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Abstract

Although the basic concept of a stellarator was known since the early days of fusion
research, advances in computational technology have allowed to model increasingly com-
plicated devices, leading up to the construction of Wendelstein 7-X, which has recently
shown promising results. However, there has been surprisingly little activity in 3D magne-
tohydrodynamic (MHD) modelling of stellarators. The purpose of this work is to extend
the JOREK nonlinear MHD code to stellarators. This requires first to generalize the
reduced MHD model to be compatible with three-dimensional geometries. Such a model
is derived and studied analytically in this dissertation. The model eliminates fast mag-
netosonic waves from the system, as a reduced MHD model should, and also guarantees
that ∇ · B⃗ = 0, unlike several older reduced MHD models for stellarators. It is shown
that the model conserves energy, but introduces an error into momentum conservation.
An alternate model, which does not guarantee energy conservation, but has a smaller
momentum conservation error is also derived. It is also shown that the main model intro-
duces an error into equilibrium force balance, but the error is negligible. The energy and
momentum conservation properties of the main and alternate models are then studied
numerically in the tokamak limit. The momentum conservation error of the main model
is shown to be small, and the energy conservation error of the alternate model is gener-
ally also small, unless one uses a less numerically stable version of the magnetic stream
function evolution equation.
Once implemented, the main model was tested on a set of l = 2 stellarator equilibria,

based on the classic Wendelstein 7-A stellarator, which used to be operated in Garching.
The GVEC code was used to calculate the equilibria, which were then used as initial
conditions for the JOREK runs. The simulations demonstrate that stable full MHD
equilibria are preserved in the reduced model: the flux surfaces do not move through-
out the simulation, and closely match the flux surfaces calculated in GVEC. Further,
tearing modes were simulated, and the linear growth rates measured in JOREK are in
good agreement with the growth rates calculated by the CASTOR3D linear MHD code.
Future work includes optimization, a ballooning mode benchmark with CASTOR3D, a
nonlinear benchmark with the MIPS code, and further analytical exploration of potential
improvements to the reduced MHD model.
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Zusammenfassung

Obwohl das Grundkonzept eines Stellarators seit den frühen Tagen der Fusionsforschung
bekannt war, erlaubten Fortschritte in der Computertechnologie immer kompliziertere
Geräte zu modellieren, was zum Bau von Wendelstein 7-X führte, der kürzlich vielver-
sprechende Ergebnisse zeigen konnte. Es gab jedoch überraschend wenig Aktivität in
der 3D magnetohydrodynamischen (MHD) Modellierung von Stellaratoren. Der Zweck
dieser Arbeit besteht darin, den nichtlinearen MHD-Code JOREK auf Stellaratoren zu
erweitern. Dies erfordert zunächst, dass das reduzierte MHD-Modell zu dreidimension-
alen Geometrien kompatibel ist. Ein entsprechendes Modell wird in dieser Dissertation
analytisch hergeleitet und untersucht. Das Modell eliminiert schnelle magneto-sonische
Wellen aus dem System, wie es ein reduziertes MHD-Modell sollte, und garantiert im
Gegensatz zu mehreren älteren MHD-Modellen für Stellaratoren, dass ∇ · B⃗ = 0. Es
wird gezeigt, dass das Modell energieerhaltend, aber nicht exakt impulserhaltend ist.
Ein alternatives Modell ist nicht exakt energieerhaltend, hat dafür aber einen kleineren
Fehler in der Impulserhaltung. Es wird gezeigt, dass das Hauptmodell einen Fehler in
der Gleichgewichtskraft-Balance einführt, der jedoch vernachlässigbar ist. Die Energie-
und Impulseinhaltungseigenschaften der Haupt- und Alternativmodelle werden dann im
Tokamak-Limit numerisch untersucht. Es wird gezeigt, dass der Impuls-Erhaltungsfehler
des Hauptmodells klein ist und der Energieerhaltungssfehler des alternativen Modells
im Allgemeinen ebenfalls, es sei denn, man verwendet eine numerisch weniger stabile
Definition der Entwicklungsgleichung für den magnetischen Fluss.
Einmal umgesetzt, wurde das Hauptmodell auf einen Satz von l = 2 Stellarator-

Gleichgewichten angewendet, basierend auf dem klassischen Wendelstein 7-A-Stellarator,
der früher in Garching betrieben wurde. Der GVEC-Code wurde verwendet, um die Gle-
ichgewichte zu berechnen, die dann als Anfangsbedingungen für die JOREK-Läufe dienen.
Die Simulationen zeigen, dass ein stabiles volles MHD-Gleichgewicht im reduzierten Mod-
ell erhalten bleibt: Die Flussflächen verschieben sich in der Simulation nicht und stim-
men mit den in GVEC berechneten Flussflächen überein. Ferner wurden Tearing-Moden
simuliert und die mit JOREK berechneten linearen Wachstumsraten stimmen mit dem
vollen-MHD-Codes CASTOR3D überein. Zukünftige Arbeit beinhaltet Optimierungen,
einen Benchmark für Ballooning-Moden mit CASTOR3D, einen nichtlinearen Benchmark
mit dem MIPS-Code und die weitere analytische Untersuchung potenzieller Verbesserun-
gen des reduzierten MHD-Modells.
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1 Introduction

The stellarator, having been proposed by Lyman Spitzer in 1951, is one of the

oldest plasma confinement concepts potentially applicable as a fusion power plant.

However, early stellarators were plagued with problems stemming from neoclassical

transport losses, leading to them being largely phased out in favor of tokamaks by

the 1970s [1–3]. However, improved mathematical models and increased computa-

tional power, which became available by the late 1980s, allowed to overcome the

main challenges faced by the stellarator concept. Moreover, the revival of stellara-

tors brought with it a new strategy for fusion research, where numerical modelling

drives the development of future machines, as opposed to the traditional strategy,

where smaller scale machines had to be built and experimented on before advancing

to larger scale machines. The creation of Wendelstein 7-X is one example of the

successful application of this new strategy. The advantages are clear: not only is it

more cost effective, but it also allows to consider a much wider range of potential

machine designs in a much shorter amount of time [1].

However, most of the computational devlopments mentioned above focussed on

the optimization of stellarator equilibria. Until recently, there has been almost no

work done on nonlinear magnetohydrodynamic (MHD) simulations of stellarators.

Thus, the goal of this dissertation is to extend JOREK, one of the leading nonlinear

MHD codes for tokamaks [4–6], to stellarators. The work consists of two parts: first,

a reduced MHD model compatible with three-dimensional geometries is derived by

generalizing the ideas of Breslau et al, Izzo et al and Strauss [7–9], then this model

is implemented in the JOREK code and tested on a simple stellarator. The rest

of this dissertation is organized as follows. The rest of this chapter introduces the

concepts that will be used later on. In chapter 2, the main model that will be
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CHAPTER 1. INTRODUCTION

used for stellarators is derived; in the tokamak limit, this model reduces to the

tokamak reduced MHD model normally used by JOREK. In addition, an alternate

model with somewhat better momentum conservation properties, but worse energy

conservation properties will be derived in chapter 2. In chapter 3, the alternate

model is be tested in the tokamak limit; the momentum conservation properties

of the main model are also be tested. Finally, in chapter 4, the main model is

validated using a set of simple stellarator equilibria based on Wendelstein 7-A.

1.1 Ideal and viscoresistive magnetohydrodynamics

The equations of ideal MHD are as follows:
∂ρ

∂t
+∇ · (ρv⃗) = 0,

∂

∂t
(ρv⃗) +∇ · (ρv⃗v⃗) = j⃗ × B⃗ −∇p,

∂p

∂t
+ v⃗ · ∇p+ γp∇ · v⃗ = 0,

∂B⃗

∂t
= −∇× E⃗,

∇× B⃗ = µ0j⃗, ∇ · B⃗ = 0, E⃗ = −v⃗ × B⃗.

(1.1)

In the above equations, the usual notation is followed, with ρ, p, v⃗, E⃗, B⃗ and j⃗ being

density, pressure, velocity, electric field, magnetic field and current, respectively,

and the constant γ = 5/3 being the ratio of specific heats. It is also assumed that

the ideal gas law p = ρRT holds. Note that, using the continuity equation, the

momentum equation can be rewritten in a simpler form:

ρ
∂v⃗

∂t
+ ρ(v⃗ · ∇)v⃗ = j⃗ × B⃗ −∇p.

The MHD equations can be derived from the Boltzmann-Maxwell system of equa-

tions by taking moments of the Boltzmann equation: the continuity equation corre-

sponds to the zeroth moment, the momentum equation to the first moment and the

pressure equation to the second moment. This derivation procedure is presented in

chapter 2 of Ref [3].
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1.1. IDEAL AND VISCORESISTIVE MAGNETOHYDRODYNAMICS

When applying ideal MHD to plasmas, it is assumed that the plasma is a super-

conducting inviscid fluid that forms a closed system (i.e. there are no sources or

sinks in the equations). Despite its relative simplicity, ideal MHD has seen much

success in describing basic plasma behavior, sometimes even outside its formal range

of validity (see chapters 9 and 10 in Ref [3] for a more detailed discussion on the

applicability of ideal MHD). Nevertheless, fusion plasmas exhibit many phenomena

that are not captured by ideal MHD; these phenomena become important on time

scales longer than the ideal time scale, and so, for example, an equilibrium that is

stable in the context of ideal MHD may actually be unstable to resistive tearing

modes in reality. Viscoresistive MHD, which is employed by most modern fluid

codes, attempts to extend the scope of MHD beyond ideal effects, while maintain-

ing the framework of a fluid model. All of the work presented in this dissertation

was done in the context of single-fluid viscoresistive MHD.

Viscoresistive MHD can be obtained by starting with resistive MHD. The re-

sistive MHD model can be derived from the Boltzmann-Maxwell system similarly

to ideal MHD, but without neglecting the terms that end up producing the resis-

tive term in Ohm’s Law [10]. Then, the divergence of the viscous stress tensor,

which was neglected in the derivation, is, in the case considered here, approxi-

mated by a viscosity coefficient multiplied by the Laplacian of velocity, just like in

the Navier-Stokes equation of standard fluid dynamics. While this is a very rough

approximation, it does not detract significantly from the general applicability of the

model [4, 11, 12], and such a viscosity term can sometimes help prevent numerical

instabilities in simulations [13]. In addition to viscosity, the viscoresistive model

used by the JOREK code also includes anisotropic mass and heat diffusion, as well

as mass and heat sources. The mass and heat diffusion coefficients perpendicular

to field lines are meant to approximate the effect of microinstabilities.

3



CHAPTER 1. INTRODUCTION

The full set of viscoresistive MHD equations is as follows:
∂ρ

∂t
+∇ · (ρv⃗) = P,

∂

∂t
(ρv⃗) +∇ · (ρv⃗v⃗) = j⃗ × B⃗ −∇p+ µ∆v⃗,

∂p

∂t
+ v⃗ · ∇p+ γp∇ · v⃗ = (γ − 1)

[
∇ ·
(
κ⊥∇⊥T + κ∥∇∥T +

p

γ − 1

D⊥

ρ
∇⊥ρ

)
+ Se + ηj2

]
,

∂B⃗

∂t
= −∇× E⃗,

∇× B⃗ = µ0j⃗, ∇ · B⃗ = 0, E⃗ = −v⃗ × B⃗ + ηj⃗, P = ∇ · (D⊥∇⊥ρ) + Sρ.

(1.2)

Here, η is the resistivity, µ is the dynamic viscosity, D⊥ is the mass diffusion

coefficient across field lines, κ⊥ and κ∥ are the heat conduction coefficients across

and along field lines, respectively, and Sρ and Se are the mass and energy sources,

respectively. The gradient operators parallel and perpendicular to the magnetic

field B⃗ are defined as follows: ∇∥ = B⃗
B2 B⃗ · ∇ and ∇⊥ = ∇ − ∇∥. The D⊥ term

in the pressure equation represents the internal energy carried by mass diffusing

across field lines. Finally, both the ideal and viscoresistive models introduced in

this section will be referred to as full MHD, in contrast to reduced MHD, which

will be introduced in section 1.3.

1.2 Linearized MHD

The ideal MHD model (1.1) is sufficient to describe the three main types of MHD

waves and many of the fastest-growing instabilities. In this section, the basics of

MHD waves and instabilities will be summarized, mostly following section 8.3 of

Ref [3].

To begin with, the equations (1.1) must be linearized. Suppose that some equi-

librium, i.e. a solution of the equations (1.1) that does not depend on time, is

known:

B⃗(r⃗, t) = B⃗0(r⃗), p(r⃗, t) = p0(r⃗), ρ(r⃗, t) = ρ0(r⃗), v⃗(r⃗, t) = v⃗0(r⃗). (1.3)

4



1.2. LINEARIZED MHD

One then looks for an approximate time-dependent solution to the equations (1.1)

in the form

Q(r⃗, t) = Q0(r⃗) +Q1(r⃗, t),

whereQ ∈ {B⃗, p, ρ, v⃗} and |Q1/Q0| ≪ 1. SinceQ1 is a small first order perturbation

to Q0, the equations can be expanded around Q0, dropping all higher order terms,

i.e. terms that contain more than oneQ1 factor. Since theQ0’s are known functions,

what remains then is a set of linear equations with Q1 as the unknowns:
∂ρ

∂t
+∇ · (ρ0v⃗) +∇ · (ρv⃗0) = 0,

ρ0
∂v⃗

∂t
+ ρ0(v⃗0 · ∇)v⃗ + ρ0(v⃗ · ∇)v⃗0 + ρ(v⃗0 · ∇)v⃗0 = j⃗0 × B⃗ + j⃗ × B⃗0 −∇p,

∂p

∂t
+ v⃗0 · ∇p+ v⃗ · ∇p0 + γp0∇ · v⃗ + γp∇ · v⃗0 = 0,

∂B⃗

∂t
= ∇× (v⃗0 × B⃗ + v⃗ × B⃗0),

(1.4)

where the ”1” subscripts have been dropped, and the fact that the equilibrium

satisfies the ideal MHD equations was used to remove zeroth order terms, i.e. terms

that only contain Q0 factors.

1.2.1 MHD waves

Consider a simple equilibrium in the ideal case η = 0:

B⃗0 = B0ẑ, p0 = const, ρ0 = const, v⃗0 = 0, (1.5)

where B0 = const. Thus, the plasma fills all space with a uniform density and

pressure, permeated by a homogeneous magnetic field. It is easy to see that the

equilibrium (1.5) satisfies the ideal MHD equations (1.1). Since the equilibrium is

also independent of spatial position, one can look for a plane wave solution to the

equations (1.4) in this particular case:

Q(r⃗, t) = Q̃ei(k⃗·r⃗−ωt).

Since only the z axis has been fixed so far, one can use this freedom to choose the

x and y axes so that k⃗ lies in the y − z plane: k⃗ = k⊥ŷ + k∥ẑ. The equations (1.4)

5



CHAPTER 1. INTRODUCTION

then become:

ωρ̃ = ρ0k⃗ · ˜⃗v,
ρ0ω˜⃗v = i

˜⃗
j × B⃗0 + k⃗p̃,

ωp̃ = γp0k⃗ · ˜⃗v,
ω
˜⃗
B = −k⃗ × (˜⃗v × B⃗0),

(1.6)

where
˜⃗
j = i⃗k × ˜⃗B/µ0. Since all of the amplitudes can be expressed in terms of

the velocity amplitude, substituting them into the momentum equation results in

a vector equation for just the velocity amplitude, the three components of which

are shown below:

(ω2 − k2∥c2A)ṽx = 0,

(ω2 − k2⊥c2s − k2c2A)ṽy − k⊥k∥c2sṽz = 0,

−k⊥k∥c2sṽy + (ω2 − k2∥c2s)ṽz = 0,

(1.7)

where cA = B0/
√
µ0ρ0 is the Alfvénic velocity and cs =

√
γp0/ρ0 is the speed of

sound. This is a system of linear algebraic equations of the form
←→
M · ˜⃗v = 0. In

order for the system to have a solution, the determinant of the coefficient matrix
←→
M

must be zero. Note that there will be infinitely many solutions, initial conditions

are required in order to be able to choose one particular solution. Setting the

determinant to zero results in the dispersion relation, which gives the frequency ω

in terms of the wave vector k⃗. The dispersion relation has three solutions:

ω2 = k2∥c
2
A, ω2 =

k2(c2A + c2s)

2

1±

√
1−

4k2∥c
2
Ac

2
s

k2(c2A + c2s)
2

 . (1.8)

Figure 1.1: The equilibrium and perturbation magnetic fields in an Alfvén wave.

Each of the three solutions of the dispersion relation corresponds to an MHD

6



1.2. LINEARIZED MHD

wave. The first solution, ω2 = k2∥c
2
A, corresponds to an Alfvén wave. The wave is

independent of k⊥ and so it travels along field lines. Note that, for a pure Alfvén

wave solution, equation (1.7) requires that ṽy = ṽz = 0; further, equations (1.6) give

B̃y = B̃z = ρ̃ = p̃ = 0 and ∇ · v⃗ = k⃗ · ˜⃗v = 0. Therefore, in a uniform equilibrium,

the wave compresses neither the fluid nor the magnetic field, but simply bends

the magnetic field lines. However, when the background magnetic field B⃗0 is not

homogeneous, the Alfvén wave can result in compressional motion [14].

Figure 1.2: The equilibrium and perturbation magnetic fields in a fast magnetosonic wave
at low β.

Now consider the solution to the dispersion relation corresponding to the second

expression in (1.8) taken with the ”+” sign. This solution corresponds to the fast

magnetosonic wave, referred to as such because its phase velocity, cf = ω/k is

always greater than the Alfvénic velocity cA. Note that, in general for a pure fast

magnetosonic wave solution, ṽx = 0, while ṽy ̸= 0 and ṽz ̸= 0. Similarly, equations

(1.6) give B̃x = 0, while B̃y ̸= 0 and B̃z ̸= 0. Therefore, since both ∇ · v⃗ ̸= 0

and Bz ̸= 0, the wave compresses both the fluid and magnetic field. In addition,

when β ≪ 1, c2s ≪ c2A and so the fast magnetosonic wave solution reduces to

ω2 ≈ k2c2A; in this regime the fast magnetosonic wave is often referred to as the

compressional Alfvén wave. It is also the only wave among the three MHD waves

that can propagate orthogonally to field lines in the low β regime. Also note that

ṽz ≪ ṽy, which follows from the last equation in (1.7), assuming that k∥ ∼ k⊥.

Then, from the equations (1.6), one gets that µ0p̃/(B0B̃) ∼ β, which means that

most of the wave’s energy is carried by magnetic field compression, as opposed to

fluid compression.

Finally, consider the dispersion relation solution given by the second expression

7



CHAPTER 1. INTRODUCTION

Figure 1.3: The equilibrium and perturbation magnetic fields in a slow magnetosonic wave
at low β.

in (1.8) taken with the ”−” sign. This is the slow magnetosonic wave, for which

the phase velocity is always less than the Alfvénic velocity. In the low β regime,

one can see that the dispersion relation solution approximates as ω2 ≈ k2∥c
2
s, and so

the slow magnetosonic wave becomes a sound wave which is confined to propagate

only along magnetic field lines. In this limit, since the wave propagates only along

magnetic field lines, k⊥ can be set to zero, then from (1.6) it follows that B̃z = 0,

so the magnetic field is not compressed.

1.2.2 Instabilities

Now consider the more general case of an arbitrary static MHD equilibrium, i.e.

an equilibrium where v⃗0 = 0. In this case, the linearized equations (1.4) become
∂ρ

∂t
+∇ · (ρ0v⃗) = 0,

ρ0
∂v⃗

∂t
= j⃗0 × B⃗ + j⃗ × B⃗0 −∇p,

∂p

∂t
+ v⃗ · ∇p0 + γp0∇ · v⃗ = 0,

∂B⃗

∂t
= ∇× (v⃗ × B⃗0).

(1.9)

Note that the ideal MHD linearized equations can rewritten as one vector equation

for velocity. Indeed, after differentiating the momentum equation with respect to

time, one can substitute the other three equations into it, resulting in

ρ0
∂2v⃗

∂t2
= j⃗0×[∇×(v⃗×B⃗0)]+

1

µ0

[∇×[∇×(v⃗×B⃗0)]]×B⃗0+∇(v⃗·∇p0+γp0∇·v⃗). (1.10)

This is an important simplification, which paves the way to the energy principle

approach, which will not be discussed here (see chapter 8 of Ref [3] for more details).

However, this simplification is available only in ideal MHD. For example, had the

8



1.2. LINEARIZED MHD

resistive term ηj⃗ been present under the curl on the RHS of Faraday’s law in (1.9),

the simplification would obviously not be possible.

Since the coefficients of the equations (1.9) are independent of time, one can look

for a solution of the form

Q(r⃗, t) = Q̃(r⃗)e−iωt.

Such solutions are referred to as normal modes. The equations (1.9) then become

an eigenvalue problem:

iωρ̃ = ∇ · (ρ0˜⃗v),
iω˜⃗v = − j⃗0 ×

˜⃗
B

ρ0
−
˜⃗
j × B⃗0

ρ0
+
∇p̃
ρ0
,

iωp̃ = ˜⃗v · ∇p0 + γp0∇ · ˜⃗v,
iω
˜⃗
B = −∇× (˜⃗v × B⃗0).

(1.11)

For each normal mode solution, the associated eigenvalue determines the oscillation

frequency and growth or decay rate of the mode. If, for a particular equilibrium,

there exists an eigenvalue with Imω > 0, then the associated normal mode will

grow exponentially and the equilibrium is said to be unstable. Conversely, if all of

the eigenvalues of an equilibrium satisfy Imω ≤ 0, the equilibrium is said to be

stable.

Figure 1.4: An interchange mode in a Z-pinch (a), and a ballooning mode in a linked
mirror machine (b).

Two particular instabilities, namely tearing modes and ballooning modes, deserve

special mention, as they will appear in the simulations presented in the following

chapters. The ballooning mode is a pressure-driven instability that can be described

9
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with ideal MHD, however the presence of a resistive term can affect its behavior.

The ideal ballooning mode can be illustrated using the example from section 12.3

of Ref [15]. First, consider an interchange mode in a Z-pinch, which is a linear

device where plasma is confined in a column by a current flowing along the length

of the column. At a distance r away from the axis, the magnetic field will scale as

B ∼ 1/r, and so the magnetic tension force scales as F = (B2/µ0)(2πrL) ∼ 1/r.

If the surface is perturbed, as shown in Figure 1.4 a, the magnetic tension will

be the greatest at position 2 and the least at position 1, since r1 > r2. Due to

this disparity, the magnetic field pushes the plasma harder in the more narrow

region than in the wider region, and so the net force from both the magnetic field

and pressure is radially inward in the narrow region and radially outward in the

wider region. The plasma moves from the narrow region into the wider region,

increasing the force disparity and causing the instability to grow exponentially. In

general, whenever the field line curvature vector κ⃗ = (⃗b · ∇)⃗b, where b⃗ = B⃗/B,

points in the same direction as the pressure force −∇p, the magentic field will

have a destabilizing influence, whereas if κ⃗ points in the opposite direction to −∇p,

the magnetic field will counteract the instability. Regions where the magnetic

field has a stabilizing effect are said to have favorable curvature, whereas those

where the magnetic field is destabilizing are said to have unfavorable curvature.

Both kinds of curvature can be seen in a linked mirror machine, where instead of

an axial current, the plasma is confined by several current-carrying loops around

it, as shown in Figure 1.4 b. In such a configuration, the curvature is favorable

near the loops, but unfavorable away from them. A ballooning mode is thus a

perturbation which grows in regions of unfavorable curvature, but is suppressed

where the curvature is favorable. Ballooning modes are referred to as such because

the tend to ”balloon out” in regions of unfavorable curvature [15]. A more rigorous

discussion of ballooning modes in more complicated configurations can be found in

chapter 12 of Ref [3].

Unlike ballooning modes which can be described with ideal MHD, a tearing mode

10
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Figure 1.5: An equilibrium with a magnetic field reversal (a), and a tearing mode that
arises in such an equilibrium (b). The blue rectangle indicates the layer where
resistive effects are important.

requires resistivity to be taken into account. As will be shown in the next chapter,

ideal MHD conserves magnetic flux through any arbitrary surface that is advected

with the fluid flow, and so the field lines must move with the plasma. Since fluid

elements cannot break into smaller elements, the magnetic field lines also cannot

break or reconnect in ideal MHD. However, tearing modes require just that: the

breaking and reconnecting of magnetic field lines. Consider a two-dimensional

equilibrium, where the magnetic field reverses direction at x = 0 (Figure 1.5 a). A

tearing mode arises when the field lines break and reconnect, as shown in Figure

1.5 b, but that can only happen where the field reverses direction. Thus, the

resistivity will only be important in a thin layer around x = 0; outside of that

layer the plasma can still be described by ideal MHD [16]. In toroidal plasma

configurations, such as tokamaks and stellarators, a similar situation occurs on

rational flux surfaces [17], which are flux surfaces where a field line returns to the

same point on the surface after a finite number of toroidal turns, forming a helix.

Suppose that, after returning to the same point, the field line has completed n

toroidal turns and m poloidal turns, which corresponds to a safety factor q = n/m.

Following Ref [17], introduce a coordinate on the flux surface in an orthogonal

direction to the field line:

ξ = θ − m

n
ϕ

where ϕ and θ are the toroidal and poloidal angles, respectively. Then, the ξ
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component of the magnetic field will reverse direction at the rational flux surface:

Bξ = Bθ

(
1− m

n
q(r)

)
,

where r is the radial coordinate. This leads to a tearing mode arising at the

rational flux surface. A more rigorous treatment of the tearing mode in the two-

dimensional case is given in Ref [16], whereas Ref [17] considers tearing modes in

toroidal geometry.

1.3 Reduced MHD

One technique that allows to use a larger time step with a reasonable spatial res-

olution is the elimination of fast magnetosonic waves from the plasma by using a

reduced MHD model, which nevertheless can retain the relevant physics which one

intends to study [9, 18]. As fast magnetosonic waves are the fastest of the three

types of MHD waves, their removal eliminates the shortest time scale, thus relaxing

the constraint imposed by the CFL condition and allowing the use of larger time

steps.

Implicit time integration methods are another method by which the CFL condi-

tion can be relaxed. Instead of removing the shortest time scale from the system,

implicit methods simply avoid the CFL condition altogether. However, even with

implicit methods, using time steps that are much larger than the shortest time

scale can lead to poor accuracy [18, 19]. Thus, using reduced MHD in combination

with implicit methods confers the most advantages. Finally, reduced MHD has

less unknowns than full MHD, which can reduce the memory required for a typical

simulation.

Many different versions of reduced MHD have been derived over the years, how-

ever all those versions can be grouped into two main categories: ordering-based

reduced MHD and ansatz-based reduced MHD. These two categories will be intro-

duced in the following subsections. Using an ansatz tends to involve less assump-

tions, while keeping more physics. For example, Park et al show that internal kink
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modes in a cylindrical geometry can be studied with ansatz-based models, but not

ordering-based models, as only keeping the lowest order in the inverse aspect ratio

does not cpature these modes [20]. However, the various equations of ansatz-based

models tend to be harder to interpret, owing to their complexity. In addition, error

estimation is more difficult in ansatz-based models due to the lack of an ordering

parameter.

1.3.1 Ordering-based reduced MHD

The first reduced MHD models to be derived historically were ordering-based.

Greene and Johnson first used these models to study MHD equilibria for stel-

larators in the 1960s [21]; later Kadomtsev, Pogutse and Strauss [22, 23] developed

dynamic reduced MHD models, which they used to study instabilities in tokamaks.

To introduce the main ideas behind ordering-based reduced MHD, Strauss’s model

derived in Ref [23] will be summarized here.

Strauss begins his derivation from ideal MHD (1.1). The derivation relies on an

expansion in the inverse aspect ratio ϵ, which is the ratio of the minor radius to

the major radius of the tokamak. An ordering is then introduced, which is a set of

assumptions determining the relative order (in terms of ϵ) of any physical quantity

in the system with respect to any other quantity of the same dimension. Strauss

uses the following ordering:
∂

∂x
,
∂

∂y
= O(1),

∂

∂z
= O(ϵ), Bx, By = O(ϵ),

Bz = O(1) +O(ϵ2), jx, jy = O(ϵ2), jz = O(ϵ), β = O(ϵ2),

ρ = O(1), v⃗ = O(ϵ),
∂

∂t
= O(ϵ)

(1.12)

where β is the ratio of fluid pressure p to magnetic pressure and (x, y, z) is a

Cartesian coordinate system. Toroidal effects are neglected, as the corresponding

terms in the equations are of order ϵ3, and all terms of that order and higher are

neglected. Thus, the plasma is a column extending in the z direction, with periodic

boundary conditions at the ends. The line (0, 0, z) represents the magnetic axis.
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In agreement with the ordering, the z-component of the magnetic field is defined

as Bz = B0 + B2, where B0 = const is the cylindrical magnetic field generated

by the coils and B2 is an O(ϵ2) correction due to poloidal currents. From the

divergence-free condition for B⃗, one gets

∇ · B⃗ = ∇⊥ · B⃗⊥ +
∂B2

∂z
= 0, (1.13)

where B⃗⊥ are the x and y components of B⃗ and ∇⊥ is the gradient operator in the

x− y plane. The second term is of order ϵ3 and can be dropped. What remains is

a two-dimensional divergence-free condition on B⃗⊥, which means that B⃗⊥ can be

expressed in terms of a stream function A, which is also the z component of the

magnetic vector potential:

B⃗⊥ = ∇A× ẑ. (1.14)

The z component of the momentum equation reads:

ρ
∂vz
∂t

+ ρ(v⃗ · ∇)vz = jxBy − jyBx −
∂p

∂z
. (1.15)

All terms on the RHS are of order ϵ3 and can be neglected. Because of this, Strauss

sets vz = 0. Next, Faraday’s law is rewritten in potential form:

∂A⃗

∂t
= v⃗ × B⃗ +∇ϕ, (1.16)

where ϕ is a gauge potential. The x and y components of the vector potential A⃗

must be of order ϵ2 in order for B2 to be of that same order. Therefore, taking the

cross product with ẑ and dropping terms of order ϵ3, one gets:

−B0v⃗ +∇ϕ× ẑ = 0, (1.17)

which means that v⃗ can also be represented by a stream function:

v⃗ = ∇U × ẑ, (1.18)

where U = ϕ/B0. Now, the z component of equation (1.16) becomes

∂A

∂t
= (∇U ×∇A) · ẑBz

∂U

∂z
= B⃗ · ∇U. (1.19)

The current is as follows:

j⃗ =
1

µ0

∇× (Bz ẑ +∇A× ẑ) =
1

µ0

(
∇Bz × ẑ −∆⊥Aẑ +∇⊥∂A

∂z

)
, (1.20)

where ∆⊥ = ∇ · ∇⊥. Substituting the current into the momentum equation and
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dropping terms of order ϵ3, one gets

ρ
∂v⃗

∂t
+ ρ(v⃗ · ∇)v⃗ =

Bz

µ0

∇∂A
∂z
× ẑ − 1

µ0

∆⊥A∇⊥A−∇⊥
(
p+

B2
z

2µ0

)
. (1.21)

Since ∇ · v⃗ = 0, one can consider the special case ρ = const, so Strauss normalizes

equation (1.21) by ρ. The last step is to take the curl of equation (1.21). After

dropping all terms of order ϵ3, only the z component of the resulting vorticity

equation remains. Using equation (1.18), the result is:

∆⊥∂U

∂t
+ v⃗ · ∇∆⊥U =

1

µ0

B⃗ · ∇∆⊥A. (1.22)

Equations (1.19) and (1.22) are the two equations of this simple reduced MHD

model. Note that B2 does not enter the equations, since in both equations Bz is

multiplied by a factor of order ϵ. Thus, since including B2 will result in terms of

order ϵ3, Bz = B0 for the purposes of this model. Finally, note that since both

the fluid and magnetic field cannot be compressed in this model, there are no fast

magnetosonic waves.

While the simple ordering-based reduced MHD model shown here is mostly a toy

model, more sophisticated ordering-based models have been derived [9, 19]. These

will not be discussed here, as the purpose of this section was just to illustrate the

ordering-based approach. All of the models that will be used in this dissertation

are ansatz-based, however, some ordering-based arguments will be presented in the

later chapters.

1.3.2 Ansatz-based reduced MHD

The ansatz-based approach was first introduced by Park et al in the 1980s [20].

Instead of expanding the MHD equations in terms of the inverse aspect ratio, this

approach starts with an ansatz for the magnetic field and velocity. Simulations show

that fast magnetosonic waves are eliminated when using the ansatzes [18]; this will

be confirmed more rigorously in the next chapter. Here, the JOREK reduced MHD

model for tokamaks [6, 13] will be presented to illustrate the ansatz-based approach

and to serve as a comparison for stellarator-capable reduced MHD, which will be

15



CHAPTER 1. INTRODUCTION

derived in the next chapters.

The derivation in Ref [13] begins with introducing the ansatzes for the magnetic

field and velocity:

B⃗ = F0∇ϕ+∇ψ ×∇ϕ,

v⃗ = −R2∇u×∇ϕ+ v∥B⃗.
(1.23)

Here, a cylindrical coordinate system (R, z, ϕ) was set up with the origin being the

intersection of the axis of symmetry with the midplane. The variables ψ, u and

v∥ are the unknowns which need to be solved for. These ansatzes are then used

in the equations (1.2). Note the similarity of the ansatzes to equations (1.14) and

(1.18), which were derived from the ordering. Also note that, due to axisymmetry,

the equilibrium ψ is a flux function:

(B⃗ · ∇ψ)|t=0 =
F0

R2

∂ψ

∂ϕ

∣∣∣∣
t=0

= 0.

At this point, two things should be noted. First, the derivation in Ref [13]

does not take into account sources and diffusion, i.e. it assumes κ∥ = κ⊥ = 0,

P = 0, Se = 0 and neglects the ηj2 term in equations (1.2). A derivation with a

more complete set of equations is presented in Ref [6]; the derivation summarized

here will mostly follow Ref [13]. Second, the viscosity term is not treated in the

derivation, meaning that the derivation works with an inviscid momentum equation,

and then a generic viscosity term is added in the end.

The first and most trivial step is to insert the ansatzes (1.23) into the continuity

and pressure equations in (1.2). Under the source- and diffusion-free assumption,

the following equations are obtained:
∂ρ

∂t
= R[ρ, u] + 2ρ

∂u

∂z
− 1

R
[ρv∥, ψ]−

F0

R2

∂

∂ϕ
(ρv∥),

∂p

∂t
= R[p, u] + 2γp

∂u

∂z
−
F0v∥
R2

∂p

∂ϕ
−
v∥
R
[p, ψ]− γp

R
[v∥, ψ]−

F0γp

R2

∂v∥
∂ϕ

,

(1.24)

where [f, g] = ϕ̂ · (∇f ×∇g) is a Poisson bracket.

The remaining two equations in (1.2) are vector equations, and one cannot use

them as is after inserting the ansatzes into them, as there would be more equations

then unknowns. Thus, appropriate projection operators need to be applied to the
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vector equations in order to obtain a scalar equation for each of the three unknowns

ψ, u and v∥. First consider Faraday’s law, which, after inserting the ansatzes (1.23),

becomes:

∇∂ψ
∂t
×∇ϕ = ∇× (F0∇⊥u+ [ψ, u]ϕ̂− ηj⃗),

where ∇⊥ is the gradient operator in the R− z plane and j⃗ = ∇× (∇ψ×∇ϕ)/µ0.

Since the curl of a gradient is zero, one can subtract F0∇u from the expression

under the curl on the LHS. Then, since both sides are curls, the entire equation

can be un-curled, resulting in:

∂ψ

∂t
∇ϕ = −F0

∂u

∂ϕ
∇ϕ+ [ψ, u]ϕ̂− ηj⃗.

The last step is to project this equation on Rϕ̂. The final equation for ψ is then

∂ψ

∂t
= −F0

∂u

∂ϕ
+R[ψ, u]− ηj, (1.25)

where a simple algebraic calculation shows that j = Rϕ̂ · j⃗ = ∆∗ψ/µ0 and ∆∗ =

R2∇ · (R−2∇⊥ is the Grad-Shafranov operator. The R and z components of the

current were neglected, and the point of subtracting F0∇u under the curl was to

avoid neglecting ∇⊥u as well. In Ref [13], an attempt is made to avoid neglecting

the R and z components of current by using gauge freedom. However, an error is

present in the derivation (a factor of 1/R2 slips through a ∂/∂R derivative unnoticed

in equation (2.5)) which makes it seem like the gauge potential can be defined in

such a way that its gradient will cancel both the R and z components of current

simultaneously, however this is not possible. This error leads to the presence of an

extra term, ηR−2∂2ψ/∂ϕ2, in the reduced MHD ψ equation presented in Ref [13],

however this term is not implemented in JOREK [6].

Now consider the momentum equation in (1.2). There are two velocity-related

unknowns, u and v∥, so two different projection operators will be needed, namely:

∇ϕ · ∇ × (R2,

B⃗ · .
(1.26)

Note that, for any vector Q⃗ and test function u∗, one has, using the identity
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∇f · ∇ × U⃗ = −∇ · (∇f × Q⃗) and integration by parts,∫
V

u∗∇ϕ · ∇ × (R2Q⃗)dV =

∫
V

(R2∇u∗ ×∇ϕ) · Q⃗dV,

where V is the volume occupied by the plasma and it is assumed that u∗ = 0

on ∂V . Thus, within the context of the Galerkin method, using this operator

amounts to projecting the momentum equation on the subspace of vector functions

representable by R2∇u∗×∇ϕ, where u∗ is an arbitrary scalar function. Inserting the

ansatzes (1.23) and applying the first projection operator, the following equation

is obtained for u:

∇ ·
(
R2ρ∇⊥∂u

∂t

)
−∇ ·

[
ρ
∂

∂t
(v∥∇⊥ψ)

]
=

1

2R
[R2(u, u), R2ρ] +

1

R
[R4ρw, u]

− 1

R
[R2, p] +

1

R
[ψ, j]− F0

R2

∂j

∂ϕ
+

1

R
[ρv2∥j, ψ] +

1

R
[ρv∥(v∥, ψ), ψ]

−∇ ·
[
F0ρv∥∇⊥

(
∂u

∂ϕ

)]
+

1

R
[R2ρ, v∥(ψ, u)]−

1

2R

[
R2ρ,

v2∥(ψ, ψ)

R2

]

− 1

R
[R2ρv∥w,ψ] +

1

R
[u,R2ρv∥j] +

1

R
[u,R2ρ(ψ, v∥)]−

1

R

∂

∂z

(
F 2
0 ρv

2
∥

R

)

+
1

R

∂

∂R

[
F0ρv∥
R

∂

∂ϕ

(
v∥
∂ψ

∂R

)]
+

1

R

∂

∂z

[
F0ρv∥
R

∂

∂ϕ

(
v∥
∂ψ

∂z

)]
+∇ · (µt⊥∇w),

(1.27)

where w = ∆⊥u = ∇ · ∇⊥u and (f, g) = ∇⊥f · ∇⊥g. The term ∇ · (µt⊥∇w)

is the previously mentioned generic viscosity term. Finally, applying the second

projection operator after inserting the ansatzes (1.23) results in the equation for

v∥:

ρB2∂v∥
∂t

+
ρv∥
R2

(
ψ,
∂ψ

∂t

)
− ρ

(
u,
∂ψ

∂t

)
= − 1

R
[p, ψ]− F0

R2

∂p

∂ϕ
+

ρ

2R
[ψ, v2∥B

2]

− F0ρ

2R

∂

∂ϕ

(
v2∥B

2

R

)
− ρ

2R
[R2(u, u), ψ]−Rρw[ψ, u]−RρB2[u, v∥]

−
ρv∥j

R
[u, ψ]−

ρv∥
R

[ψ, (ψ, u)] +
F0ρv∥
R2

(
ψ,
∂ψ

∂ϕ

)
.

(1.28)

For the sake of simplicity, only reduced MHD models for tokamaks have been

presented in this section. Stellarator-capable models have also been derived previ-

ously, but most of them only approximately satisfy the condition ∇ · B⃗ = 0, like
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the model in Ref [24]. An exception is a newer model by Strauss [9], where the

magnetic field is expanded around an arbitrary curl-free background field, with-

out making any assumptions on the geometry while exactly satisfying ∇ · B⃗ = 0.

However, the model in Ref [9] is an ordering-based ideal MHD model. The models

that will be derived in this dissertation will expand the magnetic field similarly to

Ref [9], while following the ansatz-based approach in the context of viscoresistive

MHD. In addition, the models will be derived first as an alternate formulation of

full MHD, with the reduction being a separate step, much like the approach used

by Breslau et al [7].

1.4 The JOREK code

JOREK is a fully implicit Galerkin finite element nonlinear MHD code, which is

used extensively to study tokamaks. Several different reduced and full MHD models

have been implemented [6]. JOREK is one of several major nonlinear MHD codes

in the world, with a primarily European community. Several other comparable

MHD codes exist, with a few of them, including M3D-C1 [25], M3D [26] and MIPS

[27], having also been expanded to stellarators. All three of these codes use full

MHD on flux surface aligned grids, except for MIPS, which uses a cylindrical grid.

NIMROD, another major tokamak code, is still in the process of being extended to

stellarators [28].

The spatial discretization in JOREK is done via two-dimensional quadrilateral

finite elements in the poloidal plane and a toroidal Fourier expansion. The finite

element discretization has G1 continuity, meaning that any discretized functions

and their first derivatives are continuous across element boundaries, but second

derivatives can jump.

In each element, an element-local coordinate system (s, t, ϕ), s, t ∈ [0, 1], is set

up in each element, where (s, t) = (0, 0), (0, 1), (1, 0), (1, 1) correspond to the four

vertices of the element and ϕ is the geometric toroidal angle, identical to the ϕ
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coordinate of the cylindrical coordinate system (R, z, ϕ) introduced in the previous

section. In general, s and t can be have arbitrary orientations in the poloidal plane,

however in most configurations without an X-point, s is the radial coordinate and

t is the poloidal coordinate. All quantities, including the cylindrical coordinates

R and z, are expressed in terms of the element-local coordinates. Expressing R

and z in terms of element-local coordinates allows one to adjust the positions of

the vertices of an element, which is normally used to build a flux surface aligned

grid. Previously, R and z could only depend on s and t, but not ϕ [6], however a

recent development by R. Ramasamy removed this constraint. Now, the cylindrical

coordinates inside a particular element are represented as:

{R, z}(s, t, ϕ) =
Nctor∑
n=1

4∑
i=1

4∑
j=1

{Rijn, zijn}Bij(s, t)Z
c
n(ϕ), (1.29)

where i sums over the four vertices of the element, j sums over the degrees of

freedom at each vertex and n sums over the toroidal Fourier modes, with Nctor

being an adjustable parameter. In addition, Bij(s, t) are Bezier basis functions,

and

Zc
n(ϕ) =


1, n = 1

cos
(
Ncp

n
2
ϕ
)
, n even

sin
(
Ncp

n−1
2
ϕ
)
, n odd and n > 1

where Ncp is the periodicity of the underlying geometry. Allowing R and z to

depend on ϕ makes it possible to build a flux surface aligned grid in a stellarator

configuration. The physical quantities, such as density, temperature and ψ are

represented in a similar way:

Q(s, t, ϕ) =
Ntor∑
n=1

4∑
i=1

4∑
j=1

QijnBij(s, t)Zn(ϕ). (1.30)

Note that Ntor and Nctor are distinct parameters; on a flux surface aligned grid

less modes are needed to represent the physical quantities than the geometry. The

Fourier basis function Zn(ϕ) is defined in a similar way to Zc
n(ϕ), with the difference

that Ncp is replaced by Np; this allows running full torus simulations without having

20



1.4. THE JOREK CODE

to add unnecessary modes to the geometry.

For clarity, the covariant basis vectors of the element-local coordinate system will

be calculated here in terms of the cylindrical basis vectors:

e⃗s =

(
∂r⃗

∂s

)
t,ϕ

=
∂R

∂s
b⃗R +R

∂b⃗R
∂s

+
∂z

∂s
b⃗z =

∂R

∂s
b⃗R +

∂z

∂s
b⃗z,

e⃗t =

(
∂r⃗

∂t

)
s,ϕ

=
∂R

∂t
b⃗R +R

∂b⃗R
∂t

+
∂z

∂t
b⃗z =

∂R

∂t
b⃗R +

∂z

∂t
b⃗z,

e⃗ϕ =

(
∂r⃗

∂ϕ

)
s,t

=
∂R

∂ϕ
b⃗R +R

∂b⃗R
∂ϕ

+
∂z

∂ϕ
b⃗z =

∂R

∂ϕ
b⃗R +

∂z

∂ϕ
b⃗z + b⃗ϕ,

(1.31)

where r⃗ = Rb⃗R + z⃗bz is the position vector and cylindrical basis vectors are repre-

sented with the letter ”b” to avoid confusion. In addition, since the covariant basis

vectors e⃗s and e⃗t should lie in the poloidal plane, the derivative of b⃗R with respect

to s or t should be zero, as b⃗R is constant in the poloidal plane. The derivative of

b⃗R with respect to ϕ can be calculated as follows:(
∂b⃗R
∂ϕ

)
s,t

= e⃗ϕ · ∇b⃗R = e⃗ϕ · ∇R

(
∂b⃗R
∂R

)
z,ϕ

+ e⃗ϕ · ∇z

(
∂b⃗R
∂z

)
R,ϕ

+ e⃗ϕ · ∇ϕ

(
∂b⃗R
∂ϕ

)
R,z

=

(
∂b⃗R
∂ϕ

)
R,z

=
1

R
b⃗ϕ.

Knowing the covariant basis vectors completely defines the coordinate system. The

metric tensor (not shown here) can be easily calculated from the basis vectors, if

needed.

Finally, the temporal discretization in JOREK is done using either the Crank-

Nicolson, Gears (BDF2) or the implicit Euler time stepping schemes [6]. An evo-

lution equation can be written in the form

∂A⃗(u⃗)

∂t
= B⃗(u⃗, t),

where u⃗ is the n-dimensional vector of all physical quantities. After discretizing

the equation and linearizing it around the current time step, the following general

form is obtained:[
(1 + ξ)

(
∂A⃗

∂u⃗

)n

−∆tθ

(
∂B⃗

∂u⃗

)n]
· δu⃗ n = ∆tB⃗n + ξ

(
∂A⃗

∂u⃗

)n

· δu⃗ n−1, (1.32)
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where the superscripts refer to the time step at which a particular expression is

evaluated at: either the current time step (n), the previous one (n− 1) or the next

one (n+ 1), and δu⃗ n = u⃗ n+1 − u⃗ n. The parameters ξ an θ determine which time

stepping scheme is used: ξ = 0, θ = 1/2 corresponds to the Crank-Nicolson scheme,

ξ = 1/2, θ = 1 corresponds to the Gears scheme and ξ = 0, θ = 1 corresponds to

implicit Euler [6].

After applying the Galerkin method to equations (1.32), a system of linear al-

gebraic equations is obtained, where the unknowns are increments to the finite

element degrees of freedom Qijn (see equation (1.30)). This system is solved itera-

tively, with the initial guess obtained by breaking the matrix into separate blocks

for each Fourier mode and neglecting the cross terms. The initial guess is then

refined using the GMRES method [29]. Such a strategy works fine for tokamaks

and simple stellarators, such as Wendelstein 7-A, however may become problematic

for more complicated stellarators, where mode coupling becomes significant. This

issue has been solved in a recent development by I. Holod, where the matrix is

broken into blocks that encompass entire mode families, not just individual modes.
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2 Derivation of the reduced MHD models

In this chapter, the reduced MHD model, which will be used in later chapters is

derived. This model can be seen as a direct generalization of the JOREK tokamak

reduced MHD model summarized in section 1.3.2 to stellarators. Indeed, as will

be seen, setting the magnetic scalar potential to χ = F0ϕ reduces the stellarator

model back to the tokamak model. This choice of χ will be referred to as the

tokamak limit. Unlike the derivation summarized in section 1.3.2, in this chapter,

the stellarator models will be derived first as an alternate formulation of full MHD,

with the magnetic field and velocity ansatzes being general enough to represent any

arbitrary magnetic field and velocity. The reduction is then a separate step, where

extra terms in the ansatzes are dropped, much like the approach used by Breslau

et al [7].

In addition to the main model, a separate reduced model will be derived, which

has better momentum conservation properties but does not conserve energy exactly.

This alternate model uses the same ansatzes, but different projection operators.

This model will be tested in the tokamak limit in the next chapter, but it will not

be used for stellarator simulations.

The altenate model was first published in Ref [30]. Ref [31] then uses the same

ansatz as Ref [30] to derive the main model.

2.1 Magnetic field and velocity ansatzes

The vector potential of any magnetic field can be represented in a arbitrary coor-

dinate system (q1, q2, q3) using just two covariant components:

A⃗ = A3∇q3 + A1∇q1, (2.1)
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CHAPTER 2. DERIVATION OF THE REDUCED MHD MODELS

where the ∇q2 component was eliminated using a gauge transform. Now suppose

that the total magnetic field B⃗ in a fusion device is split into a curl-free (vac-

uum) field ∇χ, which is generated by the coils, and an induced field B⃗ind, which

is generated by plasma currents, so that B⃗ = ∇χ + B⃗ind. Consider the so-called

Clebsch-type coordinate system (ψv, βv, χ) aligned to the vacuum magnetic field

∇χ, where the coordinates satisfy

∇χ = ∇ψv ×∇βv.

As shown in Ref [32], a Clebsch-type coordinate system can be constructed for any

divergence-free field; since ∇χ is a magnetic field, it must also be divergence-free.

It follows that χ must satisfy the Laplace equation.

If the vector potential of the induced magnetic field A⃗ind is expressed in the form

(2.1), then the total magnetic field can be expressed as:

B⃗ = ∇χ+∇Ψ×∇χ+∇Ω×∇ψv, (2.2)

where Ψ = Aχ and Ω = Aψv . Note that this ansatz guarantees that B⃗ will be

divergence-free, even if the last term is dropped, as will be done in reduced MHD,

since each of the three terms are individually divergence-free. The ansatz also

partially fixes the gauge, as one can now only add the gradient of an arbitrary

scalar f to A⃗ind if ∂f/∂βv = 0.

Now consider the velocity field. In previous work, Izzo et al [8] and Breslau et

al [7] considered the case when χ = F0ϕ. They use a three-term ansatz for the

velocity to separate the MHD waves, where each term contains one of the three

waves. Generalizing their expression to χ ̸= F0ϕ while making sure that the first

two terms will reduce back to (1.23) in the tokamak limit, the following is obtained:

v⃗ =
∇Φ×∇χ

B2
v

+ v∥B⃗ +∇⊥ζ, (2.3)

where Bv = |∇χ|, ∇⊥ = ∇−∇∥ and ∇∥ = B−2
v ∇χ∇χ · ∇. In the tokamak limit,

the ansatz above matches that of Izzo et al and Breslau et al, except for the second

term, which was made to match the second term in the velocity ansatz (1.23).

The terms in the ansatzes (2.2) and (2.3) can be interpreted as follows. The
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2.1. MAGNETIC FIELD AND VELOCITY ANSATZES

magnetic field ansatz consists of the background vacuum field, the field line bending

term and the field compression term, while the velocity ansatz consists of the E⃗×B⃗

flow, field-aligned flow and fluid compression. However, these interpretations are

not exact. For example, the last term in the ansatz (2.2) contains ∇∥Ω × ∇ψv
as a vector component, which contributes a correction to the field line bending.

Note that, due to both ∇⊥Ω and ∇ψv being orthogonal to ∇χ, their cross product

will be colinear with ∇χ and thus will not contribute to field line bending. If an

ordering is inroduced, the correction ∇∥Ω×∇ψv is already one order higher than

the field compression ∇⊥Ω × ∇ψv, which itself is one order higher than the main

field line bending term ∇Ψ × ∇χ in most configurations, so it does not make a

significant contribution. Also, as will be shown in section 2.5, the first term in

the velocity ansatz (2.3) only matches the E⃗ × B⃗ velocity exactly in ideal reduced

MHD. Finally, since all terms in the velocity ansatz (2.3) individually have nonzero

divergence, the last term is not the exact fluid compression term.

While it is clear that any magnetic field can be expressed using the ansatz (2.2),

it remains to be proven that the ansatz (2.3) does not impose any restrictions on

the velocity. To show this, define three projection operators:

∇χ · ∇ × [∇χ× (e⃗χ×

∇χ·

∇ · [B2
v∇χ× (e⃗χ×

(2.4)

Here, e⃗χ = B⃗/Bχ is the covariant basis vector in the Clebsch-type coordinate

system (α, β, χ) aligned to the total magnetic field B⃗ = ∇α×∇β. The superscript

represents a contravariant component: Bχ = ∇χ · B⃗. The identity ∇f · ∇ × Q⃗ =

−∇ · (∇f × Q⃗), which follows directly from the divergence of a cross product rule,

can be used to rewrite the first projection operator as

−∇ · [∇χ× (∇χ× (e⃗χ× (2.5)

It should be pointed out that the sub-operator ∇χ × (e⃗χ× subtracts out the con-

travariant χ component of a vector: ∇χ × (e⃗χ × Q⃗) = −Q⃗ + Qχe⃗χ. Applying the
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CHAPTER 2. DERIVATION OF THE REDUCED MHD MODELS

three projection operators to the ansatz (2.3), gives the equations for the three

scalar functions Φ, v∥ and ζ:

∆⊥Φ = ∇χ · ∇ × [∇χ× (e⃗χ × v⃗)],

v∥ =
vχ

Bχ
,

∇ · (B2
v∇⊥ζ) = −∇ · [B2

v∇χ× (e⃗χ × v⃗)].

(2.6)

As can be seen, once the velocity field is specified, Φ and ζ are given each determined

by solving a linear differential equation v∥ is given by a direct relation. Both

differential equations are generalized Poisson equations. The boundary conditions

for these equations can be determined as follows. In a fixed-boundary simulation,

the velocity must satisfy n⃗·v⃗ = 0 on the boundary, where n⃗ is the unit normal vector

to the boundary. Assuming that the plasma is surrounded by a perfect conductor,

as will be done in the simulations presented in this dissertation, the magnetic field

must satisfy n⃗ · B⃗ = 0. Thus, the velocity boundary condition becomes

n⃗ · ∇Φ×∇χ
B2
v

+ n⃗ · ∇⊥ζ = 0.

Imposing a Dirichlet condition of Φ = 0 on the boundary makes ∇Φ colinear with

n⃗, so a cross product involving ∇Φ will be orthogonal to n⃗ and the first term above

is zero. What remains is a Neumann boundary condition for ζ: n⃗ · ∇⊥ζ = 0. The

consistency condition for the third equation in (2.6) and the boundary condition is∮
∂V

B2
v∇⊥ζ · dS⃗ = −

∫
V

∇ · [B2
v∇χ× (e⃗χ × v⃗)]dV =

∮
∂V

B2
v(v⃗ − v∥B⃗) · dS⃗.

The LHS is zero due to the boundary condition, and the v∥B⃗ term on the RHS is

zero due to the magnetic field boundary condition. Thus, the Neumann boundary

condition is consistent with the equation as long as the prescribed vector field v⃗

itself satisfies to the boundary condition n⃗ · v⃗ = 0. Clearly, it would not make

much sense to try to calculate the scalar functions Φ, v∥ and ζ assuming a fixed

boundary from a vector field v⃗ if that vector field itself is not compatible with a

fixed boundary setup.
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2.2 MHD waves and the velocity ansatz

Using ideal linearized MHD, it can be shown that the three terms of the velocity

ansatz (2.3) approximately separate the MHD waves, with each term containing

a specific wave. In addition to the assumptions leading up equation (1.10), which

will be used shortly, one must also assume that the induced part of the equilibrium

magnetic field is much smaller than the coil-generated vacuum field:

|B⃗0 −∇χ|
|∇χ|

≪ 1. (2.7)

Using this assumption, B⃗0 will be approximated by ∇χ. Meanwhile, it is not

necessary to neglect j⃗0 = 1
µ0
∇ × B⃗0, as the equilibrium current j⃗0 does not affect

the following analysis.

Approximating B⃗0 by ∇χ, equation (1.10) becomes

ρ0
∂2v⃗

∂t2
= j⃗0 × [∇× (v⃗ ×∇χ)] + 1

µ0

[∇× [∇× (v⃗ ×∇χ)]]×∇χ

+∇(v⃗ · ∇p0) + γ∇(p0∇ · v⃗).
(2.8)

Similarly to an elastic solid, a plasma can support both fluid-compressional and

shear waves. The individual terms in a typical elastic wave equation, as given in

Ref [33], can be compared to the terms in equation (2.8). The second term on the

RHS of equation (2.8), which can compress the magnetic field, but not the fluid,

has a structure similar to the shear wave term in the elastic wave equation, while

the last term on in equation (2.8) is similar to the compressional wave term in the

elastic wave equation. Notice that the other two terms on the RHS of equation

(2.8) do not contain second order derivatives of the velocity, so these terms do not

produce wave-like behavior.

To show that each term of the velocity anstaz (2.3) contains a specific MHD

wave, one can insert each term individually into equation (2.8). Note that, since

each term contains only one unknown scalar function, inserting just one term into

the vector equation in general results in an overconstrained equation. However, the

point of this excercise is to analyze the interplay of the structure of the terms in

the velocity ansatz (2.3) with the terms in the equation (2.8); to actually solve the
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linear equations, one would need to apply the corresponding projection operator,

as done in the next section. Inserting the first term from the velocity ansatz into

the equation gives:

ρ0
B2
v

∂2∇Φ
∂t2

×∇χ = −j⃗0 × (∇×∇⊥Φ)− 1

µ0

[∇× (∇×∇⊥Φ)]×∇χ

+∇
(

1

Bv

[p0,Φ]

)
− 2γ∇

(
p0
B2
v

[Bv,Φ]

)
,

(2.9)

where [f, g] = B−1
v ∇χ · (∇f ×∇g) is the Poisson bracket of two scalar fields f and

g. While the first term of the velocity ansatz captures both shear Alfvén waves

and many instabilities, this section is only concerned with waves, namely with

identifying the type of MHD wave contained in each term of the ansatz. The wave

type can be identified by determining the phase velocity of wave-like perturbations,

which is given by the coefficient in front of the term in the wave equation that

contains the second order derivative of the unknown [14, 34].

Since equation (2.9) contains third order derivatives of Φ, it makes sense to let

the unknown be the first derivatives of Φ rather than Φ itself, so that equation (2.9)

takes the form of a wave equation. Let ∇⊥Φ, which, as shown in section 2.5, can

be interpreted as the component of the electric field perpendicular to the vacuum

magnetic field in ideal reduced MHD, be the unknown in equation (2.9). Only the

second term on the RHS of equation (2.9) contains third order derivatives of Φ,

which, conveniently, are expressed as second order derivatives of ∇⊥Φ; what is left

of the fluid compressional term only contains second derivatives of Φ. Thus, only

the second term is needed to identify the wave; this term can be rewritten as

− 1

µ0

[∇⊥(∆⊥Φ)−∆⊥(∇⊥Φ)−∆∥(∇⊥Φ)]×∇χ, (2.10)

where the identities ∇×(∇×A⃗) = ∇(∇·A⃗)−∆A⃗, ∇ = ∇⊥+∇∥ and ∆ = ∆⊥+∆∥

were used, with ∆∥ = ∇ ·∇∥. It is important to note that, while the operators ∆⊥

and ∇⊥ do not commute when the vacuum field ∇χ is not uniform, the third order

derivatives cancel in their commutator, and only the −∆∥(∇⊥Φ) term contains

third order derivatives of Φ. Taking the cross product of equation (2.9) with ∇χ
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on the left and dividing by ρ0 gives

∂2∇⊥Φ

∂t2
=

B2
v

µ0ρ0

[
∆∥(∇⊥Φ) + [∆⊥,∇⊥]Φ

]
− ∇χ
µ0ρ0
∇χ ·

[
[∆∥,∇⊥]Φ + [∆⊥,∇⊥]Φ

]
+
jχ0
ρ0
∇×∇⊥Φ +

1

ρ0
∇χ×∇

(
1

Bv

[p0,Φ]

)
− 2γ

ρ0
∇χ×∇

(
p0
B2
v

[Bv,Φ]

)
.

(2.11)

In the above equation, square brackets applied to operators instead of scalar func-

tions are to be understood as the commutator: [A,B]f = A(Bf) − B(Af). In a

sense, the commutator is a type of Poisson bracket that acts on operators instead

of scalar functions. Note that the commutator [∆∥,∇⊥] also does not contain third

order derivatives. As can be seen from the only term containing third order deriva-

tives, waves in the vector field ∇⊥Φ will propagate with the Alfvén velocity along

field lines. Also note that the fluid velocity, ∇Φ × ∇χ/B2
v is orthogonal to field

lines. However, unlike the uniform case presented in section 1.2.1, the divergence

of the fluid velocity is nonzero due to the magnetic field curvature [14]. Thus, the

first term contains Alfvén waves.

Proceeding to the second term in the velocity ansatz (2.3), note that using as-

sumption (2.7) along with the assumptions of linearized MHD, the second term is

approximated as

v∥B⃗ = v∥(B⃗0 + B⃗1) ≈ v∥∇χ, (2.12)

due to both v∥ and B⃗1 being first order quantities in linearized MHD. While, from

the linear MHD standpoint, there is not much difference in using the vacuum mag-

netic field instead of the total field in the second term, the choice becomes important

for nonlinear effects. For example, using the total field allows the temperature and

density profiles to flatten in a region where the magnetic field is stochastic.

After inserting (2.12) into (2.8), the equation becomes:

ρ0
∂2v∥
∂t2
∇χ = γ∇(Bvp0∂

∥v∥), (2.13)

where ∂∥ = B−1
v ∇χ·∇ is the derivative along the vacuum field. Since ∇p0 = j⃗0×B⃗0

and B⃗0 ≈ ∇χ (assumption (2.7)), it follows that ∂∥p0 ≈ 0; this allows one to drop

the third term on the RHS of equation (2.8) and only the fluid compressional term
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is left. Dotting the equation with ∇χ/(ρ0B2
v) and expanding the derivative in the

RHS gives
∂2v∥
∂t2

=
γp0
ρ0

(∂∥)2v∥ +
γp0
ρ0Bv

∂∥v∥∂
∥Bv

=
γp0
ρ0

∆∥v∥ +
2γp0
ρ0Bv

∂∥v∥∂
∥Bv.

(2.14)

As can be seen from the first term on the RHS, waves in the scalar field v∥ will

move with the sound speed along field lines, and the fluid velocity v∥∇χ is directed

along field lines. Thus, the second term in the ansatz contains slow magnetosonic

waves. Note, however, that the waves propagate with the sound speed and not with

the slow magnetosonic speed due to the velocity being constrained to be strictly

in the direction of the field lines, which eliminates the shear term, preventing the

magnetic field from being compressed. Thus, the wave can only compress the fluid,

forcing it to act like a sound wave confined to propagating along field lines due to

its longitudinal nature. A true slow magnetosonic wave can emerge when the third

term in the velocity ansatz is present, via coupling between the two terms.

At this point, after having considered the first two terms in the velocity ansatz, it

should be pointed out that these first two terms do not compress the magnetic field

even in the nonlinear regime. This can be shown by projecting the ideal Faraday’s

law on ∇χ, after inserting the magnetic field ansatz (2.2) and the first two terms

of the velocity ansatz (2.3):

∂Bχ

∂t
= Bv

[
∂Ω

∂t
, ψv

]
= ∇χ·∇×(v⃗×B⃗) = Bv

[
[ψv,Φ]

Bv

,Ω

]
−Bv

[
[Ω,Φ]

Bv

, ψv

]
. (2.15)

The contribution to the component of the magnetic field along ∇χ that does not

come from ∇χ itself corresponds to field compression. As discussed in the previ-

ous section, the Ω term in the magnetic field ansatz (2.2) contains both the field

compression and a correction to field line bending, however, the field line bending

correction is due to ∂∥Ω ̸= 0, and ∂∥Ω does not contribute to the Poisson brackets

in the equation above. Thus, if there is no field compression at t = 0, ∂Bχ/∂t = 0,

meaning that the field cannot be compressed at any point in the simulation. For

this reason, it is appropriate to drop the Ω term of the magnetic field ansatz (2.2)
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in the context of reduced MHD, where the third term of the velocity ansatz (2.3)

is not present. Note that the effect of resistivity is not considered here. Resistivity

can lead to a nonzero value of ∂Bχ/∂t, however it is unrelated to the velocity ansatz

terms, and practice shows that it is usually small enough to neglect.

To conclude this section, consider the last term of the velocity ansatz (2.3). After

substituting it into equation (2.8), one gets

ρ0
∂2∇⊥ζ

∂t2
= j⃗0× [∇× (∇ζ×∇χ)]− 1

µ0

∆(∇ζ×∇χ)×∇χ+∇(ζ, p0)+γ∇(p0∆⊥ζ),

(2.16)

where (f, g) = ∇⊥f · ∇⊥g is the inner product of the components of the gradients

of f and g perpendicular to ∇χ. As was done when examining the first term in

the velocity ansatz, let the perpendicular gradient ∇⊥ζ be the unknown. Since the

time derivative on the LHS does not have a component along ∇χ, one only needs

to consider the perpendicular component of the RHS. Expanding the second term

on the RHS using the identity ∆(A⃗× B⃗) = (∆A⃗)× B⃗+2∇A⃗×
•∇B⃗+ A⃗× (∆B⃗) and

dividing by ρ0, the perpendicular component of equation (2.16) becomes

∂2∇⊥ζ

∂t2
=
j⃗0
ρ0
× [∇× (∇ζ ×∇χ)]− ∇χ

Bvρ0
· [⃗j0 × [∇× (∇ζ ×∇χ)]] + B2

v

µ0ρ0
∆(∇⊥ζ)

− ∇χ
µ0ρ0

(∇χ · [∆,∇⊥]ζ) +
2

µ0ρ0
∇χ× (∇∇⊥ζ×

•∇∇χ) + 1

ρ0
∇⊥(ζ, p0)

+
γ

ρ0
∆⊥ζ∇⊥p0 +

γp0
ρ0

∆⊥(∇⊥ζ) +
γp0
ρ0

[∇⊥,∆⊥]ζ,

(2.17)

where
←→
T ×

•←→
U = ϵijkJT

ljUl
ke⃗ i is the dot-cross product of two tensors, ϵijk is the

Levi-Civita symbol and J is the Jacobian. As third order derivatives are not present

in the commutators, only the third and eighth terms have third order derivatives

of ζ. These two terms can be expressed as(
B2
v

µ0ρ0
+
γp0
ρ0

)
∆⊥(∇⊥ζ) +

B2
v

µ0ρ0
∆∥(∇⊥ζ). (2.18)

Unlike the first two terms in the velocity ansatz, the wave contained in the third

term can propagate both across and along field lines, but the phase velocity depends
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on the direction of propagation. In general, the phase velocity of this wave is

cw =
√

(c2A + c2s) sin
2 θ + c2A cos

2 θ =
√
c2A + c2s − c2s cos2 θ, (2.19)

where θ is the angle between the direction of wave propagation and ∇χ, cA =

Bv/
√
µ0ρ0 is the Alfvén velocity and cs =

√
γp0/ρ0 is the sound speed. This is not

quite the fast magnetosonic wave speed, which, according to the dispersion relation

solution for a uniform equilibrium (1.8), should be

cf =

√√√√1

2
(c2A + c2s)

(
1 +

√
1− 4 cos2 θ

c2Ac
2
s

(c2A + c2s)
2

)
. (2.20)

The phase velocities (2.19) and (2.20) match when θ = 0, both being cA and also

when θ = π/2, where both equal
√
c2A + c2s. For arbitrary θ, the error in the

fast magnetosonic speed as estimated by (2.19) is still small in the fusion relevant

β < 1 regime. Note that when β < 1, cs < cA. In the cs ≤ cA regime, which also

includes a certain range of β values above 1, the error is maximized to about 9%

when cs = cA (corresponding to β = 2/γ, which is already greater than 1), and

θ = arccos(±
√
2
√
2− 2). The situation is similar to what was seen before for the

slow magnetosonic wave. As the third term in the velocity ansatz is constrained

to being perpendicular to ∇χ, it cannot separate out the fast magnetosonic wave

exactly, and so both the second and third terms are needed in order to have a true

fast magnetosonic wave. Nevertheless, the third term still isolates the fast
√
c2A + c2s

dynamics, the elimination of which is sufficient for the purposes of reduced MHD.

2.3 Derivation of the main set of equations

Having introduced the new velocity variables Φ, v∥ and ζ and the new mag-

netic field variables Ψ and Ω, the set of unknowns for the MHD system becomes

{ρ, p,Φ, v∥, ζ,Ψ,Ω}. The equations for these variables can be derived from the vis-

coresistive MHD equations (1.2) as follows. For the density ρ and pressure p, one

can use the continuity and internal energy equations (first and third equations in
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(1.2)) directly, after plugging in the ansatzes (2.2) and (2.3):

∂ρ

∂t
= −Bv

[
ρ

B2
v

,Φ

]
−Bv∂

∥(ρv∥)−Bv[ρv∥,Ψ]−Fv[ρv∥,Ω]ψv−∇·(ρ∇⊥ζ)+P, (2.21)

∂p

∂t
= − 1

Bv

[p,Φ]− v∥Bv∂
∥p− v∥Bv [p,Ψ]− v∥Fv [p,Ω]ψv

− (ζ, p)− γpBv

[
1

B2
v

,Φ

]
− γpBv∂

∥v∥ − γpBv

[
v∥,Ψ

]
− γpFv

[
v∥,Ω

]
ψv
− γp∆⊥ζ +∇ ·

[
(γ − 1)

κ⊥
R
∇
(
p

ρ

)

+ (γ − 1)
κ∥ − κ⊥
RB2

B⃗

(
Bv∂

∥
(
p

ρ

)
+Bv

[
p

ρ
,Ψ

]
+ Fv

[
p

ρ
,Ω

]
ψv

)

+
pD⊥

ρ

(
∇ρ− B⃗

B2
(Bv∂

∥ρ+Bv[ρ,Ψ] + Fv[ρ,Ω]ψv)

)]
+ (γ − 1)(Se + ηj2),

(2.22)

where Fv = |∇ψv|, ∂ψv = F−1
v ∇ψv · ∇, [f, g]ψv = F−1

v ∇ψv · (∇f ×∇g) is a Poisson

bracket with respect to ∇ψv and

P = ∇ ·

[
D⊥∇ρ−

D⊥B⃗

B2
(Bv∂

∥ρ+Bv[ρ,Ψ] + Fv[ρ,Ω]ψv)

]
+ Sρ,

j⃗ =
1

µ0

[−∇χ∆Ψ+Bv∂
∥∇Ψ− (∇Ψ · ∇)∇χ+∇Ω∆ψv −∇ψv∆Ω

+ Fv∂ψv∇Ω− (∇Ω · ∇)∇ψv].

(2.23)

To derive the equations for the magnetic field variables Ψ and Ω, one begins by

inserting the magnetic field and velocity ansatzes (2.2) and (2.3) into Faraday’s law

in (1.2), which results in

∇∂Ψ
∂t
×∇χ+∇∂Ω

∂t
×∇ψv = ∇×

[
∇χ
Bv

(∂∥Φ− [Ψ,Φ]) +
∇Ω
Bv

[ψv,Φ]−
∇ψv
Bv

[Ω,Φ]

+∇ζ ×∇χ−∇χ(ζ,Ψ) +∇Ω(ζ, ψv)−∇ψv(ζ,Ω)− ηj⃗

]
.

(2.24)

The individual scalar evolution equations for Ψ and Ω are then obtained by pro-

jecting the above equation on ∇ψv and ∇χ:[
ψv,

∂Ψ

∂t

]
=

[
[Ψ,Φ]− ∂∥Φ

Bv

, ψv

]
− Fv
Bv

[
Ω,

[ψv,Φ]

Bv

]
ψv

+ ∂∥(Fv∂ψvζ)

+ [(ζ,Ψ), ψv]−
Fv
Bv

[Ω, (ζ, ψv)]ψv
+

1

Bv

∇ · (η∇ψv × j⃗),
(2.25)
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[
∂Ω

∂t
, ψv

]
= −

[
Ω,

[ψv,Φ]

Bv

]
+

[
ψv,

[Ω,Φ]

Bv

]
− 2(Bv, ζ)−Bv∆

⊥ζ

− [Ω, (ζ, ψv)] + [ψv, (ζ,Ω)] +
1

Bv

∇ · (η∇χ× j⃗).
(2.26)

Finally, to get the scalar evolution equations for the velocity variables Φ, v∥ and

ζ, the following projection operators should be applied to the momentum equation

in (1.2):

∇χ · ∇ × (B−2
v

B⃗·

∇χ · ∇ × (B−2
v ∇χ×

(2.27)

As will be shown in section 2.6.1, these projection operators are chosen so that

energy is conserved in reduced MHD. After inserting the magnetic field and velocity

ansatzes, the momentum equation becomes

ρ∇∂Φ
∂t
× ∇χ
B2
v

+ ρ
∂

∂t
(v∥B⃗) + ρ∇⊥∂ζ

∂t
+
ρ

2
∇v2 + ρω⃗× v⃗ + v⃗P = j⃗ × B⃗ −∇p, (2.28)

where identity (v⃗ · ∇)v⃗ = 1
2
∇v2 + ω⃗ × v⃗ was used and ω⃗ is the vorticity:

ω⃗ = ∇×v⃗ = −∇χ∇·
(
∇Φ
B2
v

)
+Bv∂

∥∇Φ
B2
v

−∇Φ · ∇
B2
v

∇χ+∇v∥×B⃗+µ0v∥j⃗+∇χ×∇
∂∥ζ

Bv

.

(2.29)

Just as in Ref [13] (see section 1.3.2), the viscous term of the momentum equation

(1.2) will not be treated in this derivation, as it is anyway only a rough estimate

of the divergence of the viscous stress tensor. Instead, a generic viscosity term will

be added to each of the scalar evolution equations after the derivation.

The equation for Φ is derived by applying the first projection operator in (2.27)
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or its equivalent, −∇ · (B−2
v ∇χ×, when deemed more appropriate:

∇ ·
[
ρ

B2
v

∇⊥∂Φ

∂t
+ ρ

∂

∂t
(v∥∇⊥Ψ)− ρ

Bv

∂

∂t
(v∥∂

∥Ω)∇ψv
]
−Bv

[
ρ

B2
v

,
∂ζ

∂t

]
=
Bv

2

[
ρ

B2
v

, v2
]

+Bv

[
ρωχ

B4
v

,Φ

]
−∇ · (ρv∥ω⃗⊥) +Bv

[
ρv∥ω

χ

B2
v

,Ψ

]
+Bv

[
ρv∥ω

ψv

B2
v

,Ω

]
−Bv

[
ρv∥ω⃗ · ∇Ω

B2
v

, ψv

]
+∇ ·

(
ρωχ

B2
v

∇⊥ζ − P

B2
v

∇⊥Φ− Pv∥∇⊥Ψ+
Pv∥∂

∥Ω

Bv

∇ψv
)

+Bv

[
P

B2
v

, ζ

]
+∇ ·

(
Bχ

B2
v

j⃗ − jχ

B2
v

B⃗

)
+Bv

[
1

B2
v

, p

]
+∇ · (µ⊥∇⊥∆⊥Φ),

(2.30)

where superscripts indicate contravariant vector components, i.e. Qf = ∇f · Q⃗,

and Q⃗⊥ = Q⃗ − Qχ∇χ/B2
v is the vector component perpendicular to the vacuum

field. The generic viscosity term ∇ · (µ⊥∇⊥∆⊥Φ), which was added to the above

equation, was chosen to match the generic viscosity term in Ref [13] (see section

1.3.2). It should be pointed out that the viscosity coefficient µ⊥ in equation (2.30)

is not the same as the physical viscosity µ from the momentum equation (1.2): a

simple dimensional analysis shows that the SI units for µ⊥ are T2 · Pa · s. In other

words, µ⊥ has a dimensionality of viscosity times magnetic field squared. Note that

∇χ · ∇ × (B−2
v µ∆v⃗), which consists of the first projection operator (2.27) applied

to the viscous term from (1.2), scales as µB−2
v Φ/L4

⊥, where only the first term

of the velocity ansatz was used for scaling purposes, and L⊥ is the length scale

perpendicular to the magnetic field, with L⊥ ≪ L∥ being true for most magnetic

fusion configurations. The same scaling analysis gives the following for the generic

viscosity term: ∇ · (µ⊥∇⊥∆⊥Φ) ∼ µ⊥Φ/L
4
⊥. Thus, comparing the two, one has

µ⊥ ∼ µB−2
v . Since the scaling is just an order of magnitude estimate, one can

neglect the spatial variation of Bv and just take its value at the axis as the typical

value: µ⊥ ∼ µB−2
v,axis.

To obtain the v∥ evolution equation, one simply has to project equation (2.28)

on B⃗, which is what the action of the second projection operator in (2.27) amounts
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to:

ρ

(
∂Φ

∂t
,Ψ

)
− ρFv

Bv

∂∥Ω∂ψv

∂Φ

∂t
+ ρB2∂v∥

∂t
+
ρv∥
2

∂B2

∂t
+ ρBv

[
∂ζ

∂t
,Ψ

]
+ ρFv

[
∂ζ

∂t
,Ω

]
ψv

= −ρBv

2
∂∥v2 − ρBv

2

[
v2,Ψ

]
− ρFv

2

[
v2,Ω

]
ψv
− ρωχ

Bv

∂∥Φ− ρωχ

Bv

[Φ,Ψ]

− ρωχFv
B2
v

[Φ,Ω]ψv
+
ρBχ

B2
v

ω⃗ · ∇Φ− ρω⃗ · (∇ζ ×∇χ) + ρωχ(Ψ, ζ)− ρω⃗ · ∇ΩFv∂ψvζ

+ ρωψv(Ω, ζ)− v⃗ · B⃗ P −Bv∂
∥p−Bv [p,Ψ]− Fv [p,Ω]ψv

+∇ · (µ∥∇⊥v∥),

(2.31)

Again, a generic viscosity term was added; this term was chosen to be analogous

to the generic viscosity term of equation (2.30).

The scalar evolution equation for ζ is derived by applying the last projection

operator in (2.27), or its equivalent, −∇ · [B−2
v ∇χ× (∇χ×, when appropriate, to

each term in equation (2.28):

Bv

[
ρ

B2
v

,
∂Φ

∂t

]
+Bv

[
ρ
∂v∥
∂t

,Ψ

]
+Bv

[
ρv∥,

∂Ψ

∂t

]
−Bv

[
ρ

Bv

∂

∂t
(v∥∂

∥Ω), ψv

]
+∇ ·

(
ρ∇⊥∂ζ

∂t

)
= −∇ ·

(
ρ

2
∇⊥v2 +

ρωχ

B2
v

∇⊥Φ−
ρv∥B

χ

B2
v

∇χ× ω⃗ +
ρv∥ω

χ

B2
v

∇χ× B⃗
)

+Bv

[
ρωχ

B2
v

, ζ

]
−Bv

[
P

B2
v

,Φ

]
−Bv

[
Pv∥,Ψ

]
+Bv

[
Pv∥∂

∥Ω

Bv

, ψv

]
−∇ ·

(
P∇⊥ζ +

Bχ

B2
v

∇χ× j⃗ − jχ

B2
v

∇χ× B⃗
)
−∆⊥p+∇ · (µζ∇⊥∆⊥ζ).

(2.32)

This concludes the derivation of scalar evolution equations for the new set of MHD

variables {ρ, p,Φ, v∥, ζ,Ψ,Ω}. It should be stressed that, since any magnetic field

and velocity can be represented by the ansatzes (2.2) and (2.3), the equations

derived in this section are still full MHD; the reduction is done in section 2.5.

2.4 Derivation of an alternate set of equations

In the previous section, the projection operators (2.27) were used to get the scalar

evolution equations for the velocity variables. There is another set of projection

operators, namely (2.4), which can also be applied to the momentum equation.
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Unlike the projection operators (2.27), each of the operators (2.4) is orthogonal to

all but one term in the velocity ansatz (2.3). Following Ref [30], where the alternate

set of equations was first derived, the momentum equation will be divided by ρ

before applying the projection operators (2.4). As will be shown in section 2.6, the

alternate set of equations obtained using the projection operators (2.4) does not

guarantee conservation of energy in the context of reduced MHD like the equations

derived in the previous section, however the reduction introduces less error into

momentum conservation when using the alternate equations.

As a first step, it is convenient to apply the sub-operator ∇χ× (e⃗χ× to equation

(2.28), after dividing by ρ, which results in

−∇∂Φ
∂t
× ∇χ
B2
v

− v∥∇
∂Ψ

∂t
×∇χ− v∥∇

∂Ω

∂t
×∇ψv + e⃗χv∥Bv

[
∂Ω

∂t
, ψv

]
−∇⊥∂ζ

∂t

=
1

2
∇v2 − e⃗χ

Bv

2
∂∥v2 +

(
∇Φ×∇χ

B2
v

+∇⊥ζ

)
P

ρ
− vχ∇χ× ω⃗ + ωχ∇χ× v⃗

+
B2

ρBχ
∇χ× j⃗ − jχ

ρ
∇χ× B⃗ +

∇p− e⃗χBv∂
∥p

ρ
.

(2.33)

From here, the alternate equation for Φ is obtained by applying ∇χ · (∇×, the

remainder of the first projection operator in (2.4), or its equivalent, −∇· (∇χ×, to

each term in equation (2.33):

∆⊥∂Φ

∂t
+

(
v∥B

2
v ,
∂Ψ

∂t

)
+ v∥B

2
v∆

⊥∂Ψ

∂t
−

v∥B
2
v

Bv + [Ω, ψv]

[
∂Ω

∂t
, ψv

]
∆⊥Ψ− v∥Bv∂

∥∂Ω

∂t
∆ψv

−
(

v∥B
2
v

Bv + [Ω, ψv]

[
∂Ω

∂t
, ψv

]
,Ψ

)
− Fv∂ψv

(
v∥Bv∂

∥∂Ω

∂t

)
+

v∥Bv∂
∥Ω

Bv + [Ω, ψv]

[
∂Ω

∂t
, ψv

]
∆ψv

+ Fv∂ψv

(
v∥Bv∂

∥Ω

Bv + [Ω, ψv]

[
∂Ω

∂t
, ψv

])
= ∇ ·

[
Bv∇⊥Ψ− ∂∥Ω∇ψv

Bv + [Ω, ψv]

Bv∂
∥v2

2

+ ωχ(∇Φ×∇χ+B2
vv∥B⃗

⊥ +B2
v∇⊥ζ)− vχB2

v ω⃗
⊥ +

B2Bv

ρ(Bv + [Ω, ψv])
j⃗⊥ − jχB

2
v

ρ
B⃗⊥

− (∇⊥Φ +∇χ×∇ζ)P
ρ

]
+Bv

[
1

ρ
, p

]
+

(
B2
v∂

∥p

ρ(Bv + [Ω, ψv])
,Ψ

)
+

B2
v∂

∥p∆⊥Ψ

ρ(Bv + [Ω, ψv])

− Fv∂ψv

(
Bv∂

∥Ω∂∥p

ρ(Bv + [Ω, ψv])

)
− Bv∂

∥Ω∂∥p

ρ(Bv + [Ω, ψv])
∆ψv + ν∆∆⊥Φ,

(2.34)
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where subscripts indicate covariant vector components: Qχ = e⃗χ · Q⃗. Just as in the

previous section, a generic viscosity term was added to the final equation. Here,

ν is the kinematic viscosity and the form of the generic viscosity term was chosen

by taking the viscosity term ρ−1µ∆v⃗ = ν∆v⃗ in the momentum equation (1.2)

and allowing the projection operator to act directly on v⃗, effectively neglecting its

commutator with the operator ν∆.

The alternate equation for v∥ can be obtained by applying the second projection

operator in (2.4) to equation (2.28) and dividing by ρBχ:

∂v∥
∂t

+
v∥

Bv + [Ω, ψv]

[
∂Ω

∂t
, ψv

]
= −

v∥
ρ
P +

1

Bv + [Ω, ψv]

[
ω⃗ · ∇⊥Φ

Bv

+Bvv∥ω⃗ · ∇⊥Ψ

− v∥ωψv∂∥Ω− ω⃗ · (∇ζ ×∇χ)
Bv

− ∂∥v2

2
− Bv j⃗ · ∇⊥Ψ+ jψv∂∥Ω− ∂∥p

ρ

]
+ ν∆v∥.

(2.35)

The alternate equation for ζ is obtained by applying ∇ · (B2
v , the remainder of

third projection operator in (2.4), to each term in equation (2.33):

B2
v∆

⊥∂ζ

∂t
+

(
B2
v ,
∂ζ

∂t

)
+Bv

[
v∥B

2
v ,
∂Ψ

∂t

]
−Bv∂

∥
(

v∥B
2
v

Bv + [Ω, ψv]

[
∂Ω

∂t
, ψv

])
−Bv

[
v∥B

2
v

Bv + [Ω, ψv]

[
∂Ω

∂t
, ψv

]
,Ψ

]
− Fv

[
v∥B

2
v

Bv + [Ω, ψv]

[
∂Ω

∂t
, ψv

]
,Ω

]
ψv

+ Fv

[
v∥B

2
v ,
∂Ω

∂t

]
ψv

= ∇ ·

[
B2
vvχ∇χ× ω⃗ −

B2
v

2
∇v2 −B2

vωχ(∇⊥Φ + v∥B
2
v∇⊥Ψ

− v∥Bv∂
∥Ω∇ψv +∇χ×∇ζ)− (∇Φ×∇χ+B2

v∇⊥ζ)
P

ρ
− BvB

2

ρ(Bv + [Ω, ψv])
∇χ× j⃗

+
B3
vjχ
ρ

(Bv∇⊥Ψ− ∂∥Ω∇ψv) +
B2
v(∇χ+∇Ψ×∇χ+∇Ω×∇ψv)∂∥v2

2(Bv + [Ω, ψv])

]
− B2

v

ρ
∆p

−∇
(
B2
v

ρ

)
· ∇p+Bv∂

∥
(

B2
v∂

∥p

ρ(Bv + [Ω, ψv])

)
+Bv

[
B2
v∂

∥p

ρ(Bv + [Ω, ψv])
,Ψ

]
+ Fv

[
B2
v∂

∥p

ρ(Bv + [Ω, ψv])
,Ω

]
ψv

+ νB2
v∆∆⊥ζ.

(2.36)

Having derived the three alternate equations for the velocity variables, equations

(2.21), (2.22), (2.25) and (2.26) can simply be carried over from the main model,
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completing the alternate model.

2.5 Reduction of the MHD models

Having derived two different sets of equations for the variables {ρ, p,Φ, v∥, ζ,Ψ,Ω}

in the previous two sections, the next step is to reduce them. The reduction pro-

cedure is straightforward: since fast magnetosonic waves are contained in the last

term of the velocity ansatz (2.3), as was shown in section 2.2, they are eliminated

by setting ζ = 0 in all of the equations. However, since neither equation (2.32) nor

equation (2.36) have ζ = 0 as a trivial solution, the ζ evolution equations must

be dropped in both the main model and the alternate model to avoid having an

overconstrained system of equations. In addition, since the first two terms of the

velocity ansatz do not compress the magnetic field, as was discussed in section 2.2,

one should also set Ω = 0 and drop equation (2.26). However, as will be shown in

the next section, dropping the Ω equation requires one to also neglect j⃗⊥, the com-

ponent of the current perpendicular to ∇χ, in equation (2.25) in order to maintain

energy conservation. Even though the reduced alternate model does not guarantee

energy conservation, j⃗⊥ will be neglected in it as well, in order to eliminate an extra

source of energy non-conservation.

Note that, unlike in the reduced tokamak model presented in section 1.3.2, the

equilibrium Ψ is not, in general, a flux function in the reduced stellarator model:

(B⃗ · ∇Ψ)|t=0 = Bv∂
∥Ψ ̸= 0.

Since stellarators, unlike tokamaks, do not have a symmetry in the ∇χ direction.

For clarity, the reduced equations will be shown here explicitly. The continuity

equation (2.21), internal energy equation (2.22) and Ψ equation (2.25), which are

the same in both the main model and alternate model, reduce to the following form:

∂ρ

∂t
= −Bv

[
ρ

B2
v

,Φ

]
−Bv∂

∥(ρv∥)−Bv[ρv∥,Ψ] + P, (2.37)
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∂p

∂t
= − 1

Bv

[p,Φ]− v∥Bv∂
∥p− v∥Bv [p,Ψ]− γpBv

[
1

B2
v

,Φ

]
− γpBv∂

∥v∥ − γpBv

[
v∥,Ψ

]
+∇ ·

[
(γ − 1)

κ⊥
R
∇
(
p

ρ

)
+ (γ − 1)

κ∥ − κ⊥
RB2

B⃗

(
Bv∂

∥
(
p

ρ

)
+Bv

[
p

ρ
,Ψ

])

+
pD⊥

ρ

(
∇ρ− B⃗

B2
(Bv∂

∥ρ+Bv[ρ,Ψ])

)]
+ (γ − 1)(Se + ηj2),

(2.38)[
ψv,

∂Ψ

∂t

]
=

[
[Ψ,Φ]− ∂∥Φ

Bv

, ψv

]
+

1

Bv

∇ · (η∇ψv × j⃗∥), (2.39)

where

P = ∇ ·

[
D⊥∇ρ−

D⊥B⃗

B2
(Bv∂

∥ρ+Bv[ρ,Ψ])

]
+ Sρ,

j⃗ =
1

µ0

[−∇χ∆Ψ+Bv∂
∥∇Ψ− (∇Ψ · ∇)∇χ],

ω⃗ = −∇χ∇ ·
(
∇Φ
B2
v

)
+Bv∂

∥∇Φ
B2
v

− 1

B2
v

(∇Φ · ∇)∇χ+∇v∥ × B⃗ + µ0v∥j⃗.

(2.40)

Reduction of the equations for the velocity variables in the main model leads to

∇ ·
[
ρ

B2
v

∇⊥∂Φ

∂t
+ ρ

∂

∂t
(v∥∇⊥Ψ)

]
=
Bv

2

[
ρ

B2
v

, v2
]
+Bv

[
ρωχ

B4
v

,Φ

]
−∇ · (ρv∥ω⃗⊥)

+Bv

[
ρv∥ω

χ

B2
v

,Ψ

]
−∇ ·

(
P

B2
v

∇⊥Φ + Pv∥∇⊥Ψ

)
−∇ ·

(
jχ

B2
v

B⃗

)
+Bv

[
1

B2
v

, p

]
+∇ · (µ⊥∇⊥∆⊥Φ),

(2.41)

ρ

(
∂Φ

∂t
,Ψ

)
+ ρB2∂v∥

∂t
+
ρv∥
2

∂B2

∂t
= −ρBv

2
∂∥v2 − ρBv

2

[
v2,Ψ

]
− ρωχ

Bv

∂∥Φ

− ρωχ

Bv

[Φ,Ψ] + ρω⃗ · ∇Φ− v⃗ · B⃗ P −Bv∂
∥p−Bv [p,Ψ] +∇ · (µ∥∇⊥v∥),

(2.42)

whereas in the alternate model, the reduced equations for Φ and v∥ are

∆⊥∂Φ

∂t
+

(
v∥B

2
v ,
∂Ψ

∂t

)
+ v∥B

2
v∆

⊥∂Ψ

∂t
= ∇ ·

[
Bv∂

∥v2

2
∇⊥Ψ

+ ωχ(∇Φ×∇χ+B2
vv∥∇Ψ×∇χ)− vχB2

v ω⃗
⊥ +

B2

ρ
j⃗⊥ − jχB

2
v

ρ
∇Φ×∇χ

−∇⊥Φ
P

ρ

]
+Bv

[
1

ρ
, p

]
+

(
Bv∂

∥p

ρ
,Ψ

)
+
Bv∂

∥p∆⊥Ψ

ρ
+ ν∆∆⊥Φ,

(2.43)
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∂v∥
∂t

= −
v∥
ρ
P +

1

Bv

[
ω⃗ · ∇⊥Φ

Bv

+Bvv∥ω⃗ · ∇⊥Ψ− ∂∥v2

2
− Bv j⃗ · ∇⊥Ψ− ∂∥p

ρ

]
+ ν∆v∥.

(2.44)

A further reduction, applicable to both the main and alternate models, could be

carried out by setting v∥ = 0 and dropping the v∥ equation. These reduced models

without parallel flows will be used extensively in the next chapters.

Note that the reduced Ψ equation (2.39) can expressed in a simpler form. Indeed,

equation (2.39) can be rewritten as

∇ψv · ∇ ×
(
∂Ψ

∂t
∇χ
)

= ∇ψv · ∇ ×
(
∂∥Φ− [Ψ,Φ]

Bv

∇χ− η j
χ

B2
v

∇χ
)
.

Since all of the terms under the curl both on the LHS and the RHS only have

components in the ∇χ direction, the above equation will be satisfied as long as the

following equation is satisfied:

Bv
∂Ψ

∂t
= ∂∥Φ− [Ψ,Φ]− η j

χ

Bv

(2.45)

This equation does not involve ψv and, as will be shown in the next chapter, tends

to be more numerically stable.

In closing, it will be shown that in reduced ideal MHD, the velocity stream

function Φ is equal to the negative electric potential, up to an additive constant.

Faraday’s law can be written in potental form:

∂A⃗

∂t
= −E⃗ −∇V,

where V is the electric potential and A⃗ is the magnetic vector potential. Substi-

tuting the ideal Ohm’s law E⃗ = −v⃗ × B⃗ into the above equation and using the

ansatzes (2.2), (2.3) with Ω = 0 and ζ = 0, the equation becomes

∂Ψ

∂t
∇χ = −∇⊥Φ− ∇χ

Bv

[Ψ,Φ]−∇V.

One can get that ∂A⃗/∂t = ∂Ψ/∂t∇χ by first taking the time derivative of B⃗ = ∇χ+

∇Ψ ×∇χ and then un-curling the result. The components of the above equation

perpendicular to ∇χ read ∇⊥Φ = −∇⊥V , which requires that Φ = −V + c(χ),

where c is an arbitrary function of χ. The component along ∇χ reads

∂Ψ

∂t
∇χ = (∂∥Φ− c′ − [Ψ,Φ])

∇χ
Bv

,
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where V was replaced by −Φ+c(χ). This equation matches (2.45) exactly if c′ = 0.

Thus, c is an additive constant and Φ = −V + c.

2.6 Conservation properties of the reduced MHD models

Having derived the main and alternate reduced MHD models, the conservation

of energy, flux and momentum in both models will now be considered. Mass is

conserved exactly, due to the continuity equation being used directly to evolve

density in both models.

2.6.1 Conservation of energy

As was mentioned previously, the main model conserves energy. This can be proven

as follows. Applying the first projection operator in (2.27) to some vector function

Q⃗, multiplying the result by an arbitrary test function Φ∗, and then integrating

over the plasma volume V , the following expression can be obtained:∫
V

Φ∗∇χ · ∇ ×

(
Q⃗

B2
v

)
dV =

∫
V

∇Φ∗ ×∇χ
B2
v

· Q⃗ dV, (2.46)

where the identity ∇f ·∇× U⃗ = −∇· (∇f× U⃗) was used, along with integration by

parts. It is assumed that Φ∗ = 0 on ∂V , making the surface integral term is zero.

Similarly, for the third projection operator in (2.27) and test function ζ∗, one gets∫
V

ζ∗∇χ·∇×

(
∇χ× Q⃗
B2
v

)
dV = −

∫
V

∇ζ∗

B2
v

·[∇χ×(Q⃗×∇χ)]dV = −
∫
V

∇⊥ζ∗ ·Q⃗ dV,

(2.47)

also with ζ∗ = 0 on ∂V . Finally, applying the second projection operator in (2.27)

to Q⃗, multiplying by a test function v∗∥ and integrating, one has∫
V

v∗∥B⃗ · Q⃗dV =

∫
V

v∗∥B⃗ · Q⃗dV. (2.48)

Now, let Q⃗ be the momentum equation in (1.2) without the viscosity term: Q⃗ ≡

ρ∂v⃗/∂t + ρ(v⃗ · ∇)v⃗ + v⃗P − j⃗ × B⃗ + ∇p. Note that Q⃗ is not set to zero, as this

derivation must be applicable also to reduced MHD, where the vector momentum

equation of full MHD is not satisfied. Letting Φ∗ = Φ, v∗∥ = v∥ and ζ∗ = −ζ, it

42



2.6. CONSERVATION PROPERTIES OF THE REDUCED MHD MODELS

follows from equations (2.46)–(2.48) and (2.30)–(2.32) that

0 =

∫
V

v⃗ ·
[
ρ
∂v⃗

∂t
+ ρ(v⃗ · ∇)v⃗ + v⃗P − j⃗ × B⃗ +∇p

]
dV. (2.49)

The important point to note here is that equation (2.49) continues to hold even

in reduced MHD. Indeed, setting ζ = 0 makes equation (2.47) reduce to 0 = 0

and equation (2.32) is no longer needed in order for equation (2.49) to be satisfied.

Thus, equation (2.32) can be dropped. Similarly, setting v∥ = 0 allows equation

(2.31) to be dropped while equation (2.49) continues to be satisfied. Finally, using

the continuity equation, equation (2.49) can be rewritten as∫
V

[
∂

∂t

(
ρv2

2

)
+∇ ·

(
ρv2

2
v⃗

)]
dV =

∫
V

[
v⃗ · (⃗j × B⃗)− v⃗ · ∇p− v2

2
P

]
dV, (2.50)

which is the kinetic energy equation.

Consider now the magnetic field equations. When both Ψ and Ω terms are present

in the magnetic field ansatz, both equations (2.25) and (2.26) are satisfied, which

means that Faraday’s law in (1.2) is also satisfied, since the Ψ and Ω equations

are just two vector components of Faraday’s law. Only two equations are needed

to evolve the full magnetic field, since the third degree of freedom is eliminated by

the ∇ · B⃗ = 0 constraint. In the reduced MHD case, when the Ω term is removed

from the magnetic field ansatz, Faraday’s law continues to be satisfied. This can

be shown by multiplying equation (2.45) by ∇χ/Bv and taking the curl. Thus, the

magnetic energy equation can be derived from Faraday’s law by dotting with B⃗

and following the usual procedure:

1

2µ0

∂B2

∂t
+

1

µ0

∇ · (E⃗ × B⃗) = −v⃗ · (⃗j × B⃗)− η(j∗)2, (2.51)

where j∗ = j in the full MHD case and j∗ = j∥ in the reduced MHD case, when

the component of current perpendicular to ∇χ must be dropped.

Finally, the total energy equation is obtained by putting together the three energy

equations. Dividing the internal energy equation (1.2) by γ − 1, then integrating

both that and the magnetic energy equation (2.51) over the plasma volume V and

adding up the two resulting equations with the kinetic energy equation (2.50), the
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following is obtained:∫
V

[
∂

∂t

(
ρv2

2
+

p

γ − 1
+
B2

2µ0

)
+∇ ·

(
ρv2

2
v⃗ +

γp

γ − 1
v⃗ +

E⃗ × B⃗
µ0

− κ⊥∇⊥T − κ∥∇∥T −
p

γ − 1

D⊥

ρ
∇⊥ρ

)]
dV =

∫
V

(
Se −

v2

2
P

)
dV.

The above equation can be rewritten as

dE

dt
=

∮
∂V

(
κ⊥∇⊥T +

RT

γ − 1
D⊥∇⊥ρ

)
· dS⃗ +

∫
V

(
Se −

v2

2
P

)
dV, (2.52)

where the boundary conditions n⃗ · v⃗ = 0 and n⃗ · B⃗ = 0 have been applied.

Having considered energy conservation in the main reduced model, the necessity

of dropping the perpendicular current in Ohm’s law can now be demonstrated.

Suppose that Ψ1 and Ψ2 satisfy the equations[
ψv,

∂Ψ1

∂t

]
=

[
[Ψ,Φ]− ∂∥Φ

Bv

, ψv

]
+

1

Bv

∇ · (η∇ψv × j⃗∥),[
ψv,

∂Ψ2

∂t

]
=

1

Bv

∇ · (η∇ψv × j⃗⊥),

then clearly Ψ = Ψ1 + Ψ2 will satisfy equation (2.25) with Ω = 0 but without

neglecting j⃗⊥ in the last term. With the same reasoning that was used to argue that

Faraday’s law is satisfied in reduced MHD, it can be shown that the Ψ1 equation

above is equivalent to ∂B⃗1/∂t = −∇ × E⃗1, where B⃗1 = ∇χ + ∇Ψ1 × ∇χ and

E⃗1 = −v⃗×B⃗+ηj⃗∥. Dotting the Faraday’s-law-like equation for B⃗1 with B⃗ = B⃗1+B⃗2

and adding B⃗ · ∂B⃗2/∂t +∇ · (E⃗2 × B⃗) to both sides, where B⃗2 = ∇Ψ2 ×∇χ and

E⃗2 = ηj⃗⊥, the following equation is obtained:

1

2

∂B2

∂t
+∇ · (E⃗ × B⃗) = µ0[(v⃗ × B⃗) · j⃗ − ηj2] + B⃗ · ∂B⃗2

∂t
+ B⃗ · ∇ × E⃗2.

The Ψ2 equation is equivalent to (∂B⃗2/∂t)
ψv = −(∇ × E⃗2)

ψv . Thus, if the dot

products in the last two terms of the above equation are expanded, only the

terms involving the ψv components can be cancelled; the nonconservative terms

Bβv∂B
βv
2 /∂t+Bβv(∇× E⃗2)

βv + (∇× E⃗2)
χ still remain.

To conclude this subsection, it will be shown why non-conservation of energy is

possible in the alternate reduced MHD model. The velocity field can be written
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using a covariant ansatz:

v⃗ = B2
v∇⊥Φ̃× e⃗χ + ṽ∥∇χ+B2

v e⃗χ × (∇ζ̃ ×∇χ), (2.53)

as opposed to the contravariant ansatz (2.3). This can be shown by applying the

projection operators (2.27) to the covariant ansatz (2.53), which results in the

following equations:

∇χ · ∇ ×
(

1

B2
v

v⃗

)
= −∇ · (∇⊥Φ̃),

B⃗ · v⃗ = Bχṽ∥,

∇χ · ∇ ×
(

1

B2
v

∇χ× v⃗
)

= ∇ · (B2
v∇⊥ζ̃).

(2.54)

Similarly to how each of the projection operators (2.4) was orthogonal to all but

one term in the contravariant velocity ansatz (2.3), each of the projection operators

(2.27) is orthogonal to all but one term in the covariant velocity ansatz (2.53).

Using the above equations, one can see that any velocity can be represented with

the covariant ansatz by following the same steps as in section 2.1.

Now, following the same steps as in the beginning of this subsection, apply the

first projection operator in (2.4) to a vector function Q⃗, multiply by an arbitrary

test function Φ∗ and integrate over the plasma volume V , resulting, after integration

by parts, in∫
V

Φ∗∇χ · ∇ × [∇χ× (e⃗χ × Q⃗)]dV = −
∫
V

B2
v(∇⊥Φ∗ × e⃗χ) · Q⃗dV. (2.55)

Doing the same for the third projection operator in (2.4) and test function ζ∗ gives∫
V

ζ∗∇ · [B2
v∇χ× (e⃗χ × Q⃗)]dV =

∫
V

B2
v [e⃗χ × (∇ζ∗ ×∇χ)] · Q⃗dV. (2.56)

Just as before, no transformations are needed for the second projection operator in

(2.4): ∫
V

v∗∥∇χ · Q⃗dV =

∫
V

v∗∥∇χ · Q⃗dV. (2.57)

Setting Q⃗ ≡ ∂v⃗/∂t+(v⃗ ·∇)v⃗+ v⃗P/ρ− j⃗×B⃗/ρ+∇p/ρ, one needs Φ∗ = −Φ̃, v∗∥ = ṽ∥,

ζ∗ = ζ̃ and ρ = const in order for the kinetic energy equation,
∫
V
ρv⃗ ·Q⃗dV = 0, to be

satisfied. The first three of these conditions are satisfied in full MHD, however ζ = 0

does not imply that ζ̃ = 0, and so equation (2.56) does not reduce to 0 = 0, unlike
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equation (2.47) in the main model. Thus, since equation (2.36) must be dropped,

equation (2.56) is no longer satisfied in the alternate reduced model, which means

that the kinetic energy equation also cannot be satisfied. Also, due to the vector

momentum equation being divided by ρ before applying the projection operators

in the derivation of the alternate model, the density must be spatially constant in

order for the kinetic energy equation to be satisfied, even in the full MHD case.

Therefore, both the reduction and nonzero density gradients can lead to violations

of energy conservation in the alternate model.

2.6.2 Conservation of flux

To begin with, consider the full MHD case. It can be shown that flux is not

conserved for finite resistivity by following the same steps as Ref [3] did to prove

conservation in the ideal case. Let S(t0) be an arbitrary surface anywhere in the

plasma at time t0. Then, S(t) is obtained by letting the surface be advected with

the plasma, while using S(t0) as an initial condition. At any time t, the magnetic

flux through S(t) is defined as

ψ =

∫
S(t)

B⃗ · dS⃗. (2.58)

Differentiating the above equation with respect to time, and then using Faraday’s

law and Ohm’s law (1.2), as well as Stokes’ theorem, the following equation can be

obtained:

dψ

dt
=

∫
S(t)

∂B⃗

∂t
· dS⃗ +

∮
∂S(t)

B⃗ · (v⃗ × d⃗l) = −
∮
∂S(t)

ηj⃗ · d⃗l. (2.59)

This equation gives the physical non-conservation of flux due to finite resistivity.

In reduced MHD, one must replace j⃗ by j⃗∥; all of the other steps above are still

valid, since Faraday’s law and Ohm’s law continue to hold in reduced MHD if the

perpendicular current is dropped. Thus, in the ideal case, flux will be exactly

conserved and the magnetic field will be frozen into the plasma even in the reduced

MHD model. Alternatively, one can think of it as follows. Note that in reduced
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MHD, when ζ = 0 and Ω = 0, equation (2.26) becomes

0 = ∇ · (η∇χ× j⃗).

If η = 0, this equation will be satisfied exactly, reducing to 0 = 0. Thus, in the

ideal scenario, the Ω evolution equation is not dropped, but rather trivially satisfied.

Therefore, in the ideal case, no part of the original Faraday’s and Ohm’s laws (1.2)

are neglected.

2.6.3 Approximate conservation of momentum

In general, reduced MHD models do not conserve momentum, except for some spe-

cial cases. The fact that momentum cannot be conserved locally becomes obvious

when one considers that there are only two velocity variables in reduced MHD,

namely Φ and v∥, and so all three components of the momentum equation in (1.2)

cannot be satisfied simultaneously. In this subsection, the amount of momentum

conservation error introduced by the reduction will be considered in both the main

and alternate models.

To begin with, consider the alternate model. Applying the first projection opera-

tor in (2.4) to an arbitrary vector function Q⃗, one can see that ∇χ ·∇× [∇χ×(e⃗χ×

Q⃗)] = ∇χ·∇×(e⃗χQχ−Q⃗). Now let Q⃗ ≡ ρ∂v⃗/∂t+ρ(v⃗ ·∇)v⃗+v⃗P− j⃗×B⃗+∇p = 0 be

the momentum equation in (1.2) without the viscosity term. Then, equation (2.34)

is just the component of the vorticity-like equation ∇× (e⃗χQ
χ − Q⃗) along ∇χ. If

all three components of this vorticity-like equation were satisfied, then the original

momentum equation in (1.2) would also be satisfied; the reduction corresponds to

dropping the two components of this vorticity-like equation that are perpendicular

to ∇χ. The magnitude of the terms in these perpendicular components relative to

the terms in the component that is kept can help to estimate the magnitude of the
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momentum conservation error. The vorticity-like equation is as follows:

∂ω⃗

∂t
+ µ0v∥

∂j⃗

∂t
+∇v∥ ×

∂B⃗

∂t
− µ0j⃗

Bv

∂∥v2 −∇
(
∂∥v2

Bv

)
× B⃗ +∇× (ω⃗ × v⃗)

− µ0j⃗

B2
v

∇χ · (ω⃗ × v⃗)−∇
[
∇χ · (ω⃗ × v⃗)

B2
v

]
× B⃗ + ω⃗

P

ρ
+∇

(
P

ρ

)
× v⃗ =

B⃗

ρ2
(⃗j · ∇ρ)

− j⃗

ρ2
(B⃗ · ∇ρ) + 1

ρ
(B⃗ · ∇)⃗j − 1

ρ
(⃗j · ∇)B⃗ − j⃗

ρB2
v

∇χ · (⃗j × B⃗)

−∇

[
∇χ · (⃗j × B⃗)

ρB2
v

]
× B⃗ +

1

ρ2
∇ρ×∇p+ j⃗

ρBv

∂∥p+∇
(
∂∥p

ρBv

)
× B⃗,

(2.60)

where v⃗ = −∇χ× (e⃗χ × v⃗) = ∇Φ×∇χ/B2
v is the reduced velocity and ω⃗ = ∇× v⃗

is the reduced vorticity. If all terms in the perpendicular components of equation

(2.60) vanish, then there is no error introduced by the reduction, and momentum

will be conserved exactly. The most general situation in which this is the case is

when the following condition is satisfied:

∂∥u = 0, u ∈ {gik,Φ,Ψ, v∥, p, ρ, P} (2.61)

where gik is the metric tensor for the Clebsch-type coordinate system (ψv, βv, χ)

aligned to the vacuum field ∇χ. It can be easily seen that ω⃗ and j⃗ are colinear

with ∇χ. However, if at least one of the variables gik, Φ or Ψ has a nonzero

parallel derivative, ω⃗ will gain a perpendicular component, and so ∂ω⃗/∂t will have

perpendicular components which cannot be cancelled by any other term as there

are no other terms with time derivatives of Φ in the equation. One can further

see that allowing ∂∥p ̸= 0 leads to the last and seventh terms on the RHS gaining

perpendicular components, ∂∥ρ ̸= 0 leads to the first and seventh terms on the

RHS gaining perpendicular components, ∂∥P ̸= 0 leads to the last term on the LHS

gaining perpendicular components, and ∂∥v∥ ̸= 0 leads to the third term on the LHS

gaining perpendicular components. None of these terms’ perpendicular components

can be cancelled by any other terms. On the other hand, if the condition (2.61)

is satisfied, only the sixth and eighth terms on the LHS will have perpendicular
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components. After some algebra, one can see that

[∇× (ω⃗ × v⃗)]⊥ −
[
∇
[
∇χ · (ω⃗ × v⃗)

B2
v

]
× B⃗

]⊥
≡ 0.

The condition (2.61) is quite restrictive and cannot be satisfied for most simulations.

However, as long as |∂∥u| ≪ |∇⊥u|, the momentum conservation error should not

be too large.

Now, the main reduced model will be considered in contrast. The first projection

operator in (2.27) applied to Q⃗ ≡ ρ∂v⃗/∂t + ρ(v⃗ · ∇)v⃗ + v⃗P − j⃗ × B⃗ + ∇p = 0 is

∇χ · ∇ × (Q⃗/B2
v), and so the vorticity-like equation analogous to equation (2.60)

will be given by ∇× (Q⃗/B2
v). Written out in full, this equation is

∇
(
ρ

B2
v

)
× ∂v⃗

∂t
+

ρ

B2
v

∂ω⃗

∂t
+∇

(
ρ

B2
v

∂v∥
∂t

)
× B⃗ +

µ0ρ

B2
v

∂v∥
∂t

j⃗ +∇
(
ρv∥
B2
v

)
× ∂B⃗

∂t

+
µ0ρv∥
B2
v

∂j⃗

∂t
+

1

2
∇
(
ρ

B2
v

)
×∇v2 +∇×

(
ρω⃗ × v⃗
B2
v

)
+∇

(
P

B2
v

)
× v⃗ + P

B2
v

ω⃗

+∇
(
Pv∥
B2
v

)
× B⃗ +

µ0Pv∥
B2
v

j⃗ =
2B⃗

B3
v

j⃗ · ∇Bv −
2⃗j

B3
v

B⃗ · ∇Bv +
1

B2
v

(B⃗ · ∇)⃗j

− 1

B2
v

(⃗j · ∇)B⃗ +
2

B3
v

∇Bv ×∇p,

(2.62)

with equation (2.30) being the component of this equation along ∇χ. Two things

should be pointed out here. First, the perpendicular components of the third

and eleventh terms on the LHS do not vanish even if condition (2.61) is satisfied.

Second, while the eighth term on the LHS in equation (2.62) resembles the sixth

term on the LHS in equation (2.60), there is no term to cancel its perpendicular

components, as no term resembles the eighth term on the LHS in equation (2.60).

However, imposing v∥ = 0 in addition to the condition (2.61) is enough to make the

perpendicular components of equation (2.62) zero, as the third and eleventh terms

disappear altogether, and the eighth term loses its perpendicular components:

∇×
(
ρω⃗ × v⃗
B2
v

)
= ∇×

(
ρωχ∇⊥Φ

B2
v

)
= ∇

(
ρωχ
B2
v

)
×∇⊥Φ− ρωχ

B2
v

∇
(
∂∥Φ

Bv

)
×∇χ.

Clearly, when v∥ ̸= 0, the alternate model conserves momentum better than the

main model. However, since neither model conserves momentum exactly and the
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CHAPTER 2. DERIVATION OF THE REDUCED MHD MODELS

alternate model doesn’t conserve energy exactly, most of the simulations in this

dissertation will be done with the main model, except for a few test cases in the

next chapter, which were done with the alternate model.

2.7 Force balance in an equilibrium

A natural question that arises when considering reduced MHD is whether or not the

reduction preserves equilibria. In other words: if a particular equilibrium solution

to the full MHD equations is known, will it also be a solution to the reduced MHD

equations? A simple argument shows that, when considering a static tokamak

equilibrium, this is indeed the case for the main reduced model in the tokamak

limit, where it reduces to the standard tokamak model used in JOREK.

Consider the Φ evolution equation (2.41) with Φ = v∥ = 0 and χ = F0ϕ; the

equation reduces to the following

0 = − 1

F0

∇ · (Rjϕ̂B⃗) +
1

F0R
[R2, p] = − 1

R

∂jϕ̂
∂ϕ
− 1

R
[Rjϕ̂,Ψ] +

1

F0R
[R2, p], (2.63)

where jϕ̂ = ϕ̂ · j⃗. The first term on the RHS is zero due to axisymmetry of the toka-

mak equilibrium. The toroidal current can be written as jϕ̂ = −(F0µ0R)
−1∆∗Ψ,

and the Grad-Shafranov equation reads: ∆∗Ψ = −µ0R
2p′−FF ′, where the deriva-

tives are with respect to Ψ (recall that Ψ is a flux function in the tokamak limit)

and ∆∗ = R2∇ · (R−2∇⊥. In addition, since p is a flux function, ∇p = p′∇Ψ, and

so the Poisson bracket in the last term becomes p′[R2,Ψ]. Inserting the expression

for jϕ̂ and using the Grad-Shafranov equation, one gets

0 = − p′

F0R
[R2,Ψ]− R

F0

[p′,Ψ]− 1

F0µ0R
[FF ′,Ψ] +

p′

F0R
[R2,Ψ] ≡ 0, (2.64)

where the second and third terms are zero due to p and F being flux functions.

The v∥ evolution equation (2.42) with Φ = v∥ = 0 and χ = F0ϕ becomes

0 = −F0

R2

∂p

∂ϕ
− F0

R
[p,Ψ] ≡ 0, (2.65)

where the first term is zero due to axisymmetry and the second is zero due to p

being a flux function.
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The above argument does not hold for the alternate model. The next subsection

will consider the case of the alternate model and introduce a force balancing term

to compensate for the imbalance resulting from the reduction. All simulations with

the alternate model, which are presented in the next chapter will use this force

balancing term. When using the main model for a stellarator, the above argument

also does not hold, however it will be shown in the last subsection that the imbalance

is small enough to neglect.

2.7.1 The force balancing term in the alternate model

Consider the momentum equation in (1.2) after inserting the ansatzes with ζ = 0

and Ω = 0, but before applying projection operators. For the sake of clarity,

it is better to introduce the force balancing term before applying the projection

operators. Strictly speaking, the momentum equation is overconstrained at this

point, but only the Φ and v∥ equations will be kept at the end, as was done in

section 2.5. The momentum equation with the force balancing term reads

∂

∂t
(ρv⃗) +∇ · (ρv⃗v⃗) = j⃗ × B⃗ −∇p+ ρν∆v⃗ + (⃗jf × B⃗f − j⃗ × B⃗)|t=0, (2.66)

where B⃗f and j⃗f are the full MHD magnetic field and current. Assuming that the

simulation starts from an equilibrium, at t = 0, the two reduced MHD Lorentz

force term will cancel while the full MHD Lorentz force will balance the pressure.

The first Lorentz force term will then evolve with time while the two in the force

balancing term remain frozen. Since the Ω term, which is the difference between

full and reduced MHD, corresponds mostly to field compression with its field line

bending contribution being small, and most instabilities tend to not compress the

magnetic field due to the large amount of energy required, such a force balanc-

ing term should not lead to any inaccuracies. For tokamak equilibria, the force

balancing term becomes −FF ′ ∇Ψ|t=0/R
2.

It can be shown that the force balancing term in equation (2.66) does not in-

troduce any significant error in the global conservation of momentum. Without
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viscosity, equation (2.66) can be expressed as

∂

∂t
(ρv⃗)+∇·

[
ρv⃗v⃗ +

(
p+

B2 + (B2
f −B2)|t=0

2µ0

)
←→
I − B⃗B⃗ + (B⃗f B⃗f − B⃗B⃗)|t=0

µ0

]
= 0.

(2.67)

If n⃗ · B⃗ = n⃗ · B⃗f = 0, then after integration over the plasma volume, the following

equation results

d

dt

∫
V

ρv⃗dV = −
∮
∂V

(
p+

B2 + (B2
f −B2)|t=0

2µ0

)
dS⃗. (2.68)

The term (B2
f − B2)|t=0/(2µ0) is approximately the density of the energy due to

magnetic field compression in the initial equilibrium (Shafranov shift). Note that

in a tokamak equilibrium, (B2
f − B2)|t=0/(2µ0) = (F 2 − F 2

0 )/(2µ0R
2) is exactly

the energy density due to compression. Since instabilities should not affect the

compression much, the energy due to compression should be roughly constant, and

so B2 + (B2
f −B2)|t=0 ≈ B2

f , where B
2
f/(2µ0) is the total magnetic energy density,

both due to field line bending and compression.

Finally, it should be pointed out that the force balancing term does not affect the

momentum conservation properties of the alternate model, as discussed in section

2.6.3. This can be seen by inserting p = p|t=0 + p̃ in (2.66), with p̃ being defined as

p− p|t=0. Then, ∇p|t=0 will cancel with (⃗jf×B⃗f )|t=0, leaving only the −(⃗j×B⃗)|t=0

remaining from the force balancing term. This remaining term is just the reduced

MHD Lorentz force term at t = 0, which was already considered in section 2.6.3

and does not contribute to the perpendicular components of equation (2.60) if the

condition (2.61) is satisfied. To be more precise, condition (2.61) when the force

balancing term is included should be rewritten as

∂∥u = 0, u ∈ {gik,Φ,Ψ, v∥, p̃, ρ, P}. (2.69)

This modified condition is slightly less restrictive, since now only the pressure per-

turbation has to be constant along ∇χ, whereas before both the initial pressure

(since the condition also has to be satisfied at t = 0) and the perturbation had to

have zero parallel derivatives.
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2.7.2 Force balance in the main model for a general stellarator

In this subsection, an ordering-based argument will be used to show that, when

applying the main model to a general stellarator, the force balance error is small

enough to neglect. Let L⊥ be the length scale perpendicular to ∇χ and L∥ be

the length scale along ∇χ. Then, defining λ ≡ L⊥/L∥ as the ordering parameter,

the spatial derivatives must satisfy |∂∥| ∼ λ|∇⊥|. The terms in the magnetic field

ansatz (2.2) are ordered as follows:

|∇Ψ×∇χ|
|∇χ|

∼ |∇⊥Ψ| ∼ λ,

and
|∇Ω×∇ψv|
|∇χ|

∼ Fv
Bv

|∇Ω| ∼ λ2.

Identifying L⊥, Bv and Fv as zeroth-order quantities, L⊥ = O(1), Bv = O(1),

Fv = O(1), it follows that L∥ = O(λ−1), ∇⊥ = O(1), ∂∥ = O(λ), Ψ = O(λ)

and Ω = O(λ2). Meanwhile, the force imbalance due to the reduction is f⃗imb =

∇p− j⃗×B⃗ = j⃗f×B⃗f− j⃗×B⃗, where B⃗ = ∇χ+∇Ψ×∇χ and B⃗f = B⃗+∇Ω×∇ψv.

Inserting the ansatzes, the following expression is obtained for the residual force:

f⃗res =
1

µ0

[∇× (∇Ψ×∇χ)]× (∇Ω×∇ψv) +
1

µ0

[∇× (∇Ω×∇ψv)]×∇χ

+
1

µ0

[∇× (∇Ω×∇ψv)]× (∇Ψ×∇χ) + 1

µ0

[∇× (∇Ω×∇ψv)]× (∇Ω×∇ψv)

(2.70)

After some algebra, the reduced MHD current can be written as

j⃗ =
1

µ0

∇× (∇Ψ×∇χ) = 1

µ0

∆∗Ψ∇χ+ j⃗⊥,

j⃗⊥ =
1

µ0

(
Bv∂

∥∂Ψ

∂qi
e⃗ i − gkn ∂Ψ

∂qk
Bv∂

∥gnie⃗
i

)
,

(2.71)

where the Einstein summation convention is used, with k, n ∈ {ψv, βv, χ} and

i ∈ {ψv, βv}. Here, ∆∗ = B−2
v ∇ · (B2

v∇⊥, g is the metric tensor of the Clebsch-

type coordinate system aligned to ∇χ, qi represents the actual coordinates: qi ∈

{ψv, βv}, and e⃗ i are the contravariant basis vectors: e⃗ i ∈ {∇ψv,∇βv}. With this,
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the first term in the residual force (2.70) expands to

− ∂Ω
∂βv

j⃗⊥ ×∇χ− ∆∗Ψ

µ0

Bv∂
∥Ω∇χ× e⃗βv +Bv∂

∥Ωj⃗⊥ × e⃗βv .

Since j⃗⊥ = O(λ2), it is easy to see that the first two terms above are O(λ4) and

the third term is O(λ5).

The second term in the residual force (2.70) can be expanded as

∇ψvBv∂
∥(∇Ω×∇ψv)ψv +∇βvBv∂

∥(∇Ω×∇ψv)βv −B2
v∇⊥(∇Ω×∇ψv)χ

Note that ∇Ω×∇ψv = −(∂Ω/∂βv)∇χ+(∂Ω/∂χ)e⃗βv/J , where e⃗βv = J∇χ×∇ψv is

the covariant basis vector in the βv direction in the Clebsch-type coordinate system

aligned to ∇χ, and J = [(∇ψv×∇βv)·∇χ]−1 = 1/B2
v is the Jacobian. Furthermore,

since Bv∂/∂χ = ∂∥, one has (∇Ω × ∇ψv)ψv = gψvβvBv∂
∥Ω and (∇Ω × ∇ψv)βv =

gβvβvBv∂
∥Ω. Thus, the first two terms above are O(λ4) and the third term is O(λ2).

However, it is easy to see that the third term is in the kernel of the first projection

operator in (2.27), and so this term will not contribute to the force balance error in

the Φ evolution equation (2.41). Applying the second projection operator in (2.27)

to the third term increases its order by λ, and so it will only contribute as O(λ3)

in the v∥ evolution equation (2.42).

The curl of the last term of the magnetic field ansatz can also be written as

∇× (∇Ω×∇ψv) = −∇
∂Ω

∂βv
×∇χ+∇(Bv∂

∥Ω)× e⃗βv +Bv∂
∥Ω∇× e⃗βv .

Note that the first term is O(λ2) and the other two terms are O(λ3). The third

term in the residual force (2.70) is then

−
(
∇ ∂Ω

∂βv
×∇χ

)
× (∇Ψ×∇χ) +O(λ4) = ∇Ψ ·

(
∇ ∂Ω

∂βv
×∇χ

)
∇χ+O(λ4).

Terms of order λ4 are not written out explicitly since there is no need to consider

them, as it is already established that there is at least an O(λ4) contribution to

equation (2.41). As can be seen, O(λ3) term above will be cancelled by the first

projection operator in (2.27) and as such will not contribute to the Φ equation

(2.41), however it will still contribute as O(λ3) to the v∥ equation (2.42).

Finally, the last term in the residual force (2.70) is clearly of order λ4 or higher,

so there is no need to consider it in detail like the other terms. In order to compare
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the residual force contributions to the other terms in equations (2.41) and (2.42),

some more ordering needs to be done. Consider that the shortest time scale in the

reduced system is the Alfvén time τA ≡ cA/L∥, where the parallel length scale is

used because the Alfvén wave travels along field lines, and so the time derivative

is ordered as |∂/∂t| ∼ 1/τA. As such, ∂/∂t = O(λ). The Φ and v∥ terms in the

velocity ansatz are then ordered as

|v∥B⃗| ÷
|∇Φ×∇χ|

B2
v

∼ B2
v

|v∥|
|∇⊥Φ|

∼ 1.

Assuming that the partial and convective terms in the material derivative are of

the same order, |∂/∂t| ∼ |v⃗ · ∇|, one has Φ, v∥ = O(λ). After identifying ρ = O(1),

µ⊥, µ∥, P = O(λ) and p = O(λ2), it is clear that the lowest order terms in equations

(2.41) and (2.42) are O(λ2). Thus, the force balance error is at least one order of

λ higher than the equations. In the stellarator simulations presented in chapter 4,

the model without v∥ will be used, where the force balance error is two orders of λ

higher than the equations, since equation (2.42) is not included.
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3 Testing the models in the tokamak limit

Having derived the main and alternate models in the previous chapter, it makes

sense to first do some test runs simulating tokamaks, before moving on to stellara-

tors. However, since in the tokamak limit, the main model reduces to the standard

JOREK reduced MHD model that has already been used extensively in JOREK,

there is not much to test in this model, except for momentum conservation, which

has not been looked at before, and will be considered in section 3.2. The next

section will deal mostly with the alternate model, which will not be studied any

further after this chapter: the stellarator simulations in the next chapter will be

carried out using the main model.

When implementing the models in JOREK, two auxilliary variables are intro-

duced: j = ∆∗Ψ and ω = ∆⊥Φ, where ∆∗ = B−2
v ∇ · (B2

v∇⊥. These two variables

are stored independently from Ψ and Φ, and have their own separate degrees of free-

dom. This allows one to avoid having second order derivatives in non-dissipative

terms when the equations are written in weak form, where integration by parts

moves one derivative to the test function. Since the finite element representation

in JOREK is G1 continuous, avoiding second order derivatives improves numeri-

cal stability by eliminating jump discontinuities. Note that this does not apply

to derivatives with respect to ϕ, which are continuous to arbitrary order, due to

the use of a Fourier series for toroidal discretization. Thus, the presence of higher

order toroidal derivatives is not a problem. In addition, the auxilliary variables al-

low one to introduce hyperresistivity and hyperviscosity terms, which, without the

auxilliary variables, would have involved derivatives of third and fourth order, re-

spectively, in the weak form. However, the JOREK finite element basis, consisting

of piecewise third order polynomials, does not have meaningful derivatives beyond
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Figure 3.1: A flux surface aligned grid used in one of the simulations (a), and the unstable
n = 1 Fourier mode of ψ = F0Ψ (JOREK units) in the standard tokamak
model at t = 50000 Alfvén times (b).

the second order. Similar auxilliary variables j and w are used in the standard

tokamak model in JOREK, as mentioned in section 1.3.2.

3.1 Benchmarking tearing modes in the alternate model

The simulations in this section were carried out for tearing modes in a tokamak with

a circular cross section and an aspect ratio of 10. The reduced alternate model with-

out v∥ will be compared to the standard JOREK tokamak model without v∥, which

is identical to the reduced main model, as presented in section 2.5, with χ = F0ϕ.

In this section, F0 = 10 T ·m. The simulation is started from equilibrium, with the

initial conditions for Ψ being determined from the Grad-Shafranov equation with

FF ′(ψn) = 1.173(1−ψn) in units of T2 ·m, where ψn = (ψ−ψaxis)/(ψedge−ψaxis)

is the normalized poloidal flux, and zero beta: p(ψn) = 0. The ψ in the JOREK

Grad-Shafranov sovler (denoted by lowercase ψ to avoid confusion) is normalized

differently than the Ψ in the magnetic field ansatz (2.2), due to the solver origi-

nally being written for use with the model presented in section 1.3.2. The relation

between the two psi’s is ψ = F0Ψ. Further, the initial density was set to a constant

value of 3.346 · 10−7kg/m3, which, for a pure deuterium plasma, equals 1020 deu-
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Reduced alternate model Standard tokamak model
∂ρ
∂t = −Bv

[
ρ
B2

v
,Φ
]
+ P ∂ρ

∂t =
1
R

[
R2ρ, u

]
+ P[

ψv,
∂Ψ
∂t

]
=
[
[Ψ,Φ]−∂∥Φ

Bv
, ψv

]
+ 1

Bv
∇ · (η∇ψv × j⃗∥d)

∂ψ
∂t = −F0

∂u
∂ϕ +R [ψ, u]− η(j − j0)

∆⊥ ∂Φ
∂t = ∇ ·

[
Bv∂∥v2

2 ∇⊥Ψ+ ωχ∇Φ×∇χ ∇ ·
(
R2ρ∇⊥ ∂u

∂t

)
= −1

2R

[
R2ρ, v2

]
−vχB2

v ω⃗
⊥ + B2

ρ j⃗
⊥ − jχB2

v
ρ ∇Ψ×∇χ−

1
ρ f⃗b ×∇χ + 1

R

[
R4ρw, u

]
+ F0

R2
∂j
∂ϕ + 1

R [j, ψ]

−P
ρ∇

⊥Φ
]
+ ν∆ω − νh∆2ω +∇ · (µt⊥∇⊥w)

B⃗ = ∇χ+∇Ψ×∇χ; v⃗ = ∇Φ×∇χ
B2

v
B⃗ = F0∇ϕ+∇ψ ×∇ϕ

j⃗ = −1
µ0

[ (
j − (B2

v ,Ψ)
B2

v
+Bv∂

∥
(
∂∥Ψ
Bv

))
∇χ v⃗ = R2∇ϕ×∇u

+Bv∂
∥∇Ψ− (∇Ψ · ∇)∇χ

]
ω⃗ = −∇χ

B2
v

[
ω +Bv∂

∥
(
∂∥Φ
Bv

)]
+ 1

Bv
∂∥∇Φ

− 1
B2

v
(∇Φ · ∇)∇χ− 2∇Φ

B2
v
∂∥Bv +

2∇χ
B3

v
∇Bv · ∇Φ

j = ∆∗Ψ; ω = ∆⊥Φ j = ∆∗ψ; w = ∆⊥u

Table 3.1: The zero-β limit of the two models compared here: the reduced alternate
model and the standard tokamak model, both with v∥ = 0. In the simulations
discussed in this section, P = ∇ · (D⊥∇⊥ρ), χ = F0ϕ and ψv = R, where R
is the distance from the central axis of symmetry, and f⃗b = −FF ′∇Ψ|t=0/R

2

is the force balancing term. Subscripts represent covariant components. In
order to make the initial condition a true equilibrium, a current source was
introduced: j⃗d = j⃗ − j⃗0, where j⃗0 is the current at t = 0.

terium ions per cubic meter. The viscosity was set to µ = 5.159 · 10−8 kg/(m · s),

which is equivalent to 10−5 in JOREK units for µt⊥ in the standard tokamak model.

Note that µt⊥ is not the same as µ⊥ in equation (2.30), instead µt⊥ = F 2
0 µ⊥. In

the alternate model, a constant kinematic viscosity of ν = µ/ρ0 = 0.1542 m2/s

(10−7 in JOREK units) was used. Finally, unless otherwise noted, only the n = 0

and n = 1 Fourier modes were kept in the toroidal discretization in all simulations,

corrsponding to Ntor = 3 in JOREK, and the Crank-Nicolson time scheme was used

for time stepping. For reference, Figure 3.1 shows a sample flux surface aligned grid

used to simulate the tokamak, and the tearing mode perturbation to F0Ψ. Since

the pressure was set to zero, equation (2.38) is identically zero (resistive heating is

not taken into account), and there is no need to evolve pressure, as it will stay at

zero. For clarity, the precise systems of equations evolved are listed in Table 3.1.

The first test consisted of comparing the growth rates of the tearing mode in the
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Figure 3.2: Tearing mode growth rates at five different resistivities in the reduced alter-
nate model and the standard tokamak model without v∥. The growth rates
for the unstable n = 1 Fourier mode in simulations with n = 0, 1 are shown
in (a), and those for the n = 2 toroidal mode in simulations with n = 0, ..., 4
are shown in (b). Note that the n = 2 growth rates are two times the value
the n = 1 growth rates, suggesting that the n = 2 modes are not inherently
unstable but driven by the n = 1 modes via nonlinear mode coupling.

two models at different resistivities. For both models, a scan was done over the

spatial and temporal resolutions at each resistivity until the growth rate converged.

The simulations were then repeated with Fourier modes n = 0, ..., 4 (Ntor = 9

in JOREK) with the same resolution and time step for which the growth rates

converged in the n = 0, 1 simulations at the corresponding resistivity. Figure 3.2

shows the growth rates of the n = 1 mode, as measured in the n = 0, 1 simulations,

(a), and the growth rates of the n = 2 mode (b), which is not unstable by itself,

but rather nonlinearly driven by the n = 1 mode. As expected, the n = 2 growth

rate is greater than the n = 1 growth rate at the corresponding resistivity by

approximately a factor of two. The n = 3 and n = 4 modes are destabilized right

before the transition into the post-saturation regime, and so their growth rates

(not shown here) do not plateau, but rather peak at values approximately three

and four times the n = 1 growth rate, respectively, before decreasing due to the

mode saturating.

As can be seen, the alternate model does not deviate much from the predictions of

the standard tokamak model in the linear regime and at β = 0, two problems appear

after the onset of saturation. The first problem, which was already discussed in
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Figure 3.3: The value of −dE/dt is plotted against the physical energy loss rate in (a)
the reduced alternate model without artificial dissipation, (b) the reduced
alternate model with hyperviscosity, (c) the standard tokamak model, and (d)
the reduced alternate model using equation (2.45) instead of the Ψ equation
in Table 3.1.

section 2.6.1, is that the reduced alternate model does not satisfy the kinetic energy

equation, and so nonphysical kinetic energy can be generated. This error in energy

conservation is small in the linear regime, but may become significant as saturation

is approached. In Figure 3.3, the negative rate of change of the integrated total

energy, −dE/dt, is compared to the physical energy loss rate for the simulation with

resistivity 1.9382 · 10−5Ω ·m (10−5 JOREK units). The physical energy loss rate is

simply the surface integral of any energy fluxes across the boundary plus the volume

integral of any energy sinks. In this case, the energy sinks are due to viscous and

resistive dissipation; since conversion of kinetic and magnetic energies to internal

energy is not taken into account, dissipated energy is lost. The physical energy loss

rate can be negative, i.e. energy is being gained, if the inward fluxes are greater

than the outward fluxes plus sinks. Figure 3.3 a shows that the nonphysical energy

generation rate (difference between the physical energy loss rate and −dE/dt) is
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Figure 3.4: The −dE/dt curve from Figure 3.3 plotted alongside the dEmag/dt and
dEkin/dt curves for magnetic and kinetic energies, where dE/dt = dEmag/dt+
dEkin/dt. Plot (a) is for the reduced alternate model without artificial dissi-
pation, and (b) is for the reduced alternate model with hyperviscosity.

negligible in the linear regime, until about 20 ms, after which saturation sets in and

the nonphysical energy generation rate grows rapidly. The simulation is stopped

around 27 ms, as it would anyway crash quickly after that. One way to alleviate

this problem is to add artificial dissipation in the form of a hyperviscosity term.

Figure 3.3 b shows the result of a simulation with a hyperviscosity of νh = 1.08 ·

10−3 m4/s (7 · 10−10 JOREK units). Note that the physical energy loss rate does

not include dissipation due to hyperviscosity. With the hyperviscosity term in

place, the simulation behaves much more reasonably, although the energy is still

not conserved, as evidenced by the mismatch of the two curves in the plot. Since

the energy conservation error comes mostly from the kinetic energy, which can be

kept in check by the hyperviscosity term in the Φ evolution equation, the energy

conservation error is minimized. Finally, as will be discussed below, inaccuracies in

solution to the Ψ equation can result in numerical errors appearing in the magnetic

field. The hyperviscosity slows down the plasma response to these numerical errors,

stabilizing it against numerical instabilities that could otherwise occur.

For proper comparison, a similar plot with −dE/dt and physical energy loss

rate is also shown for the standard JOREK tokamak model in Figure 3.3 c. This

plot also shows a mismatch between the two curves, albeit much smaller than the

previous two. In this case, however, the error is purely numerical. This numerical
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Figure 3.5: A tearing mode simulation using the standard tokamak model when the ψ
equation is replaced with equation (2.39). Plot (a) is a comparison of −dE/dt
with the physical loss rate and (b) shows the curves for dEmag/dt, dEkin/dt
and −dE/dt.

error is sensitive to two parameters: the number of toroidal Fourier modes included

in the solution and the time step. By running more simulations (the corresponding

plots are not shown here) with smaller time steps and more Fourier modes, it was

confirmed that the error can be made arbitrarily small.

The second of the two problems mentioned above is that the Ψ evolution equation,

when expressed in the form shown in Table 3.1, can cause numerical instabilities, as

it contributes significantly to the condition number of the time stepping matrices.

The numerical errors in the magnetic field are what destabilizes the kinetic energy

and causes it to explode, as shown in Figures 3.3 a and 3.4 a. Replacing the

Ψ equation (2.39) by equation (2.45) prevents the kinetic energy from exploding

without requiring the introduction of a hyperviscosity. This is shown in Figure 3.3 d,

where the simulation continues to run normally after the end of the linear regime,

although it does have a higher energy conservation error than when hyperviscosity

is present.

Another interesting test would be to replace the ψ evolution equation in the

standard tokamak model, as shown in Table 3.1, with the Ψ equation (2.39). This

allows one to see how the Ψ equation (2.39) will behave in a situation where energy

is conserved in the continuous limit. The −dE/dt and physical energy loss rate

for such a simulation are plotted in Figure 3.5 a. Here, the energy conservation
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error begins to rise near the same point in time where the reduced alternate model

without hyperviscosity, shown in Figure 3.3 a, would have crashed. In this case,

however, instead of rapidly increasing like in the alternate model without hypervis-

cosity, the energy rapidly decays, and so this simulation can run for a longer period

of time. Figure 3.5 b shows the negative rates of change for the integrated kinetic,

magnetic and total energies in this simulation. One can see from this figure that

the violation of energy conservation here is solely due to the buildup of numerical

error in Ψ, and the kinetic energy is not involved in this numerical instability.

Finally, for both the reduced alternate and standard tokamak models, it was

confirmed that the tearing mode growth rates are not affected by the choice of

evolution equation for Ψ or ψ. Although equations (2.39) and (2.45) are equivalent

from the analytical point of view, equation (2.45) is much more numerically stable,

and thus more preferable.

To conclude this section, it should be noted that one can run the alternate reduced

model with a finite pressure without affecting the energy conservation, as all of

the error comes from the kinetic energy. However, simulations have shown that

the reduced alternate model cannot accurately reproduce the tearing mode growth

rates when the plasma β is not negligible. This is most likely because all of the

pressure terms in equation (2.43) contain either ∇ρ or ∂∥p, both of which are zero

at t = 0, and so these terms are negligible in the linear regime.

3.2 Global momentum conservation error in the main model

In this section, the momentum conservation error will be compared between the

main model with v∥ and the main model without v∥. As discussed in section 2.6.3,

the momentum conservation error should be greater when v∥ is present, which is

confirmed by the simulations. One caveat that should be pointed out, however, is

that section 2.6.3 considers local conservation of momentum, whereas the present

section is concerned only with global momentum conservation. The simulations in
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Figure 3.6: A flux surface aligned grid (resolution reduced for clarity) used for simulating
the ballooning mode (a), and the sum of all n > 0 Fourier modes of F0Ψ
(JOREK units) at 250 time steps, or t = 641.1 Alfvén times (b).

this section were carried out for ballooning modes in an X-point tokamak with an

aspect ratio of 3; the cross section is shown in Figure 3.6. The following simulation

parameters were used: Fourier modes n = 0, ..., 6 were included (Ntor = 13), F0 =

3 T ·m, a time step of 3 Alfvén times, a resistivity of η = 3.8764·10−6 Ω ·m (2·10−6

JOREK units), and a viscosity of µ = 2.293 ·10−7 kg/(m · s) (µt⊥ = 4 ·10−6 JOREK

units). When solving the Grad-Shafranov equation for initial conditions with the

following profiles:

FF ′(ψn) =
1

2

[
1.6(1− ψn)− 0.43 cosh−2 ψn − 0.9

0.07

](
1− tanh

ψn − 1

0.03

)
,

and p(ψn) = ρ(ψn)T (ψn), with T (ψn) = 0.015(1−0.66ψn)[1−tanh((ψn−0.94)/0.08)]/2+

3 · 10−4 and ρ(ψn) = [1− tanh((ψn − 0.94)/0.08)]/2 + 0.01. In these expressions,

FF ′ has units of T2 ·m, T has units of (1020kBµ0) · K and ρ is in units of 3.346 ·

10−7kg/m3. Finally, since the main model matches the JOREK standard tokamak

model in the tokamak limit, the standard tokamak model was used to run the

simulations presented here.

Consider the total linear momentum of the plasma in the Cartesian x- and y-

directions, calculated by integrating ρvx and ρvy over the plasma volume. Here,
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Figure 3.7: Total linear momentum of the plasma in the Cartesian x- and y-directions as
a function of time in the simulation using the model with v∥ = 0 (a), and the
simulation using model with v∥ ̸= 0 (b).

the x-direction was chosen to be the cylindrical R-direction when ϕ = 0, and the

y-direction was chosen to be the cylindrical R-direction when ϕ = π/2, with the

Cartesian and cylindrical z-axes coinciding. Violation of momentum conservation

was observed in the x- and y-directions. Momentum conservation error in the

z-direction was solely due to numerical discretization, as global z-momentum is

conserved in the continuous limit. This can be seen by setting Φ∗ = lnR in equation

(2.46), and taking into account that Bv = F0/R in the tokamak limit.

Figure 3.7 shows the x- and y-components, Px and Py of the total plasma momen-

tum for both with and without v∥. In both cases, it was confirmed that dPx/dt and

dPy/dt exceed the surface integral of the momentum flux across the boundary by

several orders of magnitude. Thus, the momenta in Figure 3.7 cannot be explained

by momentum exchange with the walls; these are nonphysical momenta that arise

due to the inaccuracies discussed in section 2.6.3. Note that in Figure 3.7, after

about 1 ms, the momenta no longer grow, but rather oscillate, with the amplitude

staying around the same order of magnitude. These oscillations begin at about

the same point in time when saturation is reached. As expected, the momentum

conservation error in the case with v∥ ̸= 0 is worse than in the case with v∥ = 0, as

indicated by the nonphysical momentum being more than an order of magnitude

greater in the former case than in the latter.
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4 Stellarator simulations

In previous chapters, the stellarator models were either studied analytically, or

tested in the tokamak limit. The present chapter reports the results of first of a kind

fully three-dimensional stellarator simulations in JOREK using the reduced MHD

model without parallel flow. All of the simulations presented in this chapter start

from a set of simple stellarator equilibria that are based on the historic Wendelstein

7-A stellarator [35]. More complicated configurations, such as Wendelstein 7-X, can

be studied using the present code version, but at increase computational effort, and

so they are left for future work. The equilibria were calculated using the GVEC

code [36].

As previously stated, the tokamak limit corresponds to setting χ = F0ϕ in the

equations. For stellarators, it is necessary to be able to work with a general scalar

potential χ. Fortunately, it is possible to represent an arbitrary χ analytically:

since ∇χ is a magnetic field, it must be divergence-free, so ∆χ = 0. One then

needs to find a general solution to the Laplace equation in the toroidal coordinate

system (R, z, ϕ), which was done by Dommaschk in Ref [37]. Dommaschk provides

his solution as a sum over harmonics, where any particular solution is determined

by the coefficients of these harmonics. In order to determine the coefficients for a

particular equilibrium, one needs to first calculate the vacuum field on an (R, z, ϕ)

grid, which is done here using the EXTENDER P code [38].

Using the Dommaschk potential formulation for χ in conjunction with the non-

axisymmetric flux surface aligned grids described in section 1.4 allows one to simu-

late stellarators relatively efficiently. The steps to run a stellarator simulation can

then be summarized as follows:

1. Calculate an equilibrium for the stellarator in question using the GVEC code
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2. Use the output of GVEC to calculate the contribution to the stellarator’s mag-

netic field from the coils (i.e. the curl-free/vacuum field) with the EXTENDER P

code

3. Calculate the coefficients for the Dommaschk representation of the scalar po-

tential from the output of EXTENDER P using a utility developed as a part

of this thesis project

4. Build a flux surface aligned grid from the geometry data in the GVEC solution

using a utility written by R. Ramasamy, and import it into JOREK

5. Calculate the j̃, Ψ and temperature variables from the GVEC solution

6. Using the results of the previous step as an initial condition, evolve the system

in time using the stellarator reduced MHD equations in JOREK

This procedure will be elaborated on in the following sections.

4.1 Finding the Dommaschk representation of a scalar potential

Since χ is a solution of the Laplace equation in a torus, it can be represented as a

summation over harmonics

χ = F0ϕ+
∑
m,l

χm,l, (4.1)

where F0ϕ corresponds to a tokamak-like toroidal field, m is the toroidal mode

number, l is the poloidal mode number, and each harmonic satisfies the Laplace

equation individually: ∆χm,l = 0. Dommaschk gives a more explicit representation

for χ [37]:

χ̃ = ϕ+
∑
m,l

[
(am,l cosmϕ+ bm,l sinmϕ)Dm,l(R̃, z̃)

+ (cm,l cosmϕ+ dm,l sinmϕ)Nm,l−1(R̃, z̃)
]
,

(4.2)

where a tilde denotes normalization: χ = F0χ̃, R = R0R̃ and z = R0z̃; the

normalization factor R0 is the toroidally averaged radial position of the magnetic
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axis of the vacuum field. The functions Dm,l and Nm,l are defined as:

{D,N}m,l(R̃, z̃) =
2k≤l∑
k=0

z̃l−2k

(l − 2k)!
C

{D,N}
m,k (R̃), (4.3)

and

CD
m,l(R̃) =

l∑
k=0

[− (αk(α
∗
l−m−k ln R̃ + γ∗l−m−k − αl−m−k)− γkα∗

l−m−k + αkβ
∗
l−k)R̃

2k+m

+ βkα
∗
l−kR̃

2k−m],

CN
m,l(R̃) =

l∑
k=0

[(αk(αl−m−k ln R̃ + γl−m−k)− γkαl−m−k + αkβl−k)R̃
2k+m

− βkαl−kR̃2k−m].

(4.4)

The coefficients αn, βn and γn are defined as

αn =
(−1)n

22n+mΓ(m+ n+ 1)Γ(n+ 1)
, α∗

n = (2n+m)αn, n ≥ 0,

βn =
Γ(m− n)

22n−m+1Γ(n+ 1)
, β∗

n = (2n−m)βn, n ≥ 0 and m > n,

γn =
αn
2

n∑
i=1

(
1

i
+

1

m+ i

)
, γ∗n = (2n+m)γn, n > 0.

(4.5)

Although not written out explicitly, it can be seen that the coefficients also depend

on m, the toroidal mode number of the D or N function that is being evaluated.

If the conditions on n and/or m above are not satisfied, then the corresponding

coefficient and its starred version are zero. Finally, the coefficients am,l, bm,l, cm,l

and dm,l in equation (4.2) are what determines a particular configuration and must

be calculated from the EXTENDER P output.

Note that, since the harmonics χm,l are given analytically, the property that

∆χm,l = 0 is satisfied exactly. This is an important advantage of using the Dom-

maschk representation for χ instead of the finite element representation (1.30), as

it guarantees that the divergence-free condition on the magnetic field will be satis-

fied to machine precision. The second advantage is that χ and its derivatives are

smooth.

EXTENDER P provides the values of the three cylindrical components of the
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vacuum magnetic field, which will be referred to as B⃗E, on an (R, z, ϕ) grid. Setting

∇χ = B⃗E and considering the ϕ component, BE,ϕ = ϕ̂ · B⃗E = R−1∂χ/∂ϕ, one has:

R0

F0

BE,ϕ = R̃−1∂χ̃

∂ϕ
= R̃−1 + R̃−1

∑
m,l

m
[
(−am,l sinmϕ+ bm,l cosmϕ)Dm,l(R̃, z̃)

+ (−cm,l sinmϕ+ dm,l cosmϕ)Nm,l−1(R̃, z̃)
]
.

(4.6)

Now, using the properties of the Dm,n and Nm,n functions given by equations (10)

and (11) of Ref [37], equation (4.6) is evaluated at R̃ = 1:

R0

F0

BE,ϕ

∣∣∣∣
R̃=1

= 1 +
∑
m,l

m(−am,l sinmϕ+ bm,l cosmϕ)
z̃l

l!
. (4.7)

If one also evaluates at z̃ = 0 and integrates over ϕ, F0 can be calculated:

F0 =
R0

2π

∫ 2π

0

BE,ϕ|R̃=1,z̃=0 dϕ. (4.8)

To calculate the coefficients am,l and bm,l, one must first multiply by either sinmϕ

or cosmϕ and then use the orthogonality property of trigonometric functions:

−m
∑
l

am,l
z̃l

l!
=

R0

F0π

∫ 2π

0

BE,ϕ|R̃=1 sinmϕ dϕ,

m
∑
l

bm,l
z̃l

l!
=

R0

F0π

∫ 2π

0

BE,ϕ|R̃=1 cosmϕ dϕ.

(4.9)

The number of terms L in the summations over l in equations (4.9) that is

necessary to accurately represent the magnetic field is usually less than the number

of poloidal modes used in the GVEC equilibrium. In practice, it is best to scan

through different values of L, starting with the number of poloidal modes and

decreasing from there, while trying to minimize the error in ∇χ as compared to

B⃗E. Note that using higher values of L than necessary can lead to higher errors

away from the R̃ = 1 surface due to overfitting, as the integration in equations

(4.11), (4.12), (4.15) and (4.16), which will be derived shortly, is only over the

R̃ = 1 surface. Figure 4.1 shows the volume-averaged relative squared error of

the Dommaschk potential representation as a function of the number L of poloidal

modes kept in a Wendelstein 7-A equilibrium with β = 2.3 · 10−3 % (see section 4.3

for more details about this equilibrium).
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Figure 4.1: The volume-averaged squared relative error of the Dommaschk potential rep-
resentation ⟨(∇χ− B⃗E)2/B2

E⟩ as a function of the number of poloidal modes
L. The values shown in this plot were calculated using a Python implementa-
tion of Dommaschk potentials based on the one written by Paul Huslage for
the BOUT++ code [39, 40].

One can convert equations (4.9) into two linear algebraic systems with trian-

gular matrices by changing the variable to z′ = z̃/Z and, after multiplying both

equations by a Legendre polynomial Pn(z
′), integrating from -1 to 1. Here, Z is

determined as follows. In each poloidal plane at R̃ = 1, z̃ ∈ [−z̃−(ϕ), z̃+(ϕ)], so

Z < minϕ{z̃−(ϕ), z̃+(ϕ)}. The value of Z is chosen to be slightly smaller than the

minimum to avoid using the components of B⃗E close to the boundary, where the

output of EXTENDER P can be less accurate. There is some freedom in choos-

ing the specific value of Z, and it may take some trial and error to find the best

value. The Legendre polynomials are orthogonal to monomials of lower order than

the polynomial; this can be seen by expanding a monomial zl in the Legendre

polynomial basis:

zl =
∑
n

Cl,nPn(z). (4.10)

Clearly, the summation must terminate at n = l since each new polynomial Pn(z)

contains a term of order n, which cannot be cancelled by any of the terms in the

lower order polynomials. Thus, if Pl+1(z) is included in the series, there would be

a zl+1 term that does not get cancelled, a contradiction. Including Pl+2(z) would

cancel the zl+1 term, but would also introduce an uncancellable zl+2 term, and so

on.
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Using the orthogonality property discussed above, one has, starting with n = L

and descending to n = 0, the following linear algebraic system for am,l:

−mam,L
L!

ZL⟨zL, PL(z)⟩ =
R0

F0π

∫ 2π

0

∫ 1

−1

BE,ϕ|R̃=1,z̃=Zz′ PL(z
′) sinmϕ dz′ dϕ,

−mam,L
L!

ZL⟨zL, PL−1(z)⟩ −m
am,L−1

(L− 1)!
ZL−1⟨zL−1, PL−1(z)⟩

=
R0

F0π

∫ 2π

0

∫ 1

−1

BE,ϕ|R̃=1,z̃=Zz′ PL−1(z
′) sinmϕ dz′ dϕ,

...

−m
L∑
n=0

am,n
n!

Zn⟨zn, P0(z)⟩ =
R0

F0π

∫ 2π

0

∫ 1

−1

BE,ϕ|R̃=1,z̃=Zz′ P0(z
′) sinmϕ dz′ dϕ,

(4.11)

where ⟨zi, Pj(z)⟩ =
∫ 1

−1
ziPj(z)dz. Similarly, for the coefficients bm,l, one has the

following linear algebraic system:

m
bm,L
L!

ZL⟨zL, PL(z)⟩ =
R0

F0π

∫ 2π

0

∫ 1

−1

BE,ϕ|R̃=1,z̃=Zz′ PL(z
′) cosmϕ dz′ dϕ,

m
bm,L
L!

ZL⟨zL, PL−1(z)⟩+m
bm,L−1

(L− 1)!
ZL−1⟨zL−1, PL−1(z)⟩

=
R0

F0π

∫ 2π

0

∫ 1

−1

BE,ϕ|R̃=1,z̃=Zz′ PL−1(z
′) cosmϕ dz′ dϕ,

...

m
L∑
n=0

bm,n
n!

Zn⟨zn, P0(z)⟩ =
R0

F0π

∫ 2π

0

∫ 1

−1

BE,ϕ|R̃=1,z̃=Zz′ P0(z
′) cosmϕ dz′ dϕ.

(4.12)

As can be seen, both of these systems of equations have triangular matrices.

At this point, the equations for the coefficients cm,l and dm,l have yet to be

determined. Consider now the R component of B⃗E: BE,R = R̂ · B⃗E = ∂χ/∂R. One

has:

R0

F0

BE,R =
∂χ̃

∂R̃
=
∑
m,l

[
(am,l cosmϕ+ bm,l sinmϕ)

∂Dm,l

∂R̃

+ (cm,l cosmϕ+ dm,l sinmϕ)
∂Nm,l−1

∂R̃

]
.

(4.13)
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Again, evaluating at R̃ = 1 and using the properties of the Dm,n and Nm,n functions

given by equations (10) and (11) of Ref [37], one has:

R0

F0

BE,R

∣∣∣∣
R̃=1

=
∑
m,l

(cm,l cosmϕ+ dm,l sinmϕ)
z̃l−1

(l − 1)!
. (4.14)

From here, it is straightforward to follow the same steps as for am,l and bm,l, ob-

taining the following linear algebraic systems for cm,l:

cm,L
(L− 1)!

ZL−1⟨zL−1, PL−1(z)⟩ =
R0

F0π

∫ 2π

0

∫ 1

−1

BE,R|R̃=1,z̃=Zz′ PL−1(z
′) cosmϕ dz′ dϕ,

cm,L
(L− 1)!

ZL−1⟨zL−1, PL−2(z)⟩+
cm,L−1

(L− 2)!
ZL−2⟨zL−2, PL−2(z)⟩

=
R0

F0π

∫ 2π

0

∫ 1

−1

BE,R|R̃=1,z̃=Zz′ PL−2(z
′) cosmϕ dz′ dϕ,

...

L−1∑
n=0

cm,n+1

n!
Zn⟨zn, P0(z)⟩ =

R0

F0π

∫ 2π

0

∫ 1

−1

BE,R|R̃=1,z̃=Zz′ P0(z
′) cosmϕ dz′ dϕ,

(4.15)

and for dm,l:

dm,L
(L− 1)!

ZL−1⟨zL−1, PL−1(z)⟩ =
R0

F0π

∫ 2π

0

∫ 1

−1

BE,R|R̃=1,z̃=Zz′ PL−1(z
′) sinmϕ dz′ dϕ,

dm,L
(L− 1)!

ZL−1⟨zL−1, PL−2(z)⟩+
dm,L−2

(L− 2)!
ZL−2⟨zL−2, PL−2(z)⟩

=
R0

F0π

∫ 2π

0

∫ 1

−1

BE,R|R̃=1,z̃=Zz′ PL−2(z
′) sinmϕ dz′ dϕ,

...

L−1∑
n=0

dm,n+1

n!
Zn⟨zn, P0(z)⟩ =

R0

F0π

∫ 2π

0

∫ 1

−1

BE,R|R̃=1,z̃=Zz′ P0(z
′) sinmϕ dz′ dϕ.

(4.16)

Note that there are only L equations in each system for the unknowns cm,1, . . . , cm,L

and dm,1, . . . , dm,L because Nm,−1 is not defined, and so terms with cm,0 and dm,0

are not included in the sum (4.2).

The only coefficients for which a system of equations has not yet been obtained

are a0,l (there are no b0,l coefficients since sin 0 = 0). These coefficients cannot be
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obtained from the system (4.11) since the matrices of this system are singular when

m = 0. To get a solvable system, one must use the z component of B⃗E:

R0

F0

BE,z =
∂χ̃

∂z̃
=
∑
m,l

[
(am,l cosmϕ+ bm,l sinmϕ)

∂Dm,l

∂z̃

+ (cm,l cosmϕ+ dm,l sinmϕ)
∂Nm,l−1

∂z̃

]
.

(4.17)

Evaluating at R̃ = 1 using the properties of the functions Dm,n and Nm,n gives:

R0

F0

BE,z

∣∣∣∣
R̃=1

=
∑
m,l

(am,l cosmϕ+ bm,l sinmϕ)
z̃l−1

(l − 1)!
(4.18)

Integrating over ϕ leaves only them = 0 term in the sum, as all others are harmonic:∑
l

a0,l
z̃l−1

(l − 1)!
=

R0

2F0π

∫ 2π

0

BE,z|R̃=1 dϕ. (4.19)

To finalize the derivation, multiply the equation by a Legendre polynomial Pn(z
′)

and integrate from -1 to 1. Starting from n = L− 1 and descending to n = 0, the

system of equations is

a0,L
(L− 1)!

ZL−1⟨zL−1, PL−1(z)⟩ =
R0

2F0π

∫ 2π

0

∫ 1

−1

BE,z|R̃=1,z=Zz′ PL−1(z
′)dz′dϕ,

a0,L
(L− 1)!

ZL−1⟨zL−1, PL−2(z)⟩+
a0,L−1

(L− 2)!
ZL−2⟨zL−2, PL−2(z)⟩

=
R0

2F0π

∫ 2π

0

∫ 1

−1

BE,z|R̃=1,z=Zz′ PL−2(z
′)dz′dϕ,

...

L−1∑
n=0

a0,n+1

n!
Zn⟨zn, P0(z)⟩ =

R0

2F0π

∫ 2π

0

∫ 1

−1

BE,z|R̃=1,z=Zz′ P0(z
′)dz′dϕ.

(4.20)

Just as in the case of systems (4.15) and (4.16), there are only L equations for

the unknowns a0,1, . . . , a0,L. This is because D0,0 = 1, and so a0,0 is an additive

constant in the scalar potential, which has no effect on the vacuum magnetic field

[37].

The linear algebraic systems of equations (4.11), (4.12), (4.15), (4.16) and (4.17)

are solved in a Python script developed as a part of this thesis project, using the

NumPy library [41]. The solution was then written out to a Fortran namelist file,
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which can then be read by JOREK.

4.2 Determining initial conditions from the GVEC solution

As was mentioned in the previous chapter, although j̃ and Ψ are related by j̃ =

∆∗Ψ, where ∆∗ = B−2
v ∇ · (B2

v∇⊥, j̃ is stored as a separate variable for numerical

purposes. This ensures that j̃ is G1 continuous, as it is projected to the finite

element basis by the definition equation. It makes sense to first calculate the initial

condition for j̃, j̃0, from the GVEC data, and then calculate Ψ0 from j̃0 using

∆∗Ψ0 = j̃0. (4.21)

The equilibrium magnetic field provided by the GVEC solution will be referred

to as B⃗GV EC . Since GVEC works with full MHD, one needs to consider the full

MHD ansatz when working with B⃗GV EC :

B⃗GV EC = ∇χ+∇Ψ0 ×∇χ+∇Ω0 ×∇ψv.

Taking the curl of the above equation and dotting it with ∇χ, one has, after some

algebra:

jχGV EC = ∇χ · ∇ × B⃗GV EC = −∇ · (B2
v∇⊥Ψ0) +∇ · (Bv∂

∥Ω0∇ψv).

Using the same ordering as when discussing force balance in section 2.7.2, where

Bv = O(1), Ψ = O(λ), Ω = O(λ2) and ∂∥ = O(λ), with λ being the ordering

parameter, it can be seen that the first term is O(λ) and second term is O(λ3).

Thus, the second term can be neglected, due to being two orders higher than the

first term. This significantly simplifies the calculation, as now one can just set

j̃0 = −jχGV EC/B2
v = −∇χ · ∇ × B⃗GV EC/B

2
v .

Having determined j̃0, it remains to solve the differential equation (4.21) for

Ψ0. First, however, one needs to determine the boundary condition on Ψ. When

running a fixed boundary simulation, as done in this dissertation, it is usually

assumed that the plasma is surrounded by a perfect conductor, so the magnetic

field at the boundary does not have a normal component: n⃗ · B⃗ = 0. In the reduced

MHD model, this means that Ψ has to satisfy n⃗ ·(∇Ψ×∇χ) = −n⃗ ·∇χ at all times.
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This is a nonhomogeneous linear differential equation which must be solved on the

boundary of the torus; the solution to this differential equation then provides a

nonhomogeneous Dirichlet boundary condition for equation (4.21). Note that the

kernel of the differential operator in the boundary equation is quite large, consisting

of all functions f(χ). Using a flux surface aligned coordinate system (ψ, θ, ϕ), where

ψ is a flux surface label, θ is a poloidal angle and ϕ is a toroidal angle, the boundary

equation becomes:
∂Ψ

∂θ

∂χ

∂ϕ
− ∂Ψ

∂ϕ

∂χ

∂θ
= −J∇ψ · ∇χ, (4.22)

where J = [∇ψ · (∇θ × ∇ϕ)]−1 is the Jacobian. However, solving the equation

in this form is numerically difficult because one cannot easily separate the kernel

and remove it from the solution space. To do so, one must switch to a coordinate

system where χ is one of the coordinates. It is best to switch out ϕ for χ, since

a stellarator must have a nonvanishing toroidal component to its vacuum field

(c.f. the F0ϕ term in equation (4.1)), so ∂χ/∂ϕ is nonvanishing and the Jacobian

of the new coordinates is nowhere singular. The boundary equation in (ψ, θ, χ)

coordinates is
∂Ψ

∂θ
= −J ′∇ψ · ∇χ, (4.23)

where J ′ = [∇ψ ·(∇θ×∇χ)]−1 is the new Jacobian. It is easy to solve this equation

in JOREK. Due to the JOREK grid being flux surface aligned, the element local

coordinates s and t (see section 1.4) can be related to the coordinates ψ and θ as

ψ = s, θ = 2π(t + ibnd elm)/Nbnd elm, where ibnd elm is the zero-based index of the

current boundary element and Nbnd elm is the total number of boundary elements.

Finally, the χ coordinate is given by the Dommaschk representation (4.2). The

solution space in which the solution to equation (4.23) is searched for can now be

represented as:

Vsol = span[{cosmθ, sinmθ|m = 1, ...,mpol} × {1, cosnχ, sinnχ|n = 1, ..., ntor}].

(4.24)

Excluding the m = 0 mode removes the kernel of the differential operator of equa-
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tion (4.23) from Vsol, and the equation can then be solved using the standard

Fourier-Galerkin method. The solution obtained this way is then projected back

onto the JOREK finite element basis and written to the boundary nodes. Finally,

equation (4.21) is solved by splitting Ψ0 = Ψ0,i + Ψb, where Ψb is the solution to

equation (4.23) and thus satisfies the nonhomogeneous Dirichlet boundary condi-

tion, while Ψ0,i is an unknown function which is zero at the boundary. The solution

Ψ0,i is then found using the standard JOREK solver with homogeneous Dirichlet

boundary conditions. When Ψ is evolved in time, the increments δΨ (see equation

(1.32)) must also be zero at the boundary, so that the nonhomogeneous boundary

condition continues to be satisfied.

The last step is determining an initial condition for temperature, which is almost

trivial. The GVEC solution provides a pressure profile pGV EC , which must simply

be converted to JOREK units and divided by the initial density profile ρ0. In all

of the stellarator simulations presented in this chapter, the initial density is taken

to be constant for simplicity, which corresponds to ρ0 = 1 in JOREK units.

4.3 A consistency check for the stellarator model

After having derived and implemented the stellarator model, it remains to validate

it for stellarators, showing that it does work. However, before proceeding to more

complicated cases, a set of initial tests must be done using stable equilibria to

demonstrate that the model is indeed consistent, the error due to neglecting of

fourth-order terms in the force balance, which was discussed in section 2.7.2, is

small, and no significant change is observed in the stable cases after simulating

them for some time.

The consistency checks were done using four equilibria based on the historic

Wendelstein 7-A stellarator [35] with different values of β. These equilibria were

intended to be unstable to the (2,1) tearing mode, however, since Wendelstein

7-A had five field periods, the simulations can be done with five-fold periodicity,
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Figure 4.2: The total kinetic energy of the plasma in the β = 0.022 % case during the
first 0.144 ms of the simulation (20 time steps of 1 and 20 time steps of 10
JOREK time units) showing the damping out of motion due to the neglect of
fourth order terms in the force balance.

excluding the unstable n = 1 Fourier mode and its mode family. The equilibria were

first calculated with VMEC/NEMEC [42], and then GVEC was used to refine them.

Poloidal modes m = 0, ..., 12 and toroidal modes n = 0, ..., 10, which corresponds

to Nctor = 21 in JOREK, were used to calculate the equilibrium. Note that the

toroidal modes are within one period; for the full torus, they correspond to n =

0, 5, 10, ..., 50. All of the equilibria have the same boundary: a rotating ellipse with

a minor axis of 0.091 m and a major axis of 0.12 m; the major radius of the torus is

1.99 m. The normalized toroidal current profile was also the same for all equilibria:

In(ψtn) = 3ψtn − 3ψ2
tn + ψ3

tn, (4.25)

where ψtn is the toroidal flux normalized so that ψtn = 0 at the axis and ψtn = 1 at

the boundary. In(ψtn), which represents the toroidal current enclosed by the flux

surface ψtn is normalized by the total toroidal current, which was 17.5 kA in the

cases considered, such that In(1) = 1. The pressures at the axis were 1 Pa, 100 Pa,

500 Pa and 1 kPa, which corresponds to β-values of 2.3 · 10−5 %, 2.3 · 10−3 %,

0.011 % and 0.022 %, respectively. The pressure profiles are given by

p(ψtn) = pa − (pa − pb)ψtn, (4.26)

where p is the pressure in pascals, pa is the pressure at the axis and pb is the

pressure at the boundary. For the β = 2.3 · 10−5 % (pa = 1 Pa) case, pb = 0.01 Pa,
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Figure 4.3: The R coordinate of the magnetic axis as a function of time for the four
different β cases.

while for the other three cases, pb = 1 Pa. When finding the initial conditions from

the GVEC equilibrium, Ntor = 9 was used for the variables, which corresponds to

Fourier modes n = 0, ..., 4 within one period, or n = 0, 5, ..., 20 within the full torus.

All of the simulations were run with a spatially constant resistivity η = 1.938 ·

10−9 Ω·m and viscosity µ = 2.90 · 10−9 kg/(m · s). In addition, a hyperviscosity of

2.90 · 10−12 kg ·m/s was also used. The radial resolution of the finite elements was

41, and the poloidal resolution was 48. The first part of the simulation was run

using the implicit Euler time stepping scheme to damp out the small oscillations

that were present due to the neglect of fourth order terms in the force balance (see

Figure 4.2). This consisted of 20 time steps of length 6.484 · 10−4 ms (1 in JOREK

units), followed by 20 time steps of length 6.484 · 10−3 ms (10 in JOREK units),

followed by 10 time steps of length 6.484 · 10−2 ms (100 in JOREK units). For the

β = 0.022% case, but not for the others, this was followed by another 10 time steps

of length 6.484 · 10−2 ms. In the second part of the simulation, the Crank-Nicolson

time stepping scheme was used, and all four cases were simulated for 6.484 ms

(10000 in JOREK units). The β = 2.3 · 10−5 % and β = 2.3 · 10−3 % cases used

time steps of length 6.484 · 10−2 ms in the second part, however the β = 0.011 %

and β = 0.022 % required shorter time steps (3.242 · 10−2 ms and 1.621 · 10−2 ms,

respectively) for numerical stability. The toroidal integration was done by summing

over 40 poloidal planes spread evenly over one period.
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As expected, no large scale motion was observed in any of the four simulations.

This can be seen in Figure 4.3, where the R coordinate of the magnetic axis is

plotted as a function of time for each of the four cases, along with the error bars.

The axis was determined by making an initial guess for its (R, z) position in the

ϕ = 0 poloidal plane, and then tracing the field line at that position for ten toroidal

turns, after which the error E = 0.1
√
(maxRi −minRi)(max zi −min zi), where

i = 1, ..., 10, is calculated. If this error is smaller than the tolerance, which was

set to 5 · 10−5 m, then the axis is considered found: the axis position at ϕ = 0

is (Rc, zc) = ((maxRi + minRi)/2, (max zi + min zi)/2). If not, then the field line

tracing is restarted at (Rc, zc), and the process is repeated until the error is less

than the tolerance.
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Figure 4.4: The Poincare plots for the β = 0.022 % case at t = 0 and ϕ = 0 (a), at ϕ = 0
after the simulation is over (t = 7.275 ms) (b), and at t = 0 and ϕ = 3π/10
(3/4 of the way through one period) (c).
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To demonstrate that there is no significant motion even away from the axis, the

Poincare plots for the β = 0.022 % case are shown in Figure 4.4, both before and

after the simulation, along with the flux surfaces of the GVEC equilibrium. As

can be seen, the flux surfaces in JOREK coincide with the GVEC flux surfaces, so

the error introduced by using the reduced MHD ansatz for the magnetic field has

no noticeable effect on the flux surfaces. Moreover, the flux surfaces do not move

during the simulation, preserving the stable equilibrium as expected.

4.4 Tearing modes: benchmarking against CASTOR3D

Having demonstrated that basic stellarator simulations can be run with the correct

equilibrium force balance in the newly implemented model in JOREK, the next

step is to simulate instabilities and benchmark them against known results. Tearing

modes in the Wendelstein 7-A stellarator will be used for this purpose. Three cases

at different values of β will be considered: 2.3 ·10−5 %, 2.3 ·10−4 % and 2.3 ·10−3 %.

The β = 2.3 · 10−5 % and β = 2.3 · 10−3 % are the same equilibria that were used

in the previous section, with the β = 2.3 · 10−4 % being a new equilibrium with

the same boundary and current profile as the other two and an intermediate value

of β. In this new intermediate equilibrium, pa = 10 Pa and pb = 0.1 Pa. When

finding the initial conditions from the GVEC equilibrium, Ntor = 5 was used for

the variables, which corresponds to Fourier modes n = 0, 1, 2 in one period, or

n = 0, 5, 10 in the full torus.

Just as before, the stellarator simulations were run with the implicit Euler time

stepping scheme and five-fold periodicity to damp out oscillations. This consisted

of 20 time steps of length 6.484 · 10−4 ms, followed by 20 time steps of length

6.484 · 10−3 ms, followed by 5 time steps of length 6.484 · 10−2 ms. The resistivity

was set to η = 1.938 · 10−6 Ω·m and the viscosity was zero. The hyperviscosity

was 2.90 · 10−15 kg ·m/s for the β = 2.3 · 10−5 % and the β = 2.3 · 10−4 % cases

and 7.25 · 10−15 kg ·m/s for the β = 2.3 · 10−3 % case. The finite element reso-

81



CHAPTER 4. STELLARATOR SIMULATIONS

 6500

 7000

 7500

 8000

 8500

 9000

 9500

 10000

 10500

10-4 10-3

(a)

g
ro

w
th

 r
a
te

 (
s

-1
)

β (%)

JOREK
CASTOR3D

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

10-7 10-6 10-5

(b)

g
ro

w
th

 r
a
te

 (
s

-1
)

η [Ω m]/1.938

JOREK
CASTOR3D

Figure 4.5: The JOREK and CASTOR3D growth rates at η = 1.938 · 10−6 Ω·m and
differing betas (a), and at β = 2.3 · 10−5 % and differing resistivities (b).

lution was 41 radially and 48 poloidally, just as before. In the second part of the

simulation, the domain was extended to the full torus, taking now into account

the n = 0, ..., 10 Fourier modes, corresponding to Ntor = 21. The Crank-Nicolson

scheme was used with time steps of length 1.621 · 10−2 ms. The volume integration

was done by summing over 40 poloidal planes spread evenly throughout the full

torus. The number of Fourier modes, number of poloidal planes and the values of

hyperviscosity, resolution and time step size were chosen after scanning over sev-

eral values for each parameter and choosing the value at which the growth rate of

the tearing mode converged. For the present purposes, convergence is considered

to be achieved when halving the time step size or hyperviscosity, or doubling the

resolution, number of modes or number of planes leads to a change in the growth

rate of less than 1.5%. The convergence test was done for the β = 2.3 · 10−3 %

and β = 2.3 · 10−5 % cases, resulting in all of the parameters converging to the

same values, except for hyperviscosity, which converged to 7.25 · 10−15 kg ·m/s for

the β = 2.3 · 10−3 % case and 2.90 · 10−15 kg ·m/s for the β = 2.3 · 10−5 % case.

The β = 2.3 · 10−4 % case was then run using the lower value of hyperviscosity.

Figure 4.5 a shows the values of the growth rates from JOREK alongside the values

calculated in a linear MHD code called CASTOR3D [43, 44] by R. Ramasamy. The

maximum error is 9.6%, and occurs at β = 2.3 · 10−4 %.

Two more simulations were done with the β = 2.3 · 10−5 % case, this time
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using resistivities of η = 1.938 · 10−7 Ω·m and η = 1.938 · 10−5 Ω·m, while all of the

other parameters were kept the same as before. For the η = 1.938 ·10−7 Ω·m case, a

hyperresistivity of 9.691·10−14 Ω·m2 (5·10−14 in JOREK units) had to be introduced

in order for the iterative solver to converge in a reasonable amount of time. However,

it was first confirmed that introducing this amount of hyperresistivity in the η =

1.938 · 10−6 Ω·m case, which could be run with or without hyperresistivity, changes

the growth rate by less than 1.5%. Figure 4.5 b shows the growth rates for the β =

2.3·10−5 % case at different values of resistivity alongside the growth rates calculated

by CASTOR3D. The maximum error is 20.7%, occuring at η = 1.938 · 10−5 Ω·m.

This is most likely due to the neglect of v∥ by the model used in these simulations, as

v∥ can be large within the resistive layer, and the size of the resistive layer increases

with resistivity. In general, the agreement on the growth rates for the (2,1) tearing

mode looks convincing, with deviations on the order of 10% from CASTOR3D,

which is a full MHD linear code.

4.5 Preliminary studies of ballooning modes

Further work will involve doing a similar benchmark with CASTOR3D for bal-

looning mode growth rates in Wendelstein 7-A. Some preliminary studies using

equilibria with β = 0.11% and β = 0.21% (corresponding to axis pressures of

5 kPa and 10 kPa) have already been done at resistivities of η = 1.938 · 10−7 Ω·m

and η = 5.814 · 10−7 Ω·m. These equilibria have the same toroidal current and

pressure profiles as the equilibria in section 4.3, with pb set to 1 Pa and 100 Pa,

respectively. As before, the simulations were initially run with the implicit Eu-

ler scheme to damp out oscillations. For all cases except the β = 0.21%, η =

5.814 · 10−7 Ω·m case, this first phase of the simulation consisted of 20 time steps

of length 6.484 · 10−4 ms, followed by 1 time step of length 6.484 · 10−3 ms. For the

β = 0.21%, η = 5.814 · 10−7 Ω·m case, the first phase consisted simply of 30 time

steps of length 6.484 · 10−4 ms. Due to high computational expense, the toroidal
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Figure 4.6: The ballooning mode growth rates at two different values of β and resis-
tivity (a), and the temperature plot (JOREK units) in the β = 0.21%,
η = 1.938 · 10−7 Ω·m case at t = 0.081 ms on the ϕ = 0 poloidal plane
(b).

resolution of these preliminary simulations was limited to only five Fourier modes

(n = 0, ..., 2). In the second part of the simulation, the Crank-Nicolson scheme

was used, however both parts were run with a five-fold periodicity, since ballooning

modes can be simulated with just one period. Holding the number of Fourier modes

fixed at Ntor = 5, a convergence test was done for the β = 0.21% equilibrium while

using a resistivity of η = 1.938 · 10−7 Ω·m. The growth rate converged at a finite

element resolution of 61 radially and 72 poloidally, time step size of 6.484 · 10−4 ms

and a hyperviscosity of 7.25 ·10−15 kg ·m/s. The other three simulations were then

run with these parameters. Figure 4.6 a shows the growth rates measured in the

four cases, and 4.6 b shows the temperature in the β = 0.21%, η = 1.938 ·10−7 Ω·m

case on the ϕ = 0 poloidal plane around the onset of saturation.
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The purpose of this work was to extend the JOREK nonlinear MHD code to stel-

larators. This requires first to generalize the reduced MHD model to be compatible

with three-dimensional geometries. Such a model was derived and studied ana-

lytically in chapter 2 this dissertation. The model eliminates fast magnetosonic

waves from the system, as a reduced MHD model should, and also guarantees that

∇·B⃗ = 0, unlike several older reduced MHD models for stellarators. It was shown in

section 2.6 that the model conserves energy, but introduces an error into momentum

conservation. An alternate model, which does not guarantee energy conservation,

but has a smaller momentum conservation error is also derived. It was also shown in

section 2.7.2 that the main model introduces an error into equilibrium force balance,

but the error is negligible. The energy and momentum conservation properties of

the main and alternate models are then studied numerically in the tokamak limit

in chapter 3. The momentum conservation error of the main model was shown

to be small, and the energy conservation error of the alternate model is generally

also small, unless one uses a less numerically stable version of the magnetic stream

function evolution equation.

In order to guarantee ∇·B⃗ = 0 to machine precision, an analytical representation

of the vacuum magnetic field (i.e. the curl-free component), as derived by Dom-

maschk [37], was used. This representation is compatible with arbitrary vacuum

fields in a toroidal device. Once implemented, the main model was tested on a set

of l = 2 stellarator equilibria, based on the classic Wendelstein 7-A stellarator. The

GVEC code was used to calculate the equilibria, which were then used as initial

conditions for the JOREK runs. As demonstrated in section 4.3 that stable full

MHD equilibria are preserved in the reduced model: the flux surfaces do not move
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throughout the simulation, and closely match the flux surfaces calculated in GVEC.

Further, tearing modes were simulated in section 4.4, and the linear growth rates

measured in JOREK are in good agreement with the growth rates calculated by

the CASTOR3D linear MHD code.

Future work involves further studies exploring more complicated machines, such

as Wendelstein 7-X, and scenarios relevant to ongoing experiments. Of particular

interest are the current-driven sawtooth-like crashes observed in Wendelstein 7-X

[45]. Previous studies, which included both linear fully three-dimensional simula-

tions with CASTOR3D [46] as well as nonlinear simulations in a simplified cylin-

drical geometry with the TM1 code [47], have found that the corresponding Wen-

delstein 7-X equilibria are unstable to single and double tearing modes, as well

as resistive kink modes, and that the coupling of double tearing modes with kink

modes produces the sawtooth-like crashes. While the family of reduced MHD mod-

els used in JOREK, including the models derived in chapter 2, cannot accurately

reproduce kink modes at higher β [6], similar sawtooth-like crashes have also been

simulated in TM1 at zero β [47]. Using JOREK will allow to simulate these modes

nonlinearly in a fully three-dimensional geometry for the first time.
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for MHD simulations. Journal of Computational Physics, 227(16):7423–7445,
2008. doi:10.1016/j.jcp.2008.04.001.

[6] M. Hoelzl, G.T.A. Huijsmans, S.J.P. Pamela, M. Bécoulet, E. Nardon, F.J. Ar-
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