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Abstract—The ever-growing wireless networks demand high
capacity, have strict latency requirements, and must support
diverse communication services. A LiFi-WiFi heterogeneous net-
work has proven to be a useful tool to satisfy the growing capacity
demand. However, to leverage these co-existing, non-interfering
technologies, intelligent resource management schemes have to
be developed. To support diverse applications with varying delay
and data rate requirements, the resource management scheme
should consider the Quality of Service (QoS) while allocating
wireless resources. In this work, the downlink wireless resources
are allocated to users such that the average network packet
delay is minimized. Users that are both capable and not capable
of multi-homing are considered and a separate optimization
problem is formulated for each case. These problems are then
solved using a global Branch and Bound-based solver and a
genetic algorithm-based Metaheuristic is also proposed. The
algorithms are then evaluated with simulations and the results
show that the average network packet delay is significantly
lowered and each user’s strict QoS requirements are satisfied
even in a network with heavy traffic flow.

Index Terms—LiFi, delay-aware, HetNet, Multi-Homing, ge-
netic algorithm

I. INTRODUCTION

The number of networked devices is expected to reach a
total of 3.6 per person by 2023 [1]. This results in a growing
capacity demand. Multiple wireless access technologies inte-
grated into a Heterogeneous Network (HetNet) have emerged
as a promising solution to satisfy this demand. An indoor
Radio Frequency (RF) HetNet could consist of a cellular
femtocell and a Wireless-Fidelity (WiFi) cell. Recently, Light-
Fidelity (LiFi) [2] has also been proposed as an access tech-
nology operating on the visible light and infra-red spectrum.
LiFi, with its large spectrum size [3], does not interfere with
RF systems, and a LiFi-RF HetNet can result in a throughput
much higher than the individual technologies. In this work,
we consider an indoor LiFi-WiFi HetNet.

To leverage the heterogeneity of the different access tech-
nologies optimally, intelligent methods for user association
and resource allocation have to be developed. There is a
large body of work [4]–[6] that focuses on the resource
management problem in a LiFi-RF HetNet. However, these
papers only focus on optimizing the resource allocation for
the sum throughput or data rate of the network while assuring

This work was supported by FuE Programm Informations- und Kommu-
nikationstechnik Bayern (IUK608/002): Aeronautical 5G Communication for
Flexible Integrated and Versatile Aircraft Cabin Applications based on a
Bavarian Excellence Cluster (aero5FIVE).

proportional fairness among users. Most works do not consider
the delay requirements of the network. The wireless networks
of the future are expected to support diverse communication
applications with varying QoS requirements. Applications like
live video streaming and Voice over Internet Protocol (VoIP)
are delay-sensitive and also require a minimum guaranteed
bandwidth. Therefore, for QoS flows, it becomes important to
optimize the resource allocation considering network packet
delay as a performance metric.

Apart from focusing on data rate optimization, most existing
works only consider a HetNet in which the user can be
served by only one technology at a time. This is due to the
existing conventional user equipment that does not support
Multi-Homing. But with the increasing support for Multipath
transport protocols like Multipath Transmission Control Pro-
tocol (MPTCP), it is important to also consider Multi-Homing
user devices where the users can be served by more than
one wireless access technology simultaneously. This allows
the aggregation of wireless resources and better utilization of
the heterogeneity of the technologies.

A. Related Work

In [5], the authors include the data rate QoS metric in
the resource allocation optimization objective function in a
LiFi-RF HetNet and propose an evolutionary game theory-
based algorithm to solve the problem. However, the authors
did not consider any delay-related metric. Effective capacity
has been introduced in [7] as a method to model the channel
in terms of QoS metrics. The authors in [8] allocate resources
in a homogeneous RF network by maximizing the effective
capacity. The effective capacity has also been used as the
maximization objective in a homogeneous LiFi network in
[9]. This work was then extended to a LiFi-RF HetNet in
[10]. Although there exist multiple works tackling the user
association problem in HetNets, not many consider the delay
constraint. In this work, we emphasize minimizing the network
packet delay while also guaranteeing a certain minimum delay
requirement per user to support delay critical applications.
The authors in [11] perform a similar optimization where they
minimize the network packet delay without any constraints on
the delay or bandwidth requirement in an RF-only HetNet.
The authors propose a distributed algorithm to solve this
problem. However, they do not consider user devices with
Multi-Homing capabilities.



Fig. 1. Architecture of a LiFi-RF HetNet with QoS traffic

B. Contribution

In this paper, we consider a network with communica-
tion applications that have diverse delay and data rate QoS
requirements. We focus on delay-critical applications in a
Hybrid network and formulate a resource allocation Mixed
Integer Nonlinear Programming (MINLP) problem with the
objective of minimizing the average network packet delay for
the QoS flows. We also guarantee the maximum delay and
minimum data rate per user based on their requirement. We
extend this formulation to a network with Multi-homing users
to simultaneously allocate LiFi and WiFi resources. We then
provide the solution to these problems using a Branch and
Bound-based solver. We also propose a genetic algorithm to
solve these problems and then evaluate all solution methods
using simulations for varying system parameters.

C. Organization

The rest of the paper is organized as follows. Section II
introduces the system model considered. The optimization
problems for Hybrid and Multi-homing networks are described
in Section III. Section IV details the solution methods to
these optimization problems and the methods are evaluated
in Section V. Finally, Section VI concludes the paper.

II. SYSTEM MODEL

A. Network Architecture

In this paper, we consider an indoor heterogeneous LiFi-
WiFi network with a total of Nα Access Points (APs) both
LiFi and WiFi as represented in Fig. 1. All LiFi APs function
at the same frequency resulting in high interference in the
overlapping areas of the LiFi cells. We consider a single WiFi
AP and multiple LiFi APs. There are a total of Nµ users
that are equipped with LiFi and WiFi receivers. These users
can be served by only one technology at a time in a Hybrid
network and can be simultaneously served by both technology
APs in a Multi-Homing network. Each user has its own QoS
traffic that arrives at the network and has to be served in the
downlink. The inter-arrival times of the data packets arriving
at the downlink are independent for each user and follow
an exponential distribution with a mean of 1

λµ
seconds. The

length of the packets also follows an exponential distribution

with a mean of Lµ bits. Apart from these QoS flows, we
also assume that there is some Best Effort (BE) traffic that
has to be delivered to the users or delay tolerant traffic that
only has bandwidth constraints. We also assume that the APs
are always on in order to serve the continuous BE traffic. To
serve this traffic, each AP α allocates a resource proportion
yµ to each user µ. The resulting data rate is the resource
proportion multiplied by the link data rate Rµ,α. Therefore, the
service time for the QoS packets to each user is exponentially
distributed with a mean of 1/(yµ,α× Rµ,α

Lµ
). Hence the traffic

to each user can be modeled as an M/M/1 queue.
In order to decide the resource proportion to be allocated

to each user, all LiFi and WiFi APs are connected to a central
controller. The controller has an overview of the wireless
channel state information of all users in the network. Since the
controller has global information, it can perform a centralized
resource allocation. This allocation has to be repeated at
regular intervals to accommodate the changing channel infor-
mation. This process not only decides the resource proportion
but also decides the AP for the user to associate to, in a Hybrid
network.

B. LiFi Channel Model

The channel model for LiFi is as explained in [5]. For the
sake of brevity, we only define the data rate. The specifications
for the data rate are taken from the documentation for LiFi
hardware available in-house [12]. An Adaptive Modulation
and Coding (AMC) scheme is used as in [5], and the link
data rate between a user µ and an AP α is calculated as,

Rµ,α =
2BL
Q

Q
2 −1∑
i=1

qL(i), (1)

where BL is the LiFi modulation bandwidth and qL is the
spectral efficiency on i-th sub-carrier with a total of Q
subcarriers. The maximum capacity offered by a LiFi AP is
54 Mbps.

C. WiFi Channel Model

The IEEE 802.11n standard is used to model the WiFi
network. The channel bandwidth is 20 MHz , according to
which a WiFi AP’s total capacity is 65 Mbps [13]. The channel
model is as defined in [5] and the link data rate between a user
µ and an AP α is calculated as,

Rµ,α =
BR
Q

Q−1∑
i=1

qR(i), (2)

where BR is the WiFi bandwidth and qR is the spectral
efficiency on i-th sub-carrier with a total of Q subcarriers.

D. Blockage Model

The Line Of Sight (LOS) signal from LiFi APs can easily
be blocked due to the properties of the visible light signal.
Therefore, it is important to consider the effect of blockages
on the network. The occurrence of blockages is modeled using



Fig. 2. LiFi SINR in the conference room topology

a Bernoulli distribution. The probability, Prµ, that a user µ is
blocked in a state is given by,

Prµ =

{
p µ blocked
1− p µ not blocked,

(3)

where p is user’s blocking probability. This model is apt for
modeling transient blockages.

E. Network Topology

We consider an indoor conference room topology as this
is a common application of a LiFi-WiFi HetNet. The indoor
conference room topology has one WiFi AP at the center of
the room and LiFi APs positioned in a lattice format with
randomly positioned mobile users. The area of the room is
6x6 m2. The distribution of the LiFi Signal to Interference and
Noise Ratio (SINR) in such a room is depicted in Figure 2.

III. PROBLEM FORMULATION

In this section, the problem formulation for the resource
allocation minimizing network delay for a LiFi-WiFi HetNet
is described for both Hybrid and Multi-Homing networks. For
this purpose we use the average network packet delay as the
metric to minimize.

A. Hybrid Networks

In a hybrid network, the user can only be served by one
AP at a time. So the resource allocation process has to decide
the association of the user to the AP xµ,α and the resource
proportion yµ,α allocated by this AP. xµ,α is a binary variable
that is 1 when the user µ is connected to the AP α. In such a
network, the network packet delay, τµ,α, is described as,

τµ,α =
1

yµ,α
Rµ,α
Lµ
− xµ,αλµ

(4)

where yµ,αRµ,α/Lµ is the service rate of the data packets to
the user µ.

The goal of the resource allocation problem is to minimize
the average network packet delay while guaranteeing a max-
imum delay and minimum data rate for the data flow to the
users. Therefore the optimization problem is formulated as,

min
xµ,α,yµ,α

1∑Nµ
µ=1 λµ

Nα∑
α=1

Nµ∑
µ=1

xµ,αλµτµ,α (5)

∑
α

xµ,α = 1 ∀µ = 1, ...Nµ (6)∑
µ

xµ,αyµ,α ≤ 1 ∀α = 1, ...Nα (7)∑
α

xµ,ατµ,α ≤ τthresh,µ ∀µ = 1, ...Nµ (8)∑
α

xµ,αyµ,αRµ,α ≥ Rthresh,µ ∀µ = 1, ...Nµ (9)

xµ,α ∈ {0, 1}; yµ,α ∈ [0, 1] (10)

The equality constraint in (6) says one user can only associate
to one AP. The constraint in (7) describes the limit on the
maximum capacity of the AP. The constraints in (8) and (9)
define the delay and data rate requirement. Here, we assume,
that apart from the QoS packets, there is also other traffic to
the user that contributes to the data rate requirement of each
user.

B. Multi-Homing Networks

In a Multi-Homing network, the user can be served simul-
taneously by two technologies and one AP per technology at a
time. So the resource allocation process only has to decide the
resource proportion yµ,α to be allocated by both technology
APs. The best AP to serve the user is selected based on the
maximum SINR offered by the AP. So, the LiFi AP that offers
the best SINR among all LiFi APs and the single WiFi AP
forms Aµ which is the set of best APs for a user µ. In such
a network, the network packet delay, τµ, is described as,

τµ =
1∑

α∈Aµ yµ,α
Rµ,α
Lµ
− λµ

(11)

where
∑
α∈Aµ yµ,α

Rµ,α
Lµ

is the aggregate service rate offered
by both technologies to the user µ.

With the same goal as before, the optimization problem is
formulated as,

min
yµ,α

1∑Nµ
µ=1 λµ

Nµ∑
µ=1

λµ,ατµ (12)

∑
µ

yµ,α ≤ 1 ∀α = 1, ...Nα (13)

τµ ≤ τthresh,µ ∀µ = 1, ...Nµ (14)∑
α∈Aµ

yµ,αRµ,α ≥ Rthresh,µ ∀µ = 1, ...Nµ (15)



yµ,α ∈ [0, 1] (16)

The constraint in (13) describes the limit on the maximum
capacity of each AP. The constraints in (14) and (15) define
the delay and data rate requirement.

IV. RESOURCE ALLOCATION SCHEMES

The hybrid network optimization problem described in
Sec. III is an MINLP problem since it has both integer
xµ,α and real valued yµ,α variables. The constraints define
the feasible region. In general, MINLP problems are mathe-
matically intractable. Branch and bound [14] algorithms are
the most commonly used algorithms to tackle mixed integer
problems. In a branch and bound algorithm, the optimization
problem is recursively split into smaller sub-problems until the
sub-problems are easy to solve. To avoid going through all
possible enumerations of the variables, the problem is pruned
efficiently. In this work, we use the open source Couenne [15]
solver that solves MINLP problems with global optimality
using a spatial branch and bound algorithm. We also use
this solver on the Multi-Homing problem for comparison.
The entire optimization framework is modeled in Pyomo [16]
which is an open source optimization modeling language im-
plemented in Python. It provides interfaces to various solvers
like the Couenne solver.

Apart from the branch and bound-based solver, we also
propose a genetic metaheuristic algorithm to solve the problem
with lower complexity without sacrificing the optimality of the
solution. Genetic Algorithms (GAs) are metaheuristic algo-
rithms based on the theory of natural selection where the fittest
individuals of each generation are selected for reproduction
to produce the population of the next generation. A typical
genetic algorithm consists of the following stages.

1) Initial Population: The initial population consists of
possible solutions to the optimization problem. We start
with a random initial population of integer and real
values for the integer and real valued variables.

2) Fitness: The fitness function or the objective function
decides the best individual/solution by assigning a fitness
score. This score decides if those individuals will be cho-
sen for reproduction. The fitness functions we consider
are the objective functions as described in (5) and (12).

3) Selection: In this stage, the fittest individuals according
to the fitness score are selected.

4) Crossover: In this stage, the parent individuals are com-
bined to produce one or more offspring. These offspring
form a part of the next generation. The offspring are
generated based on the variable bounds as described in
(10) and (16). In this work, we use the Simulated Binary
Crossover (SBX) [17] operator to perform the crossover
with integer and real variables.

5) Mutation: Some of the new offspring can be mutated
with a certain probability to maintain diversity in the
new generation and to avoid fast convergence of the
algorithm which would result in a local optimum. In

Fig. 3. Convergence of the genetic algorithm

this work, the decision to mutate is sampled from the
same probability distribution as the crossover.

6) Termination: The process terminates when the algorithm
converges and the variable solutions are feasible solu-
tions.

To define the feasibility of the solution, the constraints have to
be modeled. Typically, metaheuristics work with unconstrained
problems and to add constraints, manipulation of the objective
or fitness function is required. Constraints can be added to the
fitness function in terms of a penalty function. The violation
of a constraint penalizes the value of the objective function,
thus making that individual undesirable. The genetic algorithm
ranks all individuals according to their feasibility and prefers
the feasible solutions over the others. The algorithm converges
when the constraints are satisfied and the objective function
is minimized. Fig. 3 shows the average convergence time for
the genetic algorithm used. The constraint violation reaches 0
and the algorithm converges within a few tens of generations
or iterations.

V. EVALUATIONS AND DISCUSSIONS

The Hybrid and Multi-Homing optimization problems have
been solved using the solution methods described in the
Sec. IV and have been extensively evaluated in simulations.
The simulations are performed for the conference room sce-
nario for different blocking probabilities, receiver orientations,
data rate requirements, and traffic patterns. The results of
this evaluation are presented in this Section. The simulation
parameters used are described in Table I. Fig. 4 shows the
Cumulative Distribution Function (CDF) of the average net-
work packet delay for a packet of mean length of 1000 bits
arriving at an average arrival rate of 1000 packets per second.
All users have the same traffic pattern and have a LiFi blocking
probability of 0.1. The results for the Couenne solver-based
solution (Hybrid, Multi-homing) and the genetic algorithm
(Hybrid GA and Multi-homing GA) are compared with a
simple maximum Signal to Noise Ratio (SNR) algorithm
(Max-SNR) since this is the strategy implemented in devices
in the market currently. Since the Max-SNR does not consider
the QoS requirements, the delay has a wide range. But it can be
seen that the minimum delay is comparable with the optimized



TABLE I
SIMULATION PARAMETERS

Parameter Abbreviation Value

Power of a LiFi LED PL 20 W
Half power beam width θ1/2 90°
Physical area of received PD Ap 10−4 m2

FoV of the receiver FoV 60°
Noise spectral density of LiFi links NL 10−21 A2 Hz−1

WiFi AP transmit power PR 20 dBm
Noise power of RF σ -57 dBm
Number of LiFi APs NL 9
Number of WiFi APs NR 1
Number of users Nµ 12

Fig. 4. CDF of the average packet delay for an arrival rate of 1000 packets
per second

solution. This is because, typically, in a small-range LiFi cell
the entire bandwidth of an AP is only shared by a few users
resulting in a high capacity per user. Since overlapping cells
interfere, the user usually has a choice of connecting to one
LiFi and/or one WiFi AP. The GA solutions perform worse
than the global optimizer as expected, but the difference is
small enough that the solutions can be accepted. Overall, we
also see that the average network packet delay is quite small
in the sub-milliseconds range. This emphasizes the advantage
of using small-range LiFi cells with high data rate density. If
the user is connected to both technologies the delay is less
as can be observed in the difference between the Hybrid and
Multi-homing results.

Fig. 5 provides a detailed look into the percentage of time
that each user was connected to certain access technology for
the same scenario. The user is deemed connected when the
data rate received is more than 0. The results show that the user
is mostly connected to LiFi except when the light blockage
would make it impossible. In the multi-homing scenario, we
see that the user is still not always connected to WiFi and this
is because of the maximum capacity constraint on the AP.

The behavior of the network is then evaluated for varying
LiFi-specific parameters like receiver orientation and blocking
probability while fixing the packet length to 9000 bits, the

(a) Connection indicator for a Hybrid Network

(b) Connection indicator for a Multi-Homing Network

Fig. 5. Fraction of time that each user is connected to a certain wireless
access technology

Fig. 6. Average packet delay for varying LiFi LOS blocking probabilities for
a Hybrid and Multi-homing Network

arrival rate to 20 pkts/s, the delay requirement to 10 ms, and
the rate requirement to 5 Mbps for all users. Fig. 6 shows the
average network packet delay for varying blocking probabil-
ities. With an increasing blocking probability, the chance of
connecting to the LiFi AP reduces and more users share the
resources of the WiFi AP resulting in an increased delay. Here
also we observe that although multi-homing offers a better
delay, the difference is not high. Fig. 7 shows the average
network packet delay for varying user device orientations. This



Fig. 7. Average packet delay for varying LiFi receiver elevation angles

Fig. 8. CDF of average packet delay for a high traffic scenario

is an important parameter in LiFi, since the user orientation
determines whether the received signal is within the Field of
View (FOV) of the receiver. When the user device is parallel
to the ground and facing up the elevation angle is 0° and the
user receives the maximum amount of signal from the AP
facing the user and hence the delay is minimum. 30° and 41°
are the typical elevation angles of a mobile and stationary user
respectively [18]. We then consider a high traffic network with
an arrival rate of 1500 pkts/s for packets of length 9000 bits.
We constrain the delay to 1 ms and the data rate to 15 Mbps.
The results are shown in Fig. 8. In this case, the Max-SNR
performs much worse than the optimized algorithms since the
AP allocations are sub-optimal and cannot handle large traffic.
Whereas, our proposed delay-optimized algorithms handle the
high traffic and result in a sub-millisecond packet delay on
average for all users in the network.

VI. CONCLUSION

In this paper, the joint wireless resource allocation and
user association problem has been analyzed with the goal
of minimizing the average network packet delay in order
to support delay-critical applications. This analysis has been
performed for both Hybrid as well as Multi-homing LiFi-
WiFi HetNets. The problem has been formulated as a delay
minimization problem with constraints on the maximum delay

and achievable data rate of each user. This problem has
then been solved using a Branch and Bound algorithm-based
solver, Couenne. The problem has also been solved using
the proposed Genetic Algorithm. The solution methods have
been extensively evaluated using simulations and the results
show that the network delay can be significantly reduced by
this method compared to the currently existing max-SNR-
based methods. Moreover, we see that strict delay and rate
requirements are satisfied even in networks with a heavy QoS
traffic flow. The results also show that a LiFi-WiFi HetNet is
suitable for low latency networks, potentially achieving even
a sub-millisecond latency which is only improved by using
Multi-homing user devices.
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