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Abstract

Artificial neural networks (ANN) are learning models inspired by biological neurons. Although
the definition of a single artificial neuron can be simple (they take a linear combination of
their inputs and then apply a non-linear function), the potential of the networks for learning
complex functions is clear, as they are considered universal approximators. For many years,
image processing methods based on ANN relied on feature extraction processes tailored to
the task at hand until recently, when the combination of large datasets and computational
power boosted the implementation of deep convolutional neural networks (CNN). The CNNs
can be considered learnable filters and can learn a feature extraction function directly from
the data using backpropagation (the learning algorithm for ANN). As a result, it leads to
end-to-end models for image-related tasks, like classification or segmentation. Since these
models are composed of many layers of CNN and ANN, it is usual to refer to its definition
and learning processes under the concept of deep learning. The recent advances in deep
learning resulted in models with human-like performance in tasks like object recognition and
semantic segmentation in real-work images. In the medical computer science community, it
has inspired the development of architectures for medical image processing and computer-
assisted diagnosis. However, in contrast with real-world image analysis, medical images
present a challenging environment for convolutional neural networks. For example, in the
medical image segmentation problem, the similarity between tissues and anatomical variations
between patients can lead to errors in the predictions.

This work address refining the prediction of CNN models for the organ segmentation task.
In this regard, the analysis of high confidence predictions has brought promising results
in their ability to identify potentially correct predictions. We believe that the uncertainty
analysis of CNN’s can drive the refinement of the predicted segmentation. Still, we need
to define the proper mechanism to exploit this information. We have found inspiration in
recent works on semi-supervised graph learning. Graph convolutional networks (GCN) are
an analogy to the CNN applied to graph data. With the information from the uncertainty
analysis, it is possible to define a partially labeled graph representation of the image data and
formulate the refinement process as a semi-supervised learning problem on the graph’s nodes.
Hence, we discuss a post-processing step that integrates the ideas from uncertainty analysis
and semi-supervised GCNs. It can work independently from the CNN architecture without
requiring additional information other than the model and its corresponding input. For the
organ segmentation refinement problem, we show how this composed framework can help
on the pancreas and spleen segmentation tasks. We believe that our work contributes to the
community by discussing new directions for uncertainty analysis and graph learning models
on medical data. We hope it can motivate the development of new graphs and uncertainty-
oriented solutions that lead to better results that can help the medical community obtain an
early and opportune diagnosis.
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Zusammenfassung

Künstliche neuronale Netze (KNN) sind Lernmodelle, die von biologischen Neuronen inspiriert
sind. Obwohl die Definition eines einzelnen künstlichen Neurons einfach sein kann (sie neh-
men eine lineare Kombination ihrer Eingaben und wenden dann eine nichtlineare Funktion
an), ist das Potenzial der Netzwerke zum Erlernen komplexer Funktionen ersichtlich, da
sie als universelle Approximatoren gelten. Bildverarbeitungsmethoden auf Basis von KNN
beruhten viele Jahre auf ein für die jeweilige Úufgabe zugeschnittenes Verfahren zur Merkmal-
sextraktion, Erst vor weniger Zeit als Ðowohl die Masse an Daten als Úuch die Rechenleistung
zunahm, Ðahm die Implementierung Ðogenannter Deep Convolutional Neural Networks
(CNN) zu. Die CNNs können als lernbare Filter betrachtet werden und können mithilfe von
Backpropagation (dem Lernalgorithmus für KNN) direkt aus den Daten eine Merkmalsex-
traktionsfunktion lernen. Als Ergebnis führt es zu End-to-End-Modellen für bildbezogene
Aufgaben wie Klassifikation oder Segmentierung. Da sich diese Modelle aus vielen Schichten
von CNN und KNN zusammensetzen, ist es üblich, ihre Definition und Lernprozesse unter
dem Begriff Deep Learning zu zusammenzufassen. Die jüngsten Fortschritte in Deep Learning
führten zu Modellen mit menschenähnlicher Leistung bei Aufgaben wie Objekterkennung und
semantischer Segmentierung in realen Bildern. In der medizinischen Informatik hat es die
Entwicklung von Architekturen für die medizinische Bildverarbeitung und computergestützte
Diagnose inspiriert. Im Gegensatz zur realen Bildanalyse stellen medizinische Bilder jedoch
eine schwierige Umgebung für neuronale Faltungsnetze dar. Beispielsweise können beim me-
dizinischen Bildsegmentierungsproblem die Ähnlichkeit zwischen Geweben und anatomische
Variationen zwischen Patienten zu Fehlern in den Vorhersagen führen.

In dieser Arbeit beschäftigen wir uns mit der Verfeinerung der Vorhersage von CNN-Modellen
für die Organsegmentierungsaufgabe. In dieser Hinsicht hat die Analyse von Vorhersagen mit
hoher Konfidenz vielversprechende Ergebnisse hinsichtlich ihrer Fähigkeit geliefert, potenziell
korrekte Vorhersagen zu identifizieren. Wir glauben, dass die Unsicherheitsanalyse von CNNs
die Verfeinerung der vorhergesagten Segmentierung vorantreiben kann. Dennoch müssen
wir den passenden Mechanismus definieren, um diese Informationen zu nutzen. Wir haben
uns dabei von neueren Arbeiten zum semi-überwachten Graphenlernen inspirieren lassen.
Graph Convolutional Networks (GCN) sind eine Analogie zum CNN, das auf Graphdaten ange-
wendet wird. Mit den Informationen aus der Unsicherheitsanalyse können wir eine teilweise
beschriftete Graphendarstellung der Bilddaten definieren und den Verfeinerungsprozess als
semi-überwachtes Lernproblem an den Knoten des Graphen formulieren. Daher schlagen
wir eine unbestimmtheitsgetriebene GCN-Verfeinerung als Nachbearbeitungsschritt vor, die
unabhängig von der CNN-Architektur arbeiten kann, ohne zusätzliche Informationen außer
dem Modus und der entsprechenden Eingabe zu benötigen. Wir zielen bei der Aufgabe zur
Verfeinerung der Organsegmentierung auf CT-Daten und validieren unseren Vorschlag anhand
der Segmentierungsaufgaben für Bauchspeicheldrüse und Milz. Die Ergebnisse zeigen eine
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bessere Leistung gegenüber dem Ansatz zur Verfeinerung von Zufallsfeldern dem aktuellen
Stand der Technik. Wir glauben, dass unsere Arbeit einen Beitrag zur Gemeinschaft leistet,
indem wir eine neue Anwendung der Unsicherheitsanalyse und des grafischen Lernens auf
medizinischen Daten präsentieren. Wir hoffen, dass es die Entwicklung neuer Diagramme
und unsicherheitsorientierter Lösungen motivieren kann, die zu besseren Ergebnissen führen,
und die der medizinischen Gemeinschaft helfen können, eine frühe und günstige Diagnose zu
erhalten.
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Deep Learning





1Introduction

Artificial intelligence (AI) has the potential to support people in different aspects of their life.
It can be seen in recent history when computational learning models and deep learning led
to intelligent voice assistants, data analysis for consumer-tailored marketing, and the design
of consumer-level autonomous driving systems. The medical domain is an area where AI
can make a major impact. Computer-assisted diagnosis can help physicians to bring a rapid,
tailored, and opportune diagnosis to patients. AI can be employed in different steps of the
medical analysis pipeline. For example, the identification of anatomies in medical images. This
process can be understood as an image segmentation problem. Medical image segmentation
consists in the division of the image into two or more regions of interest. An example of it
is the division based on the organ boundaries in computer tomography (CT) images (Fig.
1.1). Segmentation is an important pre-processing step in many computer-aided methods,
including computer-aided diagnosis, planning, and navigation. However, the process can be
time-consuming for humans, and in the case of medical data, it requires a level of medical
knowledge. For instance, in organ segmentation, the process requires identifying the organ
boundaries in each slice of a CT volume. In this task, each volume can be composed of between
200 and 400 slices. Similarly, the person in charge of this task requires previous knowledge
in anatomy, to precisely delineate each organ of interest. All this makes a challenging task,
especially, if multiple patients should be analyzed. For these reasons, it has been of interest
to define automatic or semi-automatic methods for performing this task, with the minimum
human intervention.

Fig. 1.1. The image segmentation problem consists in separate the pixels of the image into regions, according to
one specific criterion. In the example, the image is segmented according to the organ to which each
pixel belongs. The different colors define the different regions or organs. Image from the beyond the
cranial vault dataset (https://www.synapse.org/#!Synapse:syn3193805/wiki/)
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Different models have been proposed employing machine learning methods. Supervised
models use a set of training examples for learning a model for the given task. Such examples
are composed of a set of inputs together with their corresponding labels. The objective is
to use the training set to approximate a mapping from the input to the label space. The
models should work for any input, even if they are not part of the training set. For many years,
machine learning models rely on feature extraction, to find the most suitable representation
of the data for the task at hand, until the development of deep learning.

In recent years, the machine learning community has adopted deep learning as the stan-
dard choice for solving different image and non-image-related problems. Deep learning is
composed of models based on artificial neural networks (ANN), specifically, convolutional
neural networks (CNN). These CNN integrate several convolutional and fully connected layers
and allow both learning the given task together with efficient feature extraction, all in an
end-to-end way. Initial models were proposed for classification, however, researchers have
extended the architectures for localization and segmentation tasks. Modern architectures are
motivated by computer vision problems, including object classification [42, 74], localization
[50], and semantic segmentation [47] in real-world images.

1.1 Segmentation and Refinement

These advances in computer vision have motivated the use of CNN for solving medical-related
problems. Many medical-related problems share a common objective with computer vision
tasks. For instance, it would be of interest to classify and localize anomalies in skin images
or endoscopy sequences. The segmentation of anatomical regions can also obtain benefits
from CNN models. However, the characteristics of medical images can represent a challenge
to learning models. In contrast with real-work images, where objects boundaries are well
defined, medical images present low contrast in the boundaries and high similarity between
the tissue of the different anatomies (Fig. 1.2). Also, it is known that deep learning models
are data-hungry and require thousands of labeled samples to train. As we discussed before,
the manual segmentation of medical data is not a trivial task and requires a certain level of
knowledge. It can limit the amount of available data for model training. All this can lead to
errors in the segmentation, resulting in missing regions (false negatives) or the segmentation
of incorrect sections (false positives). All this makes the definition of refinement methods an
interesting topic. In this domain, conditional random fields (CRF) [41] is one of the standard
methods for segmentation refinement.

CRF employs the model’s prediction, together with pixel intensity and positional relationships
to perform the refinement. The method is employed as a post-processing step for each
individual image and does not require ground truth (labeled data) to operate. In this sense,
additional information, like an indicator of prediction correctness, can bring a useful input for
a refinement strategy. However, this is information is not currently considered, and it is not
directly available. It brings us to two main questions: How can we estimate the correctness
of the model prediction? and how can we use this information in a refinement strategy?
To answer the first question, we rely on uncertainty analysis, and for the second question,
we found an answer on graph learning models, and we define the refinement process as a
semi-supervised node classification problem.

4 Chapter 1 Introduction



Fig. 1.2. A real-world image (left) compared with a slice of a CT image (right). Real-world images present a
clear definition of objects, compared with medical images. Similarly, for most of the real-world images,
non-trained annotators can help in the generation of ground truth for model training. As an example,
it would be easy to find and define the contour of the object laptop in the left image, but, would it be
possible for anyone to indicate if the pancreas is present in the right image? Left image: results from
the YOLO object detector (source: Wikipedia). Right image: A slice from the medical image decathlon
dataset (http://medicaldecathlon.com/).

1.2 Uncertainty and Graph Convolutional Models in
Segmentation Refinement

Given a trained CNN, an input image, and their corresponding prediction, the proposal first
performs the uncertainty analysis of the CNN for the given input. Our objective is to propose
a method that works on inference time, as a post-processing step. An important point we
considered is that in inference time, the only information available is the model, the prediction,
and the input. In this sense, we assume that no ground truth information is available. To
obtain the uncertainty information under this scenario, we rely on the Monte Carlo dropout
method [26]. This method allows obtaining the model’s confidence and uncertainty using
its dropout layers. It enables applying it to a wide range of models, without retraining, and
with no additional information than the previously mentioned. We argue that the model
uncertainty includes important information about the correctness of its prediction [20, 51].
Low uncertainty regions might indicate a potentially correct prediction, while high uncertainty
outputs might be potentially incorrect. Including this information in the refinement process
should be beneficial for the correction of the potentially misclassified outputs.

Once we have the model’s uncertainty, we use this information to formulate a partially label
graph. The nodes of the graph are defined by pixels (or voxels) of the images. Connections are
done based on local neighborhoods and randomly chosen long-range nodes. The uncertainty
is employed to define the labels of the node. High uncertainty nodes take the CNN prediction
as label, while low uncertainty nodes are considered to be unlabeled. This defines a partially
labeled graph, where we can formulate a semi-supervised node classification problem [40].
We can then use state of art graph convolutional networks to train a model using the labeled
part of the graph. Finally, the refinement is done by evaluating the graph on the trained graph
convolution model.
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The proposal is tested in two segmentation problems: Pancreas and Spleen segmentation. We
trained a 2D U-Net model on each task, and perform the refinement of a set of CT volumes.
Experiments show that our model can outperform the classical conditional random field
refinement method on both segmentation tasks.

The document is structured in two parts. In the first part, we describe the basics of supervised
learning, neural networks, and deep learning. We introduce the concept of supervised learning
and artificial neural networks in section 2. It follows with an introduction to the convolutional
neural networks and their main building blocks considering some of the architectures proposed
for image classification problems (section 3). Here, we discuss the extension of CNN to the
segmentation task and the definition of fully convolutional neural networks in section. We
review some basic architectures, like the U-Shaped Models, and present some examples of
their application in the medical field. We present the main idea of Monte Carlo Dropout
for uncertainty analysis, and we conclude this part, with a discussion of the spectral graph
convolutional neural networks in section 4.

The second part describes our method and discusses the formulation and the construction of
the partially label graph, based on uncertainty information (section 5). We also present our
experiments and results in the segmentation of two different organs: the pancreas and spleen.
We perform a sensitivity analysis of our proposal (section 6) and we finalize with some final
remarks and possible future directions for graph-based refinement strategies in section 7.

6 Chapter 1 Introduction



2Supervised Learning and Artificial
Neural Networks

Machine learning (ML) involves the processes and algorithms that allow a computer program
to learn from experience. Broadly speaking, ML studies the processes that enable a computer
to improve its performance in a given task, as its experience increases [49]. The literature
gives different learning processes. In this thesis, we will focus on learning neural networks
in a supervised learning scheme. In this learning scheme, experience comes from a set of
training examples, each composed of input and output pairs. The kind of tasks attended by
this learning scheme look for finding a mapping between the input values and desired outputs.
One example is the image classification problem. Experience is expressed as the difference
between the program’s predictions and the real outputs. The computer earns experience by
"training" with different input-output examples. We will dive into more detail on supervised
learning in section 2.1.

Artificial neural networks (ANN) are a type of learning model inspired by biological neural
networks. Their formulation comprehends a linear combination of their input values, followed
by a non-linear activation function (see section 2.2). During the past few years, we have
witnessed the adoption of convolutional neural networks (CNN) and deep learning for solving
a wide variety of computational learning problems. In the computer vision community, CNN’s
are the preferred choice to address tasks like object classification, object localization, and
semantic segmentation. Deep CNNs are capable of obtaining high-performance results, which
has led to a growing academic and technical literature, presenting different architectures,
learning techniques, and studies, together with their potential areas of applications.

The high performance of CNNs has inspired their adoption in different fields complementary to
computer vision. The medical computer science community is not agnostic to these tendencies.
Researchers have investigated the application of CNNs in diverse medical problems involving
computer-assisted diagnosis and navigation, prediction of disease progression, classification,
localization, and segmentation of medical structures, to name some examples. Many of
these jobs rely on CNNs for medical image analysis. This requires the models to work
in a challenging environment that involves fewer annotated datasets, the high similarity
between background and foreground, and multiple imaging modalities (for example, MRI, CT,
endoscopic sequences, ultra-sound, and x-ray, to cite some image modalities). Despite these
difficulties, CNN’s have achieved top results in many medical tasks, gaining high popularity in
this domain.

In this chapter, we introduce some of the main ideas behind machine learning and deep
learning. We present some concepts and notations used in the following chapters of the
document. Our work has the main focus on the analysis of medical images. Hence, even
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Fig. 2.1. The endoscopy image classification task as an example of supervised learning. The model’s input
corresponds to a set of endoscopy images where some of them contain neoplasia. The top row of the
Training Examples images in a) correspond to neoplasia examples (positive class), while the bottom row
contains normal tissue (negative class). a) In the training process, the training set {X, Y } is used to
improve the model’s predictions Y ∗. b) During the evaluation, the model should predict the correct label
even for examples not in X.

though the material presented is general to different data and learning problems, the discussion
centers on learning from image information.

2.1 Supervised Learning

In the previous section, we mentioned we will focus on neural networks and supervised
learning. We will start our discussion with the last concept since most of the methods that
will be presented follow a supervised learning strategy. As presented by [49], we can define a
learning problem in terms of the task at hand, the source of experience, and the performance
metric. Considering the supervised learning scheme, a computational model improves its
performance in a particular task by earning experience from a set of training examples
composed of input data and output targets [49, 56, 67]. We can define the main task of
supervised learning, as finding a mapping between the input’s and output’s distributions, using
the available training data (observed samples). Such mapping should allow obtaining the
correct output even for input data not in the training set (unobserved samples). The main
assumption here, however, is that both, observed and unobserved inputs, come from the same
distribution.

For example, consider the following image classification problem. Suppose we have a collection
of endoscopic images. Some of the images contain healthy tissue. However, a percentage of
this dataset includes abnormal tissue growths, or neoplasias (see Fig. 2.1). We can define this
task as the classification of images in healthy tissue (negative label) or neoplasia (positive
label). The input data consist of a numerical parametrization of the image. The objective is

8 Chapter 2 Supervised Learning and Artificial Neural Networks



to find a mapping between the images and the two available classes (the learning model in
Fig. 2.1a). We are expecting that the learned model can also estimate the output for other
endoscopic images, not in the training set (Fig. 2.1b). Similarly, we expect that all the input
images for the model come from endoscopic studies (same distribution as the training set).
This example incorporates all the elements present in a supervised learning problem.

We still need to formally define the supervised learning problem, and we have not mentioned,
yet, anything in relation to the learning models. Let’s first define the mathematical notation
for the components involved in this learning scheme. We will discuss about the learning model
in the upcoming section. Formally, consider x ∈ Ω to be an observation of a phenomenon
or event, with Ω the set of all possible observations. The dimensionality of x depends on
the nature of the events. For our image classification example, input RGB color images can
be represented as three-dimensional arrays, and hence x ∈ Ω ⊂ Rr×c×3, for images with
dimensions r × c and three color channels.

Each x ∈ Ω is associated to a given target or label y ∈ Y. This can represent each object
category (neoplasia positive or negative) in our image classification example. The relationship
between x and y can be expressed by an unknown function h : Ω → Y:

y = h(x) (2.1)

The objective then, is to find an approximation of h. Considering a training set St =
{(xi, yi)|xi ∈ Ω, yi ∈ Y, i = 1, ..., N}, the supervised learning task consist in using St to
find a function f(x; θ) : Ω → Y such that

f(x; θ) ≈ h(x), ∀x ∈ Ω (2.2)

With θ the model’s parameters of f . This means that, even if the only information available is
contained in St, the approximation f(·; θ) must properly generalize to all other “unseen” data
points xu ∈ Ω − St.

In addition to the training set St, we can distinguish three main components in the supervised
learning task: the function’s representation f or learning model; the learning method that
allows the model to improve its performance from St; and the performance metric, that
evaluates how good is the approximation f .

There exist different computational algorithms proposed for learning a model from a training
set. As examples, we can mention support vector machines, Adaboost, or Random Forests
[12, 43, 49]. However, the discussion of this document will concentrate on artificial neural
networks, since this kind of model currently leads the state of the art in different image
processing tasks. Similarly, the methodology proposed in this thesis is inspired by different
advances in the convolutional neural networks field.

As a final remark, we can distinguish between two kinds of supervised learning problems,
considering the nature of the label space Y. Discrete values of y ∈ Y define a classification
problem Our neoplasia detection example corresponds to this kind of learning task, with
|Y = 2| (binary classification). For continuous values of y ∈ Y, we say the learning task
corresponds to a regression job. For example, if we define the task as estimating the size of
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the neoplasia, we will be working with a regression problem. Most of the tasks addressed by
this thesis correspond to classification employing neural networks. In the upcoming sections,
we will discuss the basics of supervised classification with artificial neural networks.

2.2 Artificial Neural Networks and Classification

So far, we have presented the concepts involved in the supervised learning process. However,
we have not discussed the description of the learning model or the method that allows
accumulating experience for improving its performance. In this section, we review the
artificial neural networks (ANN) as a learning model and discuss the methods for training
them. Our first focus is on fully connected neural networks composed of multilayered
perceptron networks (MLP). With this, we pave the way for discussing, in the following
sections, one of the more successful learning models for image processing, the convolutional
neural networks.

Let’s consider a supervised binary classification problem, with training set St = {(xi, yi)|x ∈
Ω ⊂ Rm, y ∈ {−1, 1}, i = 1, . . . , N}. We can start defining the formulation of a single neuron.
Note that the input to our neuron is composed of a vector of size m. Artificial Neurons
have a biological inspiration. They represent an analogy to the complex interconnections of
biological neurons. Broadly, an artificial neuron takes as input a set of real-valued numbers
(or a real-valued vector), applies a transformation, and outputs a single real value. In this
sense, we can define the general representation of an artificial neuron as a function o(z; ω, b):

o(z; ω, b) = σ(ωT z + b) = σ(w1z1 + w2z2 + · · · + wkzk + b) (2.3)

where the parameter ω ∈ Rk is a vector defining the weights for each entry of the input vector
z ∈ Rk and b ∈ R defines a bias. With this, the neuron first applies a linear transformation to
the input vector. This transformation is followed by the evaluation of the activation function
σ, which leads to the neuron’s output. It is graphically expressed by Fig. 2.2a. Note that
the neuron’s input z is not necessary given by the input data. It is because the input for
any particular neuron may come from the input vector x or other neurons in the network,
depending on the position of the neuron in the network. Consequently, the output of a
particular neuron can feed other units in the ANN or can serve as the final model’s output.
Neurons that take their input from other nodes in the network are called hidden units (or
hidden neurons). On the other hand, neurons that define the model’s output are known as
output units.

ANNs are composed of a set of interconnected neurons of the form of Eq. 2.3. Fig. 2.2b
shows a typical architecture of a feed-forward fully connected neural network. They can be
represented by acyclic directed graphs. Neurons inside the network are organized in layers,
and layers are classified as input, hidden, and output layers (see Fig. 2.2). Neurons in the
input layer receive our input data. The output layer gives us the model’s prediction (or class
estimation). We do not interact directly with hidden layers, as they take inputs from previous
layers in the network at the time that their outputs feed the neurons in the next layers. Each
neuron have their own set of weights and bias. The input vector for a particular neuron is
given by the output of all the neurons in the previous layer. The output layer can have any
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Fig. 2.2. A common graphical representation for artificial neurons and artificial neural networks. a) A single
neuron, takes the weighted addition of the elements of the input vector x = [x1, . . . xk] considering
the weights ω = [ω1, . . . , ωk], adds a bias factor b, and apply a function σ(·). In the image, the bias
is represented as an additional input with weight 1. b) A two-layered feed forward neural network
represented as an acyclic graph. An ANN is composed by the connection of multiple neurons, organized
in layers. Each node in the graph represents a single neuron. The ANN contains a hidden layer with kh

neurons and a output layer with ko units.

number of neurons, allowing us to model multi-class classification problems by including one
output neuron for each available class.

We can define a mathematical formulation for the two-layered neural network represented
in Fig. 2.2b. We consider the m−dimensional input vector x ∈ R. We will also consider the
single hidden layer to be composed of kh neurons and an output layer with ko units. Then, we
can define the output of a given hidden neuron fh,i as:

fh,i(x) = σ(ωT
h,ix + bh,i) (2.4)

for i = 1, . . . , kh, and ωh,i the neuron’s m−dimensional real-valued weight vector with real-
valued bias bh,i. Evaluating all the neurons in the hidden layer will result in a new vector
fh = [fh,1, . . . , fh,kh

]T . We can interpret this as a transformation of the input data from Rm to
Rkh . Now, each output unit fo,j will follow a similar path, leading to the expression:

fo,j(fh) = σ(ωT
o,jfh + bo,j) (2.5)

where j = 1, . . . , ko iterates over the output units. The weights vectors ωo,j are kh−dimensional,
and the input to each neuron corresponds to the outputs of the previous layer. The overall
output vector of the entire network is given by f(x; θ) = [fo,1, . . . , fo,ko

]T . We set θ to contain
all the weights and biases of the network.

An alternative notation can be defined if we put together all the weighting vectors of a given
layer into a matrix form. For the hidden layer, consider the kh × m matrix Wh, containing the
weighting vector ωh,i in its row i for i ∈ [1, kh]. Also, we can collect all the biases into a single
vector bh = [bh,1, . . . , bh,kh

]T . With this, we can define the output of the hidden layer as:

fh(x) = σ(Whx + bh) (2.6)
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In this case, the activation function σ is applied in an element-wise way to the vector Whx+bh.
Defining the ko × kh weighting matrix Wo and ko−dimensional bias vector bo similarly, the
output layer fo(·) follows the same formulation. Then, we can write the final output of the
two-layered ANN as:

f(x, θ) = fo(fh(x)) = σ(Woσ(Whx + bh) + bo) (2.7)

In general, all the layers of an ANN follows the formulation of Eq. 2.6. A neural network or
arbitrary number of layers can be represented by successive compositions of function of the
form of Eq. 2.6.

2.2.1 Activation Function

We have defined an artificial neuron as a family of functions that takes the input vector x,
performs the weighted addition of the input’s entries, and applies an activation function
to obtain the neuron’s output. We also discussed how these neurons can be connected to
obtain an ANN. In short, considering a particular layer in the ANN containing kl neurons, the
equation that defines any layer in the network is given by:

fl = σ(Wlfl−1 + bl) (2.8)

this is the same formulation as in Eq. 2.6, however, instead of representing the hidden layer,
we look for describing a general definition of an ANN layer. In this regard, now Wl represents
a kl × kl−1 weighting matrix, and bl a kl−dimensional bias vector. The kl−1−dimensional
vector fl−1 is the output of the previous layer, with 0 < l < L. The ANN has a total of L layers
and f0 = x.

In this section we discuss the activation function σ(z) of the artificial neuron. We can start
defining the activation function to be the sign function (see Fig. 2.3a):

σ(z) = sign(z) =

1 if z > 0

−1 otherwise
(2.9)

which leads to the definition of the following individual artificial neuron:

o(z; ω, b) = sign(ωT z + b) (2.10)

The neuron of Eq. 2.10 defines the well known perceptron unit. ANN composed by perceptron
neurons are referred as multi-layered perceptron networks (MLP), where each layer follow
the analogous formulation:

fl = sign(Wlfl−1 + bl) (2.11)

We are assuming that the activation function perform a element-wise evaluation when their
input is a vector. Note that defining sign(z) as the activation function, the neuron performs
a non-linear transformation over the input vector. The linear operation ωT x + b in equation
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Fig. 2.3. Three commonly used activation functions: a) The sign(z) activation function employed in the original
perceptron neuron; b) the sigmoid(z) function, a differentiable activation function; c) the rectified linear
unit ReLU(z) activation function. This function is widely employed in current convolutional neural
networks.

(2.10) defines a hyperplane that divides the input space. In this sense, the perceptron behaves
similarly to a thresholding rule over ωT x. It will assign the value of 1 or −1 if ωT x is above or
below −b, respectively.

Perceptron units can be a suitable classifier for binary classification problems where the labels
define two distinguishable clusters in the input space. Datasets with this property are said to be
linearly separable. The learning task consists of finding the parameters ω and b that properly
split the input space, according to the available classes. Unfortunately, real-world problems are
rarely linearly separable. A single perceptron can represent linearly separable data problems
like Boolean functions. It is possible to find the correct weight values to represent basic Boolean
models like the AND, and OR functions. However, coming to more complex representations
like the XOR function requires an ensemble of neurons to be represented. More complex
real-word problems will require a multi-layered representation. There exist methods to learn
the weights of a signed perceptron neuron, but given the limitations in the expressivity of
a single neuron, it is of most interest methods for learning networks of many neurons. We
understand by expressivity, the capability of a model to represent different functions. At this
point, there is a drawback with the sign activation function. The main learning method for
learning ANN weights requires the computation of the derivatives of the activation function.
The sign function presents a discontinuity in the point z = 0, making it not suitable for the
learning algorithm. For this reason, the sign activation function is rarely used in modern
architectures.

Different alternatives have been proposed in the literature. The sigmoid units [12, 49] are an
alternative to the sign activation function. The sigmoid follows the definition:

σ(z) = 1
1 + e−z

(2.12)

The graph of this function is presented in Fig. 2.3b. The sigmoid is a continuous non-linear
function that remembers a smooth version of a step function. It allows computing its derivative,
which will be necessary for training purposes. Similar to the sign activation, the sigmoid
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can be used to separate the input space into two groups. It makes it ideal for classification
problems. Indeed, a single neuron would have the following definition:

o(z, ω, b) = 1
1 + exp (−ωT z − b) (2.13)

which resembles a logistic linear regression model. In contrast to the sign function, the
sigmoid has values bouned between 0 and 1. It presents an asymptotic behavior towards these
values when the input grows to the negative or positive sides, respectively. Similarly, we can
use the value of the sigmoid as an indicator of the model’s confidence, since points with a
high distance from the hyper-plane ωz + b will presents outputs close to 0 or 1. Values close
to the plane will result in the sigmoid giving a value close to 0.5. The asymptotic behavior
of this function can represent a disadvantage. The learning algorithm for neural networks
(backpropagation) employs the magnitude of the gradient to iteratively update the model’s
weights. Having an almost constant behavior in the positive and negative extremes of the
activation function can lead to small gradients. This saturation problem can also result in
small updates for the weights at some point in the training process [48]. Initial ANNs were
composed of sigmoid units. In recent ANN models, the use of sigmoid units is reserved for the
output layers in binary classification tasks. Modern architectures employ a different function
for the hidden layers: the rectified linear unit.

The Rectified Liners Unit (ReLU) offers an alternative as activation function [42]. This
is expressed in Eq. (2.14) and has become almost a standard choice, specially for deep
convolutional models.

σ(z) = ReLU(z) = max(0, z) (2.14)

The function max(0, z) simply outputs the biggest value between o and z. As we can see in
Fig. 2.3c, the ReLU activation function behaves as a linear function for positive values of its
input but collapses to zero for negative values. The growing nature of the linear part can
provide strong gradients for training. This function does not have the saturation problem as in
the sigmoid units. Similarly, it presents a constant gradient, due to its linear behavior. These
translate into an improved training time according to [42]. Additionally, the constant zero
value for negative inputs can potentially set the activation of some neurons to zero. This can
have both, benefits and drawbacks. On the first side, having zero output for some units in the
network can contribute to the efficiency of the network. On the other hand, this can also lead
some neurons to never activate, giving a constant output of zero, and avoiding those units
from training, due to the also constant zero value of theirs gradients. To avoid this problem,
some variations of the ReLU, like the leaky ReLU have been proposed [48]. Instead of having
a constant zero value for negative inputs, leaky ReLU assigns a small fraction of their input.
This can prevent some neurons from never activate, but also, can reduce gains in efficiency
that a zero activation can offer, representing a trade-off to consider in design choices. As we
have mentioned before, ReLU units are a popular choice for hidden layers of the network. At
this point, it is worth mentioning that we will extend the definition of multilayered perceptron
(MLP) as an umbrella term for any fully connected ANN of the form of Eq 2.8, no matter the
choice of the activation function.
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2.2.2 Loss Function and Model Training

We have fully described the ANN as a learning model for supervised tasks. Now we can
introduce the mechanism employed for learning from the training set. We can consider
the ANN as a parametrized family of functions defined by their set of weights Wl and
biases bl, with l ∈ [0, 1]. The training process consists in finding the proper values for the
parameters of the model. The backpropagation algorithm is a learning method still used in
modern architectures. It is based on the gradient descent algorithm that updates the model
parameters base on the gradient of an error metric, known as loss function. The learning task
is formulated as an optimization problem looking to minimize the loss function by searching
in the parameters space. Here is the importance of having a model composed of differentiable
activation functions. In a general definition, the loss function takes the model’s prediction and
the ground truth or label for the corresponding input data and outputs the error in the model’s
prediction. For a model f(x; θ), and training example (x, y) composed of the pair input vector
and label, the loss function gives the error Eθ of the model when predicting the label for x:

Eθ = L(f(x, θ), y) (2.15)

The loss function outputs a minimum value (usually zero) for a perfect prediction of the
input’s label. Its value increases according to the difference between the prediction and the
ground truth label. Backpropagation is a widely used algorithm for training neural networks.
Given a training set S and a model f(x, θ), the objective is find the model’s parameters that
minimize the prediction error:

θoptimal = arg min
θ

Eθ (2.16)

with (x, y) ∈ S. An ideal model must have a value of L(f(x, θ), y) = 0, not only for each
(x, y) ∈ S, but also for all (x, y), x ∈ Ω, y = h(x). Remember that h(x) is the hypothetical
unknown function that relates inputs with labels, and that we want to approximate.

As we mentioned, a gradient descent-based method can be employed to learn the weights
of the model. For a differentiable model with a set of parameters θ = {θi : i ∈ [0, np]}, the
gradient descent method updates each parameter θi with a fraction of the gradient of the
loss function with respect to the corresponding parameter θi. Note that, for neural networks,
the set θ contains all the weights and bias, of all the neurons in the model. The algorithm
iteratively updates each parameter according to the rule:

θi = θi − α
∂L
∂θi

(2.17)

in Eq. 2.17, α is hyperparameter (a parameter of the learning method) known as learning rate,
that defines the fraction of the gradient employed to update the weights. Gradient descent is
an optimization method that can find a global minimum value for convex functions. For non-
convex loss functions, the method can optimize up to a local minimum value. Unfortunately,
this is the case of most complex models, like ANN. The non-linear activation function causes
the loss function to be non-convex. Despite this drawback, gradient-based optimization
methods can still find good-enough weights for the different learning tasks.
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Fig. 2.4. Toy examples of a) a convex and b) non-convex function.The dashed circle represents the parameter
values of the current iteration of a gradient-based learning algorithm. The algorithm searches the
parameter space moving in the opposite direction of the gradient (represented by an arrow). In a convex
function, the method can reach a global minimum. However, in no-convex functions, the method can
guarantee convergence up to a local minimum.

Given that an ANN is composed of a successive composition of functions of form of Eq. 2.3,
we can employ the chain rule to compute the derivative of the loss function with respect to a
particular parameter. However, it is necessary to consider the differences between outputs
units and hidden units. Output units give the model´s prediction, and hence, they have direct
interaction with the loss function. The gradient for an output unit j of the form σ(ωT

j zj + bj)
can be computed as:

∂L
∂θji

= ∂L
∂gj

∂gj

∂θji
= ∂L

∂gj
zji = ∂L

∂σj

∂σj

∂gj
zji (2.18)

with zji ∈ zj the entry i of the input vector zj , θji ∈ ωj is the weight assigned to zji, and
σj = σ(gj) is a short to indicate that the derivative is with respect to the activation function,
with gj = ωT

j zj + bj .

Hidden units do not interact directly with the loss function. But their contribution to the
error is done through the neurons in the next layer. It is because hidden units are employed
as inputs to neurons in the following layer. Again, it is possible to apply the chain rule, to
compute the gradient for hidden units. Using the same notations as in Eq. 2.18, the gradient
for weights in a given hidden unit is computed as:

∂L
∂θji

= zji
∂σj

∂gj

∑
k∈nxt(j)

∂L
∂gk

∂gk

∂σj
= zji

∂σj

∂gj

∑
k∈nxt(j)

∂L
∂gk

θkj (2.19)

considering that the hidden unit j is in the layer l, nxt(j) refers to the units in layer l + 1.
Before obtaining any gradient, it is necessary to evaluate the model with the current input to
compute the output of all the neurons in the model. Also, note that for computing the gradient
of hidden units in layer l, it is necessary to first compute the gradients of the next layer l + 1.
It means that the gradients propagate backward starting from the output units. This algorithm
is known as Backpropagation. It is a well-studied algorithm, and its full formulation can be
found in the literature [12, 49].
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The gradient can be computed using only one, all, or a portion of the training examples. It
is common to employ only a randomly selected portion of the training examples to compute
the gradient. This random portion is known as a batch. In ANN training jargon, an updating
step of the weights (gradient computation with parameter update) is known as an iteration.
When the model has seen all the training examples in the training set (i.e., all the examples
have been used to update the weights), we have concluded an epoch. One epoch has several
iterations, with the number of iteration depending on the batch size. Models are usually
trained for many epochs.

As we mentioned earlier, one of the method’s drawbacks is the convergence to a minimum
local in non-convex function (see Fig. 2.4). This is the case for ANNs. To reduce the effect of
local minimum, it is possible to add a momentum factor to the update rule. The main idea of
momentum is to accumulate a portion of the gradient of previous iterations. The accumulated
gradient can then help to continue the update process in the presence of local minimum.
While the direction of the gradient does not change, the momentum term will accumulate a
portion of the previous values "accelerating" the learning process in the current direction of
the gradient. Momentum updates the weight i of a unit j according to the following ∆θji(t)
value in the iteration t [49]:

∆θji(t) = η∆θji(t − 1) + ∂L
∂θi

(2.20)

The last expression replaces the gradient in Eq. 2.17 and introduce the momentum hyperpa-
rameter η. Different loss functions have been proposed, for example, the mean squared error
(MSE) is defined as:

L(f(x, θ), y) = 1
2

∑
m

(f(x, θ) − y)2 (2.21)

with m the total number of samples. This loss function is generally employed in regression
tasks. For classification purposes, the binary cross-entropy (BCE) is a usual choice for binary
classification problems. It is defined by:

L(f(x, θ), y) = − 1
m

∑
m

y log(f(x, θ)) + (1 − y) log(1 − f(x, θ)) (2.22)

Other errors functions have been proposed in the literature, however, we will introduce them
when discussing the real world applications of the neural networks.

2.2.3 Data Representation and Feature Extraction

We have discussed all the elements necessary for supervised learning using ANN, including the
model definition, error metrics, and learning process. Before finalizing this section, we discuss
the representation of the data employed as input for the models. As we have mentioned
before, we assumed that the input for MLP ANNs is a vector of m elements. It means that we
need to define a parametric representation of the data, especially when our inputs are images.
We can start by briefly describing how an image is computationally represented. An image is
represented by their intensities, and each pixel is described as a numerical value going from
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Fig. 2.5. A R × C color RGB image is represented as a R × C × 3 matrix. Each entry of the matrix indicates
the intensity of the corresponding pixel and color channel. Grayscale images are represented similarly
by 2-D matrices, where the entries indicate the gray intensity. The intensity values for every pixel are
represented by a number between 0 and 255, in increasing order.

zero (black) to 255 (white). In this sense, it is natural to represent an image as a matrix with
dimensions R × C corresponding to the height and width of the image, in pixels (Fig. 2.5).

We can take as an example the image classification problem. Again, we can consider the
input to be an endoscopy frame from a video sequence. The binary classification task is to
decide either neoplasia is present in the image or not. We can parametrize the presence of the
abnormality with the output label y = 1, and the absence of the same can be represented with
y = 0. We can choose an MLP neural network as our learning model.

Now, we need to define what will be the input to our neural network. We can directly use
the matrix representation of the image. Since traditional neural networks require a vector
as the input, we can stack all the columns of the three color channels of the image I with
size R × C to generate a vector x ∈ Rm, m = R · C · 3 (see Fig. 2.6a). Even though we can
use this representation as input for the model, this might not be ideal. The raw values of the
image can contain patterns that are highly similar between the two classes. For example, in
our endoscopy classification problem, the pixels of the tissue inside the neoplasia might be
similar to the healthy tissue. Instead, it is common to compute an intermediate representation
of the image, to include meaningful information into the input vector. This process is known
as feature extraction.

Instead of using the pixels values, we can obtain a different representation of the input image.
We can think of feature extraction as a function ft(x) (See Fig. 2.6b) that takes the raw
input vector and outputs a new vectorial representation of the data. This new representation
potentially has a different dimensionality, and it is expected to highlight important properties
of the image related to the given task.

For example, we can assume that the contour of the neoplasias in our tissue classification
task has a different color distribution. We can think that comparing the color distribution
of the images, we should note these differences in images containing neoplasia, compared
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Fig. 2.6. Model input data: a) We can use the raw intensity values of the image as input for the model. However,
for complex problems, intensities values alone might not be enough to differentiate between the different
classes; b) Instead, it is possible to compute an intermediate representation of the image, employing
meaningful "features" of the classes. This process is known as feature extraction.

with images of healthy tissue. Then, we can employ the normalized image histogram as an
input feature for our model. The histogram is a vector of dimension m, where m in this case
represents the total number of intensity values that a pixel can take. In a standard image, this
is m = 256, for a range that goes from 0 to 255. Each entry of the vector contains the number
of times the corresponding intensity appears in the image. The normalized histogram divides
this vector by a value z in a way that the sum of all its elements equals one. We can think of
the normalized histogram as the probability of finding a particular intensity in the image. If I

is a particular image with I(i, j) its intensity at the pixel position (i, j), then we can define the
histogram vector as:

hist(k) = 1
z

∑
i,j

[I(i, j) = k] (2.23)

We will use the notation [arg] to indicates a value of one if their argument (I(i, j) = k in this
case) is true, and zero otherwise. In this equation, z is the normalization factor that ensures∑

i hist(i) = 1. In this case, z equals to the total number of pixels in I. For a color image, we
could compute the histogram for every color channel, and compose them into a single input
vector.

The histogram introduces a different representation of the image. This representation is
useful when the intensity distribution between the images of the same class is similar. This
assumption can be true for some of the endoscopy images, however, most of them will
contain other elements, like reflections, bubbles, or motion blur derived from the image
acquisition process. The histogram is not the only feature that can be employed to represent
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the information contained in an image. Given the different challenges involved in image
analysis, it is common to use complex features tailored to the problem at hand.

Different image features have been employed in the literature, previous to deep learning. Let’s
take, for example, the detection of Plasmodium parasites in blood smear microscopic images.
Plasmodium parasites are responsible for the malaria disease [59]. It is possible to compute
gray-label features, like contrast, texture-based features, or histogram-based features from
the images. For the histogram-based features, even though the histogram itself can serve as a
feature, it is possible to compute additional features from it, like the mean intensity, standard
deviation, skew, or entropy [59]. It is also a common practice to pre-process the image to
reduce the number of regions to analyze in a process known as image segmentation. We will
discuss in detail segmentation in later chapters. For now, it is enough to mention that this
process will divide (or cluster) the pixels of an image if two or more groups. For our example,
it would be possible to separate the cells in the image from the rest of the sample. All these
objects will contain regular blood cells, together with parasite objects, in the case of infection.
We can classify each of these objects of interest to determine if they represent Plasmodium.
Morphology features could be computed from these structures, as feature extraction methods
[59].

We can find more examples in the task of polyp detection in endoscopic still frames. Polyps
are abnormal growths in the colon tissue and can precursors of colorectal cancer. Indeed, the
images of our neoplasia examples are polyps. Early detection increases the chances of survival
for this type of cancer, motivating the development of computational methodologies for this
problem. The literature has proposed different features for polyp detection, some of them
based on texture information, for example, the color wavelet covariance, texture spectrum
histogram, texture spectrum, and color histogram statistics [32], and the local binary pattern
[5, 32]. Most of these features are based on the differences in intensity between a central pixel
and its surrounding eight-pixel neighborhood. The histogram of oriented gradients (HOG) is
also a choice for the polyp detection problem [34].

These features are no exclusive to Plasmodium or polyp detection tasks, and they can be
computed or "extracted" for different problems. We can decompose these detection problems
roughly in two steps. For a given image I, we first compute a set of feature representations
ft1(I), ft2(I), . . . , ftm(I). The concatenation of these representations in a single vector leads
to the feature vector x. This vector is the input for our classifier f(x; θ). The second step in
the detection problem consists of training the classifier.

Some feature representations can perform better than others, depending on the problem
at hand. Finding suitable features to extract can be difficult. Some features might be
precisely handcrafted for a particular task. We are not going deeper in computing these data
representations since, recently, their use has become secondary, mainly because deep learning
and the convolutional neural networks have changed the feature extraction task.
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3Deep Convolutional Neural
Networks

Data representation was an essential step in image processing tasks. Linearly separable data is
an ideal input for any model, however, this is not the case for most of the data in the world.
To reduce the complexity of the inputs, it was common to change the representation of the
input data, to make the differential attributes of each class more notable for the learning
model. As we discussed previously, it is possible to compute different features that describe
particular properties of the image. In many cases, the features are chosen or specifically
designed for the problem at hand. The selection of features can be a challenging design
problem by itself. Currently, the feature extraction process is included in the ANN design. It
allows the model, not only to learn the task but also to define the best representation for the
input data. The computational model that allows the feature extraction is the convolutional
neural network (CNN). They are a kind of ANN that leverages the 2D spatial information
from the image and computes a representation that is suitable for the task. The construction
of CNN allows bringing to the computed features a grade of invariance upon transformation
in the input image, like translation and small deformations. Convolutional neural networks
define a powerful learning model that can handle different learning tasks in an end-to-end
way, taking an image as input, obtaining an input representation, and giving the classification
results with one single model.

Fig. 3.1. a) An input image, and b) its grid representation. Each element of the grid b) is a numerical value
representing the pixel intensity at that position; c) the weights of a single 3 × 3 convolutional neuron.
The neuron computes the weighted sum of the pixel values inside the gray region in b). Neurons in a
CNN are organized in planes. All neurons of the same plane share weights, but takes different regions of
the image as inputs. It allows performing the same filter, at different image locations.
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3.1 Convolutional Units

Features present a rich representation of input data. However, they need to be selected or
designed according to the problem to attend. This paradigm has changed with the adoption
of deep convolutional neural networks (CNN). CNN’s are capable of use backpropagation to
learn both a suitable data representation from the raw images and a classifier for predicting
input categories.

Like neural networks, the convolutional units have inspiration on models defined to represent
a biological system, specifically, the vertebrae’s vision system [23]. The basic components of
the CNNs are the convolutional units. They have similar behavior as MLP neurons, in the sense
that first compute a linear operation in the input and apply a non-linear function. However,
the main difference is that the linear operation works in a grid-like structure instead of a vector.
Convolutional units can work directly on the image, without changing its representation (e.g.
vectorizing it). Fig. 3.1 illustrates a convolutional unit. The figure shows an input image
(a) and its matrix representation represented by a grid (b). The 3 × 3 grid (c) represent the
weights of the convolutional neuron. The gray region in the image’s grid in Fig. 3.1b is the
input to the neuron. CNN’s neurons operate on small gird-like regions of the image. Each
weight of the neuron multiples its corresponding region in the image. After this, bias value is
added, and the results go through a non-linear activation function. Note that, for simplicity,
the bias and the activation function are not represented in the image.

Neurons in an ANN are organized in a plane, known as a feature map [12]. Each neuron of
the feature map takes a different region of the image as input, and all neurons in the same
feature map share their weights. The region covered by a neuron is called the receptive field.
In our example in Fig. Fig. 3.1, the receptive field as a size of 3 × 3. A CNN neuron can be
interpreted as a feature detector. Then, the neurons of a feature map detect the same feature
but at different positions of the image [12]. It is common to organize the neurons in the
feature map so that the receptive fields overlap with a separation of one pixel. This resembles
the convolutional operation (giving their name to these units) with the kernel given by the
shared weights of the feature map. Considering this last, we can formulate the equation of a
feature map as:

o(x; w, b) = σ(w ∗ x + b) (3.1)

where not x is an input image (or a grid-like structure), and ∗ represents the convolutional
operation with w a K×K convolutional kernel. The output feature map is a grid-like structure,
where the size is not necessarily the same as the input. A convolutional layer is composed
by a group of features map. We can extent the definition presented in 2.8 and define the
convolutinal layer in a similar way.

li = σ(Wi ∗ li−1 + bi) (3.2)

Now the parameter W represents a multidimensional array or tensor, of dimension K ×
K × Di−1 × Di, for two-dimensional input images. Di−1 is the number of features maps of
the previous layer, and in the case of the first layer, it represents the number of channels of
the input image. Di is the number of output features maps of the current layer. Another
way to describe W is considering it as a collection of Di different K × K × Di−1 learnable
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Fig. 3.2. A general representation of a convolutional neural network for the classification task. The channels of
the input image go directly into a CNN composed of groups of convolutional layers (white blocks) and
downscaling operations (red blocks). The receptive field (the input region for a single convolutional
neuron) increases with the depth. The final convolutional layer is used as a feature vector for an MLP to
perform the final classification. The model can be trained end-to-end using backpropagation.

convolutional kernels. The output li is now a tensor, and in the case of 2D inputs (images), it
will take the shape Ri × Ci × Di. The non-linear function σ is applied element wise to each
entry of the output. A given convolutional layer learns to extract a set of Di features from
the input matrix. Like the MLP ANN, a CNN is composed of successive convolutional layers.
Since the feature maps of the convolutional units integrate the information from a region of
the image, staking multiple layers allows the network to increase the region covered by the
receptive field, with respect to the input image. Deeper layers aggregate information coming
from larger regions of the input image. Additionally, CNN models include a downscaling step,
given by a max pool operation. It brings a degree of invariance to transformation of the input
image to the CNN.

Fig. 3.2 presents a basic structure of a CNN. The input represents a three-channel color image.
The white planes in the CNN feature extractor represent the Ri×Ci×Di feature maps obtained
by a given convolutional layer. The red planes represent downscaling operations. As Fig. 3.2
shows, we can add a fully connected MLP after the last convolutional layer. This architecture
defines a deep convolutional neural network, which is trainable with backpropagation. This
fully trainable architecture has the advantage of optimizing the feature transformation of the
input image and the MLP classifier for the defined tasks. CNN only requires the images and
labels to train. It is unnecessary to design a feature extraction method for the input since it is
implicit in the network design.

3.2 AlexNet

Initial proposals contained few convolutional layers (e.g., LeNet had 3 Conv Layers). One
of their main tasks was handwritten digit recognition. They operated on small inputs, e.g.,
images of 16 × 16 pixels [45]. Initially, computational resources represented an obstacle to
designing deeper architectures on higher resolution images until the development of affordable
and efficient consumer-level graphics processing units (GPUs). Deep learning models recently
gained popularity when a deep architecture obtains the best top-5 score in the ImageNet
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Large Scale Visual Recognition Challenge1 (ILSVRC). The ILSVRC challenge includes the
task of image classification with a total of 1000 object categories. The dataset comprised
around 1.2 million training images, 50,000 images for validation, and 150,000 images for
testing purposes. All images are taken from the ImageNet dataset, which contains over 15
million labeled images [42]. The large number of training examples in the ImageNet dataset,
together with efficient GPU implementation of the convolutional operation, made possible the
development of deeper CNN models, containing many hidden layers.

The network proposed by Alex Krizhevsky (known as AlexNet) was trained for the classification
task considering the 1000 possible categories. It contains a total of eight layers divided into five
convolutional layers and three fully connected MLP layers at the end [42]. Deep architectures
have different problems, for example, overfitting. Overfitting occurs when the network
performs outstandingly in the training set but cannot generalize to other examples. It means
that the model has low performance when predicting any other example, not in the training
set. To avoid overfitting issues due to a high number of parameters, and to improve the
model‘s performance, Krizhevsky employed diverse design strategies. Some of them are still
using in current models.

Before the AlexNet, different models use to employ activation functions like the sigmoid. As we
discussed before, some of the disadvantages of these functions are the saturation in the positive
and negative extrema of the function, leading to small update signals (gradients), and slowing
down the training process. The architecture of AlexNet employs ReLU activation functions,
claiming a faster training time compared with saturating nonlinearities. This non-linear
function has become one of the standard activation functions for modern architectures.

Also, to improve generalization, Krizhevsky employed local response normalization to the
outputs of the neurons in a given layer, which performs an inter-feature map normalization at
each point of the current feature map i, considering a local feature map neighborhood of i

within the same layer. Current models still relying on normalization, however, it is common to
follow a batch normalization strategy [33]. Other design choices include overlapping pooling
layers. Pooling layers are employed to compile the information coming from a layer, or group
of stacked layers, and reduce the dimensionality of the output feature maps (downsampling).
Similar to convolutional units, pooling layers act on small regions of the input and are ordered
in a grid-like array. Usually, pooling layers do not overlap, meaning that the regions of action
for each pooling unit are different. The AlexNet instead, proposed to employ overlapping
pooling units.

Methods to reduce overfitting include the artificial augmentation of data. Spacial augmenta-
tions can include rotation, cropping, translations, and flipping of the input image. Intensity
transformation includes changes in the intensity, color, and illumination, for example. A
popular approach to reduce overfitting is the addition of dropout layers [80]. During training
time, this method "drops" a particular hidden neuron with a certain probability, avoiding
the participation of dropped units during the forward-backward pass of the training process.
This process reduces the neuron co-adaptation and forces each unit to learn a robust feature
representation of the inputs. During each training step, this method drops a random number of
neurons. It can be interpreted as generating a random submodel and training it by one single

1https://image-net.org/challenges/LSVRC/
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step. During inference, all the potentially infinite submodels are employed to evaluated to
obtain the predictions. It is done efficiently using all the neurons (no dropout in testing time)
but multiplying their outputs by 0.5. AlexNet uses dropout in the two first fully-connected
layers, with a dropout probability of 0.5.

The neural network trains on two GPUs. When AlexNet was proposed, the GPUs employed
were Nividia GTX 580 with three GB of video memory. It makes a total of 6 GB of memory
used to train a network with 60 million parameters [42]. The network took a training time of
six days in the two GTX 580. It achieved the best top-5 test error rate of 15.3 %, representing
a considerable improvement over second place, with a 26.2 %, during the ILSVRC-2012
competition. At the time this thesis is written, consumer-level GPUs reach the 12 GB of
memory for a single GPU.

3.3 Common Components in Deep CNNs

The AlexNet is one of the recent architectures that brought the focus on deep learning and
deep CNNs. As discussed in the last section, it incorporates different strategies and layers to
define a successful architecture. Some of the ideas included in the original AlexNet are still
used in modern architectures. Commonly, CNNs models can incorporate, in addition to the
convolutional blocks, pooling layers, dropout layers, and batch normalization.

3.3.1 Pooling

A desirable property for the features obtained with CNNs is the invariance to a certain degree
of translation and other transformations in the input. In the classification problem, we can
take an image and apply a slight translation to elements in the image, and this should not
change the class to the image belongs. The pooling operation performs downsampling of the
features maps, reducing its size, and hence the memory requirements. It allows increasing
the number of features maps in the following layers. However, pooling operations allow the
model to learn shift-invariant features.

In practice, the pooling operator is an aggregation operation over a small neighborhood of the
features maps [68]. The most common aggregation layer is the non-overlapping max-pooling
operations. The operation takes a local neighborhood of kp × kp in the input feature map,
and outputs the maximum value inside the neighborhood. Similar to CNNs, max-pooling
units operate in different regions of the input map. It is usual to employ 2 × 2 pooling units,
covering all the input (Fig. 3.3). It allows obtaining a feature map that is half the dimension
of the input.

3.3.2 Overfitting and Dropout

The large number of parameters in deep models can cause overfitting. As we mentioned, it
occurs when a model achieves high performance in the training set that is not reflected when
evaluating new samples. The initial proposal for reducing overfitting consists in reducing the
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Fig. 3.3. A 2 × 2 non-overlapping max-pooling operation. a) The input feature map. Each color represent the
local neighborhood involved in the pooling operation. b) The results of max-pooling, conserving only
the biggest value inside each neighborhood and halving the size of the input feature map.

L1 or L2 norms of the model´s parameters by adding this term to the loss function. Other
methods involve a second set of examples, knwon as the validation set. The validation set
does not take part for training, but it is use to evaluate the model’s performance after certain
number of epochs. If the performance in the training set is increasing, but the performance on
validation start to decrease, we can say that the model is overfitting, and then we can stop the
training.

Dropout [80] is also a method proposed to reduce overfitting in deep learning models. Broadly,
as we mentioned before, dropout reduce the co-adaptation of the neurons by randomly
removing a set of units and their connections during the training step. The idea behind
dropout is that one way to improve the model´s performance is by taking the prediction
obtained from averaging the outputs of the model under several selections of its parameters.
Dropping neurons from the network can be similar to sampling a submodel out of the complete
full-neurons model. Another way to interpret it is considerong that a particular neuron should
learn how to produce a meaningful feature under a randomly chosen sample of the other
units, and hence, reducing complex co-adaptations.

We can describe how dropout works using a single model, like a two-layered MPL, defined as:

yo = σ(xW1 + b)W2 (3.3)

for this example, we set x a Q− dimensional input vector, W1 a Q × K and W2 a K × D

weight matrices of the first layer and second layer, and b the K−dimensional bias vector. As
usual, σ represents the non-linear activation function.
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Dropout considers random binary vectors for each layer. In our example, we can denote as z1

and z2 with dimensions Q and K, respectively. These are vectors composed of independent
random variables following a Bernoulli distribution. It is denoted as:

z1q ∼ Bernoulli(p1), z2k ∼ Bernoulli(p2) (3.4)

with q and k iterating over the entries of z1 and z2, respectively. The parameter p1 and p2 are
known as the dropout rates. They indicate the chance for a particular neuron to be "dropped".
It is usual to select the same dropout probability for all the layers in the network, making
p1 = p2 = p in our two-layered example. During each training iteration, the dropout strategy
samples each of the z´s vector, and performs the forward and backward passes with the
following sub-model:

yo = [σ([x ◦ z1]W1 + b) ◦ z2]W2 (3.5)

where ◦ is the element-wise multiplication (Hadamard product). Each training iteration
samples a different set of vectors. It is equivalent to train several sub-models for one iteration.
During testing, dropout is not applied. Instead, the weights are scaled using the dropout rates
as W1 = pW1, and similar for W2. For deeper networks, or for grid-based models (like CNNs)
these formulations are adjusted accordingly.

3.3.3 Batch Normalization

Normalization aims to reduce the variability in the input data, by bringing all the information
contained in the image into a similar distribution or a similar scale. Normalization is a common
practice for the input data, however, it is also possible to normalize the hidden outputs of the
neural network, in order to reduce the change in distribution that the feature transformations
could bring. According to [33], changes in the layer’s distribution cause neurons to need
to continuously adapt to the new distributions. To reduce this distribution change in the
network activations, the authors of [33] proposed batch normalization, which works at the
training batch level and is included as part of the model´s architecture. The authors claim a
lower dependence on the initialization of model parameters and more flexible choices of the
learning rate, allowing working with high values. Typically, higher learning rates might cause
the learning process to be unstable. Batch normalization has become a recurrent resource in
the definition of models.

Input data can be normalized by subtracting the data mean and dividing the result by the
standard deviation. Batch normalization performs this operation for the inputs of all hidden
layers in the network. The statistics are not computed using the entire training set. Instead,
they are computed using only the samples in the training batch, during each training iteration.
The operation performed is defined by

x̂ = γ
x − E[x]√

Var[x]
+ β (3.6)

here, x represent the input for a particular layer. The parameters γ and β are learnable values
that allow the BN layer to learn the identity function. It allows maintaining the expressivity of
the model and recovering the original input to the layer by the learning algorithm.
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3.3.4 Transfer Learning

Deep learning models require large amounts of labeled data to train. Challenges like the
ImageNet classification challenge bring access to big datasets on real-world objects. However,
it is not the case for other tasks, especially in the medical domain. It can be expensive to
collect labeled data leading to a reduced amount of available training, validation, and testing
examples. For this reason, researchers have been interested in the reusability capabilities
of the CNN models. In particular, can a model trained, for example, in the large ImageNet
dataset, be reused in a related task but with a different dataset. The concept of transfer
learning comprises this strategy. It is common to employ models pre-trained on the largest
datasets like ImageNet for initializing the weights of CNNs. Then, these CNNs train on the
new, and potentially smaller, datasets, for example, medical datasets.

Transfer Learning in deep models is based on the observation that the initial layers of the
CNNs learn to extract general features [87]. These features are common to different tasks and
datasets. Deeper layers of the network are observed to be more task-specific. In this sense, it
is could be possible to initialize a new model with the already learned filters and train the
task-specific parts of the network. Typically, a set of k initial layers are selected and copied
to the new model. The remaining layers of the new model are initialized as usual. During
training, there are different options for processing the selected k layers. These layers can be
frozen, meaning that their values are kept during training. This is useful to avoid overfitting
when the number of training examples for the new task is low. These initial layers can also
be fine-tuned, to adapt them to the new dataset. It is feasible when the number of training
examples for the new task is high. If the amount of training examples is large, then it is
not necessary to transfer previous models, since, with an adequate amount of samples, the
features can be learned from scratch. As we can expect, transfer learning works better when
the transferred task and the new task are similar.

3.3.5 How to implement CNNs?

The implementation of AlexNet employed an efficient CUDA version of the convolution
operation. Implementing the components and training methods efficiently can be time-
consuming. However, given the high interest in deep learning and CNN, diverse frameworks
have been released for fast implementation of CNNs. Those frameworks have efficient
implementations of the basic building blocks for CNNs, and their corresponding learning
algorithms. Currently, two of the most used frameworks are Tensorflow2 and PyTorch3. Both
are based on python, which gives them a high versatility and allows the user to focus on the
design and testing of new techniques or architectures.

2https://www.tensorflow.org
3https://pytorch.org
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Fig. 3.4. a) The VGG-16 architecture. It is composed of 16 trainable layers. The convolutional part is composed
of blocks of successive convolutional layers, with a max-pooling operation at the end. All the layers
inside the same block have the same number of feature maps indicated by a number at the top of the
layer in the image (e.g., the first two layers have 64 features maps); b) A skip connection representing
the residual function of ResNet. The figure presents a residual block composed of a convolution, a ReLU
activation, a second convolution, and the aggregation of the input to the block with the output of the
second convolution. Finally, a second ReLU is applied.

3.4 Deep Convolutional Neutworks in the Medical
Domain: Endoscopic Image Analysis

In this section, we discuss a medical application of CNNs in the medical domain. We have
presented the neoplasia classification as an example when explaining the components of ANN.
In this section, we formally consider it as a medical problem and discuss how deep learning
models are applied to it. We will define this problem as the polyp detection problem. For the
moment, we can consider a polyp as an abnormal growth in the colon tissue. We will come
into further details later in this section. Before starting to discuss this problem, we would like
to briefly introduce three architectures that have been employed in the medical domain. After
the success of the AlexNet, the computer vision community proposed different models for
image classification. In the next years, researchers explored different sizes of convolutional
units, model depth, and methods for initialization, pretraining, and transfer learning from
previous models. It leads to the definition of multiple architectures that are still the base of
recent models. Examples of these architectures are the ResNet [31] and VGG [74] models,
proposed for image classification.

3.4.1 VGG and ResNet

The work presented by Simonyan [74] explores the performance of CNN when the depth
varies. Sinonyan presented an architecture with 3 × 3 convolutional filters and depths from 11
to 19 layers. The networks incorporate Max-pooling after a certain number of convolutional
layers. The number of convolutional layers is variable (from 8 to 16). Finally, three fully-
connected layers follow the convolutional set and give the final 1000 channels output for the
ILSVRC classes (Fig. 3.4a). The number of features maps starts from 64 in the first layer. This
number is duplicated after max-pooling until a max value of 512 channels. The name of the
team participating in the competition was VGG, from where these architectures take their
name.
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The deep residual neural network (ResNet) presented in [31] incorporate residual function in
the network formulation. The residual functions are defined as fl(x) + x, where the function
fl(x) represents the output of weight layer with x its corresponding input. These residual
connections can be interpreted as a shortcut or skip connection that adds information from
previous layers to the input of subsequent convolutional units (Fig. 3.4b). Both architectures
have been used as main building blocks for more complex models, like the region proposal
neural networks, defined for object localization.

3.4.2 Faster R-CNN and Object Localization

ResNet and VGG present powerful CNN architectures for image classification in a global
scheme; that is, these models offer a prediction for the entire image and cannot bring
information at a local level. Local information not only can give information about the class
or object represented in the image. It also can bring the localization of the object inside the
image.

Initial object localization problems addressed with CNN’s required the regeneration of region
proposals. These proposals can be defined as bounding boxes containing a section of the
image. Each proposal is then classified by the CNN to define either it contains or not an object.
In the case of bounding boxes containing objects, the CNN predicts the object’s class. The
generation of the region proposals was independent of the neural network and often led to
bottlenecks in the object localization problem. Faster R-CNN [57] introduces regions proposal
neural network to address this problem.

The main motivation of faster R-CNN is the fact that the activation of the feature maps of deep
layers in convolutional neural networks encodes localization information about the predicted
object. Under this assumption, faster R-CNN employs this information to also compute region
proposals that are later classified to predict object categories. This definition allows employing
the same set of convolutional layers for both tasks. Figure 3.5 presents an overview of this
architecture. Region proposals are generated by sliding a small network over the output
feature map of the last convolutional layer. This network takes an n × n spatial window
as input. Each spatial window is mapped to a lower-dimensional feature map and then
used to feed two fully connected layers for bounding box regression and object/non-object
classification, respectively. Each region proposal is modeled by four values that represent
the coordinates of a bounding box. The network predicts a maximum number of k region
proposals, each one with an object and a non-object probability. From this, the regression layer
has a total of 4k outputs, and the classification layer has 2k. Each proposal is associated with
an anchor centered at the sliding window, and at the same time, each anchor is associated
with a scale and aspect ratio. The anchors have the property of translation invariance and
can address multiple scales making this kind of models perfect for localization problems in
medical images, like the polyp localization task. The region proposal network employs the
following combined loss function:

L({pi}, {ti}) = 1
Ncls

∑
i

Lcls(pi, p∗
i ) + λ

1
Nreg

∑
i

Lreg(ti, t∗
i ) (3.7)
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Fig. 3.5. A general overview of the Faster R-CNN architecture. Faster R-CNN employs the feature maps learned by
a deep network to feed a region proposal network and a classifier. The region proposal network performs
a regression task and outputs a set of object bounding boxes. Each bounding box is parametrized by a
collection of default boxes known as anchors. The Classifier takes the bounding boxes and network’s
feature maps to perform the object classification of the bounding box predictions.

where pi is the probability for the anchor i to be an object, ti represents the four parameters
that define the predicted object’s bounding box. The parameters p∗i and t∗i represent the
same but for a ground truth bounding box associated with an object-positive anchor. The loss
function Lcls is represented by the log loss. The regression loss for bounding box prediction
is given by Lreg(ti, t∗

i ) = R(ti − t∗
i ), with R the smooth L1 loss. Each loss is normalized by

Ncls and Nreg, and λ is balancing parameter. The output of the region proposal network is
evaluated by a Fast R-CNN architecture, for object classification.

3.4.3 Polyp Localization

According to the World Health Organization, 8.8 million people worldwide died from cancer
in 2015. Early diagnostic helps to increase the survival rate for patients; however, this implies
the detection of symptomatic patients as early as possible [8, 72, 73]. Colorectal cancer (CRC)
is the third most commonly diagnosed cancer in the United States, where 135,430 new cases
were expected in 2017 [72], and 97,220 new cases were estimated for 2018 [73]. Survival
rates for CRC reach 95% when detected in the early stages [8]. For this, the gold standard
for CRC screening is the endoscopic analysis of the colon, known as a colonoscopy. During
this study, the endoscopist explores the colon cavity looking for abnormal growths of tissue
known as polyps (Fig. 3.6), which may develop into tumors. Polyps with a certain shape,
kind, and size (e.g., those with sizes between 5 mm and 1 cm) should be removed for closer
examination [15].

The detection problem has been a topic of research, given the importance of early detection in
patients’ recovery. Automatic polyp detection represents a challenging problem. Algorithms
should work in an environment with artifacts like specular reflections and motion blur. It is
also a highly dynamic environment, where structures’ shapes are affected by endoscopic tools
or natural colon movements, leading to variations in the colon shape. It is in addition to the
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Fig. 3.6. Examples of polyps in an endoscopic still frame. Polyps locations are indicated by the green mark.

normal variability in size and shape that these structures present. In contrast with real-world
images, medical imaging presents a high similarity between the structures of interest and the
background. It can be attributed to the fact that the anomalies, like polyps, are variations of
the normal tissue. So we can expect similarities in textures between polyps and regular colon
walls.

The formulation of supervised learning methods requires annotated data. As in different
medical problems, many efforts led to the creation of public datasets for polyp detection.
One of the most used datasets comes from the MICCAI 2015 Polyp Detection in Colonoscopy
subchallenge [10]. The subchallenge was part of the Endoscopic Vision Challenge, and
presented two main problems: polyp localization and polyp detection. At this point, it is
necessary to differentiate these two related problems. Polyp detection defines as a whole-
image binary classification problem. This problem only tells us either a polyp is present or not
in the image. The polyp localization problem cares about where the polyp is in the image. The
objective is to define the polyp’s position in the input image with a pixel-based coordinate or a
bounding box. For the challenge, the indicator was the pixel-based coordinate of the polyp’s
location. The definition of the second problem can already give us the idea that a model like
Faster R-CNN could deal with this problem.

The Polyp Detection subchallenge employed the CVC-ClinicDB [9, 10] the training dataset.
It was provided by the Hospital Clinic and the Computer Vision Center of Barcelona, Spain,
and consists of 612 colonoscopy frames, obtained from 29 video sequences. All the frames
contain at least one polyp with a total of 31 unique polyps. The ETIS-Larib dataset [10]
provided testing samples for the challenge. It contains 44 different polyps within 196 frames
obtained from 34 videos. Both datasets present polyp masks as annotations. Outside this
subchallenge, the Kvasir-SEG dataset [35] presents 1000 images together with bounding box
and segmentation mask annotations.

Early polyp detection methods rely on handcrafted features based on intensity, shape, and
texture descriptors [8, 27, 29]. During the MICCAI 2015 subchallenge, some methods followed
a similar tendency and employed intensity-based features. Another set of models, however,
incorporated ent-to-end architectures and CNNs in the detection pipeline. The last proposals
achieved the best accuracy in the challenge.

A direct application of the Faster R-CNN architecture can achieve F1 score in the range around
0.67, employing the same training and testing sets as the MICCAI 2015 polyp subchallenge.
The performance improves with the addition of pre and posts processing tasks. For example,
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the work presented in [50] employed a larger training dataset composed of 16 randomly
selected sequences from the CVC-Clinic2017 dataset (MICCAI 2017 endoscopic sub-challenge).
This dataset has in total 18 sequences containing 11954 frames. The authors also changed the
training strategy of the original Faster R-CNN. Both localization and classification losses are
optimized at the same time, taking a mini-batch as input. Testing the model on three datasets
(CVC-ClinicDB, CVC-ColonDB, and CVC-EndoSceneStilll), the authors achieved an average F1
score of 0.971 in the localization task.

In a concurrent work, [71] employs the same model for polyp localization. However, some
differences are noticeable with respect with [50]. The authors of this work rely on data
augmentation to increase the number of training examples and post-learning methods to
improve detection performance. The version of Faster R-CNN employed uses inception ResNet
as backbone network, instead of VGG. Data augmentation is a common approach to increase
the number of training examples. In computer vision, larger datasets of real-world images
are available for model design. However, this scenario is different for medical image analysis.
Medical imaging data is limited and requires experts for proper annotation. Taking the polyp
detection task as an example, a certain amount of training or experience is necessary to
differentiate a polyp from the rest of the colon. In fact, this is a labor that only an endoscopist
should perform. It makes it complicated to generate large datasets for model training.

Image augmentation consists of applying spatial and intensity transformation to an input
image to increase the number and richness of the dataset, two key-points in the training of
deep models. The transformations are selected considering the problem at hand. They should
bring differences from the input image but also should generate a plausible image. In the
polyp detection problem, the authors of [71] experimented with different combinations of
rotations, flipping, zooming, shearing, blurring, and brightness transformations to simulate
the environment of endoscopic frames.

3.5 Fully Convolutional Neural Networks and
Segmentation

The last section discussed classification tasks on images using supervised learning. We also
introduced CNN for classification and discussed examples of its application in the polyp
localization problem. In the image classification task, the model takes an image and outputs a
value or vector, indicating the most likely class for the input image. We can think that CNN’s
work on an image-level, where the prediction describes the object contained in the image as a
whole, without giving details of its spatial location in the input. In contrast, region proposal
neural networks like Faster R-CNN, go into a more detailed description of the image by giving
information about all the objects contained in the image and their position. We can consider
that Faster R-CNN is a classifier that works on a regional level.

We can go on a higher level of detail and perform a classification at the pixel level. A criterion
can be, either the pixel belongs or not to a particular object in the image. It will group the
pixels according to the class they belong to, creating mutually exclusive clusters. This process
is known as image segmentation (Fig. 3.7).
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Fig. 3.7. The segmentation task can be understood as a pixel-level classification that forms clusters of pixels based
on a criterion of interest. For example, the image shows a multi-organ segmentation, where each pixel is
labeled according to the organ to which they belong.

Image segmentation consists in divide the pixels of an image into two or more regions.
The main objective is to identify objects or regions of interest in the image using the pixels
contained in these regions. It is usually a pre-processing step in image analysis. For example,
a blood sample can be segmented to separate the cells. Later, a second classifier can focus
on the segmentation results for cell identification. Considering an image I ∈ RR×C with
I(i, j) ∈ RkI the value of the pixel at row i, column j, kI the number of channels, we can
define the segmentation process as a pixel level operator fp : RkI → {0, 1 . . . ko} with ko the
number of classes:

Y (i, j) = fp(I(i, j)) (3.8)

note that ko indicates the number of possible objects to segment. Also, it is usual to define the
label 0 for the background. The background is anything different from the regions or objects
of interest. In the cell segmentation example, the background would be composed of all the
regions that are not a cell. In an organ segmentation example, the background is all the tissue
and image elements not belonging to the organ of interest. Similar to the image classification
task, this definition corresponds to classical pre-deep-learning approaches. Before deep
learning, it was usual to compute a feature representation of the pixels, considering different
attributes of the region of interest. Then, these features are compared with a pre-computed
model, to determine their similarity with the objects of interest, or employed to train a pixel
classifier, modeling the segmentation task as a classification problem. In both cases, it is
necessary to process each of the images to get the results.

With the development of deep learning, the segmentation task was also modeled as an end-
to-end task. Modern CNN architectures allow image-to-image mapping, taking an image
as input, and giving an array with the same dimensions as the input but indicating the
classes for every pixel. Then, a CNN can compute the segmentation of a image as a function
fI : RR×C → {0, 1 . . . ko}R×C :

Y = fI(I) (3.9)

In this definition, the output Y of the function fI is an image of the same dimensions as I. The
difference between CNN’s defined for segmentation and CNN’s for classification problems is
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Fig. 3.8. Example of discontinuity-based segmentation. The example shows an input CT axial slice, a representa-
tion of a 3 × 3 filter, and the corresponding output (edge detection in this example). Image from the
NIH pancreas dataset [16, 61, 62].

that the classification models comprise the input image into a single value or a vector, usually
with dimensions equal to the number of available classes. In the segmentation models, the
output is also an image. CNN’s model does not process a pixel at a time, but the entire image
in a single forward pass. It requires adjusting the architecture of CNN for performing dense
pixel prediction.

3.5.1 Classical Image Segmentation

Before describing how CNNs adapt for segmentation purposes, we can mention the classical
approach used in this task. As mentioned, initial segmentation algorithms were based on the
similarity between the object of interest and the input image. Discontinuities in the image
were also a source of information for segmentation [28]. It was common to compute a feature
representation of the pixel or region information. Similar to the classification task, the main
source of data in an image is the pixel intensities. Discontinuities in the images are used for
detecting basic structures, like points, lines, and edges. The way to detected these structures
is by applying filter operations on the intensities values. A filter is a small matrix (e.g., a 3 × 3
matrix) of real values, that is applied to the image using the convolution operation (Fig. 3.8).
The filter’s response is then thresholded to obtain a binary separation of the input image with
the structures of interest. It is the base of different edge detectors, like Canny [14, 28].

Intensity can be applied directly to separate the image. We can consider the binary seg-
mentation task. Similar to its classification analog, it consists in dividing the image into
two groups. One of those groups is the object or region of interest, and the second usually
corresponds to the background. We can take the medical problem of cell segmentation as an
example. Let’s consider we are interested in segmenting Trypanosoma cruzi, a blood parasite
protozoa that causes the Chagas disease [52, 76]. A single method to segment the image is
checking if the intensity values are above a given value. It will lead to segmentation function
Y (i, j) = fp(I(x, y)) define by the sign function:

Y (i, j) = fp(i, j) =

1 if I(i, j) > τ

0 otherwise
(3.10)
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Fig. 3.9. From left to right: A gray scale image containing a Trypanosoma cruzi parasite; The segmented image
using a threshold of τ = 150; The histogram of the gray scale image

This method is known as thresholding with τ the given threshold. The threshold can be chosen
base on the histogram of the image. This method is useful when the intensities of the two
classes in the image are clearly distributed in different extrema of the histogram. In this
situation, the histogram of the image shows two peaks, corresponding to the two dominant
intensities. The histogram in the third image of Fig. 3.9 shows an example of this. If our
objective is segmenting all the cells in the image (blood cells and parasite), this method can
be ideal. In the results presented in the image, the background is clearly separated from the
blood cells and parasite. However, there is no separation between the different instances. As
a result, the parasite is almost fused with a round cell in the image. Now, let’s suppose that
our objective is to segment only the parasite in the image. In this case, single thresholding is
not enough to separate the image components. The intensity distribution of the parasite is
similar to the distribution of the blood cells, making this a challenging task for thresholding
methods.

K-Means and Region Growing are other well-known segmentation [28]. K-Means is an unsu-
pervised clusterization method. It iteratively segments the image into k clusters considering
the distance of the intensity distribution of the pixels with the cluster’s means. The number of
clusters is user-defined and the initial means are chosen randomly between the pixels in the
image. Each iteration, update these means using the pixels inside the cluster. Region growing
is a graph-like algorithm that takes an initial pixel position as a seed and propagates through
its neighboring (adjacent) pixels. The propagation is done only if a particular neighbor is
similar to the seed pixel. The region grows through different neighborhood levels until the
similarity criterion is not meet. We are not going into further details on these methods, but
image 3.10 shows the results of segmenting a color blood sample with these algorithms. As
can be seen, k-means can have a similar problem as thresholding, when the distribution
of the different classes is similar. Region growing presents better performance but requires
user-initialization. Similarly, overlapping objects with similar intensities can cause the region
to grow beyond the object of interest, like the blood cell and the parasite presented in image
3.10.
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Fig. 3.10. From left to right: A color image containing a Trypanosoma cruzi parasite; The segmented image using
k-means with k = 3; The results from the region growing algorithm

3.5.2 Convolutinal Networks for Image Segmentation

We have seen that one of the initial applications of CNNs is the classification problem. Like
AlexNet or VGG, initial proposals include a fully connected network, like the multilayered
perceptron, which performs the final classification. However, segmentation tasks require a
classification at the pixel level instead of at the image level. The design of CNNs increases the
effective receptive field in each convolutional layer and reduces the resolution of the features
maps. It contrasts with the segmentation problem, where the output has the same or a similar
resolution as the input.

In this direction, Jonathan Long [47] presented one of the first works that contributed to the
extension of classification CNNs to segmentation tasks. Long presented a fully convolutional
network (FCN) trained end-to-end for the semantic segmentation problem. FCNs can generate
dense pixel predictions training directly on images and require any pre-processing or post-
processing.

Figure 3.11 presents a graphical comparison of the FCN compared with a CNN model. Both
models integrate a set of convolutional and max-pooling layers. However, while the CNN
includes a fully connected layer as the final output, the FCN contains only convolutional
layers. Compared with the CNN, the fully connected network removes the final softmax
output and replaces the fully connected layers (blue box in Fig 3.11) with convolutional layers.
This change allows the network to operate on images of arbitrary size. A model of these
characteristics outputs a coarse heat map that encodes the object’s position in the input. To
produce a dense prediction, FCN incorporates a deconvolution layer that recovers the spatial
resolution, initially lost by the effect of the convolution and max-pooling steps.

FCN models take CNNs as a building block, which is employed as a backbone network. One of
the most common architectures initially employed, for example, in the pancreas segmentation
problem, is the VGG 16 architecture. However, it should be possible to change the backbone
network by replacing the fully connected layers of the CNN. Employing existing networks as
backbone gives an additional advantage: we can pre-train the backbone network on a different
dataset (even on classification) and use the pre-trained model to initialize the weights of
the FCN. We can initialize almost all the weights of the segmentation model, except for the
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Fig. 3.11. Comparison between a (VGG-like) CNN architecture and its analogous FCN architecture. FCN replaces
the last classification layer by a deconvolution filter (up-sampling) for dense pixel-wise prediction.

convolutional layers that replace the fully connected ones. This transfer learning strategy
can be beneficial when working with medical images, where the amount of label data could
be limited. In this sense, the backbone network can train on the large image classification
datasets, like coco4 or ImageNet5, and fine-tuned to adapt the learned weights to the smaller
segmentation datasets.

The deconvolution step of the FCN combine different feature channels from the deep layers
of the backbone network. The original paper [47] tested three different versions of the
FCN, integrating the max-pooling layer’s output at various resolutions (FCN32, FCN16, and
FCN8, see Fig. 3.12). It allows considering local and global information in the prediction of
the segmentation map. FCN32 considers only the outputs after the last pooling layer, and
hence, it includes information obtained at a coarse level. FCN16 and FCN8 incorporate the
outputs of previous pooling layers, giving a more refined level of information, which leads to
improvements in the prediction.

3.5.3 U-Shaped Networks

The proposal of Olaf Ronneberger [58] is one of the most employed architectures in medical
image segmentation in different imaging modalities, including computed tomography. Ron-
neberger presented a fully convolutional encoder-decoder architecture for biomedical image
segmentation.

The U-Net integrates a set of convolutional blocks. Each block contains two consecutive
convolutional layers and a max-pool layer. In the encoding part of the network, each block

4https://cocodataset.org/
5https://www.image-net.org/
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Fig. 3.12. A schematic representation of the different versions of FCN (FCN32, FCN16, and FCN8). Each version
combines convolutional layers at a different resolution.

Fig. 3.13. A schematic representation of U-Net architecture.
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halves the spatial dimension of the image and duplicates the number of feature channels.
The expansive part of the U-Net replaces the max-pool layer for an up-convolution to recover
spatial resolution. Similarly, the number of channels is duplicated in each convolutional
block of the expansive part. Fig 3.13 shows the architecture of the network. The U-Net
incorporates at the end a 1 × 1 convolution with a number of features equal to the number
of segmentation classes. It integrates the feature maps from the last block of the model for
pixel-wise prediction.

Another particularity of the network is the skip connections showed as arrows in Fig. 3.13. The
skip connections concatenate the feature maps in the encoding part with their equivalent in
the expanding path of the U-Net. In the original implementation, each convolution employs a
3 × 3 filter and takes the valid part of the convolution (no padding). It reduces the dimensions
of the feature maps after every convolution. During the concatenation, the maps coming from
the encoding part should be cropped to compensate for the loss in size. However, these are
design choices that can be modified. While it is common to maintain the 3 × 3 convolution, it
is also possible to add appropriate padding to generate an output of the exact dimensions as
the input.

3.5.4 Dice Loss in Image Segmentation

The U-Net and FNC employes a pixel-wise loss function. In the case of the U-Net, it is a version
of the weighted cross-entropy loss function. The general definition of the binary cross entropy
loss is given by:

Lbce =
∑
i,j

w(i, j)(Ygt(i, j) log(Yp(i, j) − (1 − Ygt(i, j)) log(1 − Yp(i, j)) (3.11)

Considering an image I of dimensions W × H with ground truth mask Ygt ∈ {0, 1}W ×H , and
the predictions scores Yp = f(I, θ), Yp ∈ [0, 1]W ×H , with i and j iterating over the columns
and rows of the images, respectively. In eq. 3.11, w(i, j) is a weighting matrix for each pixels
of the image. These loss metrics are standard in classification tasks. However, its application
to segmentation can have drawbacks, especially when the amount of background pixels is
large or the object of interest is small. Since these functions evaluate the error considering
each pixel individually, a model can collapse into a trivial solution, predicting only background
for all the inputs. One option is the careful weighting of the loss function. A more elegant
solution is the formulation of an overlap metric as a loss function. In image segmentation, dice
loss is one of the standard selections. It is a formulation of the dice score as a loss function.
The dice score is a metric of similarity between two sets. In the case of image segmentation,
it indicates the level of similarity between two binary segmentation maps Im1, Im2. It takes
values between zero and one, and is defined as:

dsc = 2|Im1Im2|
|Im1| + |Im2|

(3.12)

Where | · | holds for the number of non-zero pixels in the binary images. The formulation of
the dice loss takes the complement of the dice score, i.e., 1 − dsc. It is worth mentioning that

40 Chapter 3 Deep Convolutional Neural Networks



Fig. 3.14. A comparison of the three different views of a CT volume: Axial, Coronal, and Sagittal.

the dice loss employs a soft version of the dice score that compares the binary ground truth
mask with the prediction scores of the CNN. The dice loss for the predictions is given by:

Ldsc = 1 −
2

∑
i,j Ygt(i, j)Yp(i, j)∑

i,j Ygt(i, j) +
∑

i,j Yp(i, j) (3.13)

With i and j iterating over the columns and rows of the images, respectively.

3.5.5 FCN in the Medical Domain: Pancreas Segmentation

We can find examples of the application of FCN models in the pancreas segmentation problem.
The pancreas is a small organ that presents high inter-patient variability in its shape compared
with other organs, like the liver. It makes the segmentation of the pancreas in CT data a
challenging task [22, 63]. The problem can be addressed as a 3D or 2D segmentation problem.
Initial approaches employed 2D models and performed the segmentation in a slice-wise way
to overcome the high GPU memory requirements of 3D models.

The initial adoption of deep learning models in pancreas segmentation followed hybrid
approaches working on generated image patches [21, 60]. For example, Roth [60] proposed
classifying image patches as pancreas, using a CNN. The patches were obtained based on
the superpixels extracted from the input slice, using the simple linear iterative clustering
algorithm [1]. The patches then feed a standard CNN for binary classification.

With the proposal of FCNs networks, researchers started to adopt this architecture in the
medical segmentation problem. An application of the FCN-8 model can be found in [92].
In that work, a set of three 2D FCN-8 were trained to segment the pancreas in the different
planes of the CT input (coronal, axial, and sagittal, see Fig. 3.14). The results are aggregated
to produce an initial coarse segmentation of the organ, with a dice score of around 75%. The
coarse segmentation is employed to generate a region of interest (ROI) around the pancreas.
Finally, a second set of three FCN-8 perform an iterative segmentation inside the ROI to refine
the segmentation, yielding a dice score of 82.3%. It is worth mentioning that the models in
[92] train with the dice loss function.
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A similar two-stage cascade approach is presented in [63], where holistically nested models
are employed to generate a prediction of the pancreas’ interior and boundaries over the three
CT planes. The outputs create an ROI that encloses the organ. In the second stage, the score
maps generated by the networks are employed to generate a superpixel over-segmentation of
the ROI, that are finally aggregated using a random forest classifier.

Cascade methods can also be applied to 3D models. Two of the limitations of 3D models are
the amount of data and memory required for training. One technique to deal with this issue is
sub-sampling the input volume into smaller overlapping cubes. The work of [93] proposed
a two-stage approach based on this strategy. The model in the first stage trains on a set of
sampled sub-volumes obtained from the full-size input. This strategy allows reducing the
memory requirements for training the network while producing a coarse segmentation. Again,
an ROI is defined with the coarse segmentation. The second model trains to segment the
organ in this lower-size input, allowing a dense number of sub-sampled volumes. The network
proposed in both stages follows an encoder-decoder architecture with residual connection,
similar to U-Net.

Single steps architectures have also been applied in pancreas segmentation. The work of Oktay
[54] employs a single-stage method based on the 3D U-Net. Instead of employing a model to
generate a coarse ROI, Oktay incorporates attention gates between the skip connections of the
U-Net architecture. It allows the feature maps of the network to implicitly focus on relevant
regions without explicit cropping of the input. Due to memory requirements, the inputs are
downsampled to fit the hardware limitation.

3.6 Uncertainty Estimation

We have discussed the application of convolutional neural networks as predictive models. In
this section, we discuss a method for uncertainty estimation of CNN. Uncertainty is inherent
to probabilistic distribution. However, the current formulation of CNN follows a deterministic
nature, given by the fixed model’s weights. Those weights are learned in an optimization
process, for example, backpropagation, with the objective to reduce the errors in the loss
function. This can cause a bias towards the training set, causing the model to be overconfident
about some predictions, not in the training distribution. Another consequence is the risk of
overfitting the training set.

Before continuing with the discussion, we need to review some basic definitions of probability
and Bayesian theory. For a discrete variable x, we define p(x = x) as the probability of x
being in state x. The value of p(x = x) indicate our belief or the certainty that the state of
the variable x is x [7]. A value p(x = x) = 1 indicate a total confidence that the current state
(or value) of the variable x. In contrast p(x = x) = 0 tells us that the state of x is not x. Any
other provability between 0 and 1 expresses the certainty of the given state. Considering set
dom(x) as the set of all the possible states of x by definition we have that 0 ≤ p(xi) ≤ 1, for
all xi ∈ dom(x) and: ∑

xi∈dom(x)

p(xi) = 1 (3.14)
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we are considering the expression p(xi) as a simplified version of p(x = xi). We call Eq. 3.14
the normalization condition and p(x) the probability distribution of x.

For a pair of random variables x and y, we can express the probability of the intersection x ∩ y

with the joint probability distribution p(x, y) = p(y, x). For a pair of random variables x and y,
we can express the probability of the intersection x ∩ y with the joint probability distribution
p(x, y) = p(y, x). The joint distribution expresses the probability of x being in state x at the
time that y is in state y. The joint distribution also meets the normalization condition, and∑

xi,yj

p(xi, yj) = 1 (3.15)

with xi and yi iterating over dom(x) and dom(y), respectively. The extinction of the joint
distribution to more than two variables is straightforward. Now that we have introduced the
joint distribution, we can define two fundamental rules for the probabilities distribution [12].
The first rule is known as the sum rule or marginalization rule. Given a joint distribution
p(x, y), it is possible to eliminate, or integrate one of the variables by summing across their
domain. The marginal distribution of p(x, y) is given by:

p(x) =
∑
yj

p(x, yj) (3.16)

The second rule is called the product rule and relates the joint distribution with the concept of
conditional probability:

p(x, y) = p(y|x)p(x) (3.17)

The conditional distribution p(y|x) expresses the probability of the variable y having previous
knowledge about the variable x. It is read as "the probability of y given x. Note that p(y|x) is a
distribution over y. Setting the state of the x fix, the sum across the value of y is equal to 1. On
the other hand, set y fix and integrating the values of x does not guaranty the sum will be equal
to 1. If x and y are independets, then p(x|y) = p(x) and p(y|x) = p(y). In consequence, the
joint distribution for independent random variables is given by p(x, y) = p(x)p(y). Considering
the product rule and the fact that p(x, y) = p(y, x), we obtain the Bayes rule, which is defined
as:

p(x|y) = p(y|x)p(x)
p(y) = p(y|x)p(x)∑

x p(y|x)p(x) (3.18)

The last formulations consider discrete variables. Continuous variables follow an analog
formulation where the sums are replaced by integrals. For a continuous variable, p(x) is
a continuous function known as the probability density function . Similar to the discrete
counterpart, the density function p(x) ≥ 0 and∫ ∞

−∞
p(x)dx = 1 (3.19)

Similarly, for two continuous random variables x and y with joint density function f(x, y), the
marginal density is defined as:

p(x) =
∫ ∞

−∞
p(x, y)dy (3.20)
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The product rule for continuous variables follow the same formulation as described by Eq.
3.17. The Bayes rule for continuous variables is then defined by:

p(x|y) = p(y|x)p(x)
p(y) = p(y|x)p(x)∫ ∞

−∞ p(y|x)p(x)dx
(3.21)

Considering the probability distribution (or density) p(x) of a random variable x, we can also
compute the expectation and the variance of some function f(x) of the random variable with
respect to its distribution. The expectation for the function f(x) is defined as the average
weighted by the probability distribution. For continuous random variables, it is defined as:

E[f ] =
∫

p(x)f(x)dx (3.22)

for simplicity, we have omitted the range of the integral (but should cover the entire domain of
x). The discrete version is equivalent, only replacing the integral with a sum. In both cases, if
we consider a set of N samples of the random variable x, the expectation can be approximated
with [12]:

E[f ] =
N∑

i=1
f(xi) (3.23)

The variance is an indicator of how much f(x) varies around its mean. The variance is defined
in terms of the expectation as:

var[f ] = E[f(x)2] − E[f(x)]2 (3.24)

Setting the identity function f(x) = x, we can obtain the expectation and variance of the
random variable x. The variance can be also applied to pair of variables. For two random
variables x and y, the covariance indicates the extent to which the variable vary together and
is defined as [12]:

cov[x, y] = Ex,y[xy] − E[x]E[y] (3.25)

The concept of covariance can be extended to vectors composed of random variables. Given
two N−dimensional random vectors x and y, their covariance is a N × N matrix defined by:

cov[x, y] = Ex,y[xyT ] − E[x]E[yT ] (3.26)

if is common to use the notation σ2 to represent the scalar varaince, and K or Σ for the
covariance matrix.

3.6.1 Probabilistic Models

Knowing the model’s uncertainty can be crucial for some applications. We can take, for
example, the tasks of autonomous driving and medical applications. In those applications, the
model needs to detect pedestrians or life-threatening diseases. Given that a wrong prediction
can have serious consequences, it is indispensable to know when the model is unsure about
its predictions.
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Uncertainty is inherent to probability. In order to have a confidence estimation of a model, it
is necessary to define it from a probabilistic perspective. Instead of directly taking the model’s
output, we can represent the uncertainty in the prediction with a random noise over the
model’s output. The random noise then follows a probability distribution p(y) that depends
on the input and model’s prediction. We also need to express the model p(f) in a probabilistic
setting. As discussed, models employ a training set D = (X, Y) with a collection of samples X
and corresponding labels Y. The learning process consists in using the training set to finding
a set of parameters w that minimize the loss function. We can consider a distribution overt he
weights w, that depends on the training set. Then, defined a distribution over the model’s
weights, we can define the predictive distribution of y for an input x as [25, 26]:

p(y|x, X, Y) =
∫

p(y|x, w)p(w|X, Y)dw (3.27)

the last formulation expresses the dependence of the prediction y on the input and the
parameter selection. At the same time, the distribution of parameters is conditioned to the
training set. The inference process in Eq. 3.27 requires computing the marginal with respect
to the parameter set w. It is similar to aggregate the predictions of potentially infinite models
(as defined by each parameter).

It is common to define p(y|x, w) to be a Gaussian distribution, with mean given by the model
µ = f(x; w) and variance σ2. In this case, it is considering that the predictions are observed
through Gaussian noise. The Gaussian distribution N (x|µ, σ2) is defined in terms of its mean
and variance as:

N (x|µ, σ2) = 1
(2πσ2)1/2 exp{− 1

2σ2 (x − µ)2} (3.28)

the expectation of the Gaussian distribution is given by the µ and its variance by σ2. In some
cases, σ is expressed in terms of its inverse as β−1, and called the precision parameter[12].
The vectorial version of the Gaussian distribution is.

N x|µ, Σ) = 1
(2π)N/2

1
(|Σ|1/2 exp{−1

2(x − µ)T Σ−1(x − µ)} (3.29)

where N is the number of elements of the input vector, Σ represents the covariance matrix
cov(x, x). Putting all together, the distribution p(y|x, w) in Eq. 3.27 can be chosen to be:

p(y|x, w) = N (x|y(x; w), β−1) (3.30)

The distribution of the parameters p(w|X, Y) in Eq. 3.27 can be obtained following the Bayes
rule. It leads to the following expression:

p(w|X, Y) = p(Y|X, w)p(w)∫
p(Y|X, w)p(w)dw

(3.31)

the expression p(w|X, Y) is known as the posterior distribution of w, and indicates the
probability distribution of the models with parameters w under the evidence D = (X, Y).
Similarly, p(Y|X, w) is known as the likelihood, and it defines the probability for a particular
model with parameters w to generate the training labels, considering the training inputs. The
posterior distribution is intractable, specially for complex non-linear models like CNNs [12,
26]. For this reason, it is common to employ optimization and approximation methods for
estimating the intractable posterior.
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Variational inference is often used to approximate the posterior. It consists in employing a
parametric distribution q(w) with parameters Φ, and find the set of parameters that minimize
a similarity metric between q and the original distribution p. The similarity between the
approximation and the target distribution is given by the Kullback-Leibler diverge:

DKL(q||p) =
∫

q(w) log( q(w)
p(w|X, Y) ) (3.32)

Since the KL divergence also requires computing the posterior, in practice it is not explicitly
optimized. Instead, the posterior is approximated by maximizing the evidence lower bound,
also known as ELBO:

ELBO =
∫

q(w) log(p(w, X, Y)
q(w) )dw = log(p(X, Y)) − DKL(q||p) (3.33)

The distribution log(p(X, Y)) in the right of the ELBO does not depend on the prior or the
parametric distribution q, and hence it is fixed in the optimization process. Therefore, the
choice of the parameters of q that maximize the expression in the integral in Eq. 3.33 will
also indirectly minimize the KL divergence [12, 26]. The work of Gal shows that modern
CNN models, trained with dropout layers, maximize the ELBO for a particular selection
of probability and parametric distributions. It indicates that a CNN can be equivalent to
approximating a deep Gaussian process, and hence, brings the possibility to compute the
uncertainty for deep ANNs. The process proposed by Gal [25, 26] to estimate the model’s
uncertainty is known as Monte Carlo Dropout.

3.6.2 Monte Carlo Dropout

This thesis performs the uncertainty analysis of a U-Net model using the Monte Carlo dropout
strategy. We will briefly describe this method and mention some medical applications of
uncertainty. Yarin Gal proposed Monte Carlo dropout in [26] as a strategy to approximate a
probabilistic model with CNNs that trains with dropout layers. Considering the classification
learning problem, a Gaussian process for classification can be formulated as:

F |X ∼ N (0, K(X, X))

Y |F ∼ N (F, IN )

cn|Y ∼ Categorical(Softmax(yn))

(3.34)

with F representing the set of possible functions distributed normally with K the covariance
function, X ∈ RN×Q is a random matrix containing a set of N Q-dimensional inputs, and
Y ∈ RN×D is the random output matrix composed of N vectors yn of dimension D, and
cn defines the observed class label. The predictive distribution is given by a Categorical
distribution defined over a Softmax function evaluated on the output matrix Y . Gal defined
an approximation for the covariance function given by the covariance matrix:

K̂(xi, xj) = 1
K

K∑
k=1

σ(wT
k xi + bk)σ(wT

k xj + bk) (3.35)
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with wk, bk samples of random parameters with distributions p(w) and p(b), respectively. This
definition leads to formulating the probabilistic model as:

F |X, W1, b ∼ N (0, K̂(X, X))

Y |F ∼ N (F, IN )

cn|Y ∼ Categorical(Softmax(yn))

(3.36)

with W1 a Q × K matrix of parameters. We can obtain the predictive probability given a set of
inputs by computing the marginal distribution over the variables F , W1, Y , and b as:

p(c|X) =
∫

p(c|Y )
( ∫

p(Y |F )p(F |W1, b, X)p(W1)p(b)dFdW1db
)

dY

=
∫

p(c|Y )p(Y |W1, b, X)p(W1)p(b)dW1dbdY

(3.37)

The expression in the second line is obtained by integrating over F . Additionally, Gal in-
troduced an auxiliary random variable W2 ∼ N (0, IK) of dimensions K × D, yielding the
following expression:

p(c|X) =
∫

p(c|Y )p(Y |W1, W2, b, X)p(W1)p(b)dW1dW2dbdY (3.38)

The posterior distribution of the model’s parameters W1, W2, b is intractable. A common
approach to deal with the intractable distribution is to condition the model on a finite set
of random variables [25]. For it, a variational distribution q is defined, and the Kullback-
Leibler (KL) divergence between the approximation and intractable posterior is minimized.
Minimizing the KL divergence is equivalent to maximizing the log evidence lower bound
(ELBO). Considering the distribution of eq. 3.38, the ELBO is defined as:

ELBO := q(ω) log p(c|Y )p(Y |ω, X) − KL(q(ω)||p(ω)) (3.39)

for simplicity, we wrote ω = {W1, W2, b}. Gal employed the distributions

W1 = z1M1, with z1 = diag(zi), i = 1, . . . , Q

W2 = z2M2, with z2 = diag(zj), j = 1, . . . , K

b = m

(3.40)

with z1, z2 diagonal matrices with elements zi ∼ Bernoulli(p1), and zj ∼ Bernoulli(p2),
respectively, M1, M2, m variational parameters, for approximating the intractable posteriors.
It leads to log evidence lower bound given by (the details can be found in [25]):

ELBO := 1
N

N∑
n=1

log p(cn|ŷn) − p1

2N
||M1||22 − p2

2N
||M2||22 − 1

2N
||m||22

ŷn =
√

1
K

σ
(

xn(ẑn
1 M1) + m

)
ẑn

2 M2)

(3.41)
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Which is equivalent to train a two-layered neural network model with dropout applied and
with regularisation over the network’s weights. This results can be extended to multi-layered
convolutional neural networks.

In inference time, any model trained under the last conditions can be employed to obtain an
approximation of the predictive probability by using [26, 39]:

p(y = c|x) ≈ 1
T

T∑
t=1

Softmax(f(x, θt)) (3.42)

with f(x, θ) a CNN trained with dropout layers, and θt the model’s weights with dropout
applied during inference time. This equation is equivalent to integrate T samples from
the predictive distribution (Monte Carlo integration). Once we have the approximated
predictive distribution, it is possible to employ the entropy of the distribution as an indicator
of uncertainty.

3.6.3 Medical Applications of Uncertainty Analysis

Knowing what the network does not know has several advantages. For example, in the
semi-supervised learning problem. Semi-supervised learning defines a set of methods that
employ labeled and unlabeled data for model training. The data annotation process can
be complex in the medical domain, given that it requires experts in the process. It leads to
creating datasets where only a portion of the samples are properly annotated for training.
Given the necessity of large data availability for CNN training, it is essential to develop
methods for including the unlabeled data in the training process. Yu [88] addressed the
problem of semi-supervised left atrium segmentation considering the model’s uncertainty. The
method proposed in [88] employs as base the student-teacher strategy, where a teacher model
provides the student model with pseudo-labels for the unlabeled data. The input image is
augmented with noise and passes to both the student and teacher. Then, the objective is
to enforce the consistency between the teacher and the student predictions. To reduce the
effect of potential segmentation errors in the teacher’s predictions, Yu proposed to include the
uncertainty estimations in the consistency loss function to consider only the high confidence
points. This strategy leads to improvements in the result, suggesting the uncertainty can bring
information about the correctness of the model’s predictions. A similar approach is employed
in [86] for the organ segmentation problem, where a set of N models train on N different
views of the data. To generate pseudo labels for a particular model i in the set, the method
uses an uncertainty-aware label fusion between the outputs of the N − 1 remaining models.

The work of Dias [20] explores the use of model uncertainty combined with a region growing
approach for the refinement of object boundaries in real-world image segmentation. Again,
the method considers the confidence scores for defining potential errors in the segmentation
process. It shows the potential of uncertainty analysis in confidence-driven segmentation
refinement. In the medical context, the work of Nair [51] explores four uncertainty mea-
surements computed using the MCDO approach. The measurement considered includes
the predictive variance, the MC sampling variance, the predictive entropy, and the mutual
information of a model trained for lesion detection and segmentation in multiple sclerosis
imaging data. The results showed that excluding uncertainty predictions in the predictions
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improves the overall performance on the remaining points, especially for small lesions. The
use of uncertainty for prediction’s quality estimation for brain segmentation is explored by
Roy [64]. It is showed that the uncertainty measurements obtained with MCDO correlate with
the accuracy of the predicted segmentation.

The uncertainty analysis of recent CNN can give us clues about the correctness of the predic-
tions. Similarly, the MCDO strategy allows obtaining relevant information about uncertainty
without modifying or retraining the model. Inspired by these facts, this thesis proposes
an uncertainty-driven refinement strategy for organ segmentation, where high confidence
prediction drives the refinement process. However, we still need to describe the mechanism
employed to exploit this information. For it, we rely on a recent approach used to exploit the
non-euclidean relationships between the data points. In the next chapter, we describe the
graph convolutional neural networks, a learning model that brings the ideas of CNN into the
graph domain.
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4Deep Learning on Graph Domains

In the last chapter, we introduced deep learning as a learning model for prediction over
images. The intensity information contained in an image follows a regular grid structure, and
a unique euclidean coordinate can identify each pixel. Three-dimensional imaging modalities,
like computed tomography, follow a similar representation, represented as a discrete sub-set
of the 3D euclidean plane. We have described ANN models that work with vectorial and
image data. MLP operates on the vectorial representation of the information. Before CNN’s,
image classification required the extraction of a feature vector representing the information
contained in the image. Then, this vector can be processed by a learning model, like MLP. In
contrast, CNN allows processing the information coming directly from the image, providing a
trainable feature extraction that allows end-to-end training.

In this chapter, we will discuss the use of graphs as a representation of data. The graphs
have the advantage of bringing information about the relationships between the data points,
something that can be lost with a regular grid description. Similarly, the data follows a natural
graph-like representation in some cases. For example, the users of a social network can be
presented as a graph based on friendship relations. With the success of CNNs in image analysis,
different works have proposed forms to employ convolution-like learnable filters on graph
data. However, it brings challenges derived from the inherent differences between regular
grid representations and the non-euclidean nature of the graphs. We will review the basics of
graph definition and present some of the recent works on deep learning on graphs.

4.1 Graphs Structures

A graph is a data structure composed of a set of nodes grouped in a pairwise way. The
term vertex is also a common name to refer to the nodes. Each pair of nodes define an
edge in the graph, that represent the relationships between the nodes. Formally, we define
a graph G = (X, E) with X = {x1, x2, . . . , xN }, xi ∈ Rm A set of N Nodes, and E ⊂ X2 The
set of edges that relates the nodes with |E| the total number of edges. Fig. 4.1-a.1) and
4.1-b.1) present examples of the graphical representation of this structure. In the graphical
representation, nodes are presented as circles connected by lines that indicate the edges. It is
possible to distinguish between two kinds of graphs, considering the connections between the
nodes. Row a) in Fig. 4.1 represents an undirected graph, where the edges defined between
two nodes does not consider any specific direction, representing a two-way relationship
between nodes. A straight line represents these connections. A social network can be a
real-world example of an undirected graph. Considering each individual in a social network
as a node, the friendship relations represent an undirected connection between individuals.
It represents a mutual connection where if individual A has individual B as a friend implies
that the second direction is also true (individual B has individual A as a fiend). On the other
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Fig. 4.1. Different representations of a) an undirected and b) a directed graph. The 1. graphical, 2. list and
3. adjacency matrix representations are presented. Note the change of the number of edges and the
representations between a) and b).

hand, a directed graph is composed of directed nodes and represents a single-way relationship
between their corresponding nodes (Fig. 4.1 row b)). In this case, an arrowed line represents
the direction of the relations between two nodes. We can use a road network as an example
of a directed graph. If we define the places in a city (e.g., houses and buildings) as the nodes
of the graph, we can consider the roads and streets as the edges. Since some roads can be
single-way, they define a directed graph, where the arrows indicate the valid traffic flow in the
road network.

4.1.1 Adjacency List and Adjacency Matrix

Working with graphs requires a proper representation of its elements that allows the algo-
rithmic formulation of graph-based methods and their computational implementation. In the
literature [17], the nodes’ relationships defined by a given graph can be described with an
adjacency list (Fig. 4.1-a.2 and 4.1-b.2) or an adjacency matrix (Fig. 4.1-a.3 and 4.1-b.3).

The adjacency list representation of a graph employs an array L composed of N lists, one
per node. For example, for a particular node xi, its corresponding entry L(i) will contain all
the neighboring nodes of xi. The second column of Fig. 4.1 shows examples of the adjacency
list for undirected (row a) and directed (row b) graphs. Note how the different lists in the
array have different lengths. Similarly, even when the graphs have the same number of nodes
and connections, making the edges directed (as in Fig. 4.1 row b) modify the content of
the adjacency list. In a undirected graph, if xj ∈ L(xi) implies that xi ∈ L(xj), while in a
directed graph, this does not necessarily hold, and having xj ∈ L(xi) can be interpreted as a
connection from the node xi to xj .
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The adjacency matrix A of dimensions N ×N is a binary matrix where the entry A(i, j) equals
1 if the edge (xi, xj) ∈ E , and 0 otherwise. Again, the third column in Fig. 4.1 illustrates the
adjacency matrix representation for an undirected (row a) and a directed (row b) graph. We
can observe in the figure that the undirected graph has a symmetric adjacency matrix. The self
connections (connections to the same node) are represented in the diagonal of the matrix.

Each representation has advantages and drawbacks. For example, the adjacency list can be
a memory-efficient representation when working with sparse graphs, i.e., when the number
of edges |E| is considerably lower than the number of nodes N [17]. However, knowing if
particular edges exist in the graph requires performing a list search over the corresponding
neighborhood list, which can be computationally inefficient. The last point is easily obtained
with the adjacency matrix since it is only necessary to consult the corresponding entry for the
edge. Still, a disadvantage of the adjacency matrix can be memory requirements.

4.1.2 Graphs as a Representations for Data

Deep learning (DL) and machine learning (ML) models operate on input data, where the
information is represented numerically with a vector xi ∈ Rm, which belong to a more
extensive collection X ∈ RN×m. This mathematical definition is not much different from the
formulation of nodes presented in the previous sections. The main difference between the
data employed by the ML models and the graph representation is the existence of links or
edges.

ANN models learn to extract meaningful information from the input features, either vector or
images. However, they consider every data point individually when training. Relationships
between the inputs are not considered in the standard ANNs. For example, consider the
users in a social network. User information and their interactions with different websites
might be available for developing a learning model. We can also assume the task of predict-
ing either a user will like or not a product. Standard models like ANN might employ the
information from individual users to train and make predictions. However, this is not the
only information available. ANN models ignore the relationships between users in the social
network. Relationships, like friendship, can bring additional information to the model for
making better predictions. Friends and contacts in a social network might share interests.
Hence, if a given user already liked the product, it is also probable that their connections
would be interested in it. A single vectorial representation of the users does not include
these relations. However, a graph composed of users as nodes, and friendship as edged is
a natural representation of the social network. There exist different problems that can be
complemented by including the relations between the individuals. Examples of it can be point
cloud analysis in computer vision or protein interaction in biomedicine. Another example is
the brain functional or structural networks presented by connections between corresponding
brain regions in functional or structural MRI [13, 90].

Graphs brings additional information that machine learning algorithms do not consider in
a standard setting. In this sense, each node in the graph can be related to a feature vector
describing the data. Regarding the edges, it is possible to include complementary information
about the connections between two nodes. It is usually denominated as edge weighting and
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can represent, for example, the importance that a determined link has for a particular node.
This information can be represented in the adjacency matrix by replacing the non-zero with
the corresponding value of the weight.

Given the success of the convolutional neural networks, it has been an interest in replicated
the key components of CNNs in the graph domain. However, it involves different challenges
mainly derived from the non-Euclidean nature of the graphs. Deep learning models operate
on data that can be defined in the Euclidean domain. For example, image intensities can be
assumed to be a function defined on a subset of the Euclidean plane. This definition brings
a set of properties like global parametrization, a common coordinate system, or a vectorial
structure [13]. These properties are not present in the graph domain, making regular DL
operations, like the convolution, not well defined for graphs. The efforts for extrapolating the
concepts employed in deep learning on image data into graphs has led to the definition of the
graph convolutional networks as a set of learning models capable of working on graph data.

4.2 Graph Convolutional Neural Networks

The capabilities of graphs for representing relations between two data points or observations
have raised the interest for implement CNN-like approaches on non-euclidean domains.
Graphs can help to describe networks, interactions, or similarities between two objects [13].
On the other side, CNNs can extract local features at different image locations. By stacking
different layers, the model is capable of evaluating features in a larger context, by increasing
its receptive field. Apart from the localized filters, CNNs are shift-invariant and robust to
translations of the input. However, the well-known convolution operator defined on images,
cannon be directly applied to the graphs, given the lack of a standard coordinate system.

Let’s take, for example, the graphs presented in Fig. 4.2. The image in Fig. 4.2a) shows a
graph representation of a regular grid-like structure. It can define a graph representation of an
image, where nodes are given by pixels in the image and edges are defined based on spatial
adjacency. The blue links represent an N4 connectivity scheme, where edges are defined only
between perpendicular neighbors of the graph. The edge set composed of both blue and
yellow lines defines a N8 connectivity, which also includes diagonal connections. An example
of a local (one-hop) neighborhood is represented with the central node in green and their
neighbors in blue. This structure is regularly repeated across every node. In an N8 connectivity
scheme, all nodes will have exactly 8-neighbor, which corresponds to the spatial adjacent
nodes. A 3 × 3 convolutional kernel will operate in neighborhoods like the one presented
in this graph. Changing the target node will not modify the way the convolution is applied,
thanks to the regularity of the input.

Now, let’s focus in the graph in Fig. 4.2b). The graph has the same number of nodes as before,
but the edges no longer follow the spatial relation of the nodes, and hence, different nodes
would have a different number of neighbors. For example, node1 in Fig. 4.2b) has three
connections, while node 2 has only one. It makes it difficult to define localized convolutional
filter operation, like in regular grid structures [18]. A possible approach to defining the
convolution operation is performing the filtering in the spectral domain. The convolution
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Fig. 4.2. Graph representations of a) a regular grid structure and b) an irregular representation of node re-
lationships. A sample node (in green) is represented together with its neighborhoods (in blue and
yellow). Figure a) can describe graph representation of an image with the pixels as nodes and spatial
neighborhood relations as edges. The local neighborhood structure in a) is fixed, allowing the definition
of kernel base operations like the convolution. The graph presented in b) is a typical structure of a
real-world graph. The neighborhood is no longer regular (e.g., node 1 has three connected nodes, while
node 2 has one). It makes it complicated to define a convolution operator that can work in a local
neighborhood (localizer operator).

operation simplifies into an element-wise multiplication in the spectral domain. The Fourier
transform of the graph is obtained through the eigenvalues of the graph laplacian.

This section focuses on a model for exporting the convolution operation into graphs, consider-
ing the Fourier transform to compute the convolution in the spectral domain. Such approaches
are referred to as spectral graph convolution methods and, in general, convolutional models
defined on graphs are known as graph convolutional networks (GCN). The GCN employed
in this thesis was proposed by Thomas Kipf [40] for semi-supervised learning in a node
classification task.

4.2.1 Graph Spectral Convolution

The Fourier transform of the graph is defined with base on the eigendecomposition of the
normalized graph Laplacian L:

L = In − D−1/2AD−1/2 (4.1)

With A the n × n adjacency matrix, In the n × n identity, and the diagonal n × n matrix D

represents the degree matrix, where the diagonal elements are defined as Di,i =
∑

j Aij . The
Laplacian can be decomposed in a diagonal matrix of eigenvalues Λ and eigenvectors matrix
U , such that L = UΛUT . If we consider a single-value feature defined on every node, the set
of n nodes of the graph can be represented by a vector x ∈ Rn. Then, the following equation
defines the Fourier transform of x:

f̂ = UT x (4.2)
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Multiplying the last expression by U returns x to its original domain. Considering a filter gθ =
diag(θ) defined in the spectral domain, with θ ∈ Rn the filter’s parameters, the convolution of
x with g is obtained by computing the Fourier transform of x, multiplying with g and returning
to the original input’s domain. This process is summarized by the following expression:

gθ ∗ x = UgθUT x (4.3)

Unfortunately, computing the eigendecomposition of the Laplacian is computationally expen-
sive for large graphs. It is usual to approximate the convolution using a polynomial expansion
[40] to address this problem. Considering the filter gθ as a function of the eigenvalues Λ we
can express the filter as gθ(Λ). Then, the spectral filter can be approximated by a truncated
expansion of the first Kth order Chebyshev polynomials Tk(Λ):

gθ′(Λ) ≈
K∑

k=0
θ′

kTk(Λ̃) (4.4)

In this definition, θ′ represents a vector in RK of Chebyshev coefficients, and Λ̃ = 2
λmax Λ − In

are the rescaled eigenvalues, where λmax represents the largest eigenvalue of the Laplacian
L. Finally, each Chebyshev polynomial is recursively defined as:

Tk(x) = 2xTk−1(x) − Tk−2(x), with T0(x) = 1, T1(x) = x (4.5)

Kipf defined a simplified version of the polynomials expansion, we will discuss this version of
the GCN in the next section.

4.2.2 Graph Convolutional Layer

Consider the approximation of the convolution given by Eq. 4.4 and the spectral convolution
presented in Eq. 4.3. Combining both expressions and taking UλkUT = (UλUT )k allow us to
write the polynomials in terms of the Laplacian L, leading to the following approximation of
the spectral convolution:

gθ′ ∗ x ≈
K∑

k=0
θ′

kTk(L̃)x (4.6)

Now, with L̃ = 2
λmax L − In. Additionally, Kipf limited the polynomial expansion to K = 1,

taking a linear function with respect to the Laplacian and approximated the largest eigenvalue
λmax ≈ 2. Considering these two last point, and expanding the sum in Eq. 4.6 we get:

gθ′ ∗ x ≈ θ′
0x + θ′

1L̃x = θ′
0x + θ′

1(L − In)x (4.7)

Considering the definition of L given in Eq. 4.1, the convolution can be expressed in terms of
the degree and adjacency matrices as:

gθ′ ∗ x ≈ θ′
0x − θ′

1(D−1/2AD−1/2)x = θ(In + D−1/2AD−1/2)x (4.8)

56 Chapter 4 Deep Learning on Graph Domains



where the expression θ(In + D−1/2AD−1/2)x comes from restricting θ = θ′
0 = −θ′

0, leading
to a model defined by a single parameter. To avoid numerical instabilities during the model
training, the authors introduced a renormalization that defines the adjacency matrix as
Ã = A + In. and the diagonal elements of the degree matrix are now defined as D̃ii =

∑
j Ãij .

Whith this, the expresion (In + D−1/2AD−1/2) simplies to (D̃−1/2ÃD̃−1/2). The previous
formulation assumes a single-valued feature and a single parameter, but it can be extended to
features of any size, giving the following definition of a graph convolutional layer:

f(X; Θ) = σ(D̃−1/2ÃD̃−1/2XΘ) (4.9)

Where Ã and D̃ are the renormalized adjacency and degree matrix, σ is a non-linear function,
X is now a N×F0 input feature matrix modeling a set of N nodes each represented by a feature
vector of dimension F0, and Θ is a F0×Fl matrix of learnable parameters, employed to compute
a linear transformation of the input features. For simplicity, we can write Â = D̃−1/2ÃD̃−1/2,
and write the convolutional layer as:

f(X, A; Θ) = σ(ÂXΘ) (4.10)

The adjacency matrix allows aggregating the feature representation of the one-hop (direct
connections) neighborhood for a particular node, and stacking different convolutional layers,
allows considering a neighborhood at larger hops. For node classification purposes, we will
count with a training target vector Y with dimensions N × C, with C the number of classes.
Then, the last graph convolutional layer can then output a matrix with the exact dimensions
as Y , which feeds a softmax non-linear output. For example, a two-layered GCN for node
classification can be defined as:

Y ′ = f(X, A; Θ0, Θ1) = softmax(Âσ(ÂXΘ0)Θ1) (4.11)

with X a N × F0 node’s feature matrix, Θ0 and Θ1 are F0 × F1 and F1 × C feature matrices.
As in traditional CNNs, training a GCN requires minimizing the error between the ground
truth matrix Y and the predicted output Y ′. It can be done employing standard loss functions,
like cross-entropy loss. Finally, notice that the same matrix Â appears on both convolutional
layers. It indicates that we only need to compute this matrix once during the training and
evaluation process.

4.3 Medical Applications of GCNs

The graph convolutional networks are a relatively recent approach that has found applications
for learning on non-euclidean real-world data. For example, Kipf tested the model presented
in Eq. 4.11 with data from the Citeseer, Cora, and Pubmed datasets. These datasets contain
citation networks where a set of document-related features gives the graph’s nodes, and
the citation links between the documents represent the edges. The addressed task is semi-
supervised document classification (which traduces to node classification). The adoption of
these methods in the medical community has recently started. Considering the segmentation
problems, GCN models have been suggested for improving the segmentation of tubular-shaped
structures.
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For example, the work proposed by Selvan [69] presents a graph autoencoder for the extraction
of airways. The CT scans containing airway information are pre-processed into a graph
structure. The graph generated is over-complete, and the objective is to employ the graph
autoencoder to recover the ground truth adjacency matrix containing the structures of interest.
The autoencoder comprises a GCN for computing node embeddings that then feeds a non-
linear decoder given by a radial basis function operating over pairs of node embedding.

Similarly, the work presented by Shin [70] considers the graph-like structure of vessels in
the segmentation process. Shin proposed the inclusion of a GCN network for complementing
the information obtained from a regular CNN architecture for segmentation in retinal and
coronary artery datasets. The CNN gives an initial vessel segmentation together with a vessel
probability map. This information is further processed by a two-layered GCN. The input for
the GCN is a graph constructed from the initial vessel segmentation map. The final results are
given by a convolutional inference module that takes the combined information from the CNN
and GCN models.

Juarez [36] presents a combined architecture for the segmentation of airways in chest CT
scans. The proposal is composed of a U-Net with the bottleneck replaced by a GCN. The
graph’s connectivity is done considering the feature map of the last convolution of the U-Net’s
encoding step. Each voxel of this feature map is taken as a node in the graph. The vertices are
connected considering either the local 26 surrounding neighborhood of a central voxel or the
26 closest points considering the feature vector of each node.

Inspired by the works and the recent advances in uncertainty estimation, we propose a
graph-based refinement approach for segmentation. Our method is described in the following
chapters. We believe that our work new example of the applications of GCNs and uncertainty
analysis in image segmentation and brings a novel contribution to the medical image analysis
community.
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5Uncertainty-Driven Graph
Convolutional Neural Network for
Segmentation Refinement

In the previous chapters, we discussed different concepts related to deep learning models,
including FCN for image segmentation, uncertainty analysis on deep models, and we intro-
duced the idea of spectral graph convolutional neural network for applying CNN ideas into
non-euclidean domains, like graphs. Now, we introduce a novel segmentation refinement
method for CNNs, that incorporates these ideas into a single framework.

Organ segmentation in CT data represents an essential pre-processing step in different
computer-assisted intervention and diagnosis methods. As we have discussed in previous
chapters, CNNs lead the state-of-art in this task. Even when deep learning approaches have
led to impressive results, it is also true that the challenging environment in organ segmen-
tation can lead to errors in the models’ predictions. In this regard, we discussed in previous
chapters, some works that suggest that the uncertainty analysis of CNN’s can give insights
into the potential errors of the network. Inspired by these works, we present a segmentation
refinement method [78, 79] that employs the uncertainty levels of the predicted segmentation
map to define a semi-supervised node classification problem. Then, current GCN models are
applied to train a graph’s node classifier considering only the high confidence predictions of
the CNN network. In this section, we discuss in detail each step of our proposed algorithm.

5.1 Motivation and Overview

Deep convolutional networks, usually abbreviated as CNNs, represent a breakthrough in
the computer science community, significantly impacting computer vision. Nowadays, CNNs
represent the standard models for different problems, like classification, localization, and
segmentation. As we discussed in previous chapters, the medical image analysis community
is not indifferent to these developments. The advances in computer vision have inspired
diverse architectures to process medical image data, addressing different problems, including
medical image segmentation. The segmentation of anatomical structures is an initial step in
many computer-aided procedures, like computer-assisted navigation and detection. However,
compared to real-world images, working with medical images involves additional challenges,
like the necessity of expert experience to generate training labels. It leads to a limited amount
of training data for learning representative models. Additionally, in problems like organ
segmentation, it is common to work with high similarity in tissues, and inter-patient variability,
making it complicated to differentiate the target structure from the background. All these
factors can lead to potential errors in CNN’s predicted segmentation. For example, the top row
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Fig. 5.1. Currently, CNN’s lead state of the art in segmentation. However, different factors related to the nature of
the medical images can lead to errors in the process. In the picture, we can see the input image, the
pancreas segmentation output from a U-Net, the reference ground truth, and a comparison between the
prediction and the ground truth. True positives, false positives, and false negatives regions are indicated
in the bottom right figure in green, red, and white, respectively.

of Fig. 5.1 presents an input CT slice (left ) and the predicted pancreas segmentation from a
U-Net (right). The ground truth reference is given in the bottom left figure. The bottom-right
illustration in Fig. 5.1 compares the prediction with the ground truth. Looking at this figure,
It is clear that the model segmented correctly some regions of the organ (indicated in green).
However, it also produced a group of false positives, marked in red, and missed some parts of
the organ (false negatives), shown in white.

A common practice to improve the segmentation of a model is adding post-processing steps
aiming at refining the results. Refinement methods are employing after the model’s inference
process. One example of such techniques is the conditional random fields, or CRF [41]. The
applications of refinement methods are not limited to post-process the model’s output. For
example, [84] uses a CRF-based method to generate a set of scribbles. In combination with
user-defined scribbles, the results are used to perform an image-specific fine-tune of a CNN.
Similarly, semi-supervised learning methods can use refined predictions as pseudo-labels to
include unlabeled data in CNN’s training process [6]. The work in [46] addresses the problem
of loss in spatial correlation in the task of metastasis detection in Whole-slide images due to
the subdivision of the image in independent patches. The authors propose an architecture
composed of a CNN that processes a group of input patches with a CRF on top. This CRF is
employed to consider neighborhood information in the classification task, bringing consistency
in the model’s prediction.

CRF employs CNN prediction and spatial and intensity similarity between the pixels in CT
slices to refine the segmentation. All this information is available from the network results
and does not require retrain or modify the CNN for performing the refinement. Additional
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Fig. 5.2. A graphical overview of our GCN refinement strategy. Our proposal employs the input’s intensities, and
CNN’s prediction, expectation, and entropy (uncertainty) to formulate the refinement problem as a
semi-supervised graph learning problem.

information about the correctness of the prediction could bring helpful information to the
process, yet it is not currently considered in the refinement process. As we discussed before,
the model’s uncertainty can indicate the quality or correctness of the model’s output. The
MCDO analysis is an option for estimated the confidence of the CNN in its predictions. It is
not required to retrain or modify the model and can be applied to any architecture trained
with dropout layers. It is ideal for refinement purposes, where the only available information
comes from the model and its output.

Since uncertainty can bring insights regarding the potential errors in the segmentation, we
still need a way to incorporate this knowledge into a refinement pipeline. In this work, we
propose a method to formulate the segmentation refinement problem of CT data as a semi-
supervised graph learning problem, that is solved using GCNs. Our method first apply MCDO
to obtain the model’s expectation and uncer- tainty, this last expressed by the model’s entropy.
This is used to divide the CNN output into high confidence points (background or foreground)
and low confidence points. With this information, we define a semi-labeled graph that is
used to train a GCN in a semi- supervised way using the high confidence predictions. The
refined segmentation is obtained by re-evaluating the full graph in the trained GCN (see Fig.
5.2). To our best knowledge, this is the first time a semi-supervised GCN learning strategy is
employed in the medical image segmentation task, specifically, for single organ segmentation.
Also, this work presents one of the first cases of using GCN and uncertainty analysis for organ
segmentation refinement. In the upcoming sections, we discuss in detail the implementation
of our proposal.

5.1 Motivation and Overview 63



5.2 Organ Segmentation and Uncertainty Analysis

Consider an input CT volume V with V (x) the intensity value at the voxel position x ∈
R3; consider also, a trained CNN g(V (x); θ) with parameters θ; and a segmented volume
Y (x) = g(V (x); θ) with Y (x) ∈ {0, 1}. Our objective, is to refine the segmentation Y using
a GCN trained on a graph representation of the input data. Our framework operates as a
post-processing step (one volume at a time) and assumes that no information about the real
segmentation (ground truth) is available.

We first look for a binary volume Ub used to highlight the potential false positives and false
negatives elements of Y . The second step uses Ub, together with information coming from
Y , g, and V , to refine the segmentation Y . We use uncertainty analysis to define Ub. For the
second step, we solve the refinement problem using a semi-supervised GCN trained on a graph
representation of our input volume.

We aim to including correct information in the refinement process. We can do this without
modifying the CNN architecture with the MCDO method. We also look to define a refinement
method that only depends on the information given by the CNN and its outputs. It will allow
our technique to be applied in inference time and with no external knowledge about the actual
ground truth. MCDO also meets this requirement since to estimate the uncertainty, it is only
necessary to have the CNN model and the current input. For a particular pre-trained model
G(V (x); θ) with dropout layers, following MCDO, we use the dropout layers of the network in
inference time and perform T stochastic passes on the network to get the expectation of the
model’s prediction as:

E(x) ≈ 1
T

T∑
t=1

g(V (x), θt), (5.1)

with θt the model parameters after applying dropout in the pass t. Every time we run a pass
of the MCDO method, we are obtaining a sample of the approximated predictive distribution.
Eq. 5.1 then collects the expected prediction over the T samples. A stable prediction will lead
to an expectation close to zero or one. In contrast, an inconsistent prediction over the samples
will give an expectation with a value close to 0.5, indicating random guessing. Now, we need
to quantify the uncertainty of the model. We employed the entropy of the expectation for it. A
stable prediction should produce low levels of entropy, and this last will increase according
to the inconsistency of the MCDO samples. The model uncertainty U is given by the entropy,
computed as.

U(x) = H(x) = −
M∑

c=1
P (x)c log P (x)c, (5.2)

with P (x)c being the true probability of the voxel x to belong to class c, and M is the number
of classes. In this work, we address the problem of binary segmentation refinement, and
hence, M = 2 in our case. Fig. 5.3 presents a summary of the uncertainty analysis’s outputs.
It shows some examples of the expectation and entropy obtained for a particular input. Note
that, in this figure, the uncertainty map shows higher values boundary regions and in some
false positive areas.
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Fig. 5.3. We perform the uncertainty analysis of a CNN for a particular input. The figure shows the input images,
the model’s prediction (from a 2D U-Net), and the expectation and entropy obtained with the MCDO
analysis. For reference, the figure also presents the ground truth segmentation.

5.2.1 Uncertain Predictions

For the final step of our analysis, we need to define the uncertain predictions. The uncertainty
map takes continuous values between zero and one (if we consider log2 for computing it). To
determine which elements are considered uncertain, we simply threshold the uncertainty map
U(x), to obtain a binary uncertainty map:

Ub(x) = U(x) > τ, (5.3)

The threshold controls the entropy necessary to consider a voxel x as uncertain. Thus, lower
thresholds will include more voxels in the uncertain area. Conversely, higher thresholds will
increase the number of confident predictions. It will have an effect on the following steps of
our method, as we will discuss in the upcoming sections. Now that we have defined certain
and uncertain predictions, the following step is to formulate the problem as a graph-node
classification task. The next section discusses how we employ the uncertainty analysis to
define a partially labeled graph.

5.3 A Graph Representation of CT Volumes

In this section, we describe the process of formulating a partially labeled graph from CT
data. After the uncertainty analysis, we have a binary uncertainty mask Ub, a continuous
uncertainty mask U, and the model expectation E. All these components are related to a
particular input CT image V , and the CNN predicted segmentation map Y = g(V (x); θ). The
uncertainty analysis only tells us that the model is not confident about its predictions, but it
does not necessarily imply an error in the prediction. Some of the elements indicated by Ub
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Fig. 5.4. a) The GCN refinement strategy. We construct a semi-labeled graph representation based on the
uncertainty analysis of the CNN. Then, a GCN is trained to refine the segmentation. b) Connectivity. The
black square is connected to six perpendicular neighbors and with k = 16 random voxels

could be indeed correct, and its value should not be changed. For this reason, we propose
employing a learning model trained on the high confidence CNN predictions to re-classify
(refine) the output of the segmentation model g. With the information given by the uncertainty
analysis, we can define a partially labeled graph and describe the refinement process as a
semi-supervised node classification problem.

Formally, given a graph G representing our 3D volumetric data, at the inference time, we aim
to obtain a refined segmentation Y ∗ as the results of our GCN model Γ,

Y ∗ = Γ(G(S); ϕ), (5.4)

where the graph G is constructed from the set of volumes S = {E,U, V, Y } (see section Fig.
5.4) and ϕ represents the GCN’s parameters.

5.3.1 Node Definition

Graphs are not limited to regular grid-like structures. It allows us to employ a more convenient
(but more complex) region of interest surrounding the target organ. Since most of the voxels
in the volume are irrelevant for the refinement process, we define an ROI tailored to our
target anatomy. We define our working region as ROI(x) = dilation(Ub(x)) ∪ Eb(x) with Eb

the expectation binarized by a threshold of 0.5. Since the entropy is usually high in boundary
regions, including the dilated Ub ensures that the ROI is bigger enough to contain the organ.
Also, this allows us to include high confidence background predictions (Y = 0) for training the
GCN. Including the expectation in the ROI give us high confidence foreground predictions for
training the model. This ROI reduces the number of nodes of the graph and, in consequence,
the memory requirements.
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Once defined the working area, each voxel x ∈ ROI is determined to be a node in the graph.
Each node is represented by a feature vector containing intensity V (x), expectation E(x),
and entropy U(x). Given that we cannot trust the high uncertainty nodes, we consider these
points unlabeled nodes in the graph. Otherwise, we employ the predicted segmentation as the
ground label for that node in the graph representation. Our motivation is that, even though
we cannot define the correctness of the uncertainty elements, we can still consider that the
low uncertainty predictions have a high chance to be correct. The label assignment for a
particular node x is thus formally defined as:

l(x) =

Y (x) if Ub(x) = 0

unlabeled if Ub(x) = 1
(5.5)

5.3.2 Edge Definition

Now that we have established the nodes and labels, the edges are defined according to local
and long-range neighborhoods. The most straightforward connectivity option is to consider
the connectivity with adjacent voxels (n6 or n26 adjacent voxel neighborhood). However, this
simple nearest neighborhood scheme may not be suitable for our problem for two reasons;
First, with this scheme, every single voxel is connected with its local neighborhood but lacks
global information. Considering the original volumetric representation of the data, the primary
source of information is coming only from adjacent voxels. In contrast, information from the
global context (not-adjacent voxels) is mainly ignored. Second, voxels with high uncertainty
tend to shape contiguous clusters. Because of this, a voxel with high uncertainty will most
probably be surrounded by other high uncertainty points, reducing the connection with the
low uncertainty points. Hence, a simple n6 or n26 connectivity might limit information
propagation from confidence to uncertain regions. A fully connected graph can take advantage
of the relationships between local and long-range connections and propagate information
from both certain and uncertain regions during training and inference time, but at the cost of
prohibitive memory requirements.

Instead, we opted for an intermediate solution. For a particular node (or voxel) x, we create
connections with its six perpendicular immediate neighbors in the volume coordinate system
(N6) to consider local information. Additionally, we randomly select k additional nodes in
the graph and connect these random elements and x. It defines a sparse representation that
considers local and long-range connections between high and low uncertainty elements. The
k random nodes can be taken from any part inside the ROI used to define the graph’s nodes.
We empirically found that k = 16 offered a balance in performance and graph size and kept
this value during our experiments. This connectivity strategy is graphically represented in Fig.
5.4 b).

5.3 A Graph Representation of CT Volumes 67



5.4 Edge Weighting Function

To define the weights for the edges, we use a function based on Gaussian kernels considering
the intensity V (x) and the 3-D position x ∈ R3 associated with the node:

w1(xi, xj) = λdiv(xi, xj) + β[exp(−||V (x) − V (xj)||2

2σ1
) + exp(−||xi − xj ||2

2σ2
)] (5.6)

where λ and β are balancing factors, div(·) is given by the diversity between the nodes [92],
defined as div(xi, xj) =

∑M
c=1(P c(xi) − P c(xj)) log P c(xi)

P c(xj) with M = 2, P 1(xi) = E(xi) and
P 2(xi) = 1 − E(xi) for our binary case. We opt for an additive weighting, instead of a
multiplicative one, because the GCN can take advantage of connections with both similar and
dissimilar nodes (in intensity and space) in the learning process, and using a multiplicative
weighting could completely cut these connections. We found out that the diversity can
indirectly bring information about the similarity of two nodes, in terms of class probability.

Since the diversity does not have an upper bound, it is possible to apply a non-linear transfor-
mation in order to normalize its value to the range (0, 1], leading to the following version of
the diversity:

norm_div(xi, xj) = 1 − 2−div(xi,xj). (5.7)

We can integrate this into eq.(5.6) replacing the regular diversity:

w2(xi, xj) = λnorm_div(xi, xj) + β[exp(−||V (x) − V (xj)||2

2σ1
) + exp(−||xi − xj ||2

2σ2
)]. (5.8)

Similarly, if we only take the exponential part of eq.(5.7), we get a similarity metric between
the expectation of the nodes xi and xj . We use this version of the diversity as a third variation
of our weighting function, leading to the following expression:

w3(xi, xj) = λinv_div(xi, xj) + β[exp(−||V (x) − V (xj)||2

2σ1
) + exp(−||xi − xj ||2

2σ2
)], (5.9)

where the function inv_div(xi, xj) is given by

inv_div(xi, xj) = 2−div(xi,xj). (5.10)

It is worth mentioning that if we set λ = 0 and keep the same value of β all the weighting
functions become the same.

5.5 Segmentation Refinement as a
Semi-Supervised Graph Learning Problem

This process defines a partially labeled graph constructed with the uncertainty information
coming from the CNN g. To this point, it is possible to train any standard GCN using only
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the labeled nodes. The model proposed by Kipf [40] was originally conceived for training on
partially labeled graphs. Even though we previously described this model, we repeat the main
formulation in this section for clarity. A convolutional H layer is defined as:

H = ÂXW, with Â = D̃− 1
2 ÃD̃− 1

2 (5.11)

The variable X ∈ RN×K represents the input feature matrix of the layer with N the number of
nodes and K the number of input features per node. W ∈ RK×K′

is the weight matrix of the
current layer with K ′ the number of output features per node. Â follows the renormalization
proposed by [40] with Ã = A + IN , A the adjacency matrix of G, and the diagonal matrix D̃ =
ΣcolsÃ that sums across the columns of Ã. In general, we keep the same GCN architecture,
but employing a sigmoid activation function at the output layer, for binary classification.
Representing our graph G by its adjacency matrix A and feature matrix X, this leads to the
following GCN model:

Y ∗ = Γ(X, A; W 0, W 1) = sigmoid(Â ReLU(ÂXW 0)W 1) (5.12)

Finally, it is worth mentioning that, even if we validated our proposal using this GCN learning
architecture, given the modular nature of our method, it is possible to employ a different
semi-supervised graph learning strategy.
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6Experiments and Results

The previous chapter introduced the details of our refinement strategy, going from the
uncertainty analysis to the formulation of an uncertainty-driven, partially labeled graph.
Now, we discuss the implementation and results of the method on two organ segmentation
datasets for the pancreas and spleen. The method we propose is independent of the CNN
architecture. For simplicity and with the objective of evaluating our approach, we employed a
2D CNN architecture segmentation model. A 2D CNN operates slice-wise, and a volumetric
segmentation is obtained by predicting on each slice of the 3D CT input and stacking the
results together. First, we apply the refinement method to a set of input CT volumes and
compare our outcomes with the state-of-art CRF refinement method [41]. Then, we evaluate
the effects of variations in the graph-definition parameters, performing a sensitivity analysis
with a special focus on the weighting function. All the processes run on an NVidia Titan Xp
with 12 GB of graphics memory.

6.1 Implementation Details

As we mentioned previously, we selected a 2D U-Net to be our CNN model [58]. The
U-Net follows a standard architecture but considering dropout layers at the end of every
convolutional block of the U-Net, as indicated by the MCDO method. Furthermore, we train
the U-Net to address the problem of binary organ segmentation, using the axial view of the
CT volumes. The model trains for around 200 epochs keeping the overall best performing
model during the entire training procedure. We employed the Adam optimizer to minimize
the dice loss function. At inference time, we predicted every slice separately. Then we stacked
all the predictions together to obtain a volumetric segmentation (a similar strategy was used
to perform the uncertainty analysis). Finally, as a post-processing step, we compute the largest
connected component in the prediction to reduce false positives. At this point, it is worth
mentioning that the U-Net was used only for testing purposes, and different architectures can
be used instead. It is mainly because our refinement method uses the model-independent
MCDO analysis.

For the uncertainty analysis, we utilized MCDO to compute the expectation and entropy using
a dropout rate of 0.3 and a total of T = 20 stochastic passes. To obtain volumetric uncertainty
from a 2D model, we performed the uncertainty analysis on every individual slice of the
input volume. Then we all the estimated uncertainty maps are stacked together to obtain the
volumetric expectation and entropy. We tested different values for the uncertainty threshold τ

(see section 6.3).

The GCN model is a two-layered network with 32 feature maps in the hidden layer and a single
output neuron for binary node-classification. The graphical network is trained for 200 epochs
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with a learning rate of 1e − 2, binary entropy loss, and the Adam optimizer. We kept these
same settings for all the experiments. After the refinement process, we can replace only the
uncertain voxels with the GCN prediction, or we can replace the entire CNN prediction with
the GCN output. We use the second approach since we found it producing better results.

6.1.1 Organ Segmentation Datasets

We train two different U-Nets each for the pancreas and spleen segmentation tasks, respectively.
For the pancreas segmentation problem, we used the NIH pancreas dataset2 [16, 61, 62]. We
randomly selected 45 volumes of the NIH dataset for training the CNN model. A total of 20
volumes are reserved for testing the refinement methods.

For spleen, we employed the spleen segmentation task of the medical segmentation decathlon
[75] (MSD-spleen3). We trained the CNN on 26 volumes and reserved nine volumes to test
our framework for this problem. The MSD-spleen dataset contains more than one foreground
label in the segmentation mask. We unified the non-background labels of the MSD-spleen
dataset into a single foreground class since we evaluate our method for refining a binary
segmentation model.

6.1.2 Statistical Significance Test

To fully validate our results, we perform a statistical significance test on the dice score
performance of the refinement output. However, under consideration that with small sets, the
statistical significance tests can fail [11, 81], we obtained the dice score slice-wise to increase
the sample size (up with 278-1700 slices for the spleen, and pancreas respectively). Then
we have run the non-parametric statistical significance test, namely Kolmogorov–Smirnov
test. Finally, we perform a statistical significance analysis between the results of the GCN
refinement and the initial results of the CNN. When we report the results, we will use a single
start (*) to indicate a p-value < 0.05, and a double-start (**) to indicate a p-value < 0.01
concerning the original CNN prediction.

6.2 Refinement Performance

We first evaluate and compare the refinement capabilities of our proposal. We apply our
method to the U-Net’s output of each of the 20 NIH pancreas and 9 MSD-Spleen testing
volumes. The edge weighting function for our GCN-based refinement method is given by
Eq. 5.6 with λ = 0.5 and β = 1. Additionally, we apply a CRF-based refinement on the same
outcomes to compare the refinement performance. We use a publicly available implementation
of the CRF method presented in [41] to refine the CNN prediction.

For CRF, we employed a similar approach to [41]. The CRF method assumes dense connectivity
between the voxels of the CT. It means that every voxel is connected to each other one within

2https://wiki.cancerimagingarchive.net/display/Public/Pancreas-CT
3http://medicaldecathlon.com/
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Fig. 6.1. Comparison of the CNN prediction and its corresponding GCN refinement for pancreas segmentation.
Green colors indicate true positives (TP), red indicates false positives (FP), and white false negative (FN)
regions. From left to right: the first column shows an FP region removed and an FN region recovered
after the refinement. The second and third columns show FP regions removed. The fourth column shows
an FN region recovered but also a new FP region generated.

the ROI. Also, we set one unary and two pairwise potentials for CRF. We use the prediction
of CNN as the unary potential. For the two pairwise potentials, the first is composed of the
voxel position in the 3D volume. The second pairwise potential is a combination of intensity
and position of the voxels. For the CRF refinement, we considered the same ROI used by the
GCN.

Tab. 6.1. Average dice score performance (%) of the GCN refinement compared with the CNN prediction and a
CRF-based refinement of the CNN prediction. Results for pancreas and spleen are presented. Statistical
significance is indicated by (*) for a p-value < 0.05, and (**) for a p-value < 0.01 with respect to the
CNN prediction.

Task CNN CRF GCN

2D U-Net refinement Refinement (ours)

Pancreas 76.89 ± 6.6 77.20 ± 6.5 77.81 ± 6.3*

Spleen 93.17 ± 2.5 93.40 ± 2.6 95.07 ± 1.3**

Results are presented in Table 6.1. The GCN-based refinement outperforms the base CNN
model and the CRF refinement by around 1% and 0.6% respectively in the pancreas segmen-
tation task. For spleen segmentation, our GCN refinement presented an increase in the dice
score of 2% with respect to the base CNN, and 1.7% with respect to the CRF refinement.
Figs. 6.1 and 6.2 show visual examples of the GCN refinement compared with the base CNN
prediction.

6.2.1 Performance with a CNN Trained On Fewer Examples

We evaluate the performance of our refinement method when the base CNN trains under a
low data regime. In this scenario, the uncertainty of the model should increase as a result of
the limited amount of training data. For this, we randomly selected 10 out of the 45 training
samples of the NIH dataset. For the spleen, we selected nine. Table 6.2 shows the results
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Fig. 6.2. Comparison of the CNN prediction and its corresponding GCN refinement for spleen segmentation.
Green colors indicate true positives (TP), red indicates false positives (FP), and white false negative (FN)
regions. From left to right: the first, second, and third columns show FN regions recovered. The fourth
column shows an FN region recovered but also a new FP region generated.

for the U-Net initial segmentation and the results after applying the CRF and GCN-based
refinement strategies.

Tab. 6.2. Average dice score performance (%) of the GCN refinement compared with the CNN prediction. The
CNN model was trained with 10 samples for the pancreas and 9 for the spleen. Statistical significance is
indicated by (*) for a p-value < 0.05, and (**) for a p-value < 0.01 with respect to the CNN prediction.

Task CNN CRF GCN

2D U-Net refinement Refinement (ours)

Pancreas-10 52.14 ± 22.6 52.20 ± 22.6 54.55 ± 22.2*

Spleen-9 78.89 ± 28.4 78.80 ± 28.4 81.15 ± 28.9**

Note the increment in the standard deviation of all the models. A reason for this can be
that the CNN does not generalize adequately to the testing set, due to the small number of
training examples. Similar to the previous results, the increment in the dice score for the
GCN refinement is about 2.4% with respect to the CNN base model for the pancreas, and
improvement of 2.3% for spleen, compared with the base CNN.

6.3 Uncertainty Threshold

We perform several experiments to understand the effects of the parameters employed by our
proposal. The threshold τ , used to define the uncertain elements, is one of these parameters.
We evaluate the performance of our method under a wide range of values for τ . We tested the
method with values of τ ∈ {0.001, 0.3, 0.5, 0.8, 0.999}. In this way, we covered a wide range
of conditions that define a voxel as “uncertain”. We following the same configuration as in
the performance comparison (Sec. 6.2). Table 6.3 compares the CNN output with the GCN
refinement at different values of τ for the tasks of the pancreas and spleen segmentation.
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Tab. 6.3. Average dice score performance (%) of the GCN refinement at different uncertainty thresholds τ .
Pancreas-10 and Spleen-9 indicate the models trained with 10 and nine samples, respectively.

Task GCN GCN GCN GCN GCN

τ = 1e − 3 τ = 0.3 τ = 0.5 τ = 0.8 τ = 0.999

Pancreas 77.71 ± 6.3 77.79 ± 6.4 77.77 ± 6.3 77.81 ± 6.3 77.79 ± 6.3

Pancreas-10 54.55 ± 22.1 54.32 ± 22.1 54.15 ± 22.2 53.91 ± 22.4 53.14 ± 22.9

Spleen 95.01 ± 1.5 94.92 ± 1.4 94.98 ± 1.4 94.97 ± 1.4 95.07 ± 1.3

Spleen-9 80.91 ± 28.8 80.94 ± 28.9 80.94 ± 28.8 80.98 ± 28.9 81.15 ± 28.9

Before discussing the results, we highlight some points about τ . This parameter controls the
minimum value required to consider a voxel as uncertain. Lower values lead to a higher
number of uncertain elements. It follows an inverse relationship with the number of high
certainty nodes in the graph representation, and hence, in the number of training examples
for the GCN.

We also consider that the quality of the training examples is affected by this parameter. A high
threshold relaxes the amount of uncertainty necessary to rely on the prediction of the CNN.
However, it might reduce the quality of training examples since high uncertainty points that
did not reach the threshold value will be considered for training the GCN. Employing a small
threshold can ensure that only high confidence nodes are used for training, but at the cost of
significantly reduces the number of samples available to train the GCN.

Interestingly, from the results of Table 6.3, except for pancreas-10 and spleen-9, there is
no significant impact on the choice of this parameter. One reason can be that there is a
clear separation between high and low uncertainty points in models trained with an adequate
number of samples. Therefore, changing τ may add (remove) a few nodes that are insignificant
for the learning process of the GCN.

The refinement of the pancreas model trained with ten samples (Pancreas-10) presents a
progressive decrease in the dice score. Since this CNN uses fewer training examples, it is
expected to have low confidence in its predictions. In this scenario, a higher uncertainty
threshold increases the chance to include high-uncertainty nodes as ground truth for training
the GCN, leading to lower quality in the training examples, as we discuss before. In contrast,
a lower τ includes fewer points but with higher confidence. Thus, it appears to be beneficial
in the pancreas segmentation model trained with fewer examples.

The opposite occurs with spleen-9, where higher τ are beneficial. This might indicate a
dependency on the characteristics of the anatomies since the pancreas presents more inter-
patient and inter-slice variability (see Fig. 6.3).

In general, the results suggest that the τ parameter should be selected based on the target
anatomy. Further, the influence of τ appears to be more evident in conditions of high
uncertainty, e.g. when the model is trained with fewer examples. Finally, in the cases where τ
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Fig. 6.3. An example of the 3D view of the pancreas and spleen. The shape of the pancreas brings more inter-
patient and inter-slice variability. The shape of the spleen presents better consistency between patients
and slices, leading to better performance for the CNNs. Views obtained with ITK-SNAP [89].

has no significant impact, intermediate values are preferred since they lead to a lower number
of nodes and lower memory requirements.

6.4 Node Connectivity

In the next experiment, we compare the refinement performance of our method using a
classical n26 neighborhood as a connectivity scheme. We repeated the experiments for
different uncertainty thresholds, and the CNN model trained with different numbers of
examples on the pancreas and spleen datasets. Results are presented in Tables 6.4 and 6.5 for
each organ, respectively. In all tables, the weighting employed is eq. 5.6 with λ = 0.5 and
β = 1.

Tab. 6.4. Average dice score performance (%) of the GCN refinement at different uncertainty thresholds τ for the
pancreas segmentation problem. The table compares the results for the 6-surrounding + 16 random
connectivity (ours) vs. a 26 surrounding connectivity (n26). cnn10 indicates results obtained with a
CNN trained on ten samples.

Connectivity GCN GCN GCN GCN GCN

τ = 1e − 3 τ = 0.3 τ = 0.5 τ = 0.8 τ = 0.999

Ours 77.71 ± 6.3 77.79 ± 6.4 77.77 ± 6.3 77.81 ± 6.3 77.79 ± 6.3

n26 76.93 ± 6.1 77.16 ± 5.8 77.18 ± 5.8 77.18 ± 5.8 77.4 ± 5.9

Ours-cnn10 54.55 ± 22.1 54.32 ± 22.1 54.15 ± 22.2 53.91 ± 22.4 53.14 ± 22.9

n26-cnn10 52.50 ± 22.1 52.66 ± 22.4 52.56 ± 22.4 52.53 ± 22.5 52.43 ± 22.9

The results show a better refinement when including the random long-range connections,
especially when working with the CNN trained with limited data, for both tasks. Note that
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Tab. 6.5. Average dice score performance (%) of the GCN refinement at different uncertainty thresholds τ for
the spleen segmentation problem. The table compares the results for the 6-surrounding + 16 random
connectivity (ours) vs. a 26 surrounding connectivity (n26). cnn9 indicates results obtained with a CNN
trained on nine samples.

Connectivity GCN GCN GCN GCN GCN

τ = 1e − 3 τ = 0.3 τ = 0.5 τ = 0.8 τ = 0.999

Ours 95.01 ± 1.5 94.92 ± 1.4 94.98 ± 1.4 94.97 ± 1.4 95.07 ± 1.3

n26 94.26 ± 1.6 94.11 ± 1.8 95.09 ± 1.9 94.14 ± 1.8 94.43 ± 1.8

Ours-cnn9 80.91 ± 28.8 80.94 ± 28.9 80.94 ± 28.8 80.98 ± 28.9 81.15 ± 28.9

n26-cnn9 79.63 ± 28.6 79.65 ± 28.5 79.68 ± 28.5 79.90 ± 28.5 80.38 ± 28.7

when comparing with the original CNN output presented in Tables 6.1 and 6.2, our refinement
method using the n26 connectivity still having a slight improvement over the original CNN
prediction.

6.5 Edge Weighting

All the experiments presented so far employed the weighting function defined by Eq. 5.6.
Now, to validate and understand the effects of the weighting functions defined, we perform
our refinement strategy using different variations of the functions given by equations 5.6, 5.8,
and 5.9, presented in section 5.4. We explore the situations when: a) either only diversity or
only the Gaussian kernels are employed (sec. 6.5.1); b) using a diversity normalized to the
range [0, 1] (sec. 6.5.2); c) using similarity in expectation given by the inverse of the diversity
(sec. 6.5.3); and d) we discuss deep insights regarding the three different variations of the
diversity employed in the previous sections (sec. 6.5.4).

In all the experiments of this section, we keep a fixed value of τ = 0.5. We will use the notation
wi,(λ,β), i ∈ {1, 2, 3} to indicate the parameters employed by the corresponding function. For
example, the notation w1,(0.5,1) indicates that the weighting function w1 is used with λ = 0.5
and β = 1.

6.5.1 Diversity v.s. Gaussian Similarity Kernels

Our weighting scheme is composed of the addition between the diversity function and two
Gaussian kernels that indicate the similarity in intensity and space for the pair of nodes that
define the edge. It is possible to use an edge weighting function that only considers diversity.
In a similar way, we can weight the edges using only the Gaussian similarity kernels. In this
experiment, we compare both scenarios. It is done by setting the values of λ and β to zero,
accordingly. The results are presented in Table 6.6. Note that w1,(0.5,1) corresponds to the
weighting function used in all our previous experiments.
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Tab. 6.6. Average dice score performance (%) of the GCN refinement at τ = 0.5. The table compares w1 with
different combinations of λ, β parameters (w1,(λ,β)). Statistical significance is indicated by (*) for a
p-value < 0.05, and (**) for a p-value < 0.01 with respect to the CNN prediction.

Task CNN GCN GCN GCN

2D U-Net w1,(0.5,1) w1,(0.5,0) w1,(0,1)

Pancreas 76.89 ± 6.6 77.77 ± 6.3* 77.85 ± 6.3* 77.90 ± 6.2*

Pancreas-10 52.14 ± 22.6 54.15 ± 22.2 54.28 ± 22.2 53.03 ± 23.0

Spleen 93.17 ± 2.5 94.98 ± 1.4** 95.20 ± 1.4** 94.74 ± 1.8**

Spleen-9 78.89 ± 28.4 80.94 ± 28.8** 80.96 ± 28.9** 81.17 ± 28.9*

Different weighting functions and variations still outperform the initial CNN prediction. Now,
we will focus on the slight differences between these results. As we mentioned, our weighting
scheme considers diversity together with intensity and position similarity. The two later
Gaussian components are commonly used in the literature and follow the intuition that two
components similar in intensity and close to each other in space are likely to belong to the
same class. The diversity is an additional component that allows us to include the results from
the MCDO analysis in the edge weighting. The diversity has a lower bound of zero, but it does
not have an upper bound in its base form in contrast with the Gaussian kernels. When two
nodes have a similar expectation, the diversity between those elements will be small, and the
weighting function will only rely on the Gaussian similarities. On the other hand, when the
nodes have important differences in expectation (e.g 0 vs. 1), the unbounded nature of the
diversity will impose over the much smaller contribution of the Gaussian kernels (the diversity
can reach values of 30, while each Gaussian kernel has a maximum at 1.0). It will bias the
weight to the value of diversity.

We now discuss the behavior of the refinement process on each of the test sets when we
apply each weighting scheme. Starting with the pancreas models, in a high-training-data
scenario, a Gaussian-kernel-only (λ = 0) scheme appears to be good enough for the refinement
strategy. In the low data-regime, the GCN appears to take more advantage of diversity. Our
features employ intensity, expectation, and entropy (or uncertainty). Note that the uncertainty
threshold affects the labeled nodes but does not affect the connectivity. A node can be
connected to any certain or uncertain neighbor, and a Gaussian-kernel-only weighting is not
aware of possible inconsistencies in the node features.

The spleen segmentation problem shows different behavior. The lower inter-patient variability
of the spleen could be a reason (see Figs. 6.3). In a high-training-data regime, it can bring
a more stable and well-separated expectation between organ and background, making the
diversity a more favorable weighting. In a low data regime, the Gaussian-kernel-only version
appears to perform better. However, from Table 3, a larger τ appears to benefit the low-data
spleen problem. In fact, at τ = 0.999, the dice-score for w1,(0.5,0) and w1,(0,1) are 81.09, and
81.15, respectively, showing no significant difference. Note that w1,(0,1) = w2,(0,1) = w3,(0,1).
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6.5.2 Using a Normalized Diversity

We previously commented that the vanilla implementation of diversity does not have a strict
upper bound. However, it is possible to apply a non-linear transformation to map the values of
the diversity into the range [0, 1]. Replacing the vanilla version with the normalized diversity
leads to the weighting function w2, described by the Eq. 5.8. We run experiments using this
weighting scheme, and the results are presented in Table 6.7 where we also compare with the
results when using w1.

Tab. 6.7. Average dice score performance (%) of the GCN refinement at τ = 0.5. The table shows the drop in the
performance of w2 compared with the U-Net prediction and w1. Statistical significance is indicated by
(*) for a p-value < 0.05, and (**) for a p-value < 0.01 with respect to the CNN prediction.

Task CNN GCN GCN

2D U-Net w1,(0.5,1) w2,(1,1)

Pancreas 76.89 ± 6.6 77.77 ± 6.3* 63.27 ± 9.9**

Pancreas-10 52.14 ± 22.6 54.15 ± 22.2 43.05 ± 22.1**

Spleen 93.17 ± 2.5 94.98 ± 1.4** 87.15 ± 3.1**

Spleen-9 78.89 ± 28.4 80.94 ± 28.8** 75.47 ± 26.8**

Results show that w2 presents a negative impact on the learning process of the GCN. To explain
this behavior, we would like to highlight some points from the previous section. First, the
unbounded nature of the diversity makes w1 to prefer connections with opposed expectations
(and ignore the Gaussian similarity in those cases). On the other hand, the Gaussian similarity
is only considered when the expectation of both nodes is basically the same, and even in those
cases, the weight is small compared with the values of the diversity. In this sense, the GCN can
learn mostly from examples that are different in expectation or (with a considerably lower
contribution ) from examples similar in intensity and position.

In contrast, normalizing the diversity into a value between 0 and 1, makes the contribution
of the Gaussian kernels more representative. The normalized diversity of w2 will no longer
ignore the Gaussian similarity. It will assign the highest weights to connections between
nodes that are similar in intensity and position, but at the same time different in expectation,
which is counter-intuitive. Table 6.7 shows the drop in the performance using w2 as weighting
function. Given that the diversity is in range between 0 and 1, we use λ = 1 for w2.

6.5.3 Turning the Diversity into a Similarity Metric

The diversity gives a metric of dissimilarity between two probability distributions. Withing our
context, it provides information about the differences in the expectation of two nodes. We
can reformulate the definition of the diversity to obtain the opposite behavior, it is, getting
high values when two points have similar values in expectation. It will generate a weighting
function, driven only by similarity metrics (expectation, intensity, and space).
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Tab. 6.8. Average dice score performance (%) of the GCN refinement at τ = 0.5. The table compares the
performance of w3 with the U-Net prediction and w1. Statistical significance is indicated by (*) for a
p-value < 0.05, and (**) for a p-value < 0.01 with respect to the CNN prediction.

Task CNN GCN GCN

2D U-Net w1,(0.5,1) w3,(1,1)

Pancreas 76.89 ± 6.6 77.77 ± 6.3* 78.19 ± 6.1*

Pancreas-10 52.14 ± 22.6 54.15 ± 22.20 52.90 ± 23.1

Spleen 93.17 ± 2.5 94.98 ± 1.4** 94.81 ± 1.9**

Spleen-9 78.89 ± 28.4 80.94 ± 28.8** 81.08 ± 28.9**

If we take only the exponential part of Eq. 5.7, we will obtain values in the range [0,1]
that gives high weights to similar expectations, presenting a better agreement with the
Gaussian kernels. This weighting scheme is given by w3. The results, compared with the
U-Net and the initial w1,(0.5,1) weighting function are presented in Table 6.8. The results
show an improvement again for the GCN refinement, supporting our discussion about the
inconsistencies brought by w2.

Let’s disscuss the results presented. Again, we can first focus on the results of the pancreas.
The inverse of the diversity in combination with the Gaussian kernels appears to perform
well with the pancreas model trained with a high number of examples. It can be because the
number of training samples for the CNN is enough to obtain an adequate estimation of the
expectation, in contrast with the low-data pancreas U-Net.

Moving into the spleen segmentation task, the differences appear to be not significant. In
general, the results suggest that w3 is beneficial for the full-data pancreas problem, and does
work well with both spleen models. But might be sub-optimal for the low-data pancreas
refinement task. A possible explanation is that w3 will assign high weights to nodes with
similar values, no matter if both have expectations of 1, 0, or 0.5. This last expectation value
(0.5) represents a high uncertainty point, and it is expected to find this kind of point on an
irregular organ, and with a model trained with a low number of examples, like Pancreas-10.
In this sense, the inverse of the diversity in w3 might also assign a high weight to connections
between uncertainty nodes.

6.5.4 Comparing the Variations of the Diversity Function

The final experiment for the weighting function compares all the versions of the diversity. We
have three versions, each one employed in the functions w1, w2, and w3. We set β = 0 in the
three functions to have a diversity-only weighting scheme. The results are presented in Table
6.9.

We can mention two interesting points coming from this experiment. First, comparing the
results of w2,(1,0) in Table 6.9 with the results of w2,(1,1) in Table 6.7, it is clear that the
only-diversity version of w2 has better performance, supporting the idea of the inconsistent
connections of w2,(1,1). comes when comparing the diversity of w1 with the normalized
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Tab. 6.9. Average dice score performance (%) of the GCN refinement at τ = 0.5. The table compares the
performance of the three variations of the diversity (β = 0 for all functions). Statistical significance is
indicated by (*) for a p-value < 0.05, and (**) for a p-value < 0.01 with respect to the CNN prediction.

Task CNN GCN GCN GCN

2D U-Net w1,(0.5,0) w2,(1,0) w3,(1,0)

Pancreas 76.89 ± 6.6 77.85 ± 6.3* 75.45 ± 7.1** 77.70 ± 6.2*

Pancreas-10 52.14 ± 22.6 54.28 ± 22.2 50.72 ± 23.5* 52.09 ± 23.0

Spleen 93.17 ± 2.5 95.20 ± 1.4** 94.25 ± 2.1** 94.59 ± 2.0**

Spleen-9 78.89 ± 28.4 80.96 ± 28.9** 79.84 ± 28.5 80.81 ± 28.7*

Fig. 6.4. A graphical view of the weights assigned by each variation of the diversity function (vanilla, normalized,
and inverse). The three figures show the same node structures, but weighted by: a) w1,(0.5,0), b) w2,(1,0),
and c) w3,(1,0). The value inside the node represents the expectation for that node.

diversity of w2, both in Table 6.9. Even though these two functions are expected to behave
similarly, we notice a difference in their performance. To understand the possible causes of
these differences, we take a closer look at the assigned weights of these functions to a subset of
nodes. Let’s consider a central node with expectation close to zero, and four neighbors nodes
with expectations of approximately 0.0, 1.0, 0.999, and 0.368, respectively (see Fig. 6.4). As
expected, w1,(0.5,0) will assign high values to opposed expectations (36.2 and 19.9 in Figure
6.4.a), while the weight will be low for similar expectations, and close to zero to identical
expectations (weights of 3.7 and 0 in Fig. 6.4.a). However, for the same node structure,
w2,(1,0) will weight with a high value (close to 1) almost all the connections, except for the
neighbors with the same expectation (see Fig, 6.4.b). Even though the difference between
the expectations values of 1 and 0.368 is not high enough, w2,(1,0) will give an importance
that is similar to the nodes with completely opposed expectations, leading to an inconsistent
weighting scheme. In contrast, w3,(1,0) (which acts as a kind of similarity in expectation)
assigns weights close to zero to all the nodes that do not have the same expectation, even to
the pair (0, 0.368), see Fig. 6.4.c. This can suggest a better consistency for the inverse diversity,
compared with diversity normalized to [0, 1]. We can also see these conclusions if we plot the
values for these three variations of the diversity as a function of the difference between p1 = 0
and p2 ∈ [0, 1] (see Fig. 6.5). We can see how the diversity grows exponentially when the
difference between p1 and p2 is close to 1 (Fig. 6.5 Diversity). In a similar way, the inverse
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Fig. 6.5. Comparison of the weights assigned by the three variations of the diversity (vanilla, normalized, and
inverse), represented as a function of the difference of the expectation p1 = 0 and p2 ∈ [0, 1].

diversity assigns a weight of 1 to differences close to zero and decreases exponentially at the
moment this difference starts to increment (Fig. 6.5 Inv. Diversity). Finally, the normalized
diversity starts assigning a weight of zero to equal expectations, however, the curve grows
exponentially until reaching a weight of 1 when the difference in expectations still close to 0.2
(Fig. 6.5 Norm. Diversity), leading to the inconsistencies mentioned before.

In general, a weighting function like w2 appears to be not recommendable for the refinement
with GCNs. The inverse diversity of w3 can be a better option, however, it is also possible
that under certain conditions, this weighting could introduce noisy connections. For example,
when the expectation has values close to 0.5 for both nodes, the function will assign high
weights, however, this might not heavily contribute to the GCN given the fact that these nodes
might have high uncertainty as well. This suggests that, under high uncertainty environments,
it is better to weigh based on dissimilarity in expectation. On the other hand, the inverse of
diversity can take advantage of well-separated expectations.

6.6 Insights on Prediction, Expectation, and
Entropy

One of the main components of our methodology is the uncertainty analysis. The graph
definition is driven by the expectation and entropy obtained during this process, together with
the CNN’s predictions. Fig. 6.6 presents a visual overview of these three components. The
CNN’s prediction is employed to assign labels to the nodes, considering its confidence level.
However, taking a look at Fig. 6.6, it can be noticed that the refinement obtained is similar to
the expectation.

Diving deeper into this topic, we can comment that the nodes use the expectation as part of
their features. Similarly, the diversity takes the expectation as its primary input. The GCN
can learn how to use the CNN’s expectation, together with intensity and spatial information,
to reclassify the graph’s nodes. However, since this component takes part in driving the
refinement, it can also generate false positives if it contains artifacts. For example, Fig. 6.6
shows a region in the expectation that does not agree with the ground truth. It can also be
noticed that the GCN reduced this region. It can be a positive consequence of the random

82 Chapter 6 Experiments and Results



Fig. 6.6. Elements used in the graph definition. In the CNN and GCN outputs: Green colors indicate true positives,
red false positives, and white false negative regions. For the expectation and entropy: brighter intensities
indicate higher values.

long-range connections included in the graph definition that brings additional information
beyond the local neighborhood.

To evaluate the relationship between the expectation and the GCN refinement, we compute
the relative improvement between the GCN and the expectation. First, the expectation was
thresholded by 0.5. Then we calculated its dice score with the ground truth. The relative
improvement is computed as:

rel_imp = gcndsc − expectationdsc

expectationdsc
× 100. (6.1)

The rel_imp is computed for every input volume. Fig. 6.7 shows the results for the pan-
creas segmentation task, and compares the metric when the expectation was obtained from
a model trained with 45 (Fig.6.7a) and 10 samples (Fig.6.7b), respectively, for pancreas
segmentation.

Fig. 6.7. Relative improvement (%) per input volume of different GCN configurations with respect to the expecta-
tion of a pancreas segmentation model. The red line indicates the same dsc as the expectation. a) CNN
trained with 45 volumes, τ = 0.8. b) CNN trained with 10 volumes, τ = 0.001.

Fig. 6.7a shows that most of DICE coefficients (17/20) of the GCN refinement are either
below or close to the ones of the expectation. However, three volumes show an improvement
in the DICE compared to the expectation. A different scenario is presented in Fig. 6.7b.
Here, (13/20) volumes show either better or similar DICE for the GCN compared to the
expectation. A possible explanation is that models trained with an adequate number of
examples (volumes), their expectation is good enough. In contrast, models trained with a few
examples (volumes) have higher uncertainties yielding unreliable expectations. Our results
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suggest that our GCN refinement strategy is favorable over the expectation or uncertainty
analysis in such scenarios.
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7Discussion and Conclusion

Our work presents a method to construct semi-labeled graph representation of volumetric
medical data, based on the output and uncertainty analysis of a CNN model. We have also
shown that graph semi-supervised learning can be used to obtain a refined segmentation. We
also provided a deep analysis of the weighting function employed to construct the graph. We
have shown that diversity is an adequate choice for expectation-based edge weighting. In a
similar way, the inverse diversity can also be a good option under certain circumstances. The
dependence of the graph to the expectation and the uncertainty analysis method employed
could explain the differences in the performance when refining the prediction of two different
CNNs. In this regard, alternatives to the uncertainty estimation method, and the use of
calibrated uncertainties can be an interesting direction when working with different CNNs
models. In this section, we discuss final remarks regarding our method.

7.1 Applicability to Other Network Architectures

As a refinement strategy, our proposed method is orthogonal to any segmentation pipeline
and can be applied to different CNNs architectures equipped with the MDCO approximation.
To verify this, we apply the uncertainty-GCN refinement to the predictions of QuickNat [65,
66], trained on the same two segmentation tasks. The network is trained using the same 45
volumes for the pancreas, and 26 for the spleen, under similar settings as the U-Net. The
testing set is the same we used to evaluate the GCN refinement from U-Net. We employed
the weighting function w2,(1,1) with τ = 0.8 and τ = 0.5 for the pancreas and spleen models,
respectively. Table 7.1 presents the results for the initial QuickNat prediction and the GCN
refinement.

Tab. 7.1. Average dice score performance (%) of the GCN refinement compared with the initial CNN predictions.
Statistical significance is indicated by (*) for a p-value < 0.05, and (**) for a p-value < 0.01 with respect
to the 2D-CNNs predictions.

Task 3D U-Net 2D U-Net Ours 2D QuickNat Ours

Initial GCN-Refinement Initial GCN-Refinement

Pancreas 60.14 ± 10.07 76.89 ± 6.6 78.20 ± 6.1* 61.31 ± 13.1 61.57 ± 13.0

Spleen 82.37 ± 16.8 93.17 ± 2.5 95.20 ± 1.4** 91.83 ± 6.0 92.97 ± 2.3

Reported results show an improvement over the initial CNN model but on a different level
compared to the results obtained with the U-Net. While the spleen problem shows an
improvement of 1% over the initial prediction, the pancreas model shows subtle changes.
Such differences among different CNNs can be attributed to the epistemic uncertainty inherent
to their respective models. In other words, different behaviors of the uncertainty across models
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can lead to different behaviors in the GCN refinement strategy. However, a deeper analysis of
inter-model uncertainty and their relationship with the Graph-based refinement is necessary.

7.1.1 2D vs. 3D Architectures

In our experiments, we employed a 2D architecture since it provides us with all the necessary
components to test our method. Nevertheless, our refinement strategy is orthogonal to other
segmentation approaches and can be applied to any CNN that produces uncertainty measures
with MCDO. This also includes 3D models. However, to our best knowledge, MCDO is most
commonly employed with 2D models and its translation to 3D might require additional
methodological efforts derived from working with 3D architectures together with additional
requirements for data-handling due to memory constraints [44]. Further, 3D model might not
necessarily provide a better initial segmentation compared to a 2D CNN as reported by [85, 91].
In this regard, we trained a standard 3D U-Net [55] subdividing the input volume into blocks
of 64 × 64 × 32, with a minimum feature size of 16 for the U-Net convolutions. This allows us
to use batches of 8 during training on a NVidia Titan Xp of 12 GB. This lead to a dice-score
of 60.14% for the pancreas segmentation problem, and 82.37% for the spleen segmentation,
using the same training, and testing set as the 2D U-Nets (see Table 7.1). As can be seen,
under similar conditions, the 3D model presents a lower performance compared with their 2D
counterparts. This can be due to the loss of the global context derived from the subdivision of
the volume. Fit the entire volume can contribute to the performance. However, this can be
limited by the current GPU memory capabilities. Similarly, using a volume-level input will
reduce the number of available samples, which can lead to overfitting problems. Even though
we are aware of U-Net, V-Net inspired 3D architectures defined for pancreas segmentation
that can reach around 80% of dice score, with the use of data augmentation and auxiliary
losses for deep supervision [94], or fine-tuning with the addition of attention gates [55], we
consider that the 2D U-Net gives us good-enough results on both segmentation problems with
an appropriate simplicity to evaluate our framework. Nevertheless, investigating our approach
using 3D models equipped with MCDO might be an interesting direction.

7.2 Future Paths: Graphs for Classification
Refinement

We have introduced an application of uncertainty analysis and graph convolutional networks in
the task of segmentation refinement. As discussed, graphs can capture complex relationships
between data points. These relations are not captured by standard CNNs. The main motivation
of this thesis was segmentation, however, it would be interesting to know if a similar idea can
be applied to classification tasks. A graph representation of classification results could provide
additional information not captured by standard CNN.

In a proof of concept, we defined a graph over the results of two region proposal CNNs, defined
for localization of polyps and endoscopic artifacts. Instead of employing the uncertainty of the
prediction to define the graph, we use the spatial relation of the predictions. Polyp detectors
work in challenging environments with artifact presence. It has motivated methods for the
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detection and removal of endoscopic artifacts [24]. Similarly, some works evaluate their
influence in the detections task and incorporate artifact information in the polyp detection
model [10, 38, 83]. Similarly, the endoscopic artifact detection challenge (EAD) [2, 3, 4],
has highlighted the role of artifacts in the analysis of endoscopic sequences, remarking its
importance in the definition of models for endoscopy image analysis.

Following a similar idea as the graph-based refinement, it would be possible to define a graph
of polyps and artifacts bounding box detections, where the nodes are defined by a feature
representation of the bounding boxes. Edges can be represented by the spatial interactions
of the predictions (overlap) and similarity in class or feature. This graph can then be used
to learn the interactions between polyps and artifacts in a video sequence or endoscopic
image collection, and then use the learned graph model as a post-processing step to refine
the predictions of a model on a new set of images or frames. Note that in order to generate a
graph, it is necessary to have a set of predictions. In the segmentation task, it was given by
the pixels in the image. For localization purposes, we need a set of bounding box predictions.
Hence, it is better to predict on a set of images, instead of individual samples. This is in order
to have enough nodes to define the graph.

It is possible to employ a graph model on a training set to learn node embeddings for a
node classification task. Then the model can be applied to classify the nodes of an unseen
graph. This learning model is known as inductive learning. The spectral GCN employed in
the segmentation refinement task is a transductive learning model. It means that it cannot be
directly generalized to unseen graphs. Similarly, if a new node is included, the model should be
adjusted and retrained. For the segmentation refinement task, this is not a problem, since each
CT volume defines a complete graph used only for the refinement of their corresponding image.
For the polyp refinement problem, it is necessary to learn a model on a training set that then
can be employed on a new input sequence, making inductive models more suitable for this task.
For this purpose, it is possible to employ models like GraphSAGE [30] to train an inductive
graph based model for multi-class node classifier. GraphSAGE learns the parameters of K
aggregation functions that combine neighbor information. Similarly, it employs a set of weight
matrices used to combine and propagate information in the layer level (different aggregation
depths). For the aggregation process, a fixed number of neighbor nodes are uniformly sampled.
The results lead to a set of node embeddings that, for supervised classification problems, are
learned using a standard loss function, like the categorical cross-entropy.

To define the connections of the graph, different criteria can be applied. For example, 1) we
can define a connection if their bounding boxes overlap with an IoU > 0.5 or if one bounding
box is contained inside the other (see Fig. 7.1, row 1). This is regardless of their classes
(overlap criterion): 2) Two nodes can be connected if they share the same class (class-aware
criterion, see Fig. 7.1, row 2); and 3) we can connect nodes if they are both polyps or if they
are both artifacts, regardless of the artifact class (binary criterion, see Fig. 7.1, row 3). All
these criteria are symmetric and self-connections are not allowed. We consider connections
in the same frame (intra-frame) and between different frames (inter-frame), see Fig. 7.1.
Criterion 1 applies only for intra-frame nodes. Criteria 2 and 3 apply for both connection
types, and only one of them can be used at a time to generate the graph.
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Fig. 7.1. A graph representation of region proposal network’s predictions to analyse the influence of artifacts
in polyp detection. Yellow bounding boxes indicate a source node with examples of its neighbors in
blue. Red arrows are inter-frame connections. Row 1: connection examples of a) polyp to artifacts, b)
artifact to polyp and, c) artifact to artifact. Rows 2 and 3: examples of a) intra-frame and b) inter-frame
connections.

A method like this requires that both polyps and artifacts detections are in the same image.
In testing or inference time, it is possible to employ a polyp and an artifact detection model
to obtain the predictions. The graph then can refine the results of these models, to correct
potential polyps misclassified as artifacts. However, for training purposes, it is necessary to
have both boundings box ground truth in the same image. To our best knowledge, currently,
there is no available dataset containing both annotations in the same image. An option can be
to employ an artifact detector to extend a polyp dataset and use it for training. It is possible to
train artifact detectors with publicly available datasets, like the EAD Challenge’s dataset [2, 3,
4]. This dataset contains annotations for seven different artifacts, including bubbles, specular
reflections, contrast, and blur.

We implemented these strategies to evaluate the performance of a model trained on a graph
composed of polyps and artifacts predictions. GraphSAGE requires a feature representation
for the nodes. For this, we resize the bounding boxes to a fixed size of 64 × 64 and compute
the histogram of oriented gradients as feature. We used a publicly available implementation
of GraphSAGE1, with the mean node aggregator. We consider all the EAD artifact’s classes
(polyp, saturation, misc., blur, contrast, bubbles, instrument), but excluding specularities to
avoid a class imbalance problem in the graph. We trained a RetinaNet polyp detector on the
CVCDB_ClinicDB dataset [9]. Simlarly, we extend this dataset with artifact predictions to train
the GraphSage model. Testing was done on the CVC_ColonDB dataset [8].

Initial results show an improvement on the F1 score of the graph-refinement predictions (0.73),
compared with the base polyp-only RetinaNet predictions (0.71). It was employing an overlap

1https://github.com/williamleif/graphsage-simple/
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Fig. 7.2. Visual results. Polyp ground truth is presented in green. a) initial RCNN polyp predictions (blue) and b)
polyp predictions after a graph post-processing method (yellow). From top to bottom, the first two rows
show examples where our method removed a false positive and recovered a polyp bounding box. The
third row shows an example where a false positive was removed, but a new false positive is added.

togheter with a binary connectivity criteria. Similarly, visual results show how the graph
base model can correct the errors derived from artifact presence (Fig. 7.2. Additional details
about this project can be consulted in [77]. Results are promising, and even though it is still
necessary additional validation and experiments, it shows an interesting future approach for
post-processing graph strategies, like the segmentation refinement presented in this thesis.

7.3 Concluding Remarks

We have presented a novel application of graphs and uncertainty analysis for the segmentation
refinement task. Similarly, we introduced potential paths for graph-based post-processing
methods on the polyp localization problem. We conclude with some remarks about our method
that can lead to future research and improvements.

Regarding computational time, our defines a graph and then train a GCN model. This can
require more computational requirements compared with the most efficient versions of CRF. In
our experiments, the time required for training and testing the GCN in the constructed graph
is around twice the time required for CRF in the fully connected version of our uncertainty
graph. This is a time of around 30 sec ∼ 1 min for the GCN vs. 13 sec ∼ 30 sec for CRF. These
numbers do not consider the time for uncertainty analysis and graph construction.
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Similarly, in this work, we have employed MCDO [39] for uncertainty analysis, and found out
the expectation could be a good choice for well-trained models, while our GCN refinement
shows superior performance, compared to the expectation, in low-data regime. Nonetheless,
recently proposed uncertainty measures [82], which disentangle the model’s uncertainty from
the one associated with the inter/intra-observer variability, might be desirable.

Regarding the graph representation, we have investigated different connectivity and weighting
mechanisms in defining our graph and extracted a couple of features to represent our nodes.
However, prior knowledge, like geometry, could be used to constrain the ROI and provide
plausible configurations [19, 53].

We have shown that the model can be applied to different organ segmentation problems
and CNN architectures. Similarly, our results suggest that the performance can depend on
the characteristics of the anatomy studied. Large and stable organs like the liver can derive
in performance similar to the spleen. However, further experiments are necessary to verify
this. Similarly, large organs can represent a challenge for a graph-based method, since a
graph constructed over voxels can lead to high memory requirements. A change on the node
representation of the CT data can help in this problem, however, we leave this as future
work.

Finally, in this work, we addressed a binary classification problem. For a multi-class problem,
it should be possible to obtain a vectorial expectation representing each class, and the entropy
can be computed considering multiple classes. Even though this brings all the elements to
formulate the partially labeled graph, given the complexity in the different structures that
share intensity similarities between tissues, a different weighting, connectivity, and node
features might be necessary to include meaningful information about the anatomies. Similarly,
the inclusion of a larger number of structures will lead to a larger number of nodes, making
the efficient node representation of multi-class data an interesting future direction.
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Algorithms for Artefacts in Clinical Endoscopy

Sharib Ali, Felix Zhou, Barbara Braden, Adam Bailey, Suhui Yang, Guanju Cheng, Pengyi
Zhang, Xiaoqiong Li, Maxime Kayser, Roger D. Soberanis-Mukul, Shadi Albarqouni, et al.

We present a comprehensive analysis of the submissions to the first edition of the Endoscopy
Artefact Detection challenge (EAD). Using crowd-sourcing, this initiative is a step towards
understanding the limitations of existing state-of-the-art computer vision methods applied to
endoscopy and promoting the development of new approaches suitable for clinical translation.
Endoscopy is a routine imaging technique for the detection, diagnosis and treatment of
diseases in hollow-organs; the esophagus, stomach, colon, uterus and the bladder. However
the nature of these organs prevent imaged tissues to be free of imaging artefacts such
as bubbles, pixel saturation, organ specularity and debris, all of which pose substantial
challenges for any quantitative analysis. Consequently, the potential for improved clinical
outcomes through quantitative assessment of abnormal mucosal surface observed in endoscopy
videos is presently not realized accurately. The EAD challenge promotes awareness of and
addresses this key bottleneck problem by investigating methods that can accurately classify,
localize and segment artefacts in endoscopy frames as critical prerequisite tasks. Using a
diverse curated multi-institutional, multi-modality, multi-organ dataset of video frames, the
accuracy and performance of 23 algorithms were objectively ranked for artefact detection and
segmentation. The ability of methods to generalize to unseen datasets was also evaluated. The
best performing methods (top 15%) propose deep learning strategies to reconcile variabilities
in artefact appearance with respect to size, modality, occurrence and organ type. However,
no single method outperformed across all tasks. Detailed analyses reveal the shortcomings
of current training strategies and highlight the need for developing new optimal metrics to
accurately quantify the clinical applicability of methods.

Scientific Reports (2020)

Convolutional Neural Network U-Net for Trypanosoma cruzi
segmentation

Allan Ojeda-Pat, Anabel Martin-Gonzalez, Roger Soberanis-Mukul
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Chagas disease is a mortal silent illness caused by the parasite Trypanosoma cruzi that affects
many people worldwide. A blood test is one of the preferred methods to get an accurate
diagnosis of the disease but takes a long time and requires too much effort from the experts to
analyze blood samples in the search of the parasites presence. Therefore, it is very useful to
have an automatic system to detect the parasite in blood sample microscopic images. In this
paper we present a deep learning method to segment the T. cruzi parasite on blood sample
images. We implemented a convolutional neural network based on the U-Net model and we
trained it with different loss functions to get accurate results. We report an F2 value of 0.8013,
a recall value of 0.8702, a precision value of 0.6304 and a Dice score value of 0.6825.

International Symposium on Intelligent Computing Systems (2020)

Focal Loss for Artefact Detection in Medical Endoscopy

Maxime Kayser, Roger D Soberanis-Mukul, Shadi Albarqouni, Nassir Navab

Endoscopic video frames tend to be corrupted by various artefacts impairing their visibility.
Automated detection of these artefacts will foster advances in computer-assisted diagnosis,
post-examination procedures and frame restoration software. In this work, we propose an
ensemble of deep learning object detectors to automate multi-class artefact detection in video
endoscopy. Our approach achieved a mean average precision (mAP) of 0.3087 and an average
intersection-over-union (IoU) of 0.3997 on the EAD2019 test set. This resulted in a final score
of 0.3451 and the 3rd rank in the EAD 2019 object detection sub-challenge leaderboard.

Proceedings of the 2019 Challenge on Endoscopy Artefacts Detection (2019)
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represents the parameter values of the current iteration of a gradient-based
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opposite direction of the gradient (represented by an arrow). In a convex function,
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