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Abstract

An octree is a space-adaptive data structure. This thesis shall demonstrate the integration
of a new octree-based particle container for the AutoPas simulation library. The new particle
container is intended to serve as an additional option to let AutoPas’s special tuner unit
choose from in order to find a better, truly optimal simulation configuration. Detailed insight
regarding the implementation of the octree container is given as well. Furthermore, the
performance of the new container is compared to an existing linked cells implementation.
It could be shown that the octree container is working as intended, but it falls behind the
existing, optimized containers by a factor of 3 in terms of speed. Tools that were developed
during the implementation are presented as well. The outlook provides concrete ideas and
inspiration on how the existing implementation can be improved and further analysis can be
conducted.
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Zusammenfassung

Ein Octree ist eine Datenstruktur, die sich den räumlichen Gegebenheiten anpasst. Diese
Arbeit beschreibt die Integration eines neuen, Octree-basierten Parikelcontainers in die
Simulations-Bibliothek AutoPas. Der neue Container wird von der in AutoPas vorhan-
denen Tuner-Einheit ausgewählt um eine optimale Konfiguration für ein Experiment zu
finden. Dabei wird die Implementierung sehr detailliert beschrieben. Desweiteren wer-
den Geschwindigkeitsmessungen des neuen Containers und Vergleiche mit einem bereits
existierenden Linked-Cells-Container beschrieben. Insgesamt wird gezeigt, dass der Octree-
basierte Container funktionell und damit korrekt ist. Im Vergleich zu bewährten, optimierten
Containern ist der neue Container um Faktor 3 langsamer. Die ebenfalls entwickelten Vi-
sualisierungsmittel werden erklärt und anhand Beispielen veranschaulicht. Zum Schluss
werden einige Ideen und Anregungen zum Ausbau der Implementierung und zu weiteren
Analysen dargelegt.
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1. Introduction

We are living in a rapidly evolving time: Scientists of different research areas are pursuing
their need to investigate what atoms, molecules, and other small particles behave like on a
microscopic scale. Since performing experiments in a minuscule environment is hard and
error-prone, researchers had to come up with better and cheaper solutions. Simulating
particles using a computer proved to be a serious alternative. Currently, several toolboxes
for so-called molecular dynamics (MD) simulations exist.

Using the computer, MD simulations provide reproducible and exact results. A common
issue concerning these tools is the fact that simulating a large number of particles is
computationally extremely expensive and takes a long time. It is therefore necessary to
think of ways to improve the run-time cost.
During this thesis, one optimization was developed and integrated into the existing MD

simulation library AutoPas. In the following, an introduction to the theoretical backgrounds
is given and fundamental concepts related to MD simulation software are shown. The thesis
shall serve as a detailed overview of the implementation of a so-called octree container for
AutoPas. Octrees are a vastly common data structure used in various computer science-
related fields. For instance, [Sam89a] uses octrees to accelerate raytracing by pruning the
number of objects inside a scene. Another application is the utilization of the acceleration
of collision detection systems as described by [WLZ14]. In AutoPas, the octree container is
supposed to reduce the time a simulation takes by minimizing the number of particles that
have to be considered. Essentially, this is closely related to what octrees achieve in collision
detection systems. By inserting objects into an octree, it is much easier to exclude objects
that are not eligible for collision. Here, the novel implementation is compared to an existing
container data structure. In the end, some starting points for future investigations are given.
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2. Theoretical Background

In this chapter, the fundamental theoretical backgrounds, which serve as a foundation
for the implementation strategies and optimizations shown in the following chapters, are
provided. Here, a general overview of MD simulation is given first. The second topic will be
container data structures, which play an important role in the performance of MD simulation
tools. Last but not least, the concept of octrees will be introduced since it was used in the
implementation.

2.1. Molecular Dynamics Simulation Software

This section shall give an overview of the physical connections that are utilized to model
particle interactions in simulations. The focus will then be drawn towards the MD simulation
library AutoPas that was used during the implementation phase.

2.1.1. Motivation and Theory

This first part will introduce theoretical concepts and optimization techniques.
As mentioned in the introduction, simulating a large number of particles leads to a very

large computational cost. Therefore, a whole range of optimizations is used in order to
reduce the duration of a simulation. One common model that is used to calculate forces
between particles in a fast manner is the Lennard-Jones potential. [Ver67]

ULJ(r) = 4ε
[(

σ

r

)12
−
(
σ

r

)6
]

(2.1)

Equation (2.1) describes the potential between two particles with euclidean distance r
and is used to model forces between particles. The other parameters ε and σ encode how
strong and ranging the potential is. Figure 2.1 illustrates how ULJ behaves depending on
the particle distance r. A force Fij between two particles i and j with euclidean distance rij

can be obtained from ULJ by taking the derivative as shown in Equation (2.2). [Ver67]

Fij = dULJ(rij)
drij

(2.2)

The force is then applied to each particle at every time step according to the superposition
principle. A force Fi acting on a particle i is calculated by summing over all partial forces,
which are derived for every time step according to Equation (2.2). The superposition
connection can be expressed as Equation (2.3). [Mac13]
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2. Theoretical Background

Fi =
∑
j 6=i

Fij (2.3)

This summation must be done at every step and, theoretically, between every possible pair
of particles. This has a huge impact on the overall program performance, since the number
of particles is very large and the experiments may run for more than 100,000 iterations.
A naive implementation without optimizations gives rise to an enormous computational
complexity of O(n2), where n is the number of particles that participate in an experiment.
Fortunately, the above-mentioned physical properties can also be exploited in order to

drastically improve program performance. Two optimization techniques are described in the
following.

Figure 2.1.: Lennard-Jones potential ULJ depending on the distance r with minimum value
−ε at rmin. σ models the distance at which rmin is located on the r-axis and
how far the potential reaches. The strength of the potential is defined by the
parameter ε.

Convergence of the Lennard-Jones Potential Figure 2.1 shows the typical behavior of the
Lennard-Jones potential. One important aspect that can be utilized for optimization is
that ULJ converges to zero for large enough r. This means that the potential between
two particles that are distant to each other is almost zero. The force between them
can thus be considered as zero, since the derivative also vanishes for large enough r.
Therefore, interactions between particles that are distant to each other, do not need
to be considered. Usually, a cutoff specifies at which distance rc the potential ULJ is
considered zero. rc can be tweaked according to the experiment configuration and is
assumed to remain constant during one simulation run. This optimization proves to be
very beneficial for the program performance as it reduces the average computational
complexity from O(n2) to O(n) for homogeneous scenarios. [GSBN20]

Newton 3 Optimization There exist two aspects guiding this optimization: First, the
observation that the force calculation is a computationally intensive task involving a
lot of floating-point operations, which are costly. Second, according to Newton’s third
law, a force between particles i and j acts on particle i with Fi and on j with Fj = −Fi.
As a result, the force between two particles does not have to be calculated twice. It
can simply be computed for one particle and the opposing force can be applied to the
other particle.

4



2.1. Molecular Dynamics Simulation Software

A certain form of logic is required to prevent iterating the same pair of particles twice.
Using carefully derived orders of iteration or keeping track of already iterated particle
pairs solves this issue.

The techniques mentioned above are relevant in the progress of understanding the archi-
tecture of the concepts of the following sections.

2.1.2. AutoPas

During the practical part of this thesis, parts of the open source C++ software package
AutoPas were used and extended. This subsection describes central aspects of the AutoPas
library and its functionality.

AutoPas is a simulation library, which can be used to simulate any kind of short-range
particle interactions, for instance using Lennard-Jones. The library aims to find an optimal
configuration to run a simulation, while a large range of different helper algorithms and
data structures are made available. These provide fast particle gathering and pairwise
iteration that are optimized to run in a highly parallel environment using MPI or OpenMP.
AutoPas tries to identify those algorithms and data structures, which lead to optimal
performance during the simulation. A special tuner unit is called in fixed time intervals
to determine whether the current program configuration is still optimal for the evolving
simulation in order to find the best configuration. The tuner can pick from a range of
different so-called containers and traversals. A container is a data structure that can hold a
collection of particles. There exist several traversals for a container. Containers may utilize
the convergence of the Lennard-Jones potential optimization introduced earlier in order to
create data structures that utilize the spatial structure of the environment. These containers
are then used by specialized iteration schemes to provide fast access to particle pairs that
lay within the cutoff range rc. Most of the traversals are capable of using the newton 3
optimization to reduce the number of redundant force calculations. Currently, there are six
different tuning strategies available for AutoPas, which can be picked by the user.

The AutoPas library is designed such that the entire functionality is available through one
object of type AutoPas. Changing the configuration can be done by calling the respective
setter method on the AutoPas instance. Further, the object allows for adding, removing,
updating, and iterating particles. Which data structure and iteration scheme the tuner
chooses is completely hidden to the user of AutoPas. This allows keeping a clean and
easy-to-use library interface.

For testing purposes, the AutoPas project offers a program that serves as a reference imple-
mentation. It is called md-flexible and implements the entire infrastructure needed to run
an MD simulation experiment with AutoPas. md-flexible includes a .yaml configuration
file parser that is able to obtain the experiment and program configuration for the AutoPas
library. The .yaml file contains information not only about the particle configuration and
layout, but also concerning the experimental environment, most importantly the cutoff
range, the tuning interval, and the number of simulation steps that should be executed.
Furthermore, the range of available containers and traversals can be restricted to enforce
configurations that would not always be picked by the tuner.
The default output of md-flexible is a periodically written .vtk file. It contains the

particle positions and velocities at each point in time. One can use this file as a starting
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2. Theoretical Background

configuration for md-flexible, potentially as a checkpoint.
A typical run of md-flexible is illustrated in Figure 2.2. A run consists of three different

phases: The initialization, during which the program configuration is obtained and passed
to the AutoPas library; the simulation phase in which the iterations are performed and the
output phase, which logs statistics.

The previous subsections already introduced the concept of a container as a data structure
that contains particles. One of the challenging tasks of AutoPas’s tuner is selecting an
appropriate container for an experiment. More information on the tuning strategies is
provided in [GSBN20].

Figure 2.2.: This figure shows a typical progression of a md-flexible run. The distinction
between the user (md-flexible) and the library (AutoPas) is indicated by the
dashed horizontal separation line.
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2.1. Molecular Dynamics Simulation Software

2.1.3. Skin, Cutoff, and Interaction Length

Figure 2.3.: This figure illustrates the relationship between skin, cutoff radius and the
interaction length. The dashed line marks the cutoff radius around a particle p1.
The red particle p2 is in p1’s skin but travels into the circle within p1’s cutoff
radius in the iteration. Without an update of the neighbor list or the container
structure, p2 would not be considered a potential interaction partner of p1, but
since it is in the skin, the interaction gets tracked. Furthermore, the relationship
between interaction length, cutoff radius, and skin is illustrated.

In Section 2.1.1, the cutoff radius rc was introduced as the distance beyond which the force
acting between two particles can be considered zero. In this section, the concept of a cutoff
radius will be refined and extended.

MD simulations are based on iteration loops, as shown in Figure 2.2. Part of such a loop
is a periodic update of the underlying data structures. Since those updates are usually very
costly in terms of compute time, they are performed as seldom as possible. This is achieved
by running the simulation without updating the underlying data structure. An important
job of these data structures is to store particles that are within rc, which is enforced by
the update. This constraint could be violated if the update is not called after each particle
movement. To solve this issue, the data structures are required to keep all particles accessible
that are not only within rc, but also within a safety margin which is called skin. This skin
value is chosen such that it is the maximum distance two particles could travel during the
period without an update.
The sum of cutoff radius and skin is the maximum distance at which particles could

interact with each other without an update. This sum is called interaction length. The
relationship between cutoff radius, skin, and interaction length is illustrated in Figure 2.3.
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2. Theoretical Background

2.1.4. Halo and Owned Particles

Figure 2.4.: This figure shows how two containers (potentially running on different compute
units) exchange particles that are close to the skin. Particle p1 is within
interaction length of p2, which means that it should be able to interact with
p2. However, p1 is in a different container than p2. This is solved by copying a
small region of container c1 to c2. This piece contains particles that are so close
to c2 that they could interact with particles that are technically inside c2.

Another essential concept that is important in order to understand the implementation
details is the distinction between halo and owned particles. In general, owned particles
belong to a specific container and are strictly inside the container’s simulation box. Halo
particles, on the other hand, are outside this simulation box and potentially belong to a
different container. The reason for this is explained in the following paragraph.

AutoPas is optimized to run in highly parallel environments such as supercomputers
using MPI. Running a simulation on a distributed system is achieved by splitting the entire
domain into smaller chunks that can then be processed by the individual compute nodes
according to the distributed memory parallelization principle. Each of those nodes holds its
own instance of a container that contains a part of the simulation. The following problem
arises from this configuration: The domain is distributed across different nodes and all
particles that are inside the domain within reach should be able to interact with each
other, but they are not necessarily in the same container. This problem is also illustrated
in Figure 2.4. One approach to solve this issue is to copy the neighboring region within
interaction length into the container. As a result, particle pairs are correctly generated, even
across container boundaries. Copying a fraction of the neighboring container significantly
reduces the overhead compared to gathering potential interaction partners on demand.

In AutoPas, it is the containers’ task to distinguish between halo and owned particles in
order to manage both correctly. Therefore, the halo part of the container is by interaction
length larger than the owned part in every direction.
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2.2. Container Data Structures

2.2. Container Data Structures
This section provides deeper information about containers and outlines different container
types, ordered by increasing complexity. Their advantages and disadvantages are also briefly
discussed.

Figure 2.5.: This figure shows the method definitions and one potential usage of the
ParticleContainerInterface.

2.2.1. Overview
Adding to the previous definition, a container in AutoPas is a data structure that supports
the following operations. A brief overview of the class hierarchy is shown in Figure 2.5.

Insertion addParticle(p) adds an owned particle p to the container. A halo particle q can
be added using the addOrUpdateHaloParticle(q) method. In AutoPas, a container
must be able to distinguish and manage both owned and halo particles.

Deletion The methods deleteAllParticles() and deleteHaloParticles() can be used
to clear the container. Furthermore, the user can mark individual particles as deleted.
Those are not removed until the next update to keep the container stable, but excluded
in the iteration methods.

Update The updateContainer() method triggers an update, that depends on the container
type. During the particle position update (visible in Figure 2.2), the positions of the

9



2. Theoretical Background

particles may have changed. Some containers require to be notified about this change
and updated periodically in order to maintain stability.

Pairwise iteration A container needs to supply a method of iterating particle pairs, which
is required in order to calculate pairwise forces like the Lennard-Jones potential and
force derivation. This is done using the iteratePairwise(t) method, which receives
a pointer to a so-called TraversalInterface t specifying a method of iterating the
container using a callback function. There may be different types of traversals supported
by a container. They can be passed to it using the iteratePairwise(t) method,
which passes the call further to the traversal itself. This object is then responsible for
iterating the container.

Particle iteration Often, not only an iteration of particle pairs, but also iterating individual
particles is required. This can be done using the begin and getRegionIterator(pmin,
pmax, b) methods. The former allows iterating all particles inside the container. The
latter can be used to specify a cubic region, defined by the corner points pmin and
pmax, from which particles should be returned. Further, an IteratorBehavior b can
be specified allowing to include or exclude the iteration of halo particles.

Other Several other functions are not included in this overview, for instance getter and
setter functions. These functions are not relevant for the following discussions and
therefore omitted.

All of the operations mentioned above have to be supported by every particle container in
AutoPas. This summary shall simply serve as a brief overview, one may also consult the
AutoPas documentation for further details. 1

2.2.2. Container Types

The simplest container type consists of a list that contains all particles participating in an
experiment. On the one hand, this allows for a straightforward implementation. Gathering
enclosed particles is also easy, since the list can be iterated trivially. On the other hand, all
particles are enclosed in one large box. Neither is the spatial distribution of the particles
used, nor does the container include any special tricks to store the particles. As mentioned
before, a frequently used operation on containers is pairwise iteration. Due to the lack
of optimizations, iterating particles in this container results in a very high computational
complexity of O(n2). This approach is called direct sum.
Because of the large computational cost of direct sum’s pairwise iteration scheme, more

sophisticated container structures are required in order to reduce the cost of iteration for
more than 2000 particles. In Section 2.1.1, the convergence of the Lennard-Jones potential
was mentioned as an optimization technique. This property can be used in order to construct
containers that allow for much faster pairwise iteration, reducing the complexity even up to
O(n). The two main ideas that can be used are briefly described in the following list and
visualized in Figure 2.6.

1General information: https://autopas.github.io/doxygen_documentation/git-master/ and specifics
related to the particle container interface: https://autopas.github.io/doxygen_documentation/git-
master/classautopas_1_1ParticleContainerInterface.html
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2.2. Container Data Structures

Linked Cells This approach divides the box that encloses the experiment, into equally sized
smaller boxes. Those are called cells in the following. The box sizes are chosen such
that only direct neighbors of the cells contain particles sufficiently close that the
enclosed particles are within interaction length. When computing particle pairs, each
box is iterated and pairs within the box are generated. Interactions between box and
direct neighbors are also captured. The iteration itself is then carried out using direct
sum, just on much smaller boxes. This reduces the computational complexity to O(n)
for homogeneously distributed particles. [GKZ07]

Verlet Lists The main idea behind this approach is to store potential interaction pairs,
which is achieved by maintaining a so-called neighbor list for each particle. This
list includes particles that are within the interaction length. When iterating, pairs
can be generated from particles and their respective neighbors that are within the
cutoff radius. One challenge with this approach is that building those neighbor lists is
expensive, thus they should be reused as often as possible. Particles within those lists
may be put into their own linked cells container for faster iteration on top.

Figure 2.6.: This figure shows the differences between direct sum, linked cells, and Verlet
lists regarding pairwise iteration in two dimensions. The red arrows mark
interactions that have to be computed between the dark particle in the center
and its neighbors. Direct sum does not include any spatial optimization strategy
and picks all particles as potential partners to interact with the black particle,
linked cells divides the space into a regular grid and Verlet lists only generates
interactions for particles within the Verlet skin.

Both of the previously mentioned advanced approaches exploit the Lennard-Jones potential
convergence property. Another optimization is to take the distribution of particles inside
the box into account. Therefore, the two most prominent techniques are presented in the
following. Both are based on the idea of creating a search tree that recursively divides the
space into smaller chunks. d ∈ N is the number of dimensions in the underlying space. An
example configuration for both container types can be seen in Figure 2.7.

k-d trees This data structure is a binary tree, where each node represents exactly one half
of the area enclosed by its parent. When inserting a particle, the tree is traversed
downwards to find a node that can be split to insert two new nodes. A child node is
always split at an axis of the coordinate system that is different to the parent’s split
axis. Those axes are obtained by the tree depth h at a current node: The split axis

11



2. Theoretical Background

index a always is a ≡ h (mod d). Further information and deeper analysis is provided
in [Ben75].

Octrees This is another tree-based data structure that, unlike the k-d tree, divides space in
eight equally sized smaller boxes. An octree can be thought of as the 3 dimensional
equivalent of a 2 dimensional binary tree. The following section provides further detail
regarding the layout, creation, particle insertion, and accessing methods in octrees.

Figure 2.7.: This figure shows the differences between k-d trees and octrees regarding pairwise
iteration for d = 2 dimensions. The red arrows mark interactions that have to
be computed between the dark particle in the center and its neighbors.

2.2.3. Octrees
An octree is a tree data structure that adapts to the particle distribution by dynamically
changing its layout depending on its contents. The tree consists of nodes, which can be
either inner nodes or leaves. The former always contains exactly 2d = 8 for d = 3 nodes
as children. [Mea80] Leaves are nodes that do not have any children, but they may contain
particles. Every node within the octree is found inside the sub-tree starting at the root node.
How an octree adapts to the particle distribution can be seen by looking at the octree

construction procedure: One applies the insert() method to the root node for each particle
that should be inserted. A node’s behavior then depends on its type. Inner nodes recursively
pass down the insertion request to an appropriate child. A child is called appropriate if its
enclosed region contains the position of the particle to insert. Leaves check the so-called
splitting criterion and add the particle to its own collection of particles or split themselves
up into eight new leaves when the criterion is met. When a leaf splits itself, it applies the
insert() method to a newly created inner node with eight leaves as children. The leaf then
reinserts its particles into the new inner node and also inserts the new particle. Overall, this
procedure leads to a tree that is fine-grained at regions with many particles and coarse at
locations with fewer particles. This results in a tree that adapts to the spatial distribution
of particles. Figure 2.8 illustrates the construction procedure based on an example.

Leaves split themselves whenever the splitting criterion is met. This can be an arbitrary
predicate, but two conditions that are applied in the implementation are the following: First
of all, octrees restrict the number of particles inside leaves to a certain amount called tree
splitting threshold C. Second, leaves may not become smaller than the interaction length
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2.2. Container Data Structures

along any axis. The pairwise iteration inside octrees can be done similarly to linked cells:
Gather all leaves with their respective neighbors and perform direct sum on them. One
problem occurring with leaves that are smaller than the interaction length is that particles
may become excluded if they are in a leaf that is too far away, but still within the cutoff
radius. Therefore, leaves with a size less than the interaction length are beyond the scope of
this thesis.

Figure 2.8.: This figure shows four of the steps involved in creating an octree and randomly
inserting seven particles into it in two dimensions. The interaction length is set
to 1

4 of the container width. The maximum number of particles per leaf (tree
splitting threshold C) is set to two.
Particles p1 and p2 are inserted first. Since C is not exceeded, the octree remains
to be one large leaf.
Second, p3 is inserted, which causes the leaf to split into four new leaves in order
to regain a particle count less than or equal to C in every leaf.
Third, p4, p4 and p6 are inserted, which causes the bottom left leaf to split itself
up even further.
In the last step, particle p7 is added. The leaf it was inserted into now contains
three particles, which is more than allowed by C. As a result, the leaf should
split. Since splitting the leaf would generate four leaves whose width and height
are smaller than the interaction length, the leaf remains in the current state.
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During the practical phase of this thesis, the AutoPas library was extended by adding a new
container class that uses an octree to store particles.

The following four sections will provide a detailed overview and explanations of the imple-
mented components. An uncommon approach of interpreting coordinates in a coordinate
system that was used to ease the implementation process will be explained first. Second,
the architecture used to integrate the octree into AutoPas and technical details about the
octree data structure will be given. The third chapter will introduce two pairwise traversal
strategies that were implemented. Different visualization methods that were developed for
debugging and demonstration purposes will be presented in the last section.

3.1. Orientation System for a Cartesian Coordinate System

This section will provide details about the special coordinate indexing system that was used
to identify vertices, edges, and faces in three dimensional space. They can be applied to d
dimensional cuboids. Figures supporting the claims of this thesis are simplified to the d = 2
dimensional space, which also implies that the data structures shown are not octrees but
quadtrees.

Figure 3.1.: This figure shows the indexing scheme for vertices, edges, and faces introduced
by [Sam89b] that is used in the octree neighbor finding algorithm. On the left
hand side, all (visible) vertex, edge and face names are visualized. Here, the
red numbers on the vertex labels are the indices used to identify corners in the
cube. The right hand side shows how the faces are derived and assigned to their
respective set Fi for i ∈ {1, 2, 3}.

The indexing system was necessary for convenient implementation of the ideas from
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[Sam89b]. Both of the octree pairwise iteration algorithms rely on the tables and algo-
rithm sketches mentioned in the publication. These algorithms are explained further in
Section 3.3, it suffices to be aware that they both gather all leaves of the octree and then
have to obtain all neighbor leaves to perform pairwise iteration. Gathering the neighbors
is carried out using the algorithms GTEQ_FACE_NEIGHBOR(), GTEQ_EDGE_NEIGHBOR() and
GTEQ_VERTEX_NEIGHBOR() introduced by [Sam89b]. Those algorithms depend on special
predefined tables, which use the indexing system shown in Figure 3.1. This system derives
edge and vertex labels from adjacent face names.
In the following, a definition for edges and vertices based on face labels is provided. Let
F1 = {L, R} be the set of all possible face names for the x-axis, F2 = {D, U} the set for
faces from the y-axis and F3 = {B, F} the set for faces on the z-axis respectively. Then, the
following two rules can be used to build edge and vertex labels:

• Two neighboring faces (A,B) ∈ (Fi × Fj) with i < j for all i, j ∈ {1, 2, 3} form a
shared face AB. For instance R ∈ F1 and F ∈ F3 together build the edge RF. The i < j
constraint is purely artificial and used to reduce the number of labels for one edge
from two to exactly one.

• Likewise, three faces (A,B,C) ∈ (F1 × F2 × F3) adjacent to a vertex form a label
ABC for a corner. For instance R ∈ F1, U ∈ F2 and F ∈ F3 build the label for vertex
RUF. Again, the order constraint (F1 before F2 before F3) is used to reduce the number
of vertex labels.

Note that the order of faces that appear inside this string of face labels depends on their
axis index: L and R both lay within the x-axis while being parallel to the yz-plane and are
always put first in the label string, then D or U from the y-axis and last but not least B or F
from the z-axis.

The previous paragraph introduced an indexing system for cube elements, whose translation
into code will be covered in the following. OctreeDirection.h contains the definitions and
functions for working with the system. It contains several enums that provide statically
generated labels for faces, edges, and vertices. First, an enum has to be declared using
predefined values. Those can be seen in the following snippet. Furthermore, an element that
does not identify a specific face called O is provided. They are also referred to as Ω entries.
All other values are integers taken from the range [1, 6], thus, every face requires at most 3
bits to store it.

1 enum Face {
2 O = 0, // omega/ unknown
3 L = 1, R = 2, D = 3, U = 4, B = 5, F = 6,
4 };

Listing 3.1: Defintion of the base enum, Face.

As explained above, faces serve as the base class from which edges and vertices are
derived. This task is implemented in two functions using C++’s meta-programming capabili-
ties: buildEdge() and buildVertex(). Listing 3.2 shows two simplified versions of these
functions. Furthermore, a definition for a datatype that is wide enough to hold a face, edge
or vertex is given in form of the Any datatype. The maximum width required for a type
to index anything within a cube is the vertex, which may be up to 9 bits wide. Therefore,
using an int unsigned for the Any type satisfies the demands completely.
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1 using Any = int unsigned ;
2
3 template <Face f1 , Face f2 >
4 static constexpr Any buildEdge () { return (f1 << 3) | f2;}
5
6 template <Face g1 , Face g2 , Face g3 >
7 static constexpr Any buildVertex () {
8 return (g1 << 6) | (g2 << 3) | g3;
9 }

Listing 3.2: Definition of an Any datatype. Implementation of the compile-time generator
functions.

Both functions expect template parameters which are then used to construct a unique
identifier for edges or vertices by bit-shifting them to a unique location. As mentioned
before, storing a face requires up to 3 bits. Therefore, bit-shifting a face identifier by 3 or 6
bits is sufficient to place the face within an edge or vertex. buildEdge() builds the (A,B)
tuple by taking A = f1 ∈ Fi and B = f2 ∈ Fj with i < j and i, j ∈ {1, 2, 3} and converts
them to a 6 bit identifier. buildVertex() works similarly, it simply takes g1 ∈ F1, g2 ∈ F2,
g3 ∈ F3 and builds a 9 bit identifier. Because of their marking as constexpr and the fact
that they receive their arguments through template parameters, the functions can be used –
as shown in Listing 3.3 – to construct the enums at compile time.

1 enum Edge {
2 OO = 0, // omega/ unknown
3 LD = buildEdge <L, D >() , LU = buildEdge <L, U >() ,
4 LB = buildEdge <L, B >() , LF = buildEdge <L, F >() ,
5 RD = buildEdge <R, D >() , RU = buildEdge <R, U >() ,
6 RB = buildEdge <R, B >() , RF = buildEdge <R, F >() ,
7 DB = buildEdge <D, B >() , DF = buildEdge <D, F >() ,
8 UB = buildEdge <U, B >() , UF = buildEdge <U, F >() ,
9 };
10
11 enum Vertex {
12 OOO = 0, // omega/ unknown
13 LDB = buildVertex <L, D, B >() , LDF = buildVertex <L, D, F >() ,
14 LUB = buildVertex <L, U, B >() , LUF = buildVertex <L, U, F >() ,
15 RDB = buildVertex <R, D, B >() , RDF = buildVertex <R, D, F >() ,
16 RUB = buildVertex <R, U, B >() , RUF = buildVertex <R, U, F >() ,
17 };

Listing 3.3: enum definitions that are built at compile time using buildEdge() and
buildVertex().

Both enums also provide Ω entries, OO and OOO. Since all face identifier values other than O
are non-zero, this yields a huge benefit: One can infer whether an index given as an instance
of Any is a face, edge or vertex by checking whether the corresponding bits are zero. Starting
from the least significant bit, faces have no bits above the third bit set and edges non above
the sixth. Everything else is a label that identifies a vertex.
Furthermore, OctreeDirection.h contains several helper functions to aid the user of

the indexing system. Those include functions to check whether a given element isFace(),
isEdge() or isVertex(). The file also contains functions to obtain lists of all available
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faces, edges, and vertices. The tables required by the neighbor gathering are wrapped into
the functions, whose prototypes are shown in the following snippet.

1 inline bool ADJ(Any direction , Vertex octant );
2 inline Octant REFLECT (Any direction , Octant octant );
3 inline Face COMMON_FACE (Any direction , Vertex octant );
4 inline Edge COMMON_EDGE (Any direction , Vertex octant );
5 inline Any getOppositeDirection (Any direction );
6 inline std :: vector <Octant > getAllowedDirections (Any along);

Listing 3.4: Function definitions for helper functions.

An Octant is a name alias for Vertex that is also inspired by [Sam89b]. The functions
declared in Listing 3.4 internally use a lookup array to implement the tables required to
find neighbors in octree nodes.

3.2. Octree Container for AutoPas

This section will introduce the new container data structure that was developed to fit inside
the AutoPas ecosystem. First, the overall code and file layout will be presented. After that,
important details about the implementation will be mentioned.

3.2.1. Overview

A container can be added by placing the source code inside the src/autopas/containers
directory. There must be a class provided that extends the behavior of the base class,
ParticleContainerInterface. In this case, the class Octree was placed inside a file called
src/autopas/containers/octree/Octree.h and serves as one part of the API that is
used by AutoPas to interface with the octree. The second part are the different traversals
which are explained in Section 3.3. Additionally, the octree was registered inside the
ContainerSelector after creating a new ContainerOption called octree. After that, the
new container was available in AutoPas.

3.2.2. Base Data Structure

The most important part of the octree is the recursive data structure that can be seen on
the right side in Figure 3.2. Its origin is the base class OctreeNodeInterface, which is
an abstract class. Many operations on the octree depend on the information whether a
processed node is an inner node or a leaf node. As a result, one can declare abstract method
prototypes inside the base class that are implemented in the derived sub-classes where the
required information about the node type is present. OctreeNodeInterface contains the
definitions for those abstract methods. An excerpt is given in Listing 3.5. Note that these
methods already suffice to implement the operations defined in Section 2.2.1. Iteration can
be done by gathering all leaves using appendAllLeaves() and iterating the particles inside
the OctreeLeafNodes.
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Figure 3.2.: This figure gives an overview of the infrastructure provided by AutoPas used
to embed the octree implementation into the project. Classes marked red were
added and implemented during the practical phase. All other classes already
existed in AutoPas. The template parameters of all classes are not shown for
the sake of keeping the diagram simple. The right hand side shows not only the
inheritance graph used to build the octree but also their owner relationships
using the field _parent and _children

1 template <class Particle >
2 class OctreeNodeInterface {
3 public :
4 // ...
5 virtual ... insert ( Particle p) = 0;
6 virtual void clearChildren (std :: unique_ptr <... > &ref) = 0;
7 virtual void appendAllLeaves (std :: vector <... > & leaves ) const = 0;
8 virtual void appendAllParticles (std :: vector <... > &ps) const = 0;
9
10 // Used for logging
11 virtual void appendAllLeafBoxes (
12 std :: vector <std ::pair <std :: array <double , 3>,
13 std :: array <double , 3>>>
14 &boxes) const = 0;
15 };

Listing 3.5: Class definition of the base interface for inner nodes and leaves with method
prototypes that are implemented in the subclasses. "..." indicates that some
parts were left out for brevity.

One OctreeInnerNode can contain up to eight children, which can be either inner nodes
or leaves themselves. This is required to build the hierarchical structure that divides space.
Children are stored using smart pointers, as illustrated in Listing 3.6, which shows a part of
the definition for inner nodes. The pointers are initially set to eight leaves at construction
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time of the inner node which is explained in further detail in Section 3.2.4. As a result, an
inner node is the root of a valid sub-tree at any point in time.

1 template <class Particle >
2 class OctreeInnerNode : public OctreeNodeInterface <Particle > {
3 // ...
4 private :
5 std :: array <std :: unique_ptr < OctreeNodeInterface <Particle >>,
6 8> _children ;
7 };

Listing 3.6: Class definition of an inner node with array of pointers to children.

Leaves, on the other hand, receive the ability to store, manage and iterate particles
by inheriting from FullParticleCell. This is a special cell whose sole purpose is to
store particles inside a std::vector and allow easy access to them. OctreeLeafNode
combines OctreeNodeInterface with the FullParticleCell. This is achieved by using
C++’s multiple inheritance capabilities, which can be seen in Listing 3.7 showing the definition
of OctreeLeafNode.

1 template <typename Particle >
2 class OctreeLeafNode : public OctreeNodeInterface <Particle >,
3 public FullParticleCell <Particle > {
4 // ...
5 };

Listing 3.7: Class definition of a leaf node with inheritance from two base classes.

3.2.3. Environment of the Octree Container

Figure 3.2 gives an overview of how the octree interfaces with the rest of AutoPas’s pro-
gramming environment. Octree inherits from CellBasedParticleContainer, which is a
commonly used base class in AutoPas to implement containers that store their particles in
different cells. The Octree is implemented such that it consists of two root cells, one that
only contains the halo particle cell and another one for the owned cell. Those cells store
their particles in two distinct octrees. Providing an interface to act as a cell and managing
a reference to the root node of the octree it the job of OctreeNodeWrapper. Cells inside
a CellBasedParticleContainer are not allowed to change the reference to themselves,
which required implementing a wrapper that stores a pointer to an instance of a sub-class of
OctreeNodeInterface. The reference to the octree’s root node needs to be able to change
the pointer since the type of the root node may change from inner to leaf node or vice versa
by altering the particle configuration inside the containers.

3.2.4. Algorithmic Details

The previous subsections introduced the overall structure and gave an overview of the
implementation. In the following, parts that are considered especially important from the
code will be discussed. Those include specific information about particle insertion, container
update and clearing.
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Particle Insertion and Tree Construction

As introduced in Section 2.2.1, particles can be added to a container using the addParticle()
or addOrUpdateHaloParticle() operation. The Octree class decides whether to add a
particle to the halo or owned octree and delegates the call to OctreeNodeWrapper, which
itself passes the request to the root node. Insertion is implemented as specified in Section 2.2.3.
Listing 3.8 shows the simplified behavior of an inner node’s insert() method: It iterates
over all possible children and checks whether the particle fits in one of them. The getR()
method obtains the current position in space of the particle, which can then be checked
against the child’s enclosing box using the isInside() method. In order to reduce overhead,
the for-loop iterating over all children is only executed until a child is found.

1 template <class Particle >
2 class OctreeInnerNode : public OctreeNodeInterface <Particle > {
3 public :
4 // ...
5 std :: unique_ptr < OctreeNodeInterface <...> > insert ( Particle p)

override {
6 // Find a child to insert the particle into.
7 for (auto &child : _children ) {
8 if (child -> isInside (p.getR ())) {
9 auto ret = child -> insert (p);
10 if (ret) child = std :: move(ret);
11 break ;
12 }
13 }
14 return nullptr ;
15 }
16 };

Listing 3.8: Simplified version of an inner node’s insert() method.

The code contains a C++ trick, which is required as a result of the following issue: Insertion
of a particle into a sub-tree may change the root node’s type. Adding a particle to a
leaf may convert the leaf to an inner node, once the split condition is fulfilled. Therefore,
the insert() method needs a way of communicating to the caller (either another inner
node or an OctreeNodeWrapper) if the leaf splits itself up. It does this by returning a
std::unique_ptr to a node whose value is nullptr if the leaf did not split, otherwise a
pointer to the newly created inner node is returned. This behavior can be seen in the code,
where the return value of the child->insert() call is stored and then checked. If it did
change, the child will be assigned to the new reference.

The last statement in its insert() routine is return nullptr, which signals to the parent
that the node never splits up.

Inserting a particle into a leaf, on the other hand, is a little bit more complicated. When
inserting a particle into a leaf, it has to distinguish between two cases: First, the splitting
condition is not fulfilled. In this case, the leaf node acts like a FullParticleCell and adds
the particle to itself. Second, if the splitting condition is met, the leaf generates a new inner
node with eight new children, which are all leaves. Then, all particles from the original leaf
and the new particle are distributed among the children of the new inner node. A simplified
version of this routine is shown in Listing 3.9.
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1 template <typename Particle >
2 class OctreeLeafNode : ..., public FullParticleCell <Particle > {
3 public :
4 // ...
5 std :: unique_ptr < OctreeNodeInterface <...>> insert ( Particle p)

override {
6 // Check if the size of the new leaves would be to small
7 bool anyNewDimSmallerThanMinSize = false ;
8 // ...
9
10 if (( this -> _particles .size () < this -> _treeSplitThreshold ) or
11 anyNewDimSmallerThanMinSize ) {
12 this -> _particles . push_back (p);
13 return nullptr ;
14 } else {
15 auto newInner = std :: make_unique < OctreeInnerNode <Particle >>(
16 this -> getBoxMin (), this -> getBoxMax (),
17 this ->_parent , ...);
18 auto ret = newInner -> insert (p);
19 if (ret) newInner = std :: move(ret);
20 for (auto cachedParticle : this -> _particles ) {
21 ret = newInner -> insert ( cachedParticle );
22 if (ret) newInner = std :: move(ret);
23 }
24
25 return newInner ;
26 }
27 }
28 };

Listing 3.9: Simplified version of a leaf’s insert() method.

Note, that the method returns nullptr when it is possible to add the new particle to
the leaf and a pointer to a newly created inner node if the leaf was split up. The splitting
condition for a leaf consists of two predicates that must both be fulfilled to split a leaf:

• The number of particles within the leaf is greater than or equal to the tree split
threshold C, named _treeSplitThreshold in the snippet. It is stored in a field within
the OctreeNodeInterface and is passed down from the root of the octree. This allows
for adjusting C for different octree types. During this thesis, a tree split threshold of
C = 16 was used exclusively.

• The leaves must be greater than the interaction length. Otherwise, interactions across
multiple leaves that technically are in range would not be captured. This is ensured
by the anyNewDimSmallerThanMinSize variable. Since the region is not necessarily
cubic, a loop (that is omitted for brevity in the snippet above) checks whether the
domain size split into eight pieces would be to small.

Every time an inner node is generated, it also spawns eight children that are leaves. Each
of them represents exactly one eighth of the domain size of the parent node. Those children
are then distributed across the inner node’s box according to their 3 bit identifier, which is
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the respective child index between 0 and 7 in the array. All of the children’s new corner
coordinates defining their box can be obtained by carefully picking values depending on the
axis. Those are obtained from the inner node’s corner coordinates pmin, pmax ∈ R3 and a
calculated center coordinate pcenter = 1

2 · (pmin + pmax) ∈ R3. Every bit within the identifier
is assigned to one axis in the domain, meaning the most significant bit is assigned to the
x-axis, the middle bit to the y-axis and the least significant bit to the z-axis. If an axis bit
inside the identifier is set, the corner coordinates for this leaf are picked from pcenter and
pmax for the respective axis. If the axis bit is not set, the coordinates for the respective axis
are picked from pmin and pcenter. This allows coordinates to be generated for each leaf in the
inner node’s box. Figure 3.3 illustrates this problem for two dimensions.

Figure 3.3.: A simplified view on an octree with two inner nodes: A big one and a smaller
one in the top right corner. The number labels show the nodes’ binary indices
relative to their parent nodes. The first number is the x-axis bit, the second
the y-axis bit.

Clearing an Octree

The implementation also supports clearing an entire octree using the clearChildren()
method. Note the function definition in Listing 3.10.

1 virtual void clearChildren (
2 std :: unique_ptr < OctreeNodeInterface <Particle >> &ref) = 0;

Listing 3.10: Definition of clearChildren() in the base class OctreeNodeInterface with
self-reference as method parameter.

The method takes a reference to a pointer to a node as its only parameter. It is a reference
to the pointer that the parent holds to the child itself. Depending on its type, a child decides
how to clear itself: A leaf simply clears all the particles inside it and keeps the reference
untouched. An inner node first recursively clears its children, then generates a new leaf node
and finally moves the new leaf node onto the reference. As a result, the inner node is gone
and replaced with a leaf node.
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Updating the Octree Container

An important concept within AutoPas is the periodic container update that gets called
before each simulation step. During this step, some of the particles may have moved outside
the container boundaries and become halo particles. One job of the updateContainer()
method is to identify these out-of-bounds particles and return them. Furthermore, the
method is called to allow the container to reorganize itself in order to remain stable.

1 template <class Particle >
2 class Octree : public CellBasedParticleContainer <...>, ... {
3 public :
4 // ...
5 std :: vector <Particle > updateContainer () override {
6 // 1. Copy all particles out of the container
7 std :: vector < Particle *> particleRefs ;
8 this -> _cells [ CellTypes :: OWNED ]. appendAllParticles ( particleRefs );
9
10 // 2. Partition the particles into valid/ invalid particles
11 std :: vector <Particle > particles {}, invalidParticles {};
12 particles . reserve ( particleRefs .size ());
13 for (auto *p : particleRefs ) {
14 if (utils :: inBox(p->getR (),
15 this -> getBoxMin (),
16 this -> getBoxMax ())) {
17 particles . push_back (*p);
18 } else {
19 invalidParticles . push_back (*p);
20 }
21 }
22
23 // 3. Clear all particles ( including the halo particles )
24 this -> deleteAllParticles ();
25
26 // 4. Insert the particles back into the container
27 for (auto & particle : particles ) {
28 addParticleImpl ( particle );
29 }
30
31 return invalidParticles ;
32 }
33 };

Listing 3.11: A simplified version of the Octree’s updateContainer() method. The
container update consists of four phases. Those are marked by the comments.

As illustrated in Listing 3.11, the container update consists of four phases, which are
marked in the code snippet. First, all particles that actually belong to the container
(owned) are copied out of the data structure into a temporary std::vector buffer called
particleRefs. This buffer then contains pointers to the particles inside the octree. The
second step decides for each of the particle references whether it is still within the container
bounds or if it went outside of the border, implying that it became a halo particle. Not
pointers, but actual particle objects are then stored in one of the respective lists: particles
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or invalidParticles. After that, all owned and halo particles are cleared in the third step.
Both cells are empty leaf nodes again. In the last step, all particles that are still within the
octree are inserted back into it. The entire procedure clears the octree and reinserts the
particles. This ensures that the octree is valid after updateContainer().

3.3. Special Optimized Traversals
Each container in AutoPas comes with its own set of traversals. A traversal allows for fast,
shared-memory parallel pairwise iteration, which is required for calculating forces between
particles. During the thesis, two different approaches were implemented for the octree
container. These are discussed in further detail in Section 3.3.1.

3.3.1. C01 and C18 Traversals

The two methods of pairwise iteration in the octree are called C01 and C18 traversal. In both
traversals, the owned leaves are gathered in Line 8 of Listing 3.12. Each traversal contains a
field called the _cellFunctor. This is an object that is capable of computing pairwise inter-
actions either for one cell using processCell() or for two cells using processCellPair().
Because of the architecture of OctreeLeafNodes as sub-classes of FullParticleCells, they
can be used as arguments for calls made to the _cellFunctor. The code in Listing 3.12
first uses processCell() to generate all pairwise interactions from within every leaf and
then processes all neighboring cells in Line 19, including those from the halo octree in
Line 28, using processCellPair(). Neighboring leaves are obtained using two different
methods: getNeighborLeaves() and getLeavesInRange(). The differences between those
two functions are explained in further detail in Section 3.3.2.
Note that the code is designed such that it contains one large for-loop that loops

over all leaves within the owned octree. Therefore, these leaves have to be obtained
before traverseParticlePairs() is issued, which happens in a setup routine called
initTraversal. An implementation for this setup routine must be supplied by every
sub-class of TraversalInterface, which holds true for both octree traversals. Gathering
leaves is executed by the appendAllLeaves() method that was introduced before. The
obtained nodes are stored in a vector called _ownedLeaves, which can then be iterated over
in Line 8. A very important aspect of MD simulation software is the ability to run in parallel
environments utilizing a large number of threads. During this thesis, both the C01 and
the C18 traversals were designed for running parallel using OpenMP. Therefore, the outer
for-loop in Line 7 was marked with the ability to run on multiple threads. Each loop body
may be executed on a different thread since the body only depends on the leaf index i. As
a result, the pairwise iteration can be executed on an arbitrary number of threads. This
number is only capped by the number of leaves available, which should not be a problem in
practice since the number of leaves usually exceeds the number of threads.

1 template <class Particle , ...>
2 class OTC01Traversal : public CellPairTraversal <...>,
3 public OTTraversalInterface <... > {
4 public :
5 // ...
6 void traverseParticlePairs () override {
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7 # pragma omp parallel for
8 for (int i = 0; i < this -> _ownedLeaves .size (); ++i) {
9 OctreeLeafNode <Particle > *leaf = this -> _ownedLeaves [i];
10
11 // Process cell itself
12 _cellFunctor . processCell (* leaf);
13
14 // Get neighboring cells for each leaf
15 auto uniqueNeighboringLeaves = leaf -> getNeighborLeaves ();
16 // Process connection to all neighbors in this octree
17 for ( OctreeLeafNode <Particle > * neighborLeaf :
18 uniqueNeighboringLeaves ) {
19 _cellFunctor . processCellPair (*leaf , * neighborLeaf );
20 }
21
22 // Process particles in halo cell that are in range
23 auto min = subScalar (leaf -> getBoxMin (), _interactionLength );
24 auto max = addScalar (leaf -> getBoxMax (), _interactionLength );
25 auto haloNeighbors =
26 this -> getHalo () ->getLeavesInRange (min , max);
27 for ( OctreeLeafNode <Particle > * neighborLeaf : haloNeighbors ) {
28 _cellFunctor . processCellPair (*leaf , * neighborLeaf );
29 }
30 }
31 }
32 }

Listing 3.12: A simplified version of the octree’s C01 traversal.

The previous paragraph introduced the overall structure of an octree traversal with specific
focus on the C01 traversal. In the following, the reason for a C18 traversal and the difference
to the C01 traversal are discussed. Figure 3.4 shows the main distinction between the C01
and C18 traversal: The former does not allow for using the newton 3 optimization, but all
neighbors can be considered when iterating. The latter, on the other hand, is able to utilize
the newton 3 optimization. However, only those neighbors, whose identifier numbers are
greater than the current identifier, can be included into the pairwise calculations.
Listing 3.12 shows the implementation of the octree’s C01 traversal. One important

aspect of this traversal is that some of the cell pairs are processed twice: Two neighboring
leaves l1 and l2 are iterated using the base for-loop shown in Line 8. When obtaining their
respective neighboring leaves in Line 15, they both are part of the uniqueNeighboringLeaves
set of their neighbor. This means that both l2 ∈ l1->getNeighborLeaves() and l1 ∈
l2->getNeighborLeaves(). As a result, processCellPair() is called for both cell pairs
(l1, l2) and (l2, l1) during the whole iteration. Assuming the newton 3 optimization was
enabled, this would lead to duplicate force calculations since the forces would be applied to
the particles ins l1 and l2 twice. A solution for this is to disallow the newton 3 optimization
for C01 traversals.

The C18 traversal solves the double-iteration problem. During the previously introduced
setup routine initTraversal(), every leaf obtained through appendAllLeaves() is assigned
an integer identifier. The only requirement for the identifiers is that they need to be unique
and monotonic. With those identifiers, the C18 traversal can be derived from the C01 by
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Figure 3.4.: This figure shows the difference between the C01 and C18 traversals in two
dimensions. It shows one step of the for-loop in Line 8 of Listing 3.12 the leaf
with gray border. The red arrows indicate which neighbors are involved in a
call to processCellPair. Note that for the C01 traversal the arrows only have
one tip, which means that the newton 3 optimization is disabled. For C18, the
tips of the red arrows are on both sides, which indicates that the newton 3
optimization can be used with this traversal. Also, exemplary ID numbers for
each cell are displayed.

guarding every call to processCellPair (Lines 19 and 28 in Listing 3.12) with an additional
if statement. The if statement ensures that only cell pairs between the current leaf and
a neighbor, where the identifier of the leaf is smaller than the neighbor’s identifier, are
processed. Listing 3.13 shows the implementation of such a guard.

1 if (leaf ->getID () < neighborLeaf ->getID ()) {
2 _cellFunctor . processCellPair (*leaf , * neighborLeaf );
3 }

Listing 3.13: Guarded version of processCellPair().

To sum it up, C01 and C18 are simple traversal strategies for an octree without and with
support for the newton 3 optimization respectively. Both rely on gathering all leaves upfront
and processing cell pairs between each leaf and its neighbors.

3.3.2. Methods of Leaf Gathering

Two different strategies for gathering leaves have already been mentioned: The methods
getNeighborLeaves() and getLeavesInRange(). Both can be called on any sub-class of
the OctreeNodeInterface and return a collection of unique leaves. The key differences
between the two are explained in the following.

Table-based getNeighborLeaves() collects all unique neighbor leaves of the node on which
the method was called. It iterates over all faces, edges, and vertices in order to collect
all neighbors along the leaf’s surroundings. This is done by first finding the neighbor
that is of greater than or equal size to the leaf (GTEQ) and then fetching all touching
leaves using an overloaded helper method called getNeighborLeaves(d). The method
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takes in a direction d as an instance of an Any object and returns all leaves that can be
found along the face, edge, or vertex specified by d. This is done by first calculating
the opposite direction d′ of d. The underlying function getOppositeDirection is
implemented as a table lookup that inverts Any direction. (Table C.1 contains the
lookup entries.) Second, getNeighborLeaves(d) obtains all allowed directions using
the table lookup function getAllowedDirections. (Table C.2 contains the lookup
entries.) For Any given direction, this function returns a std::vector of directions
that are all along the given direction d′. This set of directions can then be used to
traverse down the octree in the opposite order to obtain leaves that are adjacent to the
currently processed leaf. A shortened version of this table-based neighbor gathering
scheme can be seen in Listing 3.14.

1 std ::set < OctreeLeafNode <Particle > *> getNeighborLeaves () {
2 std ::set < OctreeLeafNode <Particle > *> result ;
3 for (Face *face = getFaces (); *face != O; ++ face) {
4 OctreeNodeInterface <Particle > * neighbor =
5 GTEQ_FACE_NEIGHBOR (* face);
6 if ( neighbor ) {
7 auto leaves = neighbor -> getNeighborLeaves (* face);
8 result . insert ( leaves .begin (), leaves .end ());
9 }
10 }
11 // ...
12 return result ;
13 }
14

Listing 3.14: An excerpt of getNeighborLeaves() is shown in this listing. The for-loop in
Line 3 iterates over all possible faces. Then, a node that touches this leaf at
a face is obtained by calling GTEQ_FACE_NEIGHBOR in Line 5. If existent, all
leaves along the face are gathered and added to the result set. In Line 11, the
equivalent code for edges and vertices is omitted for brevity.

The three most important methods GTEQ_FACE_NEIGHBOR(), GTEQ_EDGE_NEIGHBOR()
and GTEQ_VERTEX_NEIGHBOR() introduced in Section 3.1 were translated to C++ from
the code provided by [Sam89b]. Therefore, several auxiliary functions were implemented
to mimic the programming environment described in the paper. The most important
helper functions are listed in Appendix B.1. Using this technique, neighboring leaves
can be gathered in constant time.

Range Query Another neighbor gathering method is implemented in getLeavesInRange()
as a range query. This method takes in two parameters: pmin, pmax ∈ R3. These specify
the minimum and maximum coordinates of a cuboid from which leaves should be taken.
getLeavesInRange() is implemented differently for inner nodes and leaves: Inner
nodes check for every child whether the box of the child overlaps with the given region
between pmin and pmax. If this is the case, the call is recursively propagated to the child
in order to find leaves within the child. The results of these recursive calls are then
accumulated in one std::vector that is returned. Leaves, on the other hand, return
a std::vector that only contains themselves if they overlap with the given region,
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otherwise they yield an empty std::vector. This recursive procedure ensures that all
leaves within the given region are captured and returned. Another neighbor gathering
method is implemented in getLeavesInRange() as a range query. This method takes
in two parameters: pmin, pmax ∈ R3. These specify the minimum and maximum
coordinates of a cuboid from which leaves should be taken. getLeavesInRange() is
implemented differently for inner nodes and leaves: Inner nodes check for every child
whether the box of the child overlaps with the given region between pmin and pmax. If
this is the case, the call is recursively propagated to the child in order to find leaves
within the child. The results of these recursive calls are then accumulated in one
std::vector that is returned. Leaves, on the other hand, return a std::vector that
only contains themselves if they overlap with the given region, otherwise they yield an
empty std::vector. This recursive procedure ensures that all leaves within the given
region are captured and returned.

Figure 3.5.: This figure shows the difference between neighbor gathering techniques: Looking
up neighbors using tables and obtaining them by range queries in two dimensions.
Table lookup in two dimensions can only be done via vertices or edges, which is
illustrated by the dots on the corners and the small dash on the edge of the leaf.
The region for the range query is determined by the two parameters pmin and
pmax. In two dimensions, this forms a rectangular region that is illustrated by
the red dashed area.

Both methods are illustrated in Figure 3.5. As the minimal requirement, getLeavesInRange()
is necessary for the implementation since the table-based lookup can be substituted with
getLeavesInRange(). As mentioned before, the halo octree is larger than the owned octree
in every direction. As a result, the nodes’ boxes of the owned octree do not align with the
boxes of the halo octree. Therefore, it is required to gather halo leaves that contain potential
interaction partners from the owned leaves using getLeavesInRange().

3.4. Support for Visualization

During this thesis, two methods for visualizing the octree data structure were implemented.
These are discussed in the following.
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3.4.1. Browser Octree

Figure 3.6.: A scene showing the octree boxes in the browser tool. Both the face neighbor
and the neighbor leaf options are enabled.

For debugging purposes, it proofed beneficial to have the ability to visualize the octree itself
and the table-based neighbor gathering strategy. Therefore, a browser-based tool was written
in JavaScript. For a rapid implementation, the popular JavaScript framework p5.js was
used. 1 The browser octree visualization is published through its own git repository. 2 The
tool allows importing specially generated .json files, which not only contain box information
about the halo and owned octree but also the particle positions. This technique proved itself
useful when trying to find bugs inside the program and tables.

AutoPas contains several loggers. They were extended by an OctreeLogger, which
contains static method definitions that are capable of outputting files related to the oc-
tree implementation. For instance, the logger contains functions called octreeToJSON(),
particlesToJSON() and leavesToJSON() which allow generation of the previously men-
tioned .json files. Those can then be selected within the browser and displayed. The view
can be rotated, translated, and scaled using mouse and keyboard. Any octree box can

1https://p5js.org/
2https://github.com/AutoPas/OctreeVisualization
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be selected and its neighbors (obtained using the GTEQ_..._NEIGHBOR functions) can be
inspected. Figure 3.6 contains a screenshot of the visualization tool. Pictures of different
configurations are shown in Appendix A.

3.4.2. .vtk Logger
md-flexible outputs its particles in a user-specified interval to a .vtk file. 3 Those files can
then be visualized using external tools like ParaView4. To integrate with the existing tools,
the OctreeLogger was extended such that it can output both owned and halo octrees in a
fixed interval as well. The logger periodically outputs special owned_i.vtk and halo_i.vtk
files, where i is an ascending record number. Screenshots of the resulting output in ParaView
are part of the next chapter. Figure 4.1a shows a screenshot with both the owned and the
halo octree.

3https://vtk.org/wp-content/uploads/2015/04/file-formats.pdf
4https://www.paraview.org/
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This chapter demonstrates that the implementation is working as intended. Furthermore,
the octree container is compared to the existing linked cells implementation. Selected parts
are analyzed even further to gain insights in the performance characteristics.

4.1. High-level Comparison

As mentioned in Section 2.1.2, md-flexible comes with the ability to load an experiment
configuration from a .yaml file. The goal of using an octree data structure as a container is
that it can utilize cells of different sizes for storing particles. This goal was achieved during
the thesis: AutoPas now offers containers of this kind. Its behavior is also visualized in
Figure 4.2, which shows the simulation state of fallingDrop.yaml at selected timestamps.
Note that in the beginning, the particle bed on the bottom is wrapped by the container data
structure in a particularly fine manner since there is a large number of particles. On the top,
only the falling drop is covered in a more detailed grid because the particle density is higher
at the drop’s location. Furthermore, the region in the top right corner does not contain any
particles. As a result, the octree’s divisions are very coarse. Overall, this shows that the
goal of implementing a space-adaptive container for AutoPas was achieved by this thesis.

Another scenario is captured in Figure 4.1. Figure 4.1a shows that the halo octree is also
working by displaying the halo cell as an overlay.

4.2. Octree Convergence

The repository provides several input .yaml files that serve as example configurations in
order to be used as a starting point to build custom simulations. For evaluation of the octree
container, a new scenario was derived from fallingDrop.yaml. The following paragraph
explains the benefits of this new scenario.
One assumption about the octree container is that it allows for fast iteration of particle

pairs, especially for scenarios with inhomogeneously distributed particles. This should be
attributed to the fact that an octree is able to adapt its structure to different particle
configurations. Octree leaf nodes offer the option of splitting themselves up whenever the
number of enclosed particles exceeds the splitting threshold C and the following condition
holds: A new leaf must not become smaller than the interaction length along any direction.
In other words, there exists a minimum size for octree leaves. If there are too many particles
inside a simulation box and an octree container is unable to split itself up because of the
minimum size constraint, the structure of an octree converges against the regular cell grid
layout of a linked cells container. As a result, the octree will most likely provide slower
pairwise iteration performance than linked cells since gathering all nodes that contain
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(a) Step 50. The octree containing the halo particles is also drawn (white wireframe) along
the owned octree (black wireframe).

(b) Step 4000. The drops touch the bed.

Figure 4.1.: This figure shows the behavior of the octree container when running the inho-
mogeneous simulation. Finer space divisions compared to Figure 4.2 can be
seen around the bigger drop.
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4.2. Octree Convergence

(a) Step 0. No calculations yet. (b) Step 3000. Drop touches bed.

(c) Step 4000. Drop is immersed. (d) Step 6000. Calm.

(e) Step 8500. Small shock wave. (f) Step 45000. Homogeneous fluid.

Figure 4.2.: This figure shows the behavior of the octree container when running the falling
drop simulation. A drop (red particles) falls down into a bed of particles (white)
which lies on top of an immovable layer (blue particles). The octree container
is shown as a black wireframe mesh. Apart from the initial configuration
(Figures 4.2a and 4.2b) and the shock wave (Figure 4.2e), the octree behaves
just like a linked cells container on the bottom half since it cannot further split
its leaves because the leaves would become smaller than the interaction length.
The screenshots were taken using ParaView.
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particles – which are the octree’s leaves – does not happen in constant time. Figure 4.2
shows this problem based on the falling drop scenario.

A new scenario called inhomogeneous.yaml was introduced: It contains drops of different
sizes and a thinner bed. The simulation box is almost twice as big as the box of the
falling drop scenario. This gives the octree much more freedom to take advantage of its
splitting behavior. Many of the performance measurements in this chapter were taken
using this scenario. Figure 4.1 shows two screenshots of this experiment. The md-flexible
configuration for the experiments is shown in Appendix B.2.

4.3. md-flexible Performance
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Figure 4.3.: This figure shows timing information gathered from running the inhomogeneous
scenario with md-flexible. High-level parts are located in the center of the
circles. Those are split up further towards the edge. The charts only include
information from the Simulation stage. Parts that take a too small portion of
time are excluded here, however, the precise data, including the omitted parts,
can be found in Tables C.3 and C.4.

A first performance analysis is discussed in the following. Figure 4.3 serves as a foundation
for the argumentation. Both figures show which parts of md-flexible take specific fractions
of the whole run time for different container types. One note beforehand, linked cells is
a highly optimized container that has been tested and refined over several years. Due to
the novelty of its implementation, the octree’s performance is close to factor 4 slower than
linked cells.
Nevertheless, some general trends can still be identified. In both runs, roughly 70-85%

of the time is spent in the calculation of so-called periodic boundary conditions and force
calculations. These are the parts in which the containers’ performance becomes the most
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4.4. Boundary Conditions

evident. During force calculations, the pairwise iteration strategies introduced in Section 3.3
are used. The parts marked as NonTuning are those in which the actual simulation is
executed. The linked cells container can choose from a large number of traversals available,
which can be seen in the relatively large portion of force calculations occupied by Tuning.
Since there are only two traversals available to the octree, the tuning phase is much smaller
for the new container.

4.4. Boundary Conditions
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Figure 4.4.: This figure shows the absolute time it takes to execute the halo
identification step (shown in Figure 4.3) for each of the available octree
traversals. The tests were conducted using the fallingDrop.yaml scenario and
running it for 100 iterations.

The most cost intensive task of the octree is boundary calculations. During the analysis
of the new container, one part of these calculations was identified to be especially costly.
As mentioned in Section 2.2.1, an important part of every container data structure is fast
access to particles inside the container. For instance, identifying particles that enter or leave
the simulation box is done by iterating over all particles and checking whether their position
is still within bounds after each simulation step. It is therefore mandatory to provide fast
access to all particles, preferable in O(1) for each particle. At the moment, AutoPas uses
iterators with a special interface to iterate over particles in a cell. Two functions begin()
and at() serve as the interface to obtain an iterator from a cell. at(i) takes an integer
index i that ranges from 0 to n− 1 where n is the number of particles. The octree solely
stores enclosed particles inside its leaves. There is no linear data structure from which the
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particles could be accessed directly.
At earlier stages of this thesis, access to particles via at(i) was implemented by traversing

the tree, decrementing i with each particle, and returning a particles whenever the counter i
reached zero. This method proved itself very inefficient since it lead to an access complexity
of O(n2) when iterating over all n particles within the container. After observing that
at(i) was called n times only after one call to begin(), the following optimization was
implemented: begin() fills a std::vector with pointers to the particles elements inside
the octree upfront. This allows at(i) to access every particle i inside the octree in constant
time. On the other hand, this method has a huge drawback: The copying process is costly.
Figure 4.4 shows that the time it takes to copy all particles out of the octree is significant for
one example. There are several other places inside AutoPas that involve particle iteration.
All of them require copying all particles out of the octree as previously described. In other
containers such as linked cells, there is no obligation for this kind of copying to happen.
Due to their static layout, they can provide a constant mapping from consecutive indices to
particles within the container. This is not possible for variably-size cells like the octree cells.
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4.5. Pairwise Traversal Comparison

4.5. Pairwise Traversal Comparison

As shown in Figure 4.3, the Force calculations account for a big part of the overall run-time
cost, both for the octree as well as for linked cells. Therefore, this part is analyzed in the
following.

4.5.1. High-level Comparison

0 2,500 5,000 7,500 10,000 12,500 15,000 17,500 20,000
iteration index

6000

8000

10000

12000

14000

16000

ite
ra

tio
n

du
ra

tio
n

[m
s]

Octree C18
Octree C01

Linked Cells C18
Linked Cells C01

Figure 4.5.: This figure shows how long one simulation step of the inhomogeneous scenario
took regarding the pairwise iteration both for linked cells and the octree. For
both containers, two traversals are shown. The simulation was run for 20000
steps. To reduce the number of samples, only every 200th sample is shown. This
already supports the claim that the octree’s traversal techniques are slower.

Figure 4.5 shows how much time each iteration step takes for different configurations. It
becomes evident that both octree traversal techniques are slower than the respective linked
cells equivalents. This arises from the fact that one pairwise iteration step takes longer in
the octree implementation. The amount of time corresponding to one iteration step is shown
in Figure 4.5. The figure shows that the simulation becomes harder to execute between steps
2 500 and 12 500. All four traversals follow this pattern. In conclusion, iteration performance
of the octree must become faster by a factor of two in order to beat the linked cells traversal
speeds.
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4.5.2. Work Distribution in Pairwise Traversal
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Figure 4.6.: This figure illustrates how much time each phase of pairwise iteration takes on
average. Those phases include initialization, the actual pairwise traversal,
and an end section. init includes the time it takes to gather all leaves required
for pairwise traversal. Furthermore, init and end contain code that loads
special buffers optimizing the cache-efficiency of particle accesses. The standard
deviation σ is shown as the blue bar around the mean µ (black center dot) of
the time each phase took in nanoseconds. The black bars show the entire value
range, from the minimum measured value to the maximum (these two are also
marked by the black dots at the end of the black bars).
Overall, it can be observed that the setup and tear-down cost of the traversal is
negligible compared to the cost of pairwise iteration.

The pairwise iteration includes three phases in AutoPas: A step function that is used to
initialize the traversal and prepare it, the actual iteration phase, and a step in which the
traversal is torn down. In the following, those phases are called init, traverse and end
respectively.
In init, the linked cells container loads special buffers for cache-efficiency on demand.

The octree, on the other hand, gathers all leaves of the tree. These are required for iteration
in the traverse step. Figure 4.6 shows the distribution of the time the different phases
take. Since the traverse step takes up over 90% of the entire iteration time, both of the
other steps can be neglected in terms of run-time cost.

The leaf gathering within the octree’s pairwise traversal is working single-threaded at the
moment. It could be sped up by running it in parallel, which should be easy to achieve.
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However, since the overhead of init is so small, the focus for optimization should be drawn
towards the traverse phase because here, improvements would have a significantly bigger
impact on the overall performance, as explained in the previous paragraph.

4.5.3. Impact of Different Cell Sizes
The octree and the linked cells containers were compared to each other using the popular
performance analysis tool VTune1 by Intel.

(a) Octree

(b) Linked cells

Figure 4.7.: This figure shows two screenshots of the "Effective CPU Utilization Histograms"
inside VTune. Both charts display how much of the run-time was spent in which
degree of parallelization. Every potential number of cores is shown on the x-axis,
whose values range from 0 cores to 16 cores, which is the maximum number the
CPU offers with hyper-threading enabled. The y-axis indicates the time that
was spent using one specific number of processing units. In the best case, a very
high clustering on the right is achieved. This means that the application utilizes
the full potential of the CPU. The experiment was conducted using 10 iterations
of the falling drop scenario. Both containers used their respective C18 traversal.

One potential explanation for the drawbacks regarding the speed of the octree is that
it does not utilize the capabilities of multi-core CPUs. Therefore, a hotspot analysis was
executed inside VTune. The results of the measurements can be seen in Figure 4.7. The
analysis revealed that the octree lacks potential in terms of parallel performance since it has
an "Average Effective CPU Utilization" of 9.7 threads, where linked cells reaches a degree of
parallelization of 12.8 threads.
VTune provides more information regarding the individual experiments: It captures the

time different statements take in order to identify performance hotspots. These are parts of
1https://software.intel.com/content/www/us/en/develop/tools/oneapi/components/vtune-

profiler.html
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the code that take up a disproportionately large amount of the run-time and are therefore
great candidates for optimizations.

(a) Octree (b) Linked cells

Figure 4.8.: This figure shows two screenshots of the "Top-down Tree" analysis in
VTune of the same experiment as in Figure 4.7, but using only one thread.
Both tables list the absolute duration (right column) that each statement
(left column) takes during the run. The data is organized hierarchically,
Simulation::calculateForces<...> is a child of Simulation::simulate for
instance. The calls to processCellPair() and processCell() are marked
with a red box.

The performance hotspots can be identified by looking at the so-called "Top-down Tree"
output of VTune. Figure 4.8 shows the tables for both, a run with the octree and linked
cells. One small detail is especially important here: The call to processCellPair() of
the octree takes 4,996 s whereas the same call takes only 3,092 s for linked cells. What
processCellPair() does was already explained in more detail in Section 3.3.1. The method
takes two cells, computes all particle pairs using the cartesian product, and executes the
pairwise force computation. This approach was introduced as direct sum in Section 2.2.2
and has a high computational complexity of O(a · b) where a is the number of particles in
the first container and b the number of particles in the other one. Assuming a homogeneous
particle distribution, every cell contains n particles on average. The direct sum computation
between two cells then happens in O(n2). Thus, the average number of particles per cell
hugely impacts the overall performance.
The assumption is the following: The octree container has, on average, more particles

inside its cells than linked cells. In order to investigate this issue, the C18 traversals of
the respective containers were extended such that they collect data during the iteration.
This data is then logged, comprising the following items: The total number of particles
participating in the experiment, the number of cells processed, the average number of particles
per cell, and the total number of pairs generated in the run. The last one is particularly
interesting since it should be directly proportional to the duration of the simulation.
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Metrics of C18 Traversals
Traversal Cells Processed Average Particles per Cell Total Pairs
Octree C18 9 653 28.18 20 668 517
Linked Cells C18 28 464 10.97 6 690 503
Factor 2.57 3.08

Table 4.1.: This table shows different metrics for the C18 traversals of the octree and the
linked cells container in every row. The last row contains factors by which the
numbers generated by the octree’s C18 traversal are higher than by linked cell’s
C18 traversal. All data was obtained from two runs of the falling drop scenario.

The following conclusions can be drawn from Table 4.1: The average number of particles
per cell is significantly higher in the octree. This results in a larger computational cost for
the direct sum computations between the cells. The claim is supported by the number of
total pairs: The C18 traversal of the octree computes 3.08x as many pairwise interactions as
the linked cells equivalent.
These findings make it easier to understand why the octree lacks potential in terms of

speed with these parameters. Having almost thrice the average number of particles per cell
drastically increases the run-time overhead of the pairwise traversal. The reason for this
high average number of particles per cell is the size of the octree leaf nodes, which are the
cells that contain the particles. Table 4.2 shows the lengths of the smallest cells in each
container. It becomes evident that the cells of the linked cells container are very close to
the interaction length, which is the minimum size requirement in this experiment. If cells
are exceedingly full of particles, they need to be as small as possible in order to keep the
number of potential pairs, occurring between neighboring cells, down. The octree is not able
to achieve this in this scenario since its cell geometry is determined by the simulation box.
All octree nodes are scaled versions of the simulation box. As a result, a minimum-sized
octree leaf node is almost twice the interaction length long on the x-axis. This leads to a
much larger number of particles per cell compared to the compact cells of the linked cells
container, which then yields the high average number of particles per cell for the octree.

Minimum Cell Dimensions
Container x-axis y-axis z-axis
Octree 6.375 3.875 4.724
Linked Cells 3.400 3.444 3.436

Table 4.2.: This table lists the dimensions of the smallest cell for the octree and linked cell
containers. The interaction length for this experiment was set to 3.3. All data
was obtained from two runs of the falling drop scenario.

To conclude, it is extremely desirable to build cells whose dimensions are as close as
possible to the interaction length, for areas with a high particles density. For the octree cells,
this is the case if the simulation box is cubic and the dimensions of the box are a multiple
of the interaction length.
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5.1. Investigating Further

Chapter 4 already provided detailed information about the octree’s performance. Compared
to linked cells in terms of speed, the octree has not yet reached the degree of optimization
of the linked cells container. However, there is still potential for further investigations in
order to improve parts of the octree.
The first question to be answered is: Why is the pairwise iteration slower? Figure 4.5

shows the speed problem the octree traversals currently have. It was shown in Section 4.5.1
that the problem does not lie within the leaf collection since this only takes a small fraction
of the pairwise iteration time. Thus, there must exist an issue within another part of the
code. Linked cells is optimized to provide cells in a very memory- and cache-friendly way.
The octree, on the other hand, does not embody any of those optimizations yet. Even
though this might pose a problem at some point during the AutoPas project, there may be
other issues that prevent the octree from unleashing its full potential yet.
The boundary calculation part mentioned in Section 4.4 is much slower than in other

containers. Figure 4.3 illustrates the difference. Calculations with the octree container take
up to 6x more time than the reference data structure. Section 4.4 tries to give reasons why
the process is so slow, but the biggest cost factor is still hidden. Therefore, it is necessary to
investigate this issue further: Why is the particle gathering so slow? Does this impact the
performance in parts other than the boundary condition calculations?
Plans for AutoPas’s future involve moving away from the begin()- and at(i)-based

iteration scheme towards a callback-based technique for particle gathering. The octree
implementation would benefit a lot from this step since the copying described in Section 4.4
could be substituted with an approach that keeps the particles inside the octree.

During this thesis, every experiment was conducted with a tree split threshold of 16. It is
also possible to set different thresholds using a newly introduced command line or .yaml
file parameter for md-flexible. Using this parameter, the impact and quality of the chosen
threshold could be evaluated.
As discussed in Section 4.5.3, the cell size plays a central role in the performance of the

octree traversals. It would be extremely interesting to find out whether the size can be
decoupled from the simulation box geometry. One potential fix is to split the simulation
area into regions that are as cubic as possible. Multiple octrees could then be instantiated
in order to optimally fill the entire simulation space.

5.2. Building on the Existing Implementation

At the moment, the updateContainer() method is implemented in a naive way: It copies
all particles, destroys the tree, and rebuilds it every time. One extension of the current
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implementation might be to introduce different update strategies for the octree container
that allows for reusing of the existing tree as long as possible. This can be achieved by only
rebuilding parts of the octree where particles went outside of the leaves. Nodes can then be
split or united depending on the number of particles enclosed.
It is important to note that this optimization is only necessary if empirical evidence,

showing that updateContainer() takes up a large portion of the run-time cost, is gathered
first. Otherwise, the optimization focus should be drawn towards the pairwise iteration
strategies.

5.3. Implementation of further Approaches
The octree merely represents one way of implementing a space adaptive container data
structure. In general, there exists a wide variety of tree-based data structures that can be
used for efficient particle storage. One of those was already mentioned in the beginning in
Section 2.2.2: The k-d tree. However, there exist several ideas for other tree-based space-
adaptive container data structures, for instance the ball tree or the M-tree. [Omo89, CPZ97]
Various implementations of those approaches could be developed and compared, which would
allow the tuner unit to choose from a wider range of container types for different use-cases.
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6. Conclusion

In the following, the most important aspects of the discussion are summarized. Each point
refers to one major chapter of this thesis.

1. At the beginning of this thesis, the theoretical background about particle physics and
the software used was introduced. The first chapter concludes with an overview of
different container data structures and draws the focus towards octrees, which are
special data structures that contain dynamically sized boxes.

2. The second part gives an in-depth explanation of the software that was developed
during the practical part of this thesis. It starts by introducing a new orientation
system that is used in the implementation of the octree container. Subsequently, a
detailed explanation of the new container itself is provided. The octree is modeled
using three classes, an abstract base class and two derived children. These serve as
tree nodes, one for inner nodes with pointers to eight children and one for leaf nodes
storing actual particles. Support for common operations like inserting of particles,
clearing, and updating is explained. Last, the different visualization techniques, one
for the browser and one for an existing software package, are shown. These were
especially helpful for analysis and debugging.

3. In the analysis part, the validity of the implementation is made evident by providing
screenshots of the visualization. After that, the performance of the novel octree
implementation is evaluated by comparing the performance to the existing linked cells
container. It could be demonstrated that the octree’s pairwise iteration speed is slower
by a factor of two than the reference container. Overall, the runs that were utilizing
the octree container are slower by a factor of three than with linked cells. The two
main reasons behind this behavior are the following: First, a lot of copying is involved
in the octree’s pairwise iteration algorithms. Second, the octree traversals are not as
optimized as the reference container’s. It is shown that the dimensions of the octree
leaves, implied by the simulation box geometry, highly impact the iteration speed of
the container. With a well-chosen simulation region, the octree iteration performance
could be improved.

4. The Future Work section shows further optimizations, for which starting points are
suggested. For instance, different tree split thresholds could be chosen to allow for
optimizing the octree configuration. Other than that, additional analysis on the octree
traversals could lead to improvements in terms of memory- and cache-friendliness.
Last but not least, alternative approaches for space-adaptive containers, such as k-d
trees, could be implemented and evaluated.
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A. Browser Octree Screenshots

(a) Image of the browser octree
tool with face-neighbor-view
enabled

(b) Image of the browser octree
tool with both face-neighbor-
view and face-neighbor-leaf-
view enabled

(c) Image of the browser octree
tool with edge-neighbor-view
enabled

(d) Image of the browser octree
tool with edge-neighbor-leaf-
view enabled

(e) Image of the browser octree
tool with vertex-neighbor-
view enabled

(f) Image of the browser octree
tool with vertex-neighbor-
leaf-view enabled

Figure A.1.: Screenshots of the browser octree visualization tool with different selections.
In all screenshots, leaf number 28 was chosen randomly. The selected leaf is
highlighted as a red box. The blue slider can be used to select other leaves.
Different neighbor visualization configurations can be selected using the pickers
below the view. Neighbors are visualized as wireframes around the current box.
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B. Algorithms and Configuration

B.1. Helper Functions for Lookup-based Neighbor Finding
The following explains functions used in Chapter 3. All of the functions mentioned were
introduced in [Sam89b].

GRAY(n) This function yields true if and only if the given node n has children.

FATHER(n) This function yields a pointer to n’s parent, or nullptr if there is no parent.
Every OctreeNodeInterface maintains a pointer to its parent, which is nullptr in
the root node. This can also be seen in Figure 3.2.

SONTYPE(n) This function yields the Octant in which a given node n is, relative to its
parent node.

B.2. Configuration for the Inhomogeneous Scenario
The following output was generated by md-flexible when running the inhomogeneous
scenario.

container : [Octree]
verlet-rebuild-frequency : 4
verlet-skin-radius : 0.3
selector-strategy : Fastest-Absolute-Value
data-layout : [AoS, SoA]
traversal : [ot_c01, ot_c18]
tuning-strategy : full-Search
mpi-strategy : no-mpi
tuning-interval : 1000
tuning-samples : 3
tuning-max-evidence : 10
functor : Lennard-Jones (12-6)
newton3 : [disabled, enabled]
cutoff : 2
box-min : [-0.5, -0.5, -0.5]
box-max : [100.5, 80.5, 47.3982]
cell-size : [1]
deltaT : 0.0005
iterations : 100
periodic-boundaries : true
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B.2. Configuration for the Inhomogeneous Scenario

# object definitions are omitted for brevity

globalForce : [0, 0, -12]
vtk-filename : inhomogeneous
vtk-write-frequency : 25
log-level : 1
no-flops : false
no-end-config : true
no-progress-bar : false
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C. Used Tables

r = getOppositeDirection(d)
Any d return value r

L R
R L
D U
U D
B F
F B
LD RU
LU RD
LB RF
LF RB
RD LU
RU LD
RB LF
RF LB
DB UF
DF UB
UB DF
UF DB
LDB RUF
LDF RUB
LUB RDF
LUF RDB
RDB LUF
RDF LUB
RUB LDF
RUF LDB

Table C.1.: This table shows the mapping from a direction d to its opposite direction r using
the lookup table-based function getOppositeDirection().
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r = getAllowedDirections(d)
Any d return value r

L {LDB, LDF, LUB, LUF}
R {RDB, RDF, RUB, RUF}
D {LDB, LDF, RDB, RDF}
U {LUB, LUF, RUB, RUF}
B {LDB, LUB, RDB, RUB}
F {LDF, LUF, RDF, RUF}
LD {LDB, LDF}
LU {LUB, LUF}
LB {LDB, LUB}
LF {LDF, LUF}
RD {RDB, RDF}
RU {RUB, RUF}
RB {RDB, RUB}
RF {RDF, RUF}
DB {LDB, RDB}
DF {LDF, RDF}
UB {LUB, RUB}
UF {LUF, RUF}
LDB {LDB}
LDF {LDF}
LUB {LUB}
LUF {LUF}
RDB {RDB}
RDF {RDF}
RUB {RUB}
RUF {RUF}

Table C.2.: This table shows the mapping from a direction d to its set of allowed directions
r using the lookup table-based function getAllowedDirections().
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C. Used Tables

Timing
Action % [s] [ns]
Time total 100.00 75.607 75 607 329 788

Initialization 0.01 0.009 8 622 394
Simulation 99.98 75.595 75 595 177 117

Boundaries 47.66 36.025 36 024 901 945
updateContainer 4.42 1.593 1 592 906 858
entering particles 100.00 0.000 140 889
halo identification 69.25 24.946 24 945 861 604
halo insertion 26.33 9.485 9 485 021 519

Position 4.24 3.204 3 203 978 252
Force 38.77 29.309 29 308 531 786

Tuning 1.86 0.546 545 614 827
NonTuning 89.58 26.253 26 253 296 594

Velocity 3.83 2.898 2 898 251 874
VTK 4.81 3.633 3 633 258 586

Table C.3.: This table shows the timing information when running the inhomogeneous
scenario using an octree container on a workstation.

Timing
Action % [s] [ns]
Time total 100.00 19.986 19 985 906 258

Initialization 0.05 0.009 9 264 309
Simulation 99.93 19.973 19 972 713 391

Boundaries 29.91 5.974 5 973 546 776
updateContainer 2.83 0.169 169 176 661
entering particles 0.00 0.000 93 599
halo identification 42.96 2.566 2 565 995 597
halo insertion 53.97 3.224 3 224 125 846

Position 3.49 0.697 696 758 828
Force 45.51 9.090 9 090 213 997

Tuning 15.82 1.438 1 438 358 001
NonTuning 78.79 7.162 7 162 264 433

Velocity 2.76 0.551 551 050 255
VTK 18.07 3.609 3 609 412 878

Table C.4.: This table shows the timing information when running the inhomogeneous
scenario using a linked cells container on a workstation.

52



List of Figures

2.1. Lennard-Jones Potential Graph . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2. Typical md-flexible run . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3. Skin, Cutoff and Interaction Length . . . . . . . . . . . . . . . . . . . . . . 7
2.4. Halo Particles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.5. Brief Overview of ParticleContainerInterface . . . . . . . . . . . . . . . 9
2.6. Simple Containers Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.7. Space-Adaptive Containers Overview . . . . . . . . . . . . . . . . . . . . . . 12
2.8. Octree Creation Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.1. [Sam89b]’s Octree Indexing . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2. Implementation Class Diagram . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.3. Octree Coordinate Generation . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.4. C01 and C18 Traversals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.5. Table Lookup vs. Range Query . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.6. Browser Octree Demonstration . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.1. Inhomogeneous Scenario with Octree . . . . . . . . . . . . . . . . . . . . . . 32
4.2. Falling Drop with Octree . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.3. Inhomogeneous Scenario: Octree vs. Linked Cells . . . . . . . . . . . . . . . 34
4.4. Timing Information about Particle Gathering from Iterator . . . . . . . . . 35
4.5. Inhomogeneous Scenario: Octree vs. Linked Cells Pairwise Traversal . . . . 37
4.6. Pairwise Traversal Cost Factors for Octree . . . . . . . . . . . . . . . . . . . 38
4.7. VTune Analysis: Octree vs. Linked Cells . . . . . . . . . . . . . . . . . . . . 39
4.8. Time Comparison: Octree vs. Linked Cells . . . . . . . . . . . . . . . . . . 40

A.1. Browser Octree Screenshots . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

53



List of Tables

4.1. Metrics of C18 Traversals . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.2. Minimum Cell Dimensions for Octree and Linked Cells . . . . . . . . . . . . 41

C.1. getOppositeDirection() mapping . . . . . . . . . . . . . . . . . . . . . . 50
C.2. getAllowedDirections() mapping . . . . . . . . . . . . . . . . . . . . . . 51
C.3. Inhomogeneous Scenario Timing with Octree . . . . . . . . . . . . . . . . . 52
C.4. Inhomogeneous Scenario Timing with Linked Cells . . . . . . . . . . . . . . 52

54



Listings

3.1. Definition of Face . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2. Defintion of Static Generator Functions . . . . . . . . . . . . . . . . . . . . 16
3.3. Definitions of Generated enums . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.4. Helper Function Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.5. Operation Definitions of OctreeNodeInterface . . . . . . . . . . . . . . . . 18
3.6. Class Definition of OctreeInnerNode with children . . . . . . . . . . . . . . 19
3.7. Inheritance of OctreeLeafNode . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.8. insert() Method of OctreeInnerNode . . . . . . . . . . . . . . . . . . . . 20
3.9. insert() Method of OctreeLeafNode . . . . . . . . . . . . . . . . . . . . . 21
3.10. Defintion of clearChildren() . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.11. Octree’s updateContainer Method . . . . . . . . . . . . . . . . . . . . . . 23
3.12. C01 Traversal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.13. C18 Guarded Call . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.14. Face Neighbor Gathering . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

55



Bibliography

[Ben75] Jon Louis Bentley. Multidimensional Binary Search Trees Used for Associative
Searching. Commun. ACM, 18(9):509–517, September 1975.

[CPZ97] Paolo Ciaccia, Marco Patella, and Pavel Zezula. M-tree: An Efficient Access
Method for Similarity Search in Metric Spaces. pages 426–435, 1997.

[GKZ07] Michael Griebel, Stephan Knapek, and Gerhard Zumbusch. Numerical Simulation
in Molecular Dynamics: Numerics, Algorithms, Parallelization, Applications.
Springer Publishing Company, Incorporated, 1st edition, 2007.

[GSBN20] Fabio Alexander Gratl, Steffen Seckler, Hans-Joachim Bungartz, and Philipp
Neumann. N Ways to Simulate Short-Range Particle Systems: Automated
Algorithm Selection with the Node-Level Library AutoPas. Computer Physics
Communications, December 2020. Preprint submitted.

[Mac13] Ernst Mach. The Science of Mechanics: A Critical and Historical Exposition
of its Principles. Cambridge Library Collection - Physical Sciences. Cambridge
University Press, 2013.

[Mea80] Donald Meagher. Octree Encoding: A New Technique for the Representation,
Manipulation and Display of Arbitrary 3-D Objects by Computer. 10 1980.

[Omo89] Stephen M. Omohundro. Five Balltree Construction Algorithms. Technical
report, 1989.

[Sam89a] Hanan Samet. Implementing ray tracing with octrees and neighbor finding.
Computers and Graphics, 13(4):445–460, 1989.

[Sam89b] Hanan Samet. Neighbor finding in images represented by octrees. Computer
Vision, Graphics, and Image Processing, 46(3):367–386, 1989.

[Ver67] Loup Verlet. Computer "Experiments" on Classical Fluids. I. Thermodynamical
Properties of Lennard-Jones Molecules. Phys. Rev., 159:98–103, Jul 1967.

[WLZ14] Tsz ho Wong, Geoff Leach, and Fabio Zambetta. An adaptive octree grid for
GPU-based collision detection of deformable objects. The Visual Computer,
30:729–738, 06 2014.

56


	Acknowledgements
	Abstract
	Zusammenfassung
	Thesis
	Introduction
	Theoretical Background
	Molecular Dynamics Simulation Software
	Motivation and Theory
	AutoPas
	Skin, Cutoff, and Interaction Length
	Halo and Owned Particles

	Container Data Structures
	Overview
	Container Types
	Octrees


	Implementation
	Orientation System for a Cartesian Coordinate System
	Octree Container for AutoPas
	Overview
	Base Data Structure
	Environment of the Octree Container
	Algorithmic Details

	Special Optimized Traversals
	C01 and C18 Traversals
	Methods of Leaf Gathering

	Support for Visualization
	Browser Octree
	.vtk Logger


	Analysis
	High-level Comparison
	Octree Convergence
	md-flexible Performance
	Boundary Conditions
	Pairwise Traversal Comparison
	High-level Comparison
	Work Distribution in Pairwise Traversal
	Impact of Different Cell Sizes


	Future Work
	Investigating Further
	Building on the Existing Implementation
	Implementation of further Approaches

	Conclusion

	Appendix
	Browser Octree Screenshots
	Algorithms and Configuration
	Helper Functions for Lookup-based Neighbor Finding
	Configuration for the Inhomogeneous Scenario

	Used Tables
	Bibliography


