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Abstract

Serverless computing offers a pay-per-use model with high elasticity and automatic
scaling for a wide range of applications. One of the key concepts of serverless is that the
cloud provider manages and allocates all necessary infrastructure for the application to
run. Since commercial cloud providers abstract most of the underlying infrastructure,
these services work similarly to black-boxes. Due to this, developers can quickly allocate
more resources, especially virtual CPUs (vCPUs), than they effectively use without
knowing. By not utilizing the full hardware that is available, the developer pays more
money than necessary.

In this thesis, we analyze the impact of parallelization of compute-intensive workloads
within single function and container instances for AWS Lambda, Google Cloud Functions
(GCF), and Google Cloud Run (GCR). Furthermore, we give insights into the underlying
infrastructure and research the correlation between allocated hardware threads and
vCPUs in serverless environments. We conduct our experiments with 5 different
benchmarks and collect metrics, such as execution time and memory consumption,
about each service and environment. Our results show, that the amount of allocated
vCPUs does not always equal the number of hardware threads. Furthermore, we show
that by parallelizing, applications can be speedup close to the amount of vCPUs allocated.
We measured the execution times between single- and multi-threaded applications and
measured speedups up to 5.4x for AWS, 2.1x for GCF, and 3.7x for GCR. The resulting
maximum cost savings we could observe were up to 81% for AWS Lambda, 49% for
GCF, and 71% for GCR.
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1 Introduction

Cloud computing has been growing steadily, especially since the introduction of Amazon
Web Services (AWS) back in 2006 [53]. The major commercial cloud providers offer a
variety of cloud services, from virtual machines (VMs) to storage, networking, and more.
There are several reasons why many companies choose to use different cloud computing
services. The first one is time to market [34]. Especially for new companies, it can take
a long time to buy the hardware and set up the necessary infrastructure required to
run internet-facing services. The second reason, and arguably the biggest, is to save
cost. Many case studies show that migrating from on-premise infrastructure to cloud
environments can have huge cost benefits [32] [1] [14]. Cloud services are also well
equipped to deal with increasing demand. It is very fast and easy to allocate additional
resources in the cloud, rather than buying and integrating additional hardware. Many
cloud services even offer the ability to auto-scale. Auto-scaling means (de-)allocation
resources according to the demand, without any manual actions required.

One of the more recent developments in Cloud computing is serverless. One of the
first serverless services was introduced in 2014 with AWS Lambda [12]. Serverless,
and Function-as-a-Service (FaaS) more specifically, improve the advantages of cloud
computing even more. Serverless removes the requirement to allocate hardware and is
built to automatically scale with each request.

Since the demand for computing resources is steadily growing, the hardware also
needs to be more powerful to meet those demands. However, the growth of single-core
performance for processors is declining across processor generations, while the amount
of cores on a single processor is growing [50]. Therefore, a single program is only able
to utilize the full capacity of a processor, if it is parallel. Since this trend will most likely
continue, it is useful to research the efficiency of running parallel programs for different
use cases. Furthermore, with the introduction of cloud computing, hardware with many
cores is available to anyone, which allows developers to run parallel programs.

1.1 Problem

FaaS is already widely used across many different industries, such as web applications,
service integrations, or in the field of Internet of Things (IoT) [22]. From a developer’s
perspective, FaaS works similarly to a black box. The developer uploads a code package
to the provider and observes a certain behavior from the function once it is deployed.
In most cases, the developer doesn’t care what happens in between. That includes
scheduling, invocations, and the underlying hardware. It is the responsibility of the
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1 Introduction

provider that the function runs without issues [7]. Providers usually don’t give a lot
of insights in terms of the architecture and hardware behind their serverless services.
However, not knowing about specific characteristics of the serverless environment can
lead to inefficient code. For example, depending on the underlying processor, it can be
worth it to vectorize the function code. Vector instructions, also called Single Instruction
Multiple Data (SIMD), combine multiple instructions into one, which processes several
data elements at once. These SIMD instructions can be executed by specialized hardware
on the processor in a single instruction cycle.

FaaS is often used for small, fine grained-tasks. However, providers like AWS Lambda
and Google Cloud Functions (GCF)1 allow the developer to allocate a lot of memory
and computing resources to a single function. In both cases, the developer can only
configure the function memory and the processing power is scaled by the service
provider accordingly. This can be quite intransparent and if the developer isn’t careful,
he will pay for more resources than he effectively uses.

1.2 Motivation

Having a better understanding of the underlying hardware and architecture of serverless
environments has several advantages. Not only can it make the functions more efficient,
but the developer can also make more informed decisions when configuring his functions.
Especially for higher memory function configurations, it is very useful to know more
about the hardware resources that are allocated. For example, if the developer knows
how many physical cores are allocated to a function, he can make better decisions on
how to split the workload among them. Therefore, we want to look at the following 3
points in this thesis:

1. Architectural and environmental research: We want to give insights into the
underlying infrastructure for each service. Additionally, we want to research the
resource allocations in a serverless environment and see how they align with the
respective costs that the providers charge. The focus will be on what resources are
available for parallel executions within a function.

2. Cost savings by parallelization: Given a certain function configuration, we want
to research how much cost can be saved by parallelizing the program. Sometimes
a function needs a high amount of memory to run a program. These functions are
quite costly to run over longer periods, so if the developer can reduce execution
times by parallelizing, the cost benefits are also great.

3. Cost savings by increasing the function configuration: The last point we want
to research is the following scenario: The developer deployed an already parallel
program. Can he decrease his cost by increasing the function configuration and
therefore decrease the overall execution time?

1https://cloud.google.com/functions/
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1.3 Outline

For both 2. and 3. we want to research the conditions that need to be met to experience
benefits. For example, for what function configurations can we save costs by parallelizing.
Furthermore, we want to formulate conclusions on what the developer has to keep in
mind when running parallel programs within a single function.

1.3 Outline

In chapter 2, we will introduce the necessary background to understand the evaluated
services. In chapter 3, we will present the existing research that has been done in regards
to parallelization and performance analysis in serverless environments. In chapter 4,
we will describe the services we evaluate and their architecture. Our methodology
to evaluate the services is described in chapter 5. Finally, we present the results of
our evaluations in chapter 6 and discuss our findings in chapter 7. In chapter 8 we
summarize our work and what future work could be done to acquire further insights in
this area.
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2 Background

In this chapter, we introduce the necessary background that is needed to understand
serverless services and how we evaluate them. First, we describe in more detail what
serverless services are and what their usual characteristics are. Since we run parallel
programs within the functions, we also give an overview of parallel computing and the
differences between shared and distributed memory parallelism.

2.1 Serverless Services

Over the last couple of years, several serverless services have emerged. They all share
the following characteristics:

No server allocation: As the name serverless suggests, there is no manual al-
location of servers by the developer. All underlying servers and infrastructure
is managed by the providers. The developer has some options to configure the
service, but those options are often limited.

Automatic scaling: All serverless services have the option of automatic scaling
in one way or another. FaaS usually scales by creating a new function instance
for each request that can not be handled by an already existing instance. Other
services scale according to the resource utilization of active instances. If certain
thresholds are met, instances are started or shut down.

Pay-per-use: One of the biggest advantages of serverless is that the developer only
pays for what is effectively used. Traditionally in cloud computing, VMs have to
be allocated in anticipation of incoming requests. That also means that usually
more resources are allocated than needed to deal with sudden spikes in workload.
In FaaS, the developer doesn’t pay for idle CPU time. If an instance is still running,
but not currently handling requests, the provider bears the full cost. Since the
provider doesn’t want to allocate resources that are not utilized, serverless services
are therefore usually scaled down to 0.

Cold starts: Since instances can scale down to 0, serverless services increase the
phenomenon of cold starts. A cold start is when a request is sent to a serverless
endpoint, but there are no active instances that can handle the request. In this
case, a delay is introduced to startup a new instance with the function code of the
developer.

7



2 Background

Stateless: Serverless services are inherently built to be stateless. State in this
context means persisting data across invocations, for example by writing it to disk.
The provider makes no guarantees that consecutive invocations are routed to the
same instance, hence there is no guarantee consecutive invocations will be able to
see the persisted data.

Although most serverless services share these characteristics, there are still some differ-
ences between them. In this thesis, we focus on FaaS and Container-as-a-Service (CaaS),
which was introduced more recently.

2.1.1 Function-as-a-Service

FaaS realizes the serverless characteristics completely. The developer only writes the
function code, that executes the desired functionality. The developer then has some
additional options to configure the function. For example, the language of the function
and the resource allocation. Everything else, from scheduling to setting up the function
environment, is handled by the provider. All major cloud providers support several
different languages for their FaaS implementations. Popular languages are Python, Java,
and Go. The developer can implement the function in one of the supported languages
and then choose one of the provided runtimes. As already mentioned, FaaS provides
automatic scaling behavior. Each concurrent request is handled by its own function
instance so that no request needs to wait for another request to finish. Providers do offer
some options to modify this behavior to some extent, for example, limit the number of
concurrent active instances.

2.1.2 Container-as-a-Service

CaaS is one of the more recent trends in serverless. Both Amazon and Google have their
respective offerings with AWS Fargate1 and Google Cloud Run (GCR)2. Both function
very similar to FaaS, but instead of deploying functions, the developer deploys custom
Docker images3. This has the advantage that the developer has the full flexibility of
custom containers. The developer can set up a custom environment inside the Docker
container, even for languages that are not supported for the respective FaaS services.
Additionally, all external dependencies and libraries can simply be installed in the
container image. The developer has also full control over all compilation steps of the
program, for example, what compiler to use and with which options. The code running
in these containers differs in some ways from the code that would be deployed in a
function. The application executed in the container needs to start an HTTP server to
actively listen to incoming requests.

1https://aws.amazon.com/fargate/
2https://cloud.google.com/run/
3https://www.docker.com/
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2.2 Parallel Computing

1 /* ... */
2 func main() {
3 // Set function handler for path
4 http.HandleFunc("/", handler)
5 // Determine port for HTTP service.
6 port := os.Getenv("PORT")
7 // Start HTTP server.
8 if err := http.ListenAndServe(":"+port, nil); err != nil {
9 log.Fatal(err)

10 }
11 }
12

13 func handler(w http.ResponseWriter, r *http.Request) {
14 // Execute workload
15 }
16 /* ... */

Listing 2.1: Minimal application code for CaaS in Go

Listing 2.1 shows a minimum example of a containerized application in CaaS. In the
main() function the HTTP server is established, which listens to incoming requests. The
developer can then define endpoints that are handled by respective handlers, which the
developer also defines. In FaaS, the developer would only need to define the handler
function, while the service provider makes sure that the request is delivered to the
function handler.

In this thesis, we will focus on GCR as CaaS, since AWS Fargate currently does not
automatically scale down to 0, while GCR does. This is a very important factor since if
there is always at least 1 instance running, we pay for idle CPU time, which is what the
developer usually wants to avoid when going serverless.

2.2 Parallel Computing

Since a huge part of this thesis is about the parallel execution of programs, we want to
briefly introduce some concepts of parallel programs. Since all our evaluations are done
with shared memory parallelism, we also want to explain the concept of it and what the
key differences are to distributed memory parallelism.

2.2.1 Processing Units

In parallel computing, we divide the program into multiple sub-problems, that can
be executed by different processing units concurrently. A multi-core processor has a
physical processing unit for each core. Each core provides at least 1 hardware thread that
the Operating System (OS) can use to schedule and execute processes. Modern processor
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2 Background

utilize the simultaneous multithreading (SMT) technology to provide 2 hardware threads
per physical core. SMT uses context-switching between the 2 threads to increase the
overall throughput of the system. For example, if a process, that is executed by a
hardware thread, waits for a memory call, the physical core can switch to another
hardware-thread and therefore increase the overall utilization of the physical resources.
An example for an SMT implementation is Intel Hyper threading [36]. To the OS, a
single physical core appears as 2 independent processing units.

2.2.2 Threads

Threads can be defined as imperative programs that run concurrently and share a
memory space [41]. Although threads share the same memory space, each thread needs
some private data, so that it can run independently. For example, each thread has its
own program counter or private stack pointers and register values. Many languages
offer standardized Application Programming Interfaces (APIs) to create threads. The OS
will then schedule and interrupt threads according to available resources. A scheduling
algorithm is used by the OS to maintain fairness between threads.

2.2.3 Shared Memory Parallelism

Since threads share the underlying memory space, they can access the same variables,
except for thread-local, or thread-private, variables. That means, if the program consists
of a problem that needs to work on one large array and the array was initialized in the
shared memory space, it is available to all threads. This saves a lot of time since the data
doesn’t have to be replicated.

The workload of a program can also be split with distributed memory parallelism. In
this case, the program is executed by independent processes, that may even execute on
different physical machines. These processes don’t share the same memory space, which
is why the data needs to be either: initialized in a distributed fashion; or initialized from
the main process and sent to the respective child processes. Both shared and distributed
memory parallelism have their respective advantages and disadvantages.

In this thesis, we purely use shared memory parallelism, since we utilize the hardware
resources within a given function instance to parallelize the program.

10



3 Related Work

Serverless has not only grown in popularity among developers, but also among the
scientific community. In this chapter we present the research that has been done in
regards to parallelization and performance evaluations of serverless services.

3.1 Distributed Parallelism using FaaS

The majority of previous work on parallelizing applications via FaaS has focused on
splitting the workload via seperate function instances [52], [17], [18], [37], [48]. Shankar
et al. [52] show that the elasticity provided by serverless computing can be used
to efficiently execute linear algebra algorithms, which are inherently parallel. They
implemented a system to split the algorithm into tasks, which are then executed by
AWS Lambda functions. Data is shared between functions via a persistent object store.
The performance of their system performance "is within a factor of 2 of optimized
server-centric MPI implementations, and has up to 15% greater compute efficiency (total
CPU-hours), while providing fault tolerance" [52].

Barcelona-Pons et al. [17] analyze the performance of fork/join workflows using
existing services like AWS Step Functions, Azure Durable Functions and OpenWhisk
Composer. They found that, while Composer is the best solution as of to date, none
of the function orchestration solutions offer suitable performances to execute parallel
workloads.

Barcelona-Pons et al. "present Crucial, a system to program highly-concurrent state-
ful applications with serverless architectures" [18]. The system ports multi-threaded
applications to a serverless environment, by leveraging a distributed shared memory
layer. Cloud functions are coordinated via shared objects. Their performance results are
similar to that of an equivalent Spark cluster.

Jiang et al. [37] developed their own platform LambdaML to evaluate the performance
of distributed Machine Learning algorithms between Infrastructure-as-a-service (IaaS)
and FaaS. The functions use a communication channel, which consists of persistent
storage such as AWS Simpele Storage Service (S3) or Elastic Search, to read and write
intermediate results. Their results indicate that the FaaS implementation is only compa-
rable in terms of performance, when there is low communication overhead. Although it
can be much faster due to high elasticity, it is never significantly cheaper than IaaS.

Pons et al. [48] evaluate the performance of parallel function executions from a plat-
form perspective. They use concurrent function invocations to evaluate AWS Lambda,
GCF, Azure Cloud Functions (ACF) and IBM Cloud functions. Their main focus is on

11



3 Related Work

the evaluation of platform scheduling, possible interference between concurrent function
invocations and if concurrent invocations are executed by different instances. These are
all important factors, when considering implementing a highly parallel application with
a FaaS platform. Their results show that AWS’s and IBM’s respective FaaS platforms
perform well, due to proactive scheduling, finer resource allocation and faster elasticity,
while services like Azure did not reach the same parallelism degree.

While distributing workloads across function invocations can be useful due to the
high elasticity, many results show that there is still significant synchronization and
communication overhead involved. In contrast to previous work, we analyze the
performance of intra-function parallelism, where we run parallel programs within a
single function instance to test parallel performance.

3.2 Performance evaluations of FaaS platforms

A lot of other work focuses on the evaluating the general performance of FaaS platforms
and the performance improvements made to isolated invocations [21], [20], [49], [44].

Cordingly et al. [21] present their framework Serverless Application Analytics Frame-
work (SAAF), to improve the observability, among other things, on performance of
workloads on FaaS platforms. Their framework supports 5 different platforms and
several different programming languages. They also used their framework to conduct
some performance evaluations on AWS Lambda between different memory configura-
tions and their respective speedups between highest and lowest memory configuration.
In their results they achieved a speedup of about 69.2x between 128MB and 10240MB
allocated memory to a function.

Chadha et al. [20] examine the underlying processor architecture for GCF and evaluate
the performance of compute-intensive tasks written in Python. They optimise their
programs with a Just-in-Time (JIT) compiler based on LLVM and present their results on
performance, memory consumption and cost. Their results show that the optimisation
of FaaS functions can improve performance by 18.2x and save costs by 76.8%.

Quaresma et al. [49] evaluate the negative impact of automatic garbage collection on
function performance. They also introduce the Garbage Collector Control Interceptor
(GCI), to counteract the impact of garbage collection. The GCI decides based on
incoming requests to the function and the memory used by the runtime to run the
Garbage Collector (GC), instead of optimising the GC itself. Their experiments on AWS
Lambda show that with a more efficient usage of the GC, the response time can be
improved up to 10.86% and the cost reduced by 7.22%.

Pawlik et al. [44] evaluate the performance of scientific workflows on the major FaaS
platforms AWS Lambda, GCF and IBM Cloud Functions. They used bag-of-tasks type
workflows to conduct their performance evaluations and studied parameters like raw
performance, efficiency of infrastructure provisioning and overheads, which are for
example introduced by the API and network layers. Their results on raw computing
performance show that it increases with higher memory configuration for the functions,
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3.2 Performance evaluations of FaaS platforms

excluding IBM Cloud Functions.
All these previous approaches test the pure performance of FaaS instances, some

even taking parallel executions into account. In contrast to this, our focus is more on
performance evaluations of the parallelization of functions. We also want to look at a
broader range of function configurations and evaluate the parallel efficiency for each.
We also put a strong emphasis on potential cost savings between sequential and parallel
executions.
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In this chapter, we want to present and describe the evaluated services. For each service,
we will give an overview of the underlying architecture, how functions are invoked and
created and how they are implemented. Furthermore, we present what is known about
the infrastructure for each of them. Finally, we give an overview of the important terms
that are used in a serverless environment and how they differ for each service provider.
For the evaluation, we chose 2 of the most popular FaaS platforms and 1 of the most
popular CaaS platform.

4.1 AWS Lambda

We start with AWS Lambda, which is the FaaS offering of Amazon. The developer
defines fine-grained functions, which are then executed by the provider. When a
customer defines a function, either through the cloud console or the aws Command Line
Interface (CLI), the code is stored in an S3 bucket. Afterward, the function is ready to
be invoked. The user can invoke the function manually or define certain events, which
are also called triggers. For example, by using an API Gateway to call the function
via an URL, or use events from other services, like a database upload. Functions can
be invoked both synchronously, where the response from the function is awaited, and
asynchronously. We will focus on synchronous invocations in this thesis since we will
also use them for our evaluations.

4.1.1 Invocation Architecture

Invoke

User

Load

Balancer

Worker  
Manager

Placement  
Service

Reserve Sandbox

Front-

end

Claim 

Worker

Worker

Return Worker
Init Worker

Invoke

Authentication
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3
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Figure 4.1: Behind the scenes of a Lambda function invocation
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Figure 4.1 shows what happens under the hood when an AWS Lambda function is
invoked[6]. In this scenario, there is no active instance that can handle the incoming
invocation and a new instance has to be started. After the request reaches AWS 1 , it is
first received by a Load Balancer (LB) for a specific region. The LB routes the request
to an available Front End component in an availability zone. The difference between a
region and an availability zone is that a region is a physical location with a cluster of
data centers, while an availability zone is one or more data centers that are close to each
other with redundant power, network, and connectivity [3]. There are several availability
zones in a single region. The Front End Invoke component of AWS will authenticate
the request, retrieve metadata about the function and enforce limits, such as the current
concurrency limit of a function and region 2 . The Front End component then asks
the Worker Manager which worker the request can be sent to 3 . The Worker Manager
tracks the status of all Workers and Sandboxes and schedules invocations to them. If the
Worker Manager currently has a Worker, which can handle the incoming request, it will
either reuse an existing Sandbox or create a new one on that Worker. If not, the Worker
Manager claims a Worker from the Placement Service 4 5 . The Placement Service
manages all available Workers. The Worker Manager sets up the environment on the
Worker, downloads the function code, and initializes the function 6 . Afterward, the
Front End component is notified, and it can then directly invoke the function within the
Worker 7 .

4.1.2 Worker Component

The Workers are the core component of AWS Lambda functions. They execute the
code of the function and return the response. In figure 4.2 we take a closer look at the

Function Code

Lambda Runtime

Sandbox (Linux)

Guest OS (Amazon Linux)

Hypervisor

Host OS (Amazon Linux)

Hardware

One Function

Many Accounts

Firecracker

EC2 Instance

Figure 4.2: Architectural structure of an AWS Worker instance

structure of the Worker instance. At the bottom of the stack is the hardware, which is
the same as for a regular Elastic Compute Cloud (EC2)1 instance. The Host OS of the
instance is Amazon Linux. On top of the host OS, a hypervisor is installed. Amazon

1https://aws.amazon.com/ec2/
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implemented their own open-source Virtual Machine Monitor (VMM), called Firecracker.
Firecracker is used to create Micro Virtual Machines (MVM). Up to the hypervisor,
everything is shared among multiple different customer accounts. Lambda functions
of several different accounts will be placed on the same EC2 instance, on the same
host OS. The hypervisor will create an MVM for each Lambda function with a guest
OS installed. There are up to hundreds of MVMs running concurrently on the same
Worker [6]. Each of them might belong to a different customer. The Sandbox has the
same contents that a Linux OS would have and is isolated by the same technologies like
containers, for example by cgroups or namespaces. The Lambda Runtime implements
the necessary environment for the function to run in. This could be for example Node.js
or Java. Finally, we have the function code of the customer. Workers have a maximum
lease lifetime of 14 hours. After that time no new invocations are routed to that specific
Worker and all MVMs are gracefully terminated. Once the Worker is shut down, it is
returned to the Placement Manager.

4.1.3 Firecracker

Running several customers on the same physical machine allows for more flexible
scheduling of functions and higher overall resource utilization. However, there are many
security and isolation concerns, which is why Amazon built its own VMM. Both AWS
Lambda and AWS Fargate are based on Firecracker. The open-source VMM was first
launched in 2018 and is written in Rust [9]. Firecracker uses the Linux Kernel-based
Virtual Machine (KVM) to create MVMs. To reduce startup times, a Firecracker MVM
only includes the most necessary tools for a guest OS to run. Firecracker uses the virtio

Figure 4.3: Architecture of a Firecracker MVM [11].
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protocol to emulate devices so that the guest OS sees for example a hard drive or a
network card. Additionally, the MVM provides a client with a restful API that allows
the user to startup the MVM or limit its resources. The Firecracker hypervisor can start
several Firecracker processes. Each Firecracker processor encapsulates one MVM. Figure
4.3 shows the architecture of one of these processes. It includes the client API, which
runs in its own thread as an in-process HTTP server, and the VMM with the device
and IO emulations, which interact with the guest OS. The memory overhead for the
VMM threads is supposed to be very low and should not exceed 5MiB, according to the
specification [10]. The figure also shows the several layers of isolation. Should a process
ever escape the virtualization barrier of the guest OS, there is still another isolation layer,
called the Jailer Barrier, which uses seccomp, cgroups, and more as isolation techniques.

4.1.4 Instance Life-cycle

After the MVM is started on the host OS, the Lambda execution environment has to
be intialised. Figure 4.4 shows the life cycle of an execution environment. There are

Figure 4.4: Life cycle of a Lambda execution environment [13].

3 different initialization phases. In the first initialization phase extensions are started.
Extensions are augmentations to the Lambda function, which run independently from
the function code and can be used to integrate external monitoring or observability
tools [16]. The next phase bootstraps the function runtime. Afterward, the function’s
initialization method is executed. From now on the instance is ready to execute function
invocations. To reduce the number of cold starts, an instance is kept warm for a
certain amount of time, in which it can receive consecutive invocations without needing
to execute the initialization phase again. After a certain amount of time has passed
without an invocation, the runtime is shut down and all extensions that are run in the
background are also terminated. If an invocation crashes, the runtime also shuts down
but immediately initiates again.

4.1.5 Function Configuration

AWS Lambda functions can be configured in a lot of different ways [8]. In this thesis we
will configure the following aspects of a function:

Memory: We start with the most important attribute we can configure, the function
memory. The function memory determines the performance capabilities of our
function. We can configure functions in 1MB increments, starting at 128MB with a
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maximum of 10240MB. The amount of CPU resources allocated to a function is
directly tied to the memory. At 1769MB the equivalent of a full virtual CPU (vCPU)
is allocated. A virtual CPU is a virtualized version of the actual resources, allowing
the provider for more fine-grained allocations. The actual mapping between vCPU
and physical cores or hardware threads is not defined by the provider. If only a
fraction of a vCPU is allocated, the CPU time the function instance is allowed to
use is limited.

Function Runtime: As already mentioned, the user can configure the language
for the function runtime. There are several available out of the box, for example,
Java, Python, and Go. The user can also write custom runtimes that fulfill his
requirements.

Concurrency: One of the principles of serverless is the auto-scaling behavior. If
all active instances are currently busy, we can still handle an incoming request
by starting new instances concurrently, which can handle new requests. This
concurrency can be limited so that only a certain number of functions is allowed
to run at the same time.

4.2 Google Cloud Functions

The next service we look at is GCF. GCF is also a FaaS platform and therefore the
service equivalent to AWS Lambda. The developer writes small-grained functions to be
executed by the provider. The developer can upload the function for example via the
gcloud CLI or the cloud console. When using the cloud console, the code is uploaded,
built, and packaged by the Google Cloud Platform (GCP). This is in contrast to AWS,
where the developer can build and package the function locally before uploading it.
Functions can be triggered either via HTTP or event triggers. With an HTTP trigger,
the function is executed when the URL attached to the function is called. With event
triggers, on the other hand, the function is executed in response to certain events of the
cloud project of the developer. These events can be induced by other services from the
GCP. The function evaluations conducted in this thesis are invoked with HTTP requests.

4.2.1 Google Cloud Platform Cluster Architecture

As already mentioned, FaaS function a lot like black boxes, where the developer doesn’t
know what happens when a function is invoked. The major cloud providers usually
don’t disclose their full infrastructure architecture. Google showed some of their basic
concepts at the Cloud Next Event in 2018 [47]. Figure 4.5 shows the architecture behind
the GCP, which is the basis for all major cloud services that Google offers. On the
bottom is the hardware, grouped into data centers. On top of the hardware, Google
runs their custom cluster manager called Borg [54]. The cluster manager consists of a
BorgMaster, managing several Borglets. A BorgMaster manages a whole data center and
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Figure 4.5: Google Cloud Platform cluster architecture

is replicated up to 5 times. Borglets are local agents that are present on every machine
in a data center. The BorgMaster receives tasks with constraints, like memory or CPU
requirements, and queues them for execution. Borglets stop and start tasks. A cluster
consists of many thousand machines and can handle rates above 10000 tasks per minute.
Most of Googles technologies are built on top of Borg.

The ingress point for all incoming traffic to Google’s networks is the Google Front
End component. It takes care of routing and has some built-in security measures like
denial of service protection. Afterward, there is an LB, which is depicted as Serving &
Routing in figure 4.5. It receives and dispatches requests. The Scheduling component is
specific to serverless services. It decides when instances are created, reused, or evicted.
We could not find more publicly available information on the internal scheduling of
GCF.

4.2.2 gVisor

The functions themselves run in gVisor, which is an application kernel running in user
space of the host OS and written in Go [33]. gVisor is different from a VM since it
does not use virtualized hardware. It rather provides a virtualized environment to
sandbox containers. System calls by the application are intercepted and handled by
the gVisor kernel without a hardware virtualization layer in between. The amount of
system calls between gVisor and the host kernel is highly reduced, which also reduces
the attack surface. The upside is that the fixed cost of hardware virtualization overhead
is lowered, however, the trade-off is less application compatibility and higher per-system
call overhead. gVisor implements most, but not all, of the Linux system interface calls.
gVisor is built to be very lightweight, with startup times around 150ms and a memory
footprint of about 15MB [55]. Figure 4.6 gives an overview of the isolation barriers
between the host, gVisor, and the application. The application is a Linux binary, which
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Figure 4.6: gVisor layers overview [29]

implements the runtime specifications of the Open Container Initiative (OCI)2. This also
indicates that all GCF are built and deployed in Docker images.

4.2.3 Function Configuration

GCF can be configured in the same way as AWS Lambda functions, with the main
options being memory, function runtime, and concurrency. There are some differences:

Memory: The developer can chose between 128MB, 256MB, 512MB, 1GiB, 2GiB,
4GiB and 8GiB. Note that these are fixed options, which means the developer can
not modify his functions in 1MB increments. Furthermore, the upper limit is lower
than with AWS Lambda. In contrast to AWS Lambda, the number of vCPUs does
not increase with the function memory. However, functions do get more powerful
with increased function memory. Instead of more vCPUs, the processors assigned
get an increased clock frequency, according to the documentation [24].

Function Runtime: The developer can choose from a list of supported run-
times [23]. Note that there are fewer supported languages than for AWS Lambda
and the developer has no option to bring his own runtime or deploy custom
container images.

4.3 Google Cloud Run

Finally, we present the last service we are evaluating in this thesis with Google Cloud
Run. As described in subsection 2.1.2, GCR is a CaaS. This means that there is more
developer effort involved since the developer has to provide not only the code but
also the container images. On the other hand, CaaS offers greater flexibility, since the
developer can bring his own container images, with pre-installed custom dependencies

2https://opencontainers.org/
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and runtimes that would not be supported by GCF. Container images can be built and
deployed via the gcloud CLI.

4.3.1 Knative

GCR is a managed Knative3 service. Knative is built on top of Kubernetes, an open-
source tool for automating deployment, scaling, and management of containerized
applications. Knative is the serverless extension to Kubernetes and extends it with
components in regards to building and serving containers, as well as an additional
component dealing with events. It also allows containers to scale down to 0, one of the
essential principles of serverless.

Apart from GCR being a managed Knative service, there is not a lot of information
publicly available on how GCR is built under the hood. The GCP’s documentation about
their Google Kubernetes Engine service [27] states that the Kubernetes cluster consists of
multiple Compute Engine VMs [28]. The Knative platform can then automatically deploy
container images, according to the resource requirements, on available VMs in the cluster.
However, to run multiple containers from different customers on a single compute
engine, there needs to be another isolation layer. This isolation layer is gVisor. Since
gVisor implements the OCI runtime specifications, it can be used interchangeably with
the default Docker runtime, effectively sandboxing the containers[40]. Multi-tenancy is a
requirement to effectively utilize underlying resources for serverless services. However,
that requires strong isolation methods, so containers of different customer accounts
cannot interfere with each other. Google also confirmed that they built gVisor into the
infrastructure that runs all their serverless services [19].

4.3.2 Container Configuration

Since GCR is a CaaS platform, the configuration options are different from those of FaaS
platforms. We will again focus on the most important characteristics:

Memory: The developer can configure the memory that is available to the container.
The options are the same as with GCF, with the same steps and upper limit.

CPUs: The first difference to FaaS is that the processing power can be configured
independently. The developer can allocate either 1, 2, or 4 vCPUs to the container.

Concurrency: While concurrency in FaaS is the number of concurrent function
instances, in CaaS it means the maximum amount of simultaneous requests a single
container can receive. If the concurrency limit is reached, consecutive requests will
be routed to other container instances.

Instance number: The developer can also configure a minimum and a maximum
number of container instances that can be used for a given GCR service. Note

3https://knative.dev
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that if the minimum number is higher than 0, the service cannot scale down to 0
anymore.

Since the developer deploys a Docker image, a runtime does not have to be specified.

4.3.3 Pricing Model

The pricing model is different from FaaS since the developer has also more control over
what is executed. For example, the code that starts the container is also provided by the
developer and can be shorter or longer, depending on the application and the container
image. GCR charges for:

Container startup: This can be compared to the initialization time of a function,
which for example with AWS Lambda is also billed. However, the initialization
also includes not only the startup time of the container but also the establishment
of the HTTP server, as shown in the main function in listing 2.1

Container shutdown: Google bills the duration from the moment the container
receives the SIGTERM signal until it is gracefully shut down.

Active request: The customer is billed, as long as one active request is handled on
the container. The customer is not billed, when the container is running but no
request is handled. This principle can be seen in figure 4.7. However, this is only
the case as long as the number of minimum instances is set to 0.

Figure 4.7: Billable time of a Google Cloud Run instance [26]
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In this chapter, we describe our full evaluation setup. We start with the runtimes and
languages used to evaluate the services. We then list all benchmarks that were used and
with what inputs they were configured and executed. We then give an overview of how
the evaluated services were configured. Finally, we explain our testing process and how
we collected which metrics.

5.1 Runtimes

In this section, we describe the languages we used to evaluate the services and what
runtimes were used for each. Since there are use-cases for every programming language,
it is important to use more than one language to evaluate these services. This not only
allows us to cover a higher scope of use-cases but also increases the insights about the
different platforms, which we would not otherwise get.

5.1.1 C++

The first language we chose for the evaluations is C++. We chose this language since it is
widely used for HPC applications and is often used to parallelize programs. C++ is also
known for making efficient use of the resources it is run on, which is crucial in serverless
environments since longer execution times also result in higher costs. Additionally, C++
provides all tools necessary to implement and execute the chosen benchmarks.

To parallelize the programs, we chose OpenMP1, since it is a well-established and
documented API. OpenMP is used for shared memory parallel programming. The
OpenMP API is implemented in most C/C++ compilers. To parallelize a program with
OpenMP, the developer can use pragmas in the code, which function as entry points to
the compiler. The compiler then generates the threaded code based on the clauses used
in the pragma. OpenMP is mainly used to parallelize for-loops, but can also perform
task-based parallelism, which we will not use in our implementations. Listing 5.1 shows
a small code example of how loops are annotated to parallelize them. The sequential
parts of the program are executed by a master thread. As soon as a master thread
encounters a parallel section, the workload of the loop is split and the program is forked
into several threads. At the end of a parallel region, a barrier is inserted to synchronize
all threads. Since OpenMP is going by the principle of shared memory, all variables
defined outside of the loop are by default accessible by all threads. The developer

1https://www.openmp.org/
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has some additional options. For example, he can define private variables for each
thread, or perform reductions on certain variables. OpenMP also provides environment
variables and methods to get the number of available processors and set the number of
threads the program is supposed to use. We use these to get more information about
the environment, but also limit the available threads to test single-threaded execution.

1 /* ... */
2 #pragma omp parallel for
3 for (int i = 0; i < upperLimit; i++) {
4 // workload
5 }
6 /* ... */

Listing 5.1: Example of loop parallelization using OpenMP

AWS Lambda provides certain runtime images out of the box, where user can simply
upload the compiled code or even the source code itself and doesn’t have to configure
anything else. C++ is not one of those languages. However, in 2018 AWS introduced
the Lambda Runtime API [46], which makes it possible to write functions in any
programming language. The Runtime API gives the possibility to interact from any
given language with the Lambda environment. AWS also implemented an open-source
C++ runtime [4], which we will use for our evaluations. To build an AWS Lambda C++
function, we create an EC2 instance with Amazon Linux installed. On the instance we
compile the runtime and create and build our functions using gcc2 and cmake3. The
executable of the function is then packaged together with all needed dependencies into
a zip file, which is then used to create the Lambda function. GCR deploys container
images, which gives us the possibility to configure custom runtimes. To build the
executable we use the docker image alpine:edge and install gcc4 and cmake for the
compilation process. We then copy the binary into the deployment image, which is
based on debian:buster-slim. GCF unfortunately does not provide a C++ runtime or
the ability to develop and deploy custom runtimes. For both AWS Lambda and GCR
we use the compiler flag -O3 to maximize performance. AWS also offers the possibility
to use vectorized code, using Advanced Vector Extensions 2, which is a vectorization
extension to the Intel x86 instruction set to perform SIMD instructions [15]. We verified
that our code got vectorized by looking at the produced assembly. We also verified the
vectorization for code compiled in the Docker image, which we used for GCR.

5.1.2 Go

For the second language to evaluate the services, we chose Go. Go was released in
2012 [30] and has since then received regular updates, with the latest version 1.17

2Version: g++ 7.3.1 20180712 (Red Hat 7.3.1-13)
3https://cmake.org/
4Version g++ (Alpine 10.3.1_git20210625) 10.3.1 20210625
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released in August 2021 [45]. We chose this language for a couple of reasons. Firstly, Go
is widely used and all major cloud providers support Go in their serverless offerings.
Furthermore, Go was built with concurrency in mind, making it very easy to parallelize
our functions.

To parallelize our code we use goroutines, which is the native implementation for
lightweight threads. Goroutines can be used to execute functions concurrently. These
functions can also be anonymous, which means they don’t have to be defined in advance.

1 /* ... */
2 for i:= 0; i < threads; i++ {
3 go func (index int) {
4 lowerBound := index * (bound / threads)
5 upperBound := (index + 1) * (bound / threads)
6 for j := lowerBound; j < upperBound; j++ {
7 // workload
8 }
9 }(i)

10 }
11 /* ... */

Listing 5.2: Example of loop parallelization using goroutines

5.2 shows a short example of how we use goroutines to parallelize our code. The
keyword go creates the goroutine. Contrary to OpenMP, we have to manually split
the workload, by computing the upper and lower bound of the loop according to the
number of threads. We use an anonymous function, which receives the index as a
parameter, to compute the respective bounds of the loop. All variables defined outside
of the goroutine are shared by default. Variables defined inside of the goroutine are
private and only available to the respective routine. Go has its own scheduler to schedule
goroutines on the hardware. It uses the following 4 concepts [38] [31]:

Goroutines G: As already mentioned, G are lightweight threads and very similar
to OS threads. For example, they each have their own stack and can be context
switched.

Worker Threads M: M are threads that are still managed by the OS.

Processor P: P is a resource that is required to execute Go code. For each logical
processor on the executing machine, one P is available to the Go runtime. M must
have an associated P to execute Go code.

Run queues: There are 2 types of queues. A local queue, which is attached to a P
and contains all Gs to be executed in the context of P. All Gs in the local queue
can be context switched on and off the attached M. There is also a global queue,
which contains all Gs which have no assigned P.
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The scheduler not only decides which goroutines are attached to which P, but it also
decides when to context switch between goroutines. After spawning a goroutine, the
main program continues its execution. This is why we need a mechanism to wait for all
spawned goroutines to finish their executions. The Go runtime provides this construct
called a WaitGroup. When spawning a routine, we increase the counter of a WaitGroup
and decrement the counter when the routine is finished. The WaitGroup has a blocking
method, which waits until the counter is 0. All methods that are part of the WaitGroup
construct, utilize atomic instructions to prevent race conditions.

Go is rising in popularity ever since its first release. All major commercial FaaS
services provide out-of-the-box Go runtimes. The versions we used are 1.16.5 for AWS
Lambda, 1.16.7 for GCR, and 1.13 for GCF. The docker image used for GCR is based
on golang:1.16-buster, while the deployment image is again debian:buster-slim.
Go currently has 2 compiler implementations. Google’s self-hosting compiler gc and
gofrontend, which is a frontend to other compilers, for example, gcc or llvm. The front
end to gcc is also called gccgo. There are some advantages to using gccgo, for example,
the ability to vectorize the code, however, we still decided to use the gc compiler. We
made this decision since it is the standard compiler, which is not only more widely
used but gccgo is also not available for GCF. The consequence is that none of the Go
implementations utilize vector instructions.

5.1.3 Java

Finally, we use Java as the third evaluation language. Java is consistently one of the most
popular programming languages. We chose this language not only for its widespread
usage, but also to get a contrast to the other two previously mentioned languages.
Even though Java applications are also compiled, they are not compiled to binaries but
bytecode. The bytecode is then run by a Java Virtual Machine (JVM). The upside is that
the compiled code can be executed in any JVM, regardless of the underlying architecture.
The bytecode is interpreted by the JVM and translated to machine code at execution
time. The JVM also includes a Just In Time (JIT) compiler, which can translate certain
parts of the bytecode to native machine language. This is usually done for code that is
executed exceedingly often. The concept of a JIT compiler entails that the code usually
needs time to warm up, which means that the execution time of the application can go
down for consecutive runs. The downside for serverless environments is, that the JVM
usually has more overhead and it takes longer to spin up new instances. The JVM also
needs to warm up again on new instances.

Java is not as famous for concurrency as the other 2 languages, but it also provides
tools and libraries for shared-memory programming. We use the ExecutorService Class
to create a thread pool and submit tasks to be executed by these threads. The structure
of the code shown in 5.3 is very similar to creating goroutines in Go. We manually split
the workload by computing upper and lower bounds for the loop. All variables defined
outside of the runnables are shared. Each runnable is put in a task queue, which is then
scheduled for execution. The benefit of using a fixed thread pool is, that the threads
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are created once and can be reused for several parallel regions within a program. As
with goroutines, the main program continues execution and we need to use a construct
to synchronize the program again. For our applications, we use a vector. Each thread
adds a number to the vector after it finishes its workload. The main thread checks the
size of the vector and continues execution once the vector size is equal to the number of
threads.

1 /* ... */
2 ExecutorService executorService = Executors.newFixedThreadPool(threads);
3 for (int i = 0; i < threads; i++) {
4 final int lowerBound = i * (bound / threads);
5 final int upperBound = (i + 1) * (bound / threads);
6 final int index = i;
7 executorService.submit(new Runnable() {
8 @Override
9 public void run() {

10 for (int j = lowerBound; j < upperBound; j++) {
11 // workload
12 }
13 return;
14 }
15 });
16 }
17 /* ... */

Listing 5.3: Example of loop parallelization using Java ExecutorService

Similar to Go, all major FaaS services provide Java runtimes. For AWS Lambda, the
runtime version we used is Java Coretto 11 [2]. Java Coretto is a custom Java distribution
based on OpenJDK and patched by AWS. The Java runtime for GCF is also based
on OpenJDK version 11. The GCR docker image is based on maven:3.8-jdk-11. The
deployment image, in this case, is the same since the JVM is needed to execute the
bytecode. The JIT compiler also can vectorize the code. We verified that our code got
vectorized by looking at the produced assembly of the JIT compiler.

5.2 Benchmarks

In this section, we want to present the benchmarks we chose to evaluate the services. In
total, we are testing with 5 benchmarks. Each of these benchmarks is implemented in
all of the languages described in the previous section.
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5.2.1 Microbenchmarks

Microbenchmarks are often used to test sub-sets of systems or very specific hardware.
In our case, FaaS oftentimes function as subsystems and only perform small-grained
functionality. Additionally, functions tend to not run very long, which makes a good
use-case for microbenchmarks. The microbenchmarks we chose were all taken from the
NPbench Github repository5. All of the benchmarks in the repository are implemented
in Python, which we then translated to our chosen languages. We chose specific
benchmarks, which have no loop dependencies so that an efficient parallelization would
be possible. All microbenchmarks consist of an initialization phase and a computational
phase. In the initialization phase, we initialize the arrays and fill them with data. In the
computational phase, the actual results are computed. The workload of both phases is
split among the available threads.

Atax

The first microbenchmark is called Atax. The benchmarks perform a matrix transpose
and vector multiplication. First, we initialize 2 arrays with the size of N as the vectors.
One of the vectors is used for the intermediary result. We also initialize an array with
the size of M times N as the matrix. We fill one of the vector arrays and the matrix array
with values. All values are computed by a formula based on the index of the value in the
array, and the overall length of the arrays. We then perform the following computations:

 a1,1 · · · a1,N
...

. . .
...

aM,1 · · · aM,N

×

 x1
...

xN


×

 a1,1 · · · a1,N
...

. . .
...

aM,1 · · · aM,N


Since the computational part is split into 2 parts, our programs also contain 2 parallel
sections to compute the results.

Go Fast

The next microbenchmark is called Go fast. The benchmark performs a trace compu-
tation on a matrix and a scalar addition of the computed trace to the matrix. In the
initialization phase, we create an array of the size N times N and fill the array with
randomized values. Generating random numbers in a parallel context is often not
trivial [51]. Since we have to do the same in subsection 5.2.2 with the Monte Carlo
application, we will discuss how we deal with this problem in more detail in that section.

We compute the trace of the matrix, by summing up the tanh values of all diagonal
matrix elements.

trace =
N

∑
i=0

tanh(ai,i)

5https://github.com/spcl/npbench
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Afterward, we add this sum to every matrix element. This means that we split our
computational part into 2 separate parallel sections. We also have to perform a reduction
on the trace, since each thread keeps its own value of the trace, to prevent race conditions.

MVT

The final microbenchmark we used for the evaluations is called MVT. It performs a
matrix-vector product and transpose. In the initialization phase we create 4 vectors as
arrays with the size of N, and 1 matrix as an array with the size of N times N. Similar to
Atax, they are all filled with values based on the index of the value and the size of the
array. The computations performed on the vectors and matrix are shown below.

x1 =

 x11
...

x1N

+


 a1,1 · · · a1,N

...
. . .

...
aN,1 · · · aN,N

×

 y11
...

y1N




x2 =

 x21
...

x2N

+


 y21

...
y2N

×

 a1,1 · · · a1,N
...

. . .
...

aN,1 · · · aN,N




We can combine both computations into a single nested loop.

5.2.2 Applications

As previously mentioned, microbenchmarks are good to test subsystems. However, it
is advised to also use real applications for benchmarking. Applications are better at
mapping the conditions of a real system, which consequently can produce results that
are closer to reality than microbenchmarks. For our evaluation, we chose 2 applications.

Heat

The first application we chose is called Heat, which computes the heat distribution in a
2d solid body. We can model the heat distribution by following the Poisson equation:

−δ2u
δx2 − δ2u

δy2 = k ∗ δu
δt

u(x, y, t) is the temperature in point p(x, y) at time t. In a stable state, the temperature
won’t change anymore for a given time, which gives us the following equation:

−δ2u
δx2 − δ2u

δy2 = 0

To solve this equation we can apply the Dirichlet boundary conditions, which means
that we extend our grid and set fixed temperatures at the boundaries. We initialize a
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matrix with the size of N times N. The matrix represents all points in the body and
contains the temperature for each. We extend the matrix by 1 on every boundary, so
we can insert our fixed temperature heat sources. We then iteratively compute the new
temperature for each point. We use the Jacobi method to compute the new temperature,
by calculating the mean of the 4 neighbors of a point. The values of the neighbors are
taken from the previous iteration. To avoid loop dependencies within an iteration step,
we initialize 2 arrays, which are then swapped after each iteration. The application
finishes either after the change over all points within an iteration, also called residual, is
below a threshold, or an upper limit of iterations is reached.

The parallel workload of the application is the initialization of the arrays and the
computations within an iteration. Since we use the values of a previous iteration to
calculate the new temperatures, there is a loop dependency between iterations. However,
we can split the calculations of the new temperature values within an iteration. Similar
to the Go fast benchmark, each thread keeps its own residual value. We have to perform
a reduction on the residual between each iteration.

Monte Carlo

The last application we use for the evaluation is the Monte Carlo simulation. The Monte
Carlo simulation is, in essence, the generation of random objects. These random objects
can be used to estimate certain numerical quantities related to a simulation model [39].
In our case, we use the Monte Carlo simulation to estimate digits of π. To do this we

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Figure 5.1: Monte Carlo simulation to estimate digits of π. The simulation generates
points in the square randomly and uses the points that fall into the blue
marked are for the estimation

draw a circle with a radius of 1, as seen in figure 5.1. The area of each quadrant of the
circle, marked in blue, is π

4 . To approximate π, we generate 2 random numbers between
0 and 1 for each iteration. 1 for the x and 1 for the y coordinate. We then calculate if the
point is in the blue marked area. We count all points that fall into the area. We calculate
the ratio between points inside the circle and the total amount of points and multiply
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that number by 4 to get the approximation. These calculations are shown again below:

PointIn(x, y) = x2 + y2 ≤ 1

Estimationπ =
PointsIn

TotalPoints
∗ 4

x and y are randomly generated and defined with 0 ≤ x, y ≤ 1. The total amount of
points is also equal to the number of iterations of the simulation. The higher the number
of iterations, the more accurate the estimation will be.

As mentioned in the previous section, the generation of pseudo-random numbers in
a parallel context is often not trivial. The reason for this is that most random number
generators are implemented in a way that they behave deterministic based on an initial
seed. This determinism is useful since we can reproduce behavior given that we know
the initial seed. However, the downside is that for these generators to be deterministic
they need to keep an internal state, which is modified each time a number is generated.
If we call the same generator from different threads, the application slows down due
to false sharing of the generator internals. We can resolve this conflict, by initializing
a pseudo-random number generator for each thread. Each generator keeps its own
internal state, which is not shared among threads. To improve the results, each thread is
initialized with a different seed. This way we can generate random numbers inside of a
thread, without slowing down the application. Each thread also keeps its own counter
for the points that are inside the circle. After all iterations are done, we sum up the
counters of all threads and calculate the estimation of π.

5.2.3 Input Overview

After we described all benchmarks and how they work, we want to given an overview
of the input configurations for the respective benchmarks. We execute all benchmarks
with 3 types of inputs. Small (S), Medium (M), and Large (L) input sizes. The memory
constraints for S and M are that they should be able to run on every configuration. That
means that the M input for every benchmark needs to be below 512MB. The L input
should be executable by the function configurations with 4096MB and above. Table 5.1
shows the input sizes of the benchmarks and a rough estimation of how much memory
is needed to allocate all arrays. For Monte Carlo, the memory footprint does not change
by a significant margin and was therefore omitted. We tried to define the inputs in a
way that, for the same input, the benchmarks have a similar memory footprint but also
execution times.

We execute S and M for functions configured with 2048MB and below, while we
execute M and L for functions with 4096MB and above. We test different input sizes
to gather more information about the serverless environments and see if there are any
differences in the functions for handling small and large amounts of data. To have a
consistent data point across all configurations, input M is executed on all configurations.
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S M L

Atax
M, N 2000, 2500 4000, 5000 20000, 22000

Memory 40MB 160MB 3520MB
Go fast

N 2000 6000 22000
Memory 32MB 288MB 3872MB

MVT
N 2000 5500 18000

Memory 32MB 242MB 2592MB
Heat

N 2200 5200 15200
Iterations 10 10 10
Memory 77MB 432MB 3696MB

Monte Carlo
Iterations 107 108 109

Table 5.1: Benchmark configurations for small, medium, and large input size

5.3 Service Configurations

In this section, we want to describe how we configured our evaluated services. We
tested several different configurations for each service, to get a better idea of how the re-
source allocations for a function changes between configurations and what performance
improvements can be observed between them.

For AWS Lambda and GCF, the function memory configurations are 512MB, 2048MB,
4096MB, 8192MB 10240MB. For GCF the highest configuration is 8192MB since that
is the upper limit set by Google, while AWS Lambda allows a memory allocation up
to 10240MB. The memory configuration of GCR is the same as GCF, with one small
exception. Instead of 2048MB, we allocate 2148MB, since that is the minimum required
memory to allocate 4 vCPUs. We allocate 4 vCPUs for every memory allocation but for
512MB, where we allocate 2 vCPUs. We chose these configurations to test the maximum
resources that can be allocated. With 512MB we also include a lower configuration, to
see how efficient parallelizing is on higher and lower configurations.

To make sure consecutive configurations are handled by the same instance, we set the
concurrency of functions to 1 for both AWS Lambda and GCF. This approach lets us
measure the effects of parallelization more consistently since we reduce the variation
which is caused by cold starts and warm-up times. For GCR, we set the maximum
amount of containers to 1 and the maximum of concurrent requests that can be handled
to 1 for the same reasons. Limiting the container instances makes sure the requests are
all sent to the same container and limiting the number of concurrent requests makes
sure the container doesn’t handle 2 or more requests at the same time, which would
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decrease the performance of one single request. We verify that always the same instance
is invoked by keeping a global counter. That counter is incremented for every function
invocation and included in the response of the function. If the counter is 1, we know
that a new instance was initiated. All functions and containers using services by Google
were deployed in us-central1. For AWS Lambda the region we used is us-east1.

5.4 Evaluation Process

In the next section we describe our evaluation infrastructure. Before we do any execu-
tions, we deploy our functions manually. Some of them functions were deployed via
the cloud console on the browser, the others were deployed using the respective CLIs of
AWS and Google.

The main evaluation infrastructure is handled by mostly Python scripts, which can
also be seen in figure 5.2. The main execution script is responsible for the following
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Figure 5.2: Execution script

things:

Retrieve Configuration: When running the script, we decide what function we
want to run in what language and for which service. We pass those 3 as parameters
to the script 1 . The script then retrieves necessary configuration information for
the specific function that it is supposed to invoke 2 . This is for example the URL
to the container, or the exact function name, which is also used for the invocation.

Invoke Function: In the main loop of the program 3 , the function is repeatedly
invoked 4 . For each function configuration, we run 2 different inputs, in total 20
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times. 10 invocations with single-threaded, 10 times with multi-threaded execution.
That sums up to a total of 40 executions per function configuration. Since we use
synchronous invocations, the script awaits the function response before it triggers
another invocation. We collect all responses from the function invocations in a
dictionary.

Update Function: After all executions for 1 specific function configuration are
finished, we increase the memory for the function 6 .

Write Back Results: After all executions are finished, we write back the dictio-
nary, which holds the responses of all invocations 10 . For GCF and GCR, we
additionally retrieve the function/container logs and also write them to a JSON
file 8 .

To each function invocation, we pass a JSON as a parameter. The JSON contains 2 keys:
"Input" and "Threads". The values for the input key are either "S", "M", or "L". The
"Threads" key is set to either 1 or 6. At the start of an invocation, the function initializes
the data based on the input and according to the table 5.1. If the value of "Threads" is 1,
the amount of threads in the function is also set to 1, to test single-threaded execution.
If the value is 6, we retrieve the maximum amount of hardware threads available to the
runtime and set the number of threads to that number. We chose the number 6 since
this is also the maximum amount of hardware threads we observed in our evaluations.
With this input, we test the parallel execution time of the benchmark. Parallel execution
is always conducted with the maximum amount of hardware threads available.

For each service, we use a separate executor script, which contains its own imple-
mentations of invoking and updating a function. The AWS executor uses the aws CLI
to invoke and update functions. The GCF and GCR executors use python requests to
invoke function via HTTP requests and use the gcloud CLI to update function and
container configurations.

5.5 Metrics

In this section, we describe the metrics we measure for each service. Since this thesis
focuses on the exploration of parallel execution in a serverless environment, we primarily
look at the execution times of the functions. We also look at the memory consumption
of the functions to see if any differences are noticeable between runtimes and services.
We will describe both in more detail in the following subsections.

We use different methods to retrieve these metrics for the different services. For AWS
we can use the CLI to invoke functions and get the most necessary information directly
as a response, when including the parameters –log-type Tail –query "LogResult"
–output text for an invocation. In the response we get the following data:

Init Duration: The initialization duration of the function. It is only sent if a new
instance is invoked.
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Duration: The duration of the actual execution of the function.

Billed Duration: What is effectively billed to the customer. If the invocation starts
a new instance, the billed duration is the sum of the initialization duration and
the duration of the function execution. We use this value for all our results.

Max Memory Used: The maximum memory used of a function. This value is
kept over the lifetime of an instance. This means that if the first invocation of
an instance has the highest memory consumption, this value will not change for
consecutive invocations to the same instance.

For GCF and GCR, there is no option to include these data points in the response to a
request. This is why retrieve the function runtime, which is equal to the billed time, from
the logs. We do this via two separate steps. For GCF, we retrieve the function execution
ID, which is assigned by the GCP. The execution ID is part of the HTTP header sent
to the function. We include this ID in the function response so that we can save it for
later use. After all invocations are finished, we retrieve all logs for that function via the
gcloud CLI. The logs return a list of JSON objects. For each function invocation, there is
a JSON object, which contains the function execution time. We can search and match
this log entry with the execution ID, which we saved earlier. The function execution
time is equal to the billed time and will be used in our results.

Our approach to retrieve GCR logs is relatively similar, however, the GCP doesn’t
assign an execution ID for a request. Google stores only the URL for a given request.
Because of this reason, we write the request handlers of our containers in a way that
they expect an identifier as part of the request URL. In our Python script, we generate a
unique ID which we add to the request URL. We also save this ID for later use. After
all requests are finished we again retrieve the logs via the gcloud CLI and match the
request IDs with the log entries. We then retrieve the request latencies for each request.
Afterward, we write all our results back to an InfluxDB6 bucket. Each entry in the bucket
contains the the data on all attributes, which are listed in table 5.2. For our results,

Attribute Description

Benchmark -
Language -

Service -
Input -

Memory The memory the function was configured with
Threads The amount of threads that were used to execute the function

Max Memory Used Only for AWS since GCF and GCR don’t directly return it
Value The execution time for a function

Table 5.2: InfluxDB entry structure

6https://www.influxdata.com/
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we query the InfluxDB either for all recorded values or the mean values for a specific
function configuration.

5.5.1 Execution Time

As mentioned previously the main focus of this thesis is the parallelization of serverless
functions, and therefore the focus is on the execution times of the function. We mostly
look at the billed time, which is provided by the cloud platforms themselves, which
we retrieve as mentioned previously. We additionally measure the execution time of
only the computational part of the benchmark. This means that we add a timer to each
program that starts after memory initialization and finishes just before we return our
response. We use this timer to make better distinctions between function or memory
initialization and the actual computations of the benchmark. For example, if our custom
timer has an expected speedup between single- and multi-threaded execution, but the
billed time doesn’t, we can deduct that either the memory or function initialization
slowed down the function. For our results analysis, we primarily used the billed time, if
not mentioned otherwise.

5.5.2 Memory Usage

Collecting memory usage is not as straightforward as measuring the execution time.
Unfortunately, every cloud provider differentiates in the way they provide memory
usage. As previously mentioned, we can collect the maximum memory used for AWS
Lambda functions. But since we repeatedly call the same instance, we cannot retrieve
the current memory usage for every single invocation. However, we still save these
values, which gives us a general idea of the memory consumption and allows us to
identify patterns across runtimes.

For GCF we cannot retrieve the memory from the logs, but Google provides a metric
explorer, which also contains values for memory usage. Similar to AWS, we can’t retrieve
the memory usage for a single invocation. The metric explorer groups values in interval
buckets. For example, if a function consumed 240MB, Google will not store the value
directly, but increase the counter of the bucket [128, 256). We can also retrieve the mean
value over all buckets, which we also used for our results analysis.

GCR does not provide memory usage, but memory utilization. This value works
similarly to the memory usage metric provided by the Docker runtime. According to the
documentation, this metric is polled every 60 seconds[25], which means to get a decently
accurate result for a benchmark, requests need to execute consistently across the full
60 seconds. When executing requests with the medium input, we could not sample
a measurable difference in memory utilization. However, when invoking requests
repeatedly with the large input, we could measure expected memory utilization, which
is also what we used in our results.
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In this chapter, we present the results of our evaluations and general observations.

6.1 Observations

While evaluating the three different commercial cloud platforms, we encountered
varying behavior in regards to threads, memory, and hardware information, which we
present in this section.

6.1.1 Threads and Virtual CPUs

Firstly, we look at the number of threads that are available for each configuration. Since
we allocate as many threads as there are hardware threads or logical processors available
to the environment, the terms are equal in this context. In chapter 4 we explained how
vCPUs are allocated for each service. As seen in figure 6.1, we could observe at least
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Figure 6.1: Thread allocation for all service configurations

2 threads for every configuration. This means that the amount of allocated vCPU is
not equal to the number of threads. For example, in the lowest AWS configuration,
we observe 2 threads, while not even getting allocated a full vCPU, according to the
documentation of AWS [8]. Additionally, if we assume that we get a full vCPU per
1769MB allocated, we can conclude that the amount of threads is always rounded
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up. For example, 4096MB translates to 2.3 vCPUs, but we observe 3 threads for that
specific configuration. This behavior is the same for the other configurations. GCF
always allocates 2 threads, regardless of the memory allocated to the function. As
described in section 4.3, GCR allows the user to specify the amount of vCPUs directly,
contrary to the other services. For the performance evaluations, we chose the maximum
amount of vCPUs available for each configuration, as described in section 5.3. Since
the lowest number of vCPUs allocated is 2, the number of threads allocated should not
be surprising. However, when doing test runs with 1 vCPU, we could always observe
2 threads, which is consistent with the behavior seen in the other services. The only
exception to this is the Java container, which for 1 vCPU only allocates 1 thread available
to the user.

Next, we look at the processor models the functions ran on, which we collected by
reading out /proc/cpuinfo. For AWS, we always observed the same processor model,

Platform CPU Family CPU Model GHz Microarchitecture

AWS 6 63 2.5 Haswell
GCF 6 79/85 2.3-2.8 Broadwell/Skylake
GCR 6 85 2.3-2.8 Skylake

Table 6.1: Processor information

which is specified in table 6.1. GCF had both Broadwell and Skylake processors with
varying degrees of clock speed specified. For GCR we could only observe one Processor
model, which also had varying degrees of clock speed in the same range as the GCF
invocations.

6.1.2 Memory

Next, we look at the memory consumption of the different services and runtimes.
Generally, it can be said that the maximum memory usage is relatively similar across
services and runtimes with small differences. Figure 6.2 shows the memory consumption
for the MVT benchmark with the input L. The functions and container were configured
with 4096MB memory allocated. GCR consumes more memory than the other services,
which can be attributed to the fact that a full container image was used. The container
image we used may have more libraries installed than the functions. Additionally, the
Java runtime consumes more memory than the other runtimes. Another example of Java
having a higher memory consumption is, that at 512MB in AWS the Heat benchmark
did not successfully execute due to out-of-memory errors, while it did execute in Go
and C++.

Another behavior we could observe is related to the garbage collection of Go. We
could reproduce an issue, where a function instance running the Go runtime would crash
after consecutive invocations to the same instance. This behavior could be eliminated by
manually running the Go GC before returning the result of the function. We assume that
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Figure 6.2: Memory usage of the function MVT for the 3 evaluated runtimes (Input L)

Go is not freeing the function memory after a function invocation. To confirm this, we
did a couple of consecutive invocations and called runtime.ReadMemStats() for each.
This method returns a bunch of memory statistics of the Golang runtime, including how
many bytes are currently allocated. We called this method at the beginning and the
end of an invocation. Tables 6.3 and 6.2 show our results for reading out the memory

Invocation Memory Start Memory End GC Start GC End

1 0 152 0 1
2 152 152 1 2
3 152 152 2 3

Table 6.2: Memory stats when not manually calling the GC

Invocation Memory Start Memory End GC Start GC End

1 0 0 0 2
2 0 0 2 4
3 0 0 4 6

Table 6.3: Memory stats when manually calling the GC at the end of a function invocation

stats. Memory Start is the allocated memory in MiB at the start of a function invocation,
while Memory End is the same value at the end of an invocation. GC is the number
of times the GC has been called within the lifecycle of an instance. Table 6.2 shows
that the allocated memory for a function is kept across invocations, which can lead to
problems for consecutive invocations. This works as long as the function memory is big
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enough to allocate twice the memory of a single invocation. However, usually functions
memory is chosen sparingly since the user wants to save cost as much as possible. In
our evaluation runs, we had to manually run the GC, since for many configurations
consecutive invocations would have crashed.

6.2 Performance Evaluations

In this section, we will present our performance evaluations for each service and runtime.
We tested every benchmark on every function configuration, that is defined in section
5.3, with only a single thread, and with multiple threads available. That means we can
compare single and multi-threaded performance and observe how those behave with
increasing memory configuration.

6.2.1 Sequential Speedup

First we look at sequential speedups. In this case we look at the function execution
times, when only using 1 thread. We then compare how much speedup is acquired
by increasing the memory configuration of the function. 512MB is our baseline value,
which we compare with the increased function configurations.
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Figure 6.3: Sequential speedups obtained from increasing the function configuration for
AWS. Comparing all function configurations with 512MB to see how much
faster they run by only increasing the memory configuration.

Figure 6.3 shows the sequential speedups for all benchmarks in AWS. Each graph of
a benchmark contains the speedups for the 3 runtimes from the lowest to the highest
memory configuration. Since we compare higher configurations with 512MB, it appears
as a baseline. For the Heat benchmark, only Go and C++ are depicted since the lowest
configuration did not execute successfully for Java due to memory issues. As can be
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seen for all the graphs, the speedups for Go and C++ are consistently at about 3.5. That
means that by increasing the function memory from 512 to for example 2048MB, the
program runs 3.5 times as fast. This is easily explained by the fact that at 512MB we
get allocated a little less than a third of a full vCPU. All other evaluated configurations
have at least 1 full vCPU allocated. The only exception to this rule is Java, where we get
even higher speedups than on the other runtimes. This is possibly due to the automatic
garbage collection having an impact on performance for lower heap sizes [35]. For low
heap sizes, the JVM runs automatic garbage collection between loop iterations, which
has a big impact on performance.
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Figure 6.4: Sequential speedups for GCF

Figure 6.4 shows the sequential speedup for GCF. The graphs are structured in the
same way as the ones showing sequential speedups for AWS, with the difference that
we did not run C++ on GCF. According to the GCF documentation [24], processor clock
speed should also increase by increasing the function memory. The configuration for
2048MB has 3 times the clock speed as 512MB, while 4096MB and 8192MB have 6 times
the clock speed of 512MB. This can be observed to some extent for the Java runtime.
However, this might partially be related to an increased heap size, similar to what
was observed on AWS. The speedup obtained by the Go runtime is pretty consistently
between 2 and 3. This implies that either the benchmarks consistently get no benefit
of an increased clock speed from 2.4GHz to 4.8GHz, or that the resources for a single
thread are not increased.

Lastly, we look at the sequential speedups obtained for GCR, by increasing function
memory and the amount of vCPUs. Figure 6.5 shows the sequential speedups for
GCR, again structured in the same way as the other 2 services. For Go and C++ no
consistent sequential speedup can be observed, by increasing the container memory
or the amount of vCPUs. This implies that the type of CPU never changes across the
different configurations. Furthermore, there is always at least one full vCPU assigned
to the container, which means that there is no speedup between the lowest and higher
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Figure 6.5: Sequential speedups for GCR

configurations. Since we always use only 1 thread, the amount of vCPUs has no impact
on the performance. For every Java implementation, we obtain varying degrees of
speedup. This also strongly supports the argument that the Java implementations
benefit from purely increasing the allocated memory if the memory is low enough at
the starting point. Although the results in figure 6.2 show that the memory usage is the
highest for GCR and Java, it is the only service that was able to successfully run the
Heat benchmark with medium-sized input and a memory allocation of 512MB. However,
our results show that the invocation count is reset to 1 for each consecutive invocation,
which means that a new instance was used. This would also explain high sequential
speedups for the higher memory configurations, where there was not a cold start for
every invocation.

In conclusion for the sequential speedups, it can be said that the Go and C++ runtimes
generally don’t benefit from increased memory, but from increased CPU time and clock
speed. The Java runtime additionally benefits from increased memory, if the heap size
was low enough to trigger the garbage collection between loop iterations.

6.2.2 Parallel Speedup

Next, we look at the speedup that is obtained by parallelizing the programs, which
means we now take full advantage of the hardware that is available to the developer. In
the following graphs, we compare single- and multi-threaded executions of the same
function or container on the same configuration. We always use as many threads, as
are available for a specific configuration. We compare the acquired speedups across
benchmarks, runtimes, and configurations.

We start again with AWS and look at all benchmarks across configurations and
runtimes, which can be seen in figure 6.6. The first observation we can make is that
even though at 512MB there are 2 threads available, using both threads doesn’t yield
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Figure 6.6: Speedup between single- and multi-threaded execution of a specific function
configuration for AWS.

any significant speedup. This is because there is no full vCPU allocated for this
configuration. At 2048MB a small speedup is obtained. However, since there are still
not 2 full vCPUs allocated, both threads are not fully utilized. For the configurations
4096MB and upwards, the speedup obtained is similar to the threads available for the
specific configuration. Especially the Go and C++ implementations yield the expected
speedups across most benchmarks. The Java implementation, however, has worse
speedups consistently across all benchmarks, when compared to the other 2 runtimes.
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Figure 6.7: Speedup between single- and multi-threaded execution of a specific function
configuration for GCF.

Next, we look at the speedups obtained in GCF, which can be seen in figure 6.7. From
the graphs, we can obtain an upper limit of 2 in terms of speedup, which correlates to
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the number of allocated threads, which are always 2. However, there are still differences
between the different configurations. More specifically, we can observe that there is
usually a small jump from 2048MB to 4096MB and above. This implies, since no
additional threads are allocated, that one of the threads is more powerful or has a higher
share in clock time. This is also in line with the observations made in subsection 6.2.1,
because according to the documentation the clock speed increases from 2048MB to
4096MB, but no sequential speedup could be observed. If we assume that the clock time
is spread across both threads, and only at full capacity from 4096MB and above, the
full speedup of 2 can also only be obtained from 4096 and higher. Another point that
stands out, is that the Java implementations generally yield more speedup, than the Go
counterparts. Since GCF uses an older runtime version of Go than AWS Lambda and
GCR, we tried to reproduce these bad results on GCR. We executed some runs with the
container image golang:1.13-buster and observed similar issues as on GCF.
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Figure 6.8: Speedup between single- and multi-threaded execution of a specific function
configuration for GCR.

Lastly, we look at parallel speedups obtained with GCR. Since this time the highest
vCPU configuration is 4, the speedup is also capped out at 4. Only the lowest configura-
tion at 512MB has 2 vCPUs allocated. In figure 6.8 we can see that the speedups for the
lowest configuration are around 2 for C++ and Go while being around 1 for Java. This
can be explained through Java being bottlenecked by the garbage collection for lower
memory configurations. Similar to the parallel speedup observed on the AWS platform,
the Java implementation lags a little behind the other 2 runtimes. For most benchmarks,
most notably seen in 6.8b and 6.8c, the speedup obtained by the C++ implementation
is a little bit less than expected. Since this can be observed across all benchmarks it is
reasonable to assume that the overhead of invoking a request via CaaS is higher than
via FaaS, at least for the C++ runtime.

Generally, the speedups obtained are in line with what is expected, with some small
exceptions and differences. Across all services, the Java implementations obtain a little
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less parallel speedup.

6.2.3 Function Execution Times

Before we look at the total costs of the executions, we look at the execution times of
the benchmarks across the services. This gives us a better impression of what services
and runtimes perform better overall and we can take that into account when looking
at the costs. Furthermore, the total execution time has to be taken into account, when
looking at the cost. This is especially important for the services of the GCP, which we
will explain in subsection 6.2.4.
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Figure 6.9: Multi-threaded execution times for all benchmarks (Input M) across ser-
vices. Each sub-graph is grouped by runtime and then sorted by memory
configuration.

In figure 6.9 the execution times of all benchmarks are depicted across services and
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runtimes. The Java implementations often perform the worst on the lowest configura-
tions, while they perform similar or better in higher configurations to their counterparts.
As mentioned before, this is attributed to garbage collection having an impact on the
performance of lower memory configurations. However, for higher configurations the
performance is similar. Only for higher thread counts, the Java implementations fall
behind again. If we compare both FaaS services, the differences are small for the lower
memory configurations. Since GCF doesn’t allocate more threads for higher memory
configurations, the execution time stagnates at a certain point, while the execution time
for AWS continues to go down.

If we compare GCR with the other services, we can observe that the total execution
time is a lot lower for 512MB. This is due to the configuration since we allocate 2 vCPUs.
On the higher configurations, GCR is close to AWS in terms of execution time.

6.2.4 Cost Comparison

After evaluating the performance, we now present a cost comparison between the
different services and runtimes. We take the mean function execution time and calculate
the costs for 1 million function invocations. In the calculation we assume there is no
free tier for all services. In figure 6.10 all formulas to calculate the costs are listed.
Additionally to the compute time, each service provider charges a fixed cost per 1

AWS(t) = 1000000 ∗ t ∗ price_per_ms + 0.2

GCF(t) = (
m

1024
∗ t ∗ 1000000 ∗ 0.0000025

1000
) + (

p
1000

∗ t ∗ 1000000 ∗ 0.0000100
1000

) + 0.4

GCR(t) = (
m

1024
∗ t ∗ 1000000 ∗ 0.0000025

1000
) + (c ∗ t ∗ 1000000 ∗ 0.00002400

1000
) + 0.4

Figure 6.10: Cost formula for all, with t = time in ms, m = function memory in MB, p =
processor MHz, c = number of vCPUs

million function invocations. AWS charges $0.2, while Google charges $0.4 for their
respective services [5] [24]. The price-per-ms in the AWS formula is dependent on
the function memory. All functions were executed in U.S. East (N. Virginia). The cost
formula for GCF is split into GB-seconds on the left side and GHz-seconds on the right
side. Similar to GCF, the GCR formula is split into GB-seconds and vCPU-seconds. Both
the number of vCPUs and memory allocated influence the final price [26]. Since we ran
all our functions in us-central1, we calculate the cost with the values for Tier 1 pricing
for both GCF and GCR. While AWS rounds the time to the nearest increment of 1ms,
Google rounds the time up to the nearest increment of 100ms.

In figure 6.11 the costs for all benchmarks in AWS are shown. The red bars represent
the cost for single-threaded execution, while the blue bars show the costs for multi-
threaded execution. In the beginning, the prices for the single and multi-threaded
executions are about the same, which is in line with the observed speedups. The cost

48



6.2 Performance Evaluations

512 2048 4096 8192 10240
Memory in MB

0
10
20
30
40
50
60
70
80

Co
st

 p
er

 m
illi

on
 in

vo
ca

tio
ns

 (U
SD

)

5.7 7.3

15.6

28.2

36.2

5.7 6.1 6.4 6.7 7.3

Sequential Function Parallel Function

(a) Atax C++

512 2048 4096 8192 10240
Memory in MB

0
10
20
30
40
50
60
70
80

Co
st

 p
er

 m
illi

on
 in

vo
ca

tio
ns

 (U
SD

)

7.7 9.7
13.1

24.8

30.9

7.4 8.1 9.5
13.3 14.5

Sequential Function Parallel Function

(b) Atax Java

512 2048 4096 8192 10240
Memory in MB

0
10
20
30
40
50
60
70
80

Co
st

 p
er

 m
illi

on
 in

vo
ca

tio
ns

 (U
SD

)

11.1
13.5

27.7

51.6

66.3

10.7 11.0 12.5

22.7 22.7

Sequential Function Parallel Function

(c) Atax Go

512 2048 4096 8192 10240
Memory in MB

0

20

40

60

80

100

120

Co
st

 p
er

 m
illi

on
 in

vo
ca

tio
ns

 (U
SD

)

10.3 11.9

25.2

49.0

67.2

10.0 10.1 11.2 13.6
17.5

Sequential Function Parallel Function

(d) Go fast C++

512 2048 4096 8192 10240
Memory in MB

0

20

40

60

80

100

120

Co
st

 p
er

 m
illi

on
 in

vo
ca

tio
ns

 (U
SD

)

11.0 12.9
20.0

34.6
43.4

10.4 12.2
16.4

22.4
26.4

Sequential Function Parallel Function

(e) Go fast Java

512 2048 4096 8192 10240
Memory in MB

0

20

40

60

80

100

120

Co
st

 p
er

 m
illi

on
 in

vo
ca

tio
ns

 (U
SD

)

21.6 23.9

47.2

95.5

119.3

16.6 16.9 19.2
27.0 25.5

Sequential Function Parallel Function

(f) Go fast Go

512 2048 4096 8192 10240
Memory in MB

0

20

40

60

80

100

120

140

160

Co
st

 p
er

 m
illi

on
 in

vo
ca

tio
ns

 (U
SD

)

20.1 22.5

49.3

95.7

116.6

21.3 20.9 22.8 24.9 26.0

Sequential Function Parallel Function

(g) MVT C++

512 2048 4096 8192 10240
Memory in MB

0

20

40

60

80

100

120

140

160

Co
st

 p
er

 m
illi

on
 in

vo
ca

tio
ns

 (U
SD

)

30.4
36.9

45.0

91.3

109.2

28.9 30.8 31.1
39.5 39.7

Sequential Function Parallel Function

(h) MVT Java

512 2048 4096 8192 10240
Memory in MB

0

20

40

60

80

100

120

140

160

Co
st

 p
er

 m
illi

on
 in

vo
ca

tio
ns

 (U
SD

)

26.7 29.1

60.3

117.8

147.6

25.8 25.0 27.0 30.4 34.1

Sequential Function Parallel Function

(i) MVT Go

512 2048 4096 8192 10240
Memory in MB

0

50

100

150

200

250

300

Co
st

 p
er

 m
illi

on
 in

vo
ca

tio
ns

 (U
SD

)

23.2 26.7

55.3

109.7

137.5

23.7 24.9 26.0 27.8 33.1

Sequential Function Parallel Function

(j) Heat C++

2048 4096 8192 10240
Memory in MB

0

50

100

150

200

250

300

Co
st

 p
er

 m
illi

on
 in

vo
ca

tio
ns

 (U
SD

)

39.6
56.2

109.7
130.4

36.2 39.3

62.2 68.7

Sequential Function Parallel Function

(k) Heat Java

512 2048 4096 8192 10240
Memory in MB

0

50

100

150

200

250

300

Co
st

 p
er

 m
illi

on
 in

vo
ca

tio
ns

 (U
SD

)

53.2 60.0

121.8

233.5

297.5

51.5 51.1 53.8 58.5
71.0

Sequential Function Parallel Function

(l) Heat Go

512 2048 4096 8192 10240
Memory in MB

0

50

100

150

200

250

300

Co
st

 p
er

 m
illi

on
 in

vo
ca

tio
ns

 (U
SD

)

29.0 33.3

67.5

136.2

168.0

29.1 28.9 29.1 30.4 33.4

Sequential Function Parallel Function

(m) Monte Carlo C++

512 2048 4096 8192 10240
Memory in MB

0

50

100

150

200

250

300

Co
st

 p
er

 m
illi

on
 in

vo
ca

tio
ns

 (U
SD

)

23.4 30.7 36.8

72.9
92.4

18.1 20.3 22.2 23.8 24.0

Sequential Function Parallel Function

(n) Monte Carlo Java

512 2048 4096 8192 10240
Memory in MB

0

50

100

150

200

250

300

Co
st

 p
er

 m
illi

on
 in

vo
ca

tio
ns

 (U
SD

)

48.4 54.9

110.5

219.5

273.1

48.0 47.6 48.4 49.7 51.1

Sequential Function Parallel Function

(o) Monte Carlo Go

Figure 6.11: Cost comparison between single- and multi-threaded execution for AWS.
Parallel functions with the highest percentage in cost savings are marked in
red.

strongly increases for sequential execution, even with the sequential speedup obtained.
The cost for the parallelized version also increases with higher configurations, but much
slower. For example, the parallel C++ implementations increase by about 30% from the
lowest to the highest configuration, while the sequential version increases by over 500%.
Overall C++ is the cheapest when parallelizing, while Java is the cheapest on sequential
versions. There are some exceptions to this. For example, if we compare figure 6.11h
and 6.11i, we can see that for low memory the Java implementation is more costly. The
sequential functions of Go are, on average, more expensive than C++ and Java. For the
higher configurations, small differences in execution time can make a huge difference.
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Figure 6.12: Cost comparison between single- and multi-threaded execution for GCF.
Parallel functions with the highest percentage in cost savings are marked in
red.

Even though we could see in figure 6.9g that the execution times are very close to each
other, the differences in cost are quite high. The difference between C++ and Java for
the parallel versions of 10240MB is about 50-100ms in some benchmarks but the price
increases by 50%. Overall the highest cost saving between the sequential and parallel
versions is 81%.

Next, we look at the costs of GCF in figure 6.12. On the lower configurations,
the costs are again very close. However, due to the limited speedup of GCF, the
costs savings are limited as well. Lower total execution times additionally reduce the
effect that parallelizing the program has since the execution time is rounded to the
nearest increment of 100ms, which can make a huge difference, especially in higher
configurations where the cost per 100ms is so high. If we compare figures 6.12a,
6.12b (low overall execution time) with 6.12i, 6.12j (higher overall execution time), this
difference becomes clear. Even though both benchmarks have similar speedups, Monte
Carlo has a lot better cost savings, when parallelizing the program both for Java and
Go. Overall the Java implementation is cheaper than the Go implementation. For GCF,
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the maximum amount of cost savings we observed between the sequential and parallel
versions is 49%.

Lastly, we look at the costs of GCR. Since we allocate a minimum of 2 vCPUs, we
can see in figure 6.13 that the parallel implementation has always at least the same or
lower cost. For configurations with the best speedups, we achieve cost savings up to 71%
between single and multi-threaded runs. However, this percentage is rarely achieved
for lower execution times, since Google rounds up to the nearest increment of 100ms.
Another interesting fact is that for Java implementations the cost can be reduced when
increasing the configuration from 512MB to 2048MB. This seems to again indicate, that
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Figure 6.13: Costs comparison between single- and multi-threaded Execution for GCR.
Parallel functions with the highest percentage in cost savings are marked in
red.
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the Java implementation is severely bottlenecked by memory for lower configurations.
Apart from that, the cost rises consistently with higher memory configuration. There are
some exceptions to this, for example in 6.13g the cost decreases in the parallel version
from 4096MB to 8192MB. Looking at the results, the fastest execution times are relatively
the same, but the higher memory configuration performs a little bit more consistently,
which reduces the overall mean execution time. The sequential implementations of Go
cost, on average, the most.

6.2.5 Impact of Cold starts

Finally, we want to discuss the impact of cold starts in our experiments. In general, cold
starts will not be one of the main topics of this thesis, since the focus is more on the
effects and efficiency of parallelization. Additionally, our results show that cold starts
are equally long with sequential and parallel implementations. That means that the cold
starts decrease the fraction of the function that can be run in parallel. If this fraction is
large enough, it also has an impact on the obtained speedup. As described in chapter
5, consecutive invocations for a single configuration were on the same instance, which
means that at most 1 of 10 runs is executed on a cold instance. Figure 6.14 shows the
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Figure 6.14: Impact of billable cold start latency

billable time in milliseconds that is caused by a cold start for each service and runtime.
We focus on the difference in billable time between the invocation on a cold and a warm
instance and completely neglect latencies, which are not documented by the service
provider. This is because only the difference in billed time has an impact on the cost
of execution of our functions. This is also why some of the values seem very low, for
example, the Go runtime on GCF. However, when comparing the execution time of a
cold and a warm function, the difference was barely noticeable. The Java runtime on
GCR stands out with very high latency. CaaS provides the container as a server, where
the creation of the former seems to take more time in Java, than with the other containers.
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6.2 Performance Evaluations

For Java, some of the time difference of a cold and warm instance might be also due
to the JVM warming up. This also might impact the time difference between the first
and second invocation of a particular instance. In our results, we could not observe a
significant difference between benchmarks or function memory configurations.
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7 Discussion

In this chapter, we want to discuss the results shown in the previous chapter. Since one
of the biggest reasons for users to use serverless services is cost, we want to discuss in
which cases it makes sense to parallelize functions.

7.1 Costs

A lot of the presented results in chapter 6 show that by parallelizing a program the cost
can be reduced by a significant margin. To achieve similar results, a few conditions have
to be met.

vCPUs: To achieve a noticeable speedup, the function needs to have more than 1
full vCPU allocated. For AWS Lambda this means a function has to have more than
1769MB allocated. GCF gets small speedups for lower memory configurations,
but the full speedup of 2 can only be achieved from 4096MB and above. In
GCR, vCPUs are allocated independently from memory and for every memory
configuration, at least 2 full vCPUs can be allocated.

Memory: As previously mentioned, GCR allows to allocate 2 vCPUs even in low
memory configurations, however for certain runtimes the memory can lead to
performance degradations. If both threads are bottlenecked due to memory or
garbage collection issues, parallelization has little to no impact.

Parallel execution: When all hardware conditions are met, the cost savings depend
on the fraction of the program that can be executed in parallel. The higher this
fraction is, the more cost can be saved.

Cold starts: This ties into the previous point since cold starts are a fraction of
the function, which doesn’t get any benefit from parallelizing the program. The
more cold starts there are and the longer they take, relative to the total function
execution time, the fewer costs can be saved.

Even if not all of these points are met, parallelizing parts of a program rarely has
any downsides. In our results, there were almost no runs where the single-threaded
execution was faster, even if there was less than 1 full vCPU allocated.

Another interesting question is if there are situations where the user can save cost
by increasing the function memory or allocate more vCPUs, given that a program is
already parallelized. First, we look at AWS purely from a Cost perspective. We take the
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cost formula from equation 6.10 with the respective cost per millisecond values for our
configurations. Figure 7.1a shows the cost for a given function memory configuration,
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Figure 7.1: Linear cost function for each function configuration. Cost increases linearly
with increasing execution time for a fixed function configuration.

assuming the execution time stays always the same. However, we already know that
this is not the case, since 512MB has less than a full vCPU allocated. Our results in
section 6.2.1 show that the speedup from 512MB to the other configurations is roughly
3.5. If we calculate the exact fraction of 1769 and 512, we get 3.45, which will be used
going forward for this calculation. Figure 7.1b shows the costs again, but with the time
divided by 3.45 for all configurations from 2048MB and above. We can see that the lines
got closer to each other, but the higher configurations still are more expensive. For the
last graph in 7.1c we assume that 100% of the function can be executed in parallel. We
divide the time again, by the amount of speedup that can be achieved in an optimal
case when compared to 512MB. For example 10240

1769 ∗ 1769
512 = 20. If we apply this to all

configurations, the prices are the same. This is an ideal case, which is almost impossible
to achieve. In some of our results, we got close, but the costs still rose for increasing
memory. This also means that, without memory bottlenecks, it isn’t possible to save
costs by increasing the function configuration.

Since the cost formulas for both GCF and GCR are also linear, we can compute the
required speedups, which would be necessary to not increase the cost for a function,
while increasing the memory. For example for GCF, if we compare 512MB with 4096MB,
the function would have to execute about 6.25 times as fast to have the same cost. Since
in GCF we have a maximum of 2 threads, that would mean the sequential speedup
would need to be higher than 3. GCR is a little bit different since we can configure
the amount of vCPUs and memory independently. In the configurations we chose to
evaluate GCR, we always increased memory as well, which is why the costs mostly
increase for higher configurations. However, if we take the same memory configuration
and allocate more vCPUs, the cost can potentially decrease. This is because the cost
for memory decreases, while the cost for computing time stays the same if 100% of the
program runs in parallel.

In conclusion, it can be said that for FaaS increasing the function configuration, in
most cases increases cost, and in optimal cases breaks even. For CaaS it might be worth
allocating more vCPUs, depending on the program and runtime.
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7.2 Runtimes

In this section, we look at the differences between the 3 evaluated runtimes. If we look
purely at cost of the parallel runs, C++ overall outperforms Java and Go. Using C++
makes sense if the parallel fraction of the program is huge and the runtime by the
provider includes the necessary tools to interact with the serverless environment. Setting
up the C++ functions in Lambda was more complex than with the other languages, but
the overall reduction in cost can be worth it. However, the user has to keep in mind
that not all cloud providers support C++, which increases vendor lock-in to specific
providers and services.

Go on the other hand is widely supported and with out-of-the-box runtimes, even
for different versions. Furthermore, the speedups obtained with the parallel version are
pretty high in most cases. Consequently, the potential cost savings by parallelizing the
function are also high. The language was designed with concurrency in mind. Splitting
the workload into goroutines is very easy and does not require any external libraries or
dependencies.

Java is also available supported on all main serverless platforms. The overall perfor-
mance in terms of execution time is pretty good for Java. The Java implementations
are close to the results of the other runtimes for higher memory configurations and
frequently outperform them for the medium memory configurations. Especially in GCF,
Java is faster than Go in most cases. However, Java has 2 problems, which are not present
in the other two languages. Firstly, if the memory is configured too low, the performance
implications are quite high. It is reasonable to plan with a higher memory budget in
Java. The second problem comes with the JVM. The JVM usually needs to warm up and
the performance often still increases after the 2nd or 3rd consecutive invocation. In a
serverless environment, where invocations often spawn new instances, the performance
impact can be huge. Additionally, cold starts are higher than the other runtimes, which
ties into the same problem.
Overall there are use cases for all the 3 languages. And if the user is already tied to a
given language, there are scenarios where it makes sense to parallelize the program for
all of them.

7.3 Tradeoff Cost vs. Speedup

So far we have discussed mostly the implied cost savings when considering the par-
allelization of a program. In most cases, this is already enough, since most use cases
for serverless are to save cost. However, there might be some instances, where the
user values reducing the execution time over saving costs up until a certain point. For
example, if the invocation of a serverless function is tied to a user-facing website, where
the response times are often very important. If the user has to wait for the response of
the function and parallel execution of the function can reduce the response time, the
developer might prefer having a higher cost to reduce the overall response time.
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For cases like these it can be interesting to look at the ratio of cost increase to reduction
of overall execution time. Lets define the ratio as cost efficiency with the following
formula:

E f f iciency(i) =
Time512MB

Timei
÷ Costi

Cost512MB

We use the function configured with 512MB as a baseline and compare it with higher-
configured functions. We divide the function execution time of 512MB by the time
of a given function configuration to calculate the speedup obtained between the two
configurations. On the other side of the division, we calculate the cost increase from
512MB to a given function configuration. We then divide the speedup by the cost
increase. For example, if the speedup between 512MB and 2048MB is 2, but the cost is
also doubled, the result is 1. One possible flaw of this formula is that it scales linearly,
which in reality is often not the case. The jump from from 1 to 1

2 in execution time is
often more impactful than the jump from 1

2 to 1
4 . This is not factored in in this formula,

but it can still give a rough idea of how much more money the user has to spend to save
function execution time.
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Figure 7.2: Cost efficiency for MVT of all service providers

Figure 7.2 shows the calculated cost efficiency using the above formula for all services.
What stands out immediately, is that AWS performs the best in regards to this metric.
This is because the speedups obtained are very high, while the costs stayed relatively
the same and only increased by a small amount. The other 2 services are in most cases
above 1, but lag behind AWS. Only Java has a decent efficiency. The reason for Java
being higher than the others for GCF and GCR is that Java is a lot slower for the 512MB
configuration, but the overall speedup for the following configurations is great. For Go,
it is often costly to reduce execution time in GCF and GCR, while still being quite cheap
on AWS. In general, GCR is quite low, since we already start with 2 vCPUs. This means,
that if a user is looking for the cheapest way to speed up his functions, AWS is the best
choice out of the 3 evaluated services. When looking to speed up a Java function, it is
often efficient to increase function memory for all services.
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8 Conclusion

In this thesis, we analyzed 2 major cloud providers and 3 of their serverless offerings. We
ran 5 different benchmarks and applications single- and multi-threaded to evaluate the
parallel performance of these services. We also collected information on the hardware
that the functions and containers were running on. We showed that the number of
hardware threads available to the developer does not always equal the number of vCPUs
allocated to the function or container. Our results also show that it is highly likely that
GCF doesn’t allocate 2 full vCPUs until 4096MB memory configuration.

Furthermore, we show that by parallelizing the programs, the developer can save a
significant amount of cost. The more vCPUs allocated to the function, the bigger the
effect. For AWS Lambda we could observe cost savings up to 81%, for GCF up to 49%,
and for GCR up to 71%. For AWS Lambda and GCF, we gave arguments on why the
cost cannot be reduced by increasing the function configuration if the application is not
bottlenecked. Since we can independently configure vCPUs and memory for GCR, there
are situations where we can save costs by increasing the amount of vCPUs allocated to a
container, given that the application achieves good speedups.

8.1 Shortcomings

Although our results answer the research questions we set out in section 1.2, not all
of the results were as expected. We observed some outliers we were not fully able to
explain. The first example is the results for Go on GCF. The microbenchmarks performed
badly, with the highest speedups achieved being around 1.3. The runtime for GCF is
1.13, while for AWS Lambda and GCR we used 1.16. We were able to reproduce the
bad results by changing the Docker image to golang:1.13-buster for GCR, but we
did not investigate the reason for this behavior further. Furthermore, the speedups
achieved for the Java implementations failed to meet our expectations across all services.
This behavior was worse for applications with a higher amount of separate parallel
regions, which indicates synchronization overheads. Since the standard library of Java
doesn’t provide synchronization methods themselves, we implemented it ourselves. Our
synchronization implementation is possibly not as good as it could be. Additionally,
the results of the JVM are inconsistent, which makes it harder to narrow down the
underlying problem. It can also be argued that our benchmarks don’t represent real
scenarios close enough. We only chose 2 applications for our evaluations and both of
these applications still include scientific calculations, which are not always present in
everyday applications.
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8 Conclusion

8.2 Future Work

In this section, we present how our work could be improved and extended to gain more
insights into parallel execution in serverless environments.

8.2.1 Services

The evaluations could be extended to additional cloud providers, for example, Azure
Cloud Functions. For their standard consumption plan, only the memory is config-
ured [42]. It would be interesting to see the number of threads available for each
configuration and how much the benefit is for parallel executions. Furthermore, Mi-
crosoft offers custom handlers to support custom language runtimes [43]. It could be
interesting to see how efficient they are in terms of parallel execution and potential cost
savings. Another service that could be evaluated is IBM Cloud Functions. For both the
services of IBM and Microsoft, the limits for the maximum amount of memory that
can be allocated are rather low, compared to AWS Lambda and GCF. That leads us to
believe that the expected benefits are lower than what our results show us, but it would
be interesting to confirm this and gain additional insights into the underlying hardware.

8.2.2 Runtimes

To extend the scope of the evaluation, we could add additional runtimes. It would be
particularly interesting to research the difference between compiled and interpreted
languages, such as Nodejs, Python, or Ruby, all of which are widely supported across
cloud providers. For all runtimes, it could be interesting to gain more insights about the
runtimes in the serverless environments and how they are configured. Runtime-specific
implementations, like garbage collection, could be sampled more for their performance
impact and the differences across runtimes.

8.2.3 Benchmarks

As previously mentioned, the number and variety of benchmarks in this thesis are not
ideal and could be improved. It would be useful to add benchmarks that utilize different
parts of the system. For example, applications that heavily interact with the file system
or make a lot of network calls. Because of the differences in underlying architecture,
the performance for the different service providers could heavily vary. Another ap-
proach could be to evaluate applications that use threads to process independent tasks
concurrently, instead of splitting one big workload into smaller pieces.

8.2.4 Inter- and Intrafunction parallelism

As described in section 3.1, many existing approaches split the workload across functions
to execute it in a distributed fashion. For many of these approaches, the overall
synchronization overhead could be reduced by using fewer more powerful functions,
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which execute their part of the workload in parallel. It could be interesting to see if any
of these solutions can be improved by using parallel executions within a function.
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ing Performance Measurements in Java.” In: Proceedings of the 6th ACM/SPEC
International Conference on Performance Engineering. ICPE ’15. Austin, Texas, USA:
Association for Computing Machinery, 2015, pp. 337–340. isbn: 9781450332484.
doi: 10.1145/2668930.2688820.

[36] Intel. Hyper Threading Technology. https : / / www . intel . com / content / www /
us/en/architecture-and-technology/hyper-threading/hyper-threading-
technology.html. 2021. (accessed: 10.09.2021).

[37] J. Jiang, S. Gan, Y. Liu, F. Wang, G. Alonso, A. Klimovic, A. Singla, W. Wu, and
C. Zhang. “Towards Demystifying Serverless Machine Learning Training.” In:
Proceedings of the 2021 International Conference on Management of Data (June 2021).
doi: 10.1145/3448016.3459240.

[38] W. Kennedy. Scheduling in Go Part 2. https://www.ardanlabs.com/blog/2018/
08/scheduling-in-go-part2.html. 2018. (accessed: 10.09.2021).

[39] D. Kroese, T. Brereton, T. Taimre, and Z. Botev. “Why the Monte Carlo method is
so important today.” In: Wiley Interdisciplinary Reviews: Computational Statistics 6
(Nov. 2014). doi: 10.1002/wics.1314.

[40] N. Lacasse. Open-sourcing gVisor, a sandboxed container runtime. https://cloud.
google.com/blog/products/identity-security/open-sourcing-gvisor-a-
sandboxed-container-runtime. 2018. (accessed: 10.09.2021).

[41] E. A. Lee and S. A. Seshia. Introduction to Embedded Systems — A Cyber-Physical
Systems Approach. Second Edition. MIT Press, 2017, p. 298. isbn: 978-0-262-53381-2.

[42] Microsoft. Azure Cloud Functions Pricing. https://azure.microsoft.com/en-
us/pricing/details/functions/. 2021. (accessed: 10.09.2021).

71

https://cloud.google.com/kubernetes-engine/docs/
https://cloud.google.com/kubernetes-engine/docs/
https://cloud.google.com/compute/docs/instances
https://cloud.google.com/compute/docs/instances
https://gvisor.dev/docs/Layers.png
https://go.dev/blog/go1
https://github.com/golang/go/blob/master/src/runtime/proc.go
https://github.com/golang/go/blob/master/src/runtime/proc.go
https://firebase.google.com/downloads/Firebase_HomeAway_Case_Study.pdf
https://firebase.google.com/downloads/Firebase_HomeAway_Case_Study.pdf
https://gvisor.dev/docs/
https://doi.org/10.1145/2668930.2688820
https://www.intel.com/content/www/us/en/architecture-and-technology/hyper-threading/hyper-threading-technology.html
https://www.intel.com/content/www/us/en/architecture-and-technology/hyper-threading/hyper-threading-technology.html
https://www.intel.com/content/www/us/en/architecture-and-technology/hyper-threading/hyper-threading-technology.html
https://doi.org/10.1145/3448016.3459240
https://www.ardanlabs.com/blog/2018/08/scheduling-in-go-part2.html
https://www.ardanlabs.com/blog/2018/08/scheduling-in-go-part2.html
https://doi.org/10.1002/wics.1314
https://cloud.google.com/blog/products/identity-security/open-sourcing-gvisor-a-sandboxed-container-runtime
https://cloud.google.com/blog/products/identity-security/open-sourcing-gvisor-a-sandboxed-container-runtime
https://cloud.google.com/blog/products/identity-security/open-sourcing-gvisor-a-sandboxed-container-runtime
https://azure.microsoft.com/en-us/pricing/details/functions/
https://azure.microsoft.com/en-us/pricing/details/functions/


Bibliography

[43] Microsoft. Azure Custom Function Handlers. https://docs.microsoft.com/en-
us / azure / azure - functions / functions - custom - handlers. 2021. (accessed:
10.09.2021).

[44] M. Pawlik, K. Figiela, and M. Malawski. “Performance considerations on execution
of large scale workflow applications on cloud functions.” In: CoRR abs/1909.03555
(2019). arXiv: 1909.03555.

[45] M. Pearring and A. Rakoczy. Go 1.17 is released. https://go.dev/blog/go1.17.
(accessed: 25.08.2021).

[46] D. Poccia. New for AWS Lambda – Use Any Programming Language and Share Common
Components. https : / / aws . amazon . com / blogs / aws / new - for - aws - lambda -
use-any-programming-language-and-share-common-components/. (accessed:
25.08.2021).

[47] J. Polites. Life of a Serverless Event: Under the Hood of Serverless on Google Cloud
Platform (Cloud Next ’18). https://www.youtube.com/watch?v=MBBQ6P3GauY. 2018.
(accessed: 10.09.2021).

[48] D. B. Pons and P. G. López. “Benchmarking Parallelism in FaaS Platforms.” In:
CoRR abs/2010.15032 (2020). arXiv: 2010.15032.

[49] D. Quaresma, D. Fireman, and T. E. Pereira. “Controlling Garbage Collection
and Request Admission to Improve Performance of FaaS Applications.” In: 2020
IEEE 32nd International Symposium on Computer Architecture and High Performance
Computing (SBAC-PAD). 2020, pp. 175–182. doi: 10.1109/SBAC-PAD49847.2020.
00033.

[50] K. Rupp. Microprocessor Trend Data. https://www.karlrupp.net/2018/02/42-
years-of-microprocessor-trend-data/. (accessed: 14.02.2021).

[51] J. Salmon, M. A. Moraes, R. Dror, and D. Shaw. “2 . COUNTER-BASED RANDOM
NUMBER GENERATION.” In: 2011.

[52] V. Shankar, K. Krauth, K. Vodrahalli, Q. Pu, B. Recht, I. Stoica, J. Ragan-Kelley,
E. Jonas, and S. Venkataraman. “Serverless Linear Algebra.” In: Proceedings of
the 11th ACM Symposium on Cloud Computing. SoCC ’20. Virtual Event, USA:
Association for Computing Machinery, 2020, pp. 281–295. isbn: 9781450381376.
doi: 10.1145/3419111.3421287.

[53] Statista. Statista: Cloud Revenue over the years. https : / / www . statista . com /
statistics/233725/development- of- amazon- web- services- revenue/. (ac-
cessed: 13.02.2021).

[54] A. Verma, L. Pedrosa, M. Korupolu, D. Oppenheimer, E. Tune, and J. Wilkes.
“Large-Scale Cluster Management at Google with Borg.” In: Proceedings of the
Tenth European Conference on Computer Systems. EuroSys ’15. Bordeaux, France:
Association for Computing Machinery, 2015. isbn: 9781450332385. doi: 10.1145/
2741948.2741964.

72

https://docs.microsoft.com/en-us/azure/azure-functions/functions-custom-handlers
https://docs.microsoft.com/en-us/azure/azure-functions/functions-custom-handlers
https://arxiv.org/abs/1909.03555
https://go.dev/blog/go1.17
https://aws.amazon.com/blogs/aws/new-for-aws-lambda-use-any-programming-language-and-share-common-components/
https://aws.amazon.com/blogs/aws/new-for-aws-lambda-use-any-programming-language-and-share-common-components/
https://www.youtube.com/watch?v=MBBQ6P3GauY
https://arxiv.org/abs/2010.15032
https://doi.org/10.1109/SBAC-PAD49847.2020.00033
https://doi.org/10.1109/SBAC-PAD49847.2020.00033
https://www.karlrupp.net/2018/02/42-years-of-microprocessor-trend-data/
https://www.karlrupp.net/2018/02/42-years-of-microprocessor-trend-data/
https://doi.org/10.1145/3419111.3421287
https://www.statista.com/statistics/233725/development-of-amazon-web-services-revenue/
https://www.statista.com/statistics/233725/development-of-amazon-web-services-revenue/
https://doi.org/10.1145/2741948.2741964
https://doi.org/10.1145/2741948.2741964


Bibliography

[55] I. L. Yoshi Tamura. Sandboxing your containers with gVisor (Cloud Next ’18). https:
//www.youtube.com/watch?v=kxUZ4lVFuVo. 2018. (accessed: 10.09.2021).

73

https://www.youtube.com/watch?v=kxUZ4lVFuVo
https://www.youtube.com/watch?v=kxUZ4lVFuVo

	Acknowledgments
	Abstract
	Contents
	Introduction
	Problem
	Motivation
	Outline

	Background
	Serverless Services
	Function-as-a-Service
	Container-as-a-Service

	Parallel Computing
	Processing Units
	Threads
	Shared Memory Parallelism


	Related Work
	Distributed Parallelism using FaaS
	Performance evaluations of FaaS platforms

	Evaluated Services
	AWS Lambda
	Invocation Architecture
	Worker Component
	Firecracker
	Instance Life-cycle
	Function Configuration

	Google Cloud Functions
	Google Cloud Platform Cluster Architecture
	gVisor
	Function Configuration

	Google Cloud Run
	Knative
	Container Configuration
	Pricing Model


	Evaluation Setup
	Runtimes
	C++
	Go
	Java

	Benchmarks
	Microbenchmarks
	Applications
	Input Overview

	Service Configurations
	Evaluation Process
	Metrics
	Execution Time
	Memory Usage


	Results
	Observations
	Threads and Virtual CPUs
	Memory

	Performance Evaluations
	Sequential Speedup
	Parallel Speedup
	Function Execution Times
	Cost Comparison
	Impact of Cold starts


	Discussion
	Costs
	Runtimes
	Tradeoff Cost vs. Speedup

	Conclusion
	Shortcomings
	Future Work
	Services
	Runtimes
	Benchmarks
	Inter- and Intrafunction parallelism


	List of Figures
	List of Tables
	Listings
	Bibliography

