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Abstract—Conditional handover (CHO) has been introduced
in 5G to improve mobility robustness, namely, to reduce the
number of handover failures by preparing target Base Stations
(BSs) in advance and allowing the user to decide when to make a
handover. This algorithm constantly prepares and releases BSs,
thereby adapting to the fast changing radio condition. A user
might make a handover to a distant BS that has a favorable
channel only for a short time due to signal fluctuations. This
increases the handover rate and might result in a Radio Link
Failure (RLF) afterwards. Moreover, the constant preparation
and release of BSs leads to an increased exchange of control
messages between the user, the serving BS and all target BSs.
Hence, there is a need to carefully select the target BSs. Therefore,
we propose the Enhanced CHO (ECHO) scheme that uses
trajectory prediction to prepare the BSs along the user’s path. To
achieve this, we also propose a Sequence to Sequence (Seq2Seq)
mobility prediction model. ECHO with only one prepared BS
(ECHO-1) outperforms CHO with three prepared BSs. ECHO-1
reduces the handover rate by 23 percent and the RLF rate by
77 percent, while also reducing the number of control messages
in the network by 69 percent.

Index Terms—mobility, conditional handover, trajectory pre-
diction

I. INTRODUCTION

In dense cellular networks, mobile users often switch from
one Base Station (BS) to another necessitating handovers
which result in an interruption time during which a user
cannot transmit or receive data. Therefore, their number should
be minimized, while also satisfying the user’s Quality of
Service (QoS). 5G uses GHz frequencies to provide very
low latency, so that users can enjoy services like Augmented
Reality (AR) with delay requirements of 13 ms [1] making
mobility management challenging due to blockages and high
attenuation at high frequencies. In the traditional LTE/5G
handover algorithm, mobile users experience many handovers
and connection failures. To improve mobility robustness, Con-
ditional handover (CHO) was introduced by 3GPP in 5G
Release 16, which decouples BS preparation and handover
execution phases [2]. In the following, we use the words BS
and cell interchangeably.

During handover preparation, the serving BS sends the
user’s context to all candidate BSs and, depending on the im-
plementation, resources at the candidate BSs might be reserved
for the user. In CHO, the threshold for preparing the target BSs
(preparation offset) is often smaller than the execution offset to
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ensure that information about prepared cells can be signalled
to the user while radio conditions to the serving BS are still
favorable. The serving BS prepares multiple target BSs and
signals the list of prepared candidates to the user. Many cells
might satisfy the preparation condition in a dense scenario and
deciding which cells will be most suitable for the user in the
future is not trivial. One could prepare all cells that satisfy
the preparation condition, however, this approach leads to a
significantly increased overhead in control signaling. Since the
channel fluctuates significantly in dense networks, the prepared
BSs are often removed or replaced by better ones, which
again requires signaling between the user, the serving BS and
the target BSs. Furthermore, in dense scenarios, users waste
resources on an increased number of measurements since
they have to constantly monitor the channel of all prepared
cells. Moreover, when a user has multiple prepared BSs with
similar Reference Signal Received Power (RSRP) values, it
is not obvious which one should be selected for a handover.
A prepared BS may seem to have a good channel condition
currently, however, it might degrade rapidly in the near future.
This might result in an Radio Link Failure (RLF) with an
unacceptable delay for AR, hence, to satisfy the user’s QoS
and reduce signaling/measurement overhead, an intelligent
CHO algorithm is required which also minimizes the number
of prepared cells to reduce signaling and monitoring overhead.

One possible solution to improve the CHO scheme is to
predict the user’s location in the near future and prepare only
the cells along the user trajectory, to which the user is more
likely to make a handover. Artificial neural networks have
recently proven to be useful in learning complex patterns from
data [3], thus, we enhance CHO with a Deep Learning (DL)
model to predict the user trajectory.

A. Related Work

There are works that have used trajectory prediction for
handover management such as [4], where a service migration
schemes based on group trajectory prediction using DL is
proposed. There are few works on CHO, and most of them
focus on optimization of handover thresholds, as in [5]. Differ-
ently, in [6] they use predicted future RSRP values to decide
which cells should be prepared for CHO. However, they only
consider geometric blockages, and many handovers happen
due to sudden blockages and shadowing. These fluctuations
are challenging to predict based on the channel measurements.
Thus, some BSs that have high RSRP values at the current time



step seem to be a good candidate for a handover although they
are very far away and might stay favourite only for a short
time due to signal fluctuations. Many BSs can be prepared
simultaneously with CHO to provide certain guarantees. This,
however, results in wasted signaling and resource reservation
since a user performs a handover to only one BS. There are
also works on signaling, like [7], which proposes a signaling
mechanism for handover preparation to enhance 3GPP han-
dover methods. However, large modifications of the existing
handover procedures are required. Knowing the user trajectory
allows the serving BS to prepare the closest BSs that are more
likely to be good candidates for a handover in the future.

B. Contribution

In this work, we propose a sequence-to-sequence DL model
for trajectory prediction and show its superiority over other
models. Then, we introduce a handover management scheme
called Enhanced CHO (ECHO) that uses the proposed model
to perform online predictions. ECHO reduces handover and
radio link failure rate, while at the same time reduces signaling
overhead. We achieve this by preparing BSs that are along the
user trajectory and are, thus, more likely to be favorable for
the user in the near future. We limit the number of prepared
cells without degrading the performance, so the number of
cells that are prepared/released and are constantly monitored
by the user is reduced. To the best of our knowledge, this is
the first work that enhances CHO with trajectory prediction.

C. Organization

The rest of the paper is organized as follows. Section II
evaluates the performance of different trajectory prediction
models and introduces a Sequence to Sequence (Seq2Seq)
model for trajectory prediction. Section III explains the CHO
procedure and introduces ECHO that uses this Seq2Seq model.
Section IV provides information about the system and eval-
uates the CHO and ECHO algorithms. Finally, Section V
concludes the paper.

II. DEEP LEARNING BASED TRAJECTORY PREDICTION

The prediction of the position of mobile users in the near
future is a trajectory prediction problem. The trajectory of
a mobile user is a time series of user positions. Therefore,
the prediction of the trajectory for a few time steps into the
future using past time steps as input, is actually a multi-step,
multivariate time series prediction problem. In this section, we
explore different models to solve this and propose a Seq2Seq
model which is then evaluated on a model-based dataset.

A. Self-Similar Least-Action Walk (SLAW) Dataset

The trajectory of a user is the sequence of (x,y) coordinates
of the user position over time, sampled at regular intervals. In
order to evaluate the prediction models developed, a mobility
model-based dataset of user trajectories is generated. In this
work, we assume only pedestrian traffic so, we require a
mobility model that can accurately describe human walk
behavior. For this purpose, we use the SLAW [8] model which

Fig. 1. Architecture of proposed Stack Seq2Seq Model

is effective in representing patterns among the trajectories of
users sharing common interests such as in a university campus
or theme park, where AR can be used. The common popular
spots visited by all users are modelled as pause point clusters.
Using this model we collect various datasets for evaluating
the trajectory prediction models. Specifically, we collect the
trajectories of 200 users in an area of 1000 m x 1000 m with
an average user speed of 1 ms−1. This is repeated for various
sampling time intervals of 1 s, 10 s and 60 s.

B. Trajectory Prediction Models

To evaluate various prediction models, we select the dataset
collected with a sampling interval of 10 s. Before developing
a trainable model we need a performance baseline to compare
with the more complex models. A simple baseline is to repeat
the input position of the last time step for the required number
of output time steps. We name this the baseline last model.
Another baseline window approach is to repeat the previous
window of time steps for the future time steps, assuming the
future positions will be a repetition of the past. A simple
trainable approach that is expected to perform better than
the baseline models is a linear model to discover any linear
relationships among the input positions. Another approach is
to use a single dense layer to process the input positions.
Some works also use a Convolutional Neural Network (CNN)
[9] which predicts the trajectory based on a history of input
steps, which could lead to better performance than the dense
model. A better model to learn from a history of inputs is a
Recurrent Neural network which could be a Long Short-Term
Memory (LSTM) [10] model or a Gate Recurrent Unit (GRU)
[11] model. Another promising model is the Seq2Seq model
which is specifically designed for predicting sequences [12].
This model has 2 neural networks, an encoder and decoder
network to map the input sequence to an output sequence.
These networks can be a simple layer of LSTM.

In order to boost the performance of the Seq2Seq model
we propose the stack seq2seq model, in which we stack the
LSTM layers. This is the model that will be used in the rest
of this work. The architecture of the proposed stack seq2seq
model is described in Fig. 1. Apart from these models we
also use a model with a fully connected layer followed by an
LSTM layer (fc lstm).



Fig. 2. Comparison of prediction performance for different trajectory pre-
diction models over the validation and test set. Performance is measured in
terms of average error over all time steps and coordinates

C. Evaluation of various prediction models

We evaluate the various trajectory prediction models de-
scribed in the previous section using the dataset collected with
a sampling interval of 10 s. The users in this dataset can pause
for a maximum of 15 minutes at a popular spot. Hence, the
user does not have a constant trajectory but rather has multiple
long pauses. This makes the trajectory prediction challenging.
The dataset is split such that different users are in the training
and test dataset as would be the case in a real environment.
The trajectory of a user is split to predict 5 time steps into the
future using positions of the past 5 time steps. The prediction
Root Mean Squared Error (RMSE) in meters is averaged over
the x and y coordinates and over the 5 future time steps and
compared in Fig. 2.

The baseline models do not perform well, but they provide
a baseline for the performance. Among the Recurrent Neural
networks (RNNs), the stack seq2seq displays the best perfor-
mance, although only marginally better than the rest. Another
important observation is that the performance of the linear
model is seemingly only a little worse than the stack seq2seq.
The linear model works well to predict the linear relationship
in the trajectory of the users but would fail in predicting
the non-linearity such as changes in direction or the pausing
of users. This is where the proposed stack seq2seq model
outperforms other models. This seemingly small gain in the
distance gap between the true and predicted position becomes
very important in current heterogeneous cellular networks with
dense deployments of small cells, small range Light-Fidelity
(LiFi) [13] cells and beamformed networks where a small
difference in position can result in a different BS association.

The time taken for training the models and making predic-
tions are given in Table I. All models were trained using a
GPU GeForce GTX 1650 and the predictions were made with

TABLE I
TRAINING TIME PER EPOCH AND PREDICTION TIME PER USER FOR

VARIOUS MODELS

Model Train Time (s) Prediction Time (s)

baseline window - 0.036
baseline last - 0.035
cnn 101 0.030
linear 72 0.035
dense 74 0.032
gru 130 0.032
lstm 137 0.034
fc lstm 154 0.027
seq2seq 194 0.033
stack seq2seq 310 0.029

an Intel Core i5 CPU. Although the training complexity is high
for the stack seq2seq model, the prediction performance is in
the order of a few tens of milliseconds which is acceptable
for online prediction in cellular networks.

D. Stack Seq2Seq Model Evaluation

The stack seq2seq model has proved to be a high perform-
ing model as seen in Sec. II-C. So this model is chosen as
the trajectory prediction model in the handover management
simulations. We also select the dataset collected with a sam-
pling interval of 1 s. Fig. 3 shows the performance of the
proposed prediction model on this dataset. As can be expected,
a small error accumulating effect can be observed over time.
But this model is able to minimize this effect and the resulting
maximum error for the fifth time step is less than 2 m with a
probability of 90%.

III. HANDOVER MANAGEMENT

In this section, we explore the differences between CHO [2]
and the proposed ECHO which uses a stack seq2seq model
from Sec. II. We explain how the set of next candidate BSs
are selected based on trajectory prediction.

A. Conditional Handover (CHO)

We consider the Make-Before-Break (MBB) CHO algo-
rithm, which terminates the connection with the serving BS
only after establishing the connection to the target BS during
handover to reduce Handover Interruption Time (HIT). The
user measures the channel and sends the Measurement Report
(MR) to its serving BS periodically. The BS applies Layer-3
filtering and averages RSRP values over 200 ms [2]. Based on
these measurements, the serving BS selects candidate BSs that
should be prepared for a potential handover. CHO uses an A3
event for handover preparation, execution and cell release. The
A3 event is triggered when a neighboring BS becomes better
than the serving BS by a preparation or execution offset. In
CHO, preparation offset can be set negative to prepare cells
in advance and increase robustness.

B. Enhanced Conditional Handover (ECHO)

We assume that the user’s position is available at the
user device for location-based services when the user is in



(a) Average RMSE over all future
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(b) RMSE for the first future time
step

(c) RMSE for time step 2 (d) RMSE for time step 3
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Fig. 3. CDF of Prediction RMSE for 5 future time steps for a dataset with
a sampling interval of 1 s using the stack seq2seq model

CONNECTED MODE [14]. Furthermore, other positioning
methods such as trilateration can be used to determine the
user’s position at the BS or controller [15]. Differently from
CHO, in ECHO, the BS decides which cells should be
prepared and released based on the user’s predicted proximity
to the cells. The user reports its current position to the serving
BS together with the RSRP values in the MR or other signals
to avoid adding extra signalling messages.

After obtaining the user’s position, the serving BS or
the controller predicts the user’s future position in the next
multiple steps and computes the Euclidean distance to all BSs
that cover the user. Since the resources in the network are
finite, we limit the number of prepared cells to N . If the
serving BS belongs to the micro-tier, then it prepares at least
one closest macro BS and N -1 closest micro cells. Otherwise,
N micro cells are prepared. Users are more likely to be close
to many micro cells than to a macro cell. Thus, by ensuring
that there is always one prepared macro cell, the user will not
be out of coverage. Finally, when the serving BS receives an
ACK from the candidate BSs, it sends the list with prepared
BSs to the user. The user stores this list, and as in CHO, the
A3 event is also used for handover execution in ECHO. The
serving BS releases prepared cells in ECHO when they do not
belong to the list with the closest candidates anymore.

For resource optimization, it is useful to know which BS

Fig. 4. Two-tiered system architecture, where dashed circles show the
coverage of micro BSs.

TABLE II
SIMULATION PARAMETERS

Parameter Value

Carrier frequency macro 0.5 GHz
Carrier frequency micro 4 GHz
Channel measurement periodicity 100 ms
HIT (assuming MBB) 14.5 ms
Handover preparation time 28.5 ms
RLF T out -8 dB
T310 600 ms
CHO preparation offset -3 dB
CHO/ECHO execution offset 3 dB

the user will be near/connect to. Then this BS can plan its
resource allocation in an optimal way. Thus, by predicting
the user trajectory a few steps into the future, we provide
some additional time to be able to run a complex optimization
algorithm.

IV. RESULTS AND EVALUATION

The channel model with line of sight blockages, macro and
micro scenario parameters are taken from 3GPP 5G Release
14 [16]. The simulation has 25 BSs (macro and micro) and 30
users, who move within the area shown as a black square in
Fig. 4. Other simulation parameters are provided in Table II.
We assume frequency reuse, so there is no interference. We
simulate the system for 2.5 hours for every algorithm.

To estimate the impact of imperfect predictions, we compare
ECHO with the true trajectory of the user (ECHO known)
and predicted (ECHO pred) trajectories. We also evaluate the
algorithms’ performance for different number of prepared BSs
N ∈ {1, 2, 3}, which are the trailing numbers in the algorithm
abbreviation states in Fig. 5 - 8.

In the box plots (Fig. 7, Fig. 9), the mean and standard
deviation are shown in orange and black, respectively. More-
over, we evaluate ECHO with 5-step predictions into the
future (ECHO look ahead) and observe that ECHO outper-
forms CHO, and ECHO look ahead achieves similar results



Fig. 5. Total number of prepared and wasted BSs in the system.

Fig. 6. Handover rate per user.

as ECHO with 1-step prediction. So, time to run DL models
or optimization algorithms can be gained without trading-off
the performance.

As shown in Fig. 5, ECHO reduces the number of cell
preparations by 69%, 81% and 84% for one, two and three
prepared BSs, respectively. Wasted preparations, when a cell
was prepared and released, but the user did not connect to
it, also decrease by 64%, 79% and 80% with ECHO. CHO
prepares distant cells that, for a short period of time, have
a higher RSRP value due to the line of sight presence. The
users either do not connect to these prepared BSs or connect
and suffer from poor radio conditions that result in an RLF as
shown in Fig. 8. Although the number of wasted prepared BSs
with CHO increases significantly with the increase of prepared
BSs, it stays almost the same with ECHO because users still
connect to most of the prepared cells and benefit from the
channel diversity. Interestingly, the number of preparations
reduces for ECHO when N increases. This happens because
when multiple cells are prepared, only seldom does a new cell
become closer to the user’s position and replace an already
prepared cell. CHO updates and releases BSs frequently ac-
cording to signal fluctuations, while ECHO keeps the closest
BSs prepared longer (since they stay the same for some period

Fig. 7. Total HIT per user over the simulation.

Fig. 8. RLF rate per user.

of time), thus reducing the signalling.
In Fig. 6, one can see that ECHO reduces the handover rate,

thus, HIT reduces as well by 23%, 14% and 5% depending
on N as shown in Fig. 7. HIT is the time when the user
cannot exchange data with any BS. Fig. 7 also presents the
HIT for ECHO with 5-step prediction into the future, which
achieves a very similar performance as ECHO with known
and predicted trajectories. Thus, we conclude that the error of
Seq2Seq model is acceptable for its performance.

RLFs happen in the simulation due to line of sight blockages
and shadowing in the channel, which makes the Signal to
Noise Ratio (SNR) drop below the out of sync threshold
T out. No handover failures happen since the preparation and
execution phases are decoupled in CHO and ECHO. Fig. 8
shows that ECHO reduces RLF rate from 1.24 to 0.28 RLFs
per second on average when N = 1. Furthermore, the RLF
rate obviously reduces when more BSs are prepared, e.g., for
CHO-3 and ECHO-3 the values are 1.19 and 0.16 since we
trade resources for a better performance. However, CHO with
even three prepared BS has a high RLF rate. ECHO with only



Fig. 9. The time a user had poor SNR within 150 min of simulation time
for three handover algorithms with one gNB prepared and two speeds (1m/s
and 1.5m/s).

one prepared BS achieves a significantly lower RLF rate than
CHO-3, namely, 76% less.

Although it seems like ECHO might force users to connect
to a BS with worse RSRP values, it is the opposite. Fig. 9
shows the total time during which a user moving at 1 and
1.5 ms−1 can neither transmit nor receive due to a low
SNR received from the serving BS. As expected, faster users
have a poor channel more often, hence, they experience more
handovers and RLFs and benefit more from ECHO. For faster
moving users, the throughput increases by over 4.5% and
decreases the RLF rate 8 times, from 1.28 to 0.16.

CHO increases robustness by preparing cells in advance,
however, it often prepares wrong cells and wastes resources
for signaling and useless cell preparations. ECHO prepares
the BSs to which the user is heading to, thus, the user is
more likely to have a favourable channel with the closest BSs
and connect to them in the near future. ECHO with just one
prepared BS outperforms even CHO with three prepared BSs
in terms of handover rate, RLF rate and the network sum
throughput, while at the same time significantly reducing the
number of cell preparations and releases. As a result, the
network sum throughput also increases in the range of 3.5% to
4.5% with ECHO, while at the same time reducing signaling
from 69% to 80%.

V. CONCLUSION

In this work, we evaluate different models for trajectory
prediction and propose a Seq2Seq model using stacked LSTM
to predict the location of pedestrian cellular users in the near
future. We conclude that the main challenge is to predict
when and how long the users will pause, and not the user’s
path itself. We enhance CHO with this prediction model and
propose ECHO that utilizes the predicted user trajectory to
decide which BSs should be prepared for a potential handover.
We evaluate ECHO with the known trajectory, ECHO with the

next position and ECHO with five next predicted positions.
ECHO with only one prepared BS outperforms CHO with
three prepared BSs. ECHO decreases handover and radio link
failure rate, reduces the number of BS preparations, thus,
reducing the signalling in the network. Not only does the
network save the resources and does not have to prepare and
release BSs back and forth, but the users also have to monitor
fewer prepared cells. The idea of ECHO complies with 5G
ultra-lean design and the goal to minimize the number of
measurements to achieve higher data rates and higher energy
efficiency.
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