matrix circuit the
liquid crystals in each pixel can be tilted, changing its refractive index
which in turn yields a change in optical path. This change in the
optical path results in a phase delay upon reflection which in turn
yields different intensity images once the light has passed through the
succeeding relay lenses. The lenses are placed so that the zeroth order
beam can be filtered out using a partial beam blocker and in such a
way that, when combined with a digital Fresnel lens on the SLM, we
produce a sharp image on the electrode.

In order to monitor the illumination intensity image in situ, we
placed a beam splitter in front of the WE directing the beam onto
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a CCD (DCC3260-M, Thorlabs) and, using a second beam splitter,
onto a power meter (PM16-121, Thorlabs). Note that the optical path
from the first beam splitter to the CCD, to the power meter, and to
the WE are the same, respectively, in order to accurately determine
the properties of the projected image. For more details regarding the
specific SLM set-up used here, see Ref. [158]. Note that the intensity of
the laser at the WE was much higher than the intensity of the LED used
for the ellipsometric imaging. This means that there is no significant
contribution from the LED light to the hole generation. Also note that
we prevent the light from the laser to reach the CCD camera of the
ellipsometric imaging set-up by placing a red colour filter in front of
the camera (Fig. 2.1), hence we can exclude any cross talk between the
laser illumination and the ellipsometric intensity signal.

2.5 etch depth

For some measurements in the following chapters it will be instructive
to measure the etch depth. We will see that both the relative and the
absolute etch depth can be of interest. For the relative etch depth no
reference level is needed and we simply measure the height profile by
using a stylus profiler (Dektak 150 Surface Profiler, Veeco). However,
in order to measure the absolute etch depth x, a reference point is
needed. This was realised by equipping the samples with a thin ridge
of Si3N4 which is inert in our electrolyte. Then the height of the ridge
was measured before and after the electrochemical measurements to
determine the absolute etch depth. Exemplary profiles of a Si3N4-edge
measured with the stylus profiler before and after an electrochemical
measurement are presented in Fig. 2.4.

Here the approximate absolute etch depth was 2 µm. To equip the
samples with the ridge a Si3N4 covered wafer (300 nm Si3N4 LPCVD
stoichiometric best effort, p-Si 1-10 Ω cm 380±25 µm, TTV < 10 µm,
MicroChemicals) was cut into smaller electrodes. Each electrode was
then covered with a layer of photoresist which was developed so as
to leave a 20 mm2 rectangle of exposed Si3N4 with a thin ridge of
photoresist in the middle. The exposed part of the Si3N4 surface was
then etched away using reactive ion-etching until the silicon was laid
bare. In the next step, the Si3N4 on the back was also etched away,
again using reactive ion-etching, and then aluminium was evaporated
on to the back of the electrode. The electrode was then annealed in
order to create an ohmic back contact in the same way as described
above. Next, the electrode was mounted on the sample holder and the
height of the ridge was determined using the surface profiler. After
the electrochemical experiment the height of the ridge was measured
again. Si3N4 is essentially inert in fluoride containing electrolytes, but
to make sure that the thickness of the Si3N4 layer did not change it was
measured before and after the electrochemical measurement using a
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Figure 2.4: Example of Si3N4 ridge profile obtained with a surface profiler
before (black) and after (red) a measurement consisting of 22 con-
secutive Cyclic Voltammogram (CV)s from 0.65 to 6.65 V vs SHE
and back with a scan rate of 20 mV/s (cF= 0.05 M, pH 2.3, p-Si
(111), 1-10 Ωcm).

commercial ellipsometer (SD2302 Ellipsometer, Plasmos GmbH). For
a step-by-step guide to the photolithographic method see Appendix A
and Anton Tosolini’s Master’s thesis [146].
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P H Y S I C O C H E M I C A L P R O P E RT I E S

Very little is know about the physical mechanism behind the sustained
oscillations that occur during the electrodissolution of silicon. Since
they were first reported by Turner in the late 1950s [148] they have
been studied in great detail by many different research groups, the
most notable attempts to uncover the physical mechanism explaining
why the oscillations emerge being discussed in Ref. [23, 26, 34, 35,
70, 113, 160]. In this chapter we will take the approach of looking
at the most fundamental behaviours of the system, oscillatory or
not. This approach is based on the idea that the oscillations, and
any other more complicated dynamics, bifurcate from a more simple
underlying dynamics, such as a steady state. Thus, we will first look at
the system at parameter values at which it does not oscillate and focus
on the region where the IU-curve exhibits a Negative Differential
Resistance (NDR). Second, we will show that even without an external
resistor or a current-limit-inducing illumination the system exhibits
self-sustained oscillations. Third, we will investigate the influence of
the illumination on these oscillations.

We start by looking at the current-voltage characteristics of the sys-
tem (Sec. 3.1) before measuring the steady state of the system on the
NDR branch and determine the dissolution valency (Sec. 3.2). The fact
that the dissolution valency increases with increasing potential is a fun-
damental assumption in the new model proposed by our group [120].
The proposed physical model explains part of the current–voltage
characteristics of the system as well as the impedance spectrum on
the NDR branch.

Next, we investigate what happens to the system at slightly higher
applied potentials and see that for certain parameters at voltages bey-
ond the NDR branch the system oscillates (Sec. 3.3). It was previously
thought that the system needed a global coupling, either a linear one
in the form of an external resistor or a nonlinear one in the form of an
illumination induced current limitation, for the oscillations to remain
stable. Hence, the findings that the system remains in an oscillatory
state even without a global coupling, both for highly illuminated n-Si
and for p-Si in the dark, is both unexpected and new. Seeing that the
oscillations are self sustained allows us to explore how the illumin-
ation intensity affects the spatio-temporal dynamics in the absence

19
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of an external resistor. We end this chapter by investigating at what
parameters patterns appear and discuss how the valence band hole
dynamics influences the spatial coupling.

The results in this chapter were in part published previously in
Ref. [107] and in Ref. [120]. The protocol for measuring the dissolution
valency was developed in part together with Anton Tosolini during
his Master’s thesis [146] which was supervised as part of this thesis
project. The discussions regarding the dissolution valency based on
the experimental work presented here relies in part on work made in
collaboration with Munir Salman who developed the model presen-
ted in Ref. [120] in parallel to this work. Preliminary work on the
oscillations without external resistor and the measurements regarding
parameter gradients across the WE were done by Richard Hueck dur-
ing his Master’s thesis [49] which was also supervised as part of this
thesis project.

3.1 slow cyclic voltammogram

We showed in Ref. [106] that when performing a sufficiently slow
CV, i.e. sweeping the applied voltage linearly versus time between
two set voltages, the resulting quasi-static state constitutes a good
approximation to the steady state of the system. In particular it was
found that the NDR branch of the CV is stable and hence that it also
constitutes a steady flow state. However, further insights into exactly
what the physical properties of the steady flow state are were not
investigated. We start this section by looking closer at the CV and
demonstrating that it is indeed a good approximation to a steady state
on the NDR branch. We then increase the applied potential and look
closer at the part of the CV where minor oscillations can be seen and
confirm that these are in fact oscillations that remain stable when the
potential is held constant even without an external resistor, contrary
to what was previously assumed.

Fig. 3.1 shows an exemplary, slow CV of the Si-system using a p-
doped silicon electrode. Note that the CV looks the same for highly
illuminated n-doped silicon, with the exception of a few hundred
mV shift on the voltage axis corresponding to the difference in Open
Circuit Potential (OCP) [69, 107].

The CV can be divided into four main regions: first, the region be-
low the peak denoted as U1. The peak itself is associated with the
formation of pores [37, 68] in the silicon and the change from mainly
divalent to tetravalent oxidation [33]. Second, the region between U1

and U2, the so-called electropolishing branch. At voltages below the
peak denoted as U2, the chemical etching is faster than the electro-
chemical oxidation resulting in a practically oxide free electrode and a
current that increases with increasing voltage. This is different in the
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Figure 3.1: CV of a p-Si electrode (5-25 Ωcm) in an electrolyte of 0.06 M NH4F,
pH 1. Scan rate: 2 mV/s. The borders of the NDR branch are
marked by the arrows U2 at 1.75 V vs SHE and U3 at 2.75 V vs SHE,
U1 marks the transition to the mainly tetravalent regime.

third region, the NDR branch between U2 and U3 where an oxide layer
starts to form, and in the fourth region, the region above U3 where the
oxidation current is limited by how fast the oxide is etched. Since the
etching is purely chemical, the current becomes practically independ-
ent of the applied potential in the forth region up to approximately 7 V
where it starts to increase slightly, most likely due to morphological
changes.

The region, up to U2, has been studied to quite an extent, see
Ref. [160] for an overview, and will not be further investigated here.
We will instead start by turning our attention to the NDR branch
between U2 and U3 and then continue to higher potentials.

3.2 negative differential resistance branch

Once the applied voltage is higher than U2 the current starts to de-
crease with increasing voltage, i.e. we observe a Negative Differential
Resistance (NDR). The exact physical reason why this happens was
hitherto unknown and even more surprising, no one knew if this
branch is stable or not. We investigated whether the branch remains
measurable due to the finite scan rate or if it is in fact an equilibrium
branch in Ref. [106]. It was found that the NDR branch is indeed a
stable steady state and here we have reproduced these results, with
additional measurement points.

In order to measure this, we drove the system into a neighbouring
state via a faster CV, stopped the scan, and then kept the applied
voltage constant.
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Figure 3.2: 20 mV/s CVs of p-Si in a fluoride containing electrolyte (cF =
0.05 M, pH 2.3) scanned to different voltages (see legend) and
then held at the respective voltage. (a) Current density vs time.
(b) Ellipsometric intensity signal minus the ellipsometric intensity
signal at the steady state at the start of the scan. (c) Current
density vs applied voltage, compared to a 1 mV/s CV (p-Si (111),
5-25 Ωcm).

In Fig. 3.2 a scan rate of 20 mV/s was used and the voltage was held
at constant values on the upward scan when the desired value for the
applied voltage was reached. We show the current j vs time and the
spatially average ellipsometric intensity ξ vs time in Fig. 3.2 (a) and (b),
respectively. To attain an initial reference value for the ellipsometric
intensity signal these measurements were initialised by jumping from
OCP to an arbitrary point on the electropolishing branch between
U1 and U2, here 0.65 V vs SHE1, and holding the potential fixed at
this value for 30 s. In Fig. 3.2 (b) the initial reference value has been
subtracted and the resulting ellipsometric intensity signal is shown. It
can be seen that once the scan is halted, both the ellipsometric intensity
signal and the current density reach a steady state almost immediately.
Upon very close inspection we also see a short transient oscillation
for higher potentials, especially for the measurement that was held at
2.75 V vs SHE. Note that these transient oscillations are different from
the noise seen at lower potentials. The transient oscillations can also
be seen in the ellipsometric intensity signal, albeit not as clear since
the signal simultaneously increases slightly on average.

1 This value was chosen due to its reproducibility and fast transient
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In plate Fig. 3.2 (c) the current density is plotted against the applied
voltage together with a 1 mV/s CV. Here, one can clearly see that
the steady states that the system settles in after the initial transients
have decayed do indeed coincide with the slow CV. Hence, we have
reconfirmed two things. The NDR branch is a stable branch of the
system and the slow CV (1 mV/s) presented here is a good approx-
imation of it. Notably, at lower applied potentials the system shows
an exponential decay in the current and settles at the steady state
almost immediately. This non-oscillatory transient indicates that in
this part of the parameter space the stationary state is a stable node.
At slightly higher potentials, where we see the transient oscillations,
this node-like behaviour changes, and the stationary state becomes a
stable focus.

3.2.1 Physical Mechanism Resulting in the NDR Branch

As for the question "What physical processes lead to the NDR be-
haviour?" or "Why does a passivating oxide layer start to form?" we
turn to the model by Salman et al. [120]. We, the authors, presented a
model which aims to explain why the current decreases with higher
potential in the NDR region. The underlying idea of the model is that
the etch rate depends on the degree of oxidation of the silicon oxide
layer. The model predicts that a higher applied voltage leads to more
fully oxidised silicon. Since we assumed that the fully oxidised silicon
is etched more slowly the current would then decrease with increasing
applied voltage resulting in a NDR.

To better understand how this can come about we look at Fig. 3.3
where a schematic band diagram is sketched together with the three
main steps in the electrodissolution of silicon as assumed in the model.
The first step is the electrochemical oxidation step at the silicon silicon-
oxide interface. Here the silicon can be partially oxidised (SiO) or fully
oxidised (SiO2). The second step takes place inside the oxide layer
and consists of the chemical reaction that further oxidises the partially
oxidised SiO formed in step 1 to SiO2. Note that the reaction presented
here is a simplification that does not take any sub-steps into account.
Also note that these reactions lead to good predictions but that it
might also be possible to use reactions with e.g. OH− and Si(OH)x

2

instead of O2− and SiOx. The third and final step is the chemical
etching of the oxide at the oxide-electrolyte interface. This is where the
main idea of the model comes into play; SiO is assumed to be etched
faster than SiO2. Note also that the model assumes that the reaction
leading to O2− ions entering the oxide layer is very fast compared to
the transport of the ions in the oxide and that the chemical potential
of the O2− ions at the oxide-electrolyte interface is prescribed by the
electrolyte.

2 Compare to Eq. (2.1) and Eq. (2.2)
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Figure 3.3: Schematic band diagram of the model presented in Ref. [120],
not to scale. Note that the bandgap of SiOx (solid black line) is
smaller than that of pure SiO2 (dashed black line) [75].

Next, we take a look at what happens to the current when we
increase the potential: increasing the potential first leads to a higher
electric field and thus to more O2− ions at the silicon silicon-oxide
interface. This means that both reactions in step 1 increase. This then
leads to a thicker oxide layer. A thicker oxide layer means that the
ratio of the rates of step 2 and step 1 increases or in other words that
on average we see a higher degree of oxidation. Here, a higher degree
of oxidation means that the amount of silicon oxide that has been
fully oxidised increases and that the dissolution valency approaches 4.
Since the main assumption was that fully oxidised silicon is etched
more slowly this higher degree of oxidation would mean that step 3

becomes slower, in turn, resulting in a lower equilibrium current.

3.2.2 Dissolution Valency

One way of testing this model is to measure the dissolution valency
along the NDR branch. Does it increase with increasing applied voltage?

We first turn to the literature. As mentioned in Chapter 2.1, the idea
that there are two different oxidation processes, leading to different
dissolution valencies, was first suggested by Uhlir [149] and Turner
[148]. They claim that there is one divalent and one tetravalent oxida-
tion process and both found that the mechanism changes from being
mainly divalent to being mainly tetravalent at the first peak of the CV,
marked with U1 in Fig. 3.1, something that was later confirmed by
Memming and Schwandt [84]. Going to voltages above U1, Eddowes
[33] preformed coulometric measurements in combination with meas-
urement of sample weight-loss. He found that the dissolution valency
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increased from around 2 at U1 to approximately 3.6 at the plateau U3.
This supports the model but one should note that the CVs measured by
Eddowes have a slightly different shape and a very steep NDR branch.
The steep NDR branch could be the result of a possible resistance in the
system. As the NDR branch is so steep, there is only one measurement
point that can be said to lie within this voltage region and it is difficult
to give a conclusive statement regarding the exact dissolution valency
along the NDR branch.

As can be seen above in Eq. (2.1), the divalent process is accompan-
ied by hydrogen evolution whereas the tetravalent one takes place
without any hydrogen evolution. Stumper et al. [19, 140] made use of
this fact and confirmed the findings by Eddowes by performing hydro-
gen detection measurements during CVs with a scan rate of 10 mV/s,
using a rotating ring disk electrode (RRDE) set-up. Schönleber et al.
[128] also performed hydrogen detection measurements during a CV

(5 mV/s) in a flow cell and found similar dissolution valencies. They
measured the hydrogen evolution during the upwards scan. The res-
ults in these papers have a high resolution in the potential direction
on the NDR branch. The issue now instead lies in the scan rate being
fast on the time scale of the formation and dissolution dynamics of
the oxide layer. Problems arise when scanning with a scan rate that
is so fast that the system does not have time to settle in its steady
state. In Fig. 3.4 the CV from Fig. 3.1 is compared to the slightly faster
CV that Schönleber et al. measured [128] whilst determining the H2

production.

Figure 3.4: Black: CV, 2 mV/s, stirred (p-Si (111), 5-25 Ωcm). Red: CV, 5 mV/s,
flow cell, data from [128] (p-Si (100), 10-20 Ωcm). Both measure-
ments in an electrolyte with pH 2.3 and cF = 0.05 M.

As can be seen, there is a hysteresis between up-scan and down-scan
in the faster, 5 mV/s, CV indicating that the system did not have time
to settle in its real steady state during the H2 measurement since they
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were performed during the upwards scan. Note that the difference
in absolute value between the CVs in Fig. 3.4 most likely comes from
a difference in the mass transport of the educt and possibly from
the different crystal orientations and resistivities. The change in mass
transport stems from differences in the cell geometries.

The hysteresis has been shown to increase with higher scan rates
[106, 159] and hence we assume that the H2 measurements by Schön-
leber et al. as well as the measurements by Stumper et al. (even faster
scan) were not conducted in a quasi-stationary state.

Hence, the measurements in the above mentioned references are
either lacking in resolution in the potential direction [33] or are not
measured in a steady state [19, 128, 140].

Since we have confirmed that the states along the NDR branch of the
CV are in fact stable, can we overcome these problems and measure
the dissolution valency in a steady state in this region with a sufficient
resolution in the potential direction?

Yes. In order to determine the dissolution valency of the silicon at
different applied potentials we measured the current density j, and the
etch depth x, at constant applied potentials. With these two variables
the dissolution valency was calculated using the following relation:

ν =
mSi

xeρSi

∫
j dt, (3.1)

where e is the elementary charge, mSi is the mass of a silicon atom
(28.0855 u), and ρSi is the mass density of bulk silicon (2.3290 g/cm3).

In order to measure the etch depth we use the method described
in Sec. 2.5. The measurement protocol consisted of two steps: first, a
20 mV/s CV in order to confirm that the fabrication was not flawed
and second, a jump in potential from OCP to a fix potential which was
then held for approx. 104 s.

An average etch depth of the type of CV that was conducted at the
start of each measurement was determined in separate measurements
and we corrected for it in order to not overestimate the etch depth in
the steady state. During the evaluation a correction was also made for
the slight height difference stemming from the slight etching of the
Si3N4. Samples from two different wafer-batches were used. Since it
is possible that minor production errors might have an effect on the
Si-Si3N4 interface, care was taken to use different average etch depths
of the initial CVs when evaluating the different sample batches.

The measured dissolution valencies are shown in Fig. 3.5.
The dissolution valency increases strongly from around 3.2 directly

above U1 to 3.7 at U2 and then to about 3.8 at U3.
In order to compare the measured values to previous literature

values, the same data is shown in Fig. 3.6 together with the data
measured by Schönleber et al. [128].

The average etch depth of the initial 20 mV/s reference CV from
0.65 V vs SHE to 6.65 V vs SHE and back was found to be 90 nm for the
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Figure 3.5: Dissolution valencies ν measured ex-situ using the photolitho-
graphic method shown superimposed on a 2 mV/s CV, (p-Si (111),
1-10 Ωcm, pH 2.3 cF = 0.05 M.

Figure 3.6: Comparison of dissolution valencies ν measured with the photo-
lithography method (red) (p-Si (111), 1-10 Ωcm) to the dissolution
valencies measured by Schönleber et al. [128] (p-Si (100), 10-
20 Ωcm) (blue), both superimposed on a 2 mV/s CV.



3.2 negative differential resistance branch 28

fist wafer and 80 nm for the second wafer. The average etch rate of the
Si3N4 was found to be 5 nm/h. The errors bars are calculated from the
error in the surface profiler data.

3.2.3 Discussion

The above presented dissolution valencies are in good agreement
with the literature. Our values are slightly higher than the previously
reported ones but show a similarly increasing slope in the NDR region
(cf. Fig. 3.6). We can be confident that our measurements are reliable
since they were performed after the system had attained a stationary
state, not during a potential scan. It is reasonable to assume that the
slightly higher dissolution valencies could in part be explained by the
fact that most measurements presented in the literature were carried
out in non-steady states. A measurement that is conducted out of the
steady state gives a false dissolution valency for the corresponding
applied voltage. For example, if one measures the valency during the
upward scan of a fast CV, cf. Ref. [130], the oxide layer will be slightly
thinner, corresponding to the state at a lower potential. This roughly
corresponds to a shift of the dissolution-valency curve from Ref. [130]
in Fig. 3.6 to higher potentials compared to the actual stationary value.
Correspondingly, one would need to shift the curve to lower potentials
to get the true valency.

As mentioned above, the measurements in Ref. [33], also performed
in a stationary state, lack in resolution in potential direction in the
NDR region. Our measurements are, in addition to measuring in the
steady state, measured with a sufficient resolution in the NDR region
to see the change of the dissolution valency within this region. Where
our method lacks is at lower potentials. It is ill suited to determine the
dissolution valency at lower potentials due to the porous nature of the
silicon at U1 [37, 68].

In addition to the above discussed measurements an attempt was
made to determine if any secondary process takes place, more spe-
cifically whether any H2O2 is produced or not. This could be the case
if, due to the formation of a pore in the silicon oxide or a very high
electric field in the double layer which occurs for thin oxide layers,
water would be oxidised to H2O2. If H2O2 would be produced the cur-
rent density in Eq. (3.1) would have to be corrected to a smaller value,
resulting in a lower dissolution valency. To determine if any H2O2 was
formed during the electrodissolution, we used a photometric method
as described in a standard procedure by the German Institute of Stand-
ardization (DIN 38 409 - 15) [32]. In short, the detection method is
based on the formation of the yellow TiO2+

2 complex when an aqueous
solution of TiOSO4 (Sigma-Aldrich, 1.9–2.1 %, for determination of
hydrogen peroxide (H 15), according to DIN 38 409, part 15, DEV-18)
is added to a H2O2 containing solution. The amount of H2O2 can
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then be quantitatively determined using a UV-VIS spectrometer. The
detection limit of our spectrometer lies at intensities corresponding to
ca. 0.1 mM. After electrolysis at 2 V vs SHE for 1.1 · 104 s in a smaller
cell (PCTFE, three separate compartments, 4 ml WE-compartment, see
Ref. [161] for details on the cell) and adding 1 ml TiOSO4 solution
no change in light-adsorption was detected. Hence, we conclude that
less than 0.1 mM H2O2 is produced. 0.1 mM H2O2 corresponds to a
faradaic efficiency of 3.3% and would reduce the above measured
valency at 2 V vs SHE by approximately 0.12. This is an upper limit of
the effect of H2O2 production on the valency and it is comparable to
the error of the surface profiler.

3.3 oscillations without external resistance

Leaving the potential region of the NDR branch for slightly higher
potentials we see that upon closer inspection of the CVs in our base
electrolyte (pH 1), cf. Fig. 3.1, the plateau current is superimposed on
small oscillations in a wide potential window. To test for the stability
of these oscillations, we performed potential step experiments from
the OCP to a potential value within the region where the oscillations
can be seen in the CV. Three such experiments are depicted in Fig. 3.7
for potential steps to 3.15, 4.65 and 7.65 V vs SHE. The respective two
upper graphs show the time series of the current density (left) and
the spatially average ellipsometric intensity (right) after the potential
jump. The left graph below depicts a 2D ellipsometric snapshot of the
electrode, and the right one a one-dimensional cross section through
the ellipsometric images versus time. Clearly, in Figs. 3.7 (a) and (c)
the oscillations are damped, while in (b) we see small amplitude
oscillations that persist over several thousand seconds and acquire a
stable amplitude.

This is surprising. It was previously thought that the oscillations
could only be stabilised by adding an external resistor in series with
the WE [26]. Here we see that in this electrolyte the system exhibits
stable oscillations even without the insertion of an external resistor.

In this region of sustained oscillations without an external resist-
ance phase waves usually emerge on the electrode, as can be seen
in the ellipsometric image of Fig. 3.7 (b). As a consequence, the local
oscillation amplitude of the ellipsometric intensity was larger than
the average one. In Fig. 3.8 the potential regions in which transient
and self-sustained oscillations were found are indicated by I and II,
respectively, with the borders between them shown as a hashed region.
The width of the borders indicate the uncertainty in the determination
of the threshold voltage. This uncertainty is due to the ever slower
damping as the transition to sustained oscillations is reached. The low
voltage border where damped oscillations start to exist could also only
be determined with a relatively large uncertainty as indicated by the
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Figure 3.7: Dynamics found in the different regions marked in Fig. 3.8. Cur-
rent density, j, and spatially averaged ellipsometric intensity, ξ,
(top) together with the ellipsometric intensity distribution on the
electrode and the temporal evolution of a 1D cut indicated in
the snapshot. (a) Damped oscillations at Uapp = 3.15 V vs SHE,
region I-a, snapshot at t = 1000 s. (b) Stable oscillations at
Uapp = 4.65 V vs SHE, region II, snapshot at t = 4000 s. (c)
Damped oscillations at Uapp = 7.65 V vs SHE, region I-b snap-
shot at t = 1000 s. All measurements with highly illuminated n-Si
(3.88 mW/cm2) in a 0.06 M NH4F solution (pH 1).
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Figure 3.8: Cyclic voltammogram (2 mV/s) of a p-Si electrode in a 0.06 M
aqueous NH4F electrolyte, pH 1. Region I-a and I-b indicate the
voltage regimes where damped oscillations were found. Region
II indicates where sustained oscillations were found. Hashed
regions indicating the approximate borders between the different
regions.

width of the hashed lines. This is the same transition from a node-like
behaviour to a focus-like behaviour we saw in the measurements for
determining the stability of the NDR branch, cf. Fig. 3.2. Note however
that the electrolyte used in Fig. 3.2 was different. In Fig. 3.9 the same
type of measurement as in Fig. 3.7 (b) is presented, but with the same
electrolyte as in Fig. 3.2 with 0.05 M NH4F and a calculated pH of 2.3.
Here, no stable autonomous oscillations were observed without an
external series resistor (neither with n- nor with p-doped Si electrodes)
confirming findings in the literature [26]. Note the finer colour scale
compared to Fig. 3.7. Clearly, both the spatially averaged signal and
the spatially extended signal show a continuous damping, in contrast
to the behaviour in Fig. 3.7 (b). In other words, for this measurement,
as well as in all other measurements in the electrolyte with 0.05 M
NH4F and pH 2.3, the system eventually reached a stationary state.
No stable oscillations are found and region I-a reaches all the way to
region I-b.

3.3.1 Spatial Pattern Formation

In previously published measurements on pattern formation during
the photo-electrodissolution of n-Si a linear global coupling in the
form of a resistor in series with the WE has typically been used [87,
88, 124, 125, 130]. In addition to the possible introduction of the linear
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Figure 3.9: Current density, j, and spatially averaged ellipsometric intensity, ξ,
(top) together with the spatially averaged ellipsometric intensity
distribution on the electrode at t = 4000 s and the temporal evolu-
tion of a 1D cut indicated in the snapshot. Uapp = 4.65 V vs SHE,
highly illuminated n-Si (3.88 mW/cm2) in a 0.05 M NH4F solution
(pH 2.3).

global coupling a second type of coupling mechanism was present in
these studies. This second type of coupling was induced by the fact
that in all of them the illumination intensity was reduced in such a
way that the total current was cut off due to the limited generation
of holes in the valence band. This restriction of the current lead to a
nonlinear coupling with an—at least partly—global character, seeing
as the total current is determining its strength [124].

In the previous section we demonstrated that the sustained oscilla-
tions obtained in our base electrolyte emerge even without an external
series resistance. Therefore, we are now in a situation in which we can
study the influence of the spatial coupling induced when lowering the
illumination without the simultaneous presence of the linear global
coupling brought about by the ohmic series resistance. We will also
see that the electrodes splits into different regions even without an
illumination limited current plateau meaning that the nonlinear coup-
ling through the valence band holes does not have to be strictly global
for patterns to emerge.

While, when we omit the external resistor, reducing the illumination
intensity always induced the spontaneous formation of regions with
different oscillatory dynamics, the specific characteristics of the emer-
ging pattern sensitively depended on the value of the illumination
intensity.

An example where different oscillatory dynamics emerges can be
seen in Fig. 3.10. Here, the global time series of current and spatially
averaged ellipsometric intensity become irregular. The temporal evol-
ution of the 1D profile suggests that there is an almost periodically
oscillating region with a somewhat higher mean amplitude, flanked
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by incoherently oscillating regions. As such this state is reminiscent of
a chimera state.

Figure 3.10: Current density, j, and spatially averaged ellipsometric intensity,
ξ, (top) together with the ellipsometric intensity distribution on
the electrode at t = 126 s (indicated by dashed line in in the top
right panel) and the temporal evolution of a 1D cut indicated
in the snapshot. Uapp = 4.65 V vs SHE, illumination intensity
0.34 mW/cm2, 0.06 M NH4F, pH 1.

If the illumination intensity is lowered even further, below a critical
value where the amount of available holes no longer suffice to uphold
an oxide layer, both the oscillations and the patterns vanish. Instead,
the system attains a uniform steady state with a high current density.
Fig. 3.11 depicts how the current density and the spatially averaged
ellipsometric signal developed immediately after lowering the illumin-
ation intensity during a measurement from a high value, where the
system oscillated (cf. Fig. 3.7 (b)), to an illumination at which the oxide
layer was no longer stable. Note that the current is limited during part
of the oscillation but that the limit increases as the oxide layer, as meas-
ured by the ellipsometric intensity signal, withdraws from the surface.
In the temporal evolution of the 1D cut as well as in the snapshots
we see that the initially approximately uniform oxide layer quickly
develops two regions with different mean thickness, one of them again
being incoherent in space and time, before a uniform state with low
ellipsometric intensity signal and a high current density spreads over
the entire surface. The transient dynamics seem to traverse through
the dynamic states that are stable in an interval of a somewhat higher
illumination intensity. In other words it seems plausible that it might
be possible to observe a stable state with dynamics reminiscent of
the transient dynamics at slightly higher illumination intensities. This
would be especially interesting due to the chimera like transient seen
at up to 450 s in the 1D cut.

To recapitulate, we have demonstrated that a lower but uniform
illumination intensity induces the formation of spatial patterns or
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Figure 3.11: Current density and spatially averaged ellipsometric intens-
ity (top), 1D temporal evolution of the ellipsometric intensity
signal at the cut indicated in the snapshot (middle) together
with the ellipsometric intensity distribution on the electrode
at three instances in time (t = 0 s, t = 185 s, t = 900 s) (bot-
tom). Uapp = 4.65 V vs SHE, illumination intensity 0.25 mW/cm2,
0.06 M NH4F, pH 1.

domains with different dynamics, whereby one of them might oscillate
incoherently in space and time, being reminiscent of a chimera state.

A different way to probe the influence of the illumination intensity
is to only illuminate a part of the electrode. In this way, a gradient
in the density of valence band holes is created at the boundary of
the illuminated region such that we can expect an outward flow of
holes, which mimics a gradient in the illumination intensity, and
thus again sheds light on the role of the spatial coupling through
charge carriers in the semiconductor and its interaction with the oxide
formation/dissolution dynamics.

Fig. 3.12 shows one such example measurement. Here, the opening
of the circular aperture in the illumination path (cf. Fig. 2.1) was
adjusted to a narrower opening so that only approximately the part
of the electrode inside the area indicated by the dashed circle was
illuminated. The illumination intensity was set to a level below the
high illumination level of Fig. 3.7 and above the level necessary for
creating multiple domains. Under these conditions, concentric waves
of slightly higher ellipsometric intensity propagated from the rim of
the illuminated circular region towards its centre. In the course of
time, the border from which these waves emerged withdrew slowly
towards the centre, Fig. 3.12 depicting a situation after about half an
hour, the outer illuminated ring now taking on a constant value in
the ellipsometric intensity. Here, the temporal average of each pixel
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is subtracted such that all non-oscillating parts of the electrode are
set to 0. We note that after about 8 hours the illuminated surface
became uniform and the dynamics stationary, however, due to the
enormous duration of the experiment in which one can expect also
minor changes in electrolyte composition and possibly also other
parameters (e.g. temperature) it does not seem to be sensible to further
interpret this result.

Figure 3.12: Resulting 1D temporal evolution of the ellipsometric intensity
when only the centre part of the electrode was illuminated,
together with the ellipsometric intensity distribution on the
electrode (t = 1730 s, t = 1745 s, t = 1760 s). The illuminated part
is indicated by the dashed circle in the left most snapshot and the
1D cut is indicated in the middle snapshot. The temporal average
of each pixel was subtracted. Uapp = 4.65 V vs SHE, illumination
intensity 0.78 mW/cm2, 0.06 M NH4F, pH 1.

3.3.2 Discussion

The ellipsometric snapshot in Fig. 3.7 shows that in contrast to findings
in the presence of an external resistance [87, 88, 124, 125, 129, 130],
the oscillations were accompanied by wave like structures, apparently
propagating across the electrode. This is true for p-type as well as
highly illuminated n-type Si. In successive experiments with different
samples the orientation of the waves was always the same. Further-
more, the wavelength decreased over time. We attribute these waves
to a slight parameter gradient in the system that, in turn, induces a
slight gradient in the frequency distribution which implies that the
apparent waves are phase waves.

To investigate if the origin of the phase waves was related to con-
nection between the back contact and the wire we used a Cu sheet
to bring them in electrical contact, using Ag conductive paste over
the entire area of the electrode. Since the phase waves persisted we
consider it unlikely that the parameter gradient is caused by the back
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contact. In addition, when rotating the electrode by 180◦, the phase
waves kept their apparent propagation direction in the laboratory
frame. Therefore, we also exclude an inhomogeneity in the doping
level. Since we observed the phase waves for p-doped silicon which
we do not need to illuminate for anodic potentials, we can exclude
possible inhomogeneities in the illumination as well. Furthermore, the
phase waves did not seem to be related to the position of the circular-
shaped counter electrode. They existed in stagnant as well as in stirred
electrolytes but upon changing the position of the magnetic stirrer,
thereby influencing the direction of flow of the electrolyte across the
WE, we could observe that the apparent direction of propagation of
the phase waves changed. When we increased the rotation speed of
the magnetic stirrer the phase waves also became less pronounced.
This leads us to believe that the parameter gradient is likely a gradient
in the concentration of the etchant species.

It should also be noted that we could measure the oscillations with
a rotating disk electrode configuration (AFM-SRCE, Pine Research
Instrumentation, Inc.) as well. This was done in a three-electrode set-
up in a custom made, gas tight, polymethylmethacrylate (PMMA) cell
with two compartments using a 5 mm diameter p-Si disk mounted on
a copper cylinder as in the experiments in Ref. [58]. Using the RDE set-
up we test yet another geometry, giving rise to yet another transport
mechanism of the electrolyte to the electrode surface. However, this set
up did not allow for in-situ monitoring of the surface. If we look at the
global current density, see Fig. 3.13, we observe a beat like oscillation.
This indicated that also with this transport mechanism the dynamics
was made up of more frequencies. The long period of the envelope
(approx. 2000 s) indicates that the frequencies only differ by roughly
0.5 mHz.

Figure 3.13: Current density, j, in a rotating disc electrode set-up (2000 RPM)
with p-Si in a 0.06 M NH4F solution (pH 1).
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Another likely possibility for the parameter gradient appears to be
an influence of the insulation border from the silicone seal. Regardless,
our interpretation of the waves-like structures as phase waves suggests
that under perfectly uniform parameter settings the oscillations would
still persist and be uniform.

This means that our experiments present evidence that the an-
odic oxidation of Si in fluoride containing electrolytes may exhibit
autonomous oscillations at high anodic voltages, even when there is
no external resistance present. This allows us to investigate spatial self-
organisation on the electrode surface in the oscillatory region without
the presence of a linear global coupling. The linear global coupling is
known to act synchronising for sinusoidal oscillations close to a Hopf
bifurcation but might lead to cluster formation if the global coupling
function contains higher harmonics [98]. Here we have seen that even
without the linear global coupling patterns form on the electrode
once the illumination intensity is lowered. At a threshold intensity
the electrode splits into domains with distinct temporal behaviour
pointing to a spatio-temporal bifurcation induced by a destabilizing
action of the spatial coupling. Since the illumination determines the
number of electron-hole pairs generated, and at least the first step
of the oxidation of Si involves a valence band hole, a change in the
illumination intensity affects the spatial coupling through diffusion (or
migration) of holes. As long as the oxidation current is limited by the
etch rate or, equivalently, by migration of ions through the oxide, the
dynamics is insensitive towards fluctuations of the concentration of
holes at the silicon silicon-oxide interface. However, when the internal
photon flux (i.e. the flux corrected for reflection losses) comes close
to the faradaic charge carrier flux, i.e. when the momentary internal
quantum efficiency Φ3 approaches 1, Si atoms in the silicon silicon-
oxide interfacial region start to compete for holes. Any lateral hole
concentration difference are being translated into both different local
hole capture-rates and a lateral hole flux.

For the case where the entire electrode is uniformly illuminated
we see that the formation of patterns only took place at relatively
low illumination intensities, i.e. when Φ is considerably larger than
1. For example, in the experiment shown in Fig. 3.10, the average
value of Φ was approximately 2. Therefore, charge carriers not created
through the absorption of a photon must be involved in the oxidation
process. Under our experimental conditions, it seems to be most
likely that these are valence band holes that are created through
tunnelling of valence band electrons into the conduction band. Note
that a quantum efficiency larger than 1 during Si electrodissolution
in NH4F electrolyte was reported before but then at low voltages

3 In the following we calculate the internal quantum efficiency at illumination intensity
Iill and current density j as Φ = jEph /

(
[1 − R] · Iill

)
and approximate the reflectivity

of the electrode for photons with the energy Eph = 1.96 eV as R = 0.3 [28, 110]
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where the Si surface is not covered by an oxide [72]. At those voltages
the photocurrent multiplication could be explained by the injection
of electrons into the conduction band of the dissolving Si atoms. A
value of Φ ≈ 2 signifies that at least two charge carriers that are not
generated through photon absorption are involved in the four-electron
oxidation of a Si atom. Despite this change in the hole generation
mechanism, the overall rate of oxidation is still the same as at high
illumination intensity and the oxide layer (as approximately measured
through the ellipsometric intensity) is hardly affected in thickness or
quality. These considerations are in agreement with the assumption
that the spatial instability is induced by lateral coupling between
different parts of the electrode through diffusion and migration of
holes (hole-transport induced spatial instability).

At even lower illumination intensities, oscillations and patterns oc-
curred only transiently (cf. Fig. 3.11), the system attaining a steady
state with a higher current density. Here, the initial mean current
density, which is close to the dry oxide plateau current density bey-
ond U3, corresponds to Φ ≈ 2.8. This value increased to 3.6 at the
attained current density. Lowering the illumination intensity changes
the photodissolution of Si from etch rate limited to kinetically limited,
inducing a feedback loop: a decrease in the hole concentration (due to
the lower illumination intensity) slows down the oxide formation rate,
disturbing the balance between oxide formation and dissolution in
favour of a faster dissolution. This, in turn, results in a thinner oxide
layer that promotes the generation rate of charge carriers in the dark,
and therewith a higher current density. Hence, we suggest that the
steady state current density well above the value of the plateau current
at high illumination intensity most likely implies a transition to an
oxide free state similar to the one between U1 and U2.

This picture is supported by the experiments in which only a circu-
lar region of the electrode was illuminated, cf. Fig. 3.12. As long as
the illumination intensity was high enough to allow for an internal
quantum efficiency (related to the mean current density) considerably
below 1, phase waves developed within the illuminated circle identical
to the ones found when the entire electrode was illuminated. Only
when Φ calculated from the mean current approached 1 did the out-
ward flow of holes affect the dynamics inside the illuminated region
and concentric waves emerged from the illuminated rim propagating
towards the centre. Fig. 3.12 depicts an example with Φ ≈ 0.9, where
the phase waves were replaced by such a border induced target wave
pattern.

It is of interest to look at the relative etch rate and the surface profile
of the electrode after a long measurement where only part of the
electrode was illuminated. In Fig. 3.14 such a profile, measured as
described in Sec. 2.5, along the middle of the electrode is shown.
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Figure 3.14: Surface profile of the electrode after the measurement shown in
Fig. 3.12. The outer regions were used as reference points.

Region (a) (green) shows the approximate region that was illumin-
ated. The profile shows the etch depth relative to a reference point
chosen at the outer parts of the electrode. Starting at the centre in
region (a) (green) we see the etch depth remains constant throughout
this region. It then increases abruptly and is maximal at the begin-
ning of region (b) (red). Within this region the etch depth decreases
steadily in radial direction before it abruptly decreases as we leave the
region. The outer most region, region (c) (blue), is characterised by its
lower etch depth and a rougher surface which also shows macroscopic
pores. The rough features in the profile are enhances due to the lateral
resolution of the profilometer and do not reflect the size of the pores.
The lack in resolution also makes the transitions between the regions
appear smoother.

Let us now look closer at the current in the three regions. Assuming
that we are in a region where there are enough holes and thus that the
current is etch rate limited, then a deeper relative etch depth means a
higher etch rate and in consequence a higher average current. Hence,
in the illuminated region (a) where the influx of photons is high and
there thus is an abundance of holes, the average current is the same
at each point in space. In region (b) the amount of holes is limited
and depends on the outward flow of holes from region (a) into region
(b). Thus, it seems likely that we are in a region where the current is
hole limited, resulting in a decrease of the average current in radial
direction within region (b). This matches the decrease in etch depth
within region (b). In region (c) the correlation between the measured
etch depth and the average current no longer holds due to the rough
surface and macroscopic pores.

The sharp increase in etch depth as we transition from region (a) to
region (b) might at first seem surprising, how can the average current
increase with a decreasing amount of holes? Recall the transition
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shown in Fig. 3.11. There too, a decrease in illumination intensity
leads to an increase in current density. Most likely this happens since
there are not enough holes left to uphold a stable oxide layer. The
oxide layer is thus etched away and the reaction at the oxide free
surface yields a higher current density.

With this in mind we can correlate the different regions on the
surface of the partially illuminated electrode to different parts of the
CV, cf. Fig. 3.1. Region (a), behaves as the electrode does when it is
uniformly illuminated with a high intensity, i.e. it has the same local
dynamics as the one found in region II in Fig. 3.8. Further out along
the profile, but still in region (a), the electrode does not oscillate any
more, cf. Fig. 3.12, but still has the same average etch rate and current
density. This means that we have suppressed the oscillations without
changing the average current density, so-called amplitude death [121].
Hence, we speculate that the local dynamics here is similar to the
one found in region I-a in Fig. 3.8. As we move further out along
the electrode surface and transition from region (a) to region (b) we
see the abrupt change in etch depth and hence in current density. As
mentioned, this is probably due to the lower hole concentration that
is likely to locally lead to the same kind of transition as in Fig. 3.11.
Hence, we can assume that the final local state in this region is the
same as the one in 3.11. As mentioned above it does not seem too
far fetched to assume that we have a local dynamics that is similar to
the one on the left branch of the CV between U1 and U2. This would
mean that the local dynamics are now restricted by the local hole
concentration. Hence, assuming that the hole concentration decreases
in radial direction, our hypothesis is strengthened by the decrease
in etch depth (and current density) in radial direction within region
(b). The further out we come in region (b) the fewer holes and thus a
lower current density on average meaning that less of the electrode
has been etched away. Taking it one step further it seems plausible
that the local dynamics in region (c) is similar to the one at U1, seeing
as both form macroscopic pores, thus corroborating our hypothesis
again. Note, however, that a change in illumination intensity is not
trivially linked to a change in potential drop across the electrode and
that this mapping of local dynamics to the fundamental behaviour in
the highly illuminated case is speculative.

3.4 conclusion

In this chapter we have discussed two main findings, the stability
of the NDR branch and the stability of oscillations without a global
coupling.

We confirmed that the NDR branch is indeed stable which allowed
for a steady-state measurement of the dissolution valency. The dissol-
ution valency was found to increase slightly in this region. We found
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that any secondary reaction resulting in H2O2 production does not
have enough impact to affect the measured valency appreciably. The
overall increase in the dissolution valency is minor and might not
suffice to confidently claim that it is the main reason for the NDR but
it at least suggests that the model presented by Salman et al. [120] is
plausible.

We demonstrated that, contrary to what was previously thought,
the electrodissolution of Si may exhibit autonomous oscillations which
are stable over several hours without an external series resistance or a
limited current. This means that we could eliminate the presence of the
global coupling mediated through the external control that had been
present in all previously published pattern formation experiments. We
could then exploit the illumination intensity as a bifurcation parameter
and conclude that patterns emerge when the illumination intensity is
lowered. Specifically, patterns emerge when the illumination intensity
is so low that the photon flux and the resulting current yield an
internal quantum efficiency Φ > 1. In contrast to previously published
patterns found in the Si electrodissolution system, the ones presented
here do not involve illumination limited current plateaus and are
found at different parameters. Yet, the electrode splits into different
domains with distinct dynamics, similarly to the patterns reported
in the literature. The patterns found here include states reminiscent
of chimera patterns, their mechanism of formation being one of the
crucial questions in nonlinear dynamics.

Hence, we have demonstrated that the spatial coupling through
valence band holes seems sufficient to cause the emergence of coex-
istence patterns, which is a first step towards the elucidation of the
properties of the spatial coupling.
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A D A P T I V E C O U P L I N G A N D M U LT I F R E Q U E N C Y
C L U S T E R S

Having established the most fundamental behaviour of our system in
the previous chapter, we now turn our attention to a more detailed
investigation regarding the emerging complex spatio-temporal beha-
viours. Since we now know that the movement of holes parallel to
the surface can constitute a nonlocal, spatial coupling we can take
a closer look at the impact of the strength of this coupling on the
dynamics. In this chapter, we specifically investigate the emergence
of self-organised multifrequency clusters from a uniform oscillatory
state when reducing the illumination intensity.

In the last chapter we noted that the effect of the reduced illumin-
ation and the coupling that it introduces depends on the internal
quantum efficiency which in turn depends on the value of the current
density. We also saw that the system exhibits phase waves when there
is no external resistance. The phase waves yield a lower current amp-
litude than when the electrode oscillates in a uniform state. In addition,
the formation of phase waves also means that the oscillation amplitude
of the current density depends on the length of the measurement. To
combat this inhomogeneity and ensure a reproducible initial state for
our investigation of the patterns we add a small external resistance in
series with the electrode—remembering the finding that the external
resistance is not necessary for the oscillations. The external resistance
acts as a global synchronizing force on the dynamics [61] and res-
ults in spatially uniform oscillations with an amplitude that does not
change with the length of the measurement. Hence, there are now
two dominant types of coupling present, a global synchronising coup-
ling and a long-range coupling through diffusion and migration of
valence band holes. Below we will argue that their interaction creates
a nonlinear, nonlocal coupling that, in turn, promotes the formation of
multifrequency clusters.

The results in this chapter were in part published previously in
Ref. [108].

42



4.1 background 43

4.1 background

At this point it is worth reminding ourselves that much of the dynam-
ics of oscillating systems as diverse as neural activities [38], electrical
power grids [5], multi-mode lasers [78], and Josephson junction ar-
rays [154] can all be understood within the common framework of
networks of coupled oscillators. These diverse applications render
the study of coupled oscillators an important discipline of nonlinear
dynamics. The overwhelming majority of previous studies consider
the case of a linear coupling. Only recently, the more general case of
nonlinear coupling has received increasing attention [20, 56, 87, 116,
122, 123, 125, 130, 142, 143]. It could be shown that this generalization
can produce genuine nonlinear coupling features. For example, the
case of global nonlinear coupling has been found to produce self-
organised quasi-periodicity in ensembles of phase-oscillators [116],
complex chimera states composed of (nearly) synchronised regions of
different mean frequencies and incoherent regions [20], or a variety
of coexistence patterns, including again chimera states [122, 123, 125,
130]. Another representation of nonlinear coupling is realised in net-
works of Kuramoto oscillators that are designed to mimic adaptive
neural networks [115]. In this type of model, recent studies predict
the emergence of multifrequency clusters even when the oscillators
are identical [15, 16, 54]. Until then, the existence of multifrequency
clusters was always linked to heterogeneous oscillatory systems with
some distribution of the natural frequencies [85, 90, 101, 102].

4.2 experimental findings

As in the previous chapter, the experiments were conducted with
an n-doped (1-10 Ωcm) Si (111) sample as the WE. The electrolyte
was our standard aqueous solution, containing 0.06 M NH4F and 142

mM H2SO4. Since we only used spatially uniform illumination we
illuminated the electrode with the linearly polarised He-Ne laser, and
adjusted the intensity with a linear polarisation filter, see Fig. 2.1.

The experiments were conducted with an applied potential of
4.15 V vs SHE with an external resistor with a resistance such that
Rext A = 1 kΩcm2. In this parameter range the oscillation amplitude
reacted very sensitively to any perturbation. This implies that the
spatial coupling of the oscillatory medium is strong. Here, a strong
coupling should be seen in contrast to a weak coupling, where a weak
coupling implies that there is a separation of the time scales of the
amplitude dynamics and of the phase dynamics. For a weak coupling
the amplitude would relax fast, resulting in a pure phase oscillation.

In the measurement presented below the applied voltage and the
external resistance were held at constant values and the illumination
intensity is used as our bifurcation parameter.
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Starting from an oxide free state at OCP we initialised the electrode
in a spatially homogeneous state via a potential step from OCP to a
constant applied voltage Uapp = 4.15 V vs. SHE at a high illumination
intensity. We then decreased the illumination intensity step by step. At
each step, we waited until transients had died out and then measured
the dynamics for 103 s.

Let us start with a brief overview of the dynamics at different
illumination intensities before looking at them in more detail. In
Fig. 4.1 (a) the initial state at a high illumination intensity is presented.

Figure 4.1: Dynamics found at four different illumination intensities: (a)
r = 5.97 mW/cm2, (b) r = 0.95 mW/cm2, (c) r = 0.80 mW/cm2,
and (D) r = 0.73 mW/cm2. Left: snapshot of the ellipsometric
intensity ξ (x, t = 807 s). Right: 1D spatio-temporal plot along the
respective dashed lines on the left. Electrode size: A = 12.19 mm2.
n-Si, Uapp = 4.15 V vs. SHE, pH 1, cF = 0.06 M.

The state is spatially uniform. In the 1D spatio temporal cut on the
right in Fig. 4.1 (a) we can see that the ellipsometric intensity is not
only spatially homogeneous at one instance in time but changes with
the same frequency along this exemplary cut. All in all it can be seen
that at a high illumination the oscillation is very ordered: it is spatially
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homogeneous and the oscillations are periodic with one clear main
frequency.

Here we should make a short detour back to the state shown in
Fig. 3.7 (b). Both the state presented here and the one presented in the
previous chapter are measured at high illumination and with similar
applied potentials. The main difference in the experimental conditions
between the two measurements is that here we have placed an external
resistor with a small but significant resistance in series with the WE.
This results in the difference in the outcome between the state with
the phase waves and this nicely ordered state, cf. Ref. [129, 130]. This
ordered state does, however, change when we lower the illumination
intensity.

Going back to the measurement at hand, we look at Fig. 4.1 (b)
where the illumination intensity has been reduced. We see that a
spatial symmetry breaking has occurred and that there are regions
that oscillate with a higher amplitude and others that oscillate with
a lower amplitude. This can be seen more clearly when looking at
the cut in Fig. 4.1 (b) where the amplitude in the more central part of
the 1D-cut has been suppressed compared to the state in Fig. 4.1 (a)
whereas the upper right corner preserves approximately the same
amplitude as before. So far, the oscillation takes place with the same
frequency on the entire electrode.

When lowering the illumination further we note that different re-
gions start to oscillate with different frequencies, see Fig. 4.1 (c).
Fig. 4.1 (c) shows that the electrode does not only exhibit regions
with different amplitudes but when looking at the 1D-cut it can also
be seen that the upper right region has a higher frequency than the rest
of the electrode. Lowering the illumination even further (Fig. 4.1(d))
we observe that the features from the state in Fig. 4.1(c) become even
more pronounced.

The difference in frequency becomes especially clear when compar-
ing the upper and lower part of the plot of the 1D-cut (Fig. 4.1 (d)).
Here pixels in the upper part complete almost 4 oscillations per 3

oscillations that pixels in the lower part complete. Furthermore, it is
also worth noting that the amplitude of the oscillations have been
suppressed in the middle of the electrode to such an extent that any
changes in the amplitude are effectively below our detection limit.

In order to better distinguish any features in the regions with lower
amplitude, we filtered the data both in temporal and spatial dimen-
sions as discussed in chapter 2.3.2.

4.3 amplitude , phase , and frequency

To better grasp the nature of the dynamics discussed in the last section,
we turn to the algorithm for calculating the analytic signal, described
in Chapter 2.3.2.
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Figure 4.2: Local dynamics of exemplary points marked in Fig. 4.1, same
parameters respectively, together with unit circle (dashed).

Let us start with looking at the analytic signal at the exemplary
points marked with circles in the snapshots in Fig. 4.1. In Fig. 4.2, we
have plotted the analytic signal at these points in the complex plane.
As expected the main properties of the states can be found here as
well, indicating that this is a reasonable representation. In comparing
the first two states, Fig. 4.2 (a)-(b), we can speculate how the amplitude
clusters have formed. In Fig. 4.2 (a) the analytic signal plotted in blue,
taken at the point marked with a blue circle in the upper right corner
of the electrode in Fig. 4.1(a), is a good representation of all points on
the electrode. In Fig. 4.2 (b) the amplitude of the analytic signal at this
point has increased slightly whereas the amplitude at an exemplary
point taken in the centre of the electrode (marked with a red circle in
Fig. 4.1 (b)) is clearly smaller, i.e. amplitude clusters have formed. This
indicates that the amplitude clusters emerge through a continuous
bifurcation, most likely a pitchfork bifurcation. In addition, we can see
that the phase portraits are slightly thicker, suggesting the presence of
an additional frequency. This is even more clearly visible in the red
signal but as we will see below (cf. Fig. 4.5), the dynamics at the blue
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point is also modulated. This, suggests that subsequently to the spatial
symmetry breaking a Hopf bifurcation took place. In Fig. 4.2 (c) the
broadening of the blue signal has increased so much that it is clearly
visible in this representation as well. In addition, the red trajectory
has decreased in amplitude to the point where we can no longer
discern any finer details. This trend continues and in Fig. 4.2 (d) the
amplitude of the red trajectory has become even smaller. The blue
trajectory has also decreased in amplitude. Considering that we noted
a different frequency in the lower left corner at the lowest illumination
(cf. Fig. 4.1 (d)) it is also of interest to look at an exemplary point
from this region. As can be seen in Fig. 4.2 (d) this point (yellow)
has a slightly larger amplitude than the first point (blue). However,
it is hard to discern whether the yellow trajectory winds around the
origin fewer times than the blue trajectory—thus indicating that the
frequencies would be slower—or not.

In order to make a quantitative statement regarding the frequency
we have to first take a closer look at the phase.

We start by defining the phase of the analytic signal so that it does
not live on a circle but instead on the real line, i.e., we unwrap the
phase by adding multiples of ±2π radians to the angle whenever
the phase difference between two consecutive points in time is larger
than π radians until the difference is less than π radians. This way of
defining the phase allows us to extract the dominant frequency ν (x)
at each point via a linear fit:

ϕfitted (x, t) = 2π ν (x) t + α, (4.1)

where α is a free fitting parameter

Figure 4.3: Local unwrapped phase (blue) with linear fit (red).

In Fig. 4.3 the phase of an exemplary point is shown together with
the linear fit. Note that this way of determining the frequency is not
necessarily the same as taking the average of the instant frequencies.
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Defining the instant frequency as the difference in phase of two con-
secutive points in time and dividing the difference by the length of the
time step ∆t, we see that the average of the instant frequencies would
be:

f̄ =
1

NT

NT

∑
i=1

fi =
1

NT

NT

∑
i=1

ϕi − ϕi−1

∆t
=

ϕNT − ϕ0

T
, (4.2)

where NT is the number of points in the time series and T is the total
duration of the time series. This would, in other words, be equivalent
to taking the total change in the phase and dividing by the total
elapsed time. This can capture the dynamics fairly well and is an
easy way of describing the dynamics under the assumption that the
frequency remains constant during the entire time series, that the
noise is low, and that the length of the time series is a multiple of the
oscillation period. If on the other hand the frequency changes, the
first and/or the last recorded point deviates from the rest of the time
series due to noise, or the length of the time series does not match the
average period, then the average frequency method as defined here
is ill suited. With this in mind we use the dominant frequency ν (x)
obtained from Eq. (4.1).

Having determined the time-series of the amplitude and of the
phase as well as the dominant frequency at each point we now return
to the exemplary states from Fig. 4.1 and look at the dynamics on the
entire electrode again.

In Fig. 4.4 the temporally averaged amplitude A (x, t), the dominant
frequency ν (x), and a snapshot of the phase at an arbitrary instant in
time, ϕ (x, t = 807 s), are shown in the first, second, and third column
respectively. As before, the four rows depict measurements at four
different illumination intensities. The initial, highly illuminated state
is shown in Fig. 4.4 (a). Here, we again see that the system oscillates
uniformly with the same amplitude, frequency, and phase at each
point in space.

Upon lowering the illumination intensity, Fig. 4.4 (b), the average
amplitude on the electrode splits into a region with higher and a
region with lower amplitude. These two regions still oscillate with
the same average frequency, but the oscillation phase differs between
points in the higher- and lower-amplitude regions. In other words, we
can confirm that amplitude clusters have formed.

However, the data shown in Fig. 4.4 (b) does still not give the full
picture of the dynamics. This can be seen if we look at Fig. 4.5. Here,
the temporal evolution of the phase at an exemplary point, marked
by a cross in the phase plots in Fig. 4.4 (a) and (b), is depicted in a
frame rotating uniformly with the dominant frequency of the point
in question. Starting with the higher illumination (Fig. 4.5 (a)) we
observe only a simple modulation with the same dominant frequency
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Figure 4.4: Experimentally measured spatial distribution of the temporal av-
erage of the amplitude, A (x, t), of the dominant frequency ν (x),
and of the phase ϕ (x, t = t1) at t1 = 807 s at four different illu-
mination intensities: (a) r = 5.97 mW/cm2, (b) r = 0.95 mW/cm2,
(c) r = 0.80 mW/cm2, and (d) r = 0.73 mW/cm2. Electrode size:
A = 12.19 mm2.

as the one of the rotating frame. This can also be seen in Fig. 4.5 (c)
where the absolute value of the Fourier transform of the time series
in (a) is shown. Here a clear peak can be seen at 27 mHz. This peak
corresponds to the super-harmonic peak in the original frame of
reference which in turn can be seen due to the fact that the oscillation
is slightly relaxational. The reason why this frequency can be seen
in the co-rotating frame of reference is that when we move into a
co-rotating frame of reference the entire frequency spectrum is shifted
to lower frequencies. This means that that the point of the spectrum
that corresponds to the rotational frequency ν is now at 0 Hz. In the
same way a point in the spectrum at 2ν will be shifted to ν.

In the case with the lower illumination (Fig. 4.5 (b) and (d)), when
the amplitude clusters have formed, we observe a further slow modula-
tion of the phase evolution with a frequency of approximately 2 mHz.
This supports our conjecture from above that the system not only
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Figure 4.5: (a) and (b): Time series of the local phase in a frame rotating
with the respective dominant frequency ν. Time series taken at
the point marked by a cross in the ϕ snapshot in Fig. 4.4 (a) and
(b) respectively. (c) and (d): Absolute value of the fast Fourier
transform of the time series in (a) and (b) respectively.

underwent a pitchfork bifurcation leading to amplitude clusters but
also a secondary Hopf bifurcation creating the modulated oscillations.

When lowering the illumination further, two drastic changes in
the dynamics can be seen in Fig. 4.4 (c). First, we observe that the
mean amplitude differentiates further in space, suppressing the os-
cillations nearly completely on a part of the electrode. In this region,
the very small amplitude combined with experimental noise leads to
apparent discontinuities in the phase, rendering the determination
of the dominant frequency impossible. Therefore, in the second and
the third row of Fig. 4.4, we depict points with A (x, t) < 0.35%, in
grey. Second, focusing our attention on the region that exhibits well
defined oscillations, A (x, t) > 0.35%, we can confirm our suspicion
from above that the dominant frequency is not uniform any more.
Rather, the frequencies appear to accumulate around three plateau
values, as apparent from the turquoise, red, and yellow patches in
Fig. 4.4 (c), whereby the higher frequencies are found in the regions
with higher mean amplitude.

In the last state, Fig. 4.4 (d), the features that appeared in Fig. 4.4 (c)
become more pronounced; on a part of the electrode the amplitude
is practically completely suppressed. In other words, on this part
of the electrode we observe amplitude death [57]. Likewise, the fre-
quency differences across the oscillating part of the electrode become
more pronounced. Equal, or at least very similar frequencies now
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appear in connected regions, whereby the frequency distributions
of the two outer orange and blue regions are very narrow, and the
frequency distribution of the middle, ’mediating’ region is somewhat
broader, ranging from light-blue to yellow. Indeed, we witness the
self-organised formation of multifrequency clusters in a homogeneous
oscillatory medium.

Considering the snapshot of the phase distribution, we observe that
there is also a difference in the phase distribution between the faster
and the slower region. In Fig. 4.6 (a) the phase distribution of the pixels
within the blue box marked in the phase snapshot in Fig. 4.4 (d) is
shown for t = 807 s. Here, we observe a travelling-wave-type feature;
a continuous distribution of the phases over 2π rad. This is not the
case in the faster oscillating region (red box) on the right in Fig. 4.4 (d)
(Fig. 4.6 (b)). Here, the phases gather around approximately −1 rad
and we can say that the phases of the oscillations are almost completely
synchronised. Each pixel within this region has approximately the
same phase at any given time. Note that there are the same amount of
points in the two boxes.

Figure 4.6: Phase dynamics at t = 807 s in regions marked with the red box
(a) and the blue box (b) in the phase snapshot in Fig. 4.4 (d), both
regions contain 3111 pixels.

The state of synchrony of the phase dynamics can be measured by
using the Kuramoto order parameter R defined as:

R(t) =

∣∣∣∣∣∣ 1
N

N

∑
j=1

eiϕj(t)

∣∣∣∣∣∣ , (4.3)

for an ensemble of N oscillators. When the oscillators in an ensemble
are synchronised, in the sense that they all have the same phase at
the same time, R(t) = 1. In the opposite case, when the phases of
the oscillators are equally distributed over 2π for all times, R(t) = 0.
We now define different regions of our electrode depending the local



4.3 amplitude , phase , and frequency 52

dominant frequency ν and calculate R(t) for the different regions, see
Fig. 4.7.

Figure 4.7: (a) Spatial plot of temporal average of the order parameter |R(t)|
of the phase only representation of the dynamics taken locally
in regions defined by their respective frequencies. Blue region:
ν ≤ 24.5 mHz, green region: 24.5 < ν ≤ 31 mHz, yellow region,
ν > 31 mHz. (b) Temporal evolution of R(t) in the three different
regions (same colour respectively) and temporal evolution of
global R(t) (black). (c) Histogram of phases in the blue region in
(a) where ν ≤ 24.5 mHz, taken at t = 807 s (blue) and at t = 786 s
(red), bin width π/50 rad.

In all three regions we see that R oscillates slowly and that the slow
oscillation is modulated by a faster frequency. The faster modulation
frequency approximately matches the main frequency in the respective
region. Neglecting the modulations we see that for the faster region
on the right hand side of the electrode with ν >31 mHz the slow oscil-
lation in R(t) is around an average of ≈ 0.9 showing that the phases
are almost perfectly synchronised. The oscillating behaviour is even
more visible in the mediating region with 24.5 < ν ≤ 31 mHz. Here,
R(t) changes slowly between approximately 0.1 and approximately
0.9 indicating that the phases change between being almost completely
synchronised to having an almost uniform distribution. In the slowest
region on the left, R(t) oscillates around ≈0.25, indicating that the
phases are on average spread out.

The value of R(t) does not reach 0 since that would require a
perfectly uniform distribution of the phases over a 2π interval and as
can be seen in the histograms in Fig. 4.7 (c) this is not the case here.
The upper histograms show the phase distribution within the slower
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Figure 4.8: Sketch of the different layers of the electrode-electrolyte interface
(not to scale) and the potential drops across the different inter-
facial layers as well as across the external resistor. Ir, reaction
current; Im, migration current of ionic species through the oxide
layer. Same x and y as in Fig. 4.4. For the other symbols, see text.

region (ν ≤ 24.5 mHz, blue region in Fig. 4.7 (a)) at the time of the
snapshot of the phase in Fig. 4.4 (d), i.e t = 807 s). The lower histogram
is taken at time t = 786 s which is approximately half a period earlier
for an oscillation with a frequency of 24 mHz. Comparing these
we can see that the distribution changes in that the former minima
become maxima and vice versa. This indicates that it is the finite size
of the region that leads to a non-zero R(t). This together with the
borders between the different frequency regions not being as sharp as
suggested by Fig. 4.7 (a) results in the oscillating behaviour of R(t) in
this low-frequency region.

The travelling-wave-type feature that we observe in the slower re-
gion can be seen as the continuum version of a splay state in networks
of coupled oscillators. Interestingly, the existence of mixed-type mul-
tifrequency clusters consisting of a splay-type cluster and a phase-
synchronised cluster, as we observe it here, has also been found in
simulations of networks of phase oscillators with adaptive coupling
[15, 16, 54].

4.4 nonlinear , nonlocal coupling

Now to the question how these states can emerge: what leads to the
spatial symmetry breaking?

A key to understanding the changes in the dynamics is to realise
that our bifurcation parameter controls the effective number of degrees
of freedom in the system.

First, consider the sketch of the working electrode and the differ-
ent potential drops across the cell, depicted in Fig. 4.8. The silicon-
electrolyte interface is composed of the bulk silicon, the silicon space
charge layer, the oxide layer, and the double layer (not shown). The
constant applied voltage U splits into the potential drops across the
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external resistor IRext, the space charge layer φSC (x, t), and the oxide
φOX (x, t) while, to a first approximation, the drops on the electrolyte
side and across the bulk silicon can be neglected.

The reaction resistance across the silicon silicon-oxide interface is,
to a large part, determined by the concentration of holes nh. Hence, at
high illumination intensities, where there is an excess of valence band
holes, this reaction resistance is small. In comparison the resistances
across the oxide and the external resistor are large and hence they
limit the total current I. In this situation we observe uniform base
oscillations. Moreover, any oscillations in the current lead to an oscil-
lating potential drop across the external resistor IRext and the oxide
φOX while, owing to the nearly constant concentration of holes, the
potential drop across the space charge layer φSC remains constant.

This means that the oscillations are synchronised by a global coup-
ling arising from the presence of the external resistor and the poten-
tiostatic control:

φSC (x, t) + φOX (x, t) =

= U − R
∫

x′∈A

i
(

φSC (
x′, t

)
, φOX (

x′, t
))

dx′. (4.4)

Here, φSC (x, t) and φOX (x, t) are the potential drops across the space
charge layer of the silicon, and the silicon-oxide layer respectively, U is
the applied voltage, R is the external resistance, A is the electrode area,
and i is the local current density. The last term in Eq. (4.4) describes the
potential drop across the external resistor which depends on the total
current. Note that the right hand side of Eq. (4.4) does not depend
on space whereas the left hand side does. This is possible since we
have two degrees of freedom on the left hand side; φSC and φOX can
both change. In this way they can both vary in space as long as the
sum of them is constant. Since at high illuminations φSC (x, t) remains
constant in space and time, the oscillating total current causes spatially
homogeneous oscillations in φOX (x, t), which in turn influence the
reaction rate and thus the oscillations. Hence, our electrochemical
oscillator creates a mean field

I =
∫

x′∈A

i (t) dx′ , (4.5)

that feeds back into the dynamics of the oscillations.
However, as the illumination intensity is reduced things change.

There is no longer an excess of holes since now the hole production
rate and the reaction rate become of the same order, and thus the
reaction resistance becomes larger. As a consequence, φSC increases at
the expense of the other potential drops and the oscillations in I now
lead also to oscillations in φSC and nh.

Spatial fluctuations in φSC (x, t) and nh (x, t) lead to changes in the
local current density. Moreover, they induce lateral motion of holes
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which is determined by the gradient of the electrochemical potential
of nh, i.e. the combination of the differences in the concentration of
holes and in the electrical field.

We can write an expression for this lateral motion of the holes by
considering the following continuity equation. The change in hole
concentration nh with time has to depend on the generation rate G,
the recombination rate R and the divergence of the hole flux div j:

∂

∂t
nh = G − R − div j. (4.6)

If we now write the hole flux as a function of the conductivity of
the holes σh = nhbhe (bh is the hole mobility and e is the elementary
charge) and the electrochemical potential of the holes µ̃h = µh − eφ

(µh is the chemical potential of the holes and φ is the electrostatic
potential) we find that:

j = −σh

e2 grad µ̃h = −nhbh

e
grad

(
µh − eφ

)
. (4.7)

Next, we use the expression for the electrochemical potential at
room temperature in the bulk of the semiconductor and find that:

grad
(
µh − eφ

)
=

= grad
(

µ0 + kBT ln
nh

Nh
+ eφ

)
= grad µ0 +

kBT
nh

grad nh + e grad φ ,

(4.8)

where kB = 8.617 · 10−5 eV/K is the Boltzmann constant, Nh is the
effective density of states in the valence band and µ0 is the standard
chemical potential.

Combining these expressions we then find that Eq. (4.6) becomes:

∂

∂t
nh = G − R +

bhkBT
e

∆ nh + bh div
(
nh grad φ

)
, (4.9)

where we have assumed that the chemical environment is constant
and that hence, µ0 does not change in space. This is the familiar form
of a reaction diffusion equation with an additional nonlinear term.
Hence, it becomes clear that the coupling which depends on both nh
and φ is nonlinear. These quantities then feed into the mean field I
which, as mentioned above, changes φ according to Eq.(4.4) and thus
feeds back into the dynamics of the oscillations again, underlining the
nonlinearity once more. Note that φ in the space charge layer is de-
termined by Poisson’s equation, meaning that the nonlinear term also
contains a nonlocal aspect: It entails an instantaneous redistribution
of the electrostatic potential in the entire layer upon any change in the
charge density.
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The solution to Eq. (4.9) of course depends on the boundary condi-
tions.

The generation rate G can be assumed to be constant and is determ-
ined by the net influx of photons, i.e. the amount of electron-hole pairs
that are generated depends on the illumination intensity and the re-
flectivity of the electrode surface. The exact form of R is not known. It
does however seem reasonable that it depends on the applied potential;
an increased applied potential would lead to a different recombination
rate due to a higher electric field which in turn would drive more
holes towards the surface.

To sum up, we have a base oscillator at high illumination that creates
a global field, the total current I. At lower illumination intensity the
concentration of holes nh becomes an additional degree of freedom
which induces a spatial, nonlocal coupling and feeds back to the mean
field I in a nonlinear manner. Thus, the dynamics can be formally
described by the following equations:

ẇ (x, t) = F
[
w (x, t) , nh, I; λ

]
, (4.10)

ṅh = G
(

nh, φSC, I; λ
)

. (4.11)

Here w are the variables of the base oscillator and the dots indicate
the derivative with respect to time. At high illumination intensity λ,
nh remains constant and the function F in Eq. (4.10) represents the
dynamics of the base oscillator. Equation (4.11) becomes relevant at
low illumination intensity and depends on the mean field I that is
created by the base oscillator.

If we consider our spatially continuous system as being composed of
infinitesimally small base oscillators wk, one realises that the nonlinear
coupling is of the same type as the general physical setting for nonlin-
early coupled oscillators formulated by Rosenblum and Pikovsky [116]
[compare Eqs. (4.10) and (4.11) to Eq. (18) in [116]). While in Ref. [116]
the nonlinear coupling constituted a strictly global coupling, later a
nonlinear and nonlocal coupling was considered [20]. Interestingly, the
nonlinear, nonlocal coupling supported states with three synchronised
regions, each oscillating with a different frequency. In this respect,
these states have a high similarity to our multifrequency clusters. How-
ever, in addition to these synchronised ’frequency clustered’ regions
the states described in Ref. [20] also contained a large incoherent
domain rendering the states chimera states.

4.5 chimera states and coexistence patterns

Adopting a different perspective, one realises that our dynamics also
contain features that have been discussed in connection with certain
types of chimera states. Fig. 4.9 presents a purely global picture of
the dominant frequencies found in the states presented in Fig. 4.4.
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Here we have sorted the frequencies in ascending order, neglecting
any spatial information.

Figure 4.9: The dominant frequencies ν from Fig. 4.4 sorted in ascending
order with (a)-(d) corresponding to (a)-(d) in Fig. 4.4

Again, we can see that for the first two states the frequency is uni-
form and that it splits up for the state shown in Fig. 4.9 (c) before
becoming more pronounced in Fig. 4.9 (d). Focusing on the multifre-
quency state in Fig. 4.4 (d), the first about thirty thousand entries with
the value 0 Hz arise from the region where we observe amplitude
death. For higher indices, we clearly observe three plateaus. These
reflect our three frequency domains. However, the transitions between
these plateaus are not sharp but instead occur continuously in a finite
index range. As such, this graph is reminiscent of the distribution
of dominant frequencies in 2-frequency chimera states [30, 91, 141],
and to some extent also of the ones in the hybrid chimera states
found in Ref. [20], which are composed of a fully synchronised, a
nearly-synchronised, and an incoherent part.

Another study reveals an additional link between multifrequency
clusters and chimera states [114]. In this study a birhythmic model of
two-frequency oscillators on a ring was considered. When coupling
these oscillators nonlocally, synchronised domains oscillating in either
of the two bistable limit cycles could be stabilised. The interfacial
regions mediating between the domains with different frequencies
oscillated asynchronously with frequency components of both adjacent
regions. The author interpreted her two frequency-domains separated
by a ’more frequency’ incoherent region as a chimera state.

Our multifrequency cluster exhibits the same features. This can
be seen in Fig. 4.10 (a) where we present the absolute value of the
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Fourier coefficients of the three main frequencies, 24 mHz, 27 mHz,
and 32 mHz, of the local Fourier spectra along a the dashed line in the
ν plot in Fig. 4.4 (d). While in the left low- and the right high-frequency
regions the contribution of the other two frequencies are very small,
in the middle region we find not only the third, dominant frequency
at 27 mHz, but also a significant contribution of the frequencies of the
two adjacent regions, just as in the model system in Ref. [114].

This can be seen in more detail in Fig. 4.10 (b) where histograms of
the instant frequencies fi as defined in Eq. 4.2 at three different points
along the cut are shown. The point in the slow region that oscillates
with a dominant frequency ν = 24 mHz and the point in the fast
region with ν = 32 mHz both give narrower, unimodal distributions
of fi with the maxima at approximately the value of the dominant
frequency, respectively. The point in the middle region on the other
hand gives a much broader, almost bimodal distribution, showing
that there are frequency components from both the adjacent regions
present in the middle mediating region, again similar to the case in
the model system.

Figure 4.10: (a) Spatial profile of the absolute value of the Fourier trans-
form of the ellipsometric intensity signal ξ for three different
frequencies (see legend) together with the dominant frequency
ν (red). Profile taken at y = 60, see dashed line in the ν plate in
Fig. 4.4 (d). (b) Histogram of instant frequencies at three different
points along the dashed lines in the ν plate in Fig. 4.4 (d): Yellow
x = 135 pixel, cyan x = 315 pixel and blue x = 400 pixel.

However, in our case the dynamics of the mediating region appears
phenomenologically rather coherent. On this basis, we would not
classify our state as a typical chimera state, in contrast to the chimera
states observed previously during silicon photo-electrodissolution
[125, 130]. Since the main characteristics of our data is the coexistence
of regions oscillating with different dominant frequencies, we classify
the state as a multifrequency cluster.

Still, the relation between multifrequency clusters and chimera states
as well as the classification of chimera states is a very intricate matter.
This becomes clear when considering the relation of multifrequency
clusters of different spatial extensions in continuous systems to weak
chimera states in ensembles of four coupled discrete oscillators [7].
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Loosely speaking, a chimera state in such a system is characterised
by two oscillators being synchronised, with the frequency ν1, while
the other two oscillators possess frequencies which differ from each
other as well as from ν1 [7]. If, to a first approximation, we neglect
the interfacial regions, a multifrequency cluster state with three dif-
ferent regions in a spatially extended system can likely be reduced
to a low-dimensional system of three coupled oscillators where the
coupling is weighted by the size of the domains. Thus, the dynamics
of multifrequency clusters in systems with many degrees of freedom
is in a sense equivalent to the one of a weak chimera state. If we now
consider what happens if we do the reverse, i.e. extend the system
size from a minimal weak chimera to a spatially extended system, it
appears worthwhile to differentiate between chimera states, in which
the number of incoherent oscillators scales with the system size and
states in which it does not. Kemeth et al. have presented consider-
ations along these lines and coined the first type of chimera state
extensive which would suggest that the three frequency cluster state
could be classified as an intensive chimera state [55]. In this respect,
an important question to be investigated in the future is whether one
can identify general dynamical properties that determine whether a
weak chimera state behaves as an intensive or extensive chimera, in
the sense defined here when successively increasing the number of
oscillators.

Last, let us compare our findings to the multifrequency clusters in
Ref. [15, 16]. The decisive element in their model equations is that the
coupling is adaptive, i.e. the coupling function has its own temporal
dynamics leading to different inter-coupling strengths between the
clusters. In our case, the hole concentration nh is the nonlinear coupling
variable that also modifies the dynamics locally. From this point of
view, it can be seen as establishing an adaptive coupling.

In Fig. 4.11 the frequencies of the multifrequency state from Fig. 4.4
(d) have again been indexed by their value and then the difference
between the frequency at index i and index j is plotted for every 100th
index. This again shows the plateaus of the frequencies, this time
as squares with the value zero. It also gives an indication of how a
possible self-organised coupling matrix resulting from the adaptive
coupling could look with the intra and inter coupling strengths having
different values, cf. Fig. 3. in Ref. [15]. Note that since we are looking
at the difference in frequency here there is no information regarding
the phase and hence we cannot, as Berner et al. differentiate between
splay type and phase synchronised type clusters.

4.6 conclusion

In conclusion, we have shown that the interaction of the global linear
coupling in the form of an external resistor and the nonlocal coupling
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Figure 4.11: Absolute value of difference between dominant frequencies ν
at every 100th index i and j of frequency data from Fig. 4.4 (d)
sorted in ascending order. Note that the scale goes from 0-10

mHz and that the two blue regions at i/100 > 300 ∧ j/100 <
300 and j/100 > 300 ∧ i/100 < 300 respectively are not properly
resolved, instead see Fig. 4.9 (d).

induced by the lateral movement of the holes results in an adapt-
ive, nonlinear, nonlocal coupling. Our experimental observation of
multifrequency clusters is not only an exceptional example where a
self-organised adaptive coupling was observed in a nonliving system,
but also reveals important open problems concerning the properties
of multifrequency states in continuous systems, such as their relation
to chimera states or requirements on the adaptive coupling for their
existence.



5

B I R H Y T H M I C I T Y, I N T R I N S I C E N T R A I N M E N T, A N D
M I N I M A L C H I M E R A S

In the previous chapters we have discussed one type of oscillation and
how it reacts on variations in the potential and illumination intensity.
These oscillations, both with and without the external resistor (and
the thereby introduced linear global coupling) have been classified
as so-called Low Amplitude Oscillations (LAOs) [147]. The LAOs are
typically found at high illumination (or in p-Si) with either a small or
a very large external resistance [128, 147]. However, there is another
type of oscillation. This other, so-called High Amplitude Oscillation
(HAO) was first reported in Ref. [128] and is typically found either
when the external resistance (linear global coupling) is moderate
[128, 147] or the illumination is restricted in such a way that the
current is limited (nonlinear global coupling) [125]. Although the
electrochemical mechanism leading to either of these oscillations is not
yet known, experiments suggested that they arise due to two different
main feedback loops in the system [128]. This was also suggested
by Tosolini et al. who reported the coexistence of chaotic attractors
in the Si system and speculated that the bichaoticity is linked to an
intrinsic bistability between two different types of oscillations—also
referred to as birhythmicity—the interaction between the coexisting
oscillators in phase space causing both of the limit cycles to become
unstable and give rise to chaotic attractors [147]. In a birhythmic
system, each of the two coexisting stable oscillatory states can have
its own frequency and amplitude, and, in addition, might oscillate
around different mean values [31]. Here, we will show explicitly that
the electrodissolution of silicon does indeed exhibit the coexistence of
two stable limit cycles albeit in a drastically different parameter range
than the bichaotic one. As above, instead of using p-doped silicon
as our Working Electrode (WE) as in Refs. [128, 147], we again use
n-doped silicon. Recall that since at least the first oxidation requires
a valence band hole, the electrooxidation of n-doped Si requires the
illumination of the electrode with a wavelength that is larger than the
band gap. The illumination intensity is thus an additional bifurcation
parameter here that was not available in the bichaoticity study.

While dynamic phenomena connected to the coexistence between
two stationary states, such as transitions between them or travelling

61
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waves that might form in spatially extended systems, are well invest-
igated [89], this is not the case for other types of bistability. Below, we
demonstrate that the two directions of the transitions between the limit
cycles can be of qualitatively different nature and that one oscillation
might intrinsically be influenced by the other coexisting limit cycle,
a phenomenon we refer to as intrinsic entrainment. Furthermore, we
show that the coupling between two birhythmic systems oscillating
on different limit cycles can be strongly asymmetric.

This chapter is structured as follows: in Sections 5.1-5.3 we first
show the results obtained with one electrode, where birhythmicity
is illustrated in phase space and physical space (5.2), and in the fre-
quency domain (5.3). Then, coupling experiments with two electrodes
are presented in Section 5.4. Implications of the experimental data
concerning intrinsic and extrinsic coupling of the birhythmic system
are discussed in Section 5.5.

The results in this chapter are part of Ref.[153] and are based in
part on the work done by Juliane Wiehl during her Master’s thesis
[152]. Preliminary work was also done by Richard Hueck during his
Master’s thesis [49]. Both their theses were supervised as part of this
thesis project.

5.1 birhythmicity

In Fig. 5.1 exemplary time series of the current density j and the spa-
tially averaged ellipsometric intensity signal ⟨ξ⟩ of the two oscillation
types found during Si electrodissolution are depicted. The oscillations
shown in Fig. 5.1 a)-b) are HAOs and the ones in Fig. 5.1 c)-d) are LAOs.
The most striking differences between the two oscillation types are that
the HAOs have a larger amplitude of the current density and a higher
frequency than the LAOs. They also differ in their shapes; specifically
the current of the HAOs is limited by the concentration of the available
valence band holes during part of the oscillation. In Fig. 5.1 a) the
current limit is indicated by a dotted line. We can tune this limit by
changing the illumination intensity. Even though this means that the
current amplitude of the HAO can be lower than the one of the LAO,
we keep the naming convention introduced in the literature [128].

The two types of oscillations depicted in Fig. 5.1 were measured at
identical parameter values, indicating that the system is birhythmic.
Thus, which oscillation type is attained depends on the initial condi-
tions. In order to establish HAOs we performed a voltage step from
the open-circuit potential to a potential in the oscillatory region
(6 V vs MSE for the measurements in Fig. 5.1) at high illumination
intensity (> 2.5 mW/cm2) and then reduced the illumination intensity
to the desired intensity after the first two transient current oscillations.
The LAOs were initialised by performing the same potential jump at the



5.2 parameter space 63

Figure 5.1: Exemplary time series of a High Amplitude Oscillation (HAO), red,
and of a Low Amplitude Oscillation (LAO)), blue. a), c) current
density j. b), d) spatially averaged ellipsometric intensity ⟨ξ⟩. Both
oscillations were measured at U = 6 V vs MSE, Rext A =1kΩcm2,
A =15.72 mm2, and IIll = 1.31 mW/cm2.

same high initial illumination intensity as when initializing the HAOs.
However, before lowering the illumination intensity to the desired
value, we waited until any transients had decayed. Below we refer to
these two protocols as the HAO- and the LAO-initialization protocols,
respectively.

5.2 parameter space

In the following, we determine the illumination intensity interval in
which the system exhibits birhythmicity at 6 V vs MSE. Therefore, we
first initialised HAOs at a low illumination intensity of 0.68 mW/cm2

and then increased the illumination intensity stepwise. At each step
we waited until any transients had died out and then recorded the
oscillation. In Fig. 5.2 a) representative HAOs at different illumination
intensities are shown in the j⟨ξ⟩-plane.

In these phase portraits the increase in the illumination-limited
current plateau with increasing illumination density becomes obvi-
ous. When we increase the illumination intensity beyond the highest
illumination intensity shown in Fig. 5.2 a) the system transitions to
LAOs.

As we will detail below, the transition from HAOs to LAOs occurred
through a nucleation and growth mechanism of the LAOs which en-
tailed very long (≥ 2 h), spatially inhomogeneous, transients. There-
fore, we investigated the LAO branch by re-initializing LAOs according
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Figure 5.2: Birhythmic oscillations in the j⟨ξ⟩-plane: a) HAOs and b) LAOs

at different illumination intensities IIll (mW/cm2) indicated by
their respective colour (see legend in). Other parameter values:
6 V vs MSE and Rext A = 1kΩcm2 with A = 15.72 mm2 c) Aver-
age current density jav of LAOs (◦) and HAOs (+) vs illumination
intensity IIll for the same parameters as used in (a) and (b). The
measurements of (a) and (b) are included. The arrows indicate
the order of measurement. Data from two separate measurement
series: Red/blue symbols indicating that the series was initialised
at low/high illumination intensities and that the illumination
intensity was increased/decreased stepwise (see text).

to the LAO initialization protocol. In this way, we obtained spatially
uniform oscillations before we lowered the illumination stepwise.

In Fig. 5.2 b) LAOs measured at the same parameters as the HAOs in
Fig. 5.2 a) are depicted. The LAOs remain spatially homogeneous until
the illumination is lowered down to 1 mW/cm2. For lower illumina-
tion intensities patterns emerge leading to a lower amplitude of the
spatially averaged signals, as shown in Fig. 5.2 b). The spatial sym-
metry breaking at low illumination intensity confirms our previous
findings [107, 108]. Comparing the location of the coexisting HAOs and
LAOs in the phase-space projections in Fig. 5.2 a)-b), it can be seen that
they overlap at the corresponding illumination intensity. This strongly
suggests that they live in an at least three dimensional phase-space.

The hysteretic behaviour is summarised in Fig. 5.2 c) where the
average current densities of the oscillations are plotted versus the
illumination intensity. Here, the measurement series shown in red was
initialised using the HAO protocol and the measurement series shown
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in blue was initialised using the LAO protocol, as described above. The
HAO measurement series starts at low illumination intensities. If we
follow it towards higher illumination intensities we see that the average
current density decreases with increasing illumination before reaching
a fixed value at approx. 0.26 mA/cm2. The LAO measurement series
starts at high illumination intensities. Following it, we see that the
average current density does not change with decreasing illumination
intensity until the system transitions from the LAO to the HAO at an
illumination intensity of 0.72 mW/cm2.

Next, we will have a closer look at the transient behaviour during
the transition from HAOs to LAOs at high illumination intensities and
the transition from LAOs to HAOs at low illumination intensities.

A 1D cut vs. time of the evolution of ξ and three 2D snapshots of
the ellipsometric signal during the HAO→LAO transition are shown in
Fig. 5.3 a) and b).

Here we can see that shortly after having increased the illumination
intensity, a nucleus of the LAO appeared in the lower left part of the
electrode at a point in time where the HAO current was limited, and
thus very sensitive towards an increase in the hole concentration at the
interface. This nucleus expands in space each time the HAO has again
reached the current-limited phase. This indicates that the transition is
triggered by diffusion of holes from the LAO region to the HAO region.

Thus, during the transition the LAO state expands in a step-like man-
ner resulting in a striped pattern on the electrode surface (Fig. 5.3 b).
The stepwise expansion can also be seen from the chequered pattern in
the 1D-cut taken approximately along the direction of propagation of
the LAO region. The arrangement of the squares of the chequerboard
pattern reflects that the ratio of the frequencies of HAOs and LAOs is
approximately 2:1.

In contrast to this stepwise transition, the transition from an LAO to
a HAO at the low illumination border is abrupt and takes place on the
entire electrode at the same time. In Fig. 5.3 c)-d) an example of such
a transition is shown. Once the illumination has been reduced below a
critical value, the electrode attains a HAO as soon as the current reaches
the new maximal current level imposed by the reduced illumination.

If we expand our parameter space by also changing the applied
voltage U, we obtain the 2D phase diagram shown in Fig. 5.4. Here,
the HAOs are marked with crosses and the LAOs with circles. The red
and blue areas indicate the regions where either HAOs or LAOs only
were found, respectively, and the striped area marks the birhythmic
region. Evidently, the birhythmic region extends over a large region
in this parameter plane, demonstrating that birhythmicity is a robust
feature of the system.
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Figure 5.3: Examples of the spatio-temporal dynamics at the border of the
birhythmic region when the system transitions to the other oscil-
latory state: a)-b) high illumination (transition from HAO to LAO)
and c)-d) low illumination (transition from LAO to HAO) at the
same parameters as in Fig. 5.2 c). The dashed red lines indicate
the time when the illumination intensity was changed. a) and c):
Temporal evolution of the ellipsometric intensity of a 1D cut indic-
ated by the dashed line in the snapshots in b) and d) respectively.
b) and d): Snapshots of the ellipsometric intensity taken at the
times indicated by the dashed gray lines in a) and c) respectively.
Rext A =1 kΩcm2 with A =15.72 mm2.

5.3 frequency domain

For a further characterization of the birhythmicity, it is instructive to
investigate how the frequencies of HAOs and LAOs change as a function
of the parameter, and in particular how they behave at the transition
points between the two oscillation forms. The easiest way to realise
this is to use the applied voltage as our bifurcation parameter and
perform a slow voltage scan while keeping the illumination intensity
at a constant value. Therefore, we initialised the system at IIll =

0.78 mW/cm2 on either side of the birhythmic region and swept the
voltage slowly until a transition was observed. Then the voltage sweep
was reversed and the voltage was swept back to the initial value. We
used a sweep rate of dU/dt =0.1 mV/s which is slow on the time scale
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Figure 5.4: Birhythmic parameter region in the U-IIll parameter plane: HAOs

(+) and LAOs (◦). Approximate existence region of HAOs (red) and
LAOs (blue). The striped region indicates the birhythimic region
where both oscillation types are found. All measurements with
Rext A =1 kΩcm2.

of the oscillations. Hence, we consider the measured quasi-stationary
states to be a good representation of the true state at the respective
voltages.

In Fig. 5.5 the resulting spectrograms of the spatially averaged
ellipsometric intensity signal of two such scans are shown.1 Fig. 5.5 a)
depicts an experiment that we initialised in an LAO at a low voltage,
and b) one that we initialised in a HAO at high voltages. In each
spectrogram the main frequency and the second frequency at each
voltage are marked with a solid and a dashed line, respectively.

Again we can see that there is a hysteresis between the forwards and
backwards scan, confirming once more that the system is birhythmic.

In the spectrogram in Fig. 5.5 a) we see that the main frequency of
the initial LAO at 3.9 V vs MSE decreases before the system transitions
to the faster oscillating HAO state at 5.8 V vs MSE. This transition from
LAOs to HAOs occurs quasi-simultaneously on the entire electrode, just
as in the case when we varied the illumination, cf. Fig. 5.3 c)-d). As the
system undergoes the transition to a HAO, the main frequency abruptly
jumps from 16 mHz to 26 mHz. This frequency of the HAO first stays
approximately constant and then starts to increase at about 5 V vs MSE.
The increase in frequency is accompanied by the emergence of a
subharmonic mode.

We observe a similar behaviour when the system is initialised in a
HAO state and the voltage is swept towards lower values (Fig. 5.5 b)).
First, the frequency hardly changes with decreasing voltage until at

1 Note that the moving average is subtracted for each window. Frequency resolution
1 mHz, leakage 0.85, overlap 85 %.



5.3 frequency domain 68

Figure 5.5: Spectrograms of the spatially averaged ellipsometric intens-
ity signal ⟨ξ⟩ from quasi-stationary cyclic voltage scan
(dU/dt =0.1 mV/s) at illumination intensity IIll =0.78 mW/cm2.
The solid line indicates the main frequency, the dashed line indic-
ates the second frequency, and the dotted line indicates the third
frequency. a) System initialised in an LAO state at 3.9 V vs MSE.
b) System initialised in HAO state at 6 V vs MSE. Both measure-
ments with Rext A =1 kΩcm2 and with A =17.51 mm2 in a) and
A =16.69 mm2 in b).

about 5 V vs MSE where it starts to increase and a first subharmonic
peak emerges. In a small voltage interval around 4.5 V vs MSE this first
subharmonic peak is accompanied by a sub-subharmonic frequency.

The emergence of the subharmonic frequencies is accompanied
by a spatial symmetry breaking. This is shown in Fig. 5.6 where
a 1D cut vs. time of the evolution of ξ and three 2D snapshots of
the ellipsometric intensity signal are shown. The 1D cut begins as
the subharmonic frequency, just before the electrode starts to show
pronounced antiphase clusters, at approx. 5 V and the snapshots are
taken at the times indicated by the dashed lines in the cut.

We can see that the cut initially shows uniform oscillations before
the electrode splits into two regions. That the two regions oscillate
with a phase difference of approx. π can be seen clearly in the last two
snapshots taken at two consecutive maxima of the spatially averaged
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Figure 5.6: Spatio-temporal dynamics at approx. 5-4.85 V on the downwards
scan shown in Fig. 5.5 b) where the first subharmonic peak has
emerged. a) Temporal evolution of the ellipsometric intensity of a
1D cut indicated by the dashed line in the leftmost snapshots in
b). b) Snapshots of the ellipsometric intensity taken at the times
indicated by the dashed gray lines in a). Rext A =1 kΩcm2 with
A =16.69 mm2.

ellipsometric intensity signal ⟨ξ⟩. The different sizes of the two regions
is reflected in the period 2 of ⟨ξ⟩ seen in Fig. 5.5 b).

Another way of visualizing the spatial symmetry breaking is by
employing the Kuramoto order-parameter calculated from the phase
dynamics of the electrode, see Eq. (4.3).2 This gives us a clearer over-
view of how the spatial behaviour of the electrode changes as we scan
the voltage. In Fig. 5.7 we plot the order parameter from the scan
presented in Fig. 5.5 b) together with the main frequencies from the
same scan.

Note that R oscillates, reflecting an oscillation between a narrower
and a broader phase distribution. Here we see that at the beginning of
the scan the oscillations in R are close to 1 indicating that the phase
distribution is narrow and that the electrode is in a spatially uniform
state. Once the subharmonic frequency emerges at around 5 V (left-
most dashed grey line) R starts to break down as the minimum value
in each oscillation decreases. This happens due to the antiphase beha-
viour seen in Fig. 5.6. The non-zero minimum value of the oscillations
in R is due to the difference in size of the two phase clusters. Going
to lower voltages the minimum in the R-oscillations increases slightly,
reflecting a more coherent phase dynamics on average, before it again
decreases. This time the minimum in the R-oscillations decreases at
the voltage where the sub-subharmonic frequency emerges. It is pos-
sible that this decrease is linked to a temporal period doubling but
it reproduces a more complex spatial structure on the electrode. The

2 Note that the raw uncorrected video data was used to determine R. To determine the
origin around which the phase winds a 200 s sliding mean was subtracted from each
local time series. The time series were divided into multiple parts of 1500 s.
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Figure 5.7: Order parameter R from the quasi-stationary scan presented in
Fig. 5.5 b), together with the main frequencies from the scan.
Dashed gray lines indicate the time window shown in Fig. 5.6.
Spikes in R are numerical artefacts.

phase clusters seen at these higher potentials are less ordered and
exhibit a more turbulent pattern.

These phase-cluster-type patterns disappear and the phase dynam-
ics becomes more coherent at lower potentials, before the system trans-
itions into the LAO state at 4 V vs MSE. At this transition the order
parameter breaks down since the electrode undergoes the same type
of transition as depicted in Fig. 5.3 a). Interestingly, at this transition
the subharmonic frequency of the HAO matches the main frequency
of the LAO and, accordingly, the main frequency of the HAO matches
the first superharmonic frequency of the LAO. The appearance of the
subharmonic frequency during the HAOs and the 1:2 frequency ratio
of LAOs and HAOs at the HAO→LAO transition could be linked to a
mutual influence of the two oscillations in phase space. We will come
back to this point below.

5.4 two electrodes

To better understand how HAOs and LAOs influence each other, we
will now look at what happens when we physically split the WE into
two smaller electrodes and couple the electrodes by short-circuiting
them through a common external resistor. Due to this coupling, any
change in current at one electrode causes the potential drops across
both electrode/electrolyte interfaces Uel,1/2

, to change according to:

Uel,1 = Uel,2 = U − Rext
(

j1A1 + j2A2
)

, (5.1)

where U is the externally applied voltage, and j1/2 and A1/2 are the
current densities and areas of the respective electrodes. Furthermore,
the use of the SLM allows us to employ different initialization protocols
to the two electrodes so that we can initialise each electrode in either
a HAO or an LAO state independently.
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In Fig. 5.8 the resulting time series of the spatially averaged ellip-
sometric intensity of the respective electrodes are shown for three
different cases. All three cases were measured at the same parameters,
they only differ in the initialization protocol. Note that both electrodes
remain essentially spatially homogeneous, except of the LAO initialised
electrode of case c) where minor spatial wave-like patterns emerged.
Fig. 5.8 a) depicts time series of the two electrodes when they are
both initialised with the HAO protocol. It can be seen that the oscil-
lations on the two electrodes are slightly out of phase at t = 0 s, are
in phase at t =185 s, and have drifted to an antiphase configuration
again at t =550 s. Clearly, the slightly different parameters of the two
electrodes (such as a minor difference in their electrode areas) lead to
a small difference of their natural frequencies, and the coupling via
the external resistor does not suffice to synchronise them.

Figure 5.8: Exemplary time series of the spatially averaged ellipsometric in-
tensity of two electrodes coupled electrically through an external
resistor. a) Both electrode 1 ⟨ξ1⟩ and electrode 2 ⟨ξ2⟩ in a HAO

state. b) Both electrodes in an LAO state. c) Electrode 1 in a HAO

state and electrode 2 in a chaotic state. Here, electrode 2 was
initialised using the LAO-initialization protocol. A1 =11.43 mm2,
A2 =10.55 mm2. Rext (A1 + A2) = 1 kΩcm2, IIll =1.0 mW/cm2,
U =5.75 V vs MSE.

The picture is different in the case of the LAOs. When we initialise
both electrodes using the LAO protocol, they typically exhibit phase
synchronization, as can be seen in Fig. 5.8 b).

The behaviour is different again in Fig. 5.8 c) where we show an
example where electrode 1 was initialised with the HAO protocol and
electrode 2 with the LAO protocol. In this case, electrode 1 assumes
a periodic HAO which is very close to the one of case a). In contrast,
electrode 2 does not oscillate in a simple periodic LAO state. Instead it
exhibits a more complex temporal behaviour. The frequency spectrum
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of the time series (not shown) exhibits a strongly enhanced background
distribution around the main oscillation frequency, suggesting that
the dynamics is chaotic.

This counterintuitive coexistence of chaos and order is not only
stable under these exact conditions but it persists for a wide range of
potentials. When initializing the two electrodes in the same way as
in Fig. 5.8 c) and then performing a quasi-static cyclic sweep of the
applied potential we obtain the two spectrograms shown in Fig. 5.9.

Figure 5.9: Spectrograms of two coupled electrodes, obtained from the
spatially averaged ellipsometric intensity signal and a quasi-
stationary cyclic voltage scan (dU/dt =0.1 mV/s) at illumination
intensity IIll =0.94 mW/cm2 and Rext (A1 + A2) =1 kΩcm2. The
solid line indicates the main frequency and the dashed line indic-
ates the second frequency. a) Electrode 1, initialised with the HAO

protocol, A1 =5.53 mm2. b) Electrode 2, initialised with the LAO

protocol, A2 =6.17 mm2.

Again, the sweep rate was slow (dU/dt =0.1 mV/s) on the time
scale of the oscillations and we assume that the measured states are
in good agreement with the true state at the respective parameters.
Fig. 5.9 a) shows the corresponding spectrogram of the electrode that
was initialised with the HAO protocol. The electrode oscillates in a
HAO state and behaves similarly to a single electrode under the same
conditions; cf. Fig 5.5 b). The only difference is that the subharmonic
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frequency is active in the entire existence region of the HAOs, not
just from approximately 5 V vs MSE downwards. Fig. 5.9 b) shows
the spectrogram of the electrode that was initialised according to the
LAO protocol. This spectrogram differs significantly from the case
with only one electrode; cf. LAO regions in Fig. 5.5. Here, we can
see a broad potential region between 6 V vs MSE and approximately
4.9 V vs MSE, indicated by the dashed red line, where the power
spectrum exhibits a strongly enhanced background and is smeared
out around the main frequency and the first superharmonic frequency.
This is a manifestation of the temporally complex behaviour. Hence,
we have a large region in parameter space in which we find the
coexistence of a periodic HAO on one electrode and complex, most
likely chaotic oscillations on the other one. For potentials beyond the
dashed red line the spectrogram of electrode 2 becomes narrower
again before the superharmonic frequency disappears at the same
voltage at which electrode 1 transitions from the HAO to the LAO. In
this intermediate region the HAOs and LAOs on the two electrodes
exhibit a 2:1 locking. After the transition of electrode 1 to the LAO

state both electrodes exhibit phase-synchronised LAOs. The reason for
the slightly lower power after the transition is that patterns form on
both electrodes, suppressing the amplitude of the spatially averaged
signal. Once the electrodes become spatially more uniform again, the
superharmonic peak in the spectrum becomes visible again, too.

5.5 discussion

We have here presented clear-cut experimental evidence that the Si-
system exhibits birhythmicity. Besides this observation, our experi-
ments elucidated unusual, though general ways, in which coexisting
limit cycles can interact with each other. In the following we take a
closer look at these interactions. We discriminate here between an
extrinsic interaction of (nearly) identical birhythmic systems, and an
intrinsic interaction of the two limit cycles in phase space.

The extrinsic coupling mechanism is the one easier to rationalise.
We will therefore discuss it first. Consider again the results depicted in
Fig. 5.8. Here, we coupled two nearly identical Si electrodes through
an external resistor. Hence, the coupling acts, as given by Eq. (5.1), on
the potential drops across the interface of the electrodes. The fact that
the oscillations of the two electrodes phase-synchronise when they
are both initialised with the LAO protocol but that the phases of the
oscillations remain drifting when the electrodes are initialised with
the HAO protocol reveal that the sensitivity of HAOs and LAOs towards
perturbations in the potential is vastly different. The experiment,
where the two electrodes were initialised in different states, shows that
the impact of the electrode initialised in an LAO on the one initialised in
a HAO is negligible, while the other way round the electrode initialised
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in an LAO is strongly forced by the electrode initialised in the HAO

state. Thus, the mutual interactions of the two types of oscillations is
unidirectional.

The phase-space portraits depicted in Fig. 5.2 shed light on this
unidirectional coupling. The phase portraits of the two limit cycles
intersect in the j⟨ξ⟩-phase-space plane suggesting that the oscillations
live in a phase space spanned by at least three essential variables.
The sensitivity of the LAO with respect to changes in the electrode
potential indicates that the electrode potential is an essential variable
for the LAOs. Contrary, from the insensitivity of the HAOs upon vari-
ations of the electrode potential we can conjecture that the HAO limit
cycle occupies a subspace of phase space that is orthogonal to the
electrode potential axis. Yet, since during HAOs the current oscillates,
the coupling through the resistor changes the electrode potential of
both electrodes. The oscillating electrode potential acts like a periodic
forcing on the LAO, while it is like an ’invariant’ parameter for the
HAO. That the HAOs are insensitive towards variations in the electrode
potential is in line with previous findings where the method of con-
trol was changed from potentiostatic control, via an external current
limiting circuit, all the way to galvanostatic control without changing
the qualitative behaviour of the HAO [127].

The coupling experiments presented in Fig. 5.8 c) were carried
out at 5.75 V vs MSE. The spectrograms in Fig. 5.5 confirm, that
between approx. 6 and 5 V vs MSE the HAO frequency is essentially
independent of the applied voltage.

This changes at lower voltages, where we will argue that an intrinsic
coupling comes into play. Here, the HAO frequency increases consid-
erably, and, more strikingly, a subharmonic frequency emerges. In
Fig. 5.10 we take a closer look at what happens to the signals during
the scan as this frequency emerges. To do this we construct an orbit
diagram by taking all maxima of relative importance of the signals
and plot them vs. the applied voltage.3 Here the orbit diagrams of the
total current density and the average ellipsometric signal around 5

V vs MSE are plotted.
These exhibit the typical signature of a period doubling bifurcation

with decreasing voltage, i.e. increasing differences in the maxima of
successive oscillations. This corroborates that the system lives in an at
least 3-dimensional phase space.

More importantly, the subharmonic frequency coincides almost
perfectly with the frequency of the LAO, at least at the HAO→LAO

transition (see Fig. 5.5 b)). It appears likely that this is not a coincid-
ence but rather that the existence of the LAO in phase space triggers the
period doubling bifurcation. In other words, the HAO is intrinsically

3 We choose a minimum peak prominence of 0.1 for the current density and 0.5 for
the ellipsometric signal, required a minimal distance between the peaks of 1 mV and
confirmed the detection of the peaks by ocular inspection.
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Figure 5.10: Orbit diagram of the current density j and the average ellip-
sometric signal ⟨ξ⟩ during the downwards scan presented in
Fig. 5.5 b). Here the maximal values of the oscillations are plot-
ted vs the applied voltage.

entrained to the LAOs in a 2:1 resonance. The emergence of patterns at
the period doubling (cf. Figs. 5.6 and 5.7) could also be interpreted as
an indication that the LAOs influences the HAOs. It has been shown that
when an oscillatory medium is exposed to a time-periodic perturba-
tion it can show 2:1 subharmonic resonant patterns [73, 74] possibly
explaining why the period doubling is accompanied by phase clusters.

A possible scenario for this intrinsic entrainment would be as fol-
lows: recall that also here the WE is connected to the potentiostat via
an external resistor. Thus, the oscillating current during HAOs causes
an oscillating electrode potential. Above we have discussed that these
changes in the electrode potential affect the LAOs in a second electrode.
For an individual electrode, the LAOs exist somewhere else in phase
space. Yet, the phase space structure can be such that the oscillatory
motion of the LAO is felt also on the other side of the separatrix where
initial conditions relax to the HAO. Hence, the oscillatory potential will
induce an oscillatory motion in the plane spanned by the essential
variables of the LAOs. We have argued above that one of these variables
is the electrode potential upon which the HAOs are insensitive. HAOs

could, however, be sensitive, on changes in the second essential LAO

variable. Then, we can interpret the period doubling of the HAO as be-
ing caused by an intrinsic entrainment originating from the coexisting
LAOs.

Note that in addition, at voltages lower than approx. 4 V vs MSE
the HAOs might become more sensitive against perturbations in the
electrode potential than they are at higher potentials. We have seen
that the LAOs are sensitive towards the concentration of holes at the
Si/SiO2 interface. At high voltages, the potential drop across the space
charge layer is large, and with the space charge layer being compact
nearly all holes that are generated by the illumination in the bulk of
the Si are quickly drawn to the Si/SiO2 interface. Their concentration
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thus remains unaffected by the externally applied voltage. At lower
voltages, however, some of the holes will recombine with electrons
before reaching the surface. The fraction of holes which is lost due
to recombination is larger the lower the voltage is. At present, we do
not know whether the mechanism leads to an appreciable change in
hole concentration at the interface. If it does, it would lead to a sensit-
ivity change of the HAOs towards changes in the potential. However,
independently of the sensitivity of the HAOs towards perturbations in
the electrode potential, the occurrence of a 2:1 resonance still seems to
require that the HAOs couple to the motion of the LAOs - most likely
involving a second variable.

The different sensitivity of HAOs and LAOs on perturbations in
different variables also explains the different nature of the transitions
HAO→LAO and LAO→HAO (cf. Fig. 5.3).

Let us first look at the HAO→LAO transition, which occurs through a
nucleation and growth mechanism. We can assume that the growth of
the LAO domain is mediated via diffusion of valence band holes. Every
time the HAO is on the current limited plateau, diffusion of holes from
the LAO covered region to the HAO region triggers a transition from
the HAO to the LAO close to the boundary between the two oscillations.
Thus, the propagation velocity of the LAO region is determined by a
combination of the limited (nonlocal, see Refs. [107, 108]) diffusion
length of the holes and the oscillation frequency of the HAOs.

In contrast, the LAO→HAO transition takes place on the entire elec-
trode at almost exactly the same time. This fast transition indicates
that the coupling has a nearly global range. Considering that the ex-
ternal resistor introduces a global coupling on the potential and the
fact that the LAOs are very sensitive to changes in the potential, it is
most likely that this spatially uniform transition is triggered through a
perturbation in the potential that lifts the LAO on the entire electrode
across the separatrix.

Finally, let us turn again to the two coupled electrodes, where one
electrode was initiated in the HAO state and the other in the LAO

state (Fig. 5.8 c). These dynamics are very similar to the smallest chi-
mera state as found as solutions in a chemical model of two coupled
identical unimodal oscillators [9, 10]. Similar to our results, the sim-
ulation shows one oscillator exhibiting regular oscillations while the
other one exhibited chaotic oscillations. To the best of our knowledge,
we present here the first experimental realization of a smallest chi-
mera state consisting of only two coupled oscillators. Furthermore,
the authors of Refs. [9, 10] attributed this particular type of chimera
state to a “‘master-slave’ interaction”. The authors argue that in their
case this coupling was generated by a canard explosion. We present
evidence that in our case the effective unidirectional coupling comes
about by the widely different sensitivities of the two birhythmic limit
cycles with respect to the coupling variables.
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Yet, we note that at this stage it is unclear whether the chaotic
behaviour of the LAO initialised electrode can be fully explained by
the unidirectional coupling. The dynamics is further complicated by
the fact that the forcing of the LAO by the HAO increases the maximal
current density of the LAO such that it reaches the illumination-limited
current level. We saw in Chapters 3 and 4 that when an LAO comes
close to the illumination-limited current level, the electrode tends
to form spatial structures. Here, too, the electrode does not remain
completely uniform but tends to form fast spreading waves. This is
typical for the current limiting phase. In Fig. 5.11 the order parameter
R, see Eq. (4.3), during a HAO is plotted together with the total current
density.4

Figure 5.11: Order parameter R and total current density j of the HAO shown
in Fig. 5.2 a) in turquoise.

We see that the order parameter oscillates with the same frequency
as the current, reaching minima at around 0.95 as the current density
leaves the current limited region and then increasing up to almost 1.
Once the current density reaches its limit again R decreases sharply.
A decrease in R means that the phase distribution on the electrode
becomes broader. Since the order parameter decreases upon the oscil-
lation reaching the current limit this indicates that we have a nonlinear
desynchronising coupling that is activated once the amount of avail-
able holes at the interface is no longer abundant.

A connection between birhythmic systems and chimera states has
also been discussed in the context of ensembles of coupled oscillators
[114, 157]. In Ref. [114] a model of nonlocally coupled birhythmic oscil-
lators was considered and the authors found that the oscillators could
organise themselves in synchronised domains separated by asynchron-
ous domains. Also in ensembles of birhythmic Stuart-Landau-type as
well as birhythmic phase oscillators chimera states were reported to
exist [157].

4 Note that here the corrected video data (cf. Eq. (2.6)) was used.
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With the present system, it might be possible to experimentally
validate some of the predictions of the theoretical studies. Further-
more, when changing the perspective and viewing the system of two
coupled electrodes not as a system consisting of two individual units
but instead regarding each subsystem as an oscillatory medium with
many coupled degrees of freedom, then a large variety of possibil-
ities opens up to investigate pattern formation in coupled networks
experimentally.

5.6 conclusion

In this chapter, we confirmed that there are two different types of
current oscillations during silicon electrodissolution. We explicitly
showed that, for a broad range of parameters, these oscillation types
are bistable; i.e. the system exhibits birhythmicity. Furthermore, we
were able to identify three dynamical properties that are closely related
to the birhythmic nature of the system:

(1) An intrinsic entrainment of the motion of one oscillator to the
motion of the other one, mediated by the vector field in phase space.

(2) A unidirectional type coupling of two identical oscillatory sys-
tems. This behaviour is linked to the possibility that the two limit
cycles exhibit pronouncedly different sensitivities towards the perturb-
ation in a variable.

(3) The existence of a stable state of two coupled, identical elec-
trodes where one electrode oscillated chaotically and the other one
periodically, illustrating a route to a two oscillator minimal chimera
state.

Currently, we are only in the beginning of understanding coupled
birhythmic systems. The present system promises to become a proto-
typical experimental model system for studies of birhythmic dynamics.
The very property that distinguishes the present system from other
ones is that the initial conditions can be easily controlled both in time
and space, allowing to set each location - or coupled electrode - in the
chosen oscillation type.



6
S U M M A RY A N D O U T L O O K

We have investigated a robust experimental model system: the elec-
trodissolution of silicon in a fluoride containing electrolyte under
anodic potential. This investigation can be split into two main parts:
the physicochemical studies and the studies of emergent patterns. In
this way we have furthered not only the understanding of dynamical
phenomena but also progressed our knowledge of the experimental
system itself.

We started by looking closer at the physicochemical properties and
focused on elucidating the most fundamental behaviour of the system.

The first property we investigated was the NDR-branch of the CV. We
were able to confirm that NDR-branch is stable and also showed that the
dissolution valency increases with increasing voltage on this branch.
This work was done in parallel to the development of the model
presented in Ref. [120] which aims to explain, among other things, the
origin of the NDR. The model assumes that the etch rate depends on the
degree of Si-oxidation in the silicon/silicon-oxide/electrolyte interface
and predicts that the interfacial valency in the oxide layer increases
with increasing applied voltage in the NDR region. Our experimental
validation of the increase of the valency leads us to conclude that the
model is plausible and that the NDR behaviour is linked to a change
in oxide quality.

Furthermore, we found that the system can oscillate even without an
external resistor or an illumination-induced cut-off of the current. This
unexpected finding opened up the option to investigate the impact
of the hole dynamics on pattern formation without an additional
coupling of different positions on the electrode by a global coupling,
brought about by an external resistance. Here we found that when
there is a scarcity of electron holes, i.e. when the internal quantum
efficiency is larger than 1, spatiotemporal patterns are observed. This
implies that the hole dynamics is decisive for the formation of the
observed spatiotemporal patterns.

Both the findings regarding the NDR and the ones regarding the
hole dynamics are also of interest when considering the dynamics of
the system.

Let us here first discuss the NDR behaviour, which is typically asso-
ciated with the emergence of oscillations [60]. However, in the case
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of the Si-system, possible links between the NDR and the oscillations
are not clear and we cannot yet say that the NDR is necessary for, or
that it can explain these oscillations. Still, we cannot exclude it as an
important factor either, especially for the HAO. For the oscillations to
be linked to the NDR it is decisive that electrode potential enters the
region where the NDR is found. The oscillations are typically observed
at applied potentials that are higher than the potentials where the
NDR is found and hence an additional significant potential drop is
needed, e.g. an IR-drop across an external resistor. The combination of
the relative large current amplitude and an external resistance that is
typically associated with the HAOs [128, 147] could lead to a potential
drop across the electrode that is comparable to the potential where
the NDR is typically measured. The exact potential distribution in the
case of the HAOs with a current cut-off that we presented in Chapter 5

is not yet known but the potential drop across the space charge layer
can be assumed to be large during the part of the oscillations where
the current is limited.

Why the current amplitude of the HAOs is large compared to the
one of the LAOs is not known. It is possible that the larger current
amplitude is linked to micropores in the silicon oxide which could
lead to the electrolyte coming in direct contact with the silicon [42,
71], or to an increased roughness [95]. It should, however, be noted
that it is not clear what type of oscillations were measured in the
above mentioned references. Another possible reason for the larger
current amplitude could be that the pH could be different close to the
electrode compared to the electrolyte bulk. This can happen due to the
fact that the electrochemical oxidation emits protons, cf. Eq. (2.1)-(2.2).
This would lead to a different distribution of the fluoride species and
in turn to a different etch rate, possibly resulting in a higher current.
One way of measuring the local change in the pH would be to use
so-called scanning ion conductance microscopy [93].

In the case of the LAOs a connection between the NDR and the
oscillations is less likely. The LAOs are found at potentials that are
higher than the NDR-region and any IR-drop is small, either due to a
small current amplitude or a small external resistance. In the extreme
case shown in Chapter 3, the LAOs do not even require an external
resistor.

However, the interplay between the NDR and the LAOs is interest-
ing from another point of view. We showed in Chapter 3.2 that at
the low-current end of the NDR-branch the transients become oscillat-
ory, indicating that the system is close to a Hopf bifurcation. This is
corroborated by the fact that we found stable oscillations at slightly
higher voltages. This is also in line with our findings reported in
Ref. [147]. Therein, we also showed that the NDR-branch becomes
unstable through a saddle-node bifurcation when a sufficiently large
external resistor is added. It seems plausible that the two bifurcations
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could meet in a local codimension-2 bifurcation [119], a so-called Fold-
Hopf bifurcation [43]. This would require an at least 3-dimensional
phase space where the oscillations that emerge from the Hopf bifurca-
tion would live on a 2-dimensional manifold and the third direction
would undergo the saddle-node bifurcation. Initial experiments from
our group have even shown that there is a seemingly slow variable
component of the ellipsometric intensity signal that could correspond
to the saddle-node direction, see [106, 147]. It could be helpful to
decompose the ellipsometric signal into its oscillatory components
and a slowly varying component. One candidate for such a slowly
changing variable is the oxide layer thickness and it would thus be
of interest to measure how it changes directly. This would require
a different measurement technique than our implementation of the
ellipsometric imaging set-up since our signal is a measurement of the
relative change of the optical path-length through the oxide and not
the oxide thickness directly. There is even data that strongly suggest
that the oxide thickness is not one of the oscillating variables for what
we interpret to be LAOs [139]. One way of measuring the thickness
directly could, for example, be to combine so-called etch-back experi-
ments [128] with scanning electrochemical microscopy-atomic force
microscopy (SECM-AFM) [53]. SECM-AFM could also be used to de-
termine the etch rate of the oxide locally as well as to measure the
local current. A big challenge with these type of measurements is that
the instruments have to be stable in our fluoride containing electrolyte.

Having discussed the NDR-branch let us now look at the hole dynam-
ics and the role that they play in the formation of the spatiotemporal
patterns. We here presented the first experimental observation of self-
organised multifrequency clusters, the coexistence of multiple regions
with different frequencies. These were found to emerge from uniform
initial conditions without any externally controlled feedback. We at-
tribute this to the coupling being adaptive in the sense that the hole
concentration acts as our coupling variable and that it influences the
local dynamics which, in turn, determines the coupling strength. By
looking at the gradient of the electrochemical potential we could show
that the hole-induced coupling is both nonlinear and nonlocal.

The fact that this is an example of a self-organised adaptive coupling
in an easily controllable inanimate system again corroborates that the
Si-system is an extraordinary model system. Not only is it of interest
to investigate how the resulting multifrequency cluster relates to the
previously reported chimera states [124, 125, 130], the system can also,
for example, be used as a model system for better understanding
nonlinear adaptive coupling. One way of investigating the coupling
further would be to couple several, spatially separated active parts of
the electrode and thus to build up networks of adaptively coupled
oscillators. The SLM could then be used to selectively illuminate the
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active electrode areas. The coupling type is of interest in its own right
but it is also of interest, for example, in a biological context [41].

The other main dynamical feature that we found in the Si-system
is birhythmicity. We demonstrated that the two previously reported
different oscillation types [128, 147] do in fact coexist in phase space
and, hence, that the system exhibits birhythmicity. Not only do the two
oscillation types coexist but they also interact in phase space, causing
an intrinsic entrainment whereby the motion of one oscillation type is
influenced by the other via the vector field in phase space. In addition,
the two oscillation types exhibit pronouncedly different sensitivities
towards perturbations in the electrode potential. This difference in
sensitivity explains the difference in the transients from one oscillation
type to the other. Together with the fact that the initial conditions
can be easily controlled, the difference in sensitivity also allowed us
to investigate a unidirectional coupling of two identical oscillatory
systems.

One of the results of this unidirectional coupling in the case of
two coupled electrodes was that one electrode exhibited periodic
oscillations and the other one exhibited chaotic oscillations, yielding
what we interpret as a two oscillator minimal chimera state.

Due to this interesting interaction and the fact that the initial condi-
tions can be easily set, the Si-system promises to become a prototypical
experimental model system for studying birhythmic systems. The un-
derstanding of birhythmic systems and how they interact is still in its
infancy and it would, for example, be interesting to investigate what
happens for a large number of coupled birhythmic oscillators.

We have here presented some of the aspects of the multifaceted,
robust, and complex behaviour of silicon electrodissolution as well
as some of the different coupling modes and oscillatory behaviours
found therein. In conclusion, our explorative study has shed new light
not only on the system itself but also on more general questions within
the field of nonlinear dynamics. Specifically, we have extended the
plethora of dynamic phenomena found in the system by experimental
examples of both adaptively coupled oscillators and birhythmicity.
Both these findings open up two directions that can be explored
further.
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P R E PA R I N G S A M P L E S W I T H P H O T O L I T H O G R A P H Y

Below are step-by-step instructions for how to prepare p-silicon samples
for the valency measurements using Si3N4 covered silicon wafers. Here
we used wafers with a Si3N4 thickness of 300±10 nm.

The complex refractive index used to determine the Si3N4 thickness
was: n = 1.99369, k = 0.00507.

a.1 cutting wafer

ATTENTION!
Always cover the
wafer with
photoresist before
cutting/scratching it
or doing anything
that could result in
dust getting in
contact with the
sample!

1. Clean the wafer successively in acetone and isopropanol in an
ultrasonic bath for approx. 10 min each at 45°C. Blow dry.

2. Spin coat the smooth surfaced side with photoresist AZ 5214 E
(Merck).

3. Soft-bake for 120 s at 100°C.

4. Scratch the photoresist-covered side using a diamond cutter.
Ensure that the scratch is deep enough for easy cutting.

5. Cut wafers into 11x11 mm samples. Do this away from the work-
station to avoid contaminating it.

6. Remove the photoresist by cleaning the wafer successively in
acetone and isopropanol in an ultrasonic bath for approx. 10 min
each at 45°C. Blow dry.

a.2 photolithography

1. Spin coat the smooth-surfaced side with photoresist. Take care
so that the photoresist forms a homogeneous layer (approx 1-2
µm). Program the spin coater to do 3000 RPM for 30 s.

2. Soft-bake for 120 s at 100°C.

3. Illuminate with a mask aligner with 350 W for 12 s.

4. Develop for approximately 45-60 s in a 1:4 developer:water solu-
tion, use non-metallic tweezers. Developer: AZ 400 K (Merk)
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5. Ensure that there is no photoresist residue by using a microscope.
If there are visible larger residue, develop for longer. ATTENTION! Do

not put the samples
in a plasma asher as
this can result in
structures on the
samples caused by
oxidising possible
metal residue!

6. Etch the samples in a Reactive Ion Etching (RIE) system. Assume
an approximate etch rate of the Si3N4 of approx. 1 nm/s.

7. Remove the photoresist by cleaning the wafer in acetone and
rinse using isopropanol. Blow dry.

a.3 back contact

1. Etch the rough side of the samples in the RIE system.

2. Put on new photoresist on the front side to protect it.

3. Clean the back side of the samples with acetone and isopropanol
with the help of a cotton swabs.

4. Put the samples in water to ensure that any isopropanol residue
is dissolved.

5. Optional step: etch the rough side with buffered 1:6 HF:NH4F.
This can be omitted if step 4 is done directly after, or on the
same day as step 1.

6. Evaporate Al onto newly etched side of the wafer (4 slugs, ap-
prox. 200 nm). ATTENTION!

Always remove any
photoresist before
heating the samples
or storing them for a
longer period of
time!

7. Clean the samples in acetone, isopropanol, and water to get rid
of the photoresist.

8. Anneal the samples at 400°C for 30 min.



B
L I S T O F P U B L I C AT I O N S

• K. Schönleber, M. Patzauer and K. Krischer. ‘A comparison of
modeling frameworks for the oscillatory silicon electrodissolu-
tion’. In: Electrochimica Acta 210 (Aug. 2016), pp. 346–351. issn:
00134686. doi: 10.1016/j.electacta.2016.05.144.

• M. Patzauer, R. Hueck, A. Tosolini, K. Schönleber and K.
Krischer. ‘Autonomous Oscillations and Pattern Formation
with Zero External Resistance during Silicon Electrodissolu-
tion’. In: Electrochimica Acta 246 (Aug. 2017), pp. 315–321. issn:
00134686. doi: 10.1016/j.electacta.2017.06.005.

• D. Koster, M. Patzauer, M. M. Salman, A. Battistel, K. Krischer
and F. La Mantia. ‘Measurement and Analysis of Dynamic
Impedance Spectra Acquired During the Oscillatory Electro-
dissolution of p-Type Silicon in Fluoride-Containing Electro-
lytes’. In: ChemElectroChem 5.12 (June 2018), pp. 1548–1551. issn:
2196-0216. doi: 10.1002/celc.201800252.

• M. M. Salman, M. Patzauer, D. Koster, F. La Mantia and K.
Krischer. ‘Electro-oxidation of p-silicon in fluoride-containing
electrolyte: a physical model for the regime of negative dif-
ferential resistance’. In: The European Physical Journal Special
Topics 227.18 (Apr. 2019), pp. 2641–2658. issn: 1951-6355. doi:
10.1140/epjst/e2019-800118-x.

• A. Tosolini, M. Patzauer and K. Krischer. ‘Bichaoticity induced
by inherent birhythmicity during the oscillatory electrodissol-
ution of silicon’. In: Chaos 29.4 (Apr. 2019), p. 043127. issn:
1054-1500. doi: 10.1063/1.5090118.

• M. Patzauer and K. Krischer. ‘Self-Organized Multifrequency
Clusters in an Oscillating Electrochemical System with Strong
Nonlinear Coupling’. In: Physical Review Letters 126.19 (May
2021), p. 194101. issn: 0031-9007. doi: 10.1103/PhysRevLett.
126.194101.

• J. C. Wiehl, M. Patzauer and K. Krischer. ‘Birhythmicity, in-
trinsic entrainment, and minimal chimeras in an electrochem-
ical experiment’. In: Chaos 31.9 (Sept. 2021), p. 091102. issn:
1054-1500. doi: 10.1063/5.0064266.

86

https://doi.org/10.1016/j.electacta.2016.05.144
https://doi.org/10.1016/j.electacta.2017.06.005
https://doi.org/10.1002/celc.201800252
https://doi.org/10.1140/epjst/e2019-800118-x
https://doi.org/10.1063/1.5090118
https://doi.org/10.1103/PhysRevLett.126.194101
https://doi.org/10.1103/PhysRevLett.126.194101
https://doi.org/10.1063/5.0064266


B I B L I O G R A P H Y

[1] D. M. Abrams and S. H. Strogatz. ‘Chimera States for Coupled
Oscillators’. In: Physical Review Letters 93.17 (Oct. 2004), p. 174102.
issn: 0031-9007. doi: 10.1103/PhysRevLett.93.174102.

[2] M. Alamgir and I. R. Epstein. ‘Birhythmicity and Compound
Oscillation in Coupled Chemical Oscillators: Chlorite-Bromate-
Iodide System’. In: Journal of the American Chemical Society
105.8 (Apr. 1983), pp. 2500–2502. issn: 15205126. doi: 10.1021/
ja00346a080.

[3] M. Alamgir and I. R. Epstein. ‘Systematic design of chemical
oscillators. Part 19. Experimental study of complex dynamical
behavior in coupled chemical oscillators’. In: The Journal of
Physical Chemistry 88.13 (June 1984), pp. 2848–2851. issn: 0022-
3654. doi: 10.1021/j150657a036.

[4] P. W. Anderson. ‘Spin Glass I: A Scaling Law Rescued’. In:
Physics Today 41.1 (Jan. 1988), pp. 9–11. issn: 0031-9228. doi:
10.1063/1.2811268.

[5] M. Anvari, F. Hellmann and X. Zhang. ‘Introduction to Focus
Issue: Dynamics of modern power grids’. In: Chaos 30.6 (June
2020), p. 063140. issn: 10897682. doi: 10.1063/5.0016372.

[6] F. T. Arecchi, R. Meucci, G. Puccioni and J. Tredicce. ‘Experi-
mental Evidence of Subharmonic Bifurcations, Multistability,
and Turbulence in a Q-Switched Gas Laser’. In: Physical Review
Letters 49.17 (Oct. 1982), pp. 1217–1220. issn: 0031-9007. doi:
10.1103/PhysRevLett.49.1217.

[7] P. Ashwin and O. Burylko. ‘Weak chimeras in minimal net-
works of coupled phase oscillators’. In: Chaos 25.1 (Jan. 2015),
p. 013106. issn: 1054-1500. doi: 10.1063/1.4905197.

[8] O. V. Astakhov, S. V. Astakhov, N. S. Krakhovskaya, V. V.
Astakhov and J. Kurths. ‘The emergence of multistability and
chaos in a two-mode van der Pol generator versus different
connection types of linear oscillators’. In: Chaos 063118 (2018).
issn: 1054-1500. doi: 10.1063/1.5002609.

[9] N. M. Awal, D. Bullara and I. R. Epstein. ‘The smallest chimera:
Periodicity and chaos in a pair of coupled chemical oscillators’.
In: Chaos 29.1 (2019). issn: 10541500. doi: 10.1063/1.5060959.

[10] N. M. Awal and I. R. Epstein. ‘Post-canard symmetry break-
ing and other exotic dynamic behaviors in identical coupled
chemical oscillators’. In: Physical Review E 101.4 (2020). issn:
24700053. doi: 10.1103/PhysRevE.101.042222.

87

https://doi.org/10.1103/PhysRevLett.93.174102
https://doi.org/10.1021/ja00346a080
https://doi.org/10.1021/ja00346a080
https://doi.org/10.1021/j150657a036
https://doi.org/10.1063/1.2811268
https://doi.org/10.1063/5.0016372
https://doi.org/10.1103/PhysRevLett.49.1217
https://doi.org/10.1063/1.4905197
https://doi.org/10.1063/1.5002609
https://doi.org/10.1063/1.5060959
https://doi.org/10.1103/PhysRevE.101.042222


bibliography 88

[11] D. Battogtokh and J. J. Tyson. ‘Turbulence near cyclic fold
bifurcations in birhythmic media’. In: Physical Review E 70.2
(Aug. 2004), p. 026212. issn: 1539-3755. doi: 10.1103/PhysRevE.
70.026212.

[12] D. Baulch, J. F. Griffiths, A. J. Pappin and A. F. Sykes. ‘Stationary-
state and oscillatory combustion of hydrogen in a well-stirred
flow reactor’. In: Combustion and Flame 73.2 (Aug. 1988), pp. 163–
185. issn: 00102180. doi: 10.1016/0010-2180(88)90044-2.

[13] M. Bennett, M. F. Schatz, H. Rockwood and K. Wiesenfeld.
‘Huygens’s clocks’. In: Proceedings of the Royal Society of London.
Series A: Mathematical, Physical and Engineering Sciences 458.2019

(Mar. 2002), pp. 563–579. issn: 1364-5021. doi: 10.1098/rspa.
2001.0888.

[14] B. K. Bera, S. Majhi, D. Ghosh and M. Perc. ‘Chimera states:
Effects of different coupling topologies’. In: EPL (Europhysics
Letters) 118.1 (Apr. 2017), p. 10001. issn: 0295-5075. doi: 10.
1209/0295-5075/118/10001.

[15] R. Berner, J. Fialkowski, D. Kasatkin, V. Nekorkin, S. Yanchuk
and E. Schöll. ‘Hierarchical frequency clusters in adaptive net-
works of phase oscillators’. In: Chaos 29.10 (Oct. 2019), p. 103134.
issn: 1054-1500. doi: 10.1063/1.5097835.

[16] R. Berner, E. Schöll and S. Yanchuk. ‘Multiclusters in Networks
of Adaptively Coupled Phase Oscillators’. In: SIAM Journal on
Applied Dynamical Systems 18.4 (Jan. 2019), pp. 2227–2266. issn:
1536-0040. doi: 10.1137/18M1210150.

[17] D. Biswas, T. Banerjee and J. Kurths. ‘Control of birhythmicity
through conjugate self-feedback: Theory and experiment’. In:
Physical Review E 94.4 (2016), pp. 1–7. issn: 24700053. doi: 10.
1103/PhysRevE.94.042226.

[18] D. Biswas, T. Banerjee and J. Kurths. ‘Control of birhythmicity:
A self-feedback approach’. In: Chaos 27.6 (2017). issn: 10541500.
doi: 10.1063/1.4985561.

[19] D. J. Blackwood, A. M. Borazio, R. Greef, L. M. Peter and J.
Stumper. ‘Electrochemical and optical studies of silicon dissol-
ution in ammonium fluoride solutions’. In: Electrochimica Acta
37.5 (1992), pp. 889–896. issn: 00134686. doi: 10.1016/0013-
4686(92)85040-R.

[20] M. I. Bolotov, L. Smirnov, G. Osipov and A. Pikovsky. ‘Simple
and complex chimera states in a nonlinearly coupled oscillatory
medium’. In: Chaos 28.4 (Apr. 2018), p. 045101. issn: 1054-1500.
doi: 10.1063/1.5011678.

[21] J. Buck and E. Buck. ‘Mechanism of Rhythmic Synchronous
Flashing of Fireflies’. In: Science 159.3821 (Mar. 1968), pp. 1319–
1327. issn: 0036-8075. doi: 10.1126/science.159.3821.1319.

https://doi.org/10.1103/PhysRevE.70.026212
https://doi.org/10.1103/PhysRevE.70.026212
https://doi.org/10.1016/0010-2180(88)90044-2
https://doi.org/10.1098/rspa.2001.0888
https://doi.org/10.1098/rspa.2001.0888
https://doi.org/10.1209/0295-5075/118/10001
https://doi.org/10.1209/0295-5075/118/10001
https://doi.org/10.1063/1.5097835
https://doi.org/10.1137/18M1210150
https://doi.org/10.1103/PhysRevE.94.042226
https://doi.org/10.1103/PhysRevE.94.042226
https://doi.org/10.1063/1.4985561
https://doi.org/10.1016/0013-4686(92)85040-R
https://doi.org/10.1016/0013-4686(92)85040-R
https://doi.org/10.1063/1.5011678
https://doi.org/10.1126/science.159.3821.1319


bibliography 89

[22] S. Cattarin, I. Frateur, M. Musiani and B. Tribollet. ‘Electro-
dissolution of p-Si in Acidic Fluoride Media Modeling of the
Steady State’. In: Journal of The Electrochemical Society 147.9
(2000), p. 3277. issn: 00134651. doi: 10.1149/1.1393895.

[23] J.-N. Chazalviel. ‘Ionic processes through the interfacial oxide
in the anodic dissolution of silicon’. In: Electrochimica Acta
37.5 (1992), pp. 865–875. issn: 00134686. doi: 10.1016/0013-
4686(92)85038-M.

[24] J.-N. Chazalviel, M. Etman and F. Ozanam. ‘A voltammetric
study of the anodic dissolution of p-Si in fluoride electrolytes’.
In: Journal of Electroanalytical Chemistry and Interfacial Electro-
chemistry 297.2 (Jan. 1991), pp. 533–540. issn: 00220728. doi:
10.1016/0022-0728(91)80049-V.

[25] J.-N. Chazalviel and F. Ozanam. ‘A Theory for the Reson-
ant Response of an Electrochemical System: Self-Oscillating
Domains, Hidden Oscillation, and Synchronization Imped-
ance’. In: Journal of The Electrochemical Society 139.9 (Sept. 1992),
pp. 2501–2508. issn: 0013-4651. doi: 10.1149/1.2221253.

[26] J.-N. Chazalviel, F. Ozanam, M. Etman, F. Paolucci, L. M. Peter
and J. Stumper. ‘The p-Si/fluoride interface in the anodic re-
gion: Damped and/or sustained oscillations’. In: Journal of
Electroanalytical Chemistry 327.1-2 (1992), pp. 343–349. issn:
00220728. doi: 10.1016/0022-0728(92)80160-6.

[27] R. Cheggou, A. Kadoun, N. Gabouze, F. Ozanam and J.-N.
Chazalviel. ‘Theoretical modelling of the I–V characteristics of
p-type silicon in fluoride electrolyte in the first electropolishing
plateau’. In: Electrochimica Acta 54.11 (Apr. 2009), pp. 3053–3058.
issn: 00134686. doi: 10.1016/j.electacta.2008.12.006.

[28] J. R. Chelikowsky and M. L. Cohen. ‘Nonlocal pseudopotential
calculations for the electronic structure of eleven diamond and
zinc-blende semiconductors’. In: Physical Review B 14.2 (July
1976), pp. 556–582. issn: 01631829. doi: 10.1103/PhysRevB.14.
556.

[29] D. S. Cohen and J. P. Keener. ‘Multiplicity and stability of
oscillatory states in a continuous stirred tank reactor with
exothermic consecutive reactions A � B � C’. In: Chemical
Engineering Science 31.2 (1976), pp. 115–122. issn: 00092509. doi:
10.1016/0009-2509(76)85046-4.

[30] Q. Dai, D. Liu, H. Cheng, H. Li and J. Yang. ‘Two-frequency
chimera state in a ring of nonlocally coupled Brusselators’. In:
PLOS ONE 12.10 (Oct. 2017). Ed. by C. Zhou, e0187067. issn:
1932-6203. doi: 10.1371/journal.pone.0187067.

https://doi.org/10.1149/1.1393895
https://doi.org/10.1016/0013-4686(92)85038-M
https://doi.org/10.1016/0013-4686(92)85038-M
https://doi.org/10.1016/0022-0728(91)80049-V
https://doi.org/10.1149/1.2221253
https://doi.org/10.1016/0022-0728(92)80160-6
https://doi.org/10.1016/j.electacta.2008.12.006
https://doi.org/10.1103/PhysRevB.14.556
https://doi.org/10.1103/PhysRevB.14.556
https://doi.org/10.1016/0009-2509(76)85046-4
https://doi.org/10.1371/journal.pone.0187067


bibliography 90

[31] O. Decroly and A. Goldbeter. ‘Birhythmicity, chaos, and other
patterns of temporal self-organization in a multiply regulated
biochemical system.’ In: Proceedings of the National Academy
of Sciences 79.22 (1982), pp. 6917–6921. issn: 0027-8424. doi:
10.1073/pnas.79.22.6917.

[32] DIN 38 409, part 15. Berlin, 1987.

[33] M. Eddowes. ‘Anodic dissolution of p- and n-type silicon: Kin-
etic study of the chemical mechanism’. In: Journal of Electroana-
lytical Chemistry and Interfacial Electrochemistry 280.2 (1990),
pp. 297–311. issn: 00220728. doi: 10.1016/0022- 0728(90)
87005-5.

[34] E. Foca, J. Carstensen and H. Föll. ‘Modelling electrochemical
current and potential oscillations at the Si electrode’. In: Journal
of Electroanalytical Chemistry 603.2 (2007), pp. 175–202. issn:
00220728. doi: 10.1016/j.jelechem.2007.01.019.

[35] H. Föll, M. Leisner, A. Cojocaru and J. Carstensen. ‘Self-organi-
zation phenomena at semiconductor electrodes’. In: Electrochim-
ica Acta 55.2 (2009), pp. 327–339. issn: 00134686. doi: 10.1016/
j.electacta.2009.03.076.

[36] D. Gabor. ‘Theory of communication. Part 1: The analysis of
information’. In: Journal of the Institution of Electrical Engineers -
Part III: Radio and Communication Engineering 93.26 (Nov. 1946),
pp. 429–441. issn: 2054-0604. doi: 10.1049/ji-3-2.1946.0074.

[37] F. Gaspard, A. Bsiesy, M. Ligeon, F. Muller and R. Herino.
‘Charge Exchange Mechanism Responsible for P-Type Silicon
Dissolution during Porous Silicon Formation’. In: Journal of
The Electrochemical Society 136.10 (1989), pp. 3043–3046. issn:
0013-4651. doi: 10.1149/1.2096399.

[38] D. Golomb, D. Hansel and G. Mato. ‘Chapter 21 Mechanisms
of synchrony of neural activity in large networks’. In: Handbook
of biological physics. Ed. by F. Moss and S. Gielen. Vol. 4. Elsevier,
2001, pp. 887–968. isbn: 9780444502841. doi: 10.1016/S1383-
8121(01)80024-5.

[39] J. González-Avella, M. Cosenza and M. San Miguel. ‘Localized
coherence in two interacting populations of social agents’. In:
Physica A: Statistical Mechanics and its Applications 399 (Apr.
2014), pp. 24–30. issn: 03784371. doi: 10.1016/j.physa.2013.
12.035.

[40] B. Gray and J. Jones. ‘The heat release rates and cool flames
of acetaldehyde oxidation in a continuously stirred tank re-
actor’. In: Combustion and Flame 57.1 (July 1984), pp. 3–14. issn:
00102180. doi: 10.1016/0010-2180(84)90132-9.

https://doi.org/10.1073/pnas.79.22.6917
https://doi.org/10.1016/0022-0728(90)87005-5
https://doi.org/10.1016/0022-0728(90)87005-5
https://doi.org/10.1016/j.jelechem.2007.01.019
https://doi.org/10.1016/j.electacta.2009.03.076
https://doi.org/10.1016/j.electacta.2009.03.076
https://doi.org/10.1049/ji-3-2.1946.0074
https://doi.org/10.1149/1.2096399
https://doi.org/10.1016/S1383-8121(01)80024-5
https://doi.org/10.1016/S1383-8121(01)80024-5
https://doi.org/10.1016/j.physa.2013.12.035
https://doi.org/10.1016/j.physa.2013.12.035
https://doi.org/10.1016/0010-2180(84)90132-9


bibliography 91

[41] T. Gross and B. Blasius. ‘Adaptive coevolutionary networks: a
review’. In: Journal of The Royal Society Interface 5.20 (Mar. 2008),
pp. 259–271. issn: 1742-5689. doi: 10.1098/rsif.2007.1229.

[42] J. Grzanna, H. Jungblut and H. J. Lewerenz. ‘A model for elec-
trochemical oscillations at the Si|electrolyte contact: Part II.
Simulations and experimental results’. In: Journal of Electroana-
lytical Chemistry 486.2 (May 2000), pp. 190–203. issn: 15726657.
doi: 10.1016/S0022-0728(00)00142-X.

[43] J. Guckenheimer and Y. Kuznetsov. ‘Fold-Hopf bifurcation’. In:
Scholarpedia 2.10 (2007), p. 1855. issn: 1941-6016. doi: 10.4249/
scholarpedia.1855.

[44] A. M. Hagerstrom, T. E. Murphy, R. Roy, P. Hövel, I. Om-
elchenko and E. Schöll. ‘Experimental observation of chimeras
in coupled-map lattices’. In: Nature Physics 8.9 (July 2012),
pp. 658–661. issn: 1745-2473. doi: 10.1038/nphys2372.

[45] H. Haken. Advanced Synergetics. Vol. 20. Springer Series in
Synergetics 2. Berlin, Heidelberg: Springer Berlin Heidelberg,
Feb. 1983, p. 209. isbn: 978-3-642-45555-1. doi: 10.1007/978-3-
642-45553-7.

[46] J. D. Hart, K. Bansal, T. E. Murphy and R. Roy. ‘Experimental
observation of chimera and cluster states in a minimal globally
coupled network’. In: Chaos 26.9 (2016). issn: 10541500. doi:
10.1063/1.4953662.

[47] A. Heinrich. ‘Mechanistische und dynamische Eigenschaften
der Elektrodissolution von Silizium’. Master’s thesis. Technis-
che Universität München, 2013.

[48] J. Hounsgaard, H. Hultborn, B. Jespersen and O. Kiehn. ‘Bista-
bility of alpha-motoneurones in the decerebrate cat and in the
acute spinal cat after intravenous 5-hydroxytryptophan.’ In:
The Journal of Physiology 405.1 (Nov. 1988), pp. 345–367. issn:
00223751. doi: 10.1113/jphysiol.1988.sp017336.

[49] R. Hueck. ‘From Subcritical to Strong Nonlinear Spatial Coup-
ling during Electrodissolution of n-type Si : Phase Waves ,
Frequency Clusters and Tristability’. Master’s Thesis. Technis-
che Universität München, 2017.

[50] H. Jahnsen and R. Llinás. ‘Ionic basis for the electro-responsive-
ness and oscillatory properties of guinea-pig thalamic neurones
in vitro.’ In: The Journal of Physiology 349.1 (Apr. 1984), pp. 227–
247. issn: 00223751. doi: 10.1113/jphysiol.1984.sp015154.

[51] B. R. Johnson, J. F. Griffiths and S. K. Scott. ‘Characterisation of
oscillations in the H2+ O2reaction in a continuous-flow reactor’.
In: Journal of the Chemical Society, Faraday Transactions 87.4 (1991),
pp. 523–533. issn: 09565000. doi: 10.1039/FT9918700523.

https://doi.org/10.1098/rsif.2007.1229
https://doi.org/10.1016/S0022-0728(00)00142-X
https://doi.org/10.4249/scholarpedia.1855
https://doi.org/10.4249/scholarpedia.1855
https://doi.org/10.1038/nphys2372
https://doi.org/10.1007/978-3-642-45553-7
https://doi.org/10.1007/978-3-642-45553-7
https://doi.org/10.1063/1.4953662
https://doi.org/10.1113/jphysiol.1988.sp017336
https://doi.org/10.1113/jphysiol.1984.sp015154
https://doi.org/10.1039/FT9918700523


bibliography 92

[52] J. S. Judge. ‘A study of the dissolution of SiO2 in acidic fluoride
solutions’. In: Journal of The Electrochemical Society 118.11 (1971),
pp. 1772–1775. issn: 00134651. doi: 10.1149/1.2407835.

[53] M. Kang, D. Momotenko, A. Page, D. Perry and P. R. Un-
win. ‘Frontiers in Nanoscale Electrochemical Imaging: Faster,
Multifunctional, and Ultrasensitive’. In: Langmuir 32.32 (2016),
pp. 7993–8008. issn: 15205827. doi: 10.1021/acs.langmuir.
6b01932.

[54] D. V. Kasatkin, S. Yanchuk, E. Schöll and V. I. Nekorkin. ‘Self-
organized emergence of multilayer structure and chimera states
in dynamical networks with adaptive couplings’. In: Physical
Review E 96.6 (Dec. 2017), p. 062211. issn: 2470-0045. doi: 10.
1103/PhysRevE.96.062211.

[55] F. P. Kemeth, S. W. Haugland and K. Krischer. ‘Symmetries of
Chimera States’. In: Physical Review Letters 120.21 (May 2018),
p. 214101. issn: 0031-9007. doi: 10.1103/PhysRevLett.120.
214101.

[56] M. Komarov and A. Pikovsky. ‘Finite-size-induced transitions
to synchrony in oscillator ensembles with nonlinear global
coupling’. In: Physical Review E 92.2 (Aug. 2015), p. 020901.
issn: 1539-3755. doi: 10.1103/PhysRevE.92.020901.

[57] A. Koseska, E. Volkov and J. Kurths. ‘Oscillation quenching
mechanisms: Amplitude vs. oscillation death’. In: Physics Re-
ports 531.4 (2013), pp. 173–199. issn: 03701573. doi: 10.1016/j.
physrep.2013.06.001.

[58] D. Koster, G. Du, A. Battistel and F. La Mantia. ‘Dynamic
impedance spectroscopy using dynamic multi-frequency ana-
lysis: A theoretical and experimental investigation’. In: Elec-
trochimica Acta 246 (2017), pp. 553–563. issn: 0013-4686. doi:
10.1016/J.ELECTACTA.2017.06.060.

[59] C. J. Krebs. Ecology; the Experimental Analysis of Distribution and
Abundance. Second Pri. New York, NY: Harper & Row, 1972,
p. 694. isbn: 060437707.

[60] K. Krischer. ‘Principles of Temporal and Spatial Pattern Forma-
tion in Electrochemical Systems’. In: Modern Aspects of Electro-
chemistry. Ed. by B. E. et al Conway. Vol. 213. Part_2. Boston:
Kluwer Academic Publishers, 1999. Chap. 1, pp. 1–142. doi:
10.1007/0-306-46916-2_1.

[61] K. Krischer. ‘Nonlinear Dynamics in Electrochemical Systems’.
In: Advances in Electrochemical Science and Engineering, Volume 8.
Vol. 8. Weinheim, FRG: Wiley-VCH Verlag GmbH & Co. KGaA,
2003, pp. 89–208. isbn: 3527302115. doi: 10.1002/3527600787.
ch2.

https://doi.org/10.1149/1.2407835
https://doi.org/10.1021/acs.langmuir.6b01932
https://doi.org/10.1021/acs.langmuir.6b01932
https://doi.org/10.1103/PhysRevE.96.062211
https://doi.org/10.1103/PhysRevE.96.062211
https://doi.org/10.1103/PhysRevLett.120.214101
https://doi.org/10.1103/PhysRevLett.120.214101
https://doi.org/10.1103/PhysRevE.92.020901
https://doi.org/10.1016/j.physrep.2013.06.001
https://doi.org/10.1016/j.physrep.2013.06.001
https://doi.org/10.1016/J.ELECTACTA.2017.06.060
https://doi.org/10.1007/0-306-46916-2_1
https://doi.org/10.1002/3527600787.ch2
https://doi.org/10.1002/3527600787.ch2


bibliography 93

[62] Y. Kuramoto and T. Tsuzuki. ‘On the Formation of Dissipative
Structures in Reaction-Diffusion Systems: Reductive Perturb-
ation Approach’. In: Progress of Theoretical Physics 54.3 (Sept.
1975), pp. 687–699. issn: 0033-068X. doi: 10.1143/PTP.54.687.

[63] Y. Kuramoto. Chemical Oscillations, Waves, and Turbulence. Vol. 19.
Springer Series in Synergetics. Berlin, Heidelberg: Springer Ber-
lin Heidelberg, 1984. isbn: 978-3-642-69691-6. doi: 10.1007/
978-3-642-69689-3.

[64] Y. Kuramoto. ‘Self-entrainment of a population of coupled non-
linear oscillators’. In: International Symposium on Mathematical
Problems in Theoretical Physics. 02. Berlin/Heidelberg: Springer-
Verlag, 2004, pp. 420–422. doi: 10.1007/BFb0013365.

[65] Y. Kuramoto and D. Battogtokh. ‘Coexistence of Coherence
and Incoherence in Nonlocally Coupled Phase Oscillators’. In:
Nonlinear Phenom. Complex Syst. 5 (2002), pp. 380–385.

[66] P. Lamba and J. L. Hudson. ‘Experimental Evidence of Mul-
tiple Oscillatory States in a Continuous Reactor’. In: Chemical
Engineering Communications 32.6 (Jan. 1985), pp. 369–375. issn:
0098-6445. doi: 10.1080/00986448508911657.

[67] H. A. Lechner, D. A. Baxter, J. W. Clark and J. H. Byrne. ‘Bistabil-
ity and its regulation by serotonin in the endogenously bursting
neuron R15 in Aplysia’. In: Journal of Neurophysiology 75.2 (1996),
pp. 957–962. issn: 00223077. doi: 10.1152/jn.1996.75.2.957.

[68] V. Lehmann. ‘The Physics of Macropore Formation in Low
Doped n-Type Silicon’. In: Journal of The Electrochemical Society
140.10 (1993), p. 2836. issn: 00134651. doi: 10.1149/1.2220919.

[69] V. Lehmann and H. Föll. ‘Formation Mechanism and Properties
of Electrochemically Etched Trenches in n-Type Silicon’. In:
Journal of The Electrochemical Society 137.2 (Feb. 1990), pp. 653–
659. issn: 0013-4651. doi: 10.1149/1.2086525.

[70] H. J. Lewerenz. ‘Spatial and temporal oscillation at Si (111)
electrodes in aqueous fluoride-containing solution’. In: The
Journal of Physical Chemistry B 5647.111 (1997), pp. 2421–2425.
issn: 1520-6106. doi: 10.1021/jp962694x.

[71] H. J. Lewerenz. ‘Operational principles of electrochemical nano-
emitter solar cells for photovoltaic and photoelectrocatalytic
applications’. In: Journal of Electroanalytical Chemistry 662.1 (Nov.
2011), pp. 184–195. issn: 15726657. doi: 10.1016/j.jelechem.
2011.05.019.

[72] H. J. Lewerenz, J. Stumper and L. M. Peter. ‘Deconvolution
of charge injection steps in quantum yield multiplication on
silicon’. In: Physical Review Letters 61.17 (Oct. 1988), pp. 1989–
1992. issn: 00319007. doi: 10.1103/PhysRevLett.61.1989.

https://doi.org/10.1143/PTP.54.687
https://doi.org/10.1007/978-3-642-69689-3
https://doi.org/10.1007/978-3-642-69689-3
https://doi.org/10.1007/BFb0013365
https://doi.org/10.1080/00986448508911657
https://doi.org/10.1152/jn.1996.75.2.957
https://doi.org/10.1149/1.2220919
https://doi.org/10.1149/1.2086525
https://doi.org/10.1021/jp962694x
https://doi.org/10.1016/j.jelechem.2011.05.019
https://doi.org/10.1016/j.jelechem.2011.05.019
https://doi.org/10.1103/PhysRevLett.61.1989


bibliography 94

[73] A. L. Lin, M. Bertram, K. Martinez, H. L. Swinney, A. Ar-
delea and G. F. Carey. ‘Resonant Phase Patterns in a Reaction-
Diffusion System’. In: Physical Review Letters 84.18 (May 2000),
pp. 4240–4243. issn: 0031-9007. doi: 10.1103/PhysRevLett.84.
4240.

[74] A. L. Lin, A. Hagberg, E. Meron and H. L. Swinney. ‘Resonance
tongues and patterns in periodically forced reaction-diffusion
systems’. In: Physical Review E 69.6 (June 2004), p. 066217. issn:
1539-3755. doi: 10.1103/PhysRevE.69.066217.

[75] Y.-P. Lin and J.-G. Hwu. ‘Suboxide characteristics in ultrathin
oxides grown under novel oxidation processes’. In: Journal of
Vacuum Science & Technology A: Vacuum, Surfaces, and Films 22.6
(Nov. 2004), pp. 2265–2272. issn: 0734-2101. doi: 10.1116/1.
1795824.

[76] E. N. Lorenz. ‘Deterministic Nonperiodic Flow’. In: Journal of
the Atmospheric Sciences 20.2 (Mar. 1963), pp. 130–141. issn: 0022-
4928. doi: 10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2.

[77] E. N. Lorenz. The Essence of Chaos. 1st ed. Seattle: University of
Washington Press, 1995, p. 227. isbn: 0295975148.

[78] K. Lüdge and H. G. Schuster. Nonlinear Laser Dynamics. Ed.
by K. Lüdge. Weinheim, Germany: Wiley-VCH Verlag GmbH
& Co. KGaA, Dec. 2011. isbn: 9783527639823. doi: 10.1002/
9783527639823.

[79] E. A. Martens, S. Thutupalli, A. Fourriere and O. Hallatschek.
‘Chimera states in mechanical oscillator networks’. In: Pro-
ceedings of the National Academy of Sciences 110.26 (June 2013),
pp. 10563–10567. issn: 0027-8424. doi: 10.1073/pnas.1302880110.

[80] J. Maselko and H. L. Swinney. ‘Complex periodic oscillations
and Farey arithmetic in the Belousov–Zhabotinskii reaction’. In:
The Journal of Chemical Physics 85.11 (Dec. 1986), pp. 6430–6441.
issn: 0021-9606. doi: 10.1063/1.451473.

[81] MATLAB:2019b. 9.7.0.1586710 (R2019b). Natick, Massachusetts:
The MathWorks Inc., 2019.

[82] R. M. May. ‘Simple mathematical models with very complic-
ated dynamics’. In: Nature 261.5560 (June 1976), pp. 459–467.
issn: 0028-0836. doi: 10.1038/261459a0.

[83] R. M. May and G. F. Oster. ‘Bifurcations and Dynamic Com-
plexity in Simple Ecological Models’. In: The American Nat-
uralist 110.974 (July 1976), pp. 573–599. issn: 0003-0147. doi:
10.1086/283092.

[84] R. Memming and G. Schwandt. ‘Anodic dissolution of silicon in
hydrofluoric acid solutions’. In: Surface Science 4.2 (Mar. 1966),
pp. 109–124. issn: 00396028. doi: 10.1016/0039- 6028(66)
90071-9.

https://doi.org/10.1103/PhysRevLett.84.4240
https://doi.org/10.1103/PhysRevLett.84.4240
https://doi.org/10.1103/PhysRevE.69.066217
https://doi.org/10.1116/1.1795824
https://doi.org/10.1116/1.1795824
https://doi.org/10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2
https://doi.org/10.1002/9783527639823
https://doi.org/10.1002/9783527639823
https://doi.org/10.1073/pnas.1302880110
https://doi.org/10.1063/1.451473
https://doi.org/10.1038/261459a0
https://doi.org/10.1086/283092
https://doi.org/10.1016/0039-6028(66)90071-9
https://doi.org/10.1016/0039-6028(66)90071-9


bibliography 95

[85] K. O. Menzel, O. Arp and A. Piel. ‘Spatial Frequency Clustering
in Nonlinear Dust-Density Waves’. In: Physical Review Letters
104.23 (June 2010), p. 235002. issn: 0031-9007. doi: 10.1103/
PhysRevLett.104.235002.

[86] I. Miethe. ‘Spatio-temporal pattern formation during the anodic
electrodissolution of silicon in ammonium fluoride solution’.
PhD Thesis. Technische Universität München, 2010.

[87] I. Miethe, V. García-Morales and K. Krischer. ‘Irregular Subhar-
monic Cluster Patterns in an Autonomous Photoelectrochem-
ical Oscillator’. In: Physical Review Letters 102.19 (May 2009),
p. 194101. issn: 0031-9007. doi: 10.1103/PhysRevLett.102.
194101.

[88] I. Miethe and K. Krischer. ‘Ellipsomicroscopic studies of the
anodic oxidation of p-type silicon in fluoride containing elec-
trolytes during current oscillations’. In: Journal of Electroanalyt-
ical Chemistry 666 (Feb. 2012), pp. 1–10. issn: 15726657. doi:
10.1016/j.jelechem.2011.11.027.

[89] A. S. Mikhailov. Foundations of Synergetics I. Vol. 51. Springer
Series in Synergetics. Berlin, Heidelberg: Springer Berlin Heidel-
berg, 1994. isbn: 978-3-642-78558-0. doi: 10.1007/978-3-642-
78556-6.

[90] A. S. Mikhailov, D. H. Zanette, Y. M. Zhai, I. Z. Kiss and J. L.
Hudson. ‘Cooperative action of coherent groups in broadly
heterogeneous populations of interacting chemical oscillators’.
In: Proceedings of the National Academy of Sciences 101.30 (July
2004), pp. 10890–10894. issn: 0027-8424. doi: 10.1073/pnas.
0402899101.

[91] M. Mikhaylenko, L. Ramlow, S. Jalan and A. Zakharova. ‘Weak
multiplexing in neural networks: Switching between chimera
and solitary states’. In: Chaos 29.2 (Feb. 2019), p. 023122. issn:
1054-1500. doi: 10.1063/1.5057418.

[92] A. E. Motter, S. A. Myers, M. Anghel and T. Nishikawa. ‘Spon-
taneous synchrony in power-grid networks’. In: Nature Physics
9.3 (Mar. 2013), pp. 191–197. issn: 1745-2473. doi: 10.1038/
nphys2535.

[93] B. P. Nadappuram, K. McKelvey, R. Al Botros, A. W. Colburn
and P. R. Unwin. ‘Fabrication and Characterization of Dual
Function Nanoscale pH-Scanning Ion Conductance Microscopy
(SICM) Probes for High Resolution pH Mapping’. In: Analytical
Chemistry 85.17 (Sept. 2013), pp. 8070–8074. issn: 0003-2700.
doi: 10.1021/ac401883n.

https://doi.org/10.1103/PhysRevLett.104.235002
https://doi.org/10.1103/PhysRevLett.104.235002
https://doi.org/10.1103/PhysRevLett.102.194101
https://doi.org/10.1103/PhysRevLett.102.194101
https://doi.org/10.1016/j.jelechem.2011.11.027
https://doi.org/10.1007/978-3-642-78556-6
https://doi.org/10.1007/978-3-642-78556-6
https://doi.org/10.1073/pnas.0402899101
https://doi.org/10.1073/pnas.0402899101
https://doi.org/10.1063/1.5057418
https://doi.org/10.1038/nphys2535
https://doi.org/10.1038/nphys2535
https://doi.org/10.1021/ac401883n


bibliography 96

[94] T. Nagy, E. Verner, V. Gáspár, H. Kori and I. Z. Kiss. ‘Delayed
feedback induced multirhythmicity in the oscillatory electro-
dissolution of copper’. In: Chaos 25.6 (2015). issn: 10541500.
doi: 10.1063/1.4921694.

[95] O. Nast, S. Rauscher, H. Jungblut and H. J. Lewerenz. ‘Micro-
morphology changes of silicon oxide on Si(111) during current
oscillations: A comparative in situ AFM and FTIR study’. In:
Journal of Electroanalytical Chemistry 442.1-2 (1998), pp. 169–174.
issn: 15726657. doi: 10.1016/S0022-0728(97)00476-2.

[96] S. Nkomo, M. R. Tinsley and K. Showalter. ‘Chimera and
chimera-like states in populations of nonlocally coupled ho-
mogeneous and heterogeneous chemical oscillators’. In: Chaos
26.9 (Sept. 2016), pp. 662–665. issn: 10541500. doi: 10.1063/1.
4962631.

[97] A. M. Nobili. ‘Secular effects of tidal friction on the planet-
satellite systems of the solar system’. In: The Moon and the
Planets 18.2 (Apr. 1978), pp. 203–216. issn: 0165-0807. doi: 10.
1007/BF00896743.

[98] K. Okuda. ‘Variety and generality of clustering in globally
coupled oscillators’. In: Physica D: Nonlinear Phenomena 63.3-4
(Mar. 1993), pp. 424–436. issn: 01672789. doi: 10.1016/0167-
2789(93)90121-G.

[99] O. E. Omel’chenko. ‘The mathematics behind chimera states’.
In: Nonlinearity 31.5 (May 2018), R121–R164. issn: 0951-7715.
doi: 10.1088/1361-6544/aaaa07.

[100] O. E. Omel’chenko, Y. L. Maistrenko and P. A. Tass. ‘Chimera
States: The Natural Link Between Coherence and Incoherence’.
In: Physical Review Letters 100.4 (Jan. 2008), p. 044105. issn:
0031-9007. doi: 10.1103/PhysRevLett.100.044105.

[101] G. V. Osipov and M. M. Sushchik. ‘Synchronized clusters and
multistability in arrays of oscillators with different natural
frequencies’. In: Physical Review E 58.6 (Dec. 1998), pp. 7198–
7207. issn: 1063-651X. doi: 10.1103/PhysRevE.58.7198.

[102] G. V. Osipov, A. S. Pikovsky, M. G. Rosenblum and J. Kur-
ths. ‘Phase synchronization effects in a lattice of nonidentical
Rössler oscillators’. In: Physical Review E 55.3 (Mar. 1997), pp. 2353–
2361. issn: 1063-651X. doi: 10.1103/PhysRevE.55.2353.

[103] M. J. Panaggio and D. M. Abrams. ‘Chimera states: coexistence
of coherence and incoherence in networks of coupled oscillat-
ors’. In: Nonlinearity 28.3 (2015), R67–R87. issn: 0951-7715. doi:
10.1088/0951-7715/28/3/R67.

[104] J. Pantaleone. ‘Synchronization of metronomes’. In: American
Journal of Physics 70.10 (Oct. 2002), pp. 992–1000. issn: 0002-9505.
doi: 10.1119/1.1501118.

https://doi.org/10.1063/1.4921694
https://doi.org/10.1016/S0022-0728(97)00476-2
https://doi.org/10.1063/1.4962631
https://doi.org/10.1063/1.4962631
https://doi.org/10.1007/BF00896743
https://doi.org/10.1007/BF00896743
https://doi.org/10.1016/0167-2789(93)90121-G
https://doi.org/10.1016/0167-2789(93)90121-G
https://doi.org/10.1088/1361-6544/aaaa07
https://doi.org/10.1103/PhysRevLett.100.044105
https://doi.org/10.1103/PhysRevE.58.7198
https://doi.org/10.1103/PhysRevE.55.2353
https://doi.org/10.1088/0951-7715/28/3/R67
https://doi.org/10.1119/1.1501118


bibliography 97

[105] F. Paolucci, L. M. Peter and J. Stumper. ‘Wavelength-dependent
photocurrent multiplication during the anodic dissolution of
n-Si in ammonium fluoride solutions’. In: Journal of Electroana-
lytical Chemistry 341.1-2 (1992), pp. 165–180. issn: 00220728. doi:
10.1016/0022-0728(92)80482-J.

[106] M. Patzauer. ‘Multistability in the Oscillatory Electrodissolution
of Silicon’. Master’s Thesis. Technische Universität München,
2016.

[107] M. Patzauer, R. Hueck, A. Tosolini, K. Schönleber and K.
Krischer. ‘Autonomous Oscillations and Pattern Formation
with Zero External Resistance during Silicon Electrodissolu-
tion’. In: Electrochimica Acta 246 (Aug. 2017), pp. 315–321. issn:
00134686. doi: 10.1016/j.electacta.2017.06.005.

[108] M. Patzauer and K. Krischer. ‘Self-Organized Multifrequency
Clusters in an Oscillating Electrochemical System with Strong
Nonlinear Coupling’. In: Physical Review Letters 126.19 (May
2021), p. 194101. issn: 0031-9007. doi: 10.1103/PhysRevLett.
126.194101.

[109] J. S. Pendergast, K. D. Niswender and S. Yamazaki. ‘The com-
plex relationship between the light-entrainable and methamphet-
amine-sensitive circadian oscillators: evidence from behavioral
studies of Period -mutant mice’. In: European Journal of Neur-
oscience 38.7 (July 2013), pp. 3044–3053. issn: 0953816X. doi:
10.1111/ejn.12309.

[110] H. R. Philipp and H. Ehrenreich. ‘Optical Properties of Semi-
conductors’. In: Physical Review 129.4 (Feb. 1963), pp. 1550–1560.
issn: 0031-899X. doi: 10.1103/PhysRev.129.1550.

[111] A. Pikovsky, M. Rosenblum and J. Kurths. Synchronization.
Cambridge University Press, Oct. 2001. isbn: 9780521533522.
doi: 10.1017/CBO9780511755743.

[112] A. N. Pisarchik and U. Feudel. ‘Control of multistability’. In:
Physics Reports 540.4 (July 2014), pp. 167–218. issn: 03701573.
doi: 10.1016/j.physrep.2014.02.007.

[113] J. Proost, F. Blaffart, S. Turner and H. Idrissi. ‘On the Origin of
Damped Electrochemical Oscillations at Silicon Anodes (Revis-
ited)’. In: ChemPhysChem 15.14 (Oct. 2014), pp. 3116–3124. issn:
14397641. doi: 10.1002/cphc.201402207.

[114] A. Provata. ‘Chimera states formed via a two-level synchroniza-
tion mechanism’. In: Journal of Physics: Complexity 1.2 (July 2020),
p. 025006. issn: 2632-072X. doi: 10.1088/2632-072X/ab79bd.

[115] Q. Ren and J. Zhao. ‘Adaptive coupling and enhanced syn-
chronization in coupled phase oscillators’. In: Physical Review
E 76.1 (July 2007), p. 016207. issn: 1539-3755. doi: 10.1103/
PhysRevE.76.016207.

https://doi.org/10.1016/0022-0728(92)80482-J
https://doi.org/10.1016/j.electacta.2017.06.005
https://doi.org/10.1103/PhysRevLett.126.194101
https://doi.org/10.1103/PhysRevLett.126.194101
https://doi.org/10.1111/ejn.12309
https://doi.org/10.1103/PhysRev.129.1550
https://doi.org/10.1017/CBO9780511755743
https://doi.org/10.1016/j.physrep.2014.02.007
https://doi.org/10.1002/cphc.201402207
https://doi.org/10.1088/2632-072X/ab79bd
https://doi.org/10.1103/PhysRevE.76.016207
https://doi.org/10.1103/PhysRevE.76.016207


bibliography 98

[116] M. Rosenblum and A. Pikovsky. ‘Self-Organized Quasiperiod-
icity in Oscillator Ensembles with Global Nonlinear Coupling’.
In: Physical Review Letters 98.6 (Feb. 2007), p. 064101. issn: 0031-
9007. doi: 10.1103/PhysRevLett.98.064101.

[117] A. Rothkegel and K. Lehnertz. ‘Irregular macroscopic dynamics
due to chimera states in small-world networks of pulse-coupled
oscillators’. In: New Journal of Physics 16 (2014). issn: 13672630.
doi: 10.1088/1367-2630/16/5/055006.

[118] J.-C. Roux. ‘Experimental studies of bifurcations leading to
chaos in the Belousof-Zhabotinsky reaction’. In: Physica D:
Nonlinear Phenomena 7.1-3 (May 1983), pp. 57–68. issn: 01672789.
doi: 10.1016/0167-2789(83)90115-X.

[119] M. M. Salman. ‘Modeling Complex Phenomena in Open Elec-
trochemical Systems’. PhD thesis. Technische Universität Mün-
chen, 2020.

[120] M. M. Salman, M. Patzauer, D. Koster, F. La Mantia and K.
Krischer. ‘Electro-oxidation of p-silicon in fluoride-containing
electrolyte: a physical model for the regime of negative dif-
ferential resistance’. In: The European Physical Journal Special
Topics 227.18 (Apr. 2019), pp. 2641–2658. issn: 1951-6355. doi:
10.1140/epjst/e2019-800118-x.

[121] G. Saxena, A. Prasad and R. Ramaswamy. ‘Amplitude death:
The emergence of stationarity in coupled nonlinear systems’.
In: Physics Reports 521.5 (2012), pp. 205–228. issn: 03701573.
doi: 10.1016/j.physrep.2012.09.003.

[122] L. Schmidt and K. Krischer. ‘Chimeras in globally coupled
oscillatory systems: From ensembles of oscillators to spatially
continuous media’. In: Chaos 25.6 (June 2015), p. 064401. issn:
10541500. doi: 10.1063/1.4921727.

[123] L. Schmidt and K. Krischer. ‘Clustering as a Prerequisite for
Chimera States in Globally Coupled Systems’. In: Physical Re-
view Letters 114.3 (Jan. 2015), p. 034101. issn: 0031-9007. doi:
10.1103/PhysRevLett.114.034101.

[124] L. Schmidt, K. Schönleber, V. García-Morales and K. Krischer.
‘Unusual synchronization phenomena during electrodissolu-
tion of silicon: the role of nonlinear global coupling’. In: Engin-
eering of Chemical Complexity II 12 (May 2014), pp. 239–260. doi:
10.1142/9789814616133_0014.

[125] L. Schmidt, K. Schönleber, K. Krischer and V. García-Morales.
‘Coexistence of synchrony and incoherence in oscillatory media
under nonlinear global coupling’. In: Chaos 24.1 (Mar. 2014),
p. 013102. issn: 1054-1500. doi: 10.1063/1.4858996.

https://doi.org/10.1103/PhysRevLett.98.064101
https://doi.org/10.1088/1367-2630/16/5/055006
https://doi.org/10.1016/0167-2789(83)90115-X
https://doi.org/10.1140/epjst/e2019-800118-x
https://doi.org/10.1016/j.physrep.2012.09.003
https://doi.org/10.1063/1.4921727
https://doi.org/10.1103/PhysRevLett.114.034101
https://doi.org/10.1142/9789814616133_0014
https://doi.org/10.1063/1.4858996


bibliography 99

[126] E. Schöll. ‘Synchronization patterns and chimera states in
complex networks: Interplay of topology and dynamics’. In:
European Physical Journal: Special Topics 225.6-7 (2016), pp. 891–
919. issn: 19516401. doi: 10.1140/epjst/e2016-02646-3.

[127] K. Schönleber. ‘Self-organization phenomena during the elec-
trodissolution of silicon’. PhD Thesis. Technische Universität
München, 2015.

[128] K. Schönleber and K. Krischer. ‘High-Amplitude versus Low-
Amplitude Current Oscillations during the Anodic Oxida-
tion of p-Type Silicon in Fluoride Containing Electrolytes’. In:
ChemPhysChem 13.12 (Aug. 2012), pp. 2989–2996. issn: 14394235.
doi: 10.1002/cphc.201200230.

[129] K. Schönleber, M. Patzauer and K. Krischer. ‘A comparison of
modeling frameworks for the oscillatory silicon electrodissolu-
tion’. In: Electrochimica Acta 210 (Aug. 2016), pp. 346–351. issn:
00134686. doi: 10.1016/j.electacta.2016.05.144.

[130] K. Schönleber, C. Zensen, A. Heinrich and K. Krischer. ‘Pattern
formation during the oscillatory photoelectrodissolution of n-
type silicon: turbulence, clusters and chimeras’. In: New Journal
of Physics 16.6 (June 2014), p. 063024. issn: 1367-2630. doi:
10.1088/1367-2630/16/6/063024.

[131] A. G. Smart. ‘Exotic chimera dynamics glimpsed in experi-
ments’. In: Physics Today 65.10 (Oct. 2012), pp. 17–19. issn:
0031-9228. doi: 10.1063/PT.3.1738.

[132] K. Srinivasan and G. A. Rechnitz. ‘Activity Measurements
with a Fluoride-Selective Membrane Electrode’. In: Analytical
Chemistry 40.3 (1968), pp. 509–512. issn: 15206882. doi: 10.
1021/ac60259a039.

[133] M. Stich, M. Ipsen and A. S. Mikhailov. ‘Self-organized stable
pacemakers near the onset of birhythmicity’. In: Physical Review
Letters 86.19 (2001), pp. 4406–4409. issn: 00319007. doi: 10.
1103/PhysRevLett.86.4406.

[134] M. Stich, M. Ipsen and A. S. Mikhailov. ‘Self-organized pace-
makers in birhythmic media’. In: Physica D: Nonlinear Phenom-
ena 171.1-2 (2002), pp. 19–40. issn: 01672789. doi: 10.1016/
S0167-2789(02)00549-3.

[135] S. H. Strogatz. ‘From Kuramoto to Crawford: exploring the
onset of synchronization in populations of coupled oscillators’.
In: Physica D: Nonlinear Phenomena 143.1-4 (2000), pp. 1–20. issn:
01672789. doi: 10.1016/S0167-2789(00)00094-4.

[136] S. H. Strogatz. Sync: How order emerges from chaos in the universe,
nature, and daily life. 1 st ed. New York, NY: Hyperion, 2003,
p. 338. isbn: 0-7868-6844-9.

https://doi.org/10.1140/epjst/e2016-02646-3
https://doi.org/10.1002/cphc.201200230
https://doi.org/10.1016/j.electacta.2016.05.144
https://doi.org/10.1088/1367-2630/16/6/063024
https://doi.org/10.1063/PT.3.1738
https://doi.org/10.1021/ac60259a039
https://doi.org/10.1021/ac60259a039
https://doi.org/10.1103/PhysRevLett.86.4406
https://doi.org/10.1103/PhysRevLett.86.4406
https://doi.org/10.1016/S0167-2789(02)00549-3
https://doi.org/10.1016/S0167-2789(02)00549-3
https://doi.org/10.1016/S0167-2789(00)00094-4


bibliography 100

[137] S. H. Strogatz. Nonlinear Dynamics and Chaos. Boulder, CO:
Westview Press, 2015, p. 513. isbn: 978-0-81334910-7.

[138] S. H. Strogatz, D. M. Abrams, A. McRobie, B. Eckhardt and E.
Ott. ‘Crowd synchrony on the Millennium Bridge’. In: Nature
438.7064 (Nov. 2005), pp. 43–44. issn: 0028-0836. doi: 10.1038/
438043a.

[139] J. Stumper, R. Greef and L. M. Peter. ‘Current Oscillations
during Anodic-Dissolution of P-Si in Ammonium Fluoride - an
Investigation Using Ring Disk Voltammetry and Ellipsometry’.
In: Journal of Electroanalytical Chemistry 310.1-2 (1991), pp. 445–
452. issn: 00220728. doi: 10.1016/0022-0728(91)85281-S.

[140] J. Stumper and L. M. Peter. ‘A rotating ring-disc study of
the photodissolution of n-Si in ammonium fluoride solutions’.
In: Journal of Electroanalytical Chemistry and Interfacial Electro-
chemistry 309.1-2 (July 1991), pp. 325–331. issn: 00220728. doi:
10.1016/0022-0728(91)87024-X.

[141] Y. Suda and K. Okuda. ‘Emergence of second coherent regions
for breathing chimera states’. In: Physical Review E 101.6 (June
2020), p. 062203. issn: 2470-0045. doi: 10.1103/PhysRevE.101.
062203.

[142] A. A. Temirbayev, Y. D. Nalibayev, Z. Z. Zhanabaev, V. I. Pono-
marenko and M. Rosenblum. ‘Autonomous and forced dy-
namics of oscillator ensembles with global nonlinear coupling:
An experimental study’. In: Physical Review E 87.6 (June 2013),
p. 062917. issn: 1539-3755. doi: 10.1103/PhysRevE.87.062917.

[143] A. A. Temirbayev, Z. Z. Zhanabaev, S. B. Tarasov, V. I. Ponomar-
enko and M. Rosenblum. ‘Experiments on oscillator ensembles
with global nonlinear coupling’. In: Physical Review E - Statist-
ical, Nonlinear, and Soft Matter Physics 85.1 (2012), pp. 1–4. issn:
15393755. doi: 10.1103/PhysRevE.85.015204.

[144] M. R. Tinsley, S. Nkomo and K. Showalter. ‘Chimera and phase-
cluster states in populations of coupled chemical oscillators’.
In: Nature Physics 8.9 (July 2012), pp. 662–665. issn: 10541500.
doi: 10.1063/1.4962631.

[145] E. Tognoli and J. A. Kelso. ‘The Metastable Brain’. In: Neuron
81.1 (2014), pp. 35–48. issn: 08966273. doi: 10.1016/j.neuron.
2013.12.022.

[146] A. Tosolini. ‘Characterization of Multiple Bifurcation Scenarios
during the Electrodissolution of p-Type Si in Fluoride Con-
taining Electrolytes’. Master’s Thesis. Technische Universität
München, 2017.

https://doi.org/10.1038/438043a
https://doi.org/10.1038/438043a
https://doi.org/10.1016/0022-0728(91)85281-S
https://doi.org/10.1016/0022-0728(91)87024-X
https://doi.org/10.1103/PhysRevE.101.062203
https://doi.org/10.1103/PhysRevE.101.062203
https://doi.org/10.1103/PhysRevE.87.062917
https://doi.org/10.1103/PhysRevE.85.015204
https://doi.org/10.1063/1.4962631
https://doi.org/10.1016/j.neuron.2013.12.022
https://doi.org/10.1016/j.neuron.2013.12.022


bibliography 101

[147] A. Tosolini, M. Patzauer and K. Krischer. ‘Bichaoticity induced
by inherent birhythmicity during the oscillatory electrodissol-
ution of silicon’. In: Chaos 29.4 (Apr. 2019), p. 043127. issn:
1054-1500. doi: 10.1063/1.5090118.

[148] D. R. Turner. ‘Electropolishing Silicon in Hydrofluoric Acid
Solutions’. In: Journal of The Electrochemical Society 105.7 (1958),
p. 402. issn: 00134651. doi: 10.1149/1.2428873.

[149] A. Uhlir. ‘Electrolytic Shaping of Germanium and Silicon’.
In: Bell System Technical Journal 35.2 (1956), pp. 333–347. issn:
15387305. doi: 10.1002/j.1538-7305.1956.tb02385.x.

[150] M. Wickramasinghe and I. Z. Kiss. ‘Spatially Organized Dy-
namical States in Chemical Oscillator Networks: Synchroniz-
ation, Dynamical Differentiation, and Chimera Patterns’. In:
PLoS ONE 8.11 (Nov. 2013). Ed. by B. Ermentrout, e80586. issn:
1932-6203. doi: 10.1371/journal.pone.0080586.

[151] M. Wickramasinghe and I. Z. Kiss. ‘Spatially organized par-
tial synchronization through the chimera mechanism in a net-
work of electrochemical reactions’. In: Phys. Chem. Chem. Phys.
16.34 (2014), pp. 18360–18369. issn: 1463-9076. doi: 10.1039/
C4CP02249A.

[152] J. Wiehl. ‘Birhythmicity and Intrinsic Entrainment in a Diffus-
ively Coupled Oscillatory System: An Experimental Study’.
Master’s Thesis. Technische Universität München, 2020.

[153] J. C. Wiehl, M. Patzauer and K. Krischer. ‘Birhythmicity, in-
trinsic entrainment, and minimal chimeras in an electrochem-
ical experiment’. In: Chaos 31.9 (Sept. 2021), p. 091102. issn:
1054-1500. doi: 10.1063/5.0064266.

[154] K. Wiesenfeld, P. Colet and S. H. Strogatz. ‘Frequency locking
in Josephson arrays: Connection with the Kuramoto model’. In:
Physical Review E 57.2 (Feb. 1998), pp. 1563–1569. issn: 1063-
651X. doi: 10.1103/PhysRevE.57.1563.

[155] J. Wojewoda, K. Czolczynski, Y. Maistrenko and T. Kapitaniak.
‘The smallest chimera state for coupled pendula’. In: Scientific
Reports 6.1 (Dec. 2016), p. 34329. issn: 2045-2322. doi: 10.1038/
srep34329.

[156] R. Yamapi, G. Filatrella and M. A. Aziz-Alaoui. ‘Global stability
analysis of birhythmicity in a self-sustained oscillator’. In: Chaos
20.1 (2010). issn: 10541500. doi: 10.1063/1.3309014.

[157] A. Yeldesbay, A. Pikovsky and M. Rosenblum. ‘Chimeralike
States in an Ensemble of Globally Coupled Oscillators’. In:
Physical Review Letters 112.14 (Apr. 2014), p. 144103. issn: 0031-
9007. doi: 10.1103/PhysRevLett.112.144103.

https://doi.org/10.1063/1.5090118
https://doi.org/10.1149/1.2428873
https://doi.org/10.1002/j.1538-7305.1956.tb02385.x
https://doi.org/10.1371/journal.pone.0080586
https://doi.org/10.1039/C4CP02249A
https://doi.org/10.1039/C4CP02249A
https://doi.org/10.1063/5.0064266
https://doi.org/10.1103/PhysRevE.57.1563
https://doi.org/10.1038/srep34329
https://doi.org/10.1038/srep34329
https://doi.org/10.1063/1.3309014
https://doi.org/10.1103/PhysRevLett.112.144103


bibliography 102

[158] M. Yukiteru. ‘Controlling Patterns with a Spatial Light Modu-
lator during Si Electrodissolution’. Master’s Thesis. Technische
Universität München, 2021.

[159] C. Zensen. ‘Mechanism of Oscillation and Spatio-temporal
Pattern Formation in a Semiconductor Electrochemical System’.
Master’s Thesis. Technische Universität München, 2013.

[160] X. G. Zhang. Electrochemistry of Silicon and Its Oxide. Boston:
Kluwer Academic Publishers, 2004, p. 510. isbn: 0-306-46541-8.
doi: 10.1007/b100331.

[161] J. Zimmermann. ‘Plasmonic Catalysis of the Electrochemical
Reduction of Carbon Dioxide on Gold Nanostructures through
the Excitation of Molecular Vibration Modes’. Master’s Thesis.
Technische Universität München, 2017.

https://doi.org/10.1007/b100331

	On Emergent Behaviour during the Oscillatory Electrodissolution of Silicon
	Abstract
	Contents
	Acronyms
	1 Introduction
	1.1 Chimeras
	1.2 Bistability
	1.3 Coupling
	1.4 Outline

	2 The Experimental System and Set-up
	2.1 Electrochemical System
	2.2 Electrochemical Set-up
	2.3 Ellipsometric Imaging
	2.3.1 Image Correction
	2.3.2 Data Analysis

	2.4 Illumination
	2.5 Etch Depth

	3 Physicochemical Properties
	3.1 Slow Cyclic Voltammogram
	3.2 Negative Differential Resistance Branch
	3.2.1 Physical Mechanism Resulting in the NDR Branch
	3.2.2 Dissolution Valency
	3.2.3 Discussion

	3.3 Oscillations without External Resistance
	3.3.1 Spatial Pattern Formation
	3.3.2 Discussion

	3.4 Conclusion

	4 Adaptive Coupling and Multifrequency Clusters
	4.1 Background
	4.2 Experimental Findings
	4.3 Amplitude, Phase, and Frequency
	4.4 Nonlinear, Nonlocal Coupling
	4.5 Chimera States and Coexistence Patterns
	4.6 Conclusion

	5 Birhythmicity, Intrinsic Entrainment, and Minimal Chimeras
	5.1 Birhythmicity
	5.2 Parameter Space
	5.3 Frequency Domain
	5.4 Two Electrodes
	5.5 Discussion
	5.6 Conclusion

	6 Summary and Outlook
	 Appendix
	A Preparing Samples with Photolithography
	A.1 Cutting Wafer
	A.2 Photolithography
	A.3 Back Contact

	B List of Publications

	Bibliography

